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Identifying Fine-Scale Archaeological Features Using KH-9 HEXAGON 
Mapping and Panoramic Camera Images: Evidence from Liangzhu 

Ancient City  
Abstract  
 
Historical fine-scale information of archaeological landscapes, such as geometry and spatial 
patterns, is crucial in archaeological investigations. However, documenting such information using 
satellite sensor data prior to 2000 remains a daunting challenge. Images from the declassified 
archives of KH-9 HEXAGON (KH-9) cameras, including the panoramic camera system (PCS) and 
mapping camera system (MCS), offer fine-scale information about archaeological sites. However, 
noise, contrast distortion and the availability of only a single panchromatic band can limit their 
potential, particularly for identifying features in subtropical climates within heterogeneous 
landscape types. This paper focuses on developing a novel multifaceted analytical framework with 
two components: image pre-processing and feature identification. The image pre-processing 
component is divided into two steps. First, a trained stationary wavelet transform (SWT) based on 
the normalised sill (NS) is developed to not only de-noises the image, but also preserve its original 
image characteristics. Then, the contrast of the de-noised images is optimised by the 
multi-resolution Top-hat (MTH) using multi-scale information. In the feature identification 
component, the MCS image is analysed using spatial colour composite write function memory 
(SCCWFM) and spatial novelty detection (SND). An ultra-fine spatial three-dimensional colour 
composite (UFSTCC) image and ultra-fine spatial digital surface model (UFSDSM) are produced to 
aid interpretation of the KH-9 PCS images. The proposed processing pipelines were tested on KH-9 
MCS and PCS images of the World Heritage site at Liangzhu Ancient City (LAC) in China, which 
is characterised by a subtropical climate and a heterogeneous landscape types. The proposed 
pre-processing pipeline improved considerably the appearance of these images across the LAC 
archaeological landscape types while maintaining the original image information. The developed 
digital analytical approaches for KH-9 PCS and MCS images facilitated straightforward 
identification of archaeological features in the LAC. The multifaceted analytical framework 
proposed has the potential to increase exploitation of the available KH-9 images in archaeological 
and cultural heritage applications. 
 
Keywords: KH-9 HEXAGON, Stationary Wavelet Transform, Novelty Detection, Stereo-pairs, 
Digital Surface Model, Liangzhu Ancient City 
 
1. Introduction 

Archives of declassified film-based images of the United States of America (USA) Keyhole 
(KH) program have been utilized extensively in archaeological research. Such images offer 
potential advantages: captured four to five decades ago (Casana 2020), fine spatial 
resolution (Ur 2003), large geographic footprint and stereo-view (Galiatsatos, Donoghue, 
and Philip 2008). Reviews of applications of KH images in archaeological research were 
provided by Fowler (2013) , Lasaponara and Masini (2011), Lasaponara et al. (2018) and 
Luo et al. (2019).  

Declassified images from the archives of KH-9 HEXAGON (KH-9), one of the satellite 
missions of the KH program, offer a unique and irreplaceable source of legacy data for 
archaeological investigations (Fowler 2016, 2022; Hammer, FitzPatrick, and Ur 2022). The 
KH-9 mission included two camera systems: the mapping camera system (MCS) and the 
panoramic camera system (PCS) (Hammer, FitzPatrick, and Ur 2022). The MCS, which 
had a medium spatial resolution (6 to 9 m), captured almost all of the globe (except 
Greenland, Australia and Antarctica) (Surazakov and Aizen 2010). Despite their medium 
spatial resolution, MCS images can reveal details of archaeological remains (Fowler 2016). 
MCS images overlap spatially such that they can be used for reconstructing historical 
digital elevation models (DEMs)(Surazakov and Aizen 2010; Maurer and Rupper 2015; 
Dehecq et al. 2020). Images from KH-9 MCS were released in 2002, and can be 
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downloaded via Earth Explorer as ‘Declass 2’ (https://earthexplorer.usgs.gov). The PCS is 
composed of ultra fine spatial resolution stereoscopic camera systems (0.6 to 1.2 m) which 
were integrated in every mission (Marzolff et al. 2022). PCS images have great potential 
for identifying archaeological features with respect to their (i) ultra-fine spatial resolution, 
(ii) three-dimensional view and (iii) historical digital surface models (DSM) (Hammer, 
FitzPatrick, and Ur 2022). KH-9 PCS images were made available to the public in 2011, and 
added to Earth Explorer in 2020, as ‘Declass3’ (https://earthexplorer.usgs.gov).  

Several studies have exploited the advantages of KH-9 PCS (Fowler 2022) and MCS 
(Scardozzi 2010) for archaeological research of Near Eastern Regions using visual 
interpretation. A comprehensive review of these valuable references can be found in 
Hammer, FitzPatrick, and Ur (2022). Conversely, in other regions the use of KH-9 
panchromatic images may be challenging, particularly under a subtropical climate with 
heterogeneous landscape types (e.g., East Asia)(Watanabe et al. 2017). Arguably, there are 
three major obstacles: (1) noise, (2) contrast distortions and (3) the single panchromatic 
band. Noise and contrast distortions impede accuracy of both visual interpretation and 
digital image processing (Shahtahmassebi et al. 2023). Particularly, the heterogeneity of 
landscapes can be increased by noise and contrast distortions in the image. Moreover, 
identifying archaeological features and their potential surface marks (e.g., soils and crops) 
based on a single panchromatic band is a non-trivial task (Fowler and Fowler 2005). For 
example, surfaces such as vegetation covers, moist soils, water bodies and archaeological 
features show very similar brightness values in panchromatic imagery, leading to potential 
misinterpretation or misclassification. 

 Moreover, limited technical documentation, parameters specifications and research 
outputs can impede evaluating contemporary pre-processing and feature identification 
techniques or proposing new frameworks (Surazakov and Aizen 2010; Maurer and Rupper 
2015; Dehecq et al. 2020; Marzolff et al. 2022).  

 Existing state-of-the-art approaches in digital image pre-processing (e.g., wavelet 
transform and mathematical morphology) (e.g., Soille 2003; Galiatsatos 2004; Bai, Zhou, 
and Xue 2012) and processing (image matching, structure from motion (SfM)) (e.g., Nita et 
al. 2018; Dehecq et al. 2020) rely heavily on fine-scale characteristics of the image such as 
texture, spatial distributions, spatial context and geometry. In this sense, both KH-9 MCS 
and PCS images offer suitable characteristics to support application of these methods.  

Given the merits and demerits associated with the obsolete film-based panchromatic 
KH-9 MCS and PCS imagery, five crucial questions arise: 

(1) How can appropriate de-noising and contrast enhancement techniques be 
developed for KH-9 imagery with the least image distortion? 

(2) Using KH-9 MCS, how can we effectively establish a spatial colour composite 
image (for MCS) by leveraging its fine-scale characteristics?  

(3) What types of continuous mapping technique are appropriate for KH-9 MCS? 
(4) What type of three-dimensional colour composite approach is effective for 

KH-9 PCS with respect to its ultra-fine spatial detail and lack of technical 
parameters?  

(5) How can we establish an ultra-fine scale historical DSM with minimum 
technical information? 

The overarching objective of this research was, thus, to develop a multifaceted analytical 
framework to identify and map archaeological features in an area characterised by a 
subtropical climate and a highly heterogeneous landscape, comprising a mixture of 
archaeological remains, moist soil, vegetation covers, water bodies (such as rivers and 
ponds) and rural regions, through simultaneously analysing both a pair of KH-9 PCS 
images in 1975 and a single KH-9 MCS image in 1975. The specific contributions of this 
research are: (1) a two-step pre-processing pipeline that is designed to both de-noising and 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


4 
 

optimising the contrast of the images while preserving and enhancing the salient properties 
of image objects from KH-9 PCS and MCS, (2) a spatial colour composite write function 
memory (SCCWFM) that is developed to facilitate identifying features in KH-9 MCS, (3) a 
spatial novelty detection (SND) method that is designed to map the spatial distribution of 
features in KH-9 MCS image, (4) a fully automatic ultra-fine spatial three-dimensional 
colour composite (UFSTCC) approach based on structure from motion (SfM) algorithm 
that is proposed to create three dimensional colour composite image using KH-9 PCS, and 
(5) a fully automatic ultra-fine spatial digital surface model (UFSDSM) via SfM that is 
implemented to establish historical an ultra-fine scale DSM. It is noteworthy that 
contribution 4 does not need any technical parameters of KH-9 PCS while contribution 5 
relies on minimum technical parameters (i.e., scanning resolution and focal length).  

  To assess systematically and comprehensively the outcome of the proposed 
multifaceted analytical approach, we acquired three images from the archives of KH-9. 
These images were selected because they covered a heterogeneous archaeological region in 
a wet climate. Moreover, sufficient information was available with which to conduct the 
experiments and support our findings.   
         
2. Study area and datasets 

 
2.1.Study area  
The study area is Liangzhu Ancient City (LAC) which is located approximately 30 km 
northwest of the centre of Hangzhou city, Zhejiang Province, China (Figure.1). The study 
area is classified as a humid climate (subtropical monsoon), with an annual rainfall of 1150 
to 1550 mm and an average annual temperature of 16 °C (Watanabe et al. 2017). Therefore, 
this region is highly heterogeneous, comprising the juxtaposition of a mixture of 
archaeological remains, moist soil, vegetation covers, water bodies (such as rivers and 
ponds) and rural land. Ultimately, such surfaces lead to mixed pixels among different land 
cover types in a single panchromatic band. For example, surfaces such as water, moist soil, 
archaeological remains and vegetation covers may exhibit very similar values in 
panchromatic imagery, resulting in potential errors in visual interpretation and digital image 
classification.    
   It is noteworthy that LAC was for the first time discovered by Shi Xingeng in 1936, and 
has been studied continuously since that time (Watanabe et al. 2017). LAC is represented 
by advanced civil engineering systems (such as dams, agricultural systems, palaces and 
waterways), precisely engineered jade ornaments, and a strong hierarchical social structure 
during the Liangzhu Culture period (ca. 3300–2500 cal. BC2)(Watanabe et al. 2017). LAC 
was placed on the United Nations Education, Scientific, and Cultural Organisation’s 
(UNESCO) world heritage list as a cultural site on July 6, 2019 (Wang et al. 2022). 
Detailed historical descriptions of the LAC are provided by (Watanabe et al. 2017; Yu et al. 
2018; Wang et al. 2022).  
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Figure 1. Location of the Liangzhu Ancient City (LAC) in Hangzhou city, Zhejiang Province, 
China. The coordinate centre of the image is 119°59'2.346" E, 30°23'35.988" N. Our investigation 
is situated within the large yellow rectangle. 
 
2.2.Datasets and Methodology 

Three KH-9 images covering the study area were downloaded via EarthExplorer 
(http://earthexplorer.usgs.gov) (Table 1).  

 
Table 1. Summary of basic properties of the KH-9 imagery used 

Camera Date Frame mission tile Spatial 
resolution(m) 

Entity ID 

MCS December 18,1975 7  1211-5   a       6-9m  DZB1211-500049L007001 
PCS August 29,1975 11 1210-3 b 0.6-1.2m  D3C1210-300523F011 
PCS August 29,1975 12 1210-3 i 0.6-1.2m  D3C1210-300523A012 

 
 

  The original images were scanned by the U.S. Geological Survey (USGS) EROS archive 
(www.usgs.gov) using high performance photogrammetric film scanners at 7-micron (3,600 
dpi). It is noteworthy that the locations of samples in the LAC were obtained from previous 
research in the region (Watanabe et al. 2017; Yu et al. 2018). 
   The overall methodology is divided into three parts: pre-processing, KH-9 MCS 
analytical framework and KH-9 PCS analytical framework (Figure. 2). The pre-processing 
included de-noising and contrast enhancement. Both steps were applied to both the KH-9 
MCS and PCS images. The KH-9 MCS image was analysed by proposing spatial colour 
composite write function memory (SCCWFM) and spatial novelty detection (SND). An 
ultra-fine spatial three-dimensional colour composite (UFSTCC) image and ultra-fine spatial 
digital surface model (UFSDSM) were devised for interpreting the KH-9 PCS images. These 
steps were applied to the whole study area. Moreover, we designed the approaches with two 
aims: reduced image distortion and a semi- or fully- automatic procedures. For calibration 
purposes, the KH-9 MCS images were subjected initially to the proposed and benchmark 
pre-processing pipelines. Then, the KH-9 MCS and PCS images were pre-processed by the 
selected pre-processing technique.  
 
 
 

http://earthexplorer.usgs.gov/
https://www.usgs.gov/centers/eros/science/declassified-satellite-imagery-3-data-dictionary#entity_id
http://www.usgs.gov/
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Figure 2. Research workflow. The KH-9 MCS image was analysed using spatial colour composite 
write function memory (SCCWFM) and spatial novelty detection (SND). Ultra-fine spatial 
three-dimensional colour composite (UFSTCC) image and ultra-fine spatial digital surface model 
(UFSDSM) were selected for interpreting the KH-9 PCS images.   

 
2.3. Image pre-processing  

To minimize the effects of noise and contrast degradation, this research adopted the 
de-noising and contrast enhancement pipeline for KH-9 images proposed by 
Shahtahmassebi et al. (2023). In this pipeline, image de-noising was undertaken using the 
stationary wavelet transform (SWT) while the multi-resolution Top-hat (MTH) was used to 
optimize the contrast of the image. Besides evaluating the performance of this pipeline for 
using KH-9 images in archaeological investigations, we improved this pipeline in four 
ways, as follows: 
(1) Selecting the SWT directional coefficients using a geostatistical approach 

One of the major concerns in the SWT de-noising procedure is selecting appropriate 
wavelet directional coefficients to avoid over-smoothing or loss of contrast. Conventional 
image quality assessment approaches, such as the Peak Signal-to-Noise Ratio (PSNR), may 
not be appropriate as they are not sufficiently sensitive to local spatial variation in the 
image brightness values. However, geostatitical techniques such as the semivariogram are 
based on local spatial information which can capture precisely the change in local spatial 
variation in the image.   

Semivariogram models commonly consist of several parameters, such as the sill and 
range, which generate interpretable information about the local spatial structure within the 
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image. Of these parameters, the sill in semivariogram analysis is a valuable tool to quantify 
impacts of wavelet directional coefficients on the image and, thus, assess the performance 
of de-noising. This is because the sill represents the magnitude of the structured component 
of the variance. We, therefore, assumed that any degradation in local spatial variation of 
brightness values due to selecting inappropriate wavelet directional coefficients is reflected 
in the sill of semivariogram. Accordingly, distortions in spatial variation of brightness 
values can be quantified by the difference between the sill of the original image and the sill 
of the de-noised image, called the normalized sill (NS):  

Normalized Sill =  SillDe−noised−SillOriginal image

SillDe−noised+SillOriginal image
                             (1) 

The SWT de-noising steps were as follows: 
(i) Decomposition: The Haar mother wavelet was selected to decompose the image into 

the vertical, horizontal and diagonal directions. The Haar wavelet was computed 
empirically at three levels. 

(ii) De-noising: A range of directional coefficient values with a 10-unit increment were 
selected empirically. This range was divided into seven groups with values from 
four (less image distortion and more noise) to 58 (high degree of over-smoothing 
and less noise). The coefficients, along with soft thresholding techniques, were used 
to de-noise the images (seven images).  

(iii) Normalized sill (NS): Semivariogram analysis was applied to all de-noised images 
and the original image. In order to apply the semivarogram to the image (a regular 
matrix), we used the global spatial statistics function in RSI ENVI 5.1 (Harris 
Geospatial SolutionsTM). The semivariogram was calculated with a maximum lag 
of 21 pixels and using the Queen’s case as the neighbourhood rule (considering all 
eight neighbouring pixels). However, this function does not estimate the 
semivariogram parameters. Hence, the computed semivariograms in ENVI were 
imported to the “geostat library” of the R-language to fit the semivariogram 
parameters. The obtained sills were then subjected to the NS procedure (equation 1).  

Considering that the de-noising procedure needs to adjust some parameters, this 
procedure was conducted semi-automatically. The proposed framework integrates the 
Stationary Wavelet Transform (SWT) and normalized sill. Hence, this framework is 
abbreviated to SWTNS. 

 
(2) Benchmark de-noising techniques  
To examine the effectiveness of the proposed de-noising step, we used four advanced 
benchmark methods (Dictionary learning, Total Variation, Shift invariant wavelet and 
Non-local means filtering (NLMF)) based on local spatial information. Dictionary learning 
was established using orthogonal matching pursuit (OMP), two non-zero coefficients and a 
patch size of 7×7 pixels. The random noise function was employed to generate a distorted 
image for the training procedure.    

For the Shift invariant wavelet, the cycle spinning technique was designed through 
three steps: circularly, de-noising and inverse shift. We tested a range of maximum shifts 
(max_shifts), consisting of 1,2,3,4 and 5. A ‘max_shifts’ of 5 was found empirically to be 
appropriate for de-noising. With respect to the Total Variation, we examined a range of 
de-noising weights, including 0.1, 0.2, 0.3, 0.4 and 0.5, and 0.2 was found to be optimal for 
removing the noise with the least image degradation.  
  Non-local means filtering (NLMF) was implemented to remove the effects of noise. In 
this research, we found that the pre-defined parameters of this filter to be optimal for 
de-noising with least image distortion. NLMF was implemented in Matlab® (MathWorks 
Inc., Natrick, MA, USA. Release:2018b) while the remaining benchmark techniques were 
computed in Python. These benchmarks were conducted fully automatically. 
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(3) Benchmark contrast enhancement techniques 
The proposed multi-resolution Top-hat (MTH) uses local spatial and neighbourhood 
information to optimize the contrast of the image. To understand comprehensively and 
systematically the performance of this technique, we adopted Fast Local Laplacian filtering 
(FLLF), which employs local spatial information. FLLF was computed in Matlab® 
(MathWorks Inc., Natrick, MA, USA. Release:2018b). Further details of the MTH and 
setting its parameters for KH-9 images can be found in Shahtahmassebi et al. (2023).  
  
(4) Image quality assessment strategy 
To assess the effects of pre-processing on KH-9 images, Gray Level Co-occurrence Matrix 
(GLCM) measures were employed as they are sensitive to the spatial structure of image 
brightness values (Hall-Beyer 2017). Four gray-level co-occurrence measures were 
employed: contrast (indicator of local variations), variance (measure of spatial variation), 
entropy (indicator of the disorder) and homogeneity (measure of distribution in the pixel 
pairs population). Then the standard deviation was computed for each texture.  

Two experimental images were generated separately by adding noise (15%) and 
blurriness (using Gaussian low pass filter with window size 13×13 pixels) to analyse the 
de-noising performance. For contrast enhancement assessment, two additional experimental 
images were also synthesized: low contrast image using linear enhancement (brightness 
values between 21 and 242) and high contrast using a Gaussian function (brightness values 
from 16 to 242).  

 
3.2.KH-9 MCS analytical frameworks 
3.2.1. Spatial colour composite write function memory (SCCWFM)  
A simple yet efficient approach for visual interpretation is write function memory (WFM) 
(Mather and Koch 2004; Jensen 2005). In effect, each band (or processed product) from 
multi-spectral remotely sensed data may be placed into each of the three WFM bands 
(Red-Green-Blue (RGB)) to generate a colour composite image. However, WFM may not 
be applicable for panchromatic imagery due to its single spectral band. Considering that the 
boundaries and details of archaeological remains have a key role in their identification, we 
assume that generating new bands sensitive to spatial information and placing them in 
WFM may facilitate the identification of archaeological features from KH-9 MCS images.  

In this research, a WFM image was constructed using a directional filter, GLCM-mean 
measure and a Sobel edge detector filter. The directional filter is a first derivative edge 
enhancement filter that selectively enhances image features with specific directional 
components (gradients) and window size. The directional filter was calculated at an angle 
of 45° and window size of 3×3 pixels. A Sobel edge detector is a non-linear edge 
enhancement which detects edges of image objects. The GLCM-mean measure is the 
average gray-level in the local window with respect to the neighbourhoods. This measure 
was calculated using a window size of 3×3 pixels. This was performed to further reduce the 
effects of potential unnecessary brightness anomalies while detecting sharp spatial variation 
in the image occurring in the boundaries of human-made features and non-human-made 
features. Finally, the directional filter, GLCM-mean and Sobel filter were placed into the as 
Red, Green and Blue bands in WFM, respectively.  

 
3.2.1. Spatial novelty detection (SND) 
To produce a spatial map of potential archaeological remains, we utilized a novelty 
detection approach in this research. Novelty detection techniques reveal new 
outlier/anomaly patterns in unseen datasets. This research assumed that change in 
brightness values of non-archaeological surfaces could be different from archaeological 
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landscapes. Hence, if training samples collected from non-archaeological regions, with 
subtle and gradual changes in contrast, are then compared to those of an unknown site 
(supposed archaeological sites), new or novel patterns can be revealed in the unknown 
region. To this end, the Local Outlier Factor (LOF) algorithm, which is an unsupervised 
novelty detection method, was adopted for this research (Breunig et al. 2000). The strength 
of the LOF algorithm is that it takes both local and global properties of datasets into 
consideration. This advantage is explained by the local aspect of LOF, meaning that it only 
compares the score of abnormality of one sample with the scores of its neighbours 
(Pedregosa et al. 2011).   
   In this research, the LOF procedure was applied in sequence as follows: sampling, 
training and modelling. Firstly, we collected several sample points from non-archaeological 
features which were located outside of the LAC region. All the training samples were 
characterized by gradual or subtle change in brightness values. The land use and land cover 
map of the region was also employed for identification; Secondly, the LOF model was 
trained using the collected training samples. Then the LAC image was subjected to the 
established LOF model. In LOF, the ‘numbers of neighbours’ and ‘contamination’ were 
defined as 25 and 0.5, respectively.  
   Prior to applying LOF to the whole study area, we built a LOF model using collected 
archaeological and non-archaeological samples. The results showed that although there was 
high pixel confusion between archaeological and non-archaeological samples in the KH-9 
MCS image, LOF enabled us to identify pixels in archaeological samples from those in 
non-archaeological regions (Figure 3). Therefore, the proposed LOF model was applied to 
the whole study area.  
 

 
 

Figure 3. Applying LOF to archaeological and non-archaeological samples 
   

3.3. KH-9 PCS analytical frameworks  
3.3.1. Ultra-fine spatial three-dimensional colour composite (UFSTCC) 
In general, creating accurate stereo-pairs relies on camera calibration parameters (e.g. RSI 
ENVI). For the KH-9 PCS camera, such parameters have yet to be released. Stereo pairs can 
be handled manually (without camera parameters) in some software (e.g., ERDAS Imagine). 
However, screen digitizing is time-consuming and complex. Thus, to generate accurate 
geo-rectified stereo-pairs, we employed the fully automatic stereo-pairs rectification 
algorithm for uncalibrated cameras. This algorithm included five major steps 
(Shahtahmassebi et al. 2023): (1) two images were aligned based on matching pixels between 
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two images. The alignment procedure used a Speeded-Up Robust Features (SURF) approach 
for matching pixels in two images. The extracted pixels were then compared using the sum of 
absolute differences indicator to identify strong matching pixels in both images; (2) the 
selected matching pixels were examined by random sample consensus (RANSAC) to satisfy 
the epipolar constraint; (3) the final pixels were used to estimate the fundamental matrix; (4) 
two images were rectified using the parameters in the fundamental matrix; and (5) the 
rectified images were placed into a stereo anaglyph system to create the stereo-pairs image. 
The image stereo-pairs were performed fully automatically in Matlab® (MathWorks Inc., 
Natrick, MA, USA. Release:2021b). The whole procedure took approximately 20 minutes.   
 
3.3.2. Ultra-fine spatial digital surface model (UFSDSM) 
Creating DSMs can be challenging using stereo-pairs from KH archives such as KH-9 and 
KH-4B (CORONA) due to unknown camera parameters, identifying accurate ground 
control points (GCP), the Earth’s curvature, software problems (e.g., bowl effect), changes 
in the landscape, difficulty in acquiring a fine spatial resolution reference DSM, and errors 
in estimating the camera parameters (Watanabe et al. 2017). In addition, reconstructing a  
DSM over a planar surface (flat) using these data may not offer promising results (Maurer 
and Rupper 2015) . Considering these problems, we aimed to evaluate whether establishing 
a DSM based on KH-9 PCS can identify any archaeological structures in LAC. To this end, 
we exploited the advantages of the automatic DSM procedures in Photoscan (Agisoft). In 
the first step, we used an aligning procedure to align two images from KH-9 PCS. The 
alignment was conducted using information from neighbouring pixels rather than geometric 
transformation. Second, tie points were extracted from the aligned images. Third, the 
extracted tie points were used to estimate the intrinsic camera parameters. Fourth, we 
computed a three-dimensional point cloud based on the derived tie points and estimated the 
camera parameters. Finally, the point cloud was used to create a DSM over the study area. 
We applied this framework to the original and pre-processed KH-9 PCS images yet, we did 
not observe any significant differences. Hence, the original images were used for the DSM 
procedure.  

 
4. Results 
4.1.  Pre-processing 
4.1.1. Calibration 
To analyse the performance of the different pre-processing techniques, we firstly applied 
the pre-processing techniques to the KH-9 MCS image as it had high contrast distortions 
and noise compared to the PCS image. After exhaustive and rigorous assessment, the 
selected pre-processing methods were applied to both the MCS and PCS images. 
 
4.1.2 Identifying appropriate wavelet de-noised image: 
We found that increasing the wavelet directional coefficients led to increasing blurriness 
and loss of contrast as observed through changes in the shape of the semivariogram, sill and 
normalized sill (NS) (Figure 4 and Table 2). For example, applying the wavelet coefficient 
values in the Group_7 (highest values) led to blurriness (Figure. 4(c)). This phenomenon 
was reflected in sharp decreases in the sill and NS which implies a decrease in spatial 
heterogeneity and loss of contrast (Figure 4(a) and Table 2). The results of NS and 
semivariogram analysis along with exhaustive visual inspections demonstrated that the 
directional coefficients in Group 2 not only eliminated the noise, but also preserved the 
original image information (Figure. 4(b)). Therefore, the de-noised image based on the 
wavelet coefficients in Group_2 was selected for subsequent processing.  
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Figure 4. (a) Semivariogram of de-noising images; (b) and (c) show two examples of de-noised 
images based on wavelet coefficient values in Group_2 and Group_7, respectively. Semivariogram 
and wavelet were calculated based on the KH-9 MCS image in the calibration step. The coordinate 
centre of the image (b) and (c) is 30°23′45″ N, 119°59′12″ E. The approximate spatial resolution of 
these images 6-9 m. 

Table 2 Parameters of the fitted semivariogram 

 
 
 
 
 
 
 
 

De-noised Group Model(s) Nugget Sill NS Range 

Original _Image EXP,MAT 16.47 609.3 ---  5.11 

Group_1 EXP,MAT 27.85 515.25 -0.08 6.81 

Group_2 EXP,MAT 0.0 495.5 -0.10  5.68 

Group_3 EXP,MAT 0.0 415.3 -0.18  6.24 

Group_4 EXP,MAT   0.0 379.99 -0.23 6.81 

Group_5 EXP,MAT   0.0 364.61 -0.25 7.38 

Group_6 Cubic   17.04 289.74 -0.35 19.86 

Group_7 Cubic   16.15 274.53 -.37  19.3 

(a) 

(b) (c) 
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a) De-noising 
Figure 6 presents two sample areas of archaeological remains (discovered in previous 
studies) (Watanabe et al. 2017; Yu et al. 2018) in the original KH-9 MCS image, and the 
result of de-noising using the proposed SWTNS and benchmark techniques. The original 
KH-9 MCS image was noisy and unclear (Figure 5(a) and Figure 6(I)). The result indicates 
that the effects of noise can be minimized by de-noising techniques (Figure 5 and Figure 6). 
In particular, image pre-processing techniques such as the proposed SWTNS, dictionary 
learning and total variation generated appropriate outcomes in comparison to the original 
image and NLMF, as evidenced in the image histogram (Figure 7).  
  The impact of de-noising on image quality and the spatial properties of the KH-9 MCS 
image were also assessed by GLCM measures (Table 3). For example, considering blurred 
and noisy (15%) images as benchmark levels, the variance, representing micro-scale 
variation of brightness values (BVs), decreased after applying the de-noising techniques. 
This illustrated that the noise (or potential error) in the original KH-9 image was reduced 
by applying the de-noising techniques (Table 3 and Figure 7). Similarly, the contrast, 
representing the spatial frequency of BVs, decreased slightly after de-noising. However, 
homogeneity (measure of smoothness) and entropy (indicator of roughness or 
disorderliness) increased sharply.  
   Regarding selecting the most appropriate methods, the results showed that NLMF led to 
an increase in the variance and contrast which could be due to existing potential noise in the 
de-noised image (Table 3 and Figure 7). In contrast, Total Variation, Shift invariant, 
Dictionary learning and the proposed SWTNS methods reduced noise in the KH-9 MCS 
image as shown by the decreasing contrast and variance (Table 3), and image histogram 
(Figure 7). However, the blurriness (smoothness) of the images produced by Total variation 
and Dictionary learning was large, which was reflected in a sharp decrease in the variance 
and contrast, and an increase in the entropy and homogeneity. SWTNR and Shift invariant 
preserved the spatial structure of the KH-9 image yet, Shift invariant generated lower 
entropy compared to the SWTNR, potentially due to the existence of noise (Table 3, 
Figures 5 and 6). Hence, we suggest that SWTNR may be an appropriate candidate for 
de-noising KH-9 images.  
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Figure 5. (x) location of two sample regions in the original image and (a-f) comparison between the 
original image and de-noised images using the first sample. The proposed and benchmark methods 
were applied initially to the KH-9 MCS image in the calibration step. The coordinate centre of the 
images within the red rectangles is 30°23′45″ N, 119°59′12″ E. The approximate spatial resolution 
of these images 6-9m. 

 
 
 
 
 
 
 
 
 

(a) Original image (b) NLMF (c) Total Variation 

(d) Shift invariant (e) Dictionary learning (f) SWTNR 

(x) Original image 
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Figure 6. Comparison between the original image and de-noised images using the second sample 
from Figure 5(x). The proposed and benchmark methods were applied initially to the KH-9 MCS 
image in the calibration step. The coordinate centre of the images within the blue rectangles is 
30°24′05″ N, 119°59′04″ E. The approximate spatial resolution of these images is 6-9m . 
 

 
Figure 7. Comparison between image histograms of the de-noised and original images. The 

proposed and benchmark methods were applied initially to the KH-9 MCS image in the calibration 
step. 

 
 

I. Original image II. NLMF III. Total Variation 

IV. Shift invariant  V. Dictionary learning  VI. SWTNR 
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Table 3. Standard deviation of GLCM measures before and after de-nosing 
 

 

b) Contrast enhancement 
The proposed MTH and the FLLF techniques were applied separately to the SWTNS result. 
Qualitative assessment indicated that the contrast enhancement techniques enhanced the 
appearance of the original KH-9 image (Figure 8). For example, the edges of potential 
archaeological features (Figure 8 (b) and (c)) can be highlighted easily whereas these edges 
were not readily observable in the original image (Figure 8 (a)). This clearly indicates the 
need to optimize the contrast of the original image. Of the contrast enhancement approaches, 
MTH outperformed the FLLF technique for the original image, achieving reliable visual 
appearance (Figure 8(c)). The image produced by the MTH achieved an appropriate 
balance between bright and dark BVs. The image also presented archaeological features 
with the most well-defined details.    

Table 4 shows that quantitative assessment supports the results of visual comparison. 
Considering the benchmark images, increasing brightness led to low variance, homogeneity, 
contrast and entropy while increasing darkness generated the opposite result. With these in 
mind, the MTH approach enhanced the brightness values of the original KH-9 image 
homogeneously whereas the FLFF algorithm led to a spatially imbalanced enhancement. 
This phenomenon is mirrored in the comparison between the GLCM measures (Table 4) 
and the corresponding image (Figure 8). For example, FLFF generated large brightness 
anomalies evidenced by an increase in variance and contrast, except for entropy. However, 
MTH optimized the brightness of the KH-9 MCS image, confirmed by a decline in those 
values and visual interpretation. Also, it increased the entropy which reflects an increase the 
amount of information. The imbalanced enhancement was observed for FLLF which could 
be partly due to the lack of semantic understanding of the scene (Aubry et al. 2014).  

 
 
 
 
 
 
 
 
 
 
 

De-nosing approach Variance Homogeneity Contrast Entropy 

Noisy (15%) 46.517950 0.066027 106.510573 0.152998 
Gaussian_Blurred 3.695500 0.251967 6.795495 0.464423 
Original 11.218508 0.121125 19.848635 0.182292 
NLMF 11.504236 0.164685 20.455831 0.246257 
Total Variation 6.335427 0.216347 11.456247 0.387531 
Shift variance 10.278104 0.152264 18.166018 0.231190 
SWTNS 9.893998 0.202737 17.500872 0.354283 
Dictionary 
learning 

5.838528 0.228053 9.894329 0.378910 
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Figure 8. Results of contrast enhancement; (I) a sample of SWTNR-MTH and (a-c) comparison 
between the original image and the contrast enhanced images. The proposed and benchmark 
methods were applied initially to the KH-9 MCS image in the calibration step. The coordinate centre 
of the images within the red rectangles is 30°23′45″ N, 119°59′12″ E. The approximate spatial 
resolution of these images is 6-9m. 

 
Table 4. Standard deviation of GLCM measures before and after contrast enhancement 

 

4.1.3. Pre-processing of KH-9 MCS and PCS using the proposed SWTNR-MTH pipeline 
The proposed SWT-MTH pipeline was applied to the KH-9 MCS and PCS images. Image 
comparison suggested that the proposed SWTNR-MTH pipeline enhanced the visual 
appearance of the KH-9 images substantially over the study area (Figure 9 and Figure 10). 
Importantly, the fine scale details of archaeological features (e.g., edges and geometry) can 
be identified readily (Figure 9 and Figure 10). For example, one can observe clearly the 
remains of LAC components such as the palace and wall in the result of the SWTNR-MTH 
pipeline. However, such information was not readily observable in the original images 
(Figure 9 and Figure 10). Moreover, the results indicated that stereo images based on the 
pre-processed KH-9 PCS images revealed greater information in comparison to those based 
on the original images (Figure 9).  
 

Contrast enhancement approaches Variance Homogeneity Contrast Entropy 

Low contrast 10.566116 0.201060 18.344784 0.339922 
High contrast 26.991171 0.184408 44.908942 0.300652 
Original 11.218508 0.121125 19.848635 0.182292 
SWTNR-MTH 7.474793 0.211266 13.405540 0.430503 
SWTNR -FLLF 12.207025 0.162090 21.233692 0.263666 

(I) SWTNR-MTH  

(a) Original image (b) SWTNR-FLLF (c) SWTNR-MTH 
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Figure 9. Comparison between archaeological landscapes revealed using the original and 
pre-processed KH-9 PCS images; (a-d) grey scale images and (e-f) stereo-pairs; Samples 1 and 3 
represent the remains of a wall while sample 2 represents the remains of the main palace. The 
coordinate centre of samples 1, 2 and 3 are 30°23′18″ N, 119°59′40″ E; 30°23′45″ N, 119°59′12″ E; 
and 30°24′05″ N, 119°59′04″ E, respectively. The approximate spatial resolution of these images is 
0.6-1.8 m. 
 

(a) Original KH-9 PCS, sample 1, 1975 (b) Pre-processed KH-9 PCS, sample 1, 1975 

(c) Sample 2 (d) Sample 2 

(e) Sample 3 (f) Sample 3 
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Figure 10. Comparison between archaeological landscapes revealed using the original and 
pre-processed KH-9 MCS images; Samples1 and 3 represent the remains of a wall while sample 2 
represents the remains of the main palace. The coordinate centre of samples 1, 2 and 3 are 30°23′18″ 
N, 119°59′40″ E; 30°23′45″ N, 119°59′12″ E; and 30°24′05″ N, 119°59′04″ E, respectively. The 
approximate spatial resolution of these images is 6-9 m. 

(a) Original KH-9 MCS, sample 1, 1975 (b) Pre-processed KH-9 MCS, sample 1, 1975 

(c) Sample 2 (d) Sample 2 

(e) Sample 3 (f) Sample 3 
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4.2. KH-9 MCS analytical approaches 
SCCWFM illustrated the highly complex and heterogeneous landscape of LAC, comprising 
the juxtaposition of a mixture geometric pattern anomalies and natural surfaces (Figure 11). 
Most archaeological features in this region can be identified by great fluctuations in colour, 
pattern and shape (Figure 11). Abnormal changes in contrast were captured by means of 
SND (Figure 12). To facilitate investigation, we overlaid the novelty image on the original 
image. One can see that non-archaeological features were generally located in regions with 
constant brightness or subtle changes in brightness. However, archaeological features were 
captured in abnormal transitions of brightness, as evidenced in the result of SND (Figure 
12). Moreover, the proposed SND provided outlier values in which lower values (less than 
-5) not only indicated sharp changes in brightness, but also represent high potential of 
existing archaeological features. It is noteworthy that SCCWFM and SND provided greater 
information in comparison to the original KH-9 MCS image (Figure 13).  
 

 
Figure 11.  Generated SCCWFM colour composite system over LAC using a panchromatic KH-9 
MCS image. The red square, ellipse and arrows show representative archaeological sites. The 
coordinate centre of the image is 30°23′45″ N, 119°59′12″ E. The approximate spatial resolution of 
this image is 6-9 m. 
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Figure 12.  Generated SND based on the panchromatic KH-9 MCS image over LAC. The red 
square, ellipse and arrows show representative archaeological sites. The coordinate centre of the 
image is 30°23′45″ N, 119°59′12″ E. The approximate spatial resolution of this image is 6-9 m. 
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Figure 13.  KH-9 MCS original image over LAC. The red square, ellipse and arrows show 
representative archaeological sites. The coordinate centre of the image is 30°23′45″ N, 119°59′12″ E. 
The approximate spatial resolution of this image is 6-9 m.  

  
4.3.KH-9 PCS analytical frameworks 
Figure14 shows a three-dimensional colour composite generated by UFSTCC over LAC. 
This image offers ultra-fine scale details of the LAC region. Accordingly, many 
archaeological features indicate a high degree of shape and colour variation while 
non-archaeological regions such as agricultural areas present more homogeneous surfaces. 
In addition, we created the DSM of LAC using the proposed UFSDSM (Figure 15). Indeed, 
the estimated DSM not only confirmed the existence of the archaeological remains, but also 
revealed their structures such as the main palace. Although the original image of KH-9 PCS 
can be useful (Figure 16), the results of UFSTCC and UFSDSM enhance substantially the 
likely identification of archaeological remains in the LAC.   
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Figure 14. The outcomes of UFSTCC over LAC. The yellow square, ellipse and arrows show 
representative archaeological sites. The coordinate centre of the image is 30°23′45″ N, 119°59′12″ E. 
The approximate spatial resolution of this image is 0.6-1.8m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



23 
 

 

 
 

Figure 15. Estimated DSM imagery based UFSDSM over LAC. The yellow square, ellipse and 
arrows show representative archaeological sites. The square with yellow dash lines shows location 
of LAC. The coordinate centre of the image is 30°23′45″ N, 119°59′12″ E. The approximate spatial 
resolution of this image is 0.6-1.8 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 
 

 
Figure 16.  KH-9 PCS original image over LAC. The yellow square, ellipse and arrows 
show representative archaeological sites. The coordinate centre of the image is 30°23′45″ N, 
119°59′12″ E. The approximate spatial resolution of this image is 0.6-1.8 m. 

 
4.4. Simultaneous analysis of KH-9 PCS and MCS over LAC   
We conducted a joint analysis of the results of the proposed workflows for KH-9 PCS and 
MCS. Although the KH-9 PCS image has a finer spatial resolution in comparison with 
KH-9 MCS, relying on a single panchromatic image (either fine or medium spatial 
resolution) may be insufficient for identifying archaeological features. The proposed 
workflows offered a useful and informative way to analyse such features. Interestingly, the 
obtained results by the proposed approach for KH-9 MCS (SCCWFM and SND) were 
supported by the findings of those for KH-9 PCS (stereo-pairs and DSM). For example, the 
SCCWFM image showed clearly the boundaries of the main palace compound and its 
regular shape (Figure 17(f): “A”, “B” and “C”) in the KH-9 MCS image. Abnormal 
variation in brightness values in this region was captured by SND (Figure 17 (e)). The 
shape and structures of this palace were depicted by UFSTCC (Figure 17(b)) and UFSDSM 
in the KH-9 PCS image (Figure 17(c)). In another example, the remains of a city wall can 
be identified easily after SCCWFM and SND (Figure 18(e) and (f)). However, UFSTCC 
and UFSDSM revealed the details and micro-topography of this wall in the KH-9 PCS 
image (Figure18 (b) and (c)).  
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Figure 17. Joint analysis of KH-9 PCS and MCS products over the main palace compound in the 
LAC region. The coordinate centres of the images (a-c) and images (d-f) are 30°23′45″ N, 
119°59′12″ E. The approximate spatial resolutions of images (a-c) and images (d-f) are 0.6-1.8 m 
and 6-9 m, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 

(a) KH-9 PCS original (b) KH-9 PCS, UFSTCC 

(d) KH-9 MCS original (e) KH-9 MCS, SND (f) KH-9 MCS, SCCWFM 

(c) KH-9 PCS , UFSDSM 
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Figure 18. Joint analysis of KH-9 PCS and MCS products over the southern part of the wall in the 
LAC region. The coordinate centres of images (a-c) and images (d-f) are 30°23′18″ N, 119°59′40″ E. 
The approximate spatial resolutions of the images (a-c) and images (d-f) are 0.6-1.8 m and 6-9 m, 
respectively. 
 
5. Discussion  
5.1. Methodological implications 
5.1.1. Pre-processing framework 
Our research suggested that the original panchromatic imagery from KH-9 MCS and PCS 
may limit the precision of identifying archaeological features due to noise and brightness 
anomalies. It was demonstrated through the experiments conducted in this research that 
implementing a de-noising and contrast enhancement framework such as that developed 
here can enhance the quality of the KH-9 PCS and MCS imagery substantially and enable 
the identification of archaeological features.  

In terms of de-noising, although benchmark pre-processing algorithms based on local 
spatial information showed some improvements over the original panchromatic image, they 

(a) KH-9 PCS original (b) KH-9 PCS, UFSTCC (c) KH-9 PCS, UFSDSM 

(d) KH-9 MCS original (e) KH-9 MCS, SND (f) KH-9 MCS, SCCWFM 
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generated disappointing outcomes partly due to the lack of multi-resolution procedures and 
partly due to the lack of appropriate training. The proposed SWTNS approach not only 
enhanced the quality of the KH-9 PCS and MCS images across the targeted archaeological 
landscape, but also preserved the fine-scale details of image objects in comparison with the 
benchmark methods. The proposed SWTNS approach employed the normalized sill (NS) 
based on local spatial characteristics. The NS acted as a useful supervised guide to selecting 
the appropriate wavelet directional coefficients so as to simultaneously minimise the effects 
of noise, mitigate over- and under-smoothing and preserve the original image 
characteristics. Moreover, SWT benefited from a multi-resolution procedure which 
considered the spatial variation of the noise at multiple scales (Wang, Istepanian, and Yong 
Hua 2003).  

With respect to the contrast enhancement step, the proposed MTH enhanced the 
appearance of the KH-9 MCS and PCS compared to the benchmarks. In fact, MTH used 
selective optimisation of local contrast using the relationship between each pixel and its 
surrounding neighbourhood through the shape and size of structuring elements (SEs) at 
multiple scales, thus, preserving the characteristics of image details (Soille 2003). 

  Assessing the performance of image pre-processing is an overriding concern in the 
remote sensing of archaeology, and it is necessary to gauge precisely any changes to spatial 
characteristics of brightness values within the pre-processed image. This is because 
archaeological remote sensing relies heavily on image contrast for identifying features and 
their surface marks (Lasaponara and Masini 2007). Thus, any alterations within the image 
may have a negative effect on subsequent procedures. In this view, conventional image 
quality assessment (e.g., structural similarity index (SSIM)), may not provide 
comprehensive and systematic information. Therefore, this research proposed a suite of 
image quality assessment metrics based on GLCM textures. Based on the spatial 
neighbourhood, GLCM measures present the response of the KH-9 PCS and MCS in terms 
of local variation (contrast measure), spatial variation (variance measure), disorder (entropy 
measure) and the distribution in the pixel pairs population (homogeneity measure), relative 
to alternative image pre-processing algorithms. Each measure of the GLCM provides 
comprehensive information about the degree to which the quality of an image improved or 
degraded (Hall-Beyer 2017). 

 
5.1.2. KH-9 MCS- SCCWFM and SND 
To analyse the archaeological landscape captured by KH-9 MCS image, we devised an 
approach with two components: qualitative and quantitative. The qualitative component 
composed of SCCWFM which employed textures, morphology, spatial information and the 
edges of image objects. The proposed SCCWFM not only offered a colour composite 
image, but also was sensitive to the spatial, edge and geometric characteristics of the image 
objects. Focusing on the quantitative step, we proposed a spatial novelty detection (SND) 
technique to map archaeological features. Abnormal variation in brightness values (BVs) in 
archaeological remote sensing is highly important for identifying archaeological marks and, 
thus, their corresponding archaeological features. The devised SND benefited from spatial 
neighbourhood and training procedure which helped to map the spatial distribution of 
abnormal BVs from the KH-9 MCS imagery. Both qualitative (SCCWFM) and quantitative 
(SND) components added intelligent information for analysing KH-9 MCS imagery against 
a single panchromatic band. 
 
5.1.3. KH-9 PCS- UFSTCC and UFSDSM 
Lack of technical parameters of KH-9 PCS cameras, more importantly Rational Polynomial 
Coefficient (RPC) coefficients, is one of the most important concerns for creating 
three-dimensional ultra-fine spatial colour composite (UFSTCC) images and reconstructing 
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ultra-fine spatial digital surface models (UFSDSMs). However, KH-9 PCS imagery offers 
ultra-fine scale textures in which state-of-the-art SfM approaches may benefit from this 
advantage. In terms of UFSTCC, the proposed three-dimensional technique matched two 
KH-9 PCS stereo images automatically using the Speeded-Up Robust Features (SURF) 
algorithm, based on local spatial information. Moreover, our approach estimated camera 
parameters and projection using the SfM algorithm in Matlab® (MathWorks Inc., Natrick, 
MA, USA. Release: 2022b). With respect to UFSDSM, we adopted the SfM algorithm in 
Photoscan (Agisoft) software. The focal length and scan resolution were the only 
parameters input to this algorithm. Moreover, the adopted algorithm employed advances in 
computer-vision for image matching techniques which depends on ultra-fine scale textures. 
Both UFSTCC and UFSDSM were conducted fully automatically. In contrast to the single 
panchromatic band of KH-9 PCS, our investigation showed that UFSTCC provided a 
colour composite image with ultra-fine scale details and a three-dimensional view while 
UFSDSM reconstructed a DSM of the study area at the very fine spatial resolution. Both 
UFSTCC and UFSDSM added a new dimension to our knowledge regarding the Liangzhu 
archaeological landscape prior to the current urbanisation in this region.  
 
5.1.4. Software issues 
One may ask “ are archaeologists or cultural heritage experts able to develop the proposed 
multifaceted approach or similar techniques?” Indeed, our research exploited the 
advantages of contemporary spatial statistics and computer vision software. For example, 
Python offers a Scikit-learn package which includes a range of advanced machine learning 
techniques (Pedregosa et al. 2011). Of these, we adopted the SND technique for mapping 
brightness anomalies in the KH-9 MCS image. Additionally, Matlab® (MathWorks Inc., 
Natrick, MA, USA. Release: 2022b) consists of a fully automatic SfM algorithm to 
reconstruct a three-dimensional image (Anaglyph) from an uncalibrated image. Thus, it is 
important to realise that using this (or similar) software can make a considerable 
contribution to exploiting the archaeological information latent in both KH-9 MCS and 
PCS imagery. 
 
5.1.5. Challenges and recommendations 
Despite the above promising outcomes, this research faced some challenges which should 
be addressed in future investigations. These challenges and potential recommendations are 
as follows: 
(1) The wavelet transform depends only on three directions (i.e. vertical, horizontal and 

diagonal) which might not identify noise in every direction. The curvelet transform can 
be an alternative approach to tackle this problem as it takes into account every direction 
in the image. Moreover, the wavelet transform and benchmark techniques relied on the 
intervention of users for tuning the parameters. Hence, future research may consider 
automatic techniques such as deep learning for image de-noising.  

(2) Although the proposed approaches for KH-9 PCS and MCS images provided promising 
performances, it is important to examine the performance of alternative advanced 
methods in image processing such as deep learning for reconstructing a DSM, deep 
learning unsupervised classification, and the Gabor filter.  

(3) This research did not deal with geometric distortion in the KH-9 PCS and MCS images 
(Surazakov and Aizen 2010). This is because relaxing the geometric distortion could 
have a direct effect on the spatial structure and appearance of the image due to several 
procedures within geometric corrections such as resampling (Morgan, Gergel, and 
Coops 2010; Mather and Koch 2011). Therefore, the issue of geometric correction of 
these images for archaeological purposes should be addressed in future research. 

(4) Considering the availability of local reference information, we selected the LAC region 
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which is located in a subtropical climate and is highly heterogeneous, comprising the 
juxtaposition of a mixture of archaeological remains, moist soil, vegetation covers, 
water bodies (such as rivers and ponds) and rural land. Future investigation should 
assess the application of the proposed framework and KH-9 images in other landscapes, 
particularly in arid conditions. 

(5) The proposed analytical framework for KH-9 data enhanced, identified and mapped the 
pattern, spatial distribution and micro-topography of archaeological remains in the LAC 
region. Ultimately, this framework offers a non-invasive tool (i.e., a 
non-destructive/non-direct contact tool) for assessing past conditions of cultural 
heritage sites, which can increase our understanding of such sites and be integrated into 
designing policies for the protection of cultural heritage sites, thus, ensuring that LAC 
or other cultural heritage sites are preserved for future generations. This approach also 
respects access restrictions and can inform conservation efforts over time while adding 
the context of the surrounding landscape. However, relying only on KH-9 data could be 
insufficient for implementing such strategies. Hence, incorporating KH-9 data and the 
proposed framework with contemporary remotely sensed data can generate fine-scale 
spatio-temporal information which can be utilised for sustainable management of these 
invaluable cultural heritage sites.     

(6) Obtaining fine spatial resolution topographic data, conducting a field campaign and 
acquiring GPS data were problematic in the study area (Watanabe et al. 2017). Such 
data play an overarching role for determining the spatial distribution, pattern and height 
of archaeological features in the LAC region. To tackle such problems, this research 
utilised Google EarthTM images and cross-referencing. Future research may exploit the 
advantages of other open access data sources such as open street map, ASTER GDEM 
images and ALOS World 3D data.   

(7) To comprehensively evaluate the patterns of archaeological features from KH-9 images, 
we recommend integration of KH-9 images with other archaeological data sources, such 
as site plans, excavation reports, and other satellite or aerial sensor imagery. Such 
comparisons could also pave the way to implement appropriate archaeological and 
cultural protection policies.  

(8) This research utilised the Local Outlier Factor (LOF) algorithm which characterises 
novel patterns based on the analysing spatial relationships. Further research is needed to 
assess the performance of other geospatial analysis techniques (such as local Moran’s I, 
local Geary’s C and the Getis–Ord local Gi) using geographic information systems (GIS) 
to analyse the spatial relationships, patterns, and distributions amongst the identified 
archaeological features from the KH-9 images.  

      
5.2. Interpreting the LAC landscape using the proposed approach 
In the main, the most distinguishing objects of archaeological landscapes from remotely 
sensed data are crop marks and soil marks (Lasaponara and Masini 2007). Therefore, image 
object parameters such as tone, texture, shape, shadow, geometry and elevation can be used 
to identify such marks (Fowler and Fowler 2005). However, identifying these marks based 
on a single panchromatic band under a subtropical climate with heterogeneous landscape 
types is non-trivial task (Watanabe et al. 2017).  

The use of the proposed multi-component processing enabled us to improve the 
identification of diverse buried archaeological features in LAC. The proposed SCCWFM 
and SND revealed that the LAC consisted of a complex and heterogeneous surface due to 
the presence of many geometric features. In this view, UFSTCC showed the details of LAC 
in which this site can be divided into two categories: (1) non-archaeological, such as 
farmlands represented by homogeneous surfaces and (2) archaeological represented by 
heterogeneous surfaces due to the presence of many geometric features. Moreover, 
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UFSDSM revealed the structure of archaeological remains in the LAC such as the main 
palace in the centre. Comparison between our results and previous research (Watanabe et al. 
2017; Yu et al. 2018) suggested that the proposed methodology is capable to accurately 
confirm previous findings with fewer challenges, as mentioned in former studies. This is 
because the proposed feature identification framework offers two major advantages: (1) 
SCCWFM and SND are sensitive to feature properties (shape, geometry) and brightness 
anomalies, respectively; and (2) UFSTCC and UFSDSM pave the way to highlight 
quantitative details and structure of the archaeological features within a three-dimensional 
view of the LAC.  
   Along with previously discovered features (Watanabe et al. 2017; Yu et al. 2018), 
SCCWFM, SND, UFSTCC and UFSDSM revealed many unknown features in the LAC. 
These features formed discontinuous patches with curvilinear shapes which could suggest 
the presence of archaeological remains. This finding is concordant with the results of 
previous studies (e.g.,Lasaponara et al. 2016; Lasaponara et al. 2018) which demonstrated 
that the existence of geometric features and spatial discontinuities due to pattern anomalies 
may be indicators of ancient human activities. Moreover, these characteristics could be 
supported by Landscape Mosaic Theory (LMT) which shows that spatial discontinuities 
across a landscape may reflect the remains of human activity patches as they have 
experienced rapid and abrupt changes in contrast to natural patches (Forman 1995). 
However, further archaeological investigation needs to be carried out to assess this finding.  
   It is noteworthy that a previous research on KH-9 PCS imagery suggested that creating 
a digital elevation model (DEM) or DSM based on this imagery could contribute to 
identifying archaeological features, and revealing their structures (Hammer, FitzPatrick, 
and Ur 2022). Indeed, our findings support this suggestion in which the DSM generated by 
the proposed method detected archaeological remains in LAC, and quantified their shape 
and structure. Also the proposed DSM was consistent with the reference DSM produced by 
aerial photography (Figure 19) 
(Zhejiang_Provincial_Institute_of_Cultural_Relics_and_Archaeology 2015). Hence, future 
archaeological research may exploit advantages of DEM/DSM based KH-9 PCS imagery.  
 

 
 
Figure 19. DSM over the LAC site. Comparison between (a) generated DSM using the proposed framework 
and (b) reference DSM produced from an aerial photograph 
(edited from the DSM map of Zhejiang_Provincial_Institute_of_Cultural_Relics_and_Archaeology (2015) ) 
The coordinate centre of the images (a) and (b) is 30°23′45″ N, 119°59′12″ E. The approximate spatial 
resolution of the image (a) is 0.6-1.8m. 

 
 
 
 

(a) (b) 
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5.3. Capability of KH-9 satellite camera images for archaeological studies 
We demonstrated that well pre-processed (i.e., de-noised and contrast enhanced) KH-9 
images can offer archaeologists and other scientists a remote assessment tool from which to 
develop a baseline to analyze past conditions of archaeological landscapes. We also showed 
that developing an appropriate feature identification framework (i.e., SCCWFM, SND, 
UFSTCC and UFSDSM) based on the state-of-the-art in digital image processing can facilitate 
identification of archaeological features in both KH-9 PCS and MCS panchromatic images.  
This suggests that KH-9 imagery can be used widely in archaeological investigations and 
can reveal fine-scale details of archaeological remains.  
   Ultimately, investing in proposing analytical approaches (i.e., pre-processing and 
feature identification) for declassified KH-9 imagery may have great potential to support 
attainment of the United Nations Sustainable Development Goals (Luo et al., 2019), such as 
developing a remote sensing archaeological baseline. To achieve the 17 SDGs, the UN 
emphasizes that “…we call for increased support for strengthening data collection and 
capacity building in Member States, to develop national and global baselines where they do 
not yet exist....” (United_Nation 2015). Considering the availability of worldwide imagery 
at fine spatial scales, processed KH-9 imagery could also provide fundamental information 
for each archaeological site, and thus support archaeological protection projects such as the 
Endangered Archaeology in the Middle East and North Africa (EAMENA) project 
(https://eamena.org). To achieve such goals, future archaeological studies based on KH-9 
images should pay more attention to applications of existing, or developing new, digital 
analytical pipelines, particularly for dealing with the large volumes of images necessary for 
studying larger archaeological regions. 
. 
6. Conclusion  
This research highlighted the unique possibilities for the fine-scale analysis of 
archaeological landscapes offered by declassified KH-9 PCS and MCS panchromatic 
images, particularly when used in subtropical climate regions and in landscapes that are 
highly heterogeneous, comprising the juxtaposition of a mixture of archaeological remains, 
moist soil, vegetation covers, water bodies (such as rivers and ponds) and other land cover 
types. Such landscapes can lead to mixed pixels among different land cover types from a 
single panchromatic band. For example, surfaces such as water, moist soil, archaeological 
remains and vegetation covers may exhibit very similar values in panchromatic imagery, 
resulting in misinterpretation errors. In addition, existing noise and contrast distortions in 
KH-9 images impede the accuracy of both visual interpretation and digital image 
processing. Particularly, the heterogeneity of landscapes can be increased by noise and 
contrast distortions in the image.  
   We proposed a multi-stage pipeline to tackle above problems, which included two 
components: image pre-processing and feature identification. The efficiency of this 
approach was scrutinized using an ancient landscape, Liangzhu Ancient City (LAC), as 
representative of complex archaeological scenes with a subtropical climate and 
heterogeneous landscape. The pre-processing component converted the original scanned 
KH-9 MCS and PCS images into distortion-free (de-noised and optimized contrast) images 
by means of SWT and MTH. In terms of feature identification, the information provided by 
the proposed approach can inform investigators about past conditions of archaeological 
regions (e.g., the type of sites, their distribution, micro-topographic relief and their 
relationship with their surroundings) prior to more recent land use changes. Careful 
investigation based on the proposed techniques revealed many unknown features of LAC 
with some distinctive characteristics: (1) straight boundaries, (2) discontinuous patches, (3) 
micro-topographic relief and (4) curvilinear shapes. These characteristics could lead to 
greater clarity on past conditions of LAC.     
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   Considering the availability of worldwide KH-9 images at fine spatial scales, investing 
in new analytical approaches (i.e., for pre-processing and feature identification) for 
declassified KH-9 imagery could support attainment of the United Nations Sustainable 
Development Goals (such as 17 SDGs), and help develop a spatial database using KH-9 
images for protection and management of archaeological and cultural heritage sites, as with 
the Endangered Archaeology in the Middle East and North Africa (EAMENA) project 
(https://eamena.org). Therefore, we identify the following recommendations for future 
research: 

1) Develop a KH-9 database, future research should assess other image 
pre-processing techniques (such as deep learning) and feature identification 
approaches, particularly those based on geospatial analysis using GIS, machine 
learning and artificial intelligence (AI).  

2) Establish a multi-source database using contemporary remotely sensed data, field 
surveys, historical maps and KH-9 images to monitor comprehensively the 
conditions of archaeological and cultural sites (such as unchanged and damaged) 
with respect to urbanisation, agricultural development, looting, conflicts, natural 
disasters and other potential threats, thus, supporting the implementation of 
appropriate regulations.   

3) Raise awareness of the capability of KH-9 images and provide training courses for 
utilising such images in archaeological contexts among archaeological researchers, 
practitioners and managers, as well as many disciplines that employ historical 
remotely sensed imagery in their research.   

   The KH-9 archive represents a unique repository for the remote sensing of 
archaeology. It is hoped that this research paves the way for more research on digital 
processing of the KH-9 archive and encourages its use in archaeological investigations. 
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