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Abstract

Mobile Edge Computing (MEC) is a modern paradigm that involves
moving computing and storage resources closer to the network edge,
reducing latency, and enabling innovative, delay-sensitive applications.
Within MEC, computation offloading refers to the process of transfer-
ring computationally intensive tasks or processes from mobile devices to
edge servers, optimizing the performance of mobile applications. Tradi-
tional numerical optimization methods for computation offloading often
necessitate numerous iterations to attain optimal solutions. In this paper,
we provide a tutorial on how Deep Neural Networks (DNNs) resolve
the challenges of computation offloading. The article explores various
applications of DNNs in computation offloading, encompassing channel
estimation, caching, AR and VR applications, resource allocation, mode
selection, unmanned aerial vehicles (UAVs), and vehicle management. We

1



2 Deep Neural Networks Meet Computation Offloading

present a comprehensive taxonomy that categorizes these applications,
and offer an overview of existing schemes, comparing their effective-
ness. Additionally, we outline the open research issues that can be
addressed through the application of DNNs in MEC offloading. We also
highlight specific challenges related to DNN utilization in computation
offloading. In conclusion, we affirm that DNNs are widely acknowledged
as invaluable tools for optimizing computation offloading in MEC.

Keywords: Mobile edge computing, Computation Offloading, Deep Neural
Networks, Supervised Learning, Unsupervised Learning, Reinforcement
Learning

1 Introduction

Mobile Edge Computing (MEC) has emerged as an efficient paradigm, offering
enough storage and computational resources at the network edge [1]. These
network edges encompass a spectrum of devices, including eNBs, routers,
switches, and other edge infrastructure. However, it is worth noting that end
devices often face constraints in terms of computational capacity and storage
[2]. Edge servers, strategically deployed at the network edge, play a pivotal
role in bridging these resource disparities while providing diverse capabili-
ties, such as computational power, network resources, and storage facilities
with minimum latency. Beyond reducing latency, MEC processes data locally
to provide network efficiency by freeing up bandwidth on congested cores.
Additionally, MEC enhances scalability by distributing processing power and
potentially reduces costs by offloading tasks from the cloud. This translates to
a better user experience, especially in areas with limited coverage, by enabling
faster response times and reliable connectivity for applications like AR/VR
and real-time gaming.

One of the significant aspects of edge computing is computation offload-
ing, a practice that unlocks the potential for innovative applications while
minimizing transmission latency [4]. This is particularly critical in scenarios
where nodes within the edge network demand ultra-reliable communication
with minimal latency. Consider, for instance, the imperative need for minimal
latency in the operation of connected vehicles and Unmanned Aerial Vehicles
(UAVs) within real-time environments [7]. Moreover, the impending surge in
Internet of Things (IoT) devices within future-edge networks will bring forth a
substantial influx of data, compelling the need for streamlined processing capa-
bilities at the edge servers. This transformation of data promises to reshape
the networking landscape and mandates a comprehensive reevaluation of edge
network modeling, analysis, design, and optimization strategies [9].

In MEC, some computation offloading problems pose significant challenges
due to their NP-hard nature. These challenges primarily include the dynamic
nature of wireless channels, which influence the decision between local and
remote computation. Prior efforts in the domain of computation offloading
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optimization have grappled with solving these NP-hard problems. However,
there exists an avenue for enhancing these solutions through the integration of
DNNs. DNNs have shown remarkable promise in elevating the performance of
MEC-based offloading techniques when compared to conventional numerical
methods [10].

For instance, the deployment of artificial intelligence and DNN techniques
holds the potential to significantly enhance a multitude of applications within
connected vehicles and transportation systems [7]. DNNs can be harnessed to
detect obstacles and estimate distances in autonomous vehicles, thereby con-
tributing to safer and more efficient transportation [12]. Additionally, DNNs
find relevance in various other domains within MEC, including resource allo-
cation, channel estimation, and mode selection. For instance, DNNs can be
employed to determine optimal offloading actions, while Convolutional Neural
Networks (CNNs) prove effective in channel estimation tasks [8]-[13]-[14].

To facilitate a more comprehensive grasp of the application of DNNs
in computation offloading, we introduce a scenario featuring a fleet of self-
governing delivery drones conducting operations in an urban setting. These
drones are tasked with efficiently and autonomously transporting packages to
their designated destinations. To achieve this, they rely on real-time decision-
making regarding computation offloading. Traditional offloading approaches,
such as simplistic rule-based strategies advocating for either complete local
computation or offloading all tasks to the edge server, prove suboptimal in
light of the dynamic and resource-constrained nature of drone operations.

Here, DNNs can play a vital role. In this scenario, a sophisticated DNN
model takes the role of optimizing real-time computation offloading decisions
for each individual drone. The DNN takes into account a multitude of criti-
cal factors, including the drone’s current geographical coordinates, the status
of its onboard battery, the availability of computational resources, prevailing
network conditions, and the computational complexity inherent to the tasks at
hand. This extensive array of input data undergoes intricate processing within
the DNN’s deep neural layers, enabling it to discern intricate patterns and
correlations.

The DNN model, trained using a combination of supervised and rein-
forcement learning methods, makes decisions regarding whether to perform
computing tasks locally or remotely. Consider a scenario where a drone
operates in an area with robust network connectivity and abundant nearby
computational resources; in such cases, the DNN may prioritize remote com-
putation to optimize resource management and preserve the drone’s battery
life. Conversely, when the drone encounters network congestion or deals with
tasks of lower computational complexity, the DNN may recommend local
computation to minimize latency and reduce reliance on network resources.

This DNN-driven approach results in an adaptive and exceedingly efficient
offloading strategy, whereby each drone optimizes its computational burden
by dynamically balancing local processing with offloading tasks to the edge
servers. Consequently, the drones are empowered to make real-time decisions,
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navigate intricate urban landscapes, and execute their delivery duties with
minimal latency, ensuring timely and efficient package deliveries. Moreover,
this approach maximizes the utilization of edge computing resources. This
illustrative example underscores the pivotal role played by DNNs in trans-
forming computation offloading practices within MEC, harnessing their ability
to intelligently optimize decisions in response to a multitude of dynamic and
interconnected variables.

Fig. 1: Structure of the Article

1.1 Related Surveys

Authors of [15] reviewed the studies of machine learning-based offloading
approaches including supervised, unsupervised, and reinforcement learning.
The author provided a classical taxonomy and showed which studies improve
the offloading process with different intelligent approaches. The authors of [16]
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reviewed the studies of stochastic-based offloading approaches and provided
a classical taxonomy. Artificial neural networks based wireless networks were
explored in [9]. In [5], the authors reviewed the recent literature on compu-
tation offloading empowered with wireless power transfer. A mobility-aware
computation offloading survey is provided in [6]. In [167]. the authors provided
a detailed review of optimization methods such as Convex, and Lyapunov
etc., for computation offloading. In both [168] and [169], authors reviewed the
current studies based on reinforcement learning for computation offloading in
MEC.

Table 1: Significance of the Proposed Survey: In this context, AO represents
Applications in Offloading, SL represents Supervised Learning, UL represents
Unsupervised Learning, RL represents Reinforcement Learning, and GT rep-
resents Generic Taxonomy
Article Focus MEC DNNs AO SL UL RL GT
[16] Offloading approaches

based on Machine
Learning

✓ ✗ ✗ ✓ ✓ ✓ ✗

[15] Stochastic based
offloading approaches

✓ ✗ ✗ ✗ ✗ ✗ ✗

[9] DNNs based review in
wireless networks

✗ ✓ ✓ ✓ ✓ ✗ ✗

[4] Review of compu-
tation offloading in
MEC/MCC

✓ ✗ ✗ ✗ ✗ ✗ ✗

[5] Review of Joint Wire-
less power transfer and
offloading

✓ ✗ ✗ ✗ ✗ ✗ ✗

[6] Mobility aware compu-
tation offloading

✓ ✗ ✗ ✗ ✗ ✗ ✗

[165] A review of optimiza-
tion methods for compu-
tation offloading

✓ ✗ ✗ ✗ ✗ ✗ ✗

[166] A survey of reinforce-
ment learning for com-
putation offloading

✓ ✗ ✗ ✗ ✗ ✓ ✗

[167] Reinforcement learning
methods for computa-
tion offloading

✗ ✗ ✗ ✗ ✗ ✓ ✗

[170] Reinforcement learning
methods for computa-
tion offloading

✗ ✗ ✗ ✗ ✗ ✓ ✗

[171] Video data offloading in
MEC

✓ ✗ ✗ ✗ ✗ ✗ ✗

This
work

DNNs for computation
offloading with applica-
tions in MEC

✓ ✓ ✓ ✓ ✓ ✓ ✓

To the best of the author’s knowledge, none of the previous works have
provided a comprehensive and systematic review within the MEC domain
that adequately addresses the importance of employing DNNs for intelli-
gent offloading. Unlike prior research efforts, our study encompasses DNNs
for computation offloading, covering all major learning approaches, including
supervised, unsupervised, and reinforcement learning aspects. Additionally, we
present an inclusive and detailed taxonomy that takes into account numerous
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parameters related to DNN-based offloading, offering comprehensive discus-
sions and referencing relevant sources. Table 1 provides the significance of the
proposed survey.

1.2 Contributions

Following are the novel contributions of the proposed survey.

• We present a detailed taxonomy categorized into a) applications of DNNs
in computation offloading, b) DNNs variations, c) Learning approaches, and
d) Offloading platforms.

• We present various applications of DNNs that boost the process of compu-
tation offloading and improve the performance of MEC.

• We present an overview of DNNs-based computation offloading and provide
a summary of existing works. We also provide a comparison of state-of-the-
art techniques based on various parameters presented in taxonomy.

• We provide open research issues regarding the application of DNNs in MEC
computation offloading.

• We also provide the challenges linked to the utilization of DNNs for
computation offloading.

Figure 1 provides the overall structure of the article. Section 2 provides an
overview of DNNs in computation offloading. Section 3 provides the review
methodology. Section 4 provides the comprehensive taxonomy. A detailed
overview of DNN-based computation offloading schemes is provided in Section
5. In Section 6, we provide a comparison of existing schemes that consider
DNNs for computation offloading. Features and open issues are discussed in
section 7. Section 8 presents the challenges linked to the utilization of DNNs
for computation offloading. Finally, we conclude in section 9.

2 Overview of DNNs in Computation
Offloading

Given their ability to handle complex tasks efficiently and adapt to dynamic
environments, DNNs play a crucial role in enabling computation offloading.
Figure 2 presents an overview of DNNs for computation offloading in MEC
and cloud. Despite our focus which is on edge MEC, we provide a detailed
representation of the use of DNNs in MEC and cloud layers. Here, we can
see that the fundamental layers, characterized by their minimal computational
demands or lightweight DNN configurations, are well-suited for execution on
low-power terminal devices. In parallel, intermediate layers, which may encom-
pass certain resource-intensive DNN components, find optimal execution on
edge servers. Finally, the uppermost layers or complex DNN models, charac-
terized by their computational intensity, are best suited for execution within
the high-capacity cloud layer. This hierarchical distribution of layers ensures
efficient utilization of computational resources across the spectrum from edge
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to cloud. For example, it is not only possible to dynamically identify the opti-
mal partition point for DNN models but also to leverage complex network
theory to determine the most efficient task offloading assignment, thus miti-
gating routing congestion when transmitting tasks in D2D multi-hop networks
as presented in figure 3. Moreover, we delve into the significance, necessity, and
nuances of applying DNNs to address key MEC applications, including channel
estimation, caching, AR/VR, resource allocation, mode selection, UAV man-
agement, and vehicle management. Precise channel estimation is paramount in
MEC to ensure reliable and efficient communication. DNNs are instrumental
in this domain, as they possess the capacity to learn intricate patterns from
data. By leveraging historical channel information and real-time data, DNNs
enhance the accuracy of channel estimation. This is particularly crucial in sce-
narios where real-time, low-latency communication is imperative, such as in
remote surgery or autonomous vehicle control. DNNs ensure that communica-
tion channels are optimized to meet stringent requirements. Similarly, DNNs
play a pivotal role in caching by optimizing content caching strategies. They
learn from usage patterns and adapt content placement decisions dynamically.
This not only reduces latency but also alleviates network congestion. In appli-
cations like Augmented Reality (AR) and Virtual Reality (VR), where rapid
data retrieval is essential for seamless user experiences, DNN-driven caching
strategies are indispensable.

Fig. 2: Overview of DNN’s application in Computation Offloading

In the context of resource allocation, efficient resource allocation in MEC
involves judiciously assigning computational resources to tasks [25]-[26]. DNNs
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excel in this context by dynamically allocating resources based on task require-
ments, device capabilities, and network conditions. This optimization enhances
the performance of applications like video streaming, gaming, and IoT analyt-
ics while ensuring the efficient utilization of edge resources. Moreover, mode
selection, whether to perform computations locally or remotely, is a complex
decision-making process in MEC. DNNs adapt to dynamic conditions by ana-
lyzing factors like task complexity, device capabilities, and network quality.
They determine the optimal mode to align with the varying needs of appli-
cations. This adaptability is crucial in scenarios where responsiveness and
energy efficiency are paramount, such as in healthcare applications or smart
manufacturing.

UAV Management is another crucial application that holds immense poten-
tial in MEC, and DNNs are instrumental in optimizing their management.
DNNs enable UAVs to navigate complex environments, avoid obstacles, and
perform real-time data analysis. This enhances applications such as surveil-
lance, inspection, and delivery operations, where precision, autonomy, and
safety are critical. In the realm of connected vehicles, DNNs revolutionize
decision-making processes. They optimize traffic routing, reduce congestion,
and enhance autonomous driving capabilities. This not only ensures safer
transportation but also reduces environmental impact by optimizing fuel con-
sumption and emissions. DNN-driven vehicle management is fundamental for
the realization of smart and efficient transportation systems.

Fig. 3: DNN partitioning while task offloading in D2D networks

3 Review Methodology

The primary aim of this study is to conduct a comprehensive survey of the role
of DNNs in computation offloading, encompassing supervised, unsupervised,
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and RL approaches rather than a systematic literature review (SLR). However,
we use a systematic process to extract the relevant studies from databases and
for the review. This section encompasses the formulation of research questions,
the search process, the establishment of inclusion/exclusion criteria, and qual-
ity assessment. To begin the review process, it is crucial to identify Research
Questions (RQ) as they define our motivation. This study is formulated by
eight fundamental questions that serve as the basis for the literature review
search strategy. The main research questions and the reasons for formulating
them are outlined below:

RQ1: How do DNNs address and resolve challenges in computation offload-
ing, surpassing the limitations of traditional numerical optimization methods?
The expected outcome of this investigation is a comprehensive understand-
ing of the specific challenges in computation offloading that DNNs effectively
address. The findings can potentially highlight the advantages of DNNs over
traditional numerical optimization methods, leading to insights that contribute
to the optimization of computation offloading in MEC environments.

RQ2: How can DNNs enhance channel estimation accuracy in computation
offloading? Answering this question help is the identification of optimal DNN
architectures and learning approaches for precise channel estimation, poten-
tially leading to advancements in reliable communication between devices and
edge servers.

RQ3: What caching strategies leveraging DNN variations are most
effective for minimizing data retrieval latency in computation offloading?
Answering this question helps in evaluating DNN-driven caching mechanisms,
providing insights into strategies that optimize content availability, reduce
latency, and enhance overall system performance.

RQ4: How do DNNs contribute to the optimization of AR and VR appli-
cations in computation offloading? This question examines the impact of DNNs
on improving the efficiency of AR and VR applications in MEC. Resource
Allocation:

RQ5: In what ways can DNNs optimize resource allocation for com-
putation offloading in MEC? This question helps in the identification of
DNN-driven strategies for resource allocation, providing insights into effi-
cient utilization of computing and storage resources at the network edge, and
potential advancements in dynamic resource management.

RQ6: How can DNNs employing various learning approaches, facili-
tate optimal mode selection including partial or binary offloading in MEC?
This question examines DNN-driven algorithms for mode selection, offering
recommendations for adaptive strategies that dynamically adjust to varying
computational demands, potentially improving overall system responsiveness.

RQ7: What role do DNNs play in improving computation offloading for
UAVs and vehicle management systems, considering variations such as DNNs,
RNNs, LSTM or CNNs? Answering this question helps in evaluating of DNN
applications in UAVs and vehicle management, highlighting opportunities to
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enhance the efficiency and responsiveness of mobile applications in dynamic
environments, potentially influencing autonomous systems.

RQ8: How do different DNN variations (DNN, CNN, RNN, LSTM)
and learning approaches (supervised, unsupervised, RL) impact the overall
effectiveness of computation offloading? Answering this question helps in com-
parative analysis of the performance of various DNN architectures and learning
approaches, providing insights into their strengths and limitations in different
application scenarios.

RQ9: How does the choice of offloading platform, such as edge servers,
UAVs, and RSUs, impact the efficiency of DNN-driven computation offloading
in MEC? Answering this question helps in the investigation of the influence of
different offloading platforms on the performance of DNN-based computation
offloading. The outcome will provide valuable insights into the optimal con-
figurations and scenarios for each offloading platform, aiding in the informed
selection and deployment of platforms in various use cases.

RQ10: What are the different applications and open issues in DNN based
computation offloading? Providing answers to this question assists researchers
in selecting a more suitable application, and crucial issues for their upcoming
research.

RQ11: What are the different specific challenges linked to the utilization
of DNNs for computation offloading? The question helps in highlighting the
specific challenges associated with the utilization of DNNs for computation
offloading. Table 2 provides the motivation, category and mapping sections of
each RQ.

Search Criteria: This survey employed major scientific databases like
Wiley Interscience, Springer, ACM Digital Library, ScienceDirect (or Else-
vier), IEEE Xplore, and MDPI. The search terms encompassed phrases such as
”Deep Neural Networks,” ”Artificial Neural Networks,” ”computation offload-
ing,” etc. The search strings were formulated by combining these keywords
using Boolean ”AND” and ”OR” operators or ”in” and ”with” preposition
and finally searched as follows:
("Deep neural networks" or DNNs in "computation offloading")

OR ("Artificial neural networks" or ANN in "computation

offloading") OR ("Convolutional neural networks" or CNNs in

"computation offloading") OR ("Recurrent neural networks" or

RNNs in "computation offloading") OR ("Long short term memory"

or LSTM in "computation offloading") OR ("Neural networks"

or NNs in "Channel Estimation") OR ("Neural networks" or

NNs in "Resource allocation in MEC") OR ("Neural networks"

or NNs in "AR and VR applications") OR ("Neural networks"

or NNs in "Computation offloading with UAVs and Vehicular

networks") OR ("Neural networks" or NNs in "caching with MEC")

OR ("Computation offloading" with "Supervised learning in MEC")

OR ("Computation offloading" with "Unsupervised learning in
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Table 2: Motivation, category and mapping sections of each RQ

RQ Motivation Category Mapping
Section

RQ1 Understand how DNNs improve compu-
tation offloading compared to traditional
methods.

DNNs impact
on com-
putation
offloading

Section 2

RQ2 Identify optimal DNN architectures for
precise channel estimation in offloading.

Channel Esti-
mation

Section 4.1

RQ3 Evaluate effective DNN-driven caching
strategies to minimize data retrieval
latency.

Caching Section 4.1

RQ4 Examine how DNNs enhance efficiency in
AR and VR applications in offloading.

AR/VR
applications

Section 4.1

RQ5 Investigate DNN-driven strategies for effi-
cient resource allocation in offloading.

Resource
Allocation

Section 4.1

RQ6 Explore DNN algorithms for adaptive
mode selection in offloading scenarios.

Mode
selection

Section 4.1

RQ7 Assess the role of DNNs in improving
offloading for UAVs and vehicle manage-
ment.

UAVs and
Vehicle
Management

Section 4.1

RQ8 Analyze the impact of DNN variations
and learning approaches in computation
offloading.

DNN vari-
atios and
learning
approaches

Section 4.2,
4.3, 5 and 6

RQ9 Investigate how different offloading plat-
forms impact the efficiency of DNN-driven
offloading.

Offloading
platforms

Section 4.4

RQ10 Explore diverse applications and identify
open issues in DNN-based computation
offloading.

Applications
and open
issues

Section 7

RQ11 Address the precise challenges inherent in
deploying DNNs for computation offload-
ing, facilitating targeted solutions and
advancements in MEC

Challenges
in utilizing
DNNs

Section 8

MEC") OR ("Computation offloading" with "Reinforcement learning

in MEC").
Quality Assessment and Criteria for Inclusion and Exclusion: Our

review of the literature indicates a significant increase in research on compu-
tation offloading from 2018. Therefore, our main attention spans from 2018
to 2023. It’s essential to note the exclusion of non-English papers and those
not concurrently addressing DNNs and computation offloading together. Addi-
tionally, during the quality evaluation, conference papers lacking indexing or
demonstrating low relevance were omitted. We also deleted the papers that
were published without a rigorous peer review.
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Fig. 4: Taxonomy of DNNs based computation offloading

Paper Distribution: According to our analysis about paper distribution,
IEEE holds the majority at 68%, surpassing other publishers, with Springer
and Elsevier following at 11%. According to the years, there has been a
notable increase in DNN-based research after 2018. Our comprehensive litera-
ture review identified only journal and conference papers. Each selected article
went through full-text reading and analysis to address the research questions.

4 Taxonomy

We present a generic taxonomy that covers the applications of DNNs with their
variations in computation offloading. These applications include a) Channel
estimation b) Caching c) Augmented Reality (AR) and Virtual Reality (VR)
d) Resource Allocation e) Mode Selection f) UAVs and g) Vehicle Manage-
ment. DNNs variations include as a) DNN b) CNN c) RNN d) Long Short
term Memory (LSTM). We also discuss the learning approaches including a)
supervised learning b) Unsupervised learning, and c) Reinforcement learning
(RL) for computation offloading with related domain references. Finally, we
provide the offloading platforms for compute-intensive tasks including a) Edge
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servers, b) UAVs and c) Roadside units (RSUs). Figure 4 shows the complete
taxonomy.

4.1 DNN’s applications in offloading

DNN serves as a key technology to make the computation offloading more
intelligent. These DNN-based applications for offloading are discussed below.

4.1.1 Channel Estimation

Channel estimation provides information regarding the distortion in the trans-
mitted signal throughout the propagation process. Prior channel estimation
using some pilot values such as modulation symbols through various conven-
tional schemes improves the performance of MEC. For example, one traditional
scheme to estimate a channel is a training sequence (i.e. data-aided scenario).
However, these traditional methods involve the estimation of interfering chan-
nel strength and then optimizing the scheduling based on different models [17].
These methods are resource and compute-intensive. Prior knowledge of wireless
fading channels obtained with DNNs specifically CNNs through some known
pilot values improves the overall procedure of computation offloading [18]. This
intelligent offloading scheme has almost complete knowledge of channel statis-
tics which is practical in a dynamic environment. Moreover, these approaches
work better when the receiver in the network is equipped with chains of radio
frequency [19]. Moreover, the learning process becomes more efficient by com-
bining a fully convolutional network with learned approximate message-passing
networks in massive MIMO systems [20]. The flexible de-noising convolutional
network performs better without sacrificing means square error performance
[21].

4.1.2 Caching

Edge devices provide popular content to the IoT devices in closer proximity to
ensure minimum computational and transmission latency. However, due to the
finite storage, and rapid growth in big data, it is hard to predict and provide
popular content. Therefore, smart decisions are needed to serve IoT devices
with popular content. DNNs-based content popularity effectively reduces the
delays in accessing content [22]. RNNs and LSTM-based content popularity
decisions are effective to decide which contents should be stored at the net-
work edge [23]. Furthermore, distributed DNNs allow the network to exchange
the particulars which reduces content demand errors without revealing privacy
concerns [24]. These intelligent DNNs-based content prediction not only uti-
lizes the bandwidth and minimizes latency, but also reduced the quantity of
data transmitted [27].

4.1.3 Augmented Reality (AR)/ Virtual Reality (VR)

In the era of MEC, AR, and VR applications have been widely used because
of the good experience for users. Besides, their ultralow latency demands
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and immense resource consumption brings a huge challenge. Machine learn-
ing tools provide powerful solutions for latency and resource demands [28].
However, these tools may be compute-intensive. To subsist the aforementioned
challenges, DNNs are functional which makes it possible to decide offloading
decisions, uplink and downlink transmissions, and resource allocations. These
decisions improve the user experiences in terms of latency, resource efficiency,
and energy consumption [29].

4.1.4 Resource Allocation

As the time, frequency, and other resources such as computing cycles are
limited in the MEC, it is challenging to satisfy user demands in substantial
network and mutual interference scenarios. These resource problems are often
approached as linear and stochastic programming techniques. However, con-
crete allocation issues and MEC may not be expressed in the form of linear
programming [30]. DNNs, specifically DNN and CNN-based resource alloca-
tion and management serve IoT devices with promising performance with
many low computations [31]. In addition, video surveillance and face recog-
nition require image recognition algorithms along with communication and
computing resources, which can be effectively managed with DNNs with high
accuracy of recognition in MEC [33].

4.1.5 Mode Selection

Optimal offloading mode selection among local, remote, and partial modes is
challenging particularly in MEC and critically depends upon system param-
eters, such as the number of computing bits and distance from the access
points. Furthermore, it is necessary to predict the effective mode selection for
fast-fading channels using the values of channel gains. Conventional schemes
such as the coordinate descent method [34] require several iterations, result-
ing in immense execution latency which may not be possible for dynamic and
fading channels DNNs enable to learn the optimal offloading mode among
local and remote computation [35], or partial computation [36] via experience
with much low execution latency. Through DNNs it is also possible to predict
the optimal offloading mode along with subcarrier allocation such as for non-
orthogonal multiple access (NOMA) [37]. Different neural network tools may
be used such as DNN [38] with reward scheme, CNN [39], and RNN along with
LSTM [40] may be used for computing mode selection. This timely decision
obtained with DNNs prediction is practical for fast-fading channels. Figure 5
shows the procedure used in [39] for computing mode selection applicable in
dynamic networks and Figure 6 shows the procedure involved in [35].

4.1.6 Unmanned aerial vehicles (UAVs)

UAVs assisting edge computing are becoming popular for multiple applications
including transmission control, offloading management, cooperation among
end devices or edge servers, or autonomous operations supporting users on
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Fig. 5: Computing mode selection procedure with CNN

Fig. 6: Computing mode selection procedure with DNN and reward scheme

the ground in a dynamic environment [41]. These UAVs equipped with DNNs
tools may have the ability to dynamically detect target sites and environments
[42]. To support the user’s devices through offloading at these UAVs, DNNs
control the trajectories of these UAVs while ensuring user fairness and load
[43]. With efficient trajectory management obtained with DNNs, these UAVs
may act as edge servers while providing storage and computing resources to
IoT devices [44]. Furthermore, DNNs-enabled UAVs specifically CNNs may
effectively work for surveillance and monitoring systems [45].
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4.1.7 Vehicle Management

The traditional techniques use mathematical programming for solving resource
management and other problems for computation offloading in MEC. Nonethe-
less, edge networks become more complex with traditional programming while
solving the above problems to a certain level of optimality such as high mobil-
ity in vehicular networks [46]. DNNs-based vehicular applications including
resource management and vehicle mobility prediction are becoming popular
because of the difficulty relies on traditional frameworks. Moreover, DNNs
enable vehicle type prediction by capturing images and videos, offloading these
inputs at the edge server intelligently, and extracting features and predic-
tion, especially with CNN at the edge server [32]. DNNs also contribute to
other offloading application such as load balancing among edge servers through
intelligent offloading [47], environmental identification [48], scheduling and
malicious nodes detection [49], etc.

4.2 DNN’s Variations

Various DNNs have been used to make the offloading more intelligent and
functional. These DNNs are a) Deep neural networks ( DNNs), Convolutional
neural networks (CNNs), Recurrent neural networks (RNNs), and Long short-
term memory (LSTM). We discuss the application and usage of each of these
for offloading scenarios in the following subsections. It is important to note
that other neural network structures like spiking neural networks (SNNs) exist.
However, based on the author’s knowledge, their applications and usage in
computation offloading are not yet significant.

4.2.1 Deep Neural Networks ( DNNs)

These are widely used neural networks with multiple hidden layers between
input and output layers. DNNs always consist of the same type of components
such as weights, biases, and functions [50]. A DNN provides a high level of
abstraction through multiple nonlinear transformations to learn multiple levels
of representations. However, due to a large number of parameters, DNN suffers
from severe overfitting. To cope with this issue, extensive studies proposed
regularization approaches such as dataset augmentation, and weight decay [51].

4.2.2 Convolution Neural Networks (CNNs)

CNNs are effective tools for image understanding. These networks outperform
human experts in many image understanding tasks [52]. Moreover, they are
very effective in representing spatial patterns. It typically consists of convolu-
tion layers, max-pooling layers, and fully connected layers. CNNs are playing
a major role in diverse functions such as computer visioning, image process-
ing, and segmentation. An offloading perspective, vehicle management, channel
estimation, smart parking, and mode selections are also improved by CNNs.
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Table 3: Summary of the use of Learning Approaches for existing papers in
specific DNNs applications in offloading

DNNs
Applica-
tions in
Offloading

Existing Papers Learning Approach

Problem Reference Supervised Unsupervised RL
Channel
Estimation

· Uplink channels estimation · [93] ✓

· Quality of channels estimation · [94] ✓
· Channel estimation over selective
fading channels

· [95] ✓

· Doppler spread and channel correlation · [96] ✓
· Beam-space channels estimation · [97] ✓
· Pilotless channel estimation · [98] ✓

Caching · Edge caching in big data · [99] ✓
· Mobility input-based caching · [100] ✓
· Wireless coded caching · [101] ✓
· Network representation learning based
caching

· [102] ✓

· Proactive caching in 5g · [103] ✓
· File popularity based content caching · [104] ✓
· Multi agent cooperative content caching · [105] ✓
· Game theory based content caching · [106] ✓

AR/VR · Aerial co-robot streaming · [107] ✓
· Depth and motion estimation · [109] ✓
· Binary offloading scheme for AR edge
computing

· [89] ✓

· RL based AR games management · [110] ✓

Resource
Allocation

· Fairness based resource allocation in
wireless networks

· [111] ✓

· Graph neural network based D2D
resource allocation

· [112] ✓

· Resource allocation in NOMA · [113] ✓
· Wireless power duration allocation
with OFDMA

· [13] ✓

· Wireless power duration allocation
with FDMA

· [114] ✓

Mode
Selection

· Computing mode selection and resource
allocation

· [32] ✓

· Computing mode selection and
subcarrier allocation

· [34] ✓

· Partial computing mode selection · [33] ✓
· Binary offloading mode selection · [65] ✓
· Binary offloading mode selection · [70] ✓

UAVs · Intelligent maximization of UAVs
performance

· [115] ✓

· Autonomous 3D UAV localization · [116] ✓ ✓
· Association of base station with UAVs · [117] ✓
· Surveillance planning with UAVs · [118] ✓
· Intrusion detection in UAVs · [119] ✓

Vehicle
Manage-
ment

· Task offloading for vehicles · [71] ✓

· Energy efficient vehicle management · [120] ✓
· Spectrum access for cognitive vehicles · [121] ✓
· In vehicle alcohol detection · [122] ✓
· Road anomaly segmentation for vehicles · [123] ✓

4.2.3 Recurrent Neural Networks (RNNs)

RNNs attracted considerable attention on sequential tasks such as speech
recognition, handwriting recognition, and image-to-text. Compared to the gen-
eral feed-forward networks, RNNs have recurrent loops called feedbacks. This
feedback forms a backpropagation mechanism. These setups make RNN more
powerful for sequential and time series data. However, this backpropagation
causes gradient vanishing problems for RNNs [53]. CNNs usually work with
convolutional and max pooling layers, whether RNN feeds the result back into
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the network. In offloading context, these networks may be used for handling
task dependencies and learning offloading policies [54].

4.2.4 Long Short Term Memory (LSTM)

LSTM is the enhanced form of RNN. A typical RNN is limited to looking
back in time for approximately ten timestamps. The reason behind this is
the feedback signal is exploding are vanishing, which is commonly known as
the vanishing gradient problem. To overcome this limitation, LSTM may be
applied. LSTM can learn more than 10,000 timestamps [55]. These networks
extend biologically plausible [56]. LSTMs perform better than RNNs because
LSTM units include memory cells. These memory cells can maintain infor-
mation for a long period. These networks are composed of forward layers,
backward layers, and activation layers. Towards MEC, LSTM advances the
offloading process such as in [57]-[58]-[59]-[60]-[61].

4.3 Learning Approach

While learning of DNNs, three mechanisms are available, named as a) Super-
vised learning and b) Unsupervised learning and c) Reinforcement learning
(RL). We discuss each of these in the following subsections.

4.3.1 Supervised Learning

Supervised learning is a technique that relies on labeled data for training. It
derives the implicit relationship between input data and predicted data. The
training data contains labeled input such as feature vectors and desired output
such as supervisory signals [62]. It takes the label data with trained labels
before training and predicts the desired output. Supervised learning maps the
labeled input data to the classified output according to the training dataset
and supervisory signals [63]-[64]. This is the kind of learning where the output
of the framework is known before the learning begins. This learning approach
is widely used in computation offloading schemes [65]-[66]-[67]-[68].

4.3.2 Unsupervised Learning

This is a learning approach where the aim is to detect hidden structures from
unlabeled data. Here the desired output is known lately [69]. This approach
has found much consideration in the fields of data compression, classification,
outlier detection, dimensionality reduction algorithms, human learning, and
so on [70]. The general technique in this learning is training from probabilis-
tic data models. Moreover, structured patterns are learned in the data by
rejecting pure unstructured noise. Classification of unsupervised learning into
multiple subsets are Analytical hierarchy process, k-means, Hidden Markov
model, clustering, Game-AI, and so on [71]. Computation offloading in MEC
is significantly improved with unsupervised learning such as binary offloading
[72], offloading in the internet of vehicles [73], and offloading in edge cloud
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(a) Supervised Learning (b) Unsupervised Learning

(c) Reinforcement Learning

Fig. 7: The process of (a) Supervised learning, (b) Unsupervised Learning and
(c) Reinforcement Learning

platforms [74]. Besides, we also provide a summary of existing papers using
these learning approaches with specific applications in Table 3.

4.3.3 Reinforcement Learning

Figure 7 provides the visual representation of supervised, unsupervised and
RL. RL provides a mathematical formalism to control the learning mechanism.
Through utilizing RL, one can automatically acquire near optimal behaviors
[75]. In simple terms, RL is a learning approach based on rewarding an agent
with desired behaviors and punishing undesired ones. The reward function
describes what an agent should do, and RL defines how to do it. An RL
agent can grasp and interpret its environment, take actions, and learn by trial
and error using DNNs as presented in figure 8. It is recently witnessed major
advances in solving decision-making problems in multiple domains such as
vehicular networks [77], MEC [78], and wireless networks [79].

4.4 Offloading Platforms

A task may be offloaded to one of the following platforms in MEC. a) Edge
server, b) UAVs, and c) RSUs. Each of these is discussed in the following
subsections.

4.4.1 Edge Server

These are the offloading platforms that work as computing servers located in
closer proximity to the end users such as those integrated with eNBs. Edge
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Fig. 8: Reinforcement Learning with DNNs

Fig. 9: Offloading Platforms

servers are resource-rich devices that provide the cloud services of storage and
remote computation to the end devices. However, compared to cloud servers,
edge server has limited resources to serve all the devices in the corresponding
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network. Hence, choosing a suitable edge server among multiple is a critical
task [80]. Traditional methods require future knowledge such as server work-
load and user mobility which is not known a priori. To this end, DNNs play a
crucial role. These networks work based on the observed information of past
server selection. The LSTM may be exploited to encode the historical knowl-
edge of dynamic factors such as server workloads and user mobility [81]. One
can use a DNN to select the optimal server with resource allocation decisions
[82]. Moreover, these DNNs enable the vehicles to act as servers for nearby
end devices irrespective of their mobile nature [83].

4.4.2 UAVs

UAVs equipped with vision techniques could be leveraged as the offloading
platform that provides pervasive computing capabilities to the end devices [84].
These end devices can offload computing tasks to the UAVs for computation.
However, the dynamic nature of UAVs may degrade the offloading perfor-
mance. Furthermore, the assumption of the availability of UAV dynamics such
as mobility and aerodynamic friction is not always practical. To this end, DNNs
can be exploited to boost the offloading process by learning nonlinear infor-
mation such as aerodynamic friction and blade flipping [85]. Similarly, UAVs
acting as servers can provide monitoring services and ubiquitous surveillance
for agriculture management, military operations, and urban administration.
An example can be the use of CNN for object detection at UAVs when end
devices offload the sensed data [42]. Through this scheme, smart surveillance
and traffic monitoring could be greatly improved. Similarly, a CNN may be
exploited at the UAVs to identify vehicles on the ground when sensors and
cameras offload input at these UAVs. Furthermore, this scheme also leverages
the tracking of vehicles while using UAVs as edge servers [86].

4.4.3 Road Side Units (RSUs)

Road site units (RSUs) deployed in the internet of vehicle settings act as an
offloading platform for the offloaded tasks. Vehicles offload compute-intensive
tasks to these RSUs for computation. However, urban settings and the high
mobility of vehicles have a great impact on computation offloading. More elab-
orately, migration of task offloading and their results to the users is challenging.
For example, when RSU decides to transfer the results to the vehicle, and in
the meantime, the vehicle moves to another location. Moreover, when a vehi-
cle moves from the range of one RSU to another, collaboration among these
two RSUs is also required for the optimal offloading process. These challenges
require prior knowledge such as vehicle mobility and channel statistics etc.,
hence limiting the traditional schemes. To this end, DNNs can be exploited to
predict the suitable RSUs for computation offloading in the case of dynamic
topologies [87]. Similarly, a CNN may be deployed to determine the task
offloading, computation, and results from migration policy for vehicles [88].
Figure 9 depicts the use of offloading platforms in MEC.
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Table 4: Overview of existing papers based on the applications of DNNs in
computation offloading
Offloading
Applica-
tions

Problem Reference DNN CNN RNN
LSTM

Channel
Estimation

. Multi cell interference limited channel
estimation

· [144] ✓

. Massive MIMO channel estimation · [145] ✓

. Compressive channel estimation · [146] ✓

. Channel estimation for cell free beam-
space mmWave massive MIMO

· [147] ✓

. Channel estimation for cell free
mmWave massive MIMO

· [21] ✓

Caching · Proactive caching with data-driven
techniques

· [148] ✓

· Content caching in D2D networks · [149] ✓ ✓
· Content popularity prediction in B5G
networks

· [150] ✓

· Maximization of cache hit ratio · [98] ✓
· Online proactive caching · [151] ✓

AR/VR · User-centric task assistance · [152] ✓
· Interaction between front-end devices
and backed helpers to improve video
quality

· [153] ✓

· Real-time object detection in AR · [154] ✓

Resource
Allocation

· Optimal topology for backhaul net-
work

· [155] ✓

· Computational resource allocation · [156] ✓
· Joint optimization of offloading and
resource allocation

· [157] ✓

Mode
Selection

· Partial computing mode selection · [13] ✓

· FDMA enabled partial computing
mode selection

· [112] ✓

· OFDMA enabled partial computing
mode selection

· [33] ✓

· Binary offloading mode selection · [158] ✓
· OFDMA enabled binary computing
mode selection

· [108] ✓

UAVs · Prediction of energy consumption for
UAVs based MEC

· [159] ✓

· Maximization of average secrecy rate
for UAVs

· [160] ✓

· Task offloading strategy in UAVs · [126] ✓
· Trajectory prediction of UAVs · [161] ✓
· Synthetic trajectory prediction of
UAVs

· [162] ✓

Vehicle
Manage-
ment

· Data-driven intrusion detection sys-
tem

· [163] ✓

· Channel prediction for connected
vehicles

· [164] ✓

· Content caching for vehicles · [165] ✓
· Cooperative sensing among adjacent
vehicles

· [166] ✓
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5 DNNs based Offloading Mechanism in MEC

This section overviews the DNN-based offloading mechanisms. We provide the
details of existing works that used DNNs applications to improve the offload-
ing process. We also provide an overview of existing papers based on DNNs
application in Table 4.

5.1 DNN based Offloading Mechanism

DNNs are the most common neural network structures used by researchers to
utilize computation offloading due to their versatility and simplicity. In [37],
Nduwayezu et al. investigated non-orthogonal multiple access (NOMA) with
multi-carrier MEC system. The authors addressed the problem of sub-carrier
allocation and decision among remote and local computation using DNNs.
The objective of the study was to maximize the weighted sum computation
rate under the binary offloading policy by assigning optimal subcarriers to the
user equipment in case of offloading the task. The authors investigated that
NOMA-based machine learning techniques do not require a complete definition
of channel environment and labeled data for training purposes. The proposed
algorithm also avoided the complexity of existing optimization algorithms for
channel allocation.

Huang et al.,[35] provided a deep reinforcement learning-based online
offloading (DROO) for wireless-powered MEC networks with binary compu-
tation offloading that maximizes the weighted sum computation rate. The
algorithm uses reinforcement learning to learn from previous offloading expe-
riences to improve the DNN-generated offloading action. To achieve quick
algorithm convergence, the author developed an order-preserving quantiza-
tion and an adaptive parameter setting technique. Unlike other optimization
methods, the proposed DROO algorithm eliminates the requirement to solve
complex mixed integer programming problems entirely. Simulation results
demonstrate that DROO delivers near-optimal performance while decreas-
ing CPU execution delay, making real-time system optimization practical
for wireless-powered MEC networks in fading environments. Although the
allocation of resources sub-problem is handled in the context of a specific
wireless-powered network, the suggested DROO framework can be used to
offload computation in universal MEC networks.

Tilahun et al., [89] investigated a cell-free multiple inputs multiple outputs
(MIMO) mobile edge network to meet the demanding specifications of the
recently introduced multimedia services. The authors provided a distributed
deep reinforcement learning-based joint communication and resource distribu-
tion scheme. This scheme uses two DNNs including actor DNN and critic DNN.
Each user is implemented as an autonomous agent such that joint resource
allocation depends only on local observation. The simulation results show that
the agents develop robust strategies that reduce consumption while fulfilling
the extremely low latency requirements of advanced services.
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The authors investigated MEC networks for intelligent IoTs, in which many
users receive assistance from various computational access points for compu-
tational activities [90]. The performance of the system may be increased by
lowering latency and energy expenditure. Two critical metrics of relevance in
the MEC networks are considered, by offloading some of the operations. The
authors designed the system by providing an offloading technique using RL
technique. Deep Q-network was employed in this approach to automatically
learn the offloading action to enhance system efficiency, and hence a DNN is
trained for anticipating the offloading activities, with training data obtained
from the environmental system. Furthermore, authors employ network band-
width to enhance the wireless spectrum for links between users. Finally,
simulation data are shown to demonstrate the usefulness of the suggested rein-
forcement learning offloading technique. The suggested DRL approach with
DNN can greatly minimize the system cost of delay and power expenditure.

AR and IoT are emerging technologies that improve efficiency in many
fields. To solve the problem of reliability and latency requirements of AR appli-
cations, the author studied a binary offloading scheme for AR edge computing
which increases the computing capability of AR devices [91]. DNN-based AR
offloading decision reduces the computational complexity, hence avoiding the
need to solve combinatorial optimization. By using the Markov decision pro-
cess which is solved by deep reinforcement learning, this scheme shows better
performance compared with existing optimization methods.

Due to the rapid development of intelligently connected automobiles, more
computing resource optimization strategies are required for network implemen-
tations. When practically all tasks are to be performed on MEC servers, many
vehicle resources are unused, hence creating a burden on the servers [92]. To
allocate efficient resources in distributed computation offloading, difficult work
can be broken down into smaller subtasks. Deep Q Learning Network using
DNN, which is a distributed compute offloading approach, is the primary way
to reduce the amount of time that a complex job takes to complete.

Since vehicular networks are being used more and more, it is necessary to
adopt a flexible design to improve the quality of service. Utilizing multi-access
MEC is the optimal way to save time in such a network, even though MEC
has limited resources and is unable to handle high mobility [124]. A resource
allocation problem should be investigated with a wide range of applications to
address the response time issue. DNN is a suitable model that rapidly provides
a solution for resource allocation while learning the dynamics of network state.

In [125], the authors provided the offloading scheme to determine the QoS
on the edges for the internet of vehicles. Consideration is given to the important
factors of cache areas, processing power, and channel conditions to progress the
fulfillment of quality of experience constrained by energy consumption. The
author developed an updated DRL method using two DNNs to search for an
optimum offloading mode due to the high complexity of the predicted offload-
ing. The suggested framework can increase instability and speed up training
by exchanging stochastic gradient descent with the experience replay buffer
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and employing prioritized experience replay and stochastic weight averaging.
Finally, the results of the experiment show that the proposed scheme performs
better than other DRL methods.

End users have limited resources to handle computationally intensive tasks,
although MEC has plenty of processing capacity. To this end, a framework
with few users was designed to handle compute-intensive by the adjacent
processor [126]. MEC servers connected to base stations have sufficient com-
putational power and communication channels. To manage the burden of a
user, the authors developed an architecture with several static and car-assisted
MEC servers. A partial computation offloading strategy was proposed based
on DNNs. The suggested technique can evaluate the best offloading action
based on stochastic task arrivals and wireless channel dynamics.

In this research [127], the authors used supervised deep learning to study
the partial offloading method in MEC. The suggested method called the
comprehensive and energy-efficient deep learning-based offloading technique,
effectively chooses the partial offloading strategy and the size of each task’s
component to minimize service latency and device energy usage. The authors
utilized deep learning to concurrently determine the optimal offloading strat-
egy and the appropriate task partitioning. Kumar et al. [128] investigated the
task offloading method in UAV-enabled MEC systems, in which end users
offload compute-intensive tasks to the UAV to reduce overall costs in terms of
weighting delay and energy usage. End users can either perform the task with
local computation or offload to a UAV, which operates like a computational
server. Nevertheless, according to the computational bottleneck as well as
restricted channel capacity among the UAV and the end users, offloading to the
UAV becomes challenging. To identify the best offloading decision, the authors
deployed a distributed DNN [129]. The simulation findings demonstrate that
the trained DNN offloading decision may obtain near-optimal efficiency with
a variety of system parameters. The authors provided optimal resource alloca-
tion and offloading decisions for a wirelessly powered MEC system. Researchers
suggested a modular technique for resolving time fractions and the number
of task components, while also addressing the partial offloading scheme using
a deep learning approach. With the aid of a trained DNN, the minimization
of end devices cost, and energy usage is investigated using a double antenna
hybrid access point. Simulation results demonstrate the effectiveness of the
proposed study over benchmarks.

5.2 CNN-based Offloading Mechanism

Yang et al., [130] provided a scheme for offloading a portion of the end device’s
CNN inference computation to the edge servers. Batching activities on GPUs
can significantly decrease average computation time on GPUs, according to
their findings. Depending on such crucial findings, the authors presented a
technique that incorporates all end-device activities and the associated batch-
ing effect at the edge servers, in contrast to previous work on cooperative
inference which allows every device to make offloading decisions separately.
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In addition, an online approach is presented to deal with the CNN inference
jobs arrived in random nature. It also substantially decreases the average con-
vergence speed without knowing the future task arrivals. Chai, Song [131]
presented a CNN-based cooperative computing system. A joint task manage-
ment architecture was designed to achieve efficient information interaction and
task management. The authors developed an overall task latency reduction
problem based on the architecture and solved it to achieve the combined job
offloading, CNN layer scheduling, and resource allocation method. Numerous
simulations were used to determine the effectiveness of the proposed strategy
over baseline methods.

Zeng el al., [132] investigated a multi-layered vehicular edge computing
architecture where vehicles can offload different tasks through one of the
three given offloading mechanisms. These techniques are chosen based on
the network state and server load. The proposed method is to anticipate
offloading effectiveness based on previously collected data, such that requested
vehicles may select the most successful offloading technique. Moreover, the
authors established a deep learning-based approach for task offloading out-
comes including success and failure and service-delay estimation. An automatic
feature generation model was also proposed to acquire the interconnections of
attributes to produce new attributes, attempting to avoid the efficiency chaos
caused by manually designed features. The effective task offloading and the
shortest service delay are chosen as the final selection based on performance
projection.

Deep learning empowered visual target navigation on UAVs is considered
in this study. Because small UAVs have restricted computational power as
well as limited energy expenditure, a new implementation of a trained CNN
model for target detection is used, in which the lower layers of the CNN were
being distributed on the UAV and the corresponding higher layers were being
distributed at the MEC server [86]. The above configuration meets the require-
ment for quick and efficient video image processing while considering realistic
limitations. The explanatory results help in establishing important insights
into wireless edge networks driven by UAV tracking.

The authors in [? ] investigated the problem of optimal computation
offloading in vehicular edge computing. The aim was to reduce the overall
cost in terms of the tradeoff between task delays and energy optimization. A
Markov decision process was used to model the problem and DRL to deal with
enormous state space. To extract the features and approximate the policy and
function, the authors considered CNN. The proposed solution was evaluated
with six different baseline techniques to show the performance. A joint CNN
and LSTM-based offloading decision optimization framework was proposed in
[133]. The authors investigated the load at the end devices using joint DNNs
to optimize the offloading strategy. The CPU utilization of end devices was
also predicted in the proposed framework.
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The author formulated the problem of optimal offloading decisions among
local and remote computation using DRL [134]. The dynamics of wireless chan-
nel gains were taken as input to obtain the optimal offloading decision using
CNN. The authors aimed to enhance the computation rate for all end devices
while allocating optimal resources. The proposed system learns from experi-
ence using DRL technique. A memory was designed to store the optimal action
for future offloading actions. Compared with existing algorithms, the proposed
solution minimizes the execution latency while achieving optimal computation
rates.

5.3 RNN and LSTM based Offloading Mechanism

In [114], the authors provided a multiuser multitasking hybrid computa-
tional offloading model based on DRL for offloading a set of tasks generated
by several users to an edge server and neighboring devices. The suggested
framework, instead of trying to make individual decisions for numerous differ-
ent computation-intensive tasks, makes global computing offloading decisions
considering the impact of users’ offloading decisions on the system’s compet-
itiveness. The study’s main objective is to minimize long-term total system
latency. The model increases the convergence stability and speed of the DRL
mode by extracting task and network state feature information using RNN.

Fig. 10: Efficient Computation Offloading and task migration using LSTM

In close collaboration with artificial intelligence technologies, a novel MEC
architecture was proposed that provides intelligent computation offloading. A
computation offloading, as well as task migration methodology based on task
prediction, is provided [135]. To optimize the edge computing offloading model,
task migration is scheduled at the edge and cloud server, where computation
task prediction is modeled with LSTM. Results demonstrated that the pro-
posed architecture and its algorithm can successfully reduce the overall task
latency even when data and sub-tasks are larger.

In [136], researchers investigated the offloading tasks in cognitive vehicular
networks and considered both the onboard computing resource as well as the
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computing resource of a remote cloud server. The proposed two stages of overall
strategic management are resource exploration and computational offload-
ing. An LSTM-based resource discovery technique is suggested to address the
dynamics and uncertainty of the availability of resources at vehicle cloud com-
puting while increasing sub-tasks and data. The authors in [57] provided a
user prediction-based computation offloading scheme based on LSTM. The
authors investigated that the nature of mobility data is nonlinear and time
series. The proposed scheme uses mobility features for prediction including
location, velocity, and direction. The authors also investigated the priority
weights to choose the optimal edge to serve for task offloading. The simula-
tion results demonstrate the effectiveness of the proposed work compared to
baseline techniques.

The authors in [58] introduced an innovative approach for secure and
energy-efficient computational offloading, harnessing the power of LSTM. The
essence of this approach lies in predicting computational tasks through LSTM
algorithms, which subsequently guide the strategy for offloading computations
on mobile devices. Additionally, the scheme incorporated task migration as
part of edge cloud scheduling, ultimately optimizing the entire edge computing
offloading model as presented in figure 10. Experimental results substantiate
the efficacy of our proposed architecture, combining LSTM-based offloading
techniques and the LSTMOTR (LSTM Offloading and Routing) algorithm.
This architecture not only significantly reduces total task delay as data
and subtasks grow but also minimizes energy consumption. Furthermore, it
enhances device security by leveraging the inherent firewall capabilities of
LSTM algorithms.

6 Comparison of Existing Schemes

Based on the above section, we compare the state-of-the-art studies. We cat-
egorize this comparison into three branches. i) Comparisons of DNN-based
schemes, ii) Comparison of CNN-based schemes, and iii) Comparison of RNN-
based schemes. All the studies that are discussed in the previous section are
compared in tabular form. This comparison is based on the following key
parameters that were discussed in the taxonomy. (i) Objective: In this param-
eter, we provide the major objective of the study. (ii) DNNs variation: This
parameter provides the use of specific DNN to achieve the major objective. (iii)
Learning approach: In this parameter, we show the learning scheme used by
state-of-the-art studies (iv) Offloading platform: In this parameter, we compare
the studies and separate them based on the specific offloading platform. More-
over, we also provide the strengths and limitations of state-of-the-art studies
that are crucial to unlocking the doors for novel research. Table 5 presents the
comparison of state-of-the-art techniques based on various parameters.
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Table 5: Comparison of state-of-the-art techniques
Study Objective DNNs

variation
Learning
approach

Offloading
platform

Strength(s) Limitation(s)

[34] Subcarrier alloca-
tion and decision
among local and
remote computation

DNN DRL Edge
server

Less execu-
tion latency

Dense net-
works

[32] Optimal offloading
actions among local
and remote decision

DNN DRL Edge
server

Less execu-
tion latency

Interference
among end
devices

[87] Investigation of
MIMO systems for
multimedia services

N\A DRL Edge
server

Less energy
consumption

Poor perfor-
mance analy-
sis

[88] Allocation of
optimal network
bandwidth to
enhance wireless
spectrum

DNN DRL Edge
server

Optimization
of spectrum

Training
of deep Q
andDNN

[89] Binary offloading
scheme for AR in
MEC

DNN N\A Edge
server

Computation
rate

Q value pre-
diction

[122] Investigation of
resource allocation
for vehicles

DNN DRL Edge
server

Low response
time

Location pre-
diction

[123] Investigation of QoS
for computation
offloading for vehi-
cles

N\A DRL RSU Stability and
convergence

Complexity

[124] Investigation
of computation
offloading under
stochastic task
arrivals

DNN DRL Edge
server

Optimal
offloading
policy

Response
time

[125] Minimization of ser-
vice latency and end
device energy usage

DNN Supervised Edge
server

Less service
delay

Computational
complexity

[126] Investigation of task
offloading scheme in
UAV enabled MEC
systems

DNN N\A UAV Less average
delay

Dynamic net-
works

[127] Investigation of
time fractions to
minimize cost and
energy

DNN N\A Edge
server

Less energy
consumption

Resource lim-
itations

[128] Offloading a portion
of CNN inference at
the edge servers to
minimize inference
time

CNN N\A Edge
server

Minimum
inference
time

Resource
constrained

[129] Execution of tasks
at edge and cloud
servers deployed
with CNN model

CNN N\A Edge and
cloud
server

Less task
latency

Complexity
of joint
model
deployment

[130] Optimal offloading
scheme for vehicles
based on network
state and server
load

CNN Supervised RSU Less failure
rate

Energy con-
sumption and
huge data

[84] Joint offloading of
CNN model at UAVs
and edge servers

CNN N\A UAVs and
edge server

Less weighted
sum cost

Complexity
of joint
model
deployment

[131] Investigation
of computation
offloading scheme
for vehicular edge
computing

CNN DRL Edge
server

Less latency
and energy
consumption

Resource lim-
itation

[132] Investigation of load
on end devices to
optimize offloading

CNN,
LSTM

N\A Edge
server

Less delay
and energy
consumption

Complexity
of joint
model
deployment

[? ] Investigation of
optimal computing
mode selection

CNN DRL Edge
server

Less execu-
tion latency

Manually
labeling data

[37] The simultaneous
offloading decisions
for all the tasks

RNN,
LSTM

DRL Edge
server

Less system
latency

Single
objective
optimization

[56] Task prediction
and scheduling to
improve security

LSTM DRL Edge
server

Less delay
and energy
consumption

Complexity
of joint task
prediction
and migra-
tion

[133] Intelligent task pre-
diction to optimize
offloading strategy

LSTM N\A Edge
server

Less tasks
delay

Mobility and
security

[134] Investigation of on-
board resources of
vehicles

LSTM DRL RSUs and
cloud
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6.1 Comparison of DNN-based Schemes

Article [34] investigated the problem of sub-carrier allocation and decision
among local and remote computation using a DNN. The authors consid-
ered NOMA as a channel access mechanism. Article [32] provided an online
algorithm that learns the optimal offloading actions among local and remote
decisions using DRL. In [87], the authors used the MIMO system to meet
the demanding specifications of the recently introduced multimedia services
in MEC. The authors in [88] authors provided optimal network bandwidth to
enhance the wireless spectrum for links between users and particular computa-
tional activities. An intelligent system was proposed which chooses the optimal
offloading techniques using DRL. The author investigated a binary offloading
scheme in [89] for AR edge computing which optimizes the computation of AR
devices. The proposed DNN-based AR offloading decision effectively reduces
the computational complexity, hence neglecting combinational optimization.
In [90], the authors distributed the offloading scheme by dividing the tasks
into sub-tasks to reduce the cost of offloading. A resource allocation problem
was investigated in [122] to tackle vehicle computations. In [123], the quality
of service for computation offloading was investigated. The proposed frame-
work decreases the training time by exchanging stochastic gradient descent
with the experience replay buffer. An intelligent offloading scheme based on
DNN was studied in [124] that tackles the dynamic channels and stochastic
task arrivals. The authors effectively choose the partial offloading strategy and
the size of each task to minimize service latency and user energy usage [125].
Kumar et al., [126] investigated the task offloading scheme in UAV-enabled
MEC systems, where end users offload tasks to the UAVs. The aim was to
reduce overall costs in terms of weighting delay and energy usage. Using deep
learning, the authors provided a scheme to minimize the cost and energy of
end devices [127]. An effective technique was proposed to solve time fractions
and the number of tasks while addressing partial offloading.

6.2 Comparison of CNN-based Schemes

In [128], authors offloaded a portion of CNN inference of end devices at the edge
servers. The authors also investigated that batching tasks on GPU can reduce
the average inference time. A joint task management system was designed in
[129] to reduce the overall latency. The authors also formulated a resource allo-
cation method. In [130], the authors investigated an optimal offloading scheme
for vehicles based on network state and server load. A deep learning-based
scheme was proposed to predict the optimal offloading scheme. The authors in
[84] investigated the joint offloading of the CNN model, where the lower layers
of the CNN are distributed on the UAV and the corresponding higher layers
are distributed at the MEC server. In [131], the authors investigated the com-
putation offloading problem for vehicle edge computing, where a vehicle tends
to schedule its task. The aim was to minimize the queuing time and total cost
in terms of the trade-off between task latency and energy consumption. In the
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article [132], a joint CNN and LSTM-based approach was proposed to investi-
gate the load at the end devices and to optimize the offloading strategy. The
aim was to minimize the delay and energy consumption for end devices. An
optimal offloading decision problem was investigated in [? ], where the authors
considered the DRL approach that learns from past experiences. For effective
computation offloading decisions, the binary computation offloading strategy
was considered.

6.3 Comparison of RNN and LSTM based Schemes

In [37], the authors provided a hybrid task offloading scheme that utilizes
simultaneous decisions instead of one by one. The aim was to minimize the
overall system latency using RNN and LSTM-based DRL. Another LSTM-
based computation offloading strategy was investigated in [56]. The authors
provided an effective approach to predict the tasks for computation offload-
ing and provided a scheme to schedule the tasks at the edge server. The
system provides enough security for end devices with the firewall nature of
LSTM. The authors in [133] provided an intelligent scheme that predicts the
task to optimize the computation offloading strategy. The tasks are sched-
uled and migrated on the edge cloud server to reduce the task execution
delay. The experimental results validate the performance of task delay while
increasing data and sub-tasks. A prediction of onboard resources for vehicles
was investigated in [134]. Researchers also provided a DRL-based collabora-
tive computation offloading at vehicle cloud servers and remote cloud servers.
In [55], the authors investigated a computation offloading strategy based on
user direction prediction that was neglected by previous studies. Moreover, the
authors calculated the priority weights to select the optimal edge server.

7 Features and Open Issues

In this section, we provide features of DNNs and arise different questions in
DNN-based applications for computation offloading in MEC. We present the
open issues regarding the applications of DNNs in computation offloading. We
also suggest possible solutions to cope with these open issues. Figure 11 shows
the significant features of DNN and open issues with their possible solutions.

7.1 Features and Open Issues in DNN based Channel
Estimation

How to enhance the performance of DNN-based channel estimation while taking
channel selection, mobility, load estimation, and load balancing into considera-
tion? DNNs are an attractive solution for tackling various challenges in channel
estimation. These DNNs enable the use of smart channel estimation where an
access point can learn when to transmit on each type of channel. Furthermore,
DNNs may also enable multi-mode access points to direct their traffic between
mm-Wave, and microwave [137]. However, there are still various open issues.
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Fig. 11: Features, challenges, and possible solutions of DNNs-based applica-
tions for computation offloading

Previous studies consider reactive approaches. In these approaches, the data
request is first initiated. After this initiation, resources are allocated based on
corresponding delay tolerance. Moreover, previous studies do not consider the
proactive and predictable behavior of traffic in channels. These studies do not
take into consideration the future of peak times while data traffic is distributed
among different channels. In addition, load balancing among channels, load
estimation, and mobility aware estimation are also significant directions for
advanced research. For example, CNN-based models may be deployed for chan-
nel selections. SNN-based algorithms may enhance the performance of load
estimation etc.
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7.2 Features and Open Issues in DNN-based Caching

How to ensure the desired content in the cache using DNNs based caching
while ensuring data filtering, content classification, and limited storage? DNNs
enables is witnessed as a promising solution to place the desired content at the
network edge. Since the problem of cache placement and cache update depends
on the user’s behaviors. This cache update depends on the frequency of a
certain request, and cache placement depends on the user’s behavior. DNNs
are well recognized as a better solution to predict user behavior. However,
there are still some open issues that need to be considered. First, how to
clean data and extract useful content from huge data sources? It is necessary
to read and extract the data depending on user type. For example, the data
may be in hundreds of GB depending on the user’s type, which requires pre-
processing and filtering of data. This data processing and filtering may take
more time than learning [138]. Moreover, the memory of DNNs is limited.
Hence, DNNs may contain a limited number of user requests. The possible
solutions may be CNN-based algorithms for content correlation and clustering
users for classification. SNN may be used for demand predictions etc.

7.3 Features and Open Issues in DNN-based AR/VR

How to ensure the desired service of DNNs based AR/VR, while taking limited
resources, limited time for training DNNs, and errors in collected data into
consideration? DNNs are widely considered a promising solution for AR/ VR
application management [139]. Compared to the other offloading applications,
AR/VR applications are more concerned with user behavior and environment.
DNNs are efficient mechanisms to predict the user’s movement and behav-
iors. These predictions enable the access points to improve the generation of
AR/VR images. DNNs also enable effective resource management for these
applications. However, it faces many challenges. First, due to the large data
sizes, each 360 degrees image, DNNs require a large number of computational
resources. In MEC and offloading, it may not possible. Second, data collected
from users contains many errors. In this case, access points may need to use
inaccurate data for training, which may significantly reduce the prediction
accuracy of DNNs. Here, efficient resource management for processing AR/VR
images and for training DNNs is also s significant challenge. CNNs may be
used for the prediction of erroneous data in VR offloading applications. RNNs
may be used for the prediction of AR/VR users’ movement.

7.4 Features and Open Issues in DNN-based Resource
Allocation

How to ensure effective resource allocation while taking limited energy, data
classification, and a tradeoff between computational needs and accuracy of
DNNs into consideration? DNNs are widely recognized as key models to lever-
age intelligent data analytics to extract the relationship and patterns from data
offloaded by IoT devices [9]-[140]. These can also be used for intelligent data
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compression and data recovery. Moreover, DNNs may be deployed to adapt
intelligent strategies such as channel subcarrier allocations. They can dynami-
cally select the most appropriate frequency bands based on the network state.
However, it faces many challenges. First, the offloaded data for storage and
computational resources may be in an erroneous form. It is necessary to clas-
sify and prevent the data with DNNs. In other words, DNNs should be able
to tolerate this erroneous data. Second, it is important to consider the trade-
off between the accuracy required for DNNs computational needs for training
DNNs. Last, the MEC may generate a thousand types of data offloaded by
IoT devices. DNNs should be able to choose accurate data for offloading pur-
poses and resource allocations. One can use CNNs for data compression, and
RNN for computational resource management. In addition, DNN can be used
for subcarrier allocation.

7.5 Features and Open issues in DNNs based Mode
Selection

How to ensure the best offloading mode selection while taking channel access
mechanisms, online or offline training, and separate channels for uplink and
downlink into consideration? Moreover, how to ensure the best offloading
action while neglecting the assumption of fading channels in a single time
frame? DNNs are commonly used models for offloading mode selection. These
are promising solutions for choosing the best offloading actions among local or
remote and partial offloading. Moreover, DNNs also contribute to allocating
resources such as wireless power transfer duration, transmission time, etc [13]-
[141]. However, DNN-based mode selection faces many challenges. First, how
to efficiently choose optimal offloading action using different channel access
mechanisms such as OFDMA. Second, online training of DNNs requires huge
computational resources. In addition, offline training of DNNs may not meet
the constraints of fading channels. Third, it is much more difficult to train a
DNN while taking dynamic channels for each time frame. Last, in the case
of partial offloading, previous studies do not consider which part of the task
should be computed locally and which part should be offloaded. DNNs may
be deployed to choose which part should be computed locally and which part
should be offloaded. SNNs may be used to deal with dynamic channels in each
time frame. CNN may be used for online training to ensure fast convergence.

7.6 Features and Open Issues in DNN-based UAVs

How to train and improve UAV performance while taking limited power to
train DNNs, limited time, and erroneous data due to air-ground channels into
consideration? UAVs play a significant role in tracking user environments.
DNNs enable UAVs to dynamically adjust their locations, resource allocation
decisions, flying direction, and path planning to serve users on the ground. In
addition, DNNs may be used for data analytics to predict the user’s behaviors
on the ground. However, DNNs based UAVs face many challenges. First, UAVs
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have limited computational power to train DNNs. Second, these have limited
time to collect data due to their flying nature. Third, UAVs should be able to
tackle the trade-off between energy to train DNN and energy to serve the users
on the ground. Lastly, collected data from the ground due to environmental
effects may have an error which may result in poor accuracy. SNNs may
be applied to deal with air-ground channel constraints. DNNs may be used to
manage the limited resources of UAVs. Moreover, RNN may be implemented
to predict the trajectory of UAVs which can reduce the errors in the collection
of data.

7.7 Features and Open Issues in DNN-based Vehicle
Management

How to manage vehicles while taking the lack of datasets, trajectory, limited
resources, uniform decisions, and computations of big data into consideration?
DNNs play a crucial role in data analytics. They extract knowledge from the
big data generated by vehicles. Moreover, DNNs help in pattern recognition to
detect pedestrians and obstacles on road [142]. These can also be used to deal
with raw data. Collection, processing, and releasing of traffic information may
also be improved with DNNs. However, it faces many challenges. Even though
DNNs have been applied to solve various edge network problems, very few
studies have considered them for vehicle management. Second, there is a lack
of datasets regarding vehicles and roads to simulate the DNNs. Third, uniform
decisions and compatibility are a challenge. Processing big data with limited
resources of vehicles and edge servers is also challenging. Finally, mobility and
trajectory prediction not works everywhere [143]. RNNs may be applied to
predict a vehicle’s mobility trajectory. DNNs may be used for optimal uniform
decisions. In addition, CNNs may be used for data classifications.

8 Challenges linked to the utilization of DNNs
for computation offloading

8.1 Dynamic Environment Adaptation

One of the primary challenges in DNN-based computation offloading is adapt-
ing to the dynamic nature of edge computing environments. Edge networks
can experience rapid changes in network conditions, device availability, and
server loads. For example, mobile devices’ movement makes the collabora-
tive edge site difficult to determine and the limited battery makes the device
unable to work continuously [173]. Ensuring that DNN models can make
effective offloading decisions in real-time despite these fluctuations is crucial.
Researchers need to develop algorithms and training strategies that enable
DNNs to continuously learn and adapt to changing circumstances. Techniques
like reinforcement learning and online learning may play a pivotal role in
addressing this challenge.
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8.2 Data Privacy and Security

Data privacy and security are paramount concerns when deploying DNNs for
offloading. Edge devices often process sensitive data, and offloading decisions
involve sharing data with remote servers. Balancing the need for data privacy
with the utility of offloading is a complex problem. For example, a common
problem identified from previous research work is the leakage of privacy at
the edge layer and data accessed by unauthorized people [172]. Researchers
must explore privacy-preserving techniques like federated learning, homomor-
phic encryption, and differential privacy to ensure that DNN models can make
informed offloading decisions without compromising data confidentiality. Addi-
tionally, developing robust security mechanisms to protect against potential
attacks on DNN-based offloading systems is essential.

8.3 Energy Efficiency

Edge devices, particularly IoT sensors and mobile devices, are often battery-
powered and have limited energy resources. DNN inference can be computa-
tionally intensive and energy-consuming. Balancing the benefits of offloading
with energy efficiency is a significant research challenge. Researchers need
to investigate techniques for energy-efficient DNN model design, lightweight
model architectures, and dynamic power management strategies. This includes
optimizing the trade-off between local computation and offloading to minimize
energy consumption while meeting application performance requirements.

8.4 Real-time Decision Making:

Real-time decision making is critical in many edge computing applications,
such as autonomous vehicles and augmented reality. DNN-based offloading
decisions must be made quickly to ensure timely responses. However, the infer-
ence process itself introduces latency. Researchers need to develop strategies
that optimize the decision-making process, possibly through model quantiza-
tion, edge caching, or parallel processing, to minimize the overall latency while
still leveraging the advantages of DNN-based offloading.

8.5 Model Generalization

Model generalization is the ability of a trained DNN to perform well on data
it hasn’t seen during training. In the context of computation offloading in
MEC, DNN models need to generalize effectively across various edge scenar-
ios, device types, and network conditions. The challenge arises because MEC
environments are diverse and dynamic. Edge scenarios can range from smart
factories to smart cities, each with unique characteristics and requirements.
Ensuring that a DNN model trained for one scenario can perform adequately
in another is complex. Researchers are exploring techniques to enhance model
generalization. This includes data augmentation, where the training dataset



Deep Neural Networks Meet Computation Offloading 37

is artificially diversified to simulate different edge scenarios. Transfer learn-
ing is another approach, where a pre-trained DNN is fine-tuned for specific
edge environments, leveraging knowledge from a broader context. Reinforce-
ment learning can be employed to enable models to adapt to changing edge
conditions in real-time. Achieving robustness and adaptability in DNN models
is essential to make computation offloading practical and reliable across the
diverse landscapes of MEC. This challenge highlights the need for versatile
and scalable DNN architectures and training strategies.

9 Conclusion

In this article, we offered an overview of how applications based on DNNs
addressed the challenges associated with computation offloading. These appli-
cations encompassed tasks such as channel estimation, caching, AR and VR
applications, resource allocation, mode selection, UAVs, and vehicle manage-
ment. We constructed a comprehensive taxonomy encompassing the diverse
applications of DNNs, their variations, learning approaches, and the platforms
used for offloading. We summarized existing research works that concentrated
on different learning approaches within offloading scenarios. These studies
were systematically compared based on various parameters, highlighting their
strengths and limitations. Additionally, we provided open issues based on each
application and specific challenges linked to the utilization of DNNs in com-
putation offloading. In conclusion, we found that applications based on DNNs
have proven to be effective solutions for addressing various challenges in the
context of MEC offloading. In the future, we aim to explore the novel architec-
tures of DNNs specifically optimized for resource-constrained edge devices. We
also aim to propose a robust framework for ensuring the security and privacy
of offloaded tasks.
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