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Abstract—Eye tracking filters have been shown to improve accuracy of gaze estimation and input for stationary settings. However,
their effectiveness during physical movement remains underexplored. In this work, we compare common online filters in the context of
physical locomotion in extended reality and propose alterations to improve them for on-the-go settings. We conducted a computational
experiment where we simulate performance of the online filters using data on participants attending visual targets located in world-,
path-, and two head-based reference frames while standing, walking, and jogging. Our results provide insights into the filters’
effectiveness and factors that affect it, such as the amount of noise caused by locomotion and differences in compensatory eye
movements, and demonstrate that filters with saccade detection prove most useful for on-the-go settings. We discuss the implications
of our findings and conclude with guidance on gaze data filtering for interaction in extended reality.

Index Terms—eye tracking, gaze filters, gaze-based pointing, extended reality, spatial reference frames, physical locomotion

1 INTRODUCTION

Gaze interaction frequently requires the application of online filters1

to reduce noise in eye tracking data. Interaction researchers routinely
report on filtering to improve pointing accuracy, but concrete guidance
on the choice of filters is scarce. Recent work by Feit et al. is notable,
as it compared a variety of filters and contributed a procedure to select
filter parameters [16]. However, the work was based on gaze data
collected in a stationary desktop setting. In contrast, gaze in 3D settings
consists of gaze vectors, and users can freely move (i.e. walk) affecting
gaze and tracking [34]. As such, it is unclear whether filters suitable
for stationary 2D settings are also applicable in mobile 3D settings. In
this work, we investigate gaze input filters in extended reality (XR)
head-mounted displays (HMDs) while standing, walking, or jogging.

Gaze dynamics “on the go” presents a substantially different chal-
lenge from previously studied stationary settings (e.g., [17]). Movement
increases noise and makes it harder to acquire and track gaze targets,
as is evident, for example, in the decrease in reading and pointing per-
formance during locomotion [4, 32]. However, our visual system has
natural compensatory mechanisms that stabilize gaze when we are in
motion. These mechanisms include the vestibulo-ocular reflex (VOR)
as well as elements of pursuit and vergence [23,24]. The VOR becomes
active in response to head rotation, which typically occurs during lo-
comotion [36]. Smooth pursuit and vergence are activated in response
to the relative movement of the target in the visual field. Ideally, a
filter should be robust to locomotion-induced noise, but should not
undermine our natural tracking ability by removing the compensatory
eye movements.

In the context of gaze interfaces in HMDs, their spatial reference
frames (SRFs) play a crucial role in pointing and target acquisition.
In a conventional desktop setting, targets appear in a display space
fixed in the world and independent of the user’s movement. In an
HMD, targets can be presented in more diverse and dynamic ways, for
example, anchored in the world, following the user, or affixed to the
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1Here and further we use the term “online filters” to indicate the gaze data
filters that are used at runtime, as opposed to in a post-hoc analysis.

display [30]. Essentially, SRFs define how the target moves relative to
the user, which affects not only gaze pointing but also how to approach
filtering. Previous research has shown that VOR naturally supports the
acquisition of world-referenced targets during locomotion [4]. More-
over, VOR is effective in stabilizing gaze when the target is affixed in
the plane perpendicular to the direction of movement, but moves with
the user along their path [34]. On the contrary, VOR makes it harder
to focus on the targets affixed in the head SRF [4, 34]. It is not clear
how effective filters are in different SRFs and how filtering approaches
should consider SRFs.

In this study, we compare five filters on the eye tracking dataset
from [34]. The dataset includes data from users visually acquiring
targets in virtual reality (VR) while walking or jogging on a straight
path, as well as standing. The targets were presented in four differ-
ent SRFs: World, Head, HeadDelay as head reference with simulated
inertia, and Path with targets affixed in front of the user but indepen-
dent of head rotation. The compared filters were weighted average
(WA) [25], weighted average with saccade detection (WA-SD) [16],
1C filter (1Euro) [6], and low-pass filter with window-based saccade
detection (LP-WSD) [26] from the literature, and a proposed low-pass
filter with n-back saccade detection (LP-SDn). We simulated the filters’
performance in a computational experiment in an online manner, i.e.
using only past gaze points. As the dataset was based on segmented
trials, we used a saccade simulation to assess the delay introduced by
the filters. The analysis procedure was inspired by Feit et al. [16] but
was extended to work with gaze data in 3D for Pareto optimal selection
of filter parameters and accurate estimation of filter performance.

Our computational experiment provides new insights into the effect
of user locomotion and SRFs on gaze filters. Specifically, filters were
most effective when applied in the SRF where the target was located.
This is significant, as eye tracking data is commonly filtered at source
or in world coordinates, but we show that one can involve more accu-
rate reference frames. Filters improved accuracy under all conditions.
Relative improvement increased with user pace and was highest in the
Head SRF, where compensatory eye movements interfere with accurate
pointing. As expected, the filters with saccade detection performed best,
with LP-WSD and LP-SDn demonstrating the highest effectiveness
as filters that are the most robust to locomotion-induced noise, while
1Euro performed better than WA for filtering without saccade detection.
In sum, this work contributes:

• Insights into the filters’ comparative performance and factors that
affect it such as the amount of noise originating from physical
locomotion and the differences in compensatory eye movements
when the eye fixates on the target in the four SRFs.

• Guidance on gaze data filtering in the context of physical move-
ment, in particular, the coordinate system to apply filters, the most
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effective filters and their parameters.

2 RELATED WORK

2.1 Gaze Interactions for Mobile Head-Worn Extended Re-
ality

XR HMDs are becoming widely adopted by consumers, with current
applications predominantly revolve around stationary environments,
encompassing homes, workplaces, and exhibitions, where spatial user
interfaces (UIs) appear in a fixed position in the world. Gaze pointing
has been shown to be a promising input modality [17] and some HMDs,
such as Microsoft Hololens 2 and Apple Vision Pro, have already
adopted a gaze-based interaction model [44] as their primary means
of controlling the operating system. The next generation of personal
XR devices is envisioned for ubiquitous integration in everyday and
mobile situations [5, 22], implying a variety of spatial UI types – from
fixed UI elements anchored to objects in the world, to dynamic UI
elements following the user on the go. This can materialize in the
form of glanceable UI elements that allow quick access to information,
such as checking a weather app or reviewing notifications [8, 31], or
information labels overlaid on top of physical objects in the world
reference frame [43, 47]. Or, the control of static internet-of-things
appliances through smooth pursuit-based eye movements [59], spatial
alignment of eye and hand rays [33], or coordinated eye-head interac-
tion in the head reference frame [55]. Mobile applications have been
envisioned with gaze control, such as Orbits [14], which leverage eye-
based motion correlation to enable hands-free activation of buttons on a
smartwatch, Look&Turn [49] as a multi-layer eye-hand menu situated
on the forearm, and PalmGazer [45] as a mobile app menu control-
lable through an eye-hand interface that supports several body-based
reference frames. These examples demonstrate a variety of possible
SRFs and use cases for the user in motion. Our investigation of the
fundamental gaze input accuracy will benefit a range of aforementioned
mobile gaze interactions.

2.2 Eye Tracking Errors and Their Impact
Eye trackers are inherently noisy due to sensing and physiological fac-
tors and have received significant attention in the research community.
The quality of an eye tracking signal is defined by its trueness (also
known as ’spatial accuracy’) and precision (in this work, we follow
the terminology presented in [19]). Paraphrasing Blignaut & Blig-
naut [3], trueness is defined as a constant offset between the actual and
recorded gaze direction, while precision error is defined as the “jitter”
introduced by the eyes’ natural level of noise and tracking difficulties.
These factors can negatively affect gaze-based interaction and may vary
between tracking areas [16], devices [42], or over time due to changing
lighting conditions, pupil size, or slippage of a head-mounted display
in XR settings [10, 39]. For trueness, significant errors would cause the
gaze position to be outside of the target area, making accurate gaze-
based interaction and inference difficult, if not impossible [13, 21, 40].
Meanwhile, precision errors can significantly affect gaze-based target
selection by reducing user confidence and efficiency [21, 37]. Precision
errors also significantly affect algorithms with dispersion or velocity
thresholds commonly used to detect gaze movements [50] or interaction
based on relative eye movements [52].

Researchers have proposed measures to reduce the impact of eye
tracking errors on estimation and interaction. Poor trueness can be
addressed by calibration processes, in which points in a tracking area
are mapped to eye images through explicit [11, 15, 18, 20, 46] or im-
plicit [15, 53] procedures, while gaze tracking stability during motion
can be ensured by using gaze estimation pipelines robust to headset
slippage [39] or novel hardware solutions that employ additional mo-
tion sensors [58] or even elastic designs of an eye tracker [2]. Trueness
error has also received significant attention within gaze-based interac-
tion techniques, where a second more accurate modality refines gaze
positions [27, 54, 64].

2.3 Gaze-based Filtering
Precision is most commonly addressed through the application of on-
line filters [6, 7, 16, 26, 57, 61]. As gaze is a noisy, yet ballistic and

fast-moving signal, one must balance the amount of filtering without
significantly affecting its ballistic nature. A filter that is too strong will
stabilize the signal during fixation, but alter the shape of the gaze signal
during saccades. A strong filter may also introduce a delay that causes
the filtered signal to be significantly behind the actual gaze position.
Meanwhile, a weak filter will not affect the noise level during fixation
but will retain the ballistic shape of saccades. This trade-off has spurred
the design of filters that are strong during fixation but weak during gaze
shift [6, 16, 26, 61]. Previous filters have used speed-based parameters
to dynamically alter the filter level [6], saccade detection algorithms
that remove past gaze points from consideration when a significant
gaze shift is detected [16, 26], or weighted filters that prioritize the
most recent gaze points [16, 61]. Previous comparisons have shown
that considering saccadic movements is vital in reducing jitter and in-
creasing the performance of gaze-based interaction, and that the tuning
parameters and window sizes require careful consideration [16, 61].
Feit et al. [16] used a Pareto front of optimal parameters to showcase
the trade-off between accuracy and delay. We use a similar method-
ology in our work to highlight these trade-offs. A limitation of these
comparisons is that they were conducted in stationary contexts without
user movement. During locomotion, for example, turning the head
or walking, the eyes will perform relatively slow low-frequency VOR
movements to ensure that the eyes remain fixated on a world-referenced
target [48]. Due to the stationary nature of previous filter evaluations,
these VOR movements were not present, and the effectiveness of ex-
isting gaze-based filters during user movements remains unclear. To
further complicate things, these compensatory eye movements may
help or interfere with fixation stability depending on the SRF within
which the target is attached. For instance, it was shown that during both
instrumented [4] and natural walking [34] fixation of head-referenced
targets is accompanied by VOR movements that make the gaze wobble
around the target. We can assume that, while in this case filtering these
low-frequency compensatory movements away can potentially help
to increase gaze pointing accuracy, in other cases, it can lead to the
opposite effect. As such, our work focuses on comparing filters and
their suitability for gaze-based interaction during physical locomotion
when targets are affixed in various SRFs.

3 DATASET

In this section, we describe the eye tracking dataset taken from [34] that
was used in our computational experiment. The data was collected from
24 participants (mean age 27.7, SD=3.36; 16 men and 8 women) who
were asked to read and sign informed consent and data processing forms
prior to data collection. Participants were asked to follow the linear 5m
track wearing an HTC Vive Pro Eye VR headset while simultaneously
fixating their gaze on a set of circular virtual targets affixed in the
following four SRFs (Figure 1):

• Head represents the SRF which origin is always aligned with the
head position and which orientation copies the head orientation.
The targets are affixed at 1m depth in front of the user, i.e. along
the Z axis.

• HeadDelay is essentially similar to Head except it introduces a
delay between the head and the SRF’s movements to simulate the
inertia effect.

• Path is a novel SRF in which the targets float in front of a moving
user at a fixed distance and height above the ground. The SRF’s
origin moves along a predicted path and always stays in the
middle of it effectively ignoring lateral oscillations of the user’s
head induced by locomotion. The path is estimated on the basis of
the user’s movement trajectory. The SRF’s orientation is defined
by the estimated forward direction of movement which allows the
user to freely rotate their head.

• World is the SRF which is stationary relative to the surrounding
environment. Its origin is located at the opposite end of the track
while the targets are at fixed height above the ground.

Participants were first asked to look at a target located in the middle
of their field of view (FoV), which would then disappear and reappear



Fig. 1: Movement of a spatial UI, represented as a black rectangle, in response to the movement of a user who is taking a few steps forward along a
linear track while simultaneously rotating their head to the right, represented as a purple dashed arrow, depending on a SRF: (a) the UI floats in front
of the users’s head at a fixed distance (Head); (b) the UI follows the user and their head movement with a delay (HeadDelay); (c) the UI is “pushed”
in front of the user while keeping in the middle of the track and on a fixed height (Path); (d) the UI stays at the opposite end of the track regardless of
the user’s movement (World).

in the periphery. Their task was to follow the target and look at it until
they heard a confirmation sound. Each trial was a minimum of 1.2
seconds long and included at least one gaze shift and a tracking fixation
(we adopt the term from Lappi [29]). The direction in which the target
reappears (in one of the four cardinal directions) and the distance from
the FoV center (10 and 20 degrees of visual angle) were also varied.
After the trial had ended, the participants were instructed to return their
gaze to the FoV center, and the next trial would commence. In most
of the conditions, the targets were located at 1 m depth. However,
in the World reference frame where they were affixed at the opposite
end of the track, the average distance to the target on the go was 3.3
m. The study took place in a virtual replica of a room aligned with
its physical counterpart. To investigate the acquisition of targets at
different movement paces, the participants were asked to perform the
task while standing, walking, and jogging. Participants were asked to
move at a predefined pace of 90 and 130 steps per minute for Walking
and Jogging respectively, set by a metronome [35, 38]. This ensured
consistent movement paces across all participants. Participants kept a
pace of 93.17 steps/min (SD=5.07) for Walking and 134.26 steps/min
(SD=4.89) for Jogging during the study. The dataset we used in the
current work consisted of 2,296 trials (4 reference frames × 3 movement
paces × 4 gaze directions × 2 gaze angles × 24 participants minus one
condition, i.e. 8 trials, that was omitted for one of the participants).

The built-in filtering of the Tobii eye tracker embedded in the HTC
Vive Pro Eye was turned off during data collection. Thus, all trials
contained raw unfiltered gaze data sampled at 120 Hz. For the purposes
of further analysis, we require finding the longest interval within each
trial, which is devoid of natural gaze shifts and uninterrupted by blinks.
To find those intervals, we employed the following data processing
pipeline:

1. Segments marked by the eye tracker as invalid at least for one
eye were excluded along with 5 data points on both sides of such
segments. At this stage we did not interpolate the resulting gaps.

2. Local (eyes-in-head) ’cyclopean’ gaze direction and origin were
reconstructed from the gaze directions and origins for both eyes.
The data in the local coordinate system was converted to a global
one (gaze-in-world) using the known head pose.

3. The outliers left in the data at this stage were removed using a
slightly modified version of the algorithm proposed by Stuart et

al. [56, Section 3E]. In our version, we merged outliers when
a gap between the two consecutive ones would be less than or
equal to 3 frames (25 ms at 120 Hz). Angular velocity and ac-
celeration were calculated using gaze-in-world data [1, 9]. The
velocity threshold was set to 750 deg/sec [11], while the accel-
eration threshold was calculated from the velocity threshold by
multiplying it by 1,000 similarly to [56], thus making it 750,000
deg/s². The resulting gaps would be linearly interpolated. Ad-
ditionally, we filtered resulting data using 9-point wide median
filter (75 ms at 120Hz) [41].

4. Gaze shifts were found using the Stuart et al.’s algorithm validated
on data from walking participants [56]. It implies applying the
angular gaze velocity (> 240 deg/s) and acceleration (> 3000
deg/s²) thresholds simultaneously. We used the frames before and
after angular acceleration local maxima and minima to identify
exact moments when a gaze shift begins and ends, respectively [9,
p. 12].

5. Within each trial a tracking fixation was defined as a data segment
following the last gaze shift. Within such the segment we would
find the longest interval uninterrupted by the gaps left by step #1.

To ensure that we have enough data to work with, we calculated the
number of trials that have an uninterrupted tracking fixation at least 40
data points long (333.3(3)ms at 120Hz). It resulted in 2,166 trials which
constituted 94.34% of the original data. For weighted average-based
filters, when we varied the size of their window, we also removed the
trials with a fixation length lower than the current window size, which
resulted in no less than 88.2% of original data for the widest window.
It is important to mention that the data processing pipeline described
here was used solely to identify the uninterrupted tracking fixations. In
all the following calculations, we used raw data that belongs to those
segments uninterrupted by gaps, including outliers if they are present
in them, making the data as close as possible to what an eye tracker
might output in run-time.

4 BASELINE GAZE POINTING ACCURACY

To understand the advantages (or disadvantages) of the online filters
considered in this work, we should first establish the baseline, that is,
how accurate gaze-pointing is on the go without any filters applied. A
common approach to assess tracking accuracy is to calculate trueness



and precision. While these two measures are ideal for getting insight
into the reasons why accuracy is the way it is, we require an aggregate
measure that would help us to compare various online filters in terms
of their effect on gaze-pointing accuracy. For this purpose, we have
chosen the measure of target size proposed by Feit et al. [16] that is
calculated as follows:

TargetSize = 2 · (Trueness+2 ·Precision) (1)

Target size, along with trueness and precision below, is calculated in
degrees of visual angle. Similarly to Feit et al., we calculate precision
as the standard deviation of the gaze vector. Thus, since two standard
deviations include approximately 95% of the values given that they are
distributed normally2, the 2 before precision makes it so that 95% of
gaze points fall within the calculated target size. Trueness and precision,
in turn, are calculated using the following equations:

Trueness = g∠t ′ (2)

where g is the mean gaze direction, i.e. g = 1
N ∑

N
i=1 gi, t ′ is the vector

from the gaze origin to the target, ∠ denotes an angle between two
vectors.

Precision =

√√√√ 1
N −1

N

∑
i=1

(gi∠g)2 (3)

where gi = (xi,yi,zi) is the i-th gaze direction, g is the mean gaze
direction.

The calculations are conducted in the constructed coordinate system
whose origin coincides with the combined (’cyclopean’) gaze origin,
and the Z axis is always oriented towards the target to account for
the target movement relative to the observer and the movement of the
observer relative to the environment [1, 28].

Results. We calculated the target sizes separately for four SRFs
and three movement paces aggregating gaze angles and gaze directions.
One missing condition was filled using winsorization. According to the
Shapiro-Wilk test not all levels of the dependent variable were normally
distributed, therefore we applied the aligned rank transform to correct
for it [12, 63]. We used two-way repeated measures ANOVA (α = .05)
to calculate statistical significance, followed by Bonferroni-corrected
post-hoc comparisons.

We found a significant Movement×Reference Frame interaction
(F6,138=17.36, p<.001, η2

p=.43, Figure 2). The pairwise comparisons
did not reveal significant differences between SRFs when standing
(4.3±1.12° on average). While walking, Head demonstrated lower accu-
racy and differed from all other SRFs, HeadDelay — only from World.
The rest were not significantly different. When jogging, the only pair
that was not significantly different was Head and HeadDelay (p=1.0).
Although it may seem counterintuitive, the results are mainly based on
differences in precision, which are caused by the fact that various com-
pensatory eye movements, that support a fixation during locomotion,
are quite effective in stabilizing gaze on the target located in the Path
and World reference frames, thus lowering precision, but ‘shake’ gaze
around the target in the Head reference frame, with HeadDelay being
somewhere in between [4, 34].

The results are carried over to the higher-level effects such
as Reference Frame (F3,69=53.03, p<.001, η2

p=.7) and Movement
(F2,46=204.29, p<.001, η2

p=.9). The only pair of SRFs that did not
differ significantly is Path and World (p=.074, the rest p<.001). All
levels of Movement significantly differed from each other (p<.001):
standing (4.3±1.12°), walking (5.79±1.57°), and jogging (8.01±2.42°),
demonstrating that pace has a detrimental effect on gaze pointing accu-
racy.

2As we will see later, in the data the values are not normally distributed.
However, we still believe that Equation 1 provides a good approximation of the
minimal target size. Thus, we continue using it.

Fig. 2: Mean target sizes for the four SRFs depending on movement
pace. Error bars indicate 95% confidence intervals.

5 COMPARISON OF ONLINE FILTERS

Previous research showed that while attending to the target located
within various SRFs on the go, the eye moves differently [4, 34]. Fixat-
ing on a target that is more stable relative to the environment, as in the
case of the World and Path reference frames, causes the eye to rotate
vertically and horizontally with low frequencies of about 1-2 Hz after
vertical and lateral head movements [24, 36]. The study by Borg et
al. [4] clearly showed that even if the target is firmly affixed to head,
the compensatory eye movements such as VOR and others [23] still
significantly affect eye rotation leading to, as shown in section 4, lower
gaze pointing accuracy. The HeadDelay reference frame falls some-
where in between these two ends of the continuum. The compensatory
eye movements are of relatively low frequency, which distinguishes
them from high-frequency noise in the gaze signal caused by the inherit
imprecision of the eye tracker. This makes the application of low-pass
filters a promising solution. Moreover, in the case of the Head ref-
erence frame, suppressing even those low-frequency movements can
potentially help stabilizing gaze on the target. These considerations
informed our choice of filters for our analysis.

5.1 Overview of the Filters
At their core, the filters described below use weighted average or low-
pass filters. While the former combined with saccade detection showed
itself as a promising solution for gaze filtering [16], its effectiveness
is limited by the width of the averaging window. The latter is devoid
of such an issue, and thus can potentially more effectively suppress
low-frequency VOR movements, which might be useful in the Head
SRF. Therefore, the filters we chose to compare are as follows:

• Weighted average (WA) [25] as a baseline that is calculated
as a multiplication of the previous N points by their respective
normalized weights:

X̂t =
N−1

∑
i=0

wi

∑ j w j
Xt−i (4)

where Xt is the data point captured at the time t, t being the current
frame, t −1 — the previous one, and so on; wi is the i-th weight,
N — the width of the averaging window. It is important to note
that the filter is not recursive, i.e. it never uses the filtered values
X̂ back in the calculation, only raw data. In addition to a linear
kernel where all weights are equal to 1 making the whole filter
identical to moving average [41], we use a triangular kernel that
is recommended by [26] because it puts more weight on more
recent data. The triangular kernel function is wi = N − i+ 1.
When there are fewer data points than N, for example, when an
eye tracker has just been launched or, in our case, at the beginning
of a tracking fixation in each trial, the window width is adjusted



to the number of available data points and a kernel is regenerated.
Thus, the only parameter of this filter that we can control is the
desired window width w (w ∈ N).

• Weighted average with saccade detection (WA-SD) [16] is an
enhancement of the filter described above that restarts it every
time when the gaze shift is detected. Restarting the WA filter
means adjusting its window width so that it would not include
points before the saccade ends, which effectively means that if
the current data point is considered to be a part of a saccade, the
window width equals 1 and the filter output is equal to its input
irregardless of a kernel. Therefore, similar to the previous filter,
one of the parameters here is the maximum window width w.
Saccades are detected using a simple threshold-based algorithm:
if the angle between the previous gaze vector gt−1 and the current
vector gt is greater than the threshold, the current data point is
considered a part of a saccade. The saccade threshold s is the
second parameter of the WA-SD filter (s ∈ R>0).

• Low-pass filter with saccade detection (LP-SDn) is an online
filter inspired by WA-SD. Instead of weighted average, it uses the
following first-order low-pass filter in its core:

X̂t = αXt +(1−α)X̂t−1 (5)

where Xt is the data point captured at the time t, X̂t−1 is the previ-
ous filtered value, and α is a smoothing factor which defines how
much the new data point affects the filter’s output. As opposed to
the WA-based filters, the low-pass filter is recursive. Following [6],
the smoothing factor is defined as follows:

α =
1

1+ 1
2π fcTe

(6)

where fc is a cutoff frequency in Hz higher than which the filter
attenuates the input signal; Te is a sampling period which in
our case equals to 8.3(3) ms or 1/120 Hz, considering the eye
tracker’s sampling rate. We propose a modification of the saccade
detection algorithm from [16] that looks further into the past, i.e.
at n frames back instead of at the previous one. This modification
allows for higher values of the saccade threshold, and thus could
make the algorithm less susceptible to locomotion-induced noise.
Similarly to WA-SD, when a gaze shift is detected, the filter is
reset, which for LP-SDn means that the value of X̂t is set to Xt .
The filter therefore has three parameters: the cutoff frequency
fc, the saccade threshold s, and the comparison frame n ( fc,s ∈
R>0,n ∈ N).

• Low-pass filter with window-based saccade detection (LP-
WSD) is a combination of the first-order low-pass filter (Equa-
tion 5) and the saccade detection algorithm proposed by Kumar
et al. [26] that, in contrast to the saccade detection employed in
WA-SD and LP-SDn, compares the current gaze vector gt with
the vector g f representing a fixation and obtained by averaging
the last N data points using the Equation 4 with the triangular
kernel. Therefore, the filter has three parameters: cutoff fre-
quency fc, saccade threshold s, and fixation window width w f
( fc,s ∈ R>0,w f ∈ N).

• 1C filter (1Euro) [6] is an adaptive filter that uses the same low-
pass filter (Equation 5) in its core but the value of fc is adapted
depending on how fast the input signal changes, i.e. in the case
of gaze data depending on gaze velocity. The 1Euro has two
parameters: the minimum cutoff frequency fcmin which defines
the threshold lower than which the filter cutoff frequency cannot
go, and the adaption rate β that defines how fast fc changes
( fcmin ,β ∈ R>0). For more details on 1Euro, please see Casiez et
al. [6].

As opposed to working with remote eye trackers where it is cus-
tomary to deal with 2D coordinates in the screen plane, in XR one
works with two 3D vectors: one representing the gaze direction, an-
other gaze origin. In our implementation of the filters, we process both

Table 1: The lengths of simulated saccades in degrees of visual angle for
12 conditions based on the 75 percentiles of the target sizes calculated
on the raw data.

Head HeadDelay Path World
Jogging 11.26 9.61 8.36 7.2
Walking 7.84 7.18 6.23 6.02
Standing 5.46 5.27 4.93 5.08

on a per-component basis, i.e. independently filtering the X, Y, and Z
coordinates of both vectors. The gaze direction vector is normalized
after filtration.

5.2 Data Analysis Procedure
5.2.1 Calculation of the Delay
The application of an online filter introduces a delay, i.e. the filtered
signal starts to fall behind with respect to the raw signal [61], and the
more aggressive the filtering, the longer the delay. Taking into account
the nature of gaze signal, the lag matters the most when a person
performs rapid eye movements, i.e. saccades or fast smooth pursuit
movements. For that reason, we have chosen the procedure proposed
by Feit et al. to assess the amount of delay introduced by filters [16]. It
implies simulating a saccade by duplicating and positionally shifting
data from a fixation, applying a filter, and measuring how fast the
filtered signal catches up with the second shifted fixation. The original
procedure was proposed to work with data from a remote eye tracker
and had to be adopted to work with gaze data in 3D. The resulting
procedure that we used is as follows:

1. First we calculate 75th percentiles of the target sizes for each
out of 12 conditions (4 reference frames × 3 movement paces)
on the raw data. The value approximates the angular distance
between two nearby fixations that one can reliably select using
gaze without applying a filter (see Table 1).

2. For each trial, we duplicate a tracking fixation and rotate every
vector in it by as many degrees as was calculated on the pre-
vious step. The gap between the original and shifted fixations
is filled by a simulated saccade by interpolating gaze direction
between the last point of the first fixation and the first point of
the second fixation using the following Gaussian: (0, 0.05718765,
0.16020404, 0.3569676, 0.63265705, 0.8918506, 1). This made
the method more sensitive to the small changes in filters’ saccade
detection threshold (see end of this subsection for more detail).
To account for fixation asymmetry, we create four data sequences
by shifting fixations in four directions: pitch up, pitch down, yaw
left, and yaw right. All operations are performed with data in the
constructed coordinate system discussed above (see section 4).

3. All simulated sequences consisting of a tracking fixation, gaze
shift, and another fixation are then filtered.

4. Finally, we calculate how many frames starting from the end of
the saccade it takes for the filtered gaze signal to reach the halfway
point between the two fixations. The values of the four sequences
are averaged to produce a single value of the delay for a trial.

Concerning the original procedure [16], we made the following
adaptations: (1) instead of shifting a fixation in a target plane, we rotate
the gaze vectors belonging to a fixation in the constructed coordinate
system, which, among other things, takes into account movement of the
observer [1]; (2) since the rotation happens in 3D, we rotate fixations
in four directions instead of only two. Moreover, to get the closest
estimate of the performance one can get by applying the filters in a
production-ready system, we made the following enhancements to the
procedure:

• We decoupled the calculation of delay from the target size by
shifting all fixations within one condition by the same angle
calculated during step 1. This allowed us to avoid the target size
influencing the delay value.



Table 2: Ranges of the filter parameters that were used in optimization.

WA WA-SD 1Euro LP-WSD LP-SDn

Window
width:
[2, 120]

Max. window width:
[2, 120]
Saccade threshold:
[0.3, 5]

Min. cutoff freq.:
[0.01, 100]
Adaption rate:
[0.01, 100]

Cutoff freq.: [0.01, 100]
Saccade threshold: [0.3, 5]
Fixation window width:
[3, 10]

Cutoff freq.: [0.01, 100]
Saccade threshold: [0.3, 5]
Comparison frame: [1, 3]

• Instead of simply combining two fixations together, we simulate
a saccade using the aforementioned Gaussian. This made the
calculation more attuned to produce different delay values for, e.g.
filters with saccade detection thresholds of 1°, 1.5°, 2°, etc., when
before it would ignore such small differences considering that the
distance between the two simulated fixations varies from 4.93° to
11.26° for different conditions (Table 1).

5.2.2 Selecting Filter Parameters
By varying filter parameters, one can control (1) how heavily the gaze
signal is smoothed and (2) how much lag is introduced. While there is
not a single factor at play, the former usually translates to the increase
in the gaze pointing accuracy. The latter translates into an increase in
the delay in following a saccade [16]. One is a positive change, another
is unwanted. Therefore, with any given filter, we trade the target size for
the delay, or the other way around, which makes selecting parameters a
multiobjective problem. Pareto optimal solutions are those where one
of the objectives cannot be improved without hurting another. Finding
the pareto optimal solutions for a given filter is not a trivial task because
the function between filter parameters and resulting values of the target
size and delay is not known a priori and depends on the gaze data.
In this work, to select filter parameters that correspond to the pareto
optimal solutions, we vary them in wide ranges (Table 2) and for each
combination of the parameters calculate the target size and delay. We
then find the convex hull of the points in the 2D space and select only
those points on the hull that lie between the solution with the lowest
delay and the most accurate solution.

The effectiveness of a filter can be determined by comparing its
pareto optimal solutions that form a frontier, like in Figure 4, to the
pareto optimal solutions of another filter. The filter is considered more
effective if it allows for the smaller target size for a given delay. In
the following we analyze the filters detailed in subsection 5.1 indepen-
dently in four SRFs and three movement paces to get insight into their
effectiveness in these conditions.

5.3 Results
5.3.1 Filtering in the Target Coordinate System
Filters can be applied to the gaze signal in different coordinate systems.
For instance, mobile eye trackers usually have built-in online filters that
are applied in the eyes-in-head coordinate system [11]. For immersive
environments, it is recommended to apply filters in the gaze-in-world
coordinate system [9]. In practice, one can convert gaze data to any
coordinate system, perform filtering there, and then convert it back to,
for example, World coordinates to use for pointing.

The results of our computational experiment indicate that filtering
eye tracking data in the coordinate system other than the one where
the tracked target is located diminishes filters’ effectiveness (Table 3).
Indeed, filtering gaze data for the target affixed in the head SRF in the
gaze-in-world coordinate system (top right cell) leads to considerably
lower performance gains than when it is filtered in the head coordinate
system (top left cell)3. Similarly, filtering HeadDelay data in any coor-
dinate system other than HeadDelay leads to lower filters’ effectiveness
(next row), etc. These results happen because filtering gaze data in an
inappropriate coordinate system causes the gaze ray to fall out of sync
with the target. Let us take a closer look at one illustrative trial from

3We performed filtering only in the coordinate systems of those objects that
were tracked, i.e. the global coordinate system (World), the head, and the target.
That is why the values for Head-referenced targets filtered in the HeadDelay
coordinate system are missing along with other similar cases.

Table 3: How much the gaze pointing accuracy has improved regard-
ing the raw target sizes in percentage after applying filters in various
coordinate systems. Vertical axis represents the SRF data comes from,
horizontal axis — the coordinate system within which this data is filtered.
Each cell shows the highest improvement within the delay of up to 6
frames for Standing (S), Walking (W), and Jogging (J).

SRF \Filtered in Head HeadDelay Path World

Head
J: 53.95

W: 35.93
S: 14.74

x x
J: 1.41

W: 0.45
S: 3.71

HeadDelay
J: 4.38

W: 0.87
S: 6.69

J: 37.46
W: 25.81
S: 10.47

x
J: 7.62

W: 2.93
S: 6.09

Path
J: 5.02
W: 0.5
S: -0.12

x
J: 35.14

W: 24.25
S: 12.25

J: 6.32
W: 1.86
S: 10.67

World
J: 9.21

W: 2.22
S: 0.37

x x
J: 19.28

W: 12.14
S: 12.04

Fig. 3: Scanpaths of the raw signal and the signals filtered in the world
and head coordinate systems rendered as the angular distance in de-
grees relative to the target position (0, 0) for one trial from Jogging-Head.

Joggin-Head (see Figure 3). Since we filter both the gaze direction
along with the gaze origin, the gaze ray filtered in the world coordinate
system starts to follow behind, i.e. its origin, and thus the whole ray
starts moving relative to the actual position of the user’s head because
of the introduced delay. As a result, its movement repeats oscillations
of the head but with a time offset that leads the gaze ray to “swing
away” from the target (shown as ’Filtered (World)’ on Figure 3). It
does not happen if the data is filtered in the same coordinate system
where the target is located (shown as ’Filtered (Head)’ on Figure 3b).

In the following we conduct the analysis by applying the filters in
their respective SRFs.

5.3.2 Filters Comparison
The Figure 4 shows the pareto optimal solutions for the studied filters
which were plotted using the procedure discussed in subsection 5.2.
The values of the LP-SDn’s third parameter (Table 2) are presented
as separate plots to make the effect of the comparison frame n on the



Fig. 4: Pareto frontier plots for all the filters displayed separately for the four SRFs and three movement paces. To produce the plots, the filters were
applied in the same coordinate system in which the visual target was located. For comparison, a baseline accuracy, i.e. target size with no filter
applied, is represented by a gray dash-dotted horizontal line.



filter’s effectiveness clearer. The values of filters’ parameters for each
data point on the plots can be found in the supplementary materials.

It is not surprising that WA shows low effectiveness in all conditions,
with the triangular kernel being a bit more effective. Since the filter
lacks saccade detection or any adaptive mechanisms, its effectiveness
grows slower than that of the other filters.

1Euro demonstrates performance comparable to WA in all standing
conditions. However, on the go it is in between WA and more effective
filters with saccade detection. A possible explanation for this is that the
1Euro’s adaptive mechanism does not allow it to catch up with changes
as fast as saccade detection does in WA-SD and LP-SDn, no matter
its adaptation rate. It becomes clearer when looking at the filter’s
parameters, for example, for Walking-Head (the filter’s parameters
can be found in the supplementary materials). The application of
the filter leads to more accurate pointing when both minimum cutoff
frequency and adaption rate are at their lowest (both 0.01), however,
at the price of too long of a delay (112.1 frames). The middle range
with still acceptable delays of less than 12 frames (100 ms at 120 Hz) is
dominated by the adaptation rate of 1 which is not fast enough to quickly
react to a saccade but too fast to effectively suppress low frequency
movements, even when paired with the values of minimum cutoff
frequency lower than 0.5 Hz. The picture is similar in other on-the-go
conditions. Interestingly, the 1C filter’s exhibiting poorer effectiveness
in all standing conditions has nothing to do with movement pace. As
mentioned above, we use different angular distances to simulate a
saccade in the calculation of the delay (Table 1). Shorter saccades have
a lower velocity, making it harder to detect by the filter’s adaptation
mechanism. This does not happen to saccade detection-equipped filters,
because they do not use the input signal’s derivative to identify a gaze
shift but instead rely simply on the path went by gaze similar to I-DT
algorithms [50].

WA-SD consistently demonstrates high effectiveness in all conditions.
Taking a closer look at the filter’s parameters, it becomes clear that, with
few exceptions, the higher the saccade threshold s, the more accurate
gaze pointing gets. Notably, the range of optimal parameters changes
among various paces. It fills with the higher values of s, the higher
the pace. It makes sense, considering that the noise level in the raw
gaze output grows with the higher pace. To test this conjecture, we
conducted an additional analysis by calculating the angular distances
between successive gaze vectors in all tracking fixations separately for
each movement pace. Indeed, the results show that both the median
and 95th percentile grow at a higher pace (see Table 4 for detail). Thus,
the higher the saccade threshold, the less frequently the filter restarts,
i.e. its window size shrinks to 1 frame, during tracking fixation, and
therefore the filter becomes more effective.

LP-SDn’s effectiveness varies depending on the value of n. It is
useful to look at LP-SDn for what it is — a combination of the low-pass
filter, which can deliver heavy smoothing of the input signal, and the
n-back saccade detection algorithm. The base version — LP-SD —
with n=1 demonstrates effectiveness comparable to WA-SD everywhere
except for Head where LP-SD pulls ahead. In Head SRF, due to more
aggressive smoothing than the WA filter with the widest window can
deliver on this data, it removes the adverse low-frequency compensatory
eye movements and delivers the higher performance. However, with
higher values of n, LP-SDn’s performance is predicated on the fact that
its n-back saccade detection is less susceptible to the noise caused by
physical locomotion. Thus, combining this saccade detection algorithm
with other filters, for instance WA, can increase their performance too.

LP-WSD demonstrates higher effectiveness than LP-SDn with the
comparison frame n of 1 across multiple conditions (Figure 4). By
averaging out the last N data points to detect a saccade, it handles the
noise better, i.e. it does not restart the filter as frequently as LP-SD1
does. The other side of using window-based saccade detection is that
it introduces more delay compared to LP-SD2 and LP-SD3. In terms
of gaze pointing accuracy, LP-WSD catches up with them around the
14th frame and even goes ahead in such conditions as Walking-Path
and Walking-HeadDelay. However, 14 frames translate to 116 ms of
delay at 120 Hz which might be considered as quite high.

To outline more general trends in the analysis:

• Filtering is effective in increasing gaze pointing accuracy, i.e. in
lowering target size, in both stationary and on-the-go conditions.

• Filters that distinguish between saccades and fixations perform
better as is evident from the fact that effectiveness of 1Euro and
all filters with saccade detection grows faster compared to WA.

• Noise sensitivity of saccade detection is crucial on the go causing
more resilient LP-WSD and LP-SDn with higher values of n to
outperform LP-SD that is more susceptible to noise.

5.3.3 Effects of Pace, Distance, and Reference Frame
Our data indicates that:

• Filtering gets more effective the higher the movement pace (see
Table 3). We attribute this to the higher level of noise caused by
physical locomotion. According to Table 4, the higher the pace,
the greater the angular difference between two consecutive gaze
vectors which, in turn, leads to a lower tracking precision which
is supported by [34]. Heavily smoothing a less precise signal
gives a larger gain in the gaze pointing accuracy than smoothing
an already quite precise gaze signal.

• The range of compensatory eye movements affects filters’ perfor-
mance. The difference between the World and Path SRFs in both
on-the-go conditions is that on average the target is closer in Path
(1m) than in World (3.3m), thus leading to bigger angular move-
ment of the gaze vector for Path caused by head oscillations. That
might explain the differences in the filters’ performance between
these two SRFs. Notably, it is not the case with World while
Standing where the targets were located at 1m depth leading to a
comparable performance gain in respect to Path.

• Head in both on the go conditions favors heavy filtering (Table 3).
In this SRF, as was shown in prior work [4,34], the low-frequency
eye movements degrade tracking precision. Suppressing them
gives a significant boost in the gaze pointing accuracy, and that is
why in this SRF WA-SD with the linear kernel and LP-SDn with
the minimum cutoff frequencies below 0.5 Hz demonstrate better
effectiveness than their counterparts.

6 DISCUSSION

While we cannot directly compare our results with the results of Feit
et al. [16], where filters were applied to the 2D coordinates output
by remote eye trackers, we can still draw parallels. Our Standing
condition is the closest to the setup the authors had in their experiment.
In there, relative performance of WA and WA-SD resembles Feit et al.’a
results, however, the 1Euro’s effectiveness is lower. The reason for
this, as was mentioned in subsection 5.3, is the fact that we simulated
a saccade using the Gaussian function that combined with smaller
angular distance for this condition led to the poorer performance of the
1Euro’s adaptation mechanism which is not the case for Feit et al.’s
work. In the on-the-go conditions, specifically in the Head reference
frame as the one that resembles the authors’ setup the most because
of the absence of head rotation relative to the target, WA, WA-SD, and
1Euro comparative performance is similar to what was demonstrated by
Feit et al. showing that these online filters are quite robust to changes
in application environment.

6.1 Recommendations on Gaze Data Filtering in XR
Our findings suggest that when developing immersive applications that
use gaze direction as their primary means of input and are designed
to be used while moving, one should take great care of gaze signal
filtering. The issue of diminished filter performance when applied
outside the target’s SRF can be solved by relegating filtering to the
application. This means turning off the filtering built into an eye
tracker, because it is applied in the eyes-in-head coordinate system, and
applying filters in the SRF of the application’s UI. In case of a complex
spatial UI distributed across several SRFs, the coordinate system for
filtering should be chosen dynamically. Imagine an application where
a gaze-activated contextual menu is attached to the user’s hand [45, 49],



Table 4: Angular distances in degrees between consecutive gaze vectors for all tracking fixations and gaze shifts in the dataset depending on the
movement pace.

1-back 3-back
Tracking Fixations Gaze Shifts Tracking Fixations Gaze Shifts

Percentiles Median 75th 95th 5th 25th Median Median 75th 95th 5th 25th Median
Jogging 0.33 0.53 1.02 0.28 1.11 2.58 0.49 0.75 1.47 2.05 4.68 7.79
Walking 0.17 0.32 0.69 0.3 1.5 2.63 0.28 0.46 1 2.45 5.32 7.72
Standing 0.03 0.07 0.32 0.29 1.59 2.53 0.07 0.13 0.51 2.51 5.47 7.56

and after interacting with it, the user switches to work with World-
anchored content while approaching it. In this situation, the developer
can, using relative positions of the interactive zones of the menu and
virtual content, identify which one is closer to the raw gaze vector, and
then dynamically switch filtering from hand to world coordinate system.
The whole procedure should look like this:

1. Get an unfiltered output from an eye tracker in the eyes-in-head
coordinate system.

2. Fuse the output with the head position, getting two vectors: gaze
origin and direction (a.k.a. cyclopean eye), both in the gaze-in-
world coordinate system.

3. Identify at what part of the spatial UI the user is looking at using
both vectors from step 2, and thus identify the target coordinate
system for filtering.

4. Convert the gaze origin and the gaze direction from the gaze-in-
world to the target’s coordinate system.

5. Apply an online filter to both.

6. Convert both back to the gaze-in-world coordinate system and
use them for pointing.

The results of our experiment highlight the advantages of using
filters with saccade detection in step 5. Although the results detailed
in subsection 5.3 can guide XR developers in selecting the filters’
parameters, we caution against using too high values of the saccade
threshold. Ideally, the saccade threshold should be high enough not
to restart a filter because of the noise during tracking fixation but low
enough to identify the smallest gaze shifts as early as possible. The
data from Table 4 provides guidance in balancing the two. Using data
on real, not simulated gaze shifts in the dataset from [34], we calculated
the angular distances between consecutive gaze vectors for 1-back and
3-back saccade detection. When using the former, because the 95th
percentile for tracking fixations overlaps with the 5th percentile for
gaze shifts, we recommend using the values between the 75th and
25th percentiles, respectively (highlighted in Table 4). Choosing the
higher end of the interval leads to higher gaze accuracy (see the filter
parameters in the supplementary materials). Therefore, if, for instance,
jogging is anticipated, one should not select a saccade threshold higher
than 1.11°. For 3-back saccade detection, we recommend using the
95th percentile for tracking fixations and the 5th percentile for gaze
shifts, thus going as high as 2.45° if walking is anticipated, and 2.05° if
jogging is expected. The saccade threshold can even be dynamically
set depending on the current movement pace of the user.

An alternative approach to gaze pointing is motion correlation [60].
For gaze-based interaction, the concept implies using smooth pur-
suit [14,62] or vergence [51] eye movements to infer the object the user
is looking at. This approach can be advantageous during locomotion
because it is less reliant on the tracking trueness. If an XR developer
chooses to employ this type of interaction on the go, we believe our
results can still be used as guidance on selecting filter parameters. How-
ever, we recommend picking Pareto optimal solutions that lead to less
heavy filtering and lower delay to not suppress low-frequency pursuit
and vergence eye movements. That being said, we acknowledge that
filtering eye tracking data for use with the eye-based motion correlation
on the go requires further investigation.

6.2 Limitations and Future Work

The limitations of this work are threefold. Firstly, while we believe that
the conclusions we draw apply to all mobile video-based eye trackers,
the data was gathered using the specific hardware, i.e. the Tobii eye
tracker built into the HTC Vive Pro Eye VR headset. Secondly, our
estimation of the delay introduced by an online filter relies on saccade
simulation. While closely approximating a saccade, the Gaussian func-
tion we employed lacks variability of this oculomotor event observed
naturally. Thirdly, we have chosen a computational experiment as the
methodological approach for this work. Although the results of our sim-
ulation should closely resemble filter performance in real time, added
complexity of more naturalistic contexts may influence their efficacy.
Moreover, the dataset we used contains data collected in a controlled
lab environment devoid of external distractions and the activities people
usually perform during physical locomotion such as wayfinding and
navigating complex dynamic environments. More research is needed to
investigate the filters’ effectiveness in more ecologically valid settings.

7 CONCLUSION

In this work, we investigated whether the accuracy of gaze pointing
performed during walking and jogging can be improved by filtering.
For this purpose, we simulated the performance of well-known online
filters and the proposed low-pass filter with n-back saccade detection
on the dataset of participants fixating on targets positioned in the four
SRFs in an offline computational experiment. Our results clearly show
that applying filters in the target coordinate system increases the effec-
tiveness. Furthermore, they demonstrate that SRF and movement pace
affect filter performance. We argue that these considerations should be
taken into account when developing XR applications that are intended
to be used on the go.
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