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Abstract

Supervised machine learning methods require large-scale training datasets to

converge. Collecting and annotating training data is expensive, time-consuming,

error-prone, and not always practical. Usually, synthetic data is used as a feasible

data source to increase the amount of training data. However, just directly using

synthetic data may actually harm the model’s performance or may not be as

effective as it could be. This thesis addresses the challenges of generating large-scale

synthetic data, improving domain adaptation in semantic segmentation, advancing

video stabilization in adverse conditions, and conducting a rigorous assessment of

synthetic data usability in classification tasks. By contributing novel solutions to

these multifaceted problems, this work bolsters the field of computer vision, offering

strong foundations for a broad range of applications for utilizing synthetic data for

computer vision tasks.

In this thesis, we divide the study into three main problems: (i) Tackle

the problem of generating diverse and photorealistic synthetic data; (ii) Explore

synthetic-aware computer vision solutions for semantic segmentation and video

stabilization; (iii) Assess the usability of synthetically generated data for different

computer vision tasks.

We developed a new synthetic data generator called Silver. Photo-realism,

diversity, scalability, and full 3D virtual world generation at run-time are the key

aspects of this generator. The photo-realism was approached by utilizing the state-

of-the-art High Definition Render Pipeline (HDRP) of the Unity game engine. In

parallel, the Procedural Content Generation (PCG) concept was employed to create
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a full 3D virtual world at run-time, while the scalability (expansion and adaptability)

of the system was attained by taking advantage of the modular approach followed

as we built the system from scratch. Silver can be used to provide clean, unbiased,

and large-scale training and testing data for various computer vision tasks.

Regarding synthetic-aware computer vision models, we developed a novel

architecture specifically designed to use synthetic training data for semantic

segmentation domain adaptation. We propose a simple yet powerful addition to

DeepLabV3+ by using weather and time-of-the-day supervisors trained with multi-

task learning, making it both weather and nighttime-aware, which improves its mIoU

accuracy under adverse conditions while maintaining adequate performance under

standard conditions.

Similarly, we also proposed a synthetic-aware adverse weather video stabilization

algorithm that dispenses real data for training, relying solely on synthetic data. Our

approach leverages specially generated synthetic data to avoid the feature extraction

issues faced by current methods. To achieve this, we leveraged our novel data

generator to produce the required training data with an automatic ground-truth

extraction procedure.

We also propose a new dataset called VSAC105Real and compare our method

to five recent video stabilization algorithms using two benchmarks. Our method

generalizes well on real-world videos across all weather conditions and does not

require large-scale synthetic training data.

Finally, we assess the usability of the generated synthetic data. We propose

a novel usability metric that disentangles photorealism from diversity. This new

metric is a simple yet effective way to rank synthetic images. The quantitative

results show that we can achieve similar or better results by training on 50% less

synthetic data. Additionally, we qualitatively assess the impact of photorealism and

evaluate many architectures on different datasets for that aim.
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Chapter 1

Introduction

The recent remarkable achievements of Artificial Neural Networks (ANN) in

addressing complex problems have motivated researchers to extend their application

to machine perception or computer vision challenges. Simultaneously, advancements

in chip design, microelectronics, and the advent of General-Purpose Graphics

Processor Architectures, such as the General Purpose Graphics Processing Unit

(GPGPU), have facilitated the training of deep neural networks with millions or yet

billions of parameters.

These sophisticated ANNs, characterized by their heightened non-linearity, excel

in accurately approximating the underlying functions or phenomena inherent in

complex vision problems, including semantic segmentation, instance segmentation,

and object recognition. Regrettably, the training of these deep learning models

demands an extensive volume of data alongside their corresponding annotations or

ground-truths. The process of locating, gathering, and annotating suitable data is

burdensome, time-intensive, error-prone, costly, and raises privacy concerns.

The deficiency in diverse, high-quality, and precisely labeled data can be

attributed to the aforementioned challenges. Unfortunately, these issues contribute

significantly to major data quality concerns within the realm of computer vision,

serving as a notable impediment to achieving optimal performance in practical

computer vision models.
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Chapter 1. Introduction

Thus, in response to these challenges, we introduce novel synthetic data-

generation pipelines and a new usability metric that ranks synthetic images based

on their usability. We propose new synthetic-aware architectures and training

procedures to better leverage synthetic data. Furthermore, we also address the

significance of selecting the right images for training ML models, emphasizing the

balance between photorealistic representation and diverse content. In this thesis, we

focus specifically on three fundamental downstream computer vision tasks: semantic

segmentation, video stabilization, and classification.

1.1 Research Questions

This thesis tries to answer the following essential research questions:

• Can leading-edge game engines like Unity effectively address data deficiency in

computer vision by enabling the development of a real-time, three-dimensional

data generator for synthetic datasets?

• Can we develop methods that can leverage synthetic data in a better way for

three major computer vision tasks: classification, semantic segmentation, and

video stabilization?

• How effective our developed methods are and why?

1.2 Synthetic Data Generator

A promising solution to the data deficiency problem seems to be in the leading-edge

game engines like Unity (Unity, 2024), Unreal Engine (Unreal Engine, 2024), and

CryEngine (Cry Engine, 2024). Thus, leveraging the powerful tools of the Unity

game engine, we developed a new data generator that creates three-dimensional,

photo-realistic virtual worlds, procedurally at run-time (see Chapter 4). The

generator supports various computer vision tasks such as semantic segmentation,
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instance segmentation, depth estimation, video stabilization, and others. It allows

researchers, with no computer graphics background, to generate large-scale synthetic

datasets for training or testing their own computer vision models. Silver, the data

generator proposed in this thesis, is a pioneer work using HDRP of the Unity

game engine to build a 3D full and detailed virtual world at run-time for synthetic

data generation. Unlike other frameworks, Silver considers data generation as an

online problem which opens the door for using synthetic data with online learning

algorithms, too. The work presented in Chapter 4 appeared as a workshop paper

in Kerim, Soriano Marcolino, and R. Jiang (2021). The source code for Silver is

accessible on GitHub at the following link: https://github.com/A-Kerim/Silver.

1.3 Synthetic-Aware Semantic Segmentation

To investigate the usability of our generated synthetic data and the efficacy

of our synthetic-aware computer vision approach, we developed a synthetic-

aware semantic segmentation architecture (see Chapter 5). In more detail, we

developed a novel synthetic-aware training procedure that can be used to train

on both synthetic and real data simultaneously. In particular, we significantly

improved DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018) robustness on adverse

conditions by making its encoder both weather and nighttime aware. We also

extended the Silver simulator (see Chapter 4) to generate more photo-realistic

and diverse adverse weather conditions and increase the supported semantic

segmentation classes. Leveraging our extended version of Silver, we generated

a new synthetic semantic segmentation dataset, the AWSS, composed of photo-

realistic annotated images spanning foggy, rainy, and snowy weather conditions

and nighttime attributes. The work presented in Chapter 5 appeared as a

conference paper in Kerim, Chamone, et al. (2022). The source code for Silver

is accessible on GitHub at the following link: https://github.com/lsmcolab/

Semantic-Segmentation-under-Adverse-Conditions.
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1.4 Synthetic-Aware Video Stabilization

While synthetic data has been used successfully as a complement or alternative to

real data, developing computer vision architectures that are specifically targeted

to leverage synthetic data is still overlooked in the field. Thus, in this thesis

we propose a novel synthetic-aware video stabilization method, achieving state-

of-the-art results on real videos while being trained only on synthetic videos

(see Chapter 6). We also extend the Silver generator (see Chapter 4) to be

capable of producing specially designed training videos for video stabilization task.

Furthermore, we provide a new video stabilization dataset, VSAC105Real, composed

of real videos spanning foggy, rainy, snowy weather, and nighttime attributes. This

dataset helps researchers to accurately assess the performance of video stabilization

algorithms under adverse conditions. The work presented in Chapter 6 appeared

as a conference paper in Kerim, Ramos, et al. (2024). The source code for

Silver is accessible on GitHub at the following link: https://github.com/A-Kerim/

SyntheticData4VideoStabilization_WACV_2024.

1.5 Usability of Synthetic Data

While synthetic data has been showing great progress recently, there is still a

great urge to assess the usability of these synthetically generated data. For that

aim, we proposed a novel training procedure and usability metric that disentangles

photorealism from diversity. We show that our metric is a simple yet effective way

to rank synthetic images based on their usability (see Chapter 7). Furthermore,

we propose a new pipeline for generating synthetic data by integrating Large

Language Models, specifically Chat Generative Pre-trained Transformer (ChatGPT-

3.5 ) (OpenAI, 2023), with Stable Diffusion (Rombach et al., 2022). The quantitative

results show we can achieve similar or better results by training on 50% less synthetic

data. Additionally, we quantitatively assess the impact of photorealism on synthetic

data usability. We perform an extensive set of experiments by evaluating six different
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architectures on three different datasets to assess the effectiveness of our metric and

approach. The work presented in Chapter 7 has been submitted to CVPR as a

conference paper (currently under review) as detailed in Kerim, Marcolino, et al.

(2024).

1.6 Navigating the Dissertation

This thesis is structured into eight chapters to provide a comprehensive under-

standing of the research presented in this thesis. In Chapter 2, we provide the

necessary background to understand the research presented in this thesis. We then

delve into the literature review in Chapter 3, where we examine relevant synthetic

data generation methods, semantic segmentation, and video stabilization state-of-

the-art methods, breakthroughs, emerging trends, and existing gaps in the field.

Chapter 4 outlines our synthetic data generator. Moving forward, Chapter 5 presents

our synthetic-aware semantic segmentation methodology. Similarly, Chapter 6

illustrates our synthetic-aware approach to video stabilization. Finally, Chapter 7

presents our second novel synthetic data generation and training pipeline, usability

metric, and its applications. Finally, in the concluding chapter, Chapter 8, we

provide our final thoughts, conclusions, possible extensions, and discussions for

future work directions.
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Chapter 2

Background

Any structure must have a strong foundation. The cornerstones anchor the

foundation. For some reason the cornerstones that I chose to begin with I

never changed.

John Wooden

In this chapter, we discuss the relevant background for this thesis. we will

embark on a comprehensive introduction to machine learning (ML) in Section 2.1.

Building upon this understanding, we will address the contemporary challenges that

permeate the landscape of modern ML, setting the stage for a focused examination

in subsequent sections.

Section 2.2 will critically analyze the challenges and complexities associated with

the annotation of real data, shedding light on the details that accompany the process.

Moving forward, Section 2.3 will illustrate the methodologies of ground truth

generation, a crucial element in ensuring the accuracy and reliability of ML models.

Section 2.4 will pivot towards introducing synthetic data generation and exploring

innovative approaches to generate artificial datasets. Following this, Section 2.5

defines and briefly introduces Realism, Photorealism, and Diversity in synthetic

data and ML.

Sections 2.6 and 2.7 will extend the discussion into the realms of semantic

segmentation and video stabilization, providing a solid understanding of these
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advanced applications, respectively. Finally, in Section 2.8, the chapter will draw

to a close with a concise overview of synthetic data usability metrics, encapsulating

the essential criteria for evaluating the efficacy of synthetic datasets in the realm of

ML.

This comprehensive exploration aims to equip the reader with a multifaceted

understanding of key concepts and challenges, laying the groundwork for subsequent

chapters.

2.1 Artificial Intelligence, Machine Learning, and

Deep Learning

Artificial intelligence (AI) is an area of computer science that study the creation of

intelligent machines (Russell and Norvig, 2016). AI involves replicating human-like

intelligence in computers or devices. It is focused on creating software that performs

tasks that usually require intelligence when performed by people (Kurzweil et al.,

1990). This involves complex tasks such as perception (Boff, Kaufman, and Thomas,

1986; Hosseini, 2024), reasoning and generalization (Evans, 2002; Johnson-Laird,

Khemlani, and Goodwin, 2015), planning, and interaction with the environment.

Despite our remarkable progress in understanding these processes, much remains

unknown about the intricacies of human intelligence (Neisser et al., 1996), including

functions like vision and reasoning. Consequently, the aim to develop intelligent

machines is a relatively recent in human history.

Learning-based AI, particularly ML, has emerged as a fundamental direction

in AI research. ML is a subset of AI that enables computer programs to learn

from experience, without explicit rules prescribed by humans. This contrasts

with traditional rule-based AI, which is often challenging and time-consuming to

engineer, especially when dealing with complex tasks like computer vision and

natural language processing.

ML encompasses various types, including supervised, unsupervised, and rein-
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forcement learning, each tailored to different learning paradigms and problem do-

mains. Deep learning (DL), a subset of ML, has become central to many remarkable

AI applications. DL utilizes artificial neural networks (ANNs) inspired by the

human brain, with multiple layers that progressively learn abstract representations

of data. This hierarchical learning enables DL models to discern complex patterns

and structures in data.

The depth of ANNs, reflected in the number of layers, directly influences their

capacity to model complex relationships in data. For instance, well-known and state-

of-the-art DL models like AlexNet, VGGNet, ResNet-50, Transformers (e.g., ViT

(Dosovitskiy, Beyer, et al., 2020) and Swin Transformer (Z. Liu et al., 2021) ) consist

of increasingly deeper architectures, allowing them to capture more sophisticated

patterns and correlations from the training data which help models to achieve more

accurate predictions.

The main issue with state-of-the-art DL models is that they require a large-scale

training dataset to converge because they usually have a tremendous number of

parameters (i.e., weights and biases) to tweak to minimize the loss. In ML, loss is

a way to penalize wrong predictions. At the same time, it is an indication of how

well the model is learning the training data. Collecting and annotating such large

datasets is extremely hard and expensive.

Nowadays, using synthetic data as an alternative or complementary to real data

is a hot topic. It is a trending topic in research and industry. Many companies

such as Google (Google’s Waymo utilizes synthetic data to train autonomous cars)

and Microsoft (they use synthetic data to handle privacy issues with sensitive

data) started recently to invest in using synthetic data to train next-generation

ML models (Merfeld, Wilhelms, and Henkel, 2019).

8



2.2. Issues with Real Data Annotation Process

2.2 Issues with Real Data Annotation Process

As we have seen so far, annotations are critical to both training and testing. Thus,

any mislabeling, biased annotations, or insufficient annotated data will drastically

impact the learning and evaluation process of your ML model. As you can expect,

the annotation process is time-consuming, expensive, and error-prone, and this is

what we will see in this section.

2.2.1 The annotation process is expensive

To train state-of-the-art computer vision or natural language processing (NLP)

models, you need large-scale training data. For example, BERT (Devlin et al.,

2018) was trained on BooksCorpos (800 million words) and Wikipedia (2,500 million

words). Similarly, ViT (Dosovitskiy, Beyer, et al., 2020) was trained on ImageNet

(14 million images) and JFT (303 million images). Annotating such huge datasets

is extremely difficult and challenging.

Furthermore, it is time-consuming and expensive. It should be noted that the

time required to annotate a dataset depends on three main elements:

• The task or problem;

• Dataset size;

• Granularity level.

Next, we will be looking at each of these in more detail.

2.2.1.1 Task

For example, annotating a dataset for a binary classification problem is easier and

requires less time compared to annotating a dataset for semantic segmentation.

Thus, the nature of the task also imposes clear difficulty on the annotation process.

Even for the same task, let us say semantic segmentation, annotating a single image

under standard weather conditions and normal illumination takes approximately
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90 minutes for the Cityscapes dataset (Cordts et al., 2016). However, doing

similar annotation for images under adverse conditions such as snow, rain, and

fog or at low illumination such as nighttime takes up to three hours for the ACDC

dataset (Sakaridis, D. Dai, and Van Gool, 2021).

2.2.1.2 Dataset size

As expected, the larger the dataset, the harder to annotate. The complexity comes

from managing such a huge dataset and ensuring the same annotation and data

collection protocol is being followed by a large group of annotators. These annotators

may have different languages, backgrounds, experiences, and skills. Indeed, guiding

such a huge, diverse team, probably in different geographical locations, is not simple.

2.2.1.3 Granularity level

The more detail you want your ground truth to capture, the more work for the

annotators to perform. Let us take visual object tracking as an example. Annotating

images for single-object tracking is easier than multi-object tracking. We find the

same thing for semantic segmentation, too. Annotating a semantic segmentation

dataset with three classes is easier than ten classes. Furthermore, the type of class

also creates difficulty for the annotator. In other words, small objects may be harder

to differentiate from the background and thus harder to annotate. Next, we look at

the main reasons behind noisy ground truth issues commonly seen in real datasets.

2.2.2 The annotation process is error-prone

In this section, we shed light on the key reasons behind issues in manually annotated

real data. These reasons inlcude:

• Human factor;

• Recording tools;

• Scene attributes;

10



2.2. Issues with Real Data Annotation Process

• Annotation tools.

2.2.2.1 Human factor

The most important element in the annotation process is humans. However, we

are limited by our perceptions of the world. Humans struggle to perceive with the

naked eye the visual content in scenarios such as low illumination, cluttered scenes,

or when objects are far from the camera, transparent, and so on. At the same time,

miscommunication and misunderstanding of annotation protocol is another major

issue. For example, assume you asked a team of annotators to annotate images

for a visual object-tracking training dataset. You aim only to consider the person

object for this task. Some annotators will annotate humans without objects while

other annotators may consider other objects carried by humans as part of the object

of interest (see Figure 2.1). Furthermore, some annotators may consider only the

unoccluded part of the human. This will cause a major inconsistency in the training

data and the model will struggle to learn the task and will never converge.

Figure 2.1: Samples of annotation errors due to unclear annotation protocol.

2.2.2.2 Recording tools

If the recoding camera is shaky, the captured images will be blurred and thus the

annotators will fail to accurately identify the actual pixels of the object from the

background. Furthermore, the intrinsic and extrinsic parameters of the camera

drastically change how the 3D scene will be projected into a 2D image. The
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focal length of the lens, shutter speed, lens distortion, and others all introduce

certain errors in the annotation process. In other words, the objects annotated by

annotators may not exactly correspond to the same object in the raw image or even

in the 3D world.

2.2.2.3 Scene attributes

Attributes such as weather conditions and time of the day all play an important

role in the annotation process. As we have mentioned earlier, clear weather in the

daytime may help the annotators to clearly identify objects as compared to adverse

conditions at nighttime. In parallel to this, crowded and cluttered scenes are much

more difficult to annotate and more subject to errors (see Figure 2.2).

Figure 2.2: Scene attribute: crowded scenes are more subject to annotation errors.

2.2.2.4 Annotation tools

To enhance the annotation process, there are various annotation tools, such as

Labelbox, Scale AI, Dataloop, HiveData, and LabelMe. Some of the annotation

tools integrate AI components to optimize the annotation process by assisting the
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human annotator, such as Labelbox. While these AI-assisted methods are promising,

they are not practical and reliable yet. In other words, the human annotator still

needs to verify and correct the predictions. Additionally, some of these methods

are slow and far from able to provide real-time assistance. In addition to this, if

the problem is novel, the AI assistance will not work as expected because the AI

model was not trained on similar scenarios. Given the task, dataset size, and team

specifications, a suitable annotation tool should be selected. The annotation tool

should be the same for all annotators to ensure consistency among the annotators

and the created ground truth.

2.2.3 The snnotation process is biased

To understand the world and to reason about it efficiently, our brains build

fast decisions and judgments based on our previous experience and systems of

beliefs (Dietrich, 2010). ML models learn to reason and perceive the world

using the training data. We try to collect and annotate the data objectively.

However, unintentionally, we reflect our biases on the data we collect and annotate.

Consequently, ML models also become biased and unfair. We will discuss the three

common factors of annotation process bias next:

• Understanding the problem and task

• Background, ideology, and culture

• Subjectivity and emotions

2.2.3.1 Understanding the problem and task

The annotator may not know the problem, may not understand the data, or

understand why the data is collected and annotated. Thus, they may make wrong

assumptions or misinterpret data. Furthermore, given the differences between the

annotators, they may understand the problem differently.
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2.2.3.2 Background, ideology, and culture

This is a critical factor behind inconsistency in the annotation process. Let us

imagine that you asked a group of 10 annotators to annotate a dataset for action

recognition. You have only two actions: confirmation or negation. Your annotation

team members are from the UK, Bulgaria, and India. The Bulgarian annotators will

understand and annotate head shaking as “Yes” and nodding as “No.” The other

annotators will do the opposite. Thus, you will have wrong training data and your

model will not learn this task. There are also other scenarios where the bias is not

clear and cannot be easily identified, and this is the hardest issue under this scope.

2.2.3.3 Subjectivity and emotions

For some problems such as text sentiment analysis, which is a well-known NLP

technique used to understand textual data, a human annotator may be biased

toward certain political parties, football teams, genders, and ethnicities. Thus, the

annotations will be biased to the annotator’s point of view as well.

2.3 Ground Truth Generation Procedure for Com-

puter Vision

In this section, we will look at different ML tasks and the followed procedures to

generate their corresponding ground truth.

Computer vision aims at enabling computers to see using digital images. It is not

surprising to know that vision is one of the most complex functionalities performed

by our brain. Thus, imitating vision is not simple, and it is rather complex for

state-of-the-art computer vision models.

Computer vision tasks include semantic segmentation, instance segmentation,

optical flow estimation, depth estimation, normal map estimation, visual object

tracking, and many more. Each task has its own unique way of generating the
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corresponding ground truth. Next, we will see samples of these tasks.

2.3.1 Image classification

The training images for this task usually contain one object, which is the object of

interest. The annotation for this task is simply looking at each image and selecting

one class or more describing the object in the image.

2.3.2 Semantic and instance segmentation

For semantic and instance segmentation, the annotator needs to assign a class label

for each pixel in the image. In other words, the annotator is asked to partition

the image into different segments where each segment demonstrates one class for

semantic segmentation and one instance for instance segmentation.

2.3.3 Object detection and tracking

In object detection and tracking, the annotator draws a bounding box around each

object in the image. Object tracking works using video to track an initially selected

object throughout the video. On the other hand, object detection works on images

to detect objects as required by the task.

2.3.4 Optical flow estimation

Optical flow is the relative apparent motion of objects from one frame to another.

The motion could be because of objects or camera motion. Optical flow has many

key applications in tasks, such as structure from motion, video compression, and

video stabilization. Structure from motion is widely used in 3D construction,

and navigation and manipulation tasks in robotics, augmented reality, and games.

Video compression is essential for video streaming, storage, and transmission; video

stabilization, on the other hand, is crucial for timelapse videos, and videos recorded
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by drones or head-mounted cameras. Thus, optical flow has enormous applications

in practice.

Please note that it is extremely hard to generate ground truth for optical flow.

Some approaches apply complex procedures to achieve this under many assumptions,

such as an indoor environment and a limited number of objects and motions.

2.3.5 Depth estimation

Depth estimation is the task of measuring the distance of each pixel in the scene

to the camera. It is essential for 3D vision and has many applications, such as

3D scene reconstruction, autonomous cars and navigation, medical imaging, and

augmented reality. Usually, there are two major approaches for depth estimation:

one uses monocular images and the other is based on stereo images utilizing epipolar

geometry. Similar to optical flow, generating ground truth for depth estimation is

extremely hard in the real world. Therefore, for optical flow and depth estimation,

most of the standard datasets and benchmarks used are synthetic datasets. For

optical flow, we can recognize synthetic datasets such as FlyingChairs (Dosovitskiy,

Fischer, et al., 2015), FlyingThings3D (Mayer et al., 2016), and Kubric (Greff et al.,

2022). For depth estimation, we can mention Virtual KITTI (Gaidon et al., 2016),

DENSE (Javier Hidalgo-Carrio and Scaramuzza, 2020), and DrivingStereo (G. Yang

et al., 2019).

2.4 Synthetic Data Generation

Computer vision, a field dedicated to endowing machines with the ability to interpret

and understand visual information, relies heavily on the availability of high-quality

training data. However, the traditional methods of collecting and annotating large-

scale datasets for diverse computer vision tasks pose significant challenges. To

overcome these challenges, researchers have turned to synthetic data generation

as a compelling alternative, offering the means to create artificial datasets that
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mirror real-world scenarios. This section provides an in-depth exploration of

various synthetic data generation approaches in computer vision, delving into the

methodologies and advancements that underpin this transformative paradigm. In

this part, we will introduce the main synthetic data generation approaches:

• Simulators and rendering engines;

• Generative adversarial networks;

• Video games;

• Diffusion models.

2.4.1 Leveraging simulators and rendering engines to gen-

erate synthetic data

2.4.1.1 Simulators

A simulator is a software or a program written to imitate or simulate certain

processes or phenomena of the real world. Simulators usually create a virtual world

where scientists, engineers, and other users can test their algorithms, products, and

hypotheses. At the same time, you can use this virtual environment to help you

learn about and practice complex tasks. These tasks are usually dangerous and

very expensive to perform in the real world. For example, driving simulators teach

learners how to drive and how to react to unexpected scenarios such as a child

suddenly crossing the street, which is extremely dangerous to do in the real world.

Simulators are used in various fields, such as aviation, healthcare, engineering,

driving, space, farming, and gaming. In Figure 2.3, you can find examples of these

simulators.

2.4.1.2 Rendering and game engines

Renders and game engines are software used mainly to generate images or videos.

They are composed of various subsystems responsible for simulating, for example,
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Figure 2.3: Examples of simulators utilized in driving, engineering, healthcare, and

farming.

physics, lighting, and sound. They are usually used in fields such as gaming,

animation, virtual reality, augmented reality, and the metaverse. Unlike simulators,

game engines can be used to create virtual worlds that may or may not be

designed to mimic the real world. Game engines are mainly used to develop games.

However, they can be utilized for training and simulation, films and television, and

visualization. In Figure 2.4, you can see some examples of modern rendering and

game engines.

2.4.1.3 Generating synthetic data

To generate synthetic data with its corresponding ground truth, it is usually

recommended to follow these steps:

• Identify the task and ground truth to generate;

• Create the 3D virtual world in the game engine;

• Set the virtual camera;

• Add noise and anomalies;

• Set the labeling pipeline;
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Figure 2.4: Examples of modern rendering and game engines.

• Generate the training data with the ground truth.

2.4.2 Exploring generative adversarial networks

2.4.2.1 Generative adversarial networks (GANs)

In this section, we will introduce GANs and briefly discuss the evolution and

progression of this particular data generation method. Then, we will explain the

standard architecture of a typical GAN and how they work. The concept of GANs

was introduced in the 2014 paper Generative Adversarial Networks (Goodfellow

et al., 2020), by Ian J. Goodfellow and his research team. In the same year,

conditional GANs were introduced, allowing us to generate more customizable

synthetic data. Then, Deep Convolutional GANs (DCGANs) were suggested in

2015, which facilitated the generation of high-resolution images.

After that, CycleGANs were proposed in 2017 for unsupervised image-to-image

translation tasks. This opened the door for enormous applications such as domain
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Figure 2.5: A typical architecture and training process of GANs.

adaptation. StyleGAN was introduced in 2019, bringing GANs to new fields such

as art and fashion. GANs have also been showing impressive progress in the field

of video synthesis. In fact, the recent work by NVIDIA is a testament to their

tremendous potential (T.-C. Wang, Mallya, and M.-Y. Liu, 2021). This work shows

that GANs can now recreate a talking-head video using only a single source image.

Next, we delve into the architecture of GANs. Most DL methods and

architectures are designed to predict something. It could be weather conditions,

stock prices, object classes, or something else. However, GANs were proposed to

generate something. It could be images, videos, texts, music, or point clouds. At

the heart of this capability lies the essential problem of learning how to generate

training samples from a given domain or dataset. GANs are DL methods that can

learn complex data distributions and can be leveraged to generate an unlimited

number of samples that belong to a specific distribution. These generated synthetic

samples have many applications for data augmentation, style transfer, and data

privacy.

2.4.2.2 GAN training algorithm

The training algorithm is a crucial aspect of enabling GANs to generate useful

synthetic data. The following is a step-by-step procedure that can be utilized to

train GANs as shown in Figure 2.5:
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• Create z by sampling a random noise following a suitable noise distribution

such as uniform, Gaussian, Binomial, Poisson, Exponential, Gamma, and

Weibull distributions.

• Feed z to the generator to produce a synthetic or fake sample, x fake.

• Pass both x fake and x real to a switch block, which randomly selects one of

its inputs and passes it to the discriminator.

• The discriminator classifies the given sample as real or fake.

• Calculate the error.

• Backpropagate the error to both the generator and discriminator.

• Update the weights of the generator and discriminator

2.4.3 Video games as a source of synthetic data

Video games are interactive electronic games used primarily for entertainment. The

player usually interacts with game elements to achieve an objective. The volume,

quality, and quantity of games released each year have grown exponentially in recent

years. Video games are now utilized in education, training, rehabilitation, personal

development, and just recently in ML research. Specifically, they are presented as a

rich and excellent synthetic data resource for training and testing ML models.

This synthetic data generation approach transfers the problem from creating

virtual worlds to generate synthetic data to manipulating a video game to generate

synthetic data instead. This method presents a convenient and efficient way to

generate synthetic data. Examples of video games that have been leveraged for this

purpose are listed as follows:

• Grand Theft Auto V: Playing for Data: Ground Truth from Computer

Games (Richter, Vineet, et al., 2016).
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Figure 2.6: Examples of video game genres.

• Minecraft: Exploring the Impacts from Datasets to Monocular Depth

Estimation (MDE) Models with MineNavi (X. Wang et al., 2020).

• Half-Life 2: OVVV: Using Virtual Worlds to Design and Evaluate Surveil-

lance Systems (Taylor, Chosak, and Brewer, 2007).

The diversity in video game genres, as shown in Figure 2.6, makes generating

various and rich synthetic data by utilizing video games a more attractive option

for researchers. There are various ways to leverage video games in ML applications,

such as the following:

• Utilizing games for general data collection;

• Utilizing games for social studies;

• Utilizing simulation games for data generation.

2.4.4 Exploring diffusion models for synthetic data

Diffusion Models (DMs) are generative models that were recently proposed as a

clever solution to generate images, audio, videos, time series, and texts. DMs

are excellent at modeling complex probability distributions, structures, temporal

dependencies, and correlations in data. The initial mathematical model behind
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DMs was first proposed and applied in the field of statistical mechanics to study the

random motion of particles in gases and liquids. DMs are powerful generative models

that can usually generate higher-quality and more privacy-preserving synthetic data

compared to other approaches. Additionally, DMs rely on strong mathematical and

theoretical foundations.

One of the first works to show that DMs can be utilized to generate photorealistic

images was Denoising Diffusion Probabilistic Models (Ho, Jain, and Abbeel, 2020),

which was proposed by researchers from UC Berkeley. This pioneering work was

followed by another work by OpenAI titled Diffusion Models Beat GANs on Image

Synthesis (Dhariwal and Nichol, 2021), showing that DMs are better at generating

photorealistic synthetic images. Then, other researchers started to explore the

potential of these DMs in different fields and compare them to VAEs and GANs.

Variational Autoencoders (VAEs) are one of the earliest solutions for generating

synthetic data. They are based on using an encoder to encode data from a high-

dimensional space (such as RGB images) into a latent low-dimensional space. Then,

the decoder is used to reconstruct these encoded samples from the latent space to

the original high-dimensional space. In the training process, the VAE is forced to

minimize the loss between the original training sample and the reconstructed one

by the decoder.

Assuming the model was trained on a sufficient number of training samples, it

can then be used to generate new synthetic data by sampling points from the latent

space and using the decoder to decode them, from the latent low-dimensional space

to the high-dimensional one, as shown in Figure 2.7.

Before we shift our focus to semantic segmentation, we define three essential

concepts and terms used throughout this thesis: Realism, Photorealism, and

Diversity.

23



Chapter 2. Background

Figure 2.7: The training process and architectures of the main generative models –

VAEs, GANs, and DMs.

2.5 Realism, Photorealism, and Diversity

In this section, Realism, Photorealism, and Diversity concepts are defined and

explained.

2.5.1 Realism

According to the Merriam-Webster dictionary, Realism is defined as “concern for

fact or reality and rejection of the impractical and visionary”. Many researchers

argue that making a realistic image or scene is an art, not a science (Ferwerda,

2003; Mackinlay et al., 1988). Therefore, it is extremely hard to come up with a

closed-form mathematical expression or definition of realism. Realism, nevertheless,
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Figure 2.8: Photorealistic rendering of a nonrealistic scene, generated using DeepAI.

in the synthetic data field is essential to generate useful synthetic images and can

be understood in the same way. When the virtual world is created, it is essential to

focus on the level of realism in the scene. In other words, objects’ sizes, proportions,

locations, movement, colors, and other properties must imitate their counterpart in

the real world. Otherwise, even if the synthetic images are photorealistic, they may

not be necessarily useful. A descriptive image showing a nonrealistic scene rendered

using a highly photorealistic approach is shown in Figure 2.9. .

2.5.2 Photorealism

Let us assume that we built a realistic virtual world. However, we use non-

photorealistic rendering (NPR) or a highly stylized rendering pipeline to render

the scene as shown in Figure 2.9. The resultant generated images will be non-
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photorealistic but capture a realistic scene. Therefore, they will not be useful,

too. One of the early aims of computer graphics was to generate images that

are indistinguishable from photographs (Rademacher et al., 2001). Photorealism

involves not only capturing the visual appearance of objects and scenes but also

simulating realistic light interactions with scene elements, medium, and environment

(e.g., fog, rain, snow) between the light source and the camera, and surface textures

to produce highly convincing visual results for the human eye.

Merriam-Webster dictionary defines photorealism as “the quality in art (such

as animation or painting) of depicting or seeming to depict real people, objects,

etc. with the exactness of a photograph”. In computer graphics, photorealistic

rendering techniques usually strive to replicate the optical characteristics of real-

world cameras, lighting setups, and physical properties of objects materials. When

generating photorealistic synthetic images for training or testing computer vision

models, images that are perceptually similar to real photographs are considered

more photorealistic. Training ML models on photorealistic images of realistic virtual

scenes helps these models mitigate the synthetic-to-real or real-to-synthetic domain

shift problems.

2.5.3 Diversity

The positive effect of Diversity on ML model generalization in the real world is

well-known and widely studied in the field of ML (Gong, Zhong, and W. Hu,

2019; Hyontai, 2018; T. Chen et al., 2022). Data diversity refers to the degree of

variability or dissimilarity present within a dataset. For example, it describes how

much samples, features, or images, represent distinct characteristics or properties

compared to other samples. Let us change our focus to the diversity of synthetic

data for computer vision applications and tasks. Let us also link it with what we

have discussed about realism and photorealism.

First, let us suppose we have a realistic virtual scene and we are using a state-

of-the-art photorealistic rendering pipeline to render the scene. Is that sufficient to
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Figure 2.9: A non-photorealistic rendering of a realistic scene, generated using

DeepAI.

generate useful synthetic images? The answer is no, not necessarily. We need also

to ensure that our scene and generated data are diverse. For instance, using thirty

3D car models in your scene rather than only three 3D models is better in terms of

diversity.

Diversity in this context refers to the variation present within a virtual scene,

dataset or a set of generated images. Beyond intensity and surface texture

variations, diversity encompasses a wide range of factors such as geometric variations

(e.g., different shapes, sizes, orientations), object-level variations (e.g., various

object categories, poses, configurations), and contextual variations (e.g., different

backgrounds, lighting conditions, occlusions). In computer vision and ML, ensuring

diversity in datasets is crucial for robust model training and generalization, as it
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exposes models to a wide spectrum of visual conditions and scenarios, helping them

learn more robust and versatile representations.

In summary, for synthetic images to be useful for training and testing computer

vision models, they need to be realistic, photorealistic, and diverse. Throughout

this thesis and for simplicity, we mean by photorealistic images the images that are

photorealistic and capture a realistic scene.

2.6 Semantic Segmentation

Semantic segmentation is a computer vision task that involves classifying and

labeling each pixel in an image with a corresponding class label. Unlike image

classification, where the goal is to assign a single label to an entire image, semantic

segmentation aims to understand the content of an image at a pixel level.

In semantic segmentation, the objective is to partition an image into meaningful

segments or regions and assign a specific semantic label to each segment. The

semantic labels typically represent object categories, such as “person,” “car,” and

“tree.” The result is a detailed and pixel-level understanding of the scene, enabling a

computer vision system to differentiate between various objects and their boundaries

as shown in Figure 2.10.

Semantic segmentation has numerous applications, including autonomous driv-

ing, medical image analysis, robotics, scene understanding, and augmented reality.

For example, in autonomous driving, semantic segmentation helps identify and

classify objects on the road, such as pedestrians, vehicles, and traffic signs. Then,

certain decisions can be taken by specific algorithms.

It should be noted that many state-of-the-art semantic segmentation meth-

ods leverage deep learning techniques, particularly convolutional neural networks

(CNNs). These networks learn hierarchical features to capture spatial dependencies

and patterns within images, making them well-suited for complex segmentation

tasks. As we know, training and evaluating semantic segmentation models often
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Figure 2.10: Visualizing of a training sample from the ACDC Dataset: A)

RGB image, B) Semantic segmentation ground truth, and C) Overlay for clear

understanding of pixel-level annotations.

require large annotated datasets with pixel-level labels.

Semantic segmentation plays a crucial role in advancing computer vision

applications by providing a more detailed and context-aware understanding of visual

data. It is an essential component in various real-world systems where precise scene

understanding is required.
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2.6.1 DeepLabV3+ architecture

DeepLabV3+ is a state-of-the-art and widely known semantic segmentation architec-

ture. It builds on DeepLabV3 (L.-C. Chen, Papandreou, Schroff, et al., 2017) and it

is especially powerful at achieving accurate semantic segmentation predictions along

object boundaries.

DeepLabV3+ was developed by Liang-Chieh Chen et al. (Google Inc). This

architecture builds upon its predecessor, DeepLabV3, by incorporating Atrous

Spatial Pyramid Pooling (ASPP) module.

Atrous convolution. Atrous convolution is also called dilated convolution. It is

commonly used in in convolutions for deep learning. For more details, please refer

to L.-C. Chen, Papandreou, Kokkinos, et al. (2017).

Atrous convolution is a powerful technique that provides explicit control over

the resolution of features computed by the convolution operation. It enables the

adjustment of a filter’s field-of-view, allowing the capture of multi-scale information.

This operation extends the capabilities of the standard convolution operation as

shown in this equation:

xatrous(i) =
K∑
k=1

w(k) · x(i+ r · k) (2.1)

Here, xatrous(i) is the output at position i, w(k) is the filter weight at position

k, r is the rate (or dilation factor), and K is the kernel size. Changing r’s value,

permits adjusting the convolution filter’s field-of-view.

Spatial pyramid pooling (SPP). One primary objective of SPP is to address

the challenge of processing input images with varying sizes and aspect ratios and

producing a fixed-length feature vector.

SPP partitions the input feature map into a predetermined number of spatial

bins, effectively capturing information across various scales and resolutions. Each

bin is associated with a specific receptive field size, enabling the model to
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incorporate both local and global context. Within each bin, pooling operations are

independently applied to extract the required features. The outcome of these pooling

operations in all bins is concatenated into a fixed-size vector. Please note that the

size of the vector does not depend on the original image size. This methodology

ensures that the network can effectively process input images of diverse dimensions

while still capturing essential spatial information. One way to represent the process

is as shown in this equation:

SPP(x) = concat(pool1(x), pool2(x), ..., pooln(x)) (2.2)

Here, pooli(x) represents the pooling operation at scale i, and concat denotes

the concatenation of the pooled features. Therefore, by incorporating features from

various scales, SPP enhances the model’s robustness to objects of different sizes

within the input images, contributing to improved performance in tasks that demand

scale-invariant representations such as semantic segmentation. For more details,

please refer to He et al. (2015).

ASPP enables the integration of multi-scale features, crucial for capturing

contextual information and improving segmentation accuracy. As we can see from

Figure 2.11, key innovation in DeepLabV3+ lies in the use of a decoder module

that refines the coarse segmentation results obtained from the ASPP and helps to

recover objects boundaries information during the prediction process. This decoder,

comprising upsampling and skip connections, facilitates the generation of high-

resolution segmentation maps.

In the context of this thesis (Chapter 5), we use the DeepLabV3+ architecture as

a baseline to enhance the robustness of semantic segmentation models under adverse

weather conditions using synthetic data. The architecture’s ability to capture

intricate contextual information and refine coarse predictions made it an ideal

candidate for addressing challenges posed by diverse and complex environmental

factors. By extending the DeepLabV3+ encoder to be weather and nighttime aware,

we aimed to improve the model’s performance in adverse conditions, contributing
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Figure 2.11: DeepLabV3+ architecture (adapted from L.-C. Chen, Y. Zhu, et al.

(2018)).

to the development of synthetic-aware computer vision approaches (see Chapter 5

for more details).

2.7 Video Stabilization

Video stabilization in computer vision refers to the process of reducing unwanted

motion and jitter in a video sequence, resulting in a smoother and more visually

appealing output. This technique is particularly useful when the original video

footage is shaky or contains vibrations, which can be distracting for viewers or

other computer vision algorithms. For example, surveillance camera footage may be

affected by external factors such as wind or vibrations, leading to shaky video. In

this case, video stabilization ensures that surveillance videos provide a stable and

clear view, aiding in the accurate analysis and interpretation of the recorded events.

The main goal of video stabilization is to compensate for undesired camera

movements, such as hand tremors or vibrations during recording, by applying
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computational methods to adjust the frames of the video. This can be achieved

through various algorithms and techniques (see Chapter 3).

The overall process typically involves the following steps:

• Motion estimation;

• Transformation calculation;

• Frame alignment;

• Interpolation.

Next, we will discuss each of these steps in more detail.

2.7.1 Motion estimation

This step helps identify the undesired camera movements. It involves analyzing

consecutive frames to determine the motion or displacement of objects in the video

sequence. This information is then used to calculate the transformations needed

to align the frames and reduce unwanted motion. These are some commonly used

approaches for motion estimation:

• Block matching;

• Optical flow;

• Feature tracking;

• Phase correlation;

• Global motion models;

• Hybrid approaches.

Next, we will delve into each of them in more detail.
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2.7.1.1 Block matching

One common approach for motion estimation is block matching. In this method,

the current frame is divided into blocks, and the corresponding blocks in the next

frame are searched to find the best match. The displacement between the blocks

provides an estimate of the motion.

2.7.1.2 Optical flow

Optical flow is another widely used technique for motion estimation. It involves

tracking the movement of pixels or features between consecutive frames. The

apparent motion of pixels is represented as a vector field, indicating the direction

and magnitude of motion at each point.

2.7.1.3 Feature tracking

Instead of considering all pixels, some algorithms focus on tracking specific features

or keypoints in the video frames. These features could be corners, edges, or other

distinctive points. Feature tracking algorithms, such as the Kanade-Lucas-Tomasi

(KLT) tracker (Lucas and Kanade, 1981), follow the movement of these features

over time.

2.7.1.4 Phase correlation

Phase correlation is a frequency-domain approach for motion estimation. It involves

computing the cross-correlation of the Fourier transforms of two frames to find the

phase shift, which corresponds to the motion between the frames.

2.7.1.5 Global motion models

Some video stabilization algorithms use global motion models to estimate the overall

motion of the camera. These models may include translations, rotations, and scaling.
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Kalman filters (Welch, Bishop, et al., 1995) or other predictive models can be

employed to improve the accuracy of motion estimation.

2.7.1.6 Hybrid approaches

Many state-of-the-art video stabilization methods use hybrid approaches that

combine multiple motion estimation techniques. For example, a system might use

block matching for coarse motion estimation and then refine the results with optical

flow or feature tracking for more accurate and detailed motion information.

Real-time video stabilization requires efficient motion estimation algorithms.

Some methods use hierarchical approaches, where motion is estimated at different

scales to balance accuracy and computational efficiency.

Motion estimation algorithms need to be robust to outliers and handle situations

where some parts of the frame may be occluded or exhibit different motion. Robust

techniques, such as RANSAC (Fischler and Bolles, 1981) and MAGSAC (Barath,

Matas, and Noskova, 2019) or via learning approaches (Jirong Zhang et al., 2020;

DeTone, Malisiewicz, and Rabinovich, 2016) which are often employed to deal with

outliers and ensure accurate motion estimation. The output of the motion estimation

step provides the necessary information to calculate the transformations needed to

align frames in the video sequence. This, in turn, enables subsequent steps in the

video stabilization pipeline, such as frame alignment and interpolation, to produce

a stabilized video output.

2.7.2 Transformation calculation

In this step, we determine or calculate the transformation needed to align frames and

minimize motion discrepancies. Let us particularly focus on affine and homography

transformations.
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2.7.2.1 Affine transformation

An affine transformation is a linear mapping method that preserves points, straight

lines, and planes. It includes translation, rotation, scaling, and shearing operations.

The main elements of the affine transformation are the following:

• Translation: Moving an object in a straight line without rotation or

deformation;

• Rotation: Changing the orientation of an object around a fixed point;

• Scaling: Changing the size of an object, either uniformly or along different

axes;

• Shearing: Deforming an object by shifting points in one direction.

Affine transformations are commonly used in video stabilization to model the

overall motion between consecutive frames. By estimating the coefficients of the

affine transformation matrix, it becomes possible to represent the translation,

rotation, and scaling needed to align frames.

Mathematical representation: The affine transformation A matrix for a 2D

space is usually represented as:

A =


a b c

d e f

0 0 1

 .

Please note that a and e represent scaling factors, b and d represent shearing

factors, and c and f represent translation values.

2.7.2.2 Homography transformation

Homography is a more general transformation that includes affine transformations

but also allows for perspective distortions.
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Unlike affine transformations, homography can represent the projective trans-

formation that occurs when the camera viewpoint changes or when scenes involve

depth.

Homography is suitable for cases where the camera undergoes significant changes

in orientation, such as tilting or panning. It is often used to model the transformation

between frames in scenarios where perspective changes are prominent.

Mathematical representation: In a 3× 3 matrix, a homography transformation

can be represented as:

H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 .

The homography matrixH can be used to map points from one frame to another,

accounting for both affine and perspective transformations.

The choice between affine and homography often depends on the characteristics

of the video data and the specific requirements of the stabilization application. In

video stabilization pipelines, the transformation calculation step involves estimating

the coefficients of these transformation matrices, whether affine or homography, to

align frames and minimize motion discrepancies for a smooth and stabilized output.

2.7.3 Frame alignment

Frame alignment is applying the calculated transformation to each frame to align

them properly. This step ensures that the frames are adjusted to reduce motion

artifacts.

2.7.4 Interpolation

Interpolation is filling in any gaps or missing information caused by the alignment

process. Interpolation methods are often used to generate new frames that smooth

out the video. Let us examine two key types of interpolation:
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I) Linear Interpolation. Linear interpolation estimates values at intermediate

points based on the straight-line segment connecting two neighboring known

points. For a variable x between two known points (x0, y0) and (x1, y1), the linear

interpolation formula is given by:

y = y0 +
(x− x0) · (y1 − y0)

x1 − x0

(2.3)

II) Bilinear Interpolation. Bilinear interpolation is an extension of linear

interpolation for two dimensions. For a point (x, y) within a grid formed by

four known points (x0, y0), (x1, y0), (x0, y1), and (x1, y1), the bilinear interpolation

formula is given by:

f(x, y) = (1−α)(1−β)f(x0, y0)+α(1−β)f(x1, y0)+(1−α)βf(x0, y1)+αβf(x1, y1)

(2.4)

where α = x−x0

x1−x0
and β = y−y0

y1−y0
.

Video stabilization is widely used in various applications, including video editing,

surveillance systems, and virtual and augmented reality, where a steady video stream

is essential for providing a better viewing experience. Additionally, gyroscopes or

accelerometers embedded in some recording devices can provide input to aid in

stabilization.

2.8 Generative AI and Synthetic Data Usability

Generative AI is a category of AI systems that can generate new and original content.

Generative AI is currently at the forefront of AI advancements and shows great

promise for the future. These generative AI systems are designed to learn patterns

and structures from existing data and then use that knowledge to create new, similar

data. One of the most common approaches to generative AI is the use of generative

models, such as GANs (Creswell et al., 2018; Goodfellow et al., 2020; Chakraborty

et al., 2024) and VAEs (Wu, Cao, and Qi, 2024; Vahdat and Kautz, 2020).
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2.8.1 Traditional data quality metrics

Structural Similarity Index (SSIM). The Structural Similarity Index (SSIM)

is a metric used to assess perceptual similarity between two images. It is computed

using the following formula:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.5)

Here are the components of the SSIM formula:

• x and y are the input images being compared.

• µx and µy are the average luminance values of x and y, respectively. They can

be calculated as shown in these two equations:

µx =
1

N

N∑
i=1

x(i) (2.6)

µy =
1

N

N∑
i=1

y(i) (2.7)

• σ2
x and σ2

y are the variances of x and y, respectively. They can calculated as

shown in the following three equations:

σ2
x =

1

N

N∑
i=1

(x(i)− µx)
2 (2.8)

σ2
y =

1

N

N∑
i=1

(y(i)− µy)
2 (2.9)

σxy =
1

N

N∑
i=1

(x(i)− µx)(y(i)− µy) (2.10)

• σxy is the covariance of x and y. It can be calculate using this equation:

σxy =
1

N

N∑
i=1

(x(i)− µx)(y(i)− µy) (2.11)
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• C1 and C2 are constants added to the formula to avoid instability near zero.

They can be calculate as shown in the following two equations:

C1 = (k1L)
2 (2.12)

C2 = (k2L)
2 (2.13)

Where k1 and k2 are constants, and L is the dynamic range of pixel values (typically

L = 2bit depth − 1).

Peak Signal-to-Noise Ratio (PSNR). Peak Signal-to-Noise Ratio (PSNR) is

a widely used metric in image processing and video compression to evaluate the

quality of reconstructed images to their originals. It measures the ratio between

the maximum possible power of a signal and the power of corrupting noise that

affects the fidelity of its representation. PSNR is expressed in decibels (dB) and

is calculated using the Mean Squared Error (MSE) between the original and the

reconstructed signals.

The formula to compute PSNR is as follows:

PSNR = 10 · log10
(
MAX2

MSE

)
(2.14)

where:

• MAX is the maximum possible pixel value of the image (fluctuation). It is

usually 255 for 8-bit images.

• MSE is the Mean Squared Error or cumulative squared error between the two

images, defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.15)

where I(i, j) and K(i, j) are the intensity values of the original and recon-

structed images respectively, and m and n are the dimensions of the images.
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A higher PSNR value indicates a higher quality reconstruction, as it implies a

lower level of noise or distortion in the reconstructed signal (image) compared to

the original signal (image).

Inception Score (IS). The Inception Score (IS) is a widely-used metric for

evaluating the quality and diversity of images generated by generative models,

particularly in the context of generative adversarial networks (GANs). It is

computed based on the softmax outputs of an Inception-v3 classifier, which is pre-

trained on a large dataset such as ImageNet. Given a set of generated images {xi}Ni=1

produced by a generative model, the Inception Score is calculated as follows:

IS = exp (Ex [DKL(P (y|x)||P (y))]) (2.16)

where P (y) is the marginal distribution of class labels over all images, and P (y|x) is

the conditional distribution of class labels for a given image x. The Kullback-Leibler

divergence DKL measures the dissimilarity between these distributions.

Fréchet Inception Distance (FID). The Fréchet Inception Distance (FID) is

a widely used metric for evaluating the quality of generative models, particularly

for GANs. It measures the similarity between the distribution of real images

and generated images by computing the Fréchet distance between their feature

representations obtained from a pre-trained deep neural network, typically an

Inception network. The FID score is computed using the following:

FID = ||µr − µg||22 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (2.17)

where µr and µg are the mean feature representations of real and generated images,

respectively, and Σr and Σg are their corresponding covariance matrices.

A lower FID score usually indicates a higher similarity between the distributions

of real and generated images, suggesting a better performance of the generative
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model. Conversely, a higher FID score signifies greater dissimilarity, indicating

potential issues in the generative model and synthetic data being generated.

2.8.2 Synthetic data usability

Synthetic data refers to artificially generated data rather than data collected from

the real world. In computer vision, synthetic data is often created to supplement

or replace real-world datasets. Assessing the quality of generated synthetic data is

crucial to ensure that the synthetic dataset accurately represents the characteristics

of the real-world data and is suitable for training robust ML models.

The primary goal of training a ML model is to enable it to generalize well to

unseen, real-world data. Assessing the quality of generated images ensures that the

synthetic data accurately captures the visual patterns and complexities present in

the target domain. High-quality synthetic images contribute to improved model

performance and robust generalization. Thus, the quality of generated images

directly influences the learning representation acquired by the model during training.

If synthetic data lacks fidelity to real-world scenarios, the model may learn irrelevant

features or patterns that do not align with the actual data distribution. Assessing

image quality helps in crafting synthetic datasets that facilitate the learning of

meaningful representations, enhancing the model’s understanding of the target

domain.

Poorly generated synthetic images may introduce biases or unintended artifacts

into the training process. If the generated data deviates significantly from real-

world distributions, the model may be biased or produce unexpected results when

deployed. Quality assessment, or synthetic data usability assessment, allows for

the identification and rectification of issues, ensuring that synthetic data accurately

represents the desired characteristics of the target domain.

Additionally, synthetic data usability assessment helps in optimizing the gener-

ation process and resource utilization. It allows researchers to identify areas where

improvements can be made, ensuring that computational resources are allocated

42



2.8. Generative AI and Synthetic Data Usability

efficiently. By focusing on generating high-quality images, researchers can achieve

better results with fewer resources, reducing the computational burden of training

models.

In conclusion, assessing the quality of generated images in synthetic data is

a fundamental step in the process of creating effective training datasets for ML

models. It contributes to model performance, generalization, and the overall success

of applications relying on synthetic data. Usability assessment ensures that synthetic

data faithfully represents the target domain, yielding reliable and accurate results

in real-world scenarios.
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Related Work

Science is a collaborative enterprise, spanning the generations. When it

permits us to see the far side of some new horizon, we remember those who

prepared the way – seeing for them also.

Carl Sagan

In this chapter, we include a necessary review of related work for this thesis.

We start with a review of synthetic data generation methods, tools, and procedures

in Section 3.1. Then, Section 3.2 will extend our review to semantic segmentation

methods. Following this, we review well-known video stabilization approaches in

Section 3.3. Finally, in Section 3.5, We provide a concise overview of synthetic data

usability metrics, encapsulating the essential criteria for evaluating the efficacy of

synthetic datasets in the realm of ML.

3.1 Synthetic Data Generation

With the substantial advancements in deep learning-based approaches, we have

witnessed unprecedented progress in computer vision. This progress is attributed to

the large-scale benchmark datasets that were collected in the past few years (Deng

et al., 2009; Lin et al., 2014; Krizhevsky, G. Hinton, et al., 2009; Ge et al., 2019).

Although the exponential increase in the amount of digital data today makes data
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collection easier than before, manual labelling of large volumes of examples with

high quality and accurate labels still requires too much effort and comes with a

tremendous cost.

The utilization of synthetic data in the computer vision field has just started

recently. Its increase in popularity started to attract many researchers to propose

novel algorithms to generate such datasets with their corresponding ground-truths.

Although special care needs to be taken to weigh each method’s advantages and

disadvantages, they seem a promising solution to overcome the lack of suitable

data for training supervised learning models. In this section, we summarize the

mainstream of synthetic data generation.

3.1.1 Video Games for Synthetic Data Generation

Adapting a specific video game to generate synthetic data with its corresponding

ground-truth for the task of semantic segmentation was shown by Richter, Vineet,

et al. (2016), where the game Grand Theft Auto V was modified for that purpose.

At the same time, another work by Shafaei, James J Little, and Schmidt (2016a)

investigated utilizing photo-realistic video games to generate synthetic data and

their corresponding ground truths for image segmentation and depth estimation.

Using open source animation movies was another method discussed by Butler et al.

(2012) where they were able to obtain an optical flow large-scale dataset, MPI-Sintel,

following a systematic and easy process.

Unfortunately, the previous methods present a partial solution for the data

generation issue because of the lack of control on the environment elements. At

the same time, integrating new elements or behaviours to the scene like including

a new 3D model, material or texture is extremely hard or simply unattainable.

Another issue is the limitations of the proposed systems to specific computer vision

tasks. Although these approaches are based on high quality and rich 3D virtual

worlds, the failure of such methods to randomize the scene elements will lead to

some clear repetitions (to scene elements) when a large-scale dataset is required
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to be generated by these methods. Procedural synthetic data generation offers an

alternative to the previous solution.

3.1.2 Video Games and PCG

Procedural Content Generation (PCG) has been proposed as a solution for creating

realistic-looking environments in relatively short amounts of time, making it easier

and cheaper for users to generate virtual worlds from scratch. In its simplest form,

a procedural generation framework follows systematic recipes to generate scenes,

populations, and actions, based on the given set of instructions. Silver, our synthetic

data generator illustrated in Chapter 4, is based on this concept.

Under this category, Roberto de Souza et al. (2017) investigated the possibility of

adapting the PCG concept with Ragdoll physics, random perturbations and muscle

weakening to generate a wide range of human actions systematically with their

corresponding labels. Another work by Cheung et al. (2016) applied the concept of

procedural generation to generate labelled crowd videos. Alternatively, Wrenninge

and Unger (2018) presented a photorealistic and diverse synthetic dataset that

can be generated entirely procedurally. The ability to parameterize the scene

generation process and the fact that these parameters are not correlated are the main

contributions of Wrenninge and Unger (2018). While procedural concept improves

diversity, it still may limits the scalability of the system and it does not guarantee

the photo-realism of the virtual world being generated by it. Therefore, an extra

effort was taken with Silver to address these limitations.

An ideal solution to the problem is one that ensures high realism, diversity,

scalability, controllability, and most importantly the generalizability of the approach

to all computer vision tasks.
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Table 3.1: Comparison among synthetic semantic segmentation datasets.

Our dataset, named AWSS, is composed of photo-realistic pixel-wise annotated

images under standard and adverse conditions.

Weather Conditions Times-of-Day Photo-realism
Public

Availability

Normal Rain Fog Snow Daytime Nighttime / /

GTA-V (Richter, Vineet, et al., 2016) ✔ ✔ - - ✔ - ✔ ✔

Synscapes (Tsirikoglou et al., 2017; Wrenninge and Unger, 2018) ✔ - - - ✔ - ✔ ✔

Virtual KITTI (Gaidon et al., 2016) ✔ ✔ ✔ - ✔ - - ✔

Synthia (Ros et al., 2016) ✔ ✔ - ✔ ✔ ✔ - -

SHIFT (T. Sun et al., 2022) ✔ ✔ ✔ - ✔ ✔ ✔ ✔

AWSS (Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

3.2 Semantic Segmentation

Our work utilizes synthetic data for domain adaptation to improve performance

under adverse conditions (see Chapter 5). Thus, we review the usage of synthetic

data in the semantic segmentation field. At the same time, we highlight the recent

progress in domain adaptation methods similar to our work presented in Chapter 5.

3.2.1 Synthetic data for semantic segmentation

The high performance of recent semantic segmentation models is associated with the

ability to train deep models on large-scale training data. The early real semantic

segmentation datasets like CamVid (Brostow, Fauqueur, and Cipolla, 2009),

Stanford Background (B. Liu, Gould, and Koller, 2010; Saxena, Chung, and A. Ng,

2005; Saxena, M. Sun, and A. Y. Ng, 2008), and KITTI-Layout (Alvarez et al.,

2012) are limited in terms of the number of training samples, classes, resolution, and

diversity. The problem is partially alleviated with the recent availability of datasets

like Cityscapes (Cordts et al., 2016), ACDC (Sakaridis, D. Dai, and Van Gool,

2021), ADE20K (B. Zhou, Hang Zhao, Puig, Fidler, et al., 2017), and Mapillary

Vistas (Neuhold et al., 2017). Nevertheless, annotating large-scale datasets of

high-resolution images is still the bottleneck. At the same time, ensuring diverse

training data under challenging attributes like adverse weather conditions is not only
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dangerous, time-consuming, and hard to collect but also cumbersome and subjective

to human errors in the annotation process.

Synthetic data comes as a resort to handle all the above issues. Their success

in computer vision is specifically seen in semantic segmentation. Goyal et al.

(2017) demonstrate that augmenting synthetic data with weakly annotated data can

improve the performance on the PASCAL VOC dataset (Everingham et al., 2015).

Similarly, Richter, Vineet, et al. (2016) generate synthetic training data by utilizing

the Grand Theft Auto V game. They show that training semantic segmentation

models on one third of the training split of CamVid (Brostow, Fauqueur, and

Cipolla, 2009) dataset along with their generated synthetic data achieves superior

results compared to training on the full CamVid (Brostow, Fauqueur, and Cipolla,

2009). In parallel, Ivanovs et al. (2022) augment the Cityscapes (Cordts et al.,

2016) dataset with synthetic images generated using the CARLA (Dosovitskiy, Ros,

et al., 2017) simulator. They show that the performance improves when compared

to training only on Cityscapes (Cordts et al., 2016). Similar to these works, we use

synthetic data to boost the performance of semantic segmentation models. However,

we tackle the domain shift problem using synthetic data and a synthetic-aware

training procedure.

3.3 Video Stabilization

A major contribution of our work presented in this thesis, Chapter 6, is utilizing

synthetic data for the task of video stabilization. Thus, video stabilization and

synthetic data generation literature are briefly reviewed in this section.

Video stabilization methods are usually categorized into non-learning-based and

learning-based.
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3.3.1 Non-learning-based video stabilization

Non-learning-based video stabilization methods do not perform training. For

instance, Grundmann, Kwatra, and Essa (2011) stabilize the shaky camera

trajectory using L1-norm optimization under constraints, and Bradley et al. (2021)

address the stabilization task as a constrained convex optimization problem.

Although these methods do not require training data for tuning the model’s

parameters, they work only under predefined conditions, their parameters must be

tuned manually, and their results tend to be less pleasant.

3.3.2 Learning-based video stabilization

The learning-based approaches are classified into unsupervised and supervised

approaches. Non-supervised methods require training videos but do not demand

shaky-stable video pairs. DIFRINT (Choi and Kweon, 2020), for example, is

trained end-to-end and utilizes frame interpolation to synthesize middle frames

for stabilization. On the other hand, supervised learning approaches require

labeled data, which is the main limitation of applying them to video stabilization.

StabNet (M. Wang et al., 2018) uses a mechanical stabilizer to generate ground-truth

stable videos to train CNNs for video stabilization. The network learns a warping

transformation of multi-grids given the shaky and previously stabilized frames.

Y.-L. Liu et al. (2021) apply a learning-based hybrid-space fusion to compensate

for optical flow inaccuracy. J. Yu and Ramamoorthi (2020) stabilize videos by

computing the per-pixel warp field from the shaky video optical flow, allowing it to

handle better moving objects and occlusion.

The previous methods present a partial solution to the video stabilization

problem since they are assumed to work under normal weather conditions and

sufficient illumination. However, finding resilient features in adverse conditions

is rather challenging. For example, rain particles, foggy weather conditions, and

low illumination pose clear challenges to finding robust features. Thus, it leads

to inaccurate motion estimation and low-quality video stabilization. Our proposed
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video stabilization method (see Chapter 6) belongs to the supervised learning-based

category. However, unlike other methods, we use only synthetic data for training.

No pre-training or fine-tuning on real data is required by our method, and by using

only a small-scale training dataset, it is more robust than state-of-the-art methods.

3.3.3 Affine and homography transformation

Estimating affine and homography transformations between two images is common

to aligning one image with another. There are different ways to find these matrices,

like applying a feature extractor (e.g., SIFT (Lowe, 2004) and OAN (Jiahui Zhang

et al., 2019)) and an outlier rejection algorithm (e.g., RANSAC (Fischler and

Bolles, 1981) and MAGSAC (Barath, Matas, and Noskova, 2019)) or via learning

approaches (Jirong Zhang et al., 2020; DeTone, Malisiewicz, and Rabinovich, 2016).

Although the traditional feature extraction approach does well under standard

conditions, it performs poorly under challenging scenarios. Supervised approaches

cannot reflect scene parallax (Ye et al., 2021), and generating suitable training data

is hard. Unsupervised approaches may solve these problems, but they fail under

large baseline alignment, which makes them impractical for video stabilization under

sharp camera movements.

Unlike previous methods, our model learns the affine transformation in a

supervised manner using synthetic training data alone. Although it is possible

to decompose the homography matrix to extract camera translation, rotation,

and scale, it is inaccurate. Moreover, training a model to estimate the affine

transformation is easier than estimating the homography. Although homography

can better model the camera motion between frames for a limited number of

frames, it starts to cause many artifacts like skew and perspective as the number

of frames becomes larger (Grundmann, Kwatra, and Essa, 2011; S. Li et al., 2015).

Additionally, it overfits even with some regularization. Thus, utilizing homography

transformation is harder to train (more parameters and easier to overfit) and more

subject to artifacts.
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Synthetic data generation. Synthetic data is typically used to overcome

training data scarcity for supervised learning models (Butler et al., 2012; Richter,

Vineet, et al., 2016; Shafaei, James J Little, and Schmidt, 2016a; Yilin Liu,

Xue, and H. Huang, 2021; Kerim, Celikcan, et al., 2021; Tsirikoglou, 2022).

Richter, Vineet, et al. (2016) modified the GTA-V game to generate synthetic

data and the corresponding ground truth for semantic segmentation. Shafaei,

James J Little, and Schmidt (2016a) used photo-realistic games to generate data for

image segmentation and depth estimation. Dosovitskiy, Ros, et al. (2017) presented

CARLA, an autonomous driving simulator that provides ground-truth data for

semantic segmentation and depth estimation tasks. Recently, the UrbanScene3D

simulator was proposed by Yilin Liu, Xue, and H. Huang (2021) for autonomous

driving and flying support.

While Sim2RealVS (Rao et al., 2023) shares some similarities with our work.

It deploys the GTA-V game, which was not originally developed for the synthetic

data generation task. In contrast, our simulator was developed for that reason.

Sim2RealVS is limited to the GTA-V game assets (textures, objects, characters,

and camera parameters). In comparison, our simulator provides more diversity

and controllability. For each synthetic video a new city is procedurally created.

Additionally, modifying or adding new scene elements can be easily done with our

simulator, unlike Sim2RealVS approach using GTA-V.

These previous methods partially solve the data generation issue because of the

lack of control over the generation process. They fail to randomize scene elements,

leading to less diverse datasets. Our synthetic data generator utilizes procedural

content generation to create 3D virtual worlds and generates special training data

for video stabilization. In our experiments shown in chaper 6, we will show that

generating appropriate training data and creating a synthetic data pipeline can

achieve superior results. Our algorithm can still provide better results in real videos

even though our synthetic data generator does not generate state-of-the-art photo-

realistic videos. Additionally, our synthetic-aware algorithm and specially designed
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synthetic data teach the model to accurately estimate the affine transformation

while not being overfitted to the synthetic data distribution. Thus, it mitigates the

domain gap and achieves satisfactory results on real data.

3.4 Domain Adaptation (DA)

ML models trained on one domain or dataset may not necessarily generalise well

to a new domain or dataset. This is usually called domain shift (Singhal et al.,

2023; K. Zhou et al., 2022). Domain shift is a major limitation of synthetic data

in practice. Models trained on synthetic data do not perform well on real-world

data (Sankaranarayanan et al., 2018; Y. Xu et al., 2019; Dundar et al., 2020).

This is because of many factors including for example distribution shift between

the source and target data. It is possible, for example, that the synthetic images

are only captured using perfect sensors. However, the real data is captured using

faulty or imprecise sensors. Additionally, it is possible that synthetic data overfits

a set of weather conditions, time-of-days, scenarios, and textures. Therefore, ML

models, trained on such synthetic data, learn how to react appropriately only to

such scenarios during the training process. However, when the model is tested on

real data which is noisy, diverse, and sometimes unpredictable causes the ML model

to fail drastically.

In the field of DA, several methodologies have been explored to address the

challenges. These include employing batch normalization, as demonstrated in

studies such as Y. Li et al. (2018) and Chang et al. (2019). Additionally, domain

randomization has shown effectiveness, as evidenced by research conducted by Yue

et al. (2019) and Volpi, Larlus, and Rogez (2021). Moreover, techniques involving

learning disentangled representations and generative modeling have been applied,

as seen in works by Ilse et al. (2020), D. Li et al. (2017), and G. Wang et al. (2020).

For instance, Sankaranarayanan et al. (2018) propose a Generative Adversarial

Network (GAN) based approach that minimizes the distance between the encodings
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of both domains. They show that their approach can boost the performance of

synthetic-to-real domain adaptation tasks. Our work presented in Chapter 5 is

similar to theirs as we use synthetic data for domain adaptation and propose a

synthetic-aware training procedure. However, our work tackles this problem under

harder set-ups utilizing synthetic data to mitigate standard-to-adverse domain shifts.

In the same context, Alshammari, Akcay, and Breckon (2020) address standard

to foggy weather domain shift by using an adversarial training strategy that guides

the model to produce outputs close to the target domain. Similarly, X. Ma et al.

(2022) tackle standard weather to foggy weather domain adaptation using both

fog and style variations by adopting a Cumulative style-fog-dual disentanglement

Domain Adaptation method (CuDA-Net). Alternatively, Q. Xu et al. (2021) address

the daytime to nighttime domain shift. They utilize a novel Curriculum Domain

Adaptation method (CDAda) that uses labeled synthetic nighttime images.

Our methods presented in Chapters 5 and 6 are closely related to these works.

However, we tackle domain adaptation from a standard domain (i.e., daytime and

normal weather condition) to an adverse domain (i.e., nighttime and adverse weather

conditions such as rain, fog, and snow).
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3.5 Synthetic Data Usability Metric

In this section, we summarize the key synthetic data generation methods and the

main usability metrics.

3.5.1 Synthetic data generation methods

Synthetic data generation methods have been showing great progress in the

computer vision field. It seems as a promising solution to overcome the lack of

suitable labeled data for training deep-supervised learning models (Butler et al.,

2012; Richter, Vineet, et al., 2016; Shafaei, James J. Little, and Schmidt, 2016b;

Yilin Liu, Xue, and H. Huang, 2021; Tsirikoglou, 2022). Several synthetic data

generation methods have been developed. Notable contributions in this area include

the following methods:

• Game engines;

• Generative adversarial networks (GANs);

• Diffusion models (DMs).

Game engines. Using video games (Shafaei, James J. Little, and Schmidt,

2016b; Kiefer, Ott, and Zell, 2022) and game engines (Kerim, Aslan, et al., 2021;

H. Lee et al., 2023; Q. Wang et al., 2021) were shown to be effective ways

to generate automatically-labeled large-scale synthetic data for a wide range of

computer vision tasks, such as semantic segmentation and depth estimation (Shafaei,

James J. Little, and Schmidt, 2016b), video stabilization (Rao et al., 2023), and

person re-identification (X. Sun and Zheng, 2019). These approaches are limited

in diversity and photorealism to game engines used, game genre, environment, and

artists’ skills. Additionally, creating large-scale datasets can be computationally

expensive and poses intellectual property issues since video games are not usually

developed for this aim.
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Generative adversarial networks (GANs). GANs have been widely utilized

to generate synthetic training data for computer vision (H. Ali, Grönlund, and

Z. Shah, 2023; Torfi, Fox, and Reddy, 2022). It was shown in Al Khalil et al. (2023)

that utilizing synthetic images generated by their segmentation-informed conditional

GAN improves the performance and robustness of heart cavity segmentation from

short-axis cardiac MR images. Similarly, it was shown in L. Li et al. (2023)

that utilizing synthetic images generated by their GAN and Neural Radiance Field

(NeRF)-based framework improves the performance of 3D object detectors. One of

the primary challenges with these methods is their stability issues during training,

frequently leading to issues such as mode collapse (Kodali et al., 2017).

Diffusion models (DMs). Stable Diffusion, as demonstrated in Shipard et al.

(2023), was used to boost the diversity of the generated images used for training a

zero-shot classifier. Our work is similar to that work in using DMs to generate the

training images. However, our approach tackles the diversity and photorealism of

the generated images. Furthermore, we incorporate a Large Language Model (LLM)

to create attributes utilized in DMs’ prompts

Training on synthetic images generated by DMs for the task of skin disease

classification was shown in Akrout et al. (2023) to achieve similar accuracy

to training on real data. It was also shown that complementing ImageNet

training dataset with synthetic images generated by DMs does improve ImageNet

classification accuracy substantially.

Similar to that work in Akrout et al. (2023), we also explore the effectiveness

of training on synthetic data. However, instead of limiting our study to a single

architecture, we consider six diverse and well-known architectures.

Thus, the integration of LLMs with DMs models offers a holistic solution,

addressing both semantic and visual aspects of synthetic image generation. This

makes it a robust choice compared to other methods, particularly when aiming for

diverse, realistic, and semantically aligned synthetic datasets for training computer

vision models.
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3.5.2 Synthetic data usability

There are many metrics in the literature deployed to assess the quality of generated

synthetic images, such as the Fréchet Inception Distance (FID) (Heusel et al.,

2017), Inception Score (IS) (Salimans et al., 2016), Peak-Signal-to-Noise Ratio

(PSNR), and the Structural Similarity Index Measure (SSIM) (Z. Wang et al., 2004).

However, there are very few studies to assess the usability of a generated synthetic

image.

FID and IS. FID score is usually utilized to assess the quality of the generated

images by GANs (Lucic et al., 2018; Borji, 2019). It calculates the Wasserstein

distance between multivariate Gaussians embedded into a feature space of a specific

layer of the Inception-V3 model (Szegedy et al., 2016) pretrained on ImageNet.

On the other hand, IS calculates the Kullback-Leibler (KL) divergence between

conditional and marginal class distributions utilizing the Inception-V3 model as

well.

As shown in Barratt and Sharma (2018) and Ravuri and Vinyals (2019), FID

and IS entangle diversity and photorealism (being close to the real distribution).

Thus, they may not be ideal metrics to assess the usability of synthetic images.

Additionally, they are not always interpretable in terms of photorealism and

diversity.

SSIM and PSNR. SSIM can be utilized to measure the perceptual similarity

between two images based on the degradation of structural information. On the

other hand, PSNR is the ratio between the original (real) image peak of power

and the estimated power of the noise from synthetically generated or reconstructed

image.

Many studies have shown that SSIM and PSNR have many limitations (Pambrun

and Noumeir, 2015; Huynh-Thu and Ghanbari, 2008). Both metrics focus on pixel-

level differences and are sensitive to simple geometric transformations. Additionally,

they do not consider perceptual quality and diversity.

Our proposed metric addresses these limitations. Our metric disentangles
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photorealism from diversity. At the same time, it represents a novel metric for

assessing the visual quality and usability of the generated synthetic images.

Global consistency and complexity. In Scholz et al. (2023), two metrics are

proposed to measure the global consistency of medical synthetic images (biological

plausibility). They show that their approach is more robust compared to FID as it

can explicitly measure global consistency on a per-image basis. Unlike that work,

our approach is a general-purpose metric, not limited to certain fields. At the same

time, it evaluates the diversity of the generated images. Similar to our work, Mahon

and Lukasiewicz (2022) propose a metric for measuring image complexity using

hierarchical clustering. However, the authors make many assumptions about the

cluster probability distribution. Additionally, it requires many hyperparameter

tuning.

Unlike these metrics, the metric proposed in this work does not require hyper-

parameter tuning and presents a more generic and practical metric. Additionally,

our approach focuses on the usability of synthetic images which is not directly or

necessarily dependent on the complexity or visual plausibility.
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Chapter 4

A Synthetic Data Generator for

Computer Vision Models

Imagination is the beginning of creation. You imagine what you desire; you

will what you imagine; and at last, you create what you will.

George Bernard Shaw

The work presented in this chapter appeared as a workshop paper in Kerim,

Soriano Marcolino, and R. Jiang (2021).

Large-scale synthetic data is needed to support the deep learning big-bang that

started in the recent decade and influenced almost all scientific fields. Most of

the synthetic data generation solutions are task-specific or unscalable while the

others are expensive, based on commercial games, or unreliable. In this chapter, a

new rendering engine called Silver is presented in detail. Photo-realism, diversity,

scalability, and full 3D virtual world generation at run-time are the key aspects of

this synthetic data generator. The photo-realism was approached by utilizing the

state-of-the-art High Definition Render Pipeline (HDRP) of the Unity game engine.

In parallel, the Procedural Content Generation (PCG) concept was employed to

create a full 3D virtual world at run-time, while the scalability of the system was

attained by taking advantage of the modular approach followed as we built the
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system from scratch. Silver can be used to provide clean, unbiased, and large-scale

training and testing data for various computer vision tasks.

The source code of the complete synthetic data generator and a sample dataset

are both available at https://github.com/lsmcolab/Silver. At the same time,

a video displaying a sample 3D virtual world generated by Silver is provided at

https://youtu.be/Ktlx5bgJLXE.

4.1 Introduction

When a problem can be described by a limited set of rules, computers perform

very well and usually surpass human performance in terms of speed and accu-

racy. However, when the problem is too hard to be formulated, computers fail

dramatically. Human reasoning and intelligence are still very far from being

understood or formulated. The vast research done in this field still only scratches the

surface (Colom et al., 2010; Lisman, 2015; Papo, 2015). Visual perception is one of

the most complex tasks that the human brain performs accurately and efficiently. As

visual perception is important for human daily activities, it is critical for the machine

(agent) to perceive the environment, reason, plan, and then interact to achieve

its goal. The machine could be as simple as an Optical Character Recognition

(OCR) program or as complex as an autonomous car or robot on another planet.

Failure of such agents could lead to deaths or injuries, damage to the environment

or properties, failure of missions, and loss of millions of dollars.

The recent great success of ANN in solving complex problems motivated many

researchers to apply it to machine perception problems too. In parallel to this, the

great advancement in chip design, microelectronics, and the introduction of General-

Purpose Graphics Processor Architectures like the General Purpose Graphics

Processing Unit (GPGPU), facilitated training deep neural networks with millions

of parameters. These deep ANNs with their high degree of non-linearity, help in

approximating the real functions or phenomena behind complex vision problems (like
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semantic segmentation, instance segmentation, and object recognition) in a much

more accurate way. Unfortunately, training these deep learning models requires

a great amount of data together with their corresponding annotations or ground-

truths. Finding, collecting, and annotating suitable data is cumbersome, time-

consuming, error-prone, expensive, and subject to privacy issues. Perhaps, the

lack of diverse, high quality, and precisely labeled data can be attributed to the

previously mentioned reasons. Unfortunately, these factors cause many major data

quality issues in the field of computer vision and they clearly present an obstruction

toward the aim of optimal performance computer vision models in practice.

Figure 4.1: Sample scene generated using Silver.

The promising solution seems to be in the leading-edge game engines like Unity

(2024), Unreal Engine (2024), and Cry Engine (2024). Leveraging the powerful tools

of the Unity game engine, we present a system that creates three-dimensional, photo-

realistic virtual worlds, procedurally at run-time. A sample scene generated by our

synthetic data generator is shown in Figure 4.1. The system currently supports

various computer vision tasks such as semantic segmentation, instance segmentation,

depth estimation, and others. It allows researchers, with no computer graphics

background, to generate large-scale synthetic datasets for training or testing their

own computer vision models.

Our main contributions can be summarized as follows:
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• To the best of our knowledge, Silver is a pioneering work that uses HDRP of

the Unity game engine to build a 3D virtual world at run-time for synthetic

data generation;

• Unlike other frameworks, Silver considers data generation as an online problem

which opens the door for using synthetic data with online learning algorithms;

• This is the first work that considers generating a photo-realistic, full-city,

procedurally and at run-time.

4.2 Synthetic Datasets and Common Limitations

The currently available computer vision synthetic datasets seem to cover a wide set

of the main computer vision applications, such as:

• Visual object tracking;

• Semantic segmentation;

• Instance segmentation;

• Depth estimation;

• Action recognition;

• Optical flow.

Some of these datasets provide videos (Gaidon et al., 2016; Ros et al., 2016; Roberto

de Souza et al., 2017; Butler et al., 2012) while others (Richter, Vineet, et al., 2016;

Shafaei and James J Little, 2016; Hurl, Czarnecki, and Waslander, 2019) provide

simple snapshots depending on the application or the task. The resolution of these

synthetic datasets is restricted by the method used to generate it. Some of the

methods allow only fixed resolutions (Richter, Hayder, and Koltun, 2017; Shafaei

and James J Little, 2016) while others permit generating the dataset at various

resolutions (Cheung et al., 2016; Butler et al., 2012).
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Important characteristics of synthetic datasets are as follows:

• Diversity;

• Visual complexity;

• Realism.

4.2.1 Diversity

Synthetic datasets can be used for training and testing purposes. For training,

diversity is needed to avoid over-fitting to the visual features of the synthetic world.

On the other hand, for testing, diversity is required to represent a good proxy of the

real world and the possible standard and rare scenarios. The real training and testing

data are collected with the aim to be a good proxy of the actual world. Sometimes

the space of the problem could be easy to describe and to collect suitable data

that represents – approximately – this space. Unfortunately, predicting the problem

space for most of the computer vision tasks is extremely hard or simply unfeasible.

Thus, datasets with the highest diversity are always expected to improve the overall

performance.

4.2.2 Visual complexity

The real world is full of details that are very hard to be captured even by the state-

of-the-art simulators or rendering engines. However, generating synthetic data at a

high-level of visual complexity is very important. Moreover, some specific details

could be more critical for some computer vision tasks while not for some others.

Thus, special care is needed in deciding the level of details the synthetic data should

attain and which scene elements are more important than others.
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4.2.3 Realism

The ultimate goal of models trained on synthetic data is to be tested on the real-

world dataset. However, the most common problem that causes such models to fail

or not to perform well is the domain gap (domain shift) problem. Many different

approaches are suggested to mitigate this problem. However, improving the photo-

realism of synthetic data is, nevertheless, the major approach. It should be noted

that realism should not only be limited to photo-realism. However, the concept

should be extended to animation, camera motion, object locations in the scene,

object frequency, object scales, dynamic objects interactions with the static elements

and other dynamic objects, to name a few.

The limitations of most of the observed synthetic datasets shown in Table 4.1

is the lack of adverse weather conditions and limited times of the day (hence,

illumination). In addition to that, the camera behaviours are quite limited,

unrealistic, or cinematic. These problems in fact simplify the actual issue, and cause

computer vision models trained on these datasets to over-fit to these situations.
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Table 4.1: Synthetic datasets for computer vision tasks. Syn-

scapes (Tsirikoglou et al., 2017; Wrenninge and Unger, 2018), Virtual Kitti (Gaidon

et al., 2016), Synthia (Ros et al., 2016), PHAV (Roberto de Souza et al.,

2017), GTA-V (Richter, Vineet, et al., 2016), MPI-Sintel (Butler et al., 2012),

SOMASet (Barbosa et al., 2018), LCrowdV (Cheung et al., 2016), VIPER (Richter,

Hayder, and Koltun, 2017), UBC3V (Shafaei and James J Little, 2016), and

PreSIL (Hurl, Czarnecki, and Waslander, 2019).

Name CV Tasks Size Videos Resolutions Other Useful Info

Synscapes

Instance and semantic segmentation

Depth Map, 2d and 3d bounding boxes

Camera’s position and field of view

Occlusion and truncation

Scene metadata

25K Frames No
1440X720

2048X1024

Unbiased path tracing

for rendering and Monte

Carlo-based light transport

simulation

Virtual Kitti

Object detection and multi-object tracking

Scene-level and instance-level semantic segmentation

Optical flow, and depth estimation

21,260 Frames Yes 1242X375
Unity

5 environments

Synthia

SYNTHIA-Rand &

SYNTHIA-Seqs

Semantic segmentation

Depth Map

Car ego-motion

213K Frames

200K Frames

No

Yes
960X720

Unity

Virtual New York City

13 classes

PHAV

Action recognition

Semantic segmentation

Instance segmentation

Depth map

Vertical and horizontal optical flow

6M Frames Yes 340X256

39,982 videos for more

than 1,000 examples

for each action of

35 categories

GTA-V Semantic segmentation 25K Frames No 1914X1052

Grand Theft Auto V

Compatible with CamVid

and CityScapes

MPI-Sintel Optical flow 1628 Frames Yes
1024X436

(Any)

Effect of resolution

on Optical Flow

Based on the open-source

animated film Sintel

SOMASet Person reidentification 100K Frames No 400X200 Makehuman and Blender

LCrowdV

Bounding box, flow estimation, pedestrians count

Crowd density, population, lighting conditions

Background scene, camera angles

Agent personality and noise level

20M Frames Yes Any

Unreal game engine

Based on procedural modeling

and rendering techniques

VIPER

Optical flow, semantic instance segmentation,

Object detection and tracking

Object-level 3d scene layout

Visual odometry

254K Frames Yes 1920X1080

Grand Theft Auto V

Inject a middleware between

the game and its supporting

graphics library

UBC3V Single or multiview depth-based pose estimation 6M Frames No 512X424 Utilize Kinect sensors

PreSIL

Depth information, point clouds

Semantic segmentation

2d and 3d labels for object detection

50K Frames No 1920X1080
LiDAR simulator within

Grand Theft Auto V
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4.3 Silver Framework

Using the Unity game engine, we built a system that is able to generate a full city

procedurally, randomly, at run-time and with high degree of photo-realism. The city

is populated with humans, cars, trees, birds and so on. The system runs at around

30 Frames Per Second (FPS) on Ubuntu 18.04 with a GeForce GTX 1080 Ti GPU.

As described in Figure 4.2, it consists of four main components:

• Scene generator;

• Camera controller;

• Weather and time unit;

• Ground-truth extractor.

Figure 4.2: Bird’s-eye view of the system architecture.

4.3.1 Scene generator

Starting from the given parameters, Silver initially creates the static part of the 3D

virtual world. Once the static part of the scene is completed, the dynamic part of
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the scene is initiated. In the following, we discuss static and dynamic scene elements

generators in detail.

Parameters Anomalize

Characters
Instantiation

Accessories
Attachment

Materialization Randomization

Plates
Addition

Cars
Instantiation

3D Models
Instantiation

(Sunglasses, Caps, Watches)
(Age, Skin Color,

Action, Speed)

(Model, Shader)

(Model, Location,
 Frequencey, Shader)

Materialization Randomization

Materialization Randomization

Static Elements

Figure 4.3: Flowchart describing the scene creation in our novel simulator.

4.3.1.1 Static elements generator

First, the street length and number of intersections (crosses) are randomly deter-

mined using a uniform distribution. The street length could vary based on predefined

parameters or within a certain range and the number of crosses could also be

determined randomly within a specified range. Following this, the buildings are

created where buildings’ locations, types and frequency are set at random. The

locations of buildings are constrained by the street layout and the positions of

intersections. The types of buildings include residential, commercial, and industrial,

and their frequencies are based on probability distributions and other user-defined

parameters. After that, the other scene elements like benches, trash containers, and

bags, trees, and other elements are created.

4.3.1.2 Dynamic elements generator

Initially, the characters generator retrieves the locations of buildings and benches,

and instantiates characters based on the required density and number of characters.

At this stage, only avatars are created but they are not animated yet.
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Animating an avatar typically involves adjusting the translations and rotations

of each bone, of the character, to achieve a desired pose at a specific moment in time.

This process can resemble a playback if the motions have been prerecorded, although

modern approaches can be much more sophisticated than simple playback (M. C.

Wibowo, Nugroho, and A. Wibowo, 2024; Lam and Fong, 2023). We use the

Microsoft Rocketbox Avatar Library (Gonzalez-Franco, Ofek, et al., 2020) to define

the character avatar. By utilizing this library, Silver allows us to instantiate virtual

characters with different appearances to populate the scene. The animations are

selected based on character’s pose and action such as standing, sitting, walking,

running, and talking. Character animations were adopted from Mixamo1. Mixamo

offers a vast collection of motion capture-based animations for various actions and

poses, ranging from simple movements like walking and running to more complex

interactions. These actions are captured with the help of professional motion actors

using advanced techniques. Silver selects appropriate animations based on the pose

of each character to animate them realistically within the scene.

Then, the number of cars and models are selected at random. Additionally, car

shader attributes, namely, Smoothness, Metallic and BaseColour, are all randomized

at run-time to give different visual appearances even to the same car model. After

that, the plates of the cars are selected at random from a set collected manually

from the web. The above main processes are summarized in Figure 4.3.

4.3.2 Camera controller

The camera unit is made to be independent of the other scene elements to

support the scalability of the system. Thus, the camera unit can function

effectively regardless of the complexity of the scene. This independence of the

camera unit from other scene elements makes it straightforward to integrate

or adapt different elements, contexts, and scenarios, allowing for flexibility and

efficient operation. Furthermore, this makes the system versatile and capable

1https://www.mixamo.com
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of accommodating different camera types and recording settings, such as those

involving Unmanned Aerial Vehicles (UAVs) or individuals carrying cameras. This

adaptability contributes to the diversity and richness of the synthetic data generated

by our data generator.

Silver includes two different camera types. One simulates a camera placed on a

UAV or drone. While the second imitates a person carrying a camera and recording

others. Cinemachine was utilized for that reason since it gives unlimited sets of

behaviours that enrich the diversity of the generated synthetic data in terms of the

camera view angle, transition, and many others.

4.3.3 Weather and time unit

The Unity game engine supports creating Skybox, which is a 6-sided cube that is

rendered behind all scene objects. We deployed the High Dynamic Range Imaging

(HDRI) images from PolyHaven2 to create two realistic sets of skyboxes. One

incorporated the day-time skyboxes from which one skybox at random will be

chosen if the simulation time is a day-time. While the second includes the nighttime

skyboxes from which one will be selected at random when the nighttime is being

simulated. For the time simulation, other actions are taken to increase photo-realism

and enrich the diversity. For example, the locations of the sun and the moon are

changed randomly. The skybox is rotated at random and the sky emission is set at

random as well. After that, the street lights are turned on and off based on the time

of the day. The main processes involved in simulating the time-of-day are shown in

Figure 4.4.

The weather condition component is essential in simulating the main conditions

that could present some challenges for deep learning models. Silver currently allows

researchers to generate four different weather conditions, namely, sunny, foggy, rainy

and snowy. A parameter is used to specify the severeness (slight, very, extreme)

of the weather condition. However, the weather is randomized within the chosen

2https://polyhaven.com
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severeness level in a range that is still meaningful and reflects the severeness degree.

The aim was to add further diversity even for a given weather severeness level.

After that, for rainy and snowy weathers, the Unity particle system is used to

simulate both snow and rain drops. The density of these drops per unit volume is

controlled by the severeness level. At the same time, the ground shader is changed

to simulate water drops collision or to imitate snow accumulation on the ground.

Following this, trees animations are changed (speed up or slow down) based in

the severeness of the weather being simulated to give a sense of wind interaction

with trees. The foggy weather condition is supported by the Unity games engine.

Thus, only simple parameters tuning was required to simulate realistic foggy weather

condition. The main processes of simulating the four weather conditions are shown

in Figure 4.4.

Figure 4.4: Time-of-day and weather simulation flow charts.

4.3.4 Ground-truth extractor

One of the main goals of Silver is to generate synthetic data with annotations for

different computer vision tasks.

A custom rendering pass and a simple shader are defined to extract the depth

maps for each frame. The vertex position and texture coordinates are retrieved

then converted to screen space. After that, the depth information is linearized and

scaled. Normal maps are simply extracted using graph shader and a custom pass

volume. The world space normal vector is retrieved and encoded as the base colour

for the lit shader.
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For instance segmentation, the objects being created in the scene are retrieved

and for each object its mesh is drawn again for each frame. For semantic

segmentation, however, each category (class) of objects are given a different tag

at the creation process. Then, all objects with one tag are given the same colour. It

should be noted that Unity supports around 10K tags. Thus, the number of classes

can reach 10K which is much larger than the number of semantic classes in most of

the datasets (order of 10).

For the human body pose information, the avatar is accessed at each frame and

the main 14 joints coordinates are provided. The world space locations of these

joints are transformed to screen space locations and saved for each character.

4.4 System Evaluation

The system was evaluated both qualitatively and quantitatively. In Section 4.4.1

the quality and the variation of the generated images are discussed. On the other

hand, time complexity and memory utilization are addressed in Section 4.4.2.

Table 4.2: Variations for some of the main attributes the proposed engine supports.

Attribute Variations Attribute Variations Attribute Variations Attribute Variations

People

Gender - Age

Colour - Ethnicity

Height - Speed

Actions

Building
Shops

Condominiums
Weather

Normal

Rainy

Snowy

Foggy

Human Accessories

Glasses

Hats

Hand watches

Car

Model

Colour

Reflectiveness

Plates

Street

Length

Traffic Lights

Cross Locations

Cross Numbers

Time of the Day
Day time

Night
Vegetation

Trees

Plants

Sky

Sun/Moon/Stars Location

Stars Contrast

Clouds Location

Lighting
Traffic Lights

Street Lights
Prop

Waste Bin

Waste Bags

Benches

Animal Birds

4.4.1 Diversity and photo-realism

To avoid over-fitting to the visual features of the synthetic world, the content of the

environment is diversified by including a wide set of 3D models, textures, animations,
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(a) Different weather conditions.

(b) Different times-of-the-day.

Figure 4.5: Sample frames from sequences rendered at different weather conditions

(a) and times-of-the-day (b).

weather conditions, illumination and lighting, and recording set-ups. A sample of

the key variations Silver currently supports is illustrated in Table 4.2. In parallel to

that, example frames from the supported weather conditions and times-of-the-day

are shown in Figure 4.5.
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Figure 4.6: Photo-realism of Silver

Silver utilizes HDRP of Unity game engine to develop a photo-realistic 3D virtual

world for synthetic data generation. HDRP is based on the Scriptable Rendering

Pipeline (SRP). Generally, it is intended for high visual fidelity applications. The

other key feature of HDRP is the Physical Light Unit (PLU) that relies on real-life

lighting measurable values. All of these attributes together contribute to the final

photo-realistic rendering that is shown in Figure 4.6.

Utilizing HDRP for the purpose of synthetic data generation is one of the key

contributions of our work in this chapter. As shown in Figure 4.7 the synthetic

data generators PHAV and Synthia generate less photo-realistic synthetic data as

compared to Silver and Synscapes. Non-realistic weather simulation, low polygon

3D models, and unrealistic characters and vehicles are crucial issues behind the

lack of photo-realism. An addition to this, the core problem is utilizing a non-

physically based rendering pipeline which makes the interaction of the light with

the materials clearly unrealistic. On the other hand, the main advantage of our
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system in comparison with Synscapes is the capability of Silver to simulate both

different weather conditions and diverse nighttimes. Additionally, Silver diversifies

buildings types, characters accessories, animations, age and skin color.

Table 4.3 details some key features of Silver as compared to other synthetic data

generation systems. At the same time, it shows that these systems present a partial

solution to the problem. Most of them are task specific, achieve diversity but neglect

photo-realism or vice versa. For these reasons, Silver is developed to present a good

solution for the synthetic data generation task.

Table 4.3: A comparison between Silver features and three state-of-the-art synthetic

data generators, namely, Synscapes (Tsirikoglou et al., 2017; Wrenninge and Unger,

2018), Synthia (Ros et al., 2016), and PHAV (Roberto de Souza et al., 2017).

Simulator Computer Vision Tasks Weather Conditions Times-of-Day
Public

Availability
Photo-realism

Semantic

Segmentation

Instance

Segmentation

Depth

Estimation

Surface Normals

Estimation

Pose

Estimation
Normal Rainy Foggy Snowy Day-time Nighttime / /

Synscapes - - - - - - -

Synthia - - - - - -

PHAV - - - -

Silver

4.4.2 Scalability

One main goal of our work, presented in this chapter, is to make the system scalable

and extendable to a range of different problems. In other words, adding new 3D

models for human characters, buildings, trees, cars, or new animations, or textures,

or camera setup should be straightforward. At the same time, extending the system

to support new computer vision tasks shall not require major modifications to the

other system components. This was achieved by following a modular approach in

building Silver where each component is independent of the unrelated ones.

To dissect the complexity of the system, the following six components were

analysed: Triangles, Vertices and Batches Count, CPU Time, FPS, and SetPass

Calls. The first three represent the total number of triangles, vertices and batches
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Figure 4.7: Visual comparison between Silver and three synthetic data generators

in terms of photo-realism. First three rows show PHAV (Roberto de Souza et al.,

2017), Synthia (Ros et al., 2016), and Synscapes (Tsirikoglou et al., 2017; Wrenninge

and Unger, 2018), respectively, while final row presents our system Silver.

Figure 4.8: System complexity when varying number of characters.

(static, dynamic, and instance types) Unity processes for a single frame. CPU Time

illustrates the time required to process and render a single frame. FPS, however,

provides the number of frames rendered per second. The higher the value, the

smoother the system will run. On the other hand, SetPass Calls shows how many

times Unity changes the shader pass as it renders one frame.
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Figure 4.8 shows the average and standard deviation values for these six metrics

taken for 5 iterations. Scalability was studied for four crowdedness levels, namely

Few (N≤20), Moderate (N∼50), High (N∼100), and Extreme (N∼300). N represents

the number of generated pedestrians. Figure 4.8 clearly shows that the number of

Triangles, Vertices, Batches, and SetPass Calls all are independent of the system

load, i.e. generating more characters. FPS decreased and CPU Time increased as

expected since more characters were generated.

4.4.3 Sample dataset

Our system automatically provides ground-truth for depth estimation, normal map,

semantic segmentation, instance segmentation and body pose estimation. Figure 4.9

shows one RGB frame with its corresponding ground-truths for the mentioned

computer vision tasks. In addition to other textual information describing the time

of the day, the weather condition, and other useful information.

To show one particular usage of Silver, a sample dataset was generated and

released publicly. The dataset contains sample sequences spanning the main

supported attributes. The ability to generate different scenes and the process of

sampling models, materials, and animations are thought to minimize the visual

similarity even among a large number of sequences.

4.5 Concluding Remarks

In this chapter, we presented synthetic data generator called Silver, which allows

researchers to generate 3D photo-realistic virtual worlds procedurally and at run-

time. No computer graphics knowledge is required, no privacy issues are involved,

and no manual annotation is needed. The system is released for research usage and

researchers are welcomed to adopt it to their own needs. A sample dataset was

generated to show the capability of the system.

This chapter was not meant yet to provide proof of the usability of the synthetic
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Figure 4.9: Silver provides RGB frames (a) with pixel-level accurate ground-truths

for semantic segmentation (b), instance segmentation (c), normal maps (d), depth

maps (e), and human body pose information (f).
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data the system is able to generate. However, it was dedicated to representing

the system, its main features, design decisions, and the reasons behind them. In

Chapters 5 and 6, we are going to study the usability of the generated synthetic

data for two major computer vision tasks i.e., semantic segmentation and video

stabilization. It should be noted that Silver can be utilized to generate full datasets

with rare and challenging attributes. The automatic annotation process ensures

accuracy. At the same time, it provides unbiased ground truth since no human is

involved in the annotation process.
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Synthetic-Aware Semantic

Segmentation

In every block of marble I see a statue as plain as though it stood before

me, shaped and perfect in attitude and action. I have only to hew away the

rough walls that imprison the lovely apparition to reveal it to the other

eyes as mine see it.

Michelangelo

The work presented in this chapter was published as a conference paper in Kerim,

Chamone, et al. (2022).

Recent semantic segmentation models perform well under standard weather con-

ditions and sufficient illumination but struggle with adverse weather conditions

and nighttime. Collecting and annotating training data under these conditions

is expensive, time-consuming, error-prone, and not always practical. Usually,

synthetic data is used as a feasible data source to increase the amount of training

data. However, just directly using synthetic data may actually harm the model’s

performance under normal weather conditions while getting only small gains in

adverse situations. Therefore, we present a novel architecture specifically designed

for using synthetic training data for domain adaptation. We propose a simple yet
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powerful addition to DeepLabV3+ by using weather and time-of-the-day supervisors

trained with multi-task learning, making it both weather and nighttime aware, which

improves its mIoU accuracy by 14 percentage points on the ACDC dataset while

maintaining a score of 75% mIoU on the Cityscapes dataset.

The synthetic dataset, code, and our extended version of the Silver simulator are

all publicly available under this chapter’s GitHub repository at https://github.

com/lsmcolab/Semantic-Segmentation-under-Adverse-Conditions.

5.1 Motivation

Understanding the environment using visual data has been an active research

problem since the early beginning of computer vision. It started to attract even

more researchers with the great advancement in autonomous cars (Teichmann et al.,

2018; Kumar et al., 2021; Wiseman, 2022), human-computer-interaction (Ren and

Bao, 2020; Nazar et al., 2021; Yubin Liu, Sivaparthipan, and Shankar, 2022), and

augmented reality (Baroroh, Chu, and L. Wang, 2021; Costa, Petry, and Moreira,

2022; Chiang, Shang, and Qiao, 2022).

Semantic segmentation is at the core of these applications, with the data-

driven supervised learning methods dominating this field, achieving state-of-the-art

results (Ronneberger, Fischer, and Brox, 2015; L.-C. Chen, Y. Zhu, et al., 2018;

Y. Yuan et al., 2019; Fu et al., 2019; Hengshuang Zhao et al., 2017). Training these

models on real data requires large-scale human annotated images, which is expensive

and time-consuming, especially for images taken under challenging weather and

illumination conditions such as fog and nighttime. For instance, a person takes about

90 minutes to annotate an image from the Cityscapes dataset (Cordts et al., 2016),

which contains only daylight and clear weather conditions, while it exceeds three

hours for the Adverse Conditions Dataset with Correspondences (ACDC) (Sakaridis,

D. Dai, and Van Gool, 2021) dataset.

Despite the success of recent semantic segmentation models in clear weather and
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standard illumination conditions, these methods struggle with adverse conditions

(e.g., rainy, foggy, snowy, and nighttime), which degrade the feature extraction

process. Falling rain and snow particles change the visual appearance of objects,

partially occlude them, and cause distortion on the camera sensor, while fog works

as a low-pass filter, removing high-frequency components. Nighttime is even more

problematic because of the dramatic change in the light distribution and other severe

artifacts, such as lens flare, bright spots, and chromatic aberration. Yet, few works

have tried to investigate the effect of weather conditions and nighttime in semantic

segmentation (Guo et al., 2020; Lei et al., 2020; Alshammari, Akcay, and Breckon,

2020; Q. Xu et al., 2021; X. Ma et al., 2022). Although they achieve remarkable

results, they are limited to one weather condition only and are too narrow in their

scope.

In this chapter, we propose a novel training procedure to address the issues in

the semantic segmentation under adverse conditions and in the annotation efforts,

simultaneously. We leverage synthetic data to produce ground-truth images at no

human annotation effort and create a new dataset, the AWSS, which is composed

of images specially generated by our extended version of the Silver simulator (see

Chapter 4). To reduce the gap between synthetic and real, our approach combines

synthetic and real images by alternating their batches at training time as illustrated

in Figure 5.1.

We also propose the Weather-Aware Supervisor (WAS) and the Time-Aware

Supervisor (TAS), which are trained jointly with the main module to improve the

feature extraction. Our main module derives from the DeepLabV3+ which contains

the powerful atrous convolutions that increase the receptive field while not increasing

the dimensions of feature maps and computation cost. Thus, better performance at

low computation. Unlike the current methods that work only with a single weather

condition, our approach can handle the three main ones, i.e., rainy, foggy, and

snowy, as well as nighttime images. The results show that our novel model achieves

state-of-the-art results under adverse weather conditions (0.49 mIoU on ACDC)
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Clear Weather
Real Data

Adverse Weather
Real Data

1) Training

A) Popular Domain Adaptation Pipeline

2) Fine Tuning
Adverse Weather

Real Data
Model

3) Inference

1) Training

B) Our Proposed Domain Adaptation Pipeline

Clear Weather
Real Data

Adverse Weather
Synthetic Data

+

ModelWAS TAS

2) Inference

Model

Model
Adverse Weather

Real Data

Figure 5.1: Existing domain adaptation vs. our proposed pipeline. Unlike

other approaches, our pipeline utilizes synthetic data, Weather-Aware-Supervisor

(WAS), and Time-Aware-Supervisor (TAS) to handle standard-to-adverse domain

adaptation. Leveraging our synthetic-aware training procedure, we train our weather

and daytime-nighttime aware architecture, simultaneously, on synthetic adverse

weather and real normal weather data.

while it maintains adequate performance under standard conditions (0.75 mIoU on

Cityscapes).

In summary, our contributions are three-fold:

• A novel synthetic-aware training procedure that can be used to train on

both synthetic and real data simultaneously. In particular, we significantly

improve DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018) robustness on adverse

conditions by making its encoder both weather and nighttime aware;

• We extend the Silver simulator (see Chapter 4) to generate more photo-

realistic and diverse adverse weather conditions and increase the supported

semantic segmentation classes;
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Table 5.1: Comparison among synthetic semantic segmentation datasets.

Our proposed dataset, named AWSS, is composed of photo-realistic pixel-wise

annotated images under standard and adverse conditions.

Weather Conditions Times-of-Day Photo-realism
Public

Availability

Normal Rain Fog Snow Daytime Nighttime / /

GTA-V (Richter, Vineet, et al., 2016) ✔ ✔ - - ✔ - ✔ ✔

Synscapes (Tsirikoglou et al., 2017; Wrenninge and Unger, 2018) ✔ - - - ✔ - ✔ ✔

Virtual KITTI (Gaidon et al., 2016) ✔ ✔ ✔ - ✔ - - ✔

Synthia (Ros et al., 2016) ✔ ✔ - ✔ ✔ ✔ - -

SHIFT (T. Sun et al., 2022) ✔ ✔ ✔ - ✔ ✔ ✔ ✔

AWSS (Our Dataset) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

• Leveraging our extended version of Silver, we generate a new synthetic seman-

tic segmentation dataset, the AWSS, composed of photo-realistic annotated

images spanning foggy, rainy, and snowy weather conditions and nighttime

attributes.

5.2 The AWSS Dataset

There have been many synthetic datasets proposed for the semantic segmentation

problem. However, they are usually non-photo-realistic such as Synthia (Ros et al.,

2016) and Virtual KITTI (Gaidon et al., 2016), limited in diversity such as GTA-

V (Richter, Vineet, et al., 2016) and Synscapes (Tsirikoglou et al., 2017; Wrenninge

and Unger, 2018) as clearly demonstrated in Table 5.1. Recently, SHIFT (T. Sun

et al., 2022) dataset was introduced, which is photo-realistic and diverse similar to

our generated synthetic dataset but does not cover the snowy weather.

We extend Silver, our developed simulator that was explained in Chapter 4,

to generate adverse weather photo-realistic images along with their corresponding

ground-truth for the semantic segmentation task. We generate the Adverse

Weather Synthetic Segmentation (AWSS) dataset, which comprises 1,250 images

with a resolution of 1,200 × 780 pixels and spans normal, rainy, foggy, and snowy

weather conditions at daytime and nighttime. It follows the same conventions,
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Figure 5.2: Samples from AWSS dataset. The generated AWSS synthetic

dataset spans normal, rainy, foggy, snowy, and nighttime attributes.

i.e., classes definitions and color encoding, as Cityscapes (Cordts et al., 2016) and

ACDC (Sakaridis, D. Dai, and Van Gool, 2021) datasets. However, we limit the

number of classes to 10:

• Road and Sidewalk ;

• Building and Pole;

• Traffic Light and Traffic Sign;

• Vegetation and Sky ;

• Person and Car.

Figure 5.2 shows sample images from the AWSS dataset spanning various standard

and challenging attributes.

5.3 Extensions to the Silver framework

Silver is based on the Unity game engine (Unity, 2024). It allows users to create

3D virtual worlds by only specifying a set of scene descriptive parameters like

the weather condition, time-of-the-day, number of cars and humans, camera type,

and lens artifacts. The simulator achieves photo-realism by using the recent High

Definition Rendering Pipeline (HDRP). In addition, the simulator applies a set of
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Procedural Content Generation (PCG) concepts to generate, populate, and control

the scenes. For more details, please refer to Chapter 4.

5.3.1 Adverse conditions

The original simulator can simulate standard and adverse weather conditions at

daytime and nighttime but with a limited photo-realism and diversity. For each

weather condition, we diversify weather severeness, time-of-the-day, and other scene

elements if not specified. Based on the environment being simulated, scene elements

materials, shaders and textures are selected from a predefined large set. We

customize and integrate Procedural Terrain (Rocks and (HDRP), 2022) with Adobe

Substance materials (Material, 2022) to simulate photo-realistic snow accumulation

on ground, mud, mold, wet surfaces, and water puddles. Water drops splashes

on the ground are simulated by customizing the Unity particle system. Rain splash

intensity is controlled by the rain weather severeness which is sampled from a uniform

distribution. Additionally, we simulate slightly foggy weather condition once heavy

rain is simulated. For nighttime simulation, street lights are turned on and their

intensity is randomized. Some of these lights are flickered or turned off to increase

diversity.

5.3.2 Dash camera mode

Initially Silver simulates Unmanned Aerial Vehicle (UAV) and first-person view cam-

eras. However, most existing semantic segmentation datasets like Cityscapes (Cordts

et al., 2016) and ACDC (Sakaridis, D. Dai, and Van Gool, 2021) datasets are

recorded using a dash camera mounted on a car. To generate the AWSS dataset, we

developed the dash camera mode to facilitate this task. Furthermore, to increase

view angle diversity, we simulate vertical and horizontal lens shifts.
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Figure 5.3: An overview of our proposed architecture. DCNN of

DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018) is forced to learn weather

and daytime-nighttime specific and roboust features by the means of multi-task

learning. WAS and TAS branches learn to predict weather and daytime-nighttime,

respectively. At the same time, they guide the encoder and specifically DCNN to

learn extracting robust features under adverse and standard conditions.

5.3.3 Semantic segmentation automatic ground-truth

The simulator supports semantic segmentation automatic ground-truth generation.

However, the number of semantic classes was limited to 4 classes: humans, ground,

buildings, and trees. We extend the number of supported classes by adding new

elements to the scene like traffic signs and modify the road mesh into road and

sidewalk. At the same time, we customize the ground-truth generation pipeline

to match Cityscapes (Cordts et al., 2016) color codes and conventions. With our

extension, Silver now can provide semantic segmentation ground-truth for 10 classes,

as specified earlier in this section.

5.4 Methodology

We aim to reduce the domain shift in adverse weather conditions while not acquiring

additional real data. Hence, we propose a novel training approach that leverages
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synthetic data, while making the architecture aware of the weather condition and

nighttime. Our proposed architecture is trained on both synthetic and real data

simultaneously (see Figure 5.3).

The methodology is based on three components:

• Adding two simple networks WAS and TAS that work as supervisors to teach

the model to learn weather and nighttime specific features;

• The full-model is trained using multi-task learning where the baseline learn

semantic segmentation and WAS and TAS learns to predict weather condition

and day-night, respectively;

• Our proposed model is trained on images from synthetic domain Dadv−synth

and real domain Dstand−real in alternating fashion to ensure that the model

learn to extract adverse weather features only from synthetic data which

presents a proxy of the adverse real domain Dadv−real. At the same time,

it does not overfit to synthetic data and still ensure that the architecture

other components leverage real data. Throughout this chapter, Dstand−real,

Dadv−real, and Dadv−synth are represented by Cityscapes (Cordts et al., 2016),

ACDC (Sakaridis, D. Dai, and Van Gool, 2021), and AWSS datasets,

respectively.

5.4.1 Weather and nighttime aware encoder

We use the DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018) architecture because of

its powerful encoder-decoder architecture. Originally, it is assumed that the encoder

will learn how to extract low-level and high-level features independent of weather

and illumination conditions. This strategy prevents the model from learning how to

extract weather-specific features, resulting in low-quality features being fed to the

decoder. The problem becomes even harder without training samples under these

conditions.
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To alleviate this problem, we focus on the Deep Convolutional Neural Network

(DCNN) part of DeepLabV3+. We leverage multi-task learning to enforce the

encoder to learn weather and time specific features. We add two simple identical

models Weather-Aware-Supervisor (WAS) and Time-Aware-Supervisor (TAS). Each

model is composed of two 3×3 atrous 2D convolutions with a rate of 2 and padding

of 6. Each convolution is followed by a batch normalization and a rectified linear

unit (ReLU). After this, the feature map is flattened and fed to 3 fully connected

layers. The last layer predicts the weather for WAS and the daytime-nighttime for

TAS. It is worth noting that WAS and TAS are only activated in the training process

to guide the feature extraction learning process.

5.4.2 Multi-task learning to improve semantic segmentation

In the original implementation of DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018),

the output of DCNN is passed to the remaining part of the encoder and to the

decoder. In our implementation, we also feed the output of DCNN to WAS and

TAS. The total objective to train the new architecture is defined as:

min
θ
L = LSegment + α× LWAS + β × LTAS, (5.1)

where LSegment is the original loss used to train DeepLabV3+ (L.-C. Chen, Y. Zhu,

et al., 2018), LWAS and LTAS are the cross-entropy losses utilized to train WAS

and TAS, respectively. α and β are scalars to ensure numerical stability during the

training and to give more emphasis to the main loss, i.e., LSegment.

It should be noted that each loss is back-propagated separately. LSegment is

back-propagated over all the architecture except WAS and TAS. On the other hand,

LWAS and LTAS are back-propagated only to DCNN.

5.4.3 Synthetic-aware training

Training on source domain and fine-tuning on the target domain is a well-known

approach to mitigate the domain gap (Tzeng et al., 2017). However, it is not
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practical as it requires annotated real data from the target domain which may not be

always affordable. Furthermore, training the model on data from one distribution

and then forcing the model to learn a new distribution limits the ability of the

network to learn and may not converge to a global minima.

Thus, we propose training the modified DeepLabV3+ (L.-C. Chen, Y. Zhu, et al.,

2018) on data from both synthetic and real distributions simultaneously and from

scratch. For that aim, we train in alternating fashion: one batch from Dstand−real

and next batch from Dadv−synth. At the same time, since the aim is to learn how

to extract useful features under adverse conditions, we freeze DCNN weights when

training on a batch from Dstand−real and update them for a batch from Dadv−synth. It

is worth noting that all other weights are updated for data from both domains. This

strategy encourages the encoder to leverage synthetic data to better learn feature

extraction for the target domain while it ensures that the decoder is learning how

to interpret both features to perform segmentation task under standard and adverse

conditions.

5.5 Experiments

Datasets. For training, we use two datasets: AWSS dataset and the training split

of Cityscapes (Cordts et al., 2016) dataset. For evaluation, we use validation splits of

Cityscapes and ACDC (Sakaridis, D. Dai, and Van Gool, 2021) datasets. The three

datasets follow the same conventions and color codes. Cityscapes comprises 2975

training images and 500 validation images. It is captured in urban scenes under

normal weather conditions in the daytime. ACDC validation split comprises 506

images spanning rainy, foggy, snowy weather conditions and nighttime attributes.

Implementation details. Experiments are conducted on a Tesla V100 GPU.

For all experiments, we keep the default parameters of the authors. For our

adopted DeepLabV3+ architectures, we use a batch size of 4 while we keep all

other parameters the same as DeepLabV3+. For DeepLabV3+ baseline, our
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architecture, and all ablation study experiments, we train for 30K iterations. We

set α = β = 10−5, as these values achieved the best results.

Baselines. To analyse the robustness of recent semantic segmentation methods

under adverse conditions, we use DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018),

HRNet (Y. Yuan et al., 2019), DANet (Fu et al., 2019), and PSPNet (Hengshuang

Zhao et al., 2017).

Evaluation metric. We use the commonMean Intersection over Union (mIoU) (L.-C.

Chen, Y. Zhu, et al., 2018; Y. Yuan et al., 2019; Fu et al., 2019; Hengshuang Zhao

et al., 2017) on the validation sets of Cityscapes and ACDC similar to (P.-R. Chen

et al., 2020; Xie et al., 2022; Musat et al., 2021).

5.6 Results

Before discussing our architecture results, we will discuss how the domain shift

degrades the state-of-the-art, and the improvements achieved by fine-tuning on

synthetic data.

5.6.1 Standard-Adverse domain shift

As shown by results in Table 5.2, the performance of recent methods clearly

degrade under adverse weather conditions and at nighttime (see rows Baseline).

Additionally, it seems that snow and nighttime represent a clear challenge for recent

models. Snow causes a drastic change in scene appearance: falling snow particles,

snow on pavements and other scene elements makes these objects considerably

different compared to what the model learned in the training phase. Thus, the
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Table 5.2: mIoU results for our approach Vs. standard domain adaptation

methods. Training our proposed weather and nighttime-aware architecture on

both Cityscapes (Cordts et al., 2016) and AWSS, improves the performance on

ACDC (Sakaridis, D. Dai, and Van Gool, 2021) dataset and achieves adequate

performance on Cityscapes (Cordts et al., 2016). Best results are bolded. Fnt

stands for Fine-Tuned.

ACDC Cityscapes

Rain Fog Snow Night Overall Overall

DeepLabV3+ (L.-C. Chen, Y. Zhu, et al., 2018)
Baseline 0.41 0.46 0.36 0.17 0.35 0.78

FnT on AWSS 0.44 0.48 0.47 0.19 0.39 0.59

HRNet (Y. Yuan et al., 2019)
Baseline 0.46 0.42 0.41 0.09 0.35 0.75

FnT on AWSS 0.47 0.49 0.35 0.14 0.36 0.51

DANet (Fu et al., 2019)
Baseline 0.47 0.57 0.44 0.21 0.42 0.82

FnT on AWSS 0.48 0.58 0.48 0.26 0.45 0.74

PSPNet (Hengshuang Zhao et al., 2017)
Baseline 0.49 0.54 0.43 0.20 0.41 0.86

FnT on AWSS 0.52 0.56 0.46 0.18 0.43 0.86

Ours Full-Model 0.57 0.60 0.50 0.27 0.49 0.75

model struggles to segment these elements. Similarly, nighttime scenes with the

radical decrease in illumination present a major challenge for segmentation methods.

5.6.2 Domain adaptation using synthetic data

Transfer learning is usually applied to handle a domain shift. However, although

it improves the performance on the target domain, it generally degrades the

performance on the source domain. As shown in Table 5.2 (FnT on AWSS),

we can improve the performance of each semantic segmentation model. For

some attributes like night and snow, the improvement was more than 50% (e.g.

HRNet (Y. Yuan et al., 2019) under night). Generally, each semantic segmentation

model was able to leverage AWSS to improve its performance for each adverse

attribute. However, when evaluating these fine-tuned models on the original domain
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(Cityscapes), we see a clear degradation in performance. This degradation was more

severe for some models like HRNet (Y. Yuan et al., 2019) while it was slight for

PSPNet (Hengshuang Zhao et al., 2017)

Table 5.3: Per-class mIoU results on ACDC (Sakaridis, D. Dai, and

Van Gool, 2021) dataset. Our model achieves the best overall results on

ACDC (Sakaridis, D. Dai, and Van Gool, 2021). It maintains the best results

on Road, Sidewalk, Building, and Person classes. Best and second best results are

bolded and underlined, respectively.

Road Sidewalk Building Pole Tr. Light Tr. Sign Vegetation Sky Person Car Overall

DeepLabV3+ 0.71 0.22 0.31 0.18 0.22 0.29 0.72 0.38 0.24 0.23 0.35

HRNet 0.55 0.16 0.44 0.14 0.28 0.24 0.66 0.72 0.07 0.19 0.35

DANet 0.68 0.11 0.19 0.28 0.54 0.67 0.26 0.65 0.29 0.53 0.42

PSPNet 0.63 0.12 0.60 0.30 0.48 0.41 0.62 0.61 0.21 0.17 0.41

Ours 0.79 0.40 0.63 0.25 0.26 0.33 0.69 0.66 0.32 0.52 0.49

5.6.3 Weather and night aware architecture

While the previous solution is simple, the improvement on the target domain was

limited, and the performance on the source domain was sharply degraded. As

a remedy, our architecture-based solution achieves the best results on the target

domain and it maintains an adequate performance on the source domain. As

reported in Table 5.2, making the model aware of the weather condition and daytime-

nighttime attributes of the images in the training phase helps the model to learn how

to extract more efficient features under both standard and challenging scenarios.

Qualitative results are shown in Figure 5.4. Furthermore, per-class results are

demonstrated in Table 5.3, our model achieves the best results on Road, Sidewalk,

Building, and Person semantic classes. The largest improvement was on the Sidewalk

which is around 82% improvement compared to DeepLabV3+, the best performing

baseline on this class. As expected, snow and rain changes the visual appearance

of this class significantly. This is because of snow accumulation, footsteps on snow,
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Figure 5.4: Visual comparison between baselines and our approach.

Segmentation results are shown on ACDC (Sakaridis, D. Dai, and Van Gool, 2021)

and Cityscapes (Cordts et al., 2016) dataset, respectively.

rain splash and mud, in addition to light reflection due to wet surface when raining.

5.7 Ablation Studies

To understand the effect of each design decision, we perform several experiments.

5.7.1 Training data type

We train the baseline model on AWSS from scratch (see Table 5.4 first row). As

expected, training on synthetic data alone does not achieve satisfactory results due

to domain gap between synthetic and real data. Thus, this suggests that AWSS can

be used as complementary to the real data and not as an alternative. On the other

hand, training the model from scratch on standard weather will perform well on

these conditions but will fail under challenging conditions (refer to Table 5.4 second

row).
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Table 5.4: Ablation analysis of weather and time awareness on

performance. Making the DeepLabV3+ weather and time aware improved the

performance significantly at both normal weather, i.e. Cityscapes (Cordts et al.,

2016) (CS), and adverse weather, i.e. ACDC (Sakaridis, D. Dai, and Van Gool,

2021), scenarios. Best and second best results are bolded and underlined,

respectively.

Training Mode
ACDC Cityscapes

Rain Fog Snow Night Overall Overall

Baseline

scratch on AWSS 0.24 0.25 0.26 0.11 0.22 0.27

scratch on CS 0.41 0.46 0.36 0.17 0.35 0.78

scratch on CS and fine-tuned on AWSS 0.44 0.48 0.47 0.19 0.39 0.59

Ours

scratch on CS and AWSS 0.41 0.43 0.38 0.19 0.35 0.69

scratch on CS and AWSS + Weather Aware 0.49 0.55 0.47 0.20 0.43 0.73

scratch on CS and AWSS + Weather and Nighttime Aware 0.57 0.60 0.50 0.27 0.49 0.75

5.7.2 Training strategy

As shown in Table 5.4 third row, the standard method of transfer learning (fine-

tuning the last layers on the target domain) improves the performance on the target

domain but degrades the performance on the source domain.

5.7.3 Weather-Time awareness

Our approach achieves the best results under adverse conditions while still main-

taining a satisfactory performance under standard conditions. Making the model

synthetic aware and training the model without weather and nighttime-awareness

achieve better results on the source domain but low performance on the target

domain, compared to fine-tuning experiment. Adding the weather awareness to the

model, i.e WAS, improves the performance at standard and adverse conditions. All

adverse weather attributes were improved clearly as expected but the night attribute

maintained a slight improvement. Finally, making the model aware of nighttime too,

boosts significantly the performance under nighttime. Interestingly, it improves also

93



Chapter 5. Synthetic-Aware Semantic Segmentation

the performance of the other weather conditions too. This is expected as TAS and

WAS teachers allow the model to learn weather specific and nighttime-specific robust

features which enables the model to achieve better results under these challenging

conditions.

Normal Rainy Foggy Snowy Night

Figure 5.5: Varying weather conditions for the same scene and viewpoint.

Images depicted in one row were generated from the same scene and viewpoint.

Each column represents varying weather conditions and time of day.

5.7.4 Encoder features visualization

First, we utilize our Silver simulator to generate a small dataset. The dataset is

composed of 200 images: ten frames long four sequences for each condition captured

from the same scene and viewpoint but under normal and adverse conditions as

shown in Figure 5.5. Each row represents a different scene. The adverse weather

conditions include rainy, foggy, and snowy conditions. We also generate images in

the daytime and nighttime.

We use T-distributed Stochastic Neighbor Embedding (T-SNE) (Van der Maaten

and G. Hinton, 2008) to visualize the high-dimensional low-level and high-level

features learned by DeepLabV3+’s encoder and compare them to the ones learned by

our model. Low-level and high-level features are leveraged by the decoder to predict
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Figure 5.6: Visualisation of low-level features learned by DCNN of

DeepLabV3+ compared to our model. The DCNN of our model learns more

weather and time-invariant features compared to the baseline.

the final semantic segmentation of a given RGB image. Therefore, visualizing these

features provides insight into whether the learned features by our model are normal-

adverse conditions-invariant as we predicted.

Figure 5.6 demonstrates the embeddings of both models at normal and adverse

conditions. Our model helps the DCNN of the encoder to learn more weather-

invariant features at this stage. Next, we also visualize high-level features learned

by the encoder of both models. Figure 5.7 shows that adverse weather high-level

features, learned by our encoder, are yet more invariant compared to those of the

baseline as expected.
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Figure 5.7: Visualisation of high-level features learned by the encoder of

DeepLabV3+ compared to our model. Our model’s encoder learns, clearly,

more weather and time-invariant features.

A key point to consider in this scope is that our model was designed and trained

with a focus on real images for testing purposes. Although synthetic data was

utilized during the training phase, the model’s optimization primarily targeted real-

world data rather than synthetic ones. Therefore, what was just illustrated with

synthetic data can be also generalized to real data. This explains the good results

obtained by our modified version of DeepLabV3+ under adverse conditions.
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5.8 Concluding Remarks

In this chapter, we introduced a novel synthetic dataset, the AWSS, that covers var-

ious adverse conditions. We showed that fine-tuning four state-of-the-art semantic

segmentation models improves performance under adverse conditions but degrades

performance under standard conditions. Our proposed solution shows that making

the model aware of the synthetic data and utilizing a weather-aware-supervisor and

time-aware-supervisor achieves the best results under adverse weather conditions

while maintaining adequate performance under standard conditions.
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Chapter 6

Synthetic-Aware Video

Stabilization

The biggest risk is not taking any risk. In a world that’s changing quickly,

the only strategy that is guaranteed to fail is not taking risks

Mark Zuckerberg

The work presented in this chapter was published as a conference paper in Kerim,

Ramos, et al. (2024).

Stabilization plays a central role in improving the quality of videos. However, current

methods perform poorly under adverse conditions. In this chapter, we propose

a synthetic-aware adverse weather video stabilization algorithm that dispenses

real data for training, relying solely on synthetic data. Our approach leverages

specially generated synthetic data to avoid the feature extraction issues faced

by current methods. To achieve this, we present a novel data generator to

produce the required training data with an automatic ground-truth extraction

procedure. We also propose a new dataset, VSAC105Real, and compare our

method to five recent video stabilization algorithms using two benchmarks. Our

method generalizes well on real-world videos across all weather conditions and

does not require large-scale synthetic training data. Implementations for our

proposed video stabilization algorithm, extended version of the generator for video
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stabilization task, and datasets are available at https://github.com/A-Kerim/

SyntheticData4VideoStabilization_WACV_2024.

6.1 Motivation

Over the past several years, we have witnessed an explosion of videos being recorded

and shared on the Internet. However, most shared videos are unedited and shaky,

which makes them unpleasant to watch. Therefore, video stabilization techniques

became essential in the video processing pipeline, gaining momentum as more

unedited videos are being created and shared. Recent video stabilization approaches

perform well under standard conditions but struggle under adverse ones. Moreover,

collecting training videos in these adverse conditions is hard, dangerous, and time-

consuming. Furthermore, creating photo-realistic synthetic videos simulating these

conditions is complex, expensive, and poses certain limitations because of the domain

gap problem between synthetic and real domains.

The training data bottleneck mentioned above causes many video stabilization

methods to be essentially non-learning-based, commonly adopting affine or homogra-

phy matrix estimation in the camera motion estimation step to extract the camera

trajectory. Usually, feature extraction, description, and matching are involved in

this process. Feature extractors like SIFT (Lowe, 2004) and the learning-based

ones, like R2D2 (Revaud et al., 2019) and ASLFeat (Luo et al., 2020), perform well

under standard conditions, but they may fail under challenging conditions, such as

foggy, rainy, and snowy weather, as well as nighttime scenes. For instance, raindrop

and snowflake particles along with texture-depleted scenes in fog or darkness pose a

clear challenge to extract robust features. Failing to estimate the camera trajectory

accurately, in the motion estimation stage, propagates the error to later steps of the

process, decreasing the quality of the stabilized video.

Synthetic data have shown great progress in the field of computer vision,

captivating numerous researchers who seek to apply it to diverse computer vision
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problems (Yilin Liu, Xue, and H. Huang, 2021; Kerim, Celikcan, et al., 2021; Shafaei,

James J Little, and Schmidt, 2016a; Tsirikoglou, 2022; Piano et al., 2023). Most

importantly, synthetic data holds the promise of addressing the lack of suitable data

for training supervised learning models. However, in this thesis, we argue that the

potential of synthetic data lies not only in the amount of generated data for training

but also in how we design and use this data jointly with our methods.

In this chapter, we present a novel synthetic-aware video stabilization method

that leverages synthetic data and achieves state-of-the-art results using only a small-

scale synthetic dataset. Using specially designed synthetic videos for training, our

algorithm can bypass the feature extraction step, commonly adopted by video

stabilization methods, and thus be more robust to adverse weather conditions.

We leverage the Unity engine to build a simulator that creates three-dimensional

photo-realistic virtual worlds procedurally at run-time. The system automatically

diversifies essential scene attributes like weather conditions, time of the day, and

crowdedness. For more details, please refer to Chapter 4.

We also extend our simulator,Silver, to generate the required ground-truth

training data for our learning-based video stabilization method. We also introduce

VSAC105Real, a new evaluation dataset with real adverse weather videos, since

available benchmarks lack these weather conditions.

Our proposed method does not require any real data for training and is more

robust than the state-of-the-art methods across different weather conditions. To

the best of our knowledge, this is the pioneering work addressing video stabilization

in adverse weather, utilizing synthetic videos. Despite supervised learning-based

approaches (M. Wang et al., 2018; Y.-L. Liu et al., 2021; J. Yu and Ramamoorthi,

2020; M. K. Ali, S. Yu, and Kim, 2020) being able to learn parameters like cropping

window, sensitivity, and even to extract discriminative features, there is no sufficient

labeled data for obtaining high-quality results in any condition. Sourcing, collecting,

and annotating relevant data is cumbersome, time-consuming, error-prone, costly,

and subject to privacy issues.

100



6.2. Methodology

Hence, our main contributions are three-fold:

• A novel synthetic-aware video stabilization method, achieving state-of-the-art

results on real videos while trained only on synthetic videos;

• A new synthetic data generator capable of producing specially designed

training videos;

• A new video stabilization dataset, VSAC105Real, composed of real videos

spanning foggy, rainy, snowy weather, and nighttime attributes.

6.2 Methodology

Let V = {v1, . . . , vN} be a shaky video composed of N frames. Our approach aims to

generate a stabilized version V ′ = {v′1, . . . , v′N} while preserving the original camera

movement made by the recorder. Our method has two stages:

• Motion estimation;

• Trajectory smoothing.

In the Motion estimation stage, we train a motion estimation network using

the ground-truth data from generated synthetic videos to estimate an affine

transformation matrix Ai for every consecutive frames vi and vi+1. Then, in the

trajectory smoothing stage, we calculate the camera trajectory T̂ = {τ̂1, . . . , τ̂N}

from the estimated parameters x̂j for the pair of frames (vj, vj+1), and after

smoothing T̂ , we warp and crop frames using transformations retrieved from the

smoothed trajectory T̃ = {τ̃1, . . . , τ̃N}. Figure 6.1 shows the pipeline.

6.2.1 Motion estimation

The first stage of our proposed pipeline estimates the camera motion throughout

the video. Most existing 2D-based stabilization approaches apply key-point feature

extraction and tracking to solve this task (K.-Y. Lee et al., 2009; Grundmann,
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Figure 6.1: Video stabilization pipeline. Our method estimates the translation,

rotation, and scale for each pair of frames of the shaky video. After computing the

camera trajectory, upper (red) and lower (green) bounds are found and averaged,

and the Savitzky-Golay filter is applied to smooth the trajectory. Finally, warping

and cropping are performed.

Kwatra, and Essa, 2011; S. Liu, Y. Wang, et al., 2012). However, both steps may fail

under adverse weather conditions due to repetitive textures and partial occlusions

caused by rain and snow particles or textureless objects under foggy weather or at

night. To overcome this issue and properly recover the camera motion in V , we

propose estimating parameters tx, ty, θ, and s of an affine transformation matrix

A =

s cos θ −s sin θ tx

s sin θ s cos θ ty

 (6.1)

for every consecutive pair of frames using synthetic data for deep estimation. Thus,

we abdicate the feature extraction procedure entirely since, using our proposed

engine, we can generate the ground-truth affine transformation needed for training

as described in Section 6.3.

We use two identical networks for estimating the parameters, whereW = H = 256

is the center-cropped image width and height:

• ftr : R4×W×H → R2, which estimates the x and y translations xtr = [tx, ty],

• frs : R4×W×H → R2, which predicts the rotation angle and scale xrs = [θ, s].
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Note that ftr and frs share the same architecture but not the same weights. Both

networks consist of a feature extractor implemented as four convolutional layers, a

pooling and a dropout layer, and a regressor, which is a fully connected network

composed of three linear layers that process the extracted features to estimate the

parameters. Figure 6.1-a shows the number of output channels of each layer. For

each training step, we feed the networks with an input I = [vi; vi+1;Oi] ∈ R4×W×H ,

where vi, vi+1 ∈ RW×H are two consecutive grayscale frames from the input video V

and Oi ∈ R2×W×H is the dense Optical Flow map for the pair (vi, vi+1). Then, we

estimate the parameters for Ai as x̂tr = ftr(I) and x̂rs = frs(I). To optimize the

networks ftr and frs, we train separately each one using the MSE loss.

A key contribution of this chapter is the usage of specially designed synthetic

data to learn an affine transformation matrix. Let Pi = {p1, . . . ,pK} denote the 2D

coordinates of K marked points at the frame vi from a generated synthetic video.

Since we can control the camera motion during the synthetic video generation, we

can analytically determine the new positions of the marked points in frame vi as

they transition to frame vi+1. With these 2K points in frames vi and vi+1, we can

compute an affine transformation Ai with 4 degrees of freedom using Pi and Pi+1,

then use it as the ground truth for training ftr and frs. We detail the process of

ground truth generation in Section 6.3.

Finally, with x̂ = [x̂tr, x̂rs] = [t̂x, t̂y, θ̂, ŝ], the estimated parameters for each video

frame pair, we compute the estimated camera trajectory T̂ = {τ̂1, . . . , τ̂N−1}, where

τ̂i =
i∑

j=1

x̂j (6.2)

and x̂j represents the estimated parameters for the pair of frames (vj, vj+1). It is

important to note that, similar to Grundmann, Kwatra, and Essa (2011), we do

not directly use t̂i to warp the shaky images. We warp the frames by applying the

smoothed affine transformations composed of the smoothed translation, rotation,

and scale parameters.
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6.2.2 Trajectory smoothing

The next step after estimating the shaky camera trajectory is smoothing it. Unlike

other methods, which tackle the camera trajectory smoothing as an optimization

problem (Grundmann, Kwatra, and Essa, 2011), we deploy the Savitzky-Golay

filter (Savitzky and Golay, 1964) on the averaged envelop of the shaky camera

trajectory to smooth it, as described in the sequel.

Given the camera trajectory T̂ , we first calculate the extremes of T̂ by applying

the first-order discrete derivative. Then, we interpolate the trajectory maxima

(T̂max) and minima (T̂min) values to extract the upper and lower envelopes,

respectively. Quadratic interpolation presented the best results in our experiments

since it makes smooth interpolations and tends to stay within the ranges of the

interpolation points. The final upper and lower signal envelopes are represented as

Eup = {eup1 , . . . , eupN−1} and Elow = {elow1 , . . . , elowN−1}, respectively.

After obtaining the envelopes, we apply the Savitzky-Golay filter on the average

envelop Ē = (Eup + Elow)/2 to remove the unwanted sudden camera shakiness and

create the smooth camera trajectory T̃ = {t̃1, . . . , t̃N−1} as shown in Figure 6.1-

b. The Savitzky-Golay filter smooths the digital signal by fitting a low-degree

polynomial to consecutive signal points using linear least squares. This strategy has

an advantage over other techniques as it preserves the signal tendency. Thus, T̃ still

maintains the properties of T̂ while ensuring a smooth camera transition over time.

After that, we calculate the difference between both trajectories δT = T̂ − T̃ . Then,

the smoothed affine transformation parameters X̃ are calculated as X̃ = X̂ − δT ,

where X̃ = {x̃1, . . . , x̃N−1} and X̂ = {x̂1, . . . , x̂N−1}, with x̃i being the smoothed

parameters t̃x, t̃y, θ̃, and s̃.

At last, we warp and crop the video frames to compose the final video. For

each video frame vi, we compute its warped version ṽi by applying a transformation

matrix to every pixel. Formally, we retrieve x̃i from the smoothed transformations

X̃ and use the smoothed parameters t̃x, t̃y, θ̃, and s̃ to compose the smoothed affine

matrix Ãi. Then, we crop the warped frames using a predefined virtual cropping
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Camera Path

Camera Path

d)

a) b) c)

Figure 6.2: Ground-truth Generation. K points are randomly sampled from the

screen space (yellow circles in a). From each of these points, we cast rays to infinity

in the 3D scene space (dashed yellow lines in b) and create hypothetical objects at

the intersection of these rays with the scene (red circles in c). We obtain the affine

transformation matrix Ai using the coordinates of the hypothetical objects in screen

space Pi and Pi+1 since they remain stationary in the scene from the frame vi to

vi+1.

window similar to Grundmann, Kwatra, and Essa (2011) to generate the stabilized

video.

6.3 Synthetic Data and Ground truth Generation

6.3.1 Synthetic data generation

There are many synthetic data generators like CARLA (Dosovitskiy, Ros, et al.,

2017) and UrbanScene3D (Yilin Liu, Xue, and H. Huang, 2021) that simulate photo-

realistic and diverse 3D worlds in the literature. However, generating special data in

such engines is cumbersome, and they do not support video stabilization. Therefore,

in this chapter, we introduce a new extension to our synthetic data generator which

was presented in Chapter 4. This extension to Silver makes it capable of filling this

gap and creating the required training data for this task.

Our generator supports other computer vision tasks like semantic and instance

segmentation, depth, and pose estimation. However, this chapter focuses on its

usability for the video stabilization task. We show that more vital than photo-
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Figure 6.3: Samples from the procedurally generated scenes using the proposed

synthetic data generator.

realistic and diverse 3D scenes is designing computer vision models targeted at

using synthetic data and generating the appropriate data for these models. We

control scene aspects in virtual worlds and generate more suitable training data

for supervised learning algorithms. A shaky synthetic video is recorded after

procedurally creating a 3D virtual world sampled from a predefined set of 3D models,

materials, and animations. Note that for each video, a new virtual world is created

to diversify the training data. Figure 6.3 demonstrates examples of the generated

scenes.

To introduce shakiness to the recording camera, we create noise using a

predefined noise profile asset. The amplitude and frequency of the noise are

randomly sampled from a uniform distribution. The noise is applied to change

the translation and rotation of the recording agent camera.

6.3.2 Ground-truth generation

The goal of our networks proposed in Section 6.2.1 is to infer the affine transfor-

mation matrix, A, given two consecutive frames. Since finding, collecting, and

annotating data is a complex and expensive process, we generate and use synthetic
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videos to obtain the ground truth affine transformation matrices to supervise the

training process.

Our idea works as follows: we first create stationary hypothetical labeled objects

in the 3D world scene; then, we record their coordinates in the screen space of

the recording camera. In that way, we can guarantee that the coordinates of these

objects in frames (vi, vi+1) correspond to exactly the same static elements in the 3D

world seen by the recording camera at frames vi and vi+1.

In other words, we create a number of invisible objects and save their coordinates

in the camera space for each frame. For each frame, a number of random points are

sampled from the screen camera space. Then, a ray is cast from each of these points

to infinity. At each ray’s intersection point with the scene, a hypothetical invisible

object is created. The object remains stationary for a number of seconds before

being destroyed. For each frame, the object’s position in world space is transferred

to the camera space. Figure 6.2 demonstrates how these hypothetical objects are

created. If the hypothetical object is not in the camera view, or if it exceeds its time

limit duration β, it is removed. Each object is given a Unique Identifier (UID) over

its lifetime. Later in the post-processing stage, for every two consecutive frames

(vi, vi+1) using the UIDs of these hypothetical objects and their screen locations, we

calculate the ground-truth affine transformation for each pair. The process is further

clarified as described in Algorithm 1. Generating myriads of hypothetical objects is

possible. However, our algorithm provides a solution to create only objects in the

field view of the recording agent, improving the overall performance.
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Algorithm 1: Affine Transformation Ground-truth Generation
Require: Nframes, T

Ensure : Per frame file containing camera screen locations of stationary

hypothetical objects.

Nframes; ▷ Total number of frames to generate

T ; ▷ Sampling period

while Recording do

for IDframe = 0; IDframe < Nframes; IDframe++ do

if IDframe%T == 0 then

Points ← samplePoints(K); ▷ Sampling K points on camera screen

space

foreach point ∈ Points do

M ← castRayToInfinity(point); ▷ Cast a ray from point to

infinity

pointinters ← findIntersPoint(M); ▷ Intersection point between

the ray with scene objects

O ← createHypotheticalObject(pointinters);

O.UID ← assignObjectUID(O); ▷ Assign O a unique identifier

O.ScreenPos← Cam.WorldToScreen(O.WorldPos); ▷ Transfer

coordinates from world to screen space

while O is visible and within its lifetime do

Save(O.ScreenPos);

WaitFewFrames();

Destroy(O);

else

WaitFewFrames();
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6.4 Experiments

In this section, we present the experimental setup used to conduct the experiments

and the comparison results.

6.4.1 Experimental setup

6.4.1.1 Synthetic datasets

Using our proposed generator, we create two synthetic training datasets: VSNC35Synth

and VSAC65Synth.

• VSNC35Synth dataset includes 35 videos at 24 fps with an average of 400

frames per video; it covers only videos in normal weather conditions. The

average number of frames was set to 400 to match the number of frames in

other datasets;

• VSAC65Synth dataset consists of 65 videos, including normal and adverse

weather condition videos. The classes span normal, rainy, foggy, and snowy

weather conditions at daytime and nighttime.

6.4.1.2 Real dataset

The available video stabilization benchmarks such as DeepStab (M. Wang et al.,

2018), Stabfr (L. Zhang et al., 2018), Selfie Video (J. Yu and Ramamoorthi, 2018),

and S. Liu, L. Yuan, et al. (2013) exclusively contain videos under normal weather

condition and at a sufficient illumination. To assess the performance of the state-

of-the-art video stabilization methods under foggy, rainy, snowy, and nighttime

conditions, we created the VSAC105Real dataset. Our dataset is composed of

videos collected from YouTube using search queries like “Fog”, “Rain”, “Snow”,

“Night”, “Adverse”, and “Severe”. We manually inspected all the videos and

selected the ones with shaking camera movement. Then, we cut the videos to
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Table 6.1: Dataset statistics. Comparison among the available video stabilization

datasets and VSAC105Real dataset.

Dataset Name #Videos
Average

#Frames

Total

#Frames

DeepStab (M. Wang et al., 2018) 61 714 43,585

Stabfr (L. Zhang et al., 2018) 45 471 21,200

Selfie Video (J. Yu and Ramamoorthi, 2018) 33 251 8,308

S. Liu, L. Yuan, et al. (2013) 144 578 83,257

VSAC105Real 105 737 77,477

ensure continuous temporal and query attributes. VSAC105Real dataset comprises

105 videos spanning normal, rainy, foggy, snowy, and nighttime attributes.

Table 6.1 shows a comparison among different video stabilization datasets and

VSAC105Real dataset. The VSAC105Real dataset has the advantage in terms of

the average number of frames. Moreover, it includes a diverse set of challenging

attributes where videos are evenly distributed across the classes, i.e., 21 videos

per class. Furthermore, a visual comparison among VSAC105Real and other video

stabilization datasets is depicted in Figure 6.4.
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Figure 6.4: VSAC105Real versus other datasets. On top, each dashed box

shows frames from other datasets. Our proposed dataset, VSAC105Real, is at the

bottom. It includes more diverse and challenging attributes as compared to the

other datasets.
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6.4.1.3 Evaluation metrics

To evaluate our approach, we use three metrics commonly used to evaluate video

stabilization algorithms (Y.-L. Liu et al., 2021; Choi and Kweon, 2020; M. Wang

et al., 2018; J. Yu and Ramamoorthi, 2020) and a new proposed one:

• Stability score. It assesses the smoothness of the stabilized video; the higher

the value the better. It is computed as the average between Stability Average

Translation and Stability Average Rotation Scores. To compute this score, we

estimate the homography matrix between vi and vi+1 to obtain the translation

and rotation arrays. Following this, we calculate their Fast Fourier Transform

(FFT). Finally, we obtain the score by calculating the ratio between the 2nd

through 6th frequency components and all frequency components. Note that

the 0th frequency component is neglected;

• Distortion score. It measures the global distortion caused by a given video

stabilization method. It fits a homography matrix between the original and

stabilized videos. Then, it finds the anisotropic scaling among these frames;

the closer to one, the better;

• Cropping ratio. It describes the ratio of the remaining frame’s area after

stabilization to the original one;

• Success rate. We also measure the success rate, which computes the ratio of

videos that were successfully processed and yielded a distortion score lower

than or equal to one.

6.4.1.4 Baselines

We evaluate five state-of-the-art video stabilizers on two real datasets: VSAC105Real

and Selfie Video (J. Yu and Ramamoorthi, 2018). The baselines span non-learning

based (Grundmann, Kwatra, and Essa, 2011), supervised (StabNet (M. Wang et al.,

2018)), and unsupervised (DIFRINT (Choi and Kweon, 2020)) video stabilization
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Figure 6.5: Comparison across different weather conditions in the

VSAC105Real dataset.

methods. Furthermore, we compare our method to J. Yu and Ramamoorthi (2020),

which heavily relies on optical flow since we use optical flow, and FuSta (Y.-L. Liu

et al., 2021) because it also uses CNNs for video stabilization close to our approach.

6.4.1.5 Implementation details

We trained our method using only the synthetic data provided by our proposed

simulator, i.e., VSNC35Synth. The hypothetical object’s time limit duration was

empirically set to β = 1 second. We trained the tx and ty translation prediction

model (ftr) and rotation θ and scale s prediction model (frs) for 65 and 2 epochs,

respectively, using batches of size M = 40. After 10 epochs, we decrease the learning

rate of ftr to 1e−5.

Our architecture is fully implemented in PyTorch, and the training procedure

takes 33 hours on a Tesla V100 GPU. For the smoothing step, a window length, i.e.,

number of coefficients, equal to 51 with 1st order polynomial were used as parameters

to the Savitzky-Golay filter as they give better results. We used FlowNet2 (Ilg et al.,

2017; Reda et al., 2017) as the optical flow estimator.

6.4.2 Results

Figure 6.5 and Table 6.2 show the comparison among the competitors across different

weather conditions in the VSAC105Real dataset. Our method presented the best
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values, on average, in terms of stability average and distortion scores, cropping

ratio, and success rate. In this thesis, we argue that our video stabilization model’s

superiority relates to the accurate affine transformation matrix estimation and the

smoothing stage. Our algorithm preserves the frame content while compensating

for camera shakiness.

We should highlight that our method achieved the highest success rate compared

to the competitors. All baselines failed to stabilize most of the shaky videos in foggy

weather conditions due to the nature of participating media. Fog works as a low-pass

filter that removes high-quality features. Most video stabilizers depend on resilient

features to estimate the camera trajectory. Even though our model was not trained

on foggy weather conditions, it learned useful features from both raw images and

optical flow.

Table 6.2 shows the results of comparing our method to several video stabilization

approaches. As can be seen, our method presented the best values on average in

comparison to all the baselines in terms of stability average, distortion, cropping

ratio, and success rate. Even though our method did not surpass the baselines at

each class individually, it still achieved competitive results. Every baseline performs

badly in at least one class, while our method is more robust across classes, hence

holding the final best results on the VSAC105Real.

Preserving the content while compensating for camera shakiness is another

important feature of our algorithm. Our method achieved the best results as

compared to other state-of-the-art methods. The superiority of our method is linked

to the accurate affine transformation matrix estimation and the smoothing stage.
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Table 6.2: Comparison across different weather conditions in the

VSAC105Real dataset. Our method presents the best average values in

comparison to the other competitors for all metrics. Bold indicates the best and

underline second best.

Metric Method

Weather Condition

AverageFog Night Normal Rain Snow

S
ta
b
il
it
y

A
v
g.

S
co
re
↑

FuSta (Y.-L. Liu et al., 2021) 0.226 0.683 0.715 0.679 0.824 0.626 ±0.231

Grundmann, Kwatra, and Essa (2011) 0.642 0.549 0.620 0.580 0.809 0.640 ±0.101

StabNet (M. Wang et al., 2018) 0.201 0.469 0.620 0.577 0.753 0.524 ±0.207

DIFRINT (Choi and Kweon, 2020) 0.121 0.212 0.321 0.247 0.446 0.270 ±0.122

J. Yu and Ramamoorthi (2020) 0.401 0.682 0.665 0.572 0.834 0.631 ±0.159

Our Model 0.606 0.619 0.728 0.687 0.835 0.695 ±0.093

D
is
to
rt
io
n

S
co
re
∗

FuSta (Y.-L. Liu et al., 2021) 0.202 0.692 0.725 0.712 0.798 0.626 ±0.240

Grundmann, Kwatra, and Essa (2011) 0.740 0.617 0.762 0.667 0.952 0.748 ±0.128

StabNet (M. Wang et al., 2018) 0.111 0.518 0.790 0.597 0.710 0.545 ±0.264

DIFRINT (Choi and Kweon, 2020) 0.367 0.219 0.351 0.270 0.476 0.337 ±0.099

J. Yu and Ramamoorthi (2020) 0.372 0.729 0.654 0.593 0.804 0.631 ±0.165

Our Model 0.719 0.746 0.952 0.809 0.997 0.845 ±0.124

C
ro
p
p
in
g

R
at
io
↑

FuSta (Y.-L. Liu et al., 2021) 0.286 0.810 0.905 0.800 0.950 0.751 ±0.267

Grundmann, Kwatra, and Essa (2011) 0.759 0.618 0.760 0.663 0.948 0.750 ±0.127

StabNet (M. Wang et al., 2018) 0.278 0.579 0.875 0.667 0.850 0.650 ±0.242

DIFRINT (Choi and Kweon, 2020) 0.399 0.234 0.392 0.280 0.490 0.359 ±0.102

J. Yu and Ramamoorthi (2020) 0.476 0.810 0.842 0.650 0.947 0.745 ±0.184

Our Model 0.762 0.760 0.945 0.820 0.999 0.857 ±0.109

S
u
cc
es
s

R
at
e
↑

FuSta (Y.-L. Liu et al., 2021) 0.280 0.816 0.905 0.762 0.905 0.734 ±0.261

Grundmann, Kwatra, and Essa (2011) 0.762 0.619 0.762 0.667 0.952 0.752 ±0.128

StabNet (M. Wang et al., 2018) 0.238 0.524 0.667 0.571 0.810 0.562 ±0.212

DIFRINT (Choi and Kweon, 2020) 0.429 0.238 0.381 0.286 0.476 0.362 ±0.099

J. Yu and Ramamoorthi (2020) 0.480 0.815 0.762 0.619 0.857 0.707 ±0.155

Our Model 0.765 0.762 0.950 0.814 1.000 0.858 ±0.110

↑Higher is better ∗Better closer to 1
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Table 6.3: Comparison in the Selfie Video dataset (J. Yu andRamamoorthi,

2018). Bold indicates the best, underline second best, and italic the third.

Method
Stability

Avg. Score↑

Distortion

Score∗

Cropping

Ratio↑

Success

Rate↑

FuSta (Y.-L. Liu et al., 2021) 0.818 0 .777 0.970 0.970

Grundmann, Kwatra, and Essa (2011) 0.727 0.828 0.848 0.848

StabNet (M. Wang et al., 2018) 0.763 0.680 0 .917 0.667

DIFRINT (Choi and Kweon, 2020) 0.827 0.691 0.912 0 .915

J. Yu and Ramamoorthi (2020) 0.770 0.739 0.909 0.909

Our Model 0 .787 0.933 0.939 0.939

↑Higher is better ∗Better closer to 1

We also evaluate our model on the Selfie Video dataset (J. Yu and Ramamoorthi,

2018), which contains videos under normal weather conditions and standard

illumination. Results are presented in Table 6.3. Even though our model was

trained from scratch solely on our synthetic data, it achieved the best distortion

score.

6.4.3 Ablation study

We analyzed the design options and showed the effectiveness of each component of

our pipeline. The results are reported in Table 6.4.

First, we assess a variant that uses a single CNN instead of two, as we proposed

in our final model. As a result, the network was unable to converge well. One

problem could be that the translation losses were larger than others. However, even

with loss weighting applied, the network could not learn well (Single Network row).

We hypothesize that the reason is the large value range between translation (i.e., 0

to image height/width) and scale (i.e., 0 to 1). Even with normalization, a single

network struggled to back-propagate a meaningful error.

To emphasize the advantages of using our learning-based model for affine
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Table 6.4: Ablation study. Performance for different design choices (best in bold).

Variant
Stability

Avg. Score↑

Distortion

Score∗

Cropping

Ratio↑

Success

Rate↑

Single Network 0.443 0.540 0.557 0.543

SIFT 0.576 0.650 0.670 0.667

No Optical Flow 0.678 0.781 0.829 0.800

Directed Smoothing 0.675 0.828 0.844 0.838

More Data 0.690 0.793 0.850 0.829

Complete Model 0.695 0.845 0.857 0.840

↑Higher is better ∗Better closer to 1

transformation matrix estimation over applying SIFT, we apply SIFT to find the

affine transformation matrix while keeping the smoothing part of our model intact.

As expected, SIFT did not perform well (SIFT row). Standard feature extractors

like SIFT struggle to extract robust features under adverse conditions. Rain and

snow particles, low illumination at night, and foggy weather make finding and

matching features rather hard. That leads to inaccurate affine transformations and,

thus, low-quality stabilized videos.

To evaluate our proposed smoothing algorithm’s advantages over l1 directed

smoothing, as done in Grundmann, Kwatra, and Essa (2011), we apply l1 directed

smoothing on the predicted camera trajectory while keeping our learning-based

model for the affine transformation matrix estimation. As expected, the model

does not perform very well as compared to using our proposed smoothing algorithm

(Directed Smoothing row) because our model considers more sophisticated camera

paths and is not limited to constant, linear, and parabolic motions like Grundmann,

Kwatra, and Essa (2011).

To highlight the importance of optical flow in affine transformation learning, we

train a variant using only grayscale images, i.e., I = [vi; vi+1]. As expected, excluding

optical flow reduced video stabilization quality (see No Optical Flow row).

To study the impact of our training synthetic data on video stabilization quality,
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6.4. Experiments

Table 6.5: Affine matrix estimation. Comparison among different methods for

affine matrix estimation on CA-Unsupervised dataset (Jirong Zhang et al., 2020)

using l2 distance (best in bold).

Method RT↓ LT↓ LL↓ SF↓ LF↓ Average↓

ORB (Rublee et al., 2011) + RANSAC (Fischler and Bolles, 1981) 9.24 14.63 12.27 11.36 7.20 10.94

ORB (Rublee et al., 2011) + MAGSAC (Barath, Matas, and Noskova, 2019) 10.11 19.79 12.48 11.86 7.85 12.42

ORB (Rublee et al., 2011) + LMEDS 9.78 40.11 12.02 10.84 7.01 15.95

SIFT (Lowe, 2004) + RANSAC (Fischler and Bolles, 1981) 10.63 11.70 13.37 11.75 6.44 10.78

SIFT (Lowe, 2004) + MAGSAC (Barath, Matas, and Noskova, 2019) 10.75 10.97 12.99 11.09 6.35 10.43

SIFT (Lowe, 2004) + LMEDS 10.47 9.72 13.04 10.14 5.88 9.85

Supervised (DeTone, Malisiewicz, and Rabinovich, 2016) 8.39 9.33 8.63 10.29 5.92 8.51

Unsupervised (Jirong Zhang et al., 2020) 7.05 7.60 6.84 7.42 3.84 6.55

Our Model 4.55 5.58 5.68 5.17 9.73 6.14

↓ Lower is better

we trained our model on more data, including normal and adverse weather and

nighttime videos. The training was performed using the VSAC65Synth dataset

from scratch with no real data. The results indicated no significant improvement

over the method trained on VSNC35Synth (Complete Model row). Therefore, a few

synthetic videos with accurate ground truth are sufficient to train the model.

To investigate the accuracy of our estimated affine transformation matrix, we

conduct experiments comparing our learning-based affine transformation estimation

with several estimation approaches, including the traditional ones like ORB

and SIFT with RANSAC, MAGSAC, and LMEDS for outliers rejection, the

supervised, and the unsupervised ones. Traditional approaches estimate the affine

transformation directly, but supervised and unsupervised methods are designed

to estimate the homography matrix. Thus, we extract the affine transformation

from their estimated homography for a fair comparison. We utilize the dataset

of (Jirong Zhang et al., 2020), which contains 4,200 pairs of images where each

image-pair includes six matching human-annotated pairs of points. The dataset

covers:

117



Chapter 6. Synthetic-Aware Video Stabilization

• Regular texture (RT);

• Low texture (LT);

• Low light (LL);

• Small foregrounds (SF);

• Large foregrounds (LF).

We use l2 distance to measure the error between the warped and ground-truth points

similar to (Jirong Zhang et al., 2020; Ye et al., 2021).

Table 6.5 demonstrates the generalizability of our affine estimation model, which

is better on both standard and challenging conditions. The dataset used in this

experiment includes challenging images, such as low-texture images similar to images

under foggy or snowy weather conditions and images at low illumination similar to

the ones at nighttime. These results demonstrate the ability of our proposed affine

estimator of learning to extract robust features under challenging conditions.

SIFT ORB OursUnsupervised Supervised

Figure 6.6: Qualitative comparison for affine transformation estimation.

Figure 6.6 shows a qualitative comparison among our model, traditional (e.g.,

SIFT and ORB), supervised (DeTone, Malisiewicz, and Rabinovich, 2016), and

unsupervised (Jirong Zhang et al., 2020) methods, demonstrating examples of low

texture pair of images. While other methods fail under such challenging conditions

because they were manually tuned for standard settings or not trained with data

under adverse conditions, our method performs well because it learned how to

extract resilient features using our specially designed synthetic data.
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6.4. Experiments

Figure 6.7: Classes coverage by threshold. Number of times the metrics values

for classes in Figure 6.5 are above each threshold. Our method presents the highest

metrics coverage, achieving the best results compared to other video stabilization

methods.

Additionally, we present in Figure 6.7 a new metric that computes the coverage

of classes. The figure shows the number of classes (i.e., fog, night, normal, rain,

and snow) whose output values achieved a result above different thresholds (i.e., 0.1

to 0.9 with a 0.1 step). As expected, our method presents the highest coverage as

the threshold values increase, achieving the best results compared to other video

stabilization methods.

6.4.4 Computational time analysis

Our proposed method requires two image frames sampled closely enough to accu-

rately estimate the camera trajectory T̂ given a shaky video V = {v1, v2, . . . , vN}.

Thus, to evaluate our proposed video stabilization’s performance and computation

cost under a low frame rate, we performed the following set of experiments. We
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analysed the performance of our proposed video stabilization model under three

frame rates:

• High-frame rate;

• Mid-frame rate;

• Low-frame rate.

6.4.4.1 High-frame rate

This is the original setup of our video stabilizer. It is assumed that the videos are

captured at 24 to 30 fps. Under this setup, we sample every 2 consecutive frames,

i.e., vi and vi+1 where i = 1, 2, 3, . . . , N − 1, and then we generate the optical

flow. Then, we estimate the affine transformation and smooth the predicted camera

trajectory T̂ as explained earlier.

6.4.4.2 Mid-frame rate

For every 4 frames from the shaky video V , we skip three frames, i.e., we sample vi

and vi+4 where i = 1, 5, 9, 13, . . . , N − 4. Then, we calculate the optical flow for the

frames vi and vi+4. After that, we estimate the affine transformation and smooth

the predicted camera trajectory.

6.4.4.3 Low-frame rate

Similarly, we skip 7 frames for every 8 frames from the shaky video. We sample

vi and vi+8 where i = 1, 9, 17, 25, . . . , N − 1. Then, we repeat the steps mentioned

earlier.

Table 6.6 shows the results on VSAC105Real dataset. As expected, perform-

ing video stabilization at lower frame rates requires fewer computations. The

computation complexity comes from two main factors: optical flow and affine
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Table 6.6: Computational Time Analysis: Higher sampling rate gives more

stable videos but requires more computations.

2 consecutive frames 1 at every 4 frames 1 at every 8 frames

Stability Avg. Score ↑ 0.695 0.505 0.420

Distortion Score ∗ 0.845 0.784 0.640

Avg. Time per Frame (Sec) ↓ 0.022 0.010 0.007

↑Higher is better ↓Lower is better ∗Better closer to 1

transformation estimations. For a video of 10 frames, 9, 2, and 1 estimation(s)

are required for optical flow and affine transformation for high, mid, and low frame

rates, respectively.

While the computation cost is reduced with lower frames, the quality of the

stabilized videos degrades. Lower frame rates make the camera path estimation

noisier and, thus, the final stabilized video shakier and more distorted. It should

be noted that for the main problem addressed in this chapter, 24 to 30 fps is the

standard frame rate. Considering different frame rates may not be suitable given

the dynamics of the scene.

6.5 Discussion

The results demonstrate the advantages of using synthetic data with a specially

designed ground truth and architecture. In this chapter, we argue that the main

factors behind achieving good results using only a small amount of synthetic data

are:

• Accurate ground truth;

• High quality images and plausible scene composition;

• Diversity;

• Video stabilization algorithm.
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Subsequently, we will delve into a detailed examination of each, providing a more

in-depth discussion.

Accurate ground truth. Most supervised computer vision algorithms are

trained using data collected and annotated manually for this task. However, video

stabilization is more challenging as collecting ideal training data is not feasible.

Some approaches utilize two cameras using a mechanical stabilizer to generate the

required ground truth. The main issue is that the scene is captured by two different

cameras and from two different view angles. Thus, the task of video stabilization

becomes harder for the model to learn. Our novel approach for ground-truth

generation achieves accurate ground truth. Thus, it helps learning video stabilization

to converge. Please note that corrupt and noisy labels are well-known issues in

computer vision (Song et al., 2022; P. Chen et al., 2019; Van Horn et al., 2015).

High quality images and plausible scene composition. Our synthetic data is

composed of high quality image, where the scenes comprise plausible configurations.

These two properties mitigate the domain gap between the synthetic and real

domains. Thus, our model generalizes well on real videos.

Diversity. The key reason behind achieving good results using small size synthetic

dataset can also be due to the diversity of the generated videos. The Silver simulator

applies various domain randomization techniques, so the attributes of the generated

scenes are highly diverse.

Video stabilization algorithm. Another key factor is using two separate

networks and leveraging optical flow information to help with the video stabilization

task.
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6.6 Concluding Remarks

Recent video stabilization methods struggle under adverse conditions. In this

chapter, we proposed a synthetic-aware video stabilization method that requires

only synthetic data for training, surpassing all other baselines. We also provided

one real dataset for video stabilization under adverse conditions and two synthetic

datasets for training produced by our novel synthetic data generator.
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Chapter 7

Usability of Synthetic Data

Usability is like love. You have to care, you have to listen, and you have to

be willing to change. You’ll make mistakes along the way, but that’s where

growth and forgiveness come in.

Jeffrey Zeldman

The work presented in this chapter has been submitted to CVPR-2024 (Kerim,

Marcolino, et al., 2024). The paper is currently under review.

Supervised machine learning methods require large-scale training datasets to

perform well in practice. Synthetic data has been showing great progress recently

and has been used as a complement to real data. However, there is still a great urge

to assess the usability of these synthetically generated data. For that aim, we propose

a novel training procedure and usability metric that disentangles photorealism

from diversity. We show that our metric is a simple yet effective way to rank

synthetic images based on their usability. Furthermore, we propose a new pipeline

for generating synthetic data by integrating Large Language Models with Stable

Diffusion. The quantitative results show we can achieve similar or better results

by training on 50% less synthetic data. Additionally, we quantitatively assess the

impact of photorealism on synthetic data usability. We perform an extensive set of

experiments by evaluating six different architectures on three different datasets to
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assess the effectiveness of our metric and approach.

7.1 Motivation

The advancement in ML has been mostly influenced and attributed to large-scale

annotated training data availability. State-of-the-art computer vision models (J. Xu

et al., 2022; Junayed et al., 2022; W. Wang et al., 2023) were usually trained on large-

scale datasets, such as MS COCO (Lin et al., 2014), ADE20K (B. Zhou, Hang Zhao,

Puig, Xiao, et al., 2019; B. Zhou, Hang Zhao, Puig, Fidler, et al., 2017), and

ImageNet (Deng et al., 2009). However, collecting and annotating these large-scale

datasets is cumbersome and time-consuming. Furthermore, the annotation process

imposes privacy problems, ethical issues, and the human-labeled annotations can be

biased and noisy.

Synthetic data generation has seen remarkable advances in recent years, thanks

to methods such as Generative Adversarial Networks (Jin, F. Tan, S. Jiang, et al.,

2020; Iglesias, Talavera, and Dı́az-Álvarez, 2023; Kang et al., 2023), Diffusion

Models (Croitoru et al., 2023; Carlini et al., 2023; Bansal et al., 2023), and

simulators (Dosovitskiy, Ros, et al., 2017; S. Shah et al., 2018; C. Ma, Y. Zhou,

and Zhiqiang Li, 2020). These methods enable the creation of diverse synthetic

data that can complement or replace real data in various applications. Moreover,

synthetic data can help overcome the challenges and limitations of real data, such as

scarcity, privacy, bias, and cost. Although these approaches can generate large-scale

datasets, the generated images are not always realistic and useful for training or

testing machine learning models. While it is an easy task for humans to assess the

photorealism and diversity of a small set of images, it is hard to assess the usability

of a few synthetic images and rather hard for a large-scale dataset.

Visually appealing images are not necessarily effective to train models. Similarly,

diverse synthetic images are not certainly useful images, too. A model trained on

visually appealing images may struggle when faced with images that have variations
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Sample Atrributes

Create Prompt

Stable Diffusion
Synthetic Images

 Ranking

Large Language Model

Car accidents types?
Car models?

Weather conditions?
...

 "Toyota Corolla"
 "Honda Civic"

 "Nissan Altima"
...

"Rear-end collision"
"Side-impact collision"

"Head-on collision"
...

"Clear sky"
"Rain"
"Snow"

...

"Generate a photorealistic 
image of a single car 
accident. The accident type 
is {} occurring in {} 
weather condition. The car 
involved in the accident is 
of {} model."

Best

Worst

Figure 7.1: Synthetic data generation pipeline. Our method leverages LLM

and stable diffusion to automatically generate diverse, photorealistic, and large-scale

training data.

in lighting and camera parameters which are common in practical scenarios but

may not be present in aesthetically pleasing images. In contrast, overly diverse

synthetic images may introduce unrealistic variations that do not reflect the true

distribution of real-world data. Thus, it can confuse the model, making it less

effective in practice.

As noted by Katayama et al. (2022) and Man and Chahl (2022), a useful

synthetic image is the one that is photorealistic and diverse. Photorealism is essential

to bridge the domain gap with the real domain. Additionally, training machine

learning models on diverse data is fundamental for improving the generalizability

and robustness of these models in practice (Gong, Zhong, and W. Hu, 2019; S. Yang

et al., 2022; Kariyappa and Qureshi, 2019).

In response, this chapter introduces a novel synthetic data generation pipeline

and usability metric that untangles the essential components of photorealism

and diversity for image classification problem. We address the significance of

selecting the right images for training ML models, emphasizing the balance between

photorealistic representation and diverse content.
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Figure 7.2: Synthetic Images Ranking. Each synthetic image Ii is compared to

the real and synthetic images in its class i and to both real and synthetic datasets

excluding its class images, then a score is assigned to the image based on Eq. 7.1.

Hence our main contributions are three-fold:

• A new pipeline for automatically generating synthetic data by integrating large

language models with Stable Diffusion which offers a diverse and photorealistic

collection of images suitable for effective ML models training;

• Quantitative evaluation of the impact of photorealism on the usability of

synthetic images;

• A new metric for assessing the usability of synthetic images which captures the

strengths and limitations of using them for training computer vision models.

7.2 Methodology

In our approach, We propose using Stable Diffusion (Rombach et al., 2022)

with LLMs specifically Chat Generative Pre-trained Transformer (ChatGPT-

3.5) (OpenAI, 2023) to generate synthetic training images. Then, we provide a

metric to select the most useful ones. Figure 7.1 illustrates the main components

of our approach. The modular nature of our approach allows the synthetic data

generation pipeline and usability metric to be utilized separately.
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7.2.1 Synthetic data generation pipeline

We propose a novel synthetic data generation pipeline that leverages the power of

LLMs and DMs to create diverse and high-quality datasets. The pipeline consists

of three phases.

I) Attribute extraction using LLM. LLMs are pre-trained on large-scale and

diverse datasets, making them a good fit for feature extraction.

Thus, our methodology initiates by leveraging the advanced capabilities of

LLMs to perform attribute extraction. Specifically, we employ LLM to extract

the main attributes that are crucial and pivotal for the problem. For instance, when

generating car accidents synthetic dataset, we employ LLM to identify relevant

attributes, such as popular car colors, prevalent car models, and diverse weather

conditions.

This process of attribution extraction provides us with a comprehensive pool of

potential strong attributes that will be leveraged in the second phase of our pipeline.

II) Attribute sampling and prompt creation. To construct the final prompts

for the DMs to generate the required images, we randomly sample attributes from

the pre-existing pool of attributes acquired in the preceding phase. These sampled

attributes are employed as input parameters to our DM prompt template, which is

designed to guide the DM model in generating realistic and contextually relevant

data. The random sampling process ensures diversity in the generated datasets,

thereby making them more representative of real-world scenarios.

III) Data generation with DM. We leverage Stable Diffusion-V2 model (Rom-

bach et al., 2022) to generate the required dataset tailored to this task-specific

requirements using our carefully engineered prompt. The DM was trained on

LAION-5B dataset (Schuhmann et al., 2022) which contains more than 5.85 billion

image-text pairs to understand the context provided by the prompts and produce

synthetic data that aligns with the specified attributes and conditions. This

extensive training enables the DM to effectively comprehend the contextual details

encoded in the prompts, facilitating the generation of synthetic data that is more
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useful and practical.

By leveraging the combined power of LLMs and DMs, we can efficiently

generate high-quality data. This innovative and streamlined pipeline opens up new

possibilities for training and evaluating machine learning models.

7.2.2 Synthetic data usability assessment

In addressing the challenges of evaluating synthetic data for model training, our

motivation for introducing a new metric stems from the limitations of existing ap-

proaches, which often involve complex hyperparameter tuning and lack universality.

Our proposed metric aims to streamline this process by offering a more accessible and

widely applicable assessment tool. By considering the interplay of semantic context

and visual fidelity, our metric responds to the evolving needs of the computer vision

community, providing a comprehensive and relevant evaluation framework for the

usability of synthetic data in model training.

The score S for each synthetic image is calculated as:

S :=
DvS + D̃vS

DoG+ D̃oG
, (7.1)

where DvS and D̃vS represent in-class and in-dataset diversity scores of the

synthetic image, respectively. While DoG and D̃oG refer to the in-class and in-

dataset synthetic-real domain gaps, respectively.

7.2.2.1 Diversity

To assess the diversity of the synthetic image, we use:

DvS(Ii) :=| µs
i − µs

ci | +Tr(σs
i + σs

ci − 2
√
σs
i ∗ σs

ci), (7.2)

where µs
i and σs

i refer to the mean and covariance of the synthetic, (.)s, image I

that belongs to class i; µs
ci and σs

ci refer to the mean and covariance of the set of all

images in class i; Tr refers to the trace of the matrix.
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In this context, we define DvS(Ii) as the diversity score of the synthetic image

Ii within its class. Specifically, we evaluate the diversity of Ii by comparing it

to all other synthetic images within the same class. A higher score indicates

greater diversity within the class, as formulated in Eq. 7.2. Our metric also ensures

that the diversity of image Ii extends beyond its class, encompassing factors such

as background, camera orientation, weather conditions, and other attributes not

directly related to the object of interest as shown in Eq. 7.3.

D̃vS(Ii) :=| µs
i − µ̃s

ci | +Tr(σs
i + σ̃s

ci − 2

√
σs
i ∗ σ̃s

ci), (7.3)

where µ̃s
ci and σ̃s

ci refer to the mean and covariance of all images in all classes of the

synthetic dataset except class i.

7.2.2.2 Photorealism and synthetic-to-real gap

Similarly, we evaluate the synthetic-to-real domain gap of each synthetic image based

on the given real dataset. It is assumed that both synthetic and real datasets have

an equal number of classes k.

DoG(Ii) :=| µs
i − µr

ci | +Tr(σs
i + σr

ci − 2
√
σs
i ∗ σr

ci), (7.4)

where µr
ci and σr

ci refer to the mean and covariance of all the real, (.)r, images in

class i.

DoG(Ii) represents the domain-gap score of the synthetic image Ii in its class.

This ensures that nonphotorealistic images will be given lower scores and thus less

likely to be used in the training. Similarly, to assess how close the synthetic image

Ii is to the real images in general including attributes such as background, lighting,

and camera parameters, we define D̃oG as

D̃oG(Ii) :=| µs
i − µ̃r

ci | +Tr(σs
i + σ̃r

ci − 2

√
σs
i ∗ σ̃r

ci). (7.5)
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Table 7.1: Prompt templates used to guide the Stable Diffusion model (Rombach

et al., 2022) to generate the synthetic datasets.

Dataset Prompt Template

SP-Car-2

“Generate a photorealistic image of a single car accident. The accident type is {} occurring in {}

weather condition. The car involved in the accident is of {} color and is {} model.

Capture the scene with meticulous attention to detail, realism, and visual impact.”

SA-Car-2

“Generate a highly stylized and non-photorealistic image of a single car accident. The accident type is {}

occurring in {} weather condition. The car involved in the accident is of {} color and is {} model. Apply

unique and exaggerated artistic effects, such as vibrant color splashes, abstract shapes, and bold brushstrokes.”

SP-CIFAR-10
“Generate a photorealistic image of a single {} item. Capture the scene with meticulous attention to detail,

realism, and visual impact.”

SA-CIFAR-10

“Generate a highly stylized and non-photorealistic image of a single {} item. Apply unique and exaggerated artistic

effects, such as vibrant color splashes, abstract shapes, and bold brushstrokes, to create an image that diverges significantly

from traditional photographic realism. Emphasize the use of strong contrasts, surreal textures, and artistic distortions.”

SP-Birds-525
“Generate a photorealistic image of a single {} bird. Capture the scene with meticulous attention to detail, realism, and

visual impact.”

SA-Birds-525

“Generate a highly stylized and non-photorealistic image of a single {} bird. Apply unique and exaggerated artistic effects,

such as vibrant color splashes, abstract shapes, and bold brushstrokes, to create an image that diverges significantly from

traditional photographic realism. Emphasize the use of strong contrasts, surreal textures, and artistic distortions.”

7.2.3 Synthetic images ranking

In this chapter, we argue that carefully selecting training samples is more important

than training on large-scale synthetic datasets. Few noisy training samples can

drastically impact the overall performance of ML models (Al-Gethami, Al-Akhras,

and Alawairdhi, 2021; Liang, X. Liu, and Yao, 2022; Karimi et al., 2020). Our

metric helps to filter noisy and irrelevant synthetic images based on four aspects:

• Diversity in class;

• Diversity in dataset;

• Photorealism in class;

• Photorealism in dataset.

Figure 7.2 illustrates how each synthetic image is given a score and ranked using

our metric shown in Eq. 7.1.
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7.3 Prompts Engineering

To generate the synthetic datasets i.e., SP-Car-2, SP-CIFAR-10, SP-Birds-525, SA-

Car-2, SA-CIFAR-10, and SA-Birds-525, we employed a set of carefully designed

prompt templates to guide the Stable Diffusion model (Rombach et al., 2022) in

generating the required images. These prompt templates are outlined in Table 7.1.

Each template was carefully engineered to influence the synthesis process, ensuring

diversity and adherence to desired visual properties. The versatility of our approach

is evident in the range of datasets created, covering various domains, problems, and

scenarios.

Leveraging ChatGPT-3.5 (OpenAI, 2023), we curated a comprehensive set of

attributes that encapsulate diverse aspects of the problem and task. For instance, we

present the attributes pool specifically designed for synthetic car accidents datasets

(SP-Car-2 and SA-Car-2 ) in Table 7.2. Please note that other attributes pools

are similarly created using the same approach. These attributes play a pivotal role

in simulating realistic, diverse, and challenging scenarios and guiding the Stable

Diffusion model (Rombach et al., 2022) to capture these scenarios in the generated

synthetic images for effectively training supervised computer vision models.

7.4 Experiments

We evaluate our approach through binary and multi-labeled image classification

tasks, offering fundamental insights into the classification models’ ability to handle

complex scenarios with multiple categories when trained on synthetic data. The

classification task is foundational in computer vision, providing a robust assessment

of our synthetic data generation pipeline and usability metric.

Our approach is fully implemented in PyTorch on a Tesla V100 GPU. The data

generation, training, and evaluation experiments took approximately 20 days using

15 GPUs.
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Table 7.2: The attributes pool created by ChatGPT (OpenAI, 2023) for synthetic

car accidents datasets (i.e., SP-Car-2 and SA-Car-2 ).

Popular Car Models Popular Car Colors Car Accident Types Weather Conditions

Toyota Corolla White Rear-end collision Reckless driving accident Clear sky

Honda Civic Black Side-impact collision (T-bone) Failure to yield collision Partly cloudy

Ford F-Series Gray Head-on collision Improper lane change collision Overcast

Chevrolet Silverado Silver Single-vehicle accident Backing up collision Cloudy

Toyota Camry Blue Multi-vehicle pileup Animal-related accident Rain

Honda Accord Red Intersection collision Driver error accident Thunderstorm

Nissan Altima Brown Parking lot collision Mechanical failure accident Snow

Volkswagen Golf Green Rollover Construction zone accident Fog

BMW 3 Series Yellow Run-off-road collision Red light violation collision Mist

Mercedes-Benz C-Class Orange Sideswipe collision Wrong-way driving accident Haze

Ford Mustang Beige Pedestrian-involved accident Loss of control collision Drizzle

Chevrolet Camaro Bronze Bicycle-involved accident Emergency vehicle collision Sleet

Toyota RAV4 Turquoise Motorcycle-involved accident Train crossing collision Freezing rain

Jeep Wrangler Maroon Weather-related accident School bus-involved accident Tornado

7.4.1 Real datasets

To assess the performance of a wide range of image classifiers and evaluate the utility

of our synthetic training data, we use three publicly available real datasets: Car

Accidents-2 (R-Car-2 ), CIFAR-10 (Krizhevsky, G. Hinton, et al., 2009) (R-CIFAR-

10 ), and Birds-525 (Piosenka, 2023) (R-Birds-525 ). We partition each dataset into

90% train-validate split and 10% test split.

7.4.2 Synthetic datasets

Using our synthetic data generation pipeline, we generate two sets of datasets:

Photorealistic and Artistic. Artistic versions of the datasets were generated to

assess the impact of photorealism on the utility of synthetic data. First, we

generated three photorealistic datasets: Synthetic Photorealistic Car Accidents-

2 (SP-Car-2 ), Synthetic Photorealistic CIFAR-10 (SP-CIFAR-10 ), and Synthetic

Photorealistic Birds-525 (SP-Birds-525 ); second, three artistic datasets: Synthetic

Artistic Car Accidents-2 (SA-Car-2 ), Synthetic Artistic CIFAR-10 (SA-CIFAR-10 ),

133



Chapter 7. Usability of Synthetic Data

Table 7.3: Synthetic datasets statistics.

Synthetic Dataset Statistics

Artistic Photorealistic # Classes # Images Resolution

SA-Car-2 SP-Car-2 2 844 768× 768

SA-CIFAR-10 SP-CIFAR-10 10 50, 000 768× 768

SA-Birds-525 SP-Birds-525 525 89, 250 768× 768

BirdsCIFAR-10Car Accidents

Figure 7.3: Samples from the synthetically generated datasets using stable diffusion.

Photorealistic and artistic samples are shown in the first and second columns of each

dataset, respectively.

and Synthetic Artistic Birds-525 (SA-Birds-525 ).

Photorealistic and artistic versions are identical in number of images per class and

image resolution. Table 7.3 shows the number of classes, images, and resolutions.

Furthermore, Figure 7.3 shows random samples from each dataset.

7.4.3 Image classification methods

We evaluate six prominent and state-of-the-art image classifiers spanning various

architectures: AlexNet (Krizhevsky, Sutskever, and G. E. Hinton, 2012) which

represents a simple and foundational architecture, EfficientNet (M. Tan and Le,

2019) which is an example of computationally efficient model, V iT (Dosovitskiy,
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Beyer, et al., 2020) and SwinTansformer (Z. Liu et al., 2021) which represent

transformers, V GG (Simonyan and Zisserman, 2014) which represents a well-

established baseline in the field, and REGNet (Radosavovic et al., 2020) which

represents models with a focus on regularization techniques.

Table 7.4: Accuracy of six classification architectures across various training modes

on three real datasets: R-Car-2, R-CIFAR-10, and R-Birds-525. Synth∗ means the

synthetic images were selected using our metric. The variable n denotes the total

number of images employed in the fine-tuning experiments (best in bold).

Model Synth(Artistic)Synth(Photorealistic)Real Synth+Real Synth∗ +Real

n n n 0.5n+ 0.5n 0.25n+ 0.5n

R-Car-2

AlexNet 87 (−4% ↓) 85 (−7% ↓) 91 88 (−3% ↓) 89 (−2% ↓)

EfficientNet 84 (−10% ↓) 68 (−27% ↓) 93 94 (+1% ↑) 93 (———)

V iT 86 (−4% ↓) 81 (−10% ↓) 90 91(+1% ↑) 93 (+3% ↑)

SwinTansformer 86 (−5% ↓) 74 (−19% ↓) 91 92(+1% ↑) 92 (+1% ↑)

V GG 91 (−3% ↓) 82 (−13% ↓) 94 95 (+1% ↑) 94 (———)

REGNet 87 (−7% ↓) 71 (−24% ↓) 94 96 (+2% ↑) 94 (———)

R-CIFAR-10

AlexNet 29 (−62% ↓) 21 (−73% ↓) 77 75 (−3% ↓) 76 (−1% ↓)

EfficientNet 26 (−68% ↓) 37 (−54% ↓) 80 84 (+5% ↑) 83 (+4% ↑)

V iT 69 (−24% ↓) 71 (−22% ↓) 91 90 (−1% ↓) 91 (———)

SwinTansformer 54 (−40% ↓) 64 (−29% ↓) 90 89(−1% ↓) 90 (———)

V GG 35 (−55% ↓) 38 (−51% ↓) 77 79(+3% ↑) 80 (+4% ↑)

REGNet 31 (−60% ↓) 15 (−81% ↓) 78 83(+6% ↑) 84 (+8% ↑)

R-Birds-525

AlexNet 6 (−91% ↓) 13 (−80% ↓) 66 46 (−30% ↓) 68(+3% ↑)

EfficientNet 19 (−80% ↓) 21 (−78% ↓) 94 87 (−7% ↓) 91 (−3% ↓)

V iT 25 (−73% ↓) 34 (−64% ↓) 94 87 (−7% ↓) 92 (−2% ↓)

SwinTansformer 17 (−82% ↓) 27 (−71% ↓) 93 88 (−5% ↓) 89 (−4% ↓)

V GG 25 (−72% ↓) 31 (−66% ↓) 90 85 (−6% ↓) 86 (−4% ↓)

REGNet 13 (−86% ↓) 20 (−78% ↓) 91 81 (−11% ↓) 89 (−2% ↓)
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7.4.4 Results

7.4.4.1 Photorealism and synthetic data usability

We use two different prompt templates to generate our synthetic datasets. The

first one guides the DM to generate artistic and nonrealistic synthetic images. The

prompt used contains keywords such as:

• “Highly stylized”;

• “Non-photorealistic”;

• “Exaggerated artistic effects”;

• “Bold brushstrokes”.

In contrast, to generate the photorealistic images, we used keywords, such as:

• “Photorealistic”;

• “Meticulous attention to detail”;

• “Realism”.

The same attributes sampling process is followed for both photorealistic and

artistic versions of the dataset.

To assess the photorealism of the generated images, we use the FID metric as

shown in Table 7.5. We use all images for Car-2 dataset and randomly sample

500 images from each class for CIFAR-10 and Birds-525 datasets. We compare

each class in the real dataset to its corresponding class in artistic and photorealistic

synthetic datasets. As expected, photorealistic synthetic datasets are always visually

more similar to the real data.

However, training on realistic synthetic data is not always better than training

on artistic images as shown in Table 7.4. Thus, in this experiment, we quantitatively

show that photorealism does not imply better usability. Photorealism may limit the

diversity of the generated images using DMs. In contrast, artistic images give the
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Table 7.5: Visual similarity between synthetic and real datasets. FID scores

between the classes show that photorealistic images are more similar to the real data

compared to artistic ones, as expected.

Car Accidents CIFAR-10

Accident Intact Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Real-ArtisticSynth 7 5 33 15 13 25 11 25 16 10 22 14

Real-PhotoSynth 2 3 11 6 8 4 7 4 10 4 6 4

Birds-525

BlueThroated

P ipingGuan

Cerulean

Warbler

V isayan

Hornbill

BandTailed

Guan

Mallard

Duck

Rock

Dove

AfricanPied

Hornbill

Philippine

Eagle

Malachite

Kingfisher

Barn

Swallow

RoseBreasted

Cockatoo
Takahe

Real-ArtisticSynth 7 10 9 8 9 9 10 6 23 11 11 14

Real-PhotoSynth 4 5 4 4 5 6 6 2 4 8 9 6

generative model more freedom to diversify style, color palette, scene composition,

brushwork, scene elements proportions, and textures. Additionally, the usability of

synthetic images also depends on the essence of the problem. For example, a binary

classification task is more easy to learn compared to a multi-classification problem.

Moreover, the visual similarity among the classes of the same dataset also plays

an essential role in controlling the usability of synthetic images in practice. As

shown in Table 7.6, the classes in the R-Birds-525 dataset are visually more similar

and harder to classify. Thus, photorealism is more important and can lead to

better usability. In contrast, diversity is more important in other problems such

as car accident classification where intact cars are essentially different from cars

with accidents. This explains why non-photorealistic images yield better results

than photorealistic ones for the car accident classification task. Thus, we cannot

say that more diversity of synthetic images will always mean better usability.

7.4.4.2 Usability metric for selecting training data

As we have seen so far, we need a new metric to assess the usability of synthetic

images. We utilize our usability metric shown in Eq. 7.1 to rank synthetic images and

select the most useful ones for training. We conducted qualitative and quantitative

experiments to illustrate the applicability of our approach. In Figure 7.4 we illustrate

the images that are deemed to be most and least suitable images for training based
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Table 7.6: Comparative Analysis of FID Scores between R-Birds-525 and

R-CIFAR-10 Datasets. FID scores among 10 randomly sampled classes from

R-Birds-525 dataset versus R-CIFAR-10. R-Birds-525 dataset shows relatively low

FID scores compared to R-CIFAR-10. Thus, the classes are visually more similar

and harder to classify.

R-Birds-525

Class 1Class 2Class 3Class 4Class 5Class 6Class 7Class 8Class 9Class 10

Class 1 2 1 3 4 2 2 5 4 1

Class 2 8 1 4 5 3 5 4 3 3

Class 3 16 4 4 6 3 4 5 5 1

Class 4 3 29 10 3 7 8 5 4 5

Class 5 5 1 14 4 8 6 5 2 7

Class 6 3 3 2 19 8 4 7 5 2

Class 7 4 0 5 1 15 4 5 6 2

Class 8 4 2 4 8 4 12 8 4 6

Class 9 9 4 8 4 10 4 9 1 6

R-CIFAR-10

Class 10 12 11 16 20 16 30 18 1 11

on our metric.

Image background: The best images have photo-realistic, diverse, and visually

intricate backgrounds. In contrast, to simple, plane, minimal details backgrounds in

less usable images according to our metric. This is clear in Figure 7.4 specially for

least usable synthetic images for SP-CIFAR-10 and SP-Birds-525 datasets. We can

see these images have mostly single-color and abstract backgrounds. In contrast,

more realistic, detailed, and problem-relevant backgrounds are shown in more usable

synthetic images.

Weather condition: It is clear from Figure 7.4 specially for SP-Car-2 dataset that

our metric is able to select the most diverse examples from the training dataset. For

example, snowy weather condition were given higher score as they are photo-realistic

and less frequent in the dataset.

Object of interest: Our metric filtered images with distortions in the object of
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Figure 7.4: The best (first row) and worst (second row) synthetic images from the

three datasets: SP-Car-2 (first col), SP-CIFAR-10 (second col), and SP-Birds-525

(third col) according to our usability metric.

interest as clearly seen from SP-CIFAR-10 in Figure 7.4.

The quantitative results shown in Table 7.4 support the qualitative results too.

Fine-tuning on 50% less synthetic training data selected using our approach achieves

comparable or better results compared to fine-tuning on 2 times more randomly

selected synthetic images.

7.4.4.3 Comparative analysis on usability metrics

To further investigate the usability of our approach, we compare our metric to SSIM,

PSNR, IS, and FID as shown in Table 7.7. The six architectures are trained from

scratch on 50% synthetic and 50% real data. The synthetic images are selected from

the photorealistic synthetic datasets using these metrics.

Our metric achieves the best results on all datasets for all the architectures

(except SwinTransformer on R-CIFAR-10 ). This illustrates the superiority of our

approach in ranking synthetic images and effectively training a wide set of classifiers

for three different problems.

We also support our experiments with qualitative results as shown in Figure 7.5.

It shows the most usable synthetic images ranked by SSIM, PSNR, IS, FID, and

our metric on SP-Car-2, SP-CIFAR-10, and SP-Birds-525. Our method selects

more photorealistic and diverse training samples as compared to other approaches.

Figure 7.5 shows that SSIM and PSNR give higher scores for more abstract images.
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While IS and FID give photorealistic images higher scores with no guarantee that

these images are diverse.
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Figure 7.5: Qualitative comparison among most usable synthetic images ranked by

SSIM, PSNR, IS, FID, and our proposed metric on SP-Car-2, SP-CIFAR-10, and

SP-Birds-525.
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Table 7.7: Quantitative comparison among different usability metrics SSIM, PSNR,

IS, FID, and our metric on three datasets: R-Car-2, R-CIFAR-10, and R-Birds-525

(best in bold).

Model SSIM PSNR IS FID Ours

R-Car-2

AlexNet 61 50 57 58 64

EfficientNet 50 50 51 52 65

V iT 62 62 63 63 65

SwinTransformer 64 65 65 65 68

V GG 59 58 60 60 68

REGNet 61 63 65 66 70

R-CIFAR-10

AlexNet 59 57 60 59 65

EfficientNet 30 23 26 31 35

V iT 42 48 46 47 52

SwinTransformer 58 54 58 57 56

V GG 70 70 71 63 75

REGNet 55 56 55 56 57

R-Birds-525

AlexNet 63 62 62 61 66

EfficientNet 10 12 15 17 20

V iT 53 50 52 50 56

SwinTransformer 81 80 70 81 84

V GG 59 60 61 58 66

REGNet 70 73 77 75 80
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7.5 Additional Qualitative Results

In this section, we present additional qualitative results to demonstrate the

superiority of our proposed metric compared to widely used metrics such as SSIM,

PSNR, IS, and FID.

Figures 7.6, 7.7, and 7.8 showcase the robustness and effectiveness of our metric

in capturing both photorealism and diversity of generated synthetic images. Visually

complex and detailed scenes were given higher usability scores because our metric

excels in evaluating image quality by considering not only pixel-wise differences but

also perceptually relevant features.

Qualitative comparisons reveal instances where SSIM (Z. Wang et al., 2004)

and PSNR may fall short, especially in scenarios involving highly non-photorealistic

images, where our metric provides a good alternative. Furthermore, our metric

proves to be more aligned with human perception when compared to IS (Salimans

et al., 2016) and FID (Heusel et al., 2017). The qualitative results reinforce that our

metric is not only versatile but also superior in providing a more holistic assessment

of synthetic images usability.
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Figure 7.6: Qualitative comparison among most usable synthetic images ranked by

SSIM, PSNR, IS, FID, and our metric on SP-Car-2.
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Figure 7.7: Qualitative comparison among most usable synthetic images ranked by

SSIM, PSNR, IS, FID, and our metric on SP-CIFAR-10.
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Figure 7.8: Qualitative comparison among most usable synthetic images ranked by

SSIM, PSNR, IS, FID, and our metric on SP-Birds-525.
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7.6 Discussion and Concluding Remarks

In this chapter, we have presented the problem of assessing the usability of synthetic

images. We developed a novel synthetic image generation pipeline that leverages

large language models and diffusion models to automate the generation process.

Therefore, the main contribution of this chapter was the development of a novel

system that offers a diverse and photorealistic collection of images suitable for

computer vision models training. Additionally, the introduction of a new metric

that effectively captures the strengths and limitations of using synthetic data to

train models is another key contribution of this chapter.

It should be noted that our approach proves highly effective in addressing the

main challenges usually associated with synthetic data utilization in supervised

machine learning and more especially computer vision models. The novel usability

metric we propose successfully disentangles photorealism from diversity, offering

a streamlined and efficient means to evaluate synthetic data usability which is of

paramount importance in the computer vision field.

Utilizing our usability metric and integration of large language models with

diffusion models in our synthetic data generation pipeline yields compelling results,

showcasing comparable or superior performance with a significantly reduced volume

of synthetic data. This efficiency is underscored by the versatility of our modular

framework, which allows for the separate application of the synthetic data generation

pipeline and usability metric.

Specifically, in this chapter, we show that training on 50% less synthetic images

generated and selected by our approach can achieve similar or better results

compared to training on two times randomly synthetic images. Furthermore, the

extensive experimentation, evaluating six diverse architectures across three real

datasets, further validates the efficacy of our approach in advancing the practicality

and impact of synthetic data in computer vision applications.
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Conclusions and Future Work

In conclusion, this thesis has made an effort to address the multifaceted challenges

associated with relying only on real data for essential computer vision tasks and

applications. The thesis focused on leveraging synthetic data for three fundamental

computer vision tasks: semantic segmentation, video stabilization, and image

classification. The development of our synthetic data generator, Silver, represents a

key contribution, emphasizing photorealism, diversity, and scalability. Through the

integration of HDRP and complex PCG algorithms, Silver can provide accurately

and unbiased annotated large-scale training datasets for various computer vision

tasks.

Furthermore, the thesis introduced novel synthetic-aware architectures tailored

for domain adaptation in semantic segmentation and adverse weather video

stabilization. Augmenting existing models, for semantic segmentation, with weather

and time-of-day supervisors trained through multi-task learning, our proposed

architecture demonstrated remarkable improvements in model robustness and

accuracy, particularly under challenging environmental and illumination conditions

such as rain, snow, fog, and nighttime.

Additionally, our novel approach to video stabilization in adverse weather

conditions is another key contribution of this thesis. Our algorithm has effectively

addressed inherent challenges in feature extraction, yielding superior performance
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across diverse real-world scenarios. The introduction of VSAC105Real dataset is

another key contribution to the field too.

Moreover, our proposed novel usability metric represents another significant

advancement in the evaluation of synthetic data, allowing for a detailed assessment

of both photorealism and diversity. This metric not only streamlines the evaluation

process but also facilitates informed decision-making regarding the suitability or

usability of generated synthetic data for image classification task.

Overall, the findings presented in this thesis highlight the huge potential of

synthetic data in revolutionizing the field of computer vision. By overcoming the

limitations associated with traditional data collection and annotation methods,

synthetic data offers a cost-effective and scalable solution for training robust

computer vision models. Next, we will discuss each major contribution in more

detail.

8.1 Simulator

In the scope of applying synthetic data for computer vision tasks, data diversity

is of a central concern. Silver deploys uniform distribution to set colors, select 3D

models, choose animations or to configure other scene elements. In reality this may

be considered as a strong assumption. To address this, we are planning to consider

the real distribution of scene elements and their associated attributes as observed

in the real world. At the same time, we will make these distributions conditioned

on the type of weather condition and other related aspects of the environment. For

example, in a winter environment, it is more likely to observe people wearing dark

color clothes and so on.

In this work, a qualitative overview of the system was shown. However, an

open question was to prove the usability of the generated data for training and/or

evaluation purposes which was the main scope of Chapter 7.

In future work, we plan to answer this question considering some major computer
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vision tasks such as semantic segmentation and depth estimation. In parallel, we

aim to extend the system to other computer vision tasks and improve the photo-

realism and diversity even further. We believe that utilizing Silver to generate photo-

realistic, large-scale, and diverse training data will help computer vision models to

train better and to achieve better performance on real-world data.

8.2 Semantic segmentation

In this part of the thesis, we addressed the key challenge of semantic segmentation

models performance degradation in adverse weather conditions and nighttime

scenarios. We experimentally demonstrated that standard models excel under

typical conditions but struggle in challenging environments, and collecting annotated

data for such conditions is impractical. Leveraging synthetic data to augment

training sets is common, but it can negatively impact performance under normal

conditions. Our proposed solution introduced a novel architecture, a modification

to DeepLabV3+, incorporating weather and time-of-day supervisors via multi-task

learning. This addition enhanced the model’s adaptability to both adverse weather

and nighttime conditions.

An exciting extension to our work may involve exploring the adaptability of the

proposed architecture to diverse environmental factors beyond weather and time-of-

day. Consider incorporating additional supervisors for factors such as varied lighting

conditions, seasonal changes, or urban versus rural settings. This broader approach

could enhance the model’s robustness across a spectrum of real-world scenarios,

making it more versatile for a wide range of applications.

As a pathway for future research, it would be beneficial to explore the potential of

the proposed architecture in transfer learning across different domains. Investigate

the model’s performance when trained on synthetic data from one specific domain

and adapted to another, evaluating its adaptability and generalization. Additionally,

considering the dynamic nature of weather conditions and lighting, implementing
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a real-time adaptation mechanism that continuously adjusts the model during

inference based on the environmental cues could be a promising avenue for further

exploration. This could lead to a more dynamic, robust, and responsive semantic

segmentation model that adapts on-the-fly to changing conditions.

8.3 Video stabilization

Acknowledging the limitations of current methods in challenging scenarios, we intro-

duced a novel synthetic-aware adverse weather video stabilization algorithm. This

algorithm, a departure from existing approaches, exclusively relies on synthetic data

for training, overcoming prevalent issues in feature extraction. Our methodology

involved a specially designed synthetic data, eliminating the need for real data and

incorporating an automatic ground-truth extraction procedure. To validate the

efficacy of the proposed algorithm, a new dataset, VSAC105Real, is introduced, and

a comprehensive comparison against five recent video stabilization algorithms is

conducted using two benchmark datasets. The results demonstrate the algorithm’s

superior generalization across real-world videos under diverse weather conditions,

emphasizing its robustness without necessitating extensive synthetic training data.

An extension to this part of the thesis could involve a deeper exploration

of the algorithm’s adaptability to various camera types and recording setups.

Additionally, investigating the real-time applicability of the proposed method

in resource-constrained environments would contribute to the practicality of its

implementation. Furthermore, an examination of the algorithm’s performance in

scenarios with dynamic and rapid scene changes and complex motion patterns could

provide valuable insights into its versatility.
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8.4 Usability metric

In this part of the thesis, we addressed the challenge of assessing the usability of

synthetically generated data. Acknowledging the pivotal role of large-scale training

datasets, we proposed a novel training procedure and a usability metric designed to

disentangle photorealism from diversity in synthetic data. This metric serves as a

simple yet effective tool to rank synthetic images based on their usability. We also

proposed an innovative pipeline for synthetic data generation by integrating Large

Language Models with Stable Diffusion. Quantitative results demonstrate that the

proposed approach achieves comparable or superior results with less training data.

The impact of photorealism on synthetic data usability is systematically assessed

through an extensive set of experiments involving six different architectures and

three diverse datasets.

In the future, we are planning to investigate the usability of our approach to

other computer vision tasks, such as semantic segmentation, instance segmentation,

and depth estimation. We aim to refine and extend our synthetic data usability

framework, focusing on enhancing the diversity and realism of generated images.

Further exploration will involve optimizing the integration of large language models

and stable diffusion models for an even more efficient synthetic data generation

pipeline. Additionally, we plan to investigate the generalization capabilities of

models trained on our synthetic data across a broader spectrum of real-world

scenarios including adverse weather conditions, extreme light conditions, and low-

resolution images.

Continuous efforts will be directed toward expanding the application domains

and evaluating the scalability of our approach to accommodate more diverse

architectures and datasets. Addressing these aspects will contribute to a more

comprehensive understanding of synthetic data role in advancing machine learning

and further solidify its efficacy in various fundamental and key computer vision

tasks and applications. Future work will involve a comprehensive examination of

the potential biases embedded in our synthetic data generation pipeline and selection

151



Chapter 8. Conclusions and Future Work

metric and the consequential impact on model performance and robustness.
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