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One-dimensional Z4 topological superconductor
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We describe the mean-field model of a one-dimensional topological superconductor with two orbitals per unit
cell. Time-reversal symmetry is absent, but a nonsymmorphic symmetry, involving a translation by a fraction
of the unit cell, mimics the role of time-reversal symmetry. As a result, the topological superconductor has Z4

topological phases, two that support Majorana bound states and two that do not, in agreement with a prediction
based on K-theory classification [K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 93, 195413 (2016)]. As with
the Kitaev chain, the presence of Majorana bound states gives rise to the 4π -periodic Josephson effect. A random
matrix with nonsymmorphic time-reversal symmetry may be block diagonalized, and every individual block has
time-reversal symmetry described by one of the Gaussian orthogonal, unitary, or symplectic ensembles. We show
how this is manifested in the energy level statistics of a random system in the Z4 class as the spatial period of
the nonsymmorphic symmetry is varied from much less than to of the order of the system size.
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The tenfold way classification of topological insulators and
superconductors [1–5] is based on the presence or absence of
three nonspatial symmetries which act upon the degrees of
freedom within a unit cell: Time-reversal symmetry, particle-
hole (or charge-conjugation) symmetry, and chiral symmetry.
Subsequently, this classification was generalized to describe
crystalline symmetries including nonsymmorphic symmetries
which incorporate a translation by a fraction of a unit cell
[6–13]. Recently, there has been interest in systems where
some nonspatial symmetries are broken, but a nonsymmor-
phic (NS) symmetry mimics the effect of the absent nonspatial
symmetry [14–27]. Examples include three-dimensional an-
tiferromagnetic topological insulators with NS time-reversal
symmetry [14,20–23] and the charge-density wave (CDW)
model, which is a one-dimensional two-band tight-binding
model with constant nearest-neighbor hopping strengths and
alternating on-site energies [16,25,26,28–31], and possessing
NS chiral symmetry.

In this paper we describe the mean-field model of a one-
dimensional topological superconductor with two orbitals
per unit cell, yielding a four-component Hamiltonian in the
Bogoliubov de Gennes (BdG) representation. It possesses
particle-hole symmetry, NS time-reversal symmetry, and NS
chiral symmetry. We find that it has a Z4 topological index, in
agreement with the prediction of K-theory classification [10].
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This is unique for one dimension, where topological classes
in the tenfold way are described by either Z or Z2 indices
[2–5], although nontrivial topological phases, including Z4

phases [10], have been discussed in higher spatial dimensions
with surface states referred to as an hourglass or Möbius strip
[9,10,16,18,32–35].

Figure 1(a) shows the model in the BdG representation
where the magnitude � and the phase φ of the supercon-
ducting order parameter are shown as couplings between
particle-hole chains with on-site energies ±μ and nearest-
neighbor hoppings ±t , where μ is the chemical potential. The
two orbitals per unit cell are denoted σ = A or σ = B, which
are sublattice labels for spinless fermions. Related two band
models are the noninteracting CDW model [16,25,26,28–31]
[Fig. 1(b)] and the Kitaev chain [36], shown in the BdG
representation in Fig. 1(c). For the Z4 model [Fig. 1(a)],
the intercell superconducting order parameter is the complex
conjugate of the intracell order parameter, unlike the Kitaev
model [Fig. 1(c)].

The phase diagram of the Z4 model is shown in Fig. 1(d)
with four phases distinguished by topological index θ = 1,
2, 3, and 4. We label the four phases by relating them to
phases of the two band models. For μ2 + 4�2 sin2 φ < 4t2,
the phases (θ = 1 and θ = 3) may be reduced to phases of
the Kitaev chain with a real order parameter [37] by setting
φ = 0 or φ = π , respectively, corresponding to winding num-
ber W = 1 or W = −1. For comparison, the phase diagram
of the Kitaev chain with nearest-neighbor coupling [38] is
shown in Fig. 1(e). For μ2 + 4�2 sin2 φ > 4t2, the phases
(θ = 4 and θ = 2) may be reduced to phases of the CDW
model by setting t = 0 with μ > 0 or μ < 0, respectively,
corresponding to Z2 topological index ν = 1 or ν = 0 [16].
This correspondence occurs because, for t = 0, the phase φ

may be gauged away [37] and the superconducting chain in
the BdG represention may be interpreted as a noninteracting
model (the CDW model).
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FIG. 1. (a) The Z4 model shown in the BdG representation with
two orbitals, A and B, per cell and particle-hole chains with on-site
energies ±μ, nearest-neighbor hoppings ±t , and superconducting
couplings of magnitude � and phase φ. (b) The noninteracting CDW
model where � acts as nearest-neighbor hopping. (c) The Kitaev
chain in the BdG representation. In panels (a) and (c), the particle
(hole) branch is shown in black (blue), and the superconducting
pairing is shown in red. Phase diagram of (d) the Z4 topological
superconductor with phases θ = 1, 2, 3, and 4 and (e) the Kitaev
chain with a real order parameter. In panel (d), each phase is labeled
using a phase of a two-band model. The CDW model has two phases
denoted ν = 0 and ν = 1, and the Kitaev chain with nearest-neighbor
hopping has three possible winding numbers W = 0, 1, and −1. For
panels (d) and (e), in the designation of the Kitaev chain phases, we
assume t > 0.

The mean-field Hamiltonian of the Z4 topological super-
conductor is given by

H = −μ
∑
n,σ

c†
n,σ cn,σ + t

∑
n

(c†
n,Acn,B + c†

n+1,Acn,B + H.c.)

+ �
∑

n

(eiφc†
n,Ac†

n,B + e−iφc†
n,Bc†

n+1,A + H.c.), (1)

where c†
n,σ and cn,σ are creation and annihilation oper-

ators for orbital σ = {A, B} in unit cell n. The Hamil-
tonian (1) may be written in the BdG representation
[39–44] as H = 1

2

∑
k �

†
kH(k)�k + 1

2

∑
k tr(ĥ(k)), where

�k = (ckA ckB c†
−kA c†

−kB)
T

for wave vector k and the
4 × 4 Bloch Hamiltonian H(k) [37,45] is

H(k) =
(

ĥ(k) �̂(k)

�̂†(k) −ĥ∗(−k)

)
, (2)

ĥ(k) =
( −μ 2t cos(ka/2)

2t cos(ka/2) −μ

)
, (3)

�̂(k) =
(

0 2i� sin(ka/2 + φ)
2i� sin(ka/2 − φ) 0

)
. (4)

The Bloch Hamiltonian incorporates particle-hole
symmetry as

C†H∗(k)C = −H(−k), (5)

where C = τxσ0, and we use τ0 and τi for the identity and
Pauli matrices in the particle-hole space and σ0 and σi for the
identity and Pauli matrices in the sublattice space, where i =
x, y, and z. The Hamiltonian breaks time-reversal symmetry
[46], but the NS time-reversal symmetry acts as

T †H∗(k)T = H(−k), (6)

where T = τ0σx. The combination of particle-hole symmetry
and NS time-reversal symmetry yields a NS chiral symmetry,
S†H(k)S = −H(k), where S = τxσx.

With the symmetry constraints, the gap function may be
written generically in sublattice space as

�̂(k) =
(

idy(k) − dx(k) idz(k) + i�s(k)

idz(k) − i�s(k) idy(k) + dx(k)

)
, (7)

where the �s, dx, dy, and dz components are real, �s(k) =
�s(−k) has even parity, and d(k) = [dx(k), dy(k), dz(k)] has
odd parity d(k) = −d(−k). This is consistent with the con-
straint of the Pauli exclusion principle �̂(−k) = −�̂T (k).
Hence, we could include diagonal sublattice terms dx and dy,
but they are not needed to describe the Z4 topology, and we
restrict the discussion to the off-diagonal gap function (4). The
energy spectrum E (k) of the BdG Hamiltonian (2) has four
bands given by

E2(k) = μ2 + f 2 + d2
z + �2

s ± 2
√

μ2 f 2 + �2
s

(
f 2 + d2

z

)
,

f (k) = 2t cos(ka/2),

�s(k) = 2� sin φ cos(ka/2),

dz(k) = 2� cos φ sin(ka/2).

Despite the mixed parity of the gap function (4), the presence
of particle-hole symmetry and NS time-reversal symmetry
ensure particle-hole symmetry of the energy spectrum and
its evenness in k. Furthermore, NS time-reversal symmetry
imposes Kramer’s degeneracy [17,31] with the two positive-
energy bands being degenerate at the Brillouin zone edge,
likewise the two negative-energy bands. The degeneracy
occurs at only one time-reversal invariant k value (either
k = 0 or k = π/a) as opposed to both, which happens for
symmorphic time-reversal symmetry with T 2 = −1 [17,31].
Despite the Kramer’s degeneracy, there is generally a band
gap between the positive-energy and negative-energy bands;
parameter values leading to a vanishing band gap are indicated
in the phase diagram [Fig. 1(d)].

The Z4 topological index θ has been defined [10] as

θ = − 2

π
arg{Pf[σxZ (π/a)]}

+ 1

π

∫ π/a

0
dk

∂

∂k
arg{det[σxZ (k)]}, (8)

where θ is defined modulo 4 and arg(z) = arg(reiϕ ) = ϕ for
−π < ϕ � π [48]. For a 2 × 2 antisymmetric matrix, the
Pfaffian is Pf(iασy) = α. The 2 × 2 matrix Z (k) = X (k) +
iY (k) consists of a 2π periodic Hermitian part X (k) and
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an aperiodic Hermitian part Y (k) with X (π/a) = X (−π/a)
and Y (π/a) = −Y (−π/a) such that the BdG Hamiltonian
H(k) may be rotated by a unitary transformation to H̃(k) =
Ũ †H(k)Ũ , where

H̃(k) =
(

X (k) iY (k)
−iY (k) −X (k)

)
. (9)

For the BdG Hamiltonian (2), we find that

Z (k) =
(−μ + 2i� sin(ka/2 + φ) 2t cos(ka/2)

−2t cos(ka/2) μ − 2i� sin(ka/2 − φ)

)
,

and substituting into Eq. (8), this gives the values of θ shown
in the phase diagram [Fig. 1(d)]. Note the presence of a
discontinuity in the integral of Eq. (8) in the case μ2 +
4�2 sin2 φ < 4t2 and μ cos φ > 0.

The presence of Majorana bound states is indicated by the
Z2 Majorana number M [5,36,42–44,49], and we find M =
sgn(μ2 + 4�2 sin2 φ − 4t2) [37], indicating that the Kitaev-
like phases, θ = 1 and 3, support Majorana bound states
(M = −1), whereas the CDW-like phases, θ = 2 and 4, do
not (M = 1). To explore the phase diagram [Fig. 1(d)], we plot
the energy levels in position space in Fig. 2. Figure 2(a) shows
the energy levels as a function of μ for �2 sin2 φ > t2. There
is a phase transition at μ = 0 between the CDW-like phases
θ = 2 and θ = 4 that has no analog in the Kitaev model. For
�2 sin2 φ < t2 [Fig. 2(b)], there are two phase transitions,
from θ = 2 to θ = 1 at μ < 0 and from θ = 1 to θ = 4 at
μ > 0. The Kitaev-like phase, θ = 1, supports edge states at
zero energy. Figure 2(c) shows the energy levels as a function
of the superconducting phase φ with μ2 + 4�2 sin2 φ < 4t2

for all φ. Thus, there are transitions between the Kitaev-like
phases θ = 1 and θ = 3. In Fig. 2(d), there are also transitions
across the boundary μ2 + 4�2 sin2 φ = 4t2 to the CDW-like
phase θ = 4. Note that the same plots for the Kitaev model
would be independent of φ (being equal to the plots shown at
φ = 0 for all φ) because φ can be gauged away in the Kitaev
model.

The phase diagram can be explored further by considering
the influence of a soliton which is a spatial texture separating
different phases in position space. In particular, we implement
a texture in the on-site energies with the energy of an A site in
unit cell n given by

εn,A = μ tanh

(
n − N/2 − 1/2

ζ

)
, (10)

where N is the number of unit cells and ζ is the soliton
width in dimensionless units, i.e., measured in units of the
lattice constant. We assume that the on-site energies have the
same magnitude within a unit cell [25,26]. Energy levels for
a soliton located at the center of the system are plotted as
a function of φ in Fig. 2(e). For all φ values, there are two
low-energy levels near zero energy; they appear in pairs owing
to the particle-hole symmetry. The state of the lowest energy
level of each pair is plotted in position space in Fig. 2(f). The
top panel, for φ = 0, shows that this state is localized on two
spatial regions where there is a boundary between θ = 2 and
θ = 1 and a boundary between θ = 1 and θ = 4. The bottom
panel, for φ = π/2, shows that this state is localized on only
one spatial region where there is a boundary between θ = 2

FIG. 2. Energy levels of the Z4 model in position space. Panels
(a) and (b) are energy levels as a function of the chemical potential μ

with (a) � = 2.0 and φ = π/4 and (b) � = 1.0 and φ = π/4. Panels
(c) and (d) are energy levels as a function of the superconducting
phase φ with (c) μ = 1.0 and � = 0.5 and (d) μ = � = 1.0. (e) En-
ergy levels as a function of φ for a system with a soliton in the on-site
energies (10) of width ζ = 24 at its center, for μ = 8.0, t = 1.0, and
� = 4.0. (f) The probability density |ψ j |2 per site j = 1, 2, . . . , 192
for the state at negative energy localized on the soliton for φ = 0 (top
panel) and φ = π/2 (bottom panel). Numbers in each plot show the
phases θ of the Z4 model. All plots are obtained by diagonalizing the
BdG Hamiltonian in position space with open boundary conditions,
48 unit cells, and t = 1.0 [47].

and θ = 4. In the latter case, the energy of the localized state
is not exactly at zero energy because the NS symmetry is only
approximate in the presence of a soliton of finite width, as has
been previously studied for the CDW model [25,26].

As in the Kitaev chain [36,40,42,50,51], Majorana bound
states in the Z4 model give rise to a 4π -periodic Josephson
junction. To illustrate this, we generalize a model of a weak
link in a closed ring [51] applied previously to the Kitaev
chain. For a ring with N unit cells, the Hamiltonian (1) is
supplemented by a term describing hopping of magnitude t ′
across the weak link,

δH = t ′c†
1,AcN,Be−iπ�B/�s + H.c., (11)

where �B is the magnetic flux through the ring and �s = h/2e
is the superconducting flux quantum. We then diagonalize the
BdG Hamiltonian in position space [37] to obtain the energy
levels E and the energy of the junction EJ determined by
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(a) (b)

(c) (d)

FIG. 3. Properties of a Josephson junction in a ring with phase
θ = 4 (left column with μ = 2.0) and θ = 1 (right column with
μ = 1.0). All plots are as a function of the magnetic flux �B, where
�s = h/2e is the superconducting flux quantum. Panels (a) and
(b) show energy levels E in position space. Panels (c) and (d) show
the current IJ (arbitrary units), with the corresponding system energy
EJ in the insets. The energy EJ is determined by including the neg-
ative energy levels at �B = 0 (black), excluding the positive ones
(blue). All plots are obtained by diagonalizing the BdG Hamilto-
nian in position space with 48 unit cells in the ring, t = � = 1.0,
φ = π/4, and t ′ = 0.1 [47].

summing the energy levels below zero energy. We calculate
the derivative dEJ/d�B which is proportional to the Joseph-
son current IJ = (2π/�s)dEJ/d�B. Figure 3(a) shows the
energy levels for the CDW-like phase θ = 4 where Majorana
bound states are absent. Although the levels appear to have
little dependence on �B, Fig. 3(c) shows that the energy EJ
and current IJ are periodic in �B with period �s as expected
for a phase with tunneling of Cooper pairs and no Majorana
bound states.

Figure 3(b) shows the energy levels for the Kitaev-like
phase θ = 1 which shows two subgap states. We assume
that the level crossings of these states (at �B = �s/2 and
�B = 3�s/2) are protected by conservation of fermion parity
[36,40,42,50,51] so that these two levels have a period of 2�s,
i.e., the single-particle flux quantum. Hence, we do not de-
termine the thermodynamic ground-state energy, but include
the level which is below zero energy at �B = 0 for all �B in
the calculation of EJ [shown as a black line in Fig. 3(b)], and
we omit the energy of the level above zero energy at �B = 0
for all �B [a blue line in Fig. 3(b)]. Figure 3(d) shows that
the resulting energy EJ and current IJ are periodic in �B with
period 2�s as expected for single-electron tunneling mediated
by Majorana bound states [36,40,42,50,51].

The Z4 symmetry class is not robust in the presence of
spatial disorder because of the constraints of translational in-
variance inherent to the NS symmetries [10,26,37]. However,
when the NS symmetries are broken by disorder, particle-hole

symmetry remains robust and the system falls into the D
symmetry class [1–5,36,42–44,49] with Z2 Majorana number
M = sgn(μ2 + 4�2 sin2 φ − 4t2) [37]. This is distinct from
the Kitaev chain, for which M = sgn(μ2 − 4t2) [5,36,42–
44,49].

Symmetry classes generally exhibit different topological
indices and numbers of zero-energy states [2–5], but also
different level statistics in the bulk of the energy spectrum
as determined by time-reversal symmetry [1,42,52,53]. A
random matrix consistent with NS symmetry has a highly
constrained form and does not describe a system with arbitrary
spatial disorder but a system with sample-to-sample para-
metric variations [26]: Parameters must be spatially uniform
within a given sample, but they make take different values
between members of an ensemble. Thus, a J × J random
matrix consists of only ∼J independent real parameters [26]
instead of ∼J2 in the absence of NS symmetry.

Specifically, we consider the level statistics of a large
J × J Hermitian matrix H with random elements [37] satisfy-
ing the constraints of particle-hole symmetry C†H∗C = −H
and NS time-reversal symmetry T †H∗T = H. In particular,
C = diag(σx, σx, . . . , σx ) is block diagonal and T involves a
translation by two orbitals,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 0 0 1 0 . . .

0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .

1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

With this representation, T 2 �= ±1, unlike conventional time-
reversal symmetry [4,5], meaning it can be applied twice to
give a unitary transformation which is simply translation by
a lattice constant (of four orbitals). This unitary transforma-
tion can then block diagonalize the random matrix into 4 × 4
blocks representing individual k values.

Each block has a generic form (2) satisfying particle-hole
symmetry with gap function �̂(k) as given in Eq. (7) and a
noninteracting part ĥ(k) = σ · h(k) with σ = (σ0, σx, σy, σz )
and h = (h0, hx, hy, hz ), where h0(k), hx(k), and hy(k) are
even functions of k and hz(k) is odd. Each 4 × 4 block has a
fixed value of k and, in addition to particle-hole symmetry, it
satisfies a different type of time-reversal symmetry depending
on the k value. Owing to the unusual Kramer’s degeneracy
associated with NS time-reversal symmetry [17,31], the block
corresponding to k = 0 has time-reversal symmetry with
T 2 = 1 (denoted by β = 1), whereas the block corresponding
to k = π/a has T 2 = −1 (β = 4) [37]. The remaining blocks
have no time-reversal symmetry individually (β = 2) but they
appear in time-reversal symmetric pairs corresponding to ±k,
and the levels arising from one block in a pair are degenerate
with those from the other block in the pair.

We confirm this picture by considering J × J Hermitian
random matrices satisfying the symmetry constraints with
each independent real parameter in the matrix taken from
the standard normal distribution (with mean zero and vari-
ance of 1). We numerically determine the eigenvalues En, the
level spacing sn = (En+1 − En), and the ratio of consecutive
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period = J/4period = 2
(a)

p(
r)

(b)

GUE

GOE

Poisson

p(
r)

r r
class Dperiod = J/2

(c)

p(
r)

(d)

p(
r)

r r

GUE

GOE

Poisson

GUE

GOE

Poisson

GUE

GOE

Poisson

FIG. 4. Distribution of the ratio of consecutive level spacings
p(r) for random matrices in the same class as the Z4 model with NS
time-reversal symmetry of different spatial periods and particle-hole
symmetry. (a) Period equal to 2 orbitals, (b) period equal to J/4,
where J is the total number of orbitals, (c) period equal to J/2, and
(d) class D where NS time-reversal symmetry is absent. In all plots,
black solid lines show numerical data, blue dashed lines show the
prediction of Poisson statistics, blue dotted lines show the prediction
of the GOE ensemble (13), and blue dot-dashed lines show the
prediction of the GUE ensemble (13). We numerically diagonalized
J × J random matrices with J = 4000, where every independent real
variable was taken from a standard normal distribution and averaged
over an ensemble of 100 matrices. Only positive energy levels were
used for all plots, and twofold degeneracy was neglected (for a
degenerate pair of levels, only one was included).

level spacings rn = min{sn, sn−1}/max{sn, sn−1} [54,55], such
that 0 � rn � 1, and we determine the distribution of ratios
p(r). We compare our numerical results with predictions for
the Poisson distribution, the Gaussian orthogonal ensemble
(GOE) with β = 1, and the Gaussian unitary ensemble (GUE)
with β = 2 [52,53]. For the ratio distribution [54,55],

p(r) =

⎧⎪⎪⎨
⎪⎪⎩

2
(1+r)2 , Poisson,
27
4

(r+r2 )
(1+r+r2 )5/2 , GOE (β = 1),

81
√

3
2π

(r+r2 )2

(1+r+r2 )4 . GUE (β = 2).

(13)

Figure 4(a) shows the numerically determined ratio distri-
bution p(r) for a J × J matrix with J � 2, where 2 is the
period of the NS time-reversal symmetry. The distribution
appears to follow the Poisson distribution. Although most
4 × 4 blocks have β = 2 level statistics, the effect of including
many blocks gives a spectrum with almost independent energy

levels. While keeping the matrix order J fixed, we increase the
period of the NS time-reversal symmetry (12), increasing the
size of each block and reducing the number of blocks. Fig-
ure 4(b) shows the numerically determined ratio distribution
p(r) for a system where the period is equal to J/4. In this case,
there are only two J/2 × J/2 blocks, one corresponds to k = 0
with β = 1 statistics and one corresponds to k = π/a with
β = 4 statistics. The combination of these gives a spectrum
that appears to be a crossover between Poisson and Gaussian.
Figure 4(c) shows p(r) for a system where the period is equal
to J/2. Now the distribution follows the GOE distribution
because there is only one J × J block, corresponding to k = 0
with β = 1 statistics. Finally, Fig. 4(d) shows a system with
class D level statistics which follows the GUE distribution
(β = 2); this is equivalent to a system in which the NS time-
reversal symmetry is absent (or, equivalently, it can be viewed
as having period J).

Different methods of creating the Kitaev chain, or similar
systems, have been investigated, usually with a conven-
tional s-wave superconductor in proximity to a system with
strong spin-orbit coupling and/or a magnetic field. Exam-
ples include hybrid superconductor-semiconductor nanowires
[41,56–58], a superconductor near to an array of magnetic
atoms or nanoparticles [59,60] or in a spiraling magnetic field
[61,62], planar semiconductor-superconductor heterostruc-
tures [63,64], a chain of quantum dots with spin-orbit coupling
and connected to superconductors [65–68], and spin-orbit-
coupled wires, each proximity coupled to superconductors
with different phases [69,70]. The latter two platforms provide
the option of tuning the phase φ of the order parameter on each
site separately and, with them, it may be possible to engineer
a system described by the Z4 Hamiltonian (1).

To summarize, we have identified the mean-field model
of a topological superconductor with two orbitals per cell in
one dimension belonging to a Z4 class. In the phase diagram
[Fig. 1(d)], two phases have no Majorana bound states and
they may be related to the phases of a Z2 noninteracting
model, the CDW model. Two phases, which support Majorana
bound states, may be related to topological phases of the Ki-
taev chain and, like the Kitaev chain, the presence of Majorana
bound states gives rise to the 4π -periodic Josephson effect. A
random matrix with NS time-reversal symmetry may be block
diagonalized into many blocks, one with GOE level statistics,
one with GSE (Gaussian symplectic ensemble) statistics, and
the others appearing as time-reversal symmetric pairs. For
such a random matrix describing a system size J much greater
than the period of the NS time-reversal symmetry, the level
statistics will appear to be uncorrelated as described by the
Poisson distribution. As the period approaches the system size
J , the statistics will crossover to Gaussian, with GOE statistics
when the period is equal to J/2 and, finally, GUE statistics
when the NS time-reversal symmetry is absent.

All relevant data presented in this paper can be
accessed [71].

The authors thank C. Y. Leung, A. Romito, K. Shiozaki, D.
Varjas, and J. H. Winter for helpful discussions.
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M. Soljačić, Non-Abelian nonsymmorphic chiral symmetries,
Phys. Rev. B 106, L161108 (2022).

[28] S. Kivelson, Solitons with adjustable charge in a commensurate
Peierls insulator, Phys. Rev. B 28, 2653 (1983).

[29] J. Cayssol and J.-N. Fuchs, Topological and geometrical aspects
of band theory, J. Phys. Mater. 4, 034007 (2021).

[30] J.-N. Fuchs and F. Piéchon, Orbital embedding and topology
of one-dimensional two-band insulators, Phys. Rev. B 104,
235428 (2021).

[31] E. McCann, Catalog of noninteracting tight-binding models
with two energy bands in one dimension, Phys. Rev. B 107,
245401 (2023).

[32] M. Ezawa, Hourglass fermion surface states in stacked topolog-
ical insulators with nonsymmorphic symmetry, Phys. Rev. B 94,
155148 (2016).

[33] P.-Y. Chang, O. Erten, and P. Coleman, Möbius Kondo insula-
tors, Nat. Phys. 13, 794 (2017).

[34] A. Daido, T. Yoshida, and Y. Yanase, Z4 topological supercon-
ductivity in UCoGe, Phys. Rev. Lett. 122, 227001 (2019).

[35] I. Araya Day, A. Varentcova, D. Varjas, and A. R. Akhmerov,
Pfaffian invariant identifies magnetic obstructed atomic insula-
tors, SciPost Phys. 15, 114 (2023).

[36] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys.-Usp. 44, 131 (2001).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.085416 for details of the derivation
of the BdG Hamiltonian in k space, Eq. (2), and position
space, and the corresponding representation of the symmetry
operators.

[38] C. Spånslätt, E. Ardonne, J. C. Budich, and T. H. Hansson,
Topological aspects of π phase winding junctions in supercon-
ducting wires, J. Phys.: Condens. Matter 27, 405701 (2015).

[39] Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and topology
in superconductors—Odd-frequency pairing and edge states,
J. Phys. Soc. Jpn. 81, 011013 (2012).

[40] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[41] M. Leijnse and K. Flensberg, Introduction to topological super-
conductivity and Majorana fermions, Semicond. Sci. Technol.
27, 124003 (2012).

[42] C. W. J. Beenakker, Random-matrix theory of Majorana
fermions and topological superconductors, Rev. Mod. Phys. 87,
1037 (2015).

085416-6

https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.90.085304
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1038/nature17410
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.96.035115
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/s42005-023-01156-6
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.91.161105
https://doi.org/10.1103/PhysRevB.91.155120
https://doi.org/10.1103/PhysRevB.94.195109
https://doi.org/10.1103/PhysRevB.95.224514
https://doi.org/10.1103/PhysRevB.95.165109
https://doi.org/10.1038/s41586-019-1840-9
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1103/PhysRevLett.124.066401
https://doi.org/10.1103/PhysRevB.100.041104
https://doi.org/10.1103/PhysRevB.101.235113
https://doi.org/10.1103/PhysRevB.106.165409
https://doi.org/10.1103/PhysRevB.106.L161108
https://doi.org/10.1103/PhysRevB.28.2653
https://doi.org/10.1088/2515-7639/abf0b5
https://doi.org/10.1103/PhysRevB.104.235428
https://doi.org/10.1103/PhysRevB.107.245401
https://doi.org/10.1103/PhysRevB.94.155148
https://doi.org/10.1038/nphys4092
https://doi.org/10.1103/PhysRevLett.122.227001
https://doi.org/10.21468/SciPostPhys.15.3.114
https://doi.org/10.1070/1063-7869/44/10S/S29
http://link.aps.org/supplemental/10.1103/PhysRevB.110.085416
https://doi.org/10.1088/0953-8984/27/40/405701
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1103/RevModPhys.87.1037


ONE-DIMENSIONAL Z4 TOPOLOGICAL … PHYSICAL REVIEW B 110, 085416 (2024)

[43] H.-M. Guo, A brief review on one-dimensional topological
insulators and superconductors, Sci. China Phys. Mech. Astron.
59, 637401 (2016).

[44] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[45] C. Bena and G. Montambaux, Remarks on the tight-binding
model of graphene, New J. Phys. 11, 095003 (2009).

[46] A. Haim and Y. Oreg, Time-reversal-invariant topological su-
perconductivity in one and two dimensions, Phys. Rep. 825, 1
(2019).

[47] All plots are created for the BdG Hamiltonians H and a
factor of 1/2 should be included for the Hamiltonian H =
(1/2)

∑
k �†

kH(k)�k + const.
[48] We slightly modify Eq. (J35) in Ref. [10] by replacing a natural

logarithm with the arg function in order to describe the cases
when the function Z (k) is not unitary.

[49] J. C. Budich and E. Ardonne, Equivalent topological invariants
for one-dimensional Majorana wires in symmetry class D, Phys.
Rev. B 88, 075419 (2013).

[50] H.-J. Kwon, K. Sengupta, and V. M. Yakovenko, Fractional ac
Josephson effect in p- and d-wave superconductors, Eur. Phys.
J. B 37, 349 (2003).

[51] F. Pientka, A. Romito, M. Duckheim, Y. Oreg, and F. von
Oppen, Signatures of topological phase transitions in meso-
scopic superconducting rings, New J. Phys. 15, 025001 (2013).

[52] M. L. Mehta, Random Matrix Theory (Springer, New York,
1990).

[53] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Random-matrix theories in quantum physics: Common con-
cepts, Phys. Rep. 299, 189 (1998).

[54] V. Oganesyan and D. A. Huse, Localization of interact-
ing fermions at high temperature, Phys. Rev. B 75, 155111
(2007).

[55] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution
of the ratio of consecutive level spacings in random matrix
ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[56] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana
fermions and a topological phase transition in semiconductor-
superconductor heterostructures, Phys. Rev. Lett. 105, 077001
(2010).

[57] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and
Majorana bound states in quantum wires, Phys. Rev. Lett. 105,
177002 (2010).

[58] E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi, E. J. H.
Lee, J. Klinovaja, D. Loss, J. Nygård, R. Aguado, and L. P.
Kouwenhoven, From Andreev to Majorana bound states in hy-
brid superconductor-semiconductor nanowires, Nat. Rev. Phys.
2, 575 (2020).

[59] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J.
Beenakker, Majorana fermions emerging from magnetic
nanoparticles on a superconductor without spin-orbit coupling,
Phys. Rev. B 84, 195442 (2011).

[60] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Proposal for realizing Majorana fermions in chains of magnetic
atoms on a superconductor, Phys. Rev. B 88, 020407(R) (2013).

[61] I. Martin and A. F. Morpurgo, Majorana fermions in supercon-
ducting helical magnets, Phys. Rev. B 85, 144505 (2012).

[62] M. Kjaergaard, K. Wölms, and K. Flensberg, Majorana
fermions in superconducting nanowires without spin-orbit cou-
pling, Phys. Rev. B 85, 020503(R) (2012).

[63] M. Hell, M. Leijnse, and K. Flensberg, Two-dimensional plat-
form for networks of Majorana bound states, Phys. Rev. Lett.
118, 107701 (2017).

[64] F. Pientka, A. Keselman, E. Berg, A. Yacoby, A. Stern, and B. I.
Halperin, Topological superconductivity in a planar Josephson
junction, Phys. Rev. X 7, 021032 (2017).

[65] J. D. Sau and S. Das Sarma, Realizing a robust practical Majo-
rana chain in a quantum-dot-superconductor linear array, Nat.
Commun. 3, 964 (2012).

[66] M. Leijnse and K. Flensberg, Parity qubits and poor man’s
Majorana bound states in double quantum dots, Phys. Rev. B
86, 134528 (2012).

[67] I. C. Fulga, A. Haim, A. R. Akhmerov, and Y. Oreg, Adaptive
tuning of Majorana fermions in a quantum dot chain, New J.
Phys. 15, 045020 (2013).

[68] A. Tsintzis, R. S. Souto, K. Flensberg, J. Danon, and M. Leijnse,
Majorana qubits and non-Abelian physics in quantum dot-based
minimal Kitaev chains, PRX Quantum 5, 010323 (2024).

[69] O. Lesser, K. Flensberg, F. von Oppen, and Y. Oreg, Three-
phase Majorana zero modes at tiny magnetic fields, Phys. Rev.
B 103, L121116 (2021).

[70] O. Lesser, A. Saydjari, M. Wesson, A. Yacoby, and Y. Oreg,
Phase-induced topological superconductivity in a planar het-
erostructure, Proc. Natl. Acad. Sci. USA 118, e2107377118
(2021).

[71] https://doi.org/10.17635/lancaster/researchdata/680.

085416-7

https://doi.org/10.1007/s11433-015-5773-5
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1367-2630/11/9/095003
https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1103/PhysRevB.88.075419
https://doi.org/10.1140/epjb/e2004-00066-4
https://doi.org/10.1088/1367-2630/15/2/025001
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1038/s42254-020-0228-y
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevLett.118.107701
https://doi.org/10.1103/PhysRevX.7.021032
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1103/PhysRevB.86.134528
https://doi.org/10.1088/1367-2630/15/4/045020
https://doi.org/10.1103/PRXQuantum.5.010323
https://doi.org/10.1103/PhysRevB.103.L121116
https://doi.org/10.1073/pnas.2107377118
https://doi.org/10.17635/lancaster/researchdata/680

