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Abstract. A characterization of the finite-dimensional Leibniz algebras with an abelian subalgebra of codimension
two over a field F of characteristic p ̸= 2 is given. In short, a finite-dimensional Leibniz algebra of dimension n with

an abelian subalgebra of codimension two is solvable and contains an abelian ideal of codimension at most two or
it is a direct sum of a Lie one-dimensional solvable extension of the Heisenberg algebra h(F) and Fn−4 or a direct

sum of a 3-dimensional simple Lie algebra and Fn−3 or a Leibniz one-dimensional solvable extension of the algebra

h(F)⊕ Fn−4.
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1. Introduction

Abelian subalgebras of Lie and Leibniz algebras play a key role in their structure. In fact, they have been a
matter of study for a long time. Characterizing arbitrary Lie and Leibniz algebras of finite dimension with an abelian
subalgebra of a fixed codimension k is a cumbersome problem which can barely be addressed when the codimension
is small enough. For example, if k is one it is known that the Lie or Leibniz algebra must be solvable and must
contain an abelian ideal of codimension one, see [4,6,8]. Likewise, a characterization of the Lie algebras (and Poisson
algebras) with an abelian subalgebra of codimension two was given in [9]. Obtaining a similar characterization for
the case of Leibniz algebras with an abelian subalgebra of codimension two is an interesting question which we tackle
in this manuscript.

In this context, it is natural to consider the invariants α and β, corresponding respectively to the dimensions of
abelian subalgebras and ideals of maximal dimension of a given algebra. The systematic study of these invariants
for Lie and Leibniz algebras has been pursued since the work by Burde and Ceballos [4]. Let us briefly recall the
principal results in this sense first. Let L denote a Lie algebra (or a Leibniz algebra) of dimension n. Maximal
subalgebras that are abelian of Leibniz algebras over an algebraically closed field have codimension one, see [8]. For
solvable Lie algebras over an algebraically closed field of characteristic zero, it is known that α(L) = β(L), see [4].
The computation of α and β for complex Lie and Leibniz algebras of small dimension was given in [5, 8]. Over an
arbitrary field of characteristic p ̸= 2, if L is a Leibniz algebra and α(L) = n − 1, then β(L) = n − 1. Moreover, if
L is a supersolvable Lie algebra or a nilpotent Leibniz algebra such that α(L) = n − 2, then β(L) = n − 2, see [8].
Furthermore, if L is a nilpotent or a supersolvable Lie algebra such that α(L) = n−3, then α(L) = n−3 (for p ̸= 2),
see [7, 11]. If L is a nilpotent Lie algebra and α(L) = n− 4, then β(L) = n− 4 (for p ̸= 2, 3, 5), see [11]. Also, some
of the mentioned results obtained for Leibniz algebras were later extended to Leibniz superalgebras in [3].

The main purpose of this paper is to prove the following characterization of the Leibniz algebras with an abelian
subalgebra of codimension two.

Theorem 1. Let L be a Leibniz algebra of dimension n over an arbitrary field F of characteristic p ̸= 2 with an
abelian subalgebra of codimension two. Then L is solvable and contains an abelian ideal of codimension k ≤ 2 or we
have one of the following three situations

(1) L is a 3-step solvable Lie algebra and L ∼= c(m)⊕Fn−4, where m ∈ sl2(F) is irreducible. Moreover, L2 = h(F)
is the Heisenberg algebra and C(L) ∼= Fn−4 + L(3) is the unique abelian ideal of maximal dimension n− 3.

(2) L is an almost simple Lie algebra and L ∼= d(m) ⊕ Fn−3, where m ∈ sl2(F). Moreover, C(L) ∼= Fn−3 is the
unique abelian ideal of maximal dimension n− 3.
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(3) L is a 3-step solvable algebra and L ∼= e(φ, ϑ, v, n) for certain v ∈ IL and φ ∈ Derl(B) such that the induced
map φ∗ = ϑ∗ : B/C(B) → B/C(B) is irreducible, where B := Nil(L) ∼= h(F)⊕ Fn−4. Moreover, C(B) is the
unique abelian ideal of maximal dimension n− 3.

The definitions of the algebras c, d, e can be found in section 2 and section 3.

In summary, a Leibniz algebra of dimension n over a field of characteristic p ̸= 2 with an abelian subalgebra of
codimension two has an abelian ideal of codimension at most two or it is a direct sum of a Lie one-dimensional
solvable extension of the algebra h(F) and n − 4 copies of the field or a direct sum of a 3-dimensional simple Lie
algebra and n − 3 copies of the field or a Leibniz one-dimensional solvable extension of the algebra h(F) ⊕ Fn−4.
In particular, if the field is quadratically closed, the situations (1) and (2) are not possible. Note that our result
generalizes [8, Theorem 3.5], which considers solvable Leibniz algebras, to the general case. The proof of this theorem
is divided over the next two sections in the following way. Let L be a Leibniz algebra with an abelian subalgebra A
of codimension two, then we have two possible situations, either A is a maximal subalgebra, considered in section 2,
or it is not, considered in section 3. A detailed examination of this two cases is given in this paper. Some of our
arguments use linear algebra results that involve commuting linear operators, which can be consulted in [10].

1.1. Notation. Let us fix some notation. Recall that a (left) Leibniz algebra is a vector space L endowed with a
bilinear multiplication [·, ·] : L → L satisfying the Leibniz rule [x, [y, z]] = [[x, y], z] + [y, [x, z]]. For a introduction to
Leibniz algebras, we refer to [1]. We use the term abelian subalgebra to refer to a zero subalgebra. For x ∈ L, we
denote by Lx : L → L (resp. Rx : L → L) the linear operator of left multiplication given by Lx(y) = [x, y] (resp.
Rx(y) = [y, x]). We denote by IL the vector space generated by the elements [x, x] for x ∈ L, then [IL, L] = 0. The
space IL is an ideal and it is zero if and only if L is a Lie algebra. We denote by C(L) the center of a Leibniz algebra
L and by CL(A) the centralizer of a subalgebra A of L. The normalizer of a subalgebra A will be denoted by N(A).
The radical of L is denoted by R(L), the nilradical of L is denoted by Nil(L) and the space {x ∈ L : [x, L] = 0} is
denoted by Annℓ(L). The derived series is denoted L(k+1) := [L(k), L(k)] with L(0) := L. Finally, we denote by α(L)
and β(L) the dimension of an abelian subalgebra and ideal of maximal dimension in L, respectively.

2. Abelian subalgebras which are maximal

Recall that by [8, Proposition 2.2], if the base field is algebraically closed, then any abelian subalgebra which is a
maximal subalgebra has codimension one. Thus, we may assume the field is not algebraically closed in this section.
Moreover, recall that in the case when a Leibniz algebra contains an abelian subalgebra of codimension one, then
it contains an abelian ideal of codimension one too, as it was proved in [8, Theorem 2.1], assuming the field has
characteristic p ̸= 2.

2.1. General results. Let L be a Leibniz algebra of dimension n with a subalgebra A. We denote by M(A) the
vector space generated by the maps La with a ∈ A. Note that M(A) is a subalgebra of the Lie algebra gln(F). The
following useful lemma is a consequence of the Fitting decomposition.

Lemma 1. Let L be a non-abelian Leibniz algebra of dimension n. If A is an abelian subalgebra of codimension
k > 1 which is maximal, then there is a subspace L1 ⊊ L such that L = A⊕ L1 and [A,L1] = L1.

Proof. By the Leibniz rule, for x ∈ L and a, b ∈ A, we have [a, [b, x]] = [[a, b], x] + [b, [a, x]] = [b, [a, x]], so the maps
La and Lb commute, that is, LaLb = LbLa. Consider the Fitting decomposition of L, with respect to the maps
M(A). Write L = L0 ⊕ L1. Clearly, A ⊆ L0. Since M(A) acts nilpotently in L0, there is some x ∈ L0 such that
x ̸∈ A and [A, x] ⊆ A. Suppose IL ⊂ A, then [a, x] + [x, a] ∈ A and [a, x], [x, x] ∈ A, for a ∈ A. Hence, the space
A+ Fx is a subalgebra containing A, which is a contradiction. So assume IL ̸⊂ A, then L = A+ IL and [L,A] = 0.
Now if [x, x] ∈ A, then A + Fx is a subalgebra containing A, and if [x, x] ̸∈ A, then A + F[x, x] is a subalgebra
containing A. In both cases, we obtain a contradiction. Therefore, L0 = A and it follows that L1 is M(A)-invariant
and [A,L1] = L1. □

Proposition 2. Let L be a Leibniz algebra of dimension n over an arbitrary field. Let A be an abelian subalgebra of
maximal dimension n−m which is a maximal subalgebra. Then dim(Annℓ(L)) ≥ n−m− (⌊m2/4⌋+ 1).

Proof. Since A is an abelian subalgebra of maximal dimension, we have C(L) ⊂ A. By Lemma 1, there is a subspace
L1 ⊊ L of dimension m such that L = A ⊕ L1 and [A,L1] = L1. Put B = L1 and define θ : A → gl(B) such
that θ(a) = La|B . Then θ is a homomorphism from A to gl(B) with kernel AnnℓA(B). Hence A/AnnℓA(B) ∼= D,
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where D is an abelian subalgebra of gl(B). Hence dim(A/AnnℓA(B)) ≤ ⌊m2

4 ⌋ + 1. It follows that dim(AnnℓA(B)) ≥
n−m− (⌊m2

4 ⌋+ 1). But AnnℓA(B) = AnnℓA(L) ⊆ Annℓ(L), whence the result. □

2.2. Abelian subalgebras of codimension two which are maximal subalgebras. Consider the algebra a(λ, µ),
where the parameters λ = (λij), µ = (µij) ∈ gl2(F), with basis a, b, x, y given by the non-zero products

[a, x] = λ11x+ λ12y, [a, y] = λ21x+ λ22y, [b, x] = µ11x+ µ12y, [b, y] = µ21x+ µ22y.

Note that the brackets are not assumed skew-symmetric. Clearly, this algebra is 2-step solvable.

Lemma 3. The algebra a(λ, µ) is a Leibniz algebra if and only if λµ = µλ.

Proof. Since [a, [b, z]] = [b, [a, z]] for z ∈ a(λ, µ), we have λµ = µλ. The converse follows by an straightforward
verification of the Leibniz identity. □

Lemma 4. If span(λ, µ) = span(λ′, µ′), then a(λ, µ) ∼= a(λ′, µ′).

Proof. Write λ′ = α11λ+ α12µ and µ′ = α21λ+ α22µ. If dim(span(λ, µ)) = 0, then both algebras are abelian. Now,
if dim(span(λ, µ)) = 1, then both algebras have a one-dimensional center and we can assume µ = µ′ = 0. Choose
the map sending a to α−1

11 a and fixing x, y and b. Finally, if dim(span(λ, µ)) = 2, then d := det(αij) ̸= 0 and the
map fixing x, y and sending a to α22d

−1a− α12d
−1b and b to −α21d

−1a+ α11d
−1b is the desired isomorphism. □

Given m ∈ gln(F), we denote by χm(t) the characteristic polynomial of m.

Theorem 5. Let L be a Leibniz non-Lie algebra of dimension n over an arbitrary field F of characteristic p ̸= 2.
Suppose α(L) = n− 2. If A is an abelian subalgebra of codimension two which is a maximal subalgebra of L. Then L
is a 2-step solvable algebra. Precisely, we have L ∼= a(id,m)⊕ Fn−4 where m ∈ gl2(F) with χm(t) irreducible. Also,
β(L) = n− 2, C(L) = Fn−4 and C(L) + L2 is an abelian ideal of maximal dimension.

Proof. Let A be an abelian subalgebra of codimension two which is a maximal subalgebra of L. By Lemma 1, we
have L = A⊕ L1, where L1 ⊂ L is a two-dimensional vector space such that [A,L1] = L1. Let x, y be a basis of L1.
We distinguish two cases depending on the ideal IL.

Case IL ̸⊆ A. Then we have L = A+IL, by the maximality of A. It follows that [L,L] = [A+IL, A+IL] = [A, IL] ⊂ IL.
Since IL is abelian, L is 2-step solvable Leibniz non-Lie algebra. Also, we have [A,L1] = L1, then [L1, L1] = 0. Hence,
C(L)+L1 is an abelian ideal of L, because [L,A] = [A+IL, A] = 0 and [L1, A] = 0. Also, we have that the dimension
of C(L) is n− 4, because the dimension of the abelian subalgebra C(L) + L1 is at most n− 2 and the dimension of
M(A) is at most two, because α(gl2(F)) = 2.

Let a, b be a basis of the linear complement of C(L) in A. Then, the algebra L is determined by the products
[a, x], [a, y], [b, x], [b, y] ∈ L1. Therefore, we have L = a(λ, µ) + Fn−4, for certain linear independent λ, µ ∈ gl2(F). By
Lemma 3, the matrices λ, µ commute. By the maximality of A, the set {λ, µ} should be irreducible in L1, but also
since this set of generators is maximal, then the algebra spanned by it contains the identity matrix. Hence, there is
m ∈ gl2(F) such that λ, µ ∈ span(id,m). Moreover, the polynomial χm(t) must be irreducible. By Lemma 4, the
assertion in the theorem follows.

Case IL ⊆ A. Assume IL ̸= 0, otherwise L is a Lie algebra, and IL ̸= A, otherwise A is not a maximal subalgebra.
Suppose [x, y] ̸∈ A. Then A′ := A+F[x, y] is a subalgebra containing A. Indeed, note that [y, x] ∈ A′ because IL ⊆ A.
It follows [L1, L1] ⊂ A′. Observe that for any a ∈ A, we have [a, [x, y]] = [[a, x], y] + [x, [a, y]] ∈ [L1, L1]. Also, we
have [[x, y], a] = [x, [y, a]] − [y, [x, a]]. But [x, [y, a] + [a, y]], [y, [x, a] + [a, x]] ∈ IL ⊂ A and [x, [a, y]], [y, [a, x]] ∈ A′.
Hence, [[x, y], a] ∈ A′. Moreover, we have [[x, y], [x, y]] ∈ IL ⊂ A. Consequently, the space A′ is a subalgebra, which
is a contradiction.

Next, suppose [x, y] ∈ A. Then we have [y, x] ∈ A and [L1, L1] ⊂ A. Observe that if v ∈ L1 with v ̸= 0 is invariant
in M(A), then A+ Fv is a subalgebra, because [v, v] ∈ A and [v, a] = [v, a]− [a, v] + [a, v] ∈ IL + Fv ⊂ A+ Fv. Also,
dim(M(A)) ≤ 2, because the maps M(A) commute. Now, distinguish the following cases.

- Case dim(M(A)) = 2. Since M(A) is an abelian subalgebra of gl2(F) of maximal dimension, then there is
some b ∈ A such that Lb = id. It follows, [x, a] = [[b, x], a] = [b, [x, a]] = −[b, [a, x]] = −[a, x] for any a ∈ A.
Similarly, [y, a] = −[a, y]. Moreover, we have the relations

[x, x] = [[b, x], x] = −[x, [b, x]] = −[x, x], [x, y] = [[b, x], y] = −[x, [b, y]] = −[x, y],

[y, x] = [[b, y], x] = −[y, [b, x]] = −[y, x], [y, y] = [[b, y], y] = −[y, [b, y]] = −[y, y].

If p ̸= 2, then L is a Lie algebra, a contradiction.
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- Case dim(M(A)) = 1. Let h ∈ A such that Lh ̸= 0 is irreducible in L1. Clearly, we have h ̸∈ IL and
Lh(L1) = L1. Now, for z ∈ L1 and a ∈ A we have [[h, z], a] = [h, [z, a]] = −[h, [a, z]] = −[a, [h, z]]. Since
x, y ∈ Lh(L1), we obtain [z, a] = −[a, z] for all z ∈ L1 and a ∈ A. Also, for z, z′ ∈ L1 we have the equation
[[h, z], z′] = −[z, [h, z′]] = [z, [z′, h]] = [z′, [z, h]] = −[z′, [h, z]]. Again, we obtain [z, z′] = −[z′, z] for all
z, z′ ∈ L1. Therefore, we conclude that L is a Lie algebra, since p ̸= 2.

- The case dim(M(A)) = 0 leads to a contradiction as explained above, because Fx is M(A)-invariant.

Hence, we have shown that the only possibility is the algebra in the statement, proving the result. □

Remark 6. Consider the algebra a(id,m) over R, where m = (mij), m11 = m22 = 0 and m12 = −m21 = 1. Then
the non-zero products are given by [a, x] = x, [a, y] = y, [b, x] = y, [b, y] = −x. This is an example of a Leibniz non-Lie
algebra with an abelian subalgebra of codimension two A = span(a, b) which is a maximal subalgebra.

Let us introduce the following algebras for λ = (λij), µ = (µij) ∈ gl2(F). The algebra b(λ, µ) with basis a, b, x, y
is given by the next non-zero products

[a, x] = −[x, a] = λ11x+ λ12y, [a, y] = −[y, a] = λ21x+ λ22y,

[b, x] = −[x, b] = µ11x+ µ12y, [b, y] = −[y, b] = µ21x+ µ22y.

Also, the algebra c(λ) with basis a, b, x, y is given by

[a, x] = −[x, a] = λ11x+ λ12y, [a, y] = −[y, a] = λ21x+ λ22y, [x, y] = −[y, x] = b.

Remark 7. The algebra b(λ, µ) is 2-step solvable. Moreover, it is a Lie algebra if and only if λµ = µλ. Likewise,
the algebra c(λ) is 3-step solvable. Moreover, it is a Lie algebra if and only if λ ∈ sl2(F).

The next proposition complements the result for Lie algebras obtained in [9, Theorem 4.3] with further observations
for the solvable case. Recall that the algebra q3(λ), introduced in [9], where λ = (λij) ∈ M2(F), is the vector space
with basis h, x, y and skew-symmetric multiplication given by

[h, x] = λ11x+ λ12y, [h, y] = λ21x+ λ22y, [x, y] = h.

Proposition 8. Let L be a Lie algebra of dimension n over a field F of characteristic p ̸= 2 with α(L) = n− 2. If
A is an abelian subalgebra of codimension two which is a maximal subalgebra. Then one of the following occurs:

(1) L is a 2-step solvable algebra and L ∼= b(id,m)⊕ Fn−4, where m ∈ gl2(F) with χm(t) irreducible. Moreover,
β(L) = n− 2, C(L) ∼= Fn−4 and C(L) + L2 is an abelian ideal of maximal dimension.

(2) L is a 3-step solvable algebra and L ∼= c(m) ⊕ Fn−4, where m ∈ sl2(F) with χm(t) irreducible. Moreover,
β(L) = n−3, L2 is the Heisenberg algebra and C(L) ∼= Fn−4+L(3) is an abelian ideal of maximal dimension.

(3) L is almost simple and L ∼= d(m) ⊕ Fn−3, where m ∈ sl2(F) with χm(t) irreducible and d(m) := q3(m).
Moreover, β(L) = n− 3 and C(L) ∼= Fn−3 is an abelian ideal of maximal dimension.

Proof. Let L = A + L1 be the decomposition of L with respect to the maps in M(A). Let x, y be a basis of L1.
There are two solvable cases in [9, Theorem 4.3]. Let us denote adz := Lz for z ∈ L in this proof.

The case when L is 2-step solvable. This case arise when [x, y] = 0. Then dim(adA) = 2 and C(L)+L1 is an abelian
ideal of codimension two. Suppose adA is spanned by ada and adb, then a, b are linearly independent. It follows that
L = b(λ, µ) ⊕ Fn−4 for certain commuting linearly independent λ, µ ∈ gl2(F). By a similar argument used in the
previous theorem, we have that L ∼= b(id,m)⊕Fn−4 where m ∈ gl2(F) and the polynomial χm(t) is irreducible. The
statement (1) in the theorem is obtained.

The case when L is 3-step solvable. This case arise when b := [x, y] ̸= 0, b ∈ A and adb = 0. Then adA can be
realized as a abelian subalgebra of sl2(F), because 0 = [a, [x, y]] = [[a, x], y]+ [x, [a, y]], and dim(adA) = 1. Therefore,
we have that L = c(m)⊕ Fn−4 for some m ∈ sl2(F) where the polynomial χm(t) is irreducible. The assertion (2) in
the theorem follows. □

In conclusion, the characterization of the Leibniz algebras L over a field of characteristic p ̸= 2 with an abelian
subalgebra of codimension two which is a maximal subalgebra and such that α(L) = n − 2 is given by Theorem 5
and Proposition 8.
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3. Abelian subalgebras of codimension two which are not maximal

In this section we study the case in which the Leibniz algebra contains an abelian subalgebra A of codimension
two and a subalgebra B of codimension one such that A ⊂ B. The case in which A contains the distinguished ideal
IL is considered first in the following lemmas.

Lemma 9. Let L be a Leibniz algebra of dimension n over an arbitrary field F of characteristic p ̸= 2 such that
α(L) = n − 2. Let A be an abelian subalgebra of codimension two such that IL ⊆ A. Suppose B = A + Fe1 is a
subalgebra of L and suppose A is an ideal of B. Moreover, suppose M(A) does not act nilpotently in L. Then A is
not an ideal of L, but β(L) = n− 2.

Proof. Note that since A is an abelian ideal in B, we have that M(A) acts nilpotently in B which has codimension
one. Therefore, there is some x ∈ L with x ̸∈ B such that [A, x] ⊂ Fx. Write [ei, x] = λix for a basis e2, . . . , en−1

of A and λi ∈ F. Assume λ2 ̸= 0. Then A is not an ideal of L. Denote Z = span(vi : 3 ≤ i ≤ n − 1) where
vi = ei − λ−1

2 λje2. Note that [vi, x] = 0. Also, we have [e1, x] = λ−2
2 [e1, [e2, [e2, x]]] = µx for some µ ∈ F, using

the Leibniz rule. If IL ̸⊂ Z, then Z + IL = A. But we have [Z, x] = 0 and [x, Z] ⊂ IL ⊂ A, implying that A is an
ideal, which is a contradiction. So assume IL ⊂ Z. Then, A′ = Z + Fx is an abelian subalgebra of codimension two.
Certainly, we have 0 = [e2, [x, x]] = [[e2, x], x] + [x, [e2, x]] = 2λ2[x, x], so [x, x] = 0, and

[x, vi] = λ−1
2 [[e2, x], vi] = λ−1

2 [e2, [x, vi]] = −λ−1
2 [e2, [vi, x]] = −[vi, x] = 0.

Moreover A′ is an ideal, since [e1, x] ∈ Fx and [x, e1] ∈ Fx + IL ⊂ A′. Also, since [[e1, ej ], x] = 0 and Z has
codimension one in A, we have [e1, ej ] ∈ Z, implying [e1, vj ], [vj , e1] ∈ Z. The result follows. □

Remark 10. An example of a Leibniz non-Lie algebra of the type of the Lemma 9 is the following. Consider the
vector space L over F with basis e1, e2, e3, x endowed with the multiplication

[e1, x] = −[x, e1] = x, [e2, x] = −[x, e2] = x, [e1, e2] = e3.

We have A = span(e2, e3), Le2 is not nilpotent, B = A+ Fe1, IL = Fe3 and A′ = span(x, e3).

Lemma 11. Let L be a Leibniz algebra of dimension n over an arbitrary field F of characteristic p ̸= 2 with
α(L) = n − 2. Let A be an abelian subalgebra of codimension two such that IL ⊆ A. Suppose B = A + Fe1 is a
subalgebra of L and suppose A is an ideal of B. Moreover, suppose M(A) acts nilpotently in L and suppose B is not
an ideal of L. Then A is an abelian ideal or L is a Lie algebra.

Proof. Suppose A is not an ideal of L. Let e2, . . . , en−1 be a basis of A. Complete the basis of L and write
L = B + Fen. Suppose there is some a ∈ A such that La(en) ̸∈ B, then La is not nilpotent. Therefore LA(L) ⊂ B,
that is, we have [A,L] ⊂ B. Moreover, since IL ⊂ A, then we have [L,A] ⊂ B. Since A is not an ideal of L, we can

assume [e2, en] = e1, using again that IL ⊂ A. Denote [ei, en] =
∑n−1

k=1 αikek for αik ∈ F with 3 ≤ i ≤ n− 1. Then if
vi = ei − αi1e2 we have [vi, en], [en, vi] ∈ A. Thus, we have

[e1, vi] = [[e2, en], vi] = [e2, [en, vi]]− [en, [e2, vi]] = 0, [vi, e1] = [vi, [e2, en]] = [[vi, e2], en] + [e2, [vi, en]] = 0.

Assume without loss of generality that ei = vi for 3 ≤ i ≤ n− 1. Let us show that L is anticommutative.
First, observe that 0 = [en, [e2, e2]] = [[en, e2], e2] + [e2, [en, e2]] implies that [e1, e2] = −[e2, e1]. Now, since B is

not an ideal of L, we have F[en, e1] + F[e1, en] ̸⊂ B and we can assume [e1, en] ̸∈ B. Let us write [e1, en] = λen + b
for some λ ∈ F and b ∈ B with λ ̸= 0. Easily, we obtain [e1, en] = −[en, e1]. Also, if [e1, e2] = 0, then

λe1 + [e2, b] = λ[e2, en] + [e2, b] = [e2, [e1, en]] = [e1, [e2, en]] = [e1, e1] ∈ IL ⊂ A,

which is a contradiction. Assume [e1, e2] ̸= 0, but then [e1, [e1, e2]] = µ[e1, e2] for some µ ∈ F. Denote b =
∑n−1

i=1 biei
and [e1, e2] =

∑n−1
i=2 γiei. It follows γ2 = µ. By the equation

e1 = [e2, en] = λ−1([e2, [e1, en]]− [e2, b]) = λ−1([[e2, e1], en] + [e1, e1]− b1[e2, e1]),

we have λ = −µ. So the equations [ei, [e1, en]] = [[ei, e1], en]+[e1, [ei, en]] and [e1, [en, ei]] = [[e1, en], ei]+[en, [e1, ei]],
imply that [en, ei] = [ei, en] = 0 for 3 ≤ i ≤ n− 1. Furthermore, since [[ei, ei], e1] = 0 and [e2, e1] ̸= 0, we have that
[e1, e1], [en, en] ∈ span(ei : 3 ≤ i ≤ n− 1). But then, [e2, [e1, en]] = [[e2, e1], en] + [e1, [e2, en]] implies that [e1, e1] = 0,
because γ2 ̸= 0. Finally, the equation [e2, [en, e1]] = [[e2, en], e1] + [en, [e2, e1]] implies that [en, e2] = −e1 and the
equation 0 = [e1, [en, en]] = [[e1, en], en] + [en, [e1, en]] = 2[en, en] implies that [en, en] = 0. Hence, we conclude that
L is a Lie algebra. □
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Remark 12. The Lie algebras of Lemma 11 are studied in the case (2) of the proof of [9, Theorem 4.2]. This
algebras are precisely of the form L = L1(γ) ⊕ Fn−3, where L1(γ) is a simple Lie algebra studied in [2]. For this
algebras, we have β(L) = n− 3. Note that d(m) ∼= L1(γ), when m ∈ sl2(F) is reducible, for some γ depending on m.
Also, if the field has characteristic p ̸= 2, then L1(γ) ∼= sl2(F).

Given a nilpotent algebra N of dimension n, a s-dimensional solvable extension of N is a solvable algebra L of
dimension n+s having N as its nilradical. For instance, the algebras in the families a, b are two-dimensional solvable
extensions of the two-dimensional abelian algebra. Likewise, the algebras in c are one-dimensional solvable extensions
of the Heisenberg algebra

Remark 13. Let us recall the definition of the classical oscillator Lie algebra. The oscillator algebra os(F) is the
vector space over F with basis e−1, e0, e1, ê1 together with the bracket given by

[e−1, e1] = −[e1, e−1] = ê1, [e−1, ê1] = −[ê1, e−1] = −e1, [e1, ê1] = −[ê1, e1] = e0.

The algebra os(F) is a one-dimensional solvable extension of the Heisenberg algebra h(F), which is spanned by
e1, ê1, e0. The algebras such that α(L) ̸= β(L) in the next lemma are a special type of solvable extensions of the algebra
h(F)⊕ Fk. For example, if F = R, one of this extensions is os(R), for which we have 2 = α(os(R)) ̸= β(os(R)) = 1.

We denote by e(φ, ϑ, v, n) the one-dimensional solvable extension of the algebra (h(F) ⊕ Fn−4, [·, ·]) := H with
vector space Fx ⊕H and multiplication [λx + a, µx + b]e = λµv + λφ(b) + µϑ(a) + [a, b] for a, b ∈ H and λ, µ ∈ F,
where v ∈ C(H) and φ is a left derivation of H, write φ ∈ Derl(H), and ϑ : H → H is a linear map. The following
result is obtained.

Lemma 14. Let L be a Leibniz algebra of dimension n over an arbitrary field F of characteristic p ̸= 2 with
α(L) = n − 2. Let A be an abelian subalgebra of codimension two such that IL ⊆ A. Suppose B = A + Fe1 is
a ideal of L and suppose A is an ideal of B. Then β(L) = n − 2 or L ∼= e(φ, ϑ, v, n) for certain v ∈ IL and
φ ∈ Derl(B) such that the induced map φ∗ = ϑ∗ : B/C(B) → B/C(B) is irreducible. In the second case, we have
Nil(L) = B ∼= h⊕ Fn−4, β(L) = n− 3 and C(B) is the unique abelian ideal of maximal dimension.

Proof. Suppose A is not an ideal of L. Assume M(A) acts nilpotently in L, otherwise the result follows by Lemma 9.
Let e2, . . . , en−1 be a basis of A. Suppose [A,L] ⊂ A, then since IL ⊂ A, we have [L,A] ⊂ A and A is an ideal. So
assume [e2, en] ̸∈ A for some en ∈ L with en ̸∈ B. Moreover, since B is an ideal, we can assume [e2, en] = e1. Write

[ei, en] =
∑n−1

k=1 αikek with αik ∈ F. Then for 2 ≤ i ≤ n− 1, we have

[ei, e1] = [ei, [e2, en]] = [e2, [ei, en]] = αi1[e2, e1], [e1, ei] = [[e2, en], ei] = [e2, [en, ei]] = −αi1[e2, e1],

where the second equation uses that IL ⊂ A. Then, we have [e1, ei] = −[ei, e1] for 2 ≤ i ≤ n− 1.
Moreover, denote vi = ei − αi1e2 and Z = span(vi : 3 ≤ i ≤ n − 1). Then [Z,B] = 0 and [B,Z] = 0. Suppose

IL ̸⊂ Z, then A = Z + IL and we have [vi, en] = [ei − αi1e2, en] ∈ A and [en, vi] ∈ A, because IL ⊂ A. Hence, A
is an abelian ideal. Similarly, if [e1, e2] ̸∈ Z, then A = Z + F[e1, e2] is an ideal. Also, if [e1, e2] = 0, then B is an
abelian subalgebra, since [e1, e1] = [e1, [e2, en]] = [e2, [e1, en]] = 0. The previous assumptions lead to a contradiction,
so assume IL ⊂ Z, [e1, e2] ∈ Z and [e1, e2] ̸= 0.

Now, we show that Z is an abelian ideal of L. Note that [e1, [vi, en]] = [[e1, vi], en] + [vi, [e1, en]] = 0, implying∑n−1
k=2 αik[e1, ek] = 0 and

∑n−1
k=2 αikαk1 = 0, so αi2 = −

∑n−1
k=3 αikαk1. Then [vj , en] =

∑n−1
k=2 αikek =

∑n−1
k=3 αikvj ,

concluding [vj , en] ∈ Z and [en, vj ] ∈ Z, since IL ⊂ Z. Next, by the equations

[e1, e1] = [e1, [en, e2]] = [[e1, en], e2] + [en, [e1, e2]],

[en, [e2, e1]] = [[en, e2], e1] + [e2, [en, e1]] = [e1, e1] + [e2, [en, e1]],

we have 2[e1, e1] = [[e1, en], e2]− [e2, [en, e1]] = 0, so [e1, e1] = 0.
Hence, B is a Lie algebra. In fact, B = h(F) ⊕ Fn−4, where h(F) is the Heisenberg algebra. Now, consider

A′ = Z + Fe1. The space A′ is an abelian subalgebra of codimension two. Moreover, we have IL ⊂ A′ and A′ is an
ideal of B. By Lemma 9 we can assume A′ acts nilpotently, otherwise we have β(L) = n−2. Therefore, we have that
M(B) acts nilpotently in L. If Len is nilpotent, then L is nilpotent by the Engel’s theorem for Leibniz algebras, see
[1, Theorem 2.1, p.44]. In that case, we have β(L) = n− 2 by [8, Proposition 3.2]. So suppose Len is not nilpotent.

Furthermore, consider the induced map L∗
en : B/Z → B/Z. If v ∈ B/Z is an eigenvector of L∗

en , then there is
some v′ ∈ B such that Len(v

′) ∈ Z+Fv′ and we have that Z+Fv′ is an abelian ideal of codimension two. Therefore,
assume L∗

en is irreducible in B/Z. Now, suppose A′ is an abelian ideal of maximal dimension of L. Then we can
easily see that A′ ⊂ B and then Z ⊂ A′. By this fact and L∗

en being irreducible in B/Z, we conclude that Z is an
abelian ideal of maximal dimension, i.e. we have β(L) = n− 3. The statement in the lemma follows. □
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Remark 15. An example of a Leibniz non-Lie algebra of the type α(L) ̸= β(L) of the Lemma 14 is the following.
Consider the vector space L over R with basis e1, e2, e3, e4 endowed with the multiplication

[e1, e2] = −[e2, e1] = e3, [e1, e4] = −[e4, e1] = −e2, [e2, e4] = −[e4, e2] = e1, [e4, e4] = e3.

We have A = span(e2, e3), Le4 is not nilpotent, B = A + Fe1 is the nilradical of L, IL = Fe3 and L ∼= e(φ, v, n),
where v = e3 and φ : B → B is given by φ(e1) = e2, φ(e2) = −e1 and φ(e3) = 0. Note that the map φ∗ is irreducible.

The previous lemmas together with the previous section already characterize the Lie algebras with an abelian
subalgebra of codimension two. In the next theorem, we complete this description for Leibniz non-Lie algebras.

Theorem 16. Let L be a Leibniz non-Lie algebra of dimension n over an arbitrary field F of characteristic p ̸= 2
with α(L) = n − 2. Let A be an abelian subalgebra of codimension two. Suppose there is a subalgebra B of L of
codimension one containing A. Then β(L) = n−2 or L is 3-step solvable and L ∼= e(φ, ϑ, v, n) for certain v ∈ IL and
φ ∈ Derl(B) such that the induced map φ∗ = ϑ∗ : B/C(B) → B/C(B) is irreducible, where B = Nil(L) ∼= h⊕ Fn−4

(see Lemma 14).

Proof. By [8, Theorem 2.1], we can assume A is an abelian ideal of dimension n− 2 of B as p ̸= 2. Let e2, . . . , en−1

be a basis of A. Write B = A+Fe1 and L = B+Fen. It follows that B ⊆ N(A). If N(A) = L, then A is an abelian
ideal of L and we have β(L) = n − 2. So assume N(A) = B. Let us distinguish three situations depending on IL.
The case IL ⊆ A is already studied in Lemma 9, Lemma 11 and Lemma 14, obtaining the respective claim in the
statement. Assume now that IL ̸⊂ A. If L = A+ IL, then L is clearly solvable.

So suppose that L ̸= A + IL. If A acts nilpotently on L, there exists k ≥ 0 such that Lk
A(L) ̸⊆ A + IL, but

Lk+1
A (L) ⊆ A + IL. Let x ∈ Lk

A(L) \ (A + IL), so [A, x] ⊆ A + IL. Then L = A + IL + Fx, L2 ⊆ A + IL and L is
solvable. Suppose now that A does not act nilpotently on L. Let L = B ⊕ L1 be the Fitting decomposition of L
relative to M(A), and put L1 = Fx. If B = A ⊕ IL, we have L2 ⊆ IL + Fx, L(2) ⊆ IL and L is solvable again. If
B ̸= A+ IL, then L = B + IL, in which case L2 ⊆ A+ IL and L is solvable once more.

Finally, suppose that β(L) ̸= n − 2. Then L must be as in [8, Theorem 3.5 (iii)]. Let N be the nilradical of L.
Then A+ IL ⊆ N and IL ⊆ C(N), whence A+ IL is abelian, a contradiction. The result follows. □

Corollary 17. Let L be a Leibniz algebra of dimension n over a quadratically closed field F of characteristic p ̸= 2
with α(L) = n− 2. Then β(L) = n− 2 or L is isomorphic to the Lie algebra sl2(F)⊕ Fn−3.

Proposition 18. Let L be a Leibniz algebra with an abelian ideal of codimension two. Then L is solvable.

Proof. Let B be an abelian ideal of codimension two. If IL ⊂ B, write L = B+Fx+Fy. Then L2 ⊆ B+F[x, y] and
L(2) ⊆ B and L(3) = 0. If L,B ̸= IL +B. Then L = Fx+ IL +B and we have L2 ⊆ IL +B, L(2) ⊆ B and L(3) = 0.
Finally, if L = IL +B, then L(2) = 0. □

Combining the results from section 2 and section 3, we have proven Theorem 1.
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