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Abstract

Modelling the extremal dependence of bivariate variables is important in a wide variety
of practical applications, including environmental planning, catastrophe modelling and hy-
drology. The majority of these approaches are based on the framework of bivariate regular
variation, and a wide range of literature is available for estimating the dependence structure
in this setting. However, such procedures are only applicable to variables exhibiting asymp-
totic dependence, even though asymptotic independence is often observed in practice. In this
paper, we consider the so-called ‘angular dependence function’; this quantity summarises the
extremal dependence structure for asymptotically independent variables. Until recently, only
pointwise estimators of the angular dependence function have been available. We introduce
a range of global estimators and compare them to another recently introduced technique for
global estimation through a systematic simulation study, and a case study on river flow data
from the north of England, UK.

Keywords: Bivariate Extremes, Dependence Modelling, Asymptotic Independence, Angular De-
pendence Function
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1 Introduction

Bivariate extreme value theory is a branch of statistics that deals with the modelling of depen-

dence between the extremes of two variables. This type of analysis is useful in a variety of

fields, including finance (Castro-Camilo et al., 2018), engineering (Ross et al., 2020), and envi-

ronmental science (Brunner et al., 2016), where understanding and predicting the behaviour of

rare, high-impact events is important.

In certain applications, interest lies in understanding the risk of observing simultaneous ex-

treme events at multiple locations; for example, in the context of flood risk modelling, widespread

flooding can result in damaging consequences to properties, businesses, infrastructure, communi-

cations and the economy (Lamb et al., 2010; Keef et al., 2013b). To support resilience planning,

it it imperative to identify locations at high risk of joint extremes.

Classical theory for bivariate extremes is based on the framework of regular variation. Given a

random vector (X ,Y ) with standard exponential margins, we say that (X ,Y ) is bivariate regularly

varying if, for any measurable B⊂ [0,1],

lim
r→∞

Pr(V ∈ B,R > sr | R > r) = H(B)s−1, s≥ 1, (1.1)

with R := eX + eY , V := eX/R and H(∂B) = 0, where ∂B is the boundary of B (Resnick, 1987).

Note that bivariate regular variation is most naturally expressed on standard Pareto margins, and

the mapping (X ,Y ) 7→ (eX ,eY ) performs this transformation. We refer to R and V as radial and

angular components, respectively. Equation (1.1) implies that for the largest radial values, the

radial and angular components are independent. Furthermore, the quantity H, which is known as

the spectral measure, must satisfy the moment constraint
∫ 1

0 vdH(v) = 1/2.

The spectral measure summarises the extremal dependence of (X ,Y ), and a wide range of ap-

proaches exist for its estimation (e.g., Einmahl and Segers, 2009; de Carvalho and Davison, 2014;

Eastoe et al., 2014). Equivalently, one can consider Pickands’ dependence function (Pickands,

2



1981), which has a direct relationship to H via

A(t) =
∫ 1

0
max{vt,(1− v)(1− t)}2dH(v), t ∈ [0,1],

where A is a convex function satisfying max(t,1−t)≤ A(t)≤ 1. This function again captures the

extremal dependence of (X ,Y ), and many approaches also exist for its estimation (e.g., Guillotte

and Perron, 2016; Marcon et al., 2016; Vettori et al., 2018). Moreover, estimation procedures

for the spectral measure and Pickands’ dependence function encompass a wide range of statisti-

cal methodologies, with parametric, semi-parametric, and non-parametric modelling techniques

proposed in both Bayesian and frequentist settings.

However, methods based on bivariate regular variation are limited in the forms of extremal

dependence they can capture. This dependence can be classified through the coefficient χ (Joe,

1997), defined as

χ := lim
u→∞

Pr(Y > u | X > u) ∈ [0,1],

where this limit exists. If χ > 0, then X and Y are asymptotically dependent, and the most

extreme values of either variable can occur simultaneously. If χ = 0, X and Y are asymptotically

independent, and the most extreme values of either variable occur separately.

Under asymptotic independence, the spectral measure H places all mass on the points {0}

and {1}; equivalently, A(t) = 1 for all t ∈ [0,1]. Consequently, for this form of dependence, the

framework given in equation (1.1) is degenerate and is unable to accurately extrapolate into the

joint tail (Ledford and Tawn, 1996, 1997). Practically, an incorrect assumption of asymptotic

dependence between two variables is likely to result in an overly conservative estimate of joint

risk.

To overcome this limitation, several models have been proposed that can capture both classes

of extremal dependence. The first was given by Ledford and Tawn (1996), in which they assume
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that as u→ ∞, the joint tail can be represented as

Pr(X > u,Y > u) = Pr{min(X ,Y )> u}= L(eu)e−u/η , (1.2)

where L is a slowly varying function at infinity, i.e., limu→∞ L(cu)/L(u) = 1 for c > 0, and η ∈

(0,1]. The quantity η is termed the coefficient of tail dependence, with η = 1 and limu→∞ L(u)>

0 corresponding to asymptotic dependence and either η < 1 or η = 1 and limu→∞ L(u) = 0 cor-

responding to asymptotic independence. Many extensions to this approach exist (e.g., Ledford

and Tawn, 1997; Resnick, 2002; Ramos and Ledford, 2009); however, all such approaches are

only applicable in regions where both variables are large, limiting their use in many practical set-

tings. Since many extremal bivariate risk measures, such as environmental contours (Haselsteiner

et al., 2021) and return curves (Murphy-Barltrop et al., 2023), are defined both in regions where

both variables are extreme and in regions where only one variable is extreme, methods based on

equation (1.2) are inadequate for their estimation.

Several copula-based models have been proposed that can capture both classes of extremal

dependence, such as those given in Coles and Pauli (2002), Wadsworth et al. (2017) and Huser

and Wadsworth (2019). Unlike equation (1.2), these can be used to evaluate joint tail behaviour

in all regions where at least one variable is extreme. However, these techniques typically re-

quire strong assumptions about the parametric form of the bivariate distribution, thereby offering

reduced flexibility.

Heffernan and Tawn (2004) proposed a modelling approach, known as the conditional ex-

tremes model, which also overcomes the limitations of the framework described in equation (1.2).

This approach assumes the existence of normalising functions a : R+→R and b : R+→R+ such

that

lim
u→∞

Pr [{Y −a(X)}/b(X)≤ z, X−u > x | X > u] = D(z)e−x, x > 0, (1.3)

where D is a non-degenerate distribution function that places no mass at infinity. Note that the
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choice of conditioning on X > u is arbitrary, and an equivalent formulation exists for normalised

X given Y > u. This framework can capture both asymptotic dependence and asymptotic inde-

pendence, with the former arising when a(x) = x and b(x) = 1, and can also be used to describe

extremal behaviour in regions where only one variable is large.

Finally, Wadsworth and Tawn (2013) proposed a general extension of equation (1.2). As

u→ ∞, they assume that for any (β ,γ) ∈ R2
+ \{0},

Pr(X > βu,Y > γu) = L(eu;β ,γ)e−κ(β ,γ)u, (1.4)

where L(· ;γ,β ) is slowly varying and the function κ provides information about the joint tail be-

haviour of (X ,Y ). One can observe that equation (1.2) is a special case of (1.4) with β = γ . The

dependence function κ satisfies several theoretical properties: for instance, it is non-decreasing

in each argument, satisfies the lower bound κ(β ,γ)≥max{β ,γ}, and is homogeneuous of order

1, i.e., κ(hβ ,hγ) = hκ(β ,γ) for any h > 0. Setting w := β/(β + γ) ∈ [0,1], the latter property

implies that κ(β ,γ) = (β + γ)κ(w,1−w), motivating the definition of the so-called angular de-

pendence function (ADF) λ (w) = κ(w,1−w), w ∈ [0,1]. Using this representation, equation

(1.4) can be rewritten as

Pr(min{X/w,Y/(1−w)}> u) = L(eu;w)e−λ (w)u, w ∈ [0,1], λ (w)≥max(w,1−w), (1.5)

as u→ ∞, where L(· ;w) is slowly varying. The ADF generalises the coefficient η , with η =

1/{2λ (0.5)}. This extension captures both extremal dependence regimes, with asymptotic de-

pendence implying the lower bound, i.e., λ (w) = max(w,1−w) for all w ∈ [0,1]. Evaluation of

the ADF for rays w close to 0 and 1 corresponds to regions where one variable is larger than the

other.

The ADF can be viewed as the counterpart of the Pickands’ dependence function for asymp-
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totically independent variables, and shares many of its theoretical properties (Wadsworth and

Tawn, 2013). Specifically, λ (0) = λ (1) = 1 and max(w,1−w) ≤ λ (w), although there is no

requirement for λ (w) to be convex, or that it is bounded above, unlike A(t). There do, however,

exist shape constraints that λ must satisfy; see Section 3 for further details. The ADF can be

used to differentiate between different forms of asymptotic independence, with both positive and

negative associations captured, alongside complete independence, which implies λ (w) = 1 for

all w ∈ [0,1]. Figure 1 illustrates the ADFs for three copulas. We observe a variety in shapes,

corresponding to differing degrees of positive extremal dependence in the underlying copulas.

The weakest dependence is observed for the inverted logistic copula, while the ADF for the

asymptotically dependent logistic copula is equal to the lower bound.
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Figure 1: The true ADFs (given in red) for three example copulas. Left: bivariate Gaussian
copula with coefficient ρ = 0.5. Centre: inverted logistic copula with dependence parameter
r = 0.8. Right: logistic copula with dependence parameter r = 0.8. The lower bound for the
ADF is denoted by the black dotted line.

Despite these modelling advances, the majority of approaches for quantifying the risk of

bivariate extreme events still require bivariate regular variation. Many of the procedures that do

allow for asymptotic independence use the conditional extremes model of equation (1.3) despite

some well known limitations of this approach (Liu and Tawn, 2014).

One particular application of the model described in equation (1.5) is the estimation of so-

called bivariate return curves, RC(p) :=
{
(x,y) ∈ R2 : Pr(X > x,Y > y) = p

}
, which requires
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knowledge of extremal dependence in regions where either variable is large; see Section 6.4.

Murphy-Barltrop et al. (2023) obtain estimates of return curves, finding that estimates derived

using equation (1.5) were preferable to those from the conditional extremes model. Mhalla et al.

(2019b) and Murphy-Barltrop and Wadsworth (2024) also provide non-stationary extensions and

inference methods for the ADF.

In this paper, we propose a global methodology for ADF estimation in order to improve

extrapolation into the joint upper tail for bivariate random vectors exhibiting asymptotic inde-

pendence. Until recently, the ADF has been estimated only in a pointwise manner using the

Hill estimator (Hill, 1975) on the tail of min{X/w,Y/(1−w)}, resulting in unrealistic rough

functional estimates and, as we demonstrate in Section 5, high degrees of variability. Further,

Murphy-Barltrop et al. (2023) showed that pointwise ADF estimates result in non-smooth return

curve estimates, which are again unrealistic.

The first smooth ADF estimator was proposed recently in Simpson and Tawn (2022) based

on a theoretical link between a limit set derived from the shape of appropriately scaled sample

clouds and the ADF (Nolde and Wadsworth, 2022). The authors introduce global estimation

techniques for the limit set, from which smooth ADF estimates follow; see Section 2 for further

details.

We introduce several novel smooth ADF estimators, and compare their performance with the

pointwise Hill estimator, as well as the estimator given in Simpson and Tawn (2022). In Section

2, we review the literature on ADF estimation. In Section 3, we introduce new theoretical results

that the ADF must satisfy to be valid. In Section 4, we introduce a range of novel estimators, and

select tuning parameters for each proposed estimation technique. In Section 5, we compare each

of the available estimators through a systematic simulation study, finding certain estimators to be

favourable over others. A subset of estimators are then applied to river flow data sets in Section

6 and used to obtain estimates of return curves for different combinations of river gauges. We

conclude in Section 7 with a discussion.
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2 Existing techniques for ADF estimation

In this section, we introduce existing estimators for the ADF, with (X ,Y ) denoting a random

vector with standard exponential margins throughout. To begin, for any ray w ∈ [0,1], define the

min-projection at w as Tw := min{X/w,Y/(1−w)}. Equation (1.5) implies that for any w∈ [0,1]

and t > 0,

Pr(Tw > u+ t | Tw > u) =
L(eu+t ;w)
L(eu;w)

e−λ (w)t → e−λ (w)t = t−λ (w)
∗ , (2.1)

as u→ ∞, with t∗ := et . Since the expression in equation (2.1) has a univariate regularly vary-

ing tail with positive index, Wadsworth and Tawn (2013) propose using the Hill estimator (Hill,

1975) to obtain a pointwise estimator of the ADF; we denote this ‘base’ estimator λ̂H . A major

drawback of this technique is that the estimator is pointwise, that is, λ (w) is estimated sepa-

rately for each w, leading to rough and often unrealistic estimates of the ADF. In particular, no

information is shared across different rays, increasing the variability in the resulting estimates.

Furthermore, this estimator need not satisfy the theoretical constraints on the ADF identified in

Wadsworth and Tawn (2013), such as the endpoint conditions λ (0) = λ (1) = 1.

Simpson and Tawn (2022) recently proposed a novel estimator for the ADF using a theoretical

link with the limiting shape of scaled sample clouds. Let Cn := {(Xi,Yi)/logn; i = 1, . . . ,n}

denote n scaled, independent copies of (X ,Y ). Nolde and Wadsworth (2022) explain how, as

n→ ∞, the asymptotic shape of Cn provides information on the underlying extremal dependence

structure. In many situations, Cn converges onto the compact limit set G = {(x,y) : g(x,y)≤ 1} ⊆

[0,1]2, where g is the gauge function of G. A sufficient condition for this convergence to occur is

that the joint density, f , of (X ,Y ) exists, and that

− log f (tx, ty)∼ tg(x,y), x,y≥ 0, t→ ∞, (2.2)
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for continuous g. Following Nolde (2014), we also define the unit-level, boundary set ∂G =

{(x,y) : g(x,y)= 1}⊂ [0,1]2. Given fixed margins, the shapes of G, and hence ∂G, are completely

determined by the extremal dependence structure of (X ,Y ). Furthermore, Nolde and Wadsworth

(2022) show that the shape of G is also directly linked to the modelling frameworks described in

equations (1.2), (1.3) and (1.5), as well as the approach of Simpson et al. (2020). In particular,

letting Rw := (w/max(w,1−w),∞]× ((1−w)/max(w,1−w),∞] for all w ∈ [0,1], we have that

λ (w) = max(w,1−w)× r−1
w , (2.3)

where

rw = min{r ∈ [0,1] : rRw∩G = /0}.

The boundary sets ∂G for each of the copulas in Figure 1 are given in Figure 2, alongside the

coordinates (w/λ (w),(1−w)/λ (w)) for all w ∈ [0,1]; these coordinates represent the relation-

ship between G and the ADF via equation (2.3). One can again observe the variety in shapes.

For the asymptotically dependent logistic copula, we have that (1,1) ∈ ∂G; this is true for all

asymptotically dependent bivariate random vectors with a limit set.
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Figure 2: The boundary set ∂G (given in red) for three example copulas, with coordinate limits
denoted by the black dotted lines and the blue lines representing the coordinates (w/λ (w),(1−
w)/λ (w)) for all w ∈ [0,1]. Left: bivariate Gaussian copula with coefficient ρ = 0.5. Centre:
inverted logistic copula with dependence parameter r = 0.8. Right: logistic copula with depen-
dence parameter r = 0.8.
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In practice, both the limit set, G, and its boundary, ∂G, are unknown. Simpson and Tawn

(2022) propose an estimator for ∂G, which is then used to derive an estimator λ̂ST for the ADF

via equation (2.3). The resulting estimator λ̂ST was shown to outperform λ̂H in a wide range of

scenarios (Simpson and Tawn, 2022).

Estimation of ∂G uses an alternative radial-angular decomposition of (X ,Y ), with R∗ :=X+Y

and V ∗ := X/(X +Y ). Simpson and Tawn (2022) assume the tail of R∗ |V ∗ = v∗, v∗ ∈ [0,1], fol-

lows a generalised Pareto distribution (Davison and Smith, 1990) and then use generalised addi-

tive models to capture trends over angles in both the threshold and generalised Pareto distribution

scale parameter (Youngman, 2019). Next, high quantile estimates from the conditional distribu-

tions R∗ |V ∗ = v∗, v∗ ∈ [0,1] are computed using the fitted generalised Pareto distributions. They

are then transformed back to the original scale using X = R∗V ∗ and Y = R∗(1−V ∗) and finally

scaled onto the set [0,1]2 to give an estimate of ∂G; see Simpson and Tawn (2022) for further

details.

Wadsworth and Campbell (2024) also provide methodology for estimation of ∂G, though

their focus is on estimation of tail probabilities more generally, including in dimensions greater

than two. Furthermore, their approach requires prior selection of a parametric form for g. We

therefore restrict our attention to the work of Simpson and Tawn (2022) as their main focus is

semi-parametric estimation for ∂G in two dimensions.

When applying the estimators λ̂H and λ̂ST in Section 5 and 6, we use the tuning param-

eters suggested in the original approaches. In the case of λ̂H , we set u to be the empirical

90% quantile of Tw. The default tuning parameters for λ̂ST can be found in Simpson and Tawn

(2022), and example estimates of the set ∂G obtained using the suggested parameters are given

in the Supplementary Material. For calculating this estimator, we used the code available at

https://github.com/essimpson/self-consistent-inference.
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3 Novel theoretical results pertaining to the ADF

In this section, we outline some new theoretical results on the ADF. These results impose shape

constraints that the ADF must satisfy, and follow from the properties of κ introduced in Section

1.

Proposition 3.1. For any w1,w2 ∈ [0,1] such that w1 ≤ w2, we have

w1/λ (w1)≤ w2/λ (w2) and (1−w1)/λ (w1)≥ (1−w2)/λ (w2).

Proof. For the first statement, the proof is trivial if at least one of w1 or w2 equals 0. Therefore,

without loss of generality, assume that w1,w2 > 0. Recall λ (w) = κ(w,1−w), and that κ is

homogeneous of order 1 and monotonic in both arguments. Setting t := w1/w2 ∈ (0,1], we have

w1

w2
λ (w2) = tκ(w2,1−w2)

= κ(w1, t(1−w2))

≤ κ(w1, t(1−w1))

≤ κ(w1,1−w1)

= λ (w1),

implying w1/λ (w1) ≤ w2/λ (w2). For the second argument, the proof is again trivial if w2 = 1

or w1 = w2 = 1, so assume w1,w2 < 1. Setting t := (1−w2)/(1−w1) ∈ (0,1], similar reasoning

shows that (1−w1)/λ (w1)≥ (1−w2)/λ (w2), completing the proof.

Remark. The intuition behind Proposition 3.1 comes from considering the relationship between

the ADF and the boundary set ∂G described in equation (2.3). Considering the sets described by

the blue lines in Figure 2, this implies that the x-coordinates (y-coordinates) of the sets must be
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increasing (decreasing) as the ray w increases, as is clear from the figure.

Proposition 3.1 also implies several interesting properties that the ADF must satisfy.

Corollary 3.1. Suppose there exists w∗ ∈ [0,0.5], or w∗ ∈ [0.5,1], such that λ (w∗) =max(w∗,1−

w∗). Then λ (w) = max(w,1−w) for all w ∈ [0,w∗], or w ∈ [w∗,1].

Proof. Considering the first case w∗ ∈ [0,0.5], Proposition 3.1 gives that (1−w)/λ (w) ≥ (1−

w∗)/λ (w∗) = (1−w∗)/(1−w∗) = 1 for any w ∈ [0,w∗], implying max(w,1−w) = (1−w) ≥

λ (w). Since λ (w) ≥ max(w,1−w), we must therefore have λ (w) = max(w,1−w). The same

reasoning applies for w ∈ [w∗,1] when w∗ ≥ 0.5 and λ (w∗) = max(w∗,1−w∗).

Corollary 3.1 states that if the ADF equals the lower bound for any angle in the interval

[0,0.5] (or the interval [0.5,1]), then it must also equal the lower bound for all angles less (greater)

than this angle. This has further implications when we consider the conditional extremes mod-

elling framework described in equation (1.3). Let ay|x and ax|y be the normalising functions for

conditioning on the events X > u and Y > u respectively, and let αy|x := limu→∞ ay|x(u)/u and

αx|y := limu→∞ ax|y(u)/u, with αy|x,αx|y ∈ [0,1]. From Nolde and Wadsworth (2022), we have

that g(1,αy|x) = 1 and g(αx|y,1) = 1, with g defined as in equation (2.2), and αy|x, αx|y are the

maximum such values satisfying these equations. Assuming that the values of αy|x and αx|y are

known, we have the following result.

Corollary 3.2. For all w∈ [0,α∗x|y]
⋃
[α∗y|x,1], with α∗x|y :=αx|y/(1+αx|y) and α∗y|x := 1/(1+αy|x),

we have λ (w) = max(w,1−w).

Proof. To begin, consider the ray α∗x|y ∈ [0,0.5] and observe that (αx|y,1) ∈ ∂G. From this,

one can see that (αx|y,1) ∈ Rα∗x|y
. Equation (2.3) therefore implies that rα∗x|y

= 1, and hence

λ (α∗x|y) = max(α∗x|y,1−α∗x|y). From Corollary 3.1, it follows that λ (w) = max(w,1−w) for all

w ∈ [0,α∗x|y]. Considering the ray α∗y|x ∈ [0.5,1] in an analogous manner, the result follows.

12



Corollaries 3.1 and 3.2 are illustrated in Figure 3 for a Gaussian copula with ρ = 0.5. Here,

αx|y = αy|x = 0.25, implying λ (w) = max(w,1−w) for all w ∈ [0,0.2]
⋃
[0.8,1]; these rays corre-

spond to the blue lines in the figure. One can observe that for any region Rw defined along either

of the blue lines (such as the shaded regions illustrated for w = 0.1 and w = 0.9), we have that

rw = 1, since these regions will intersect ∂G at either the coordinates (0.25,1) or (1,0.25).
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(αx | y, 1)

(1, αy | x)

Figure 3: Pictorial illustration of the results described in Corollaries 3.1 and 3.2. The boundary
set ∂G, given in red, is from the bivariate Gaussian copula with ρ = 0.5, with the points (1,αy|x)
and (αx|y,1) given in green. The blue lines represent the rays w ∈ [0,α∗x|y]

⋃
[α∗y|x,1], while the

yellow and pink shaded regions represent the set Rw for w = 0.1 and w = 0.9, respectively.

Finally, Proposition 3.1 also implies constraints on the derivative of the ADF, where this

exists.

Corollary 3.3. Let λ ′(w) denote the derivative of the ADF at w, where it exists. For all w∈ (0,1),

we have that

−λ (w)/(1−w)≤ λ
′(w)≤ λ (w)/w.

Proof. Given any w ∈ (0,1) and ε > 0 such that ε ≤min{w,1−w}, Proposition 3.1 implies that
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w/λ (w)≤ (w+ ε)/λ (w+ ε) and (w− ε)/λ (w− ε)≤ w/λ (w), which can be rearranged to give

λ (w+ ε)−λ (w)
ε

≤ λ (w)/w,
λ (w)−λ (w− ε)

ε
≤ λ (w)/w.

Taking the limits as ε → 0+, we obtain λ ′(w) ≤ λ (w)/w. By rearranging the equations (1−

w)/λ (w) ≥ (1− (w+ ε))/λ (w+ ε) and (1− (w− ε))/λ (w− ε) ≥ (1−w)/λ (w) and taking

limits in a similar manner, the result follows.

Remark. Note that Corollary 3.3 corresponds to the same derivative constraints originally derived

in Wadsworth and Tawn (2013), albeit with a different proof.

The results introduced in this section provide necessary conditions that the ADF must satisfy.

Furthermore, each of the introduced corollaries follow directly from Proposition 3.1; therefore, if

an estimator satisfies the conditions of this proposition, it will automatically satisfy the remaining

conditions. We therefore incorporate Proposition 3.1 into our estimation framework for λ ; see

Section 4 for further details. We remark that only one of the existing approaches for estimating

the ADF (Murphy-Barltrop and Wadsworth, 2024) has considered such constraints, although they

will automatically be satisfied by ADF estimators derived from valid limit set estimates.

4 Novel estimators for the ADF

Motivated by the goal of global estimation, we propose a range of novel estimators for the ADF.

We recall that the ADF and Pickands’ dependence function exhibit several theoretical similar-

ities, as listed in Section 1, and arise as exponential rate parameters for suitable constructions

of structure variables (Mhalla et al., 2019a). We therefore begin by reviewing estimation of the

Pickands’ dependence function.

Because smooth functional estimation for the ADF is desirable, we restrict our review to ap-
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proaches for the Pickands’ dependence function which achieve this: notably spline-based tech-

niques (Hall and Tajvidi, 2000; Cormier et al., 2014) and techniques that utilise the family of

Bernstein–Bézier polynomials (Guillotte and Perron, 2016; Marcon et al., 2016, 2017). In this

paper, we focus on to the latter category, since spline-based techniques typically result in more

complex formulations and a larger number of tuning parameters. Moreover, approaches based

on Bernstein–Bézier polynomials have been shown to improve estimator performance across a

wide range of copula examples (Vettori et al., 2018). For estimation of Pickands’ dependence

function, the following family of functions is considered

Bk =

{
k

∑
i=0

βi

(
k
i

)
wi(1−w)k−i

∣∣∣∣∣ βββ ∈ [0,1]k+1, w ∈ [0,1]

}
,

where k ∈ N denotes the polynomial degree. Note that Bk is a sub-family from the class of

Bernstein–Bézier polynomials. Many approaches assume that the Pickands’ dependence function

A ∈Bk and propose techniques for estimating the coefficient vector βββ , resulting in an estimator

β̂ββ . This automatically ensures A(t) ≤ 1 for all t ∈ [0,1], thereby satisfying the theoretical upper

bound of the Pickands’ dependence function.

We make a similar assumption about the ADF, and use this to propose novel estimators.

However, unlike the Pickands’ dependence function, the ADF is unbounded from above, meaning

functions in Bk cannot represent all forms of extremal dependence captured by equation (1.5).

Moreover, the endpoint conditions λ (0) = λ (1) = 1 are not necessarily satisfied by functions in

Bk. We therefore propose an alternative family of polynomials: given k ∈ N, let

B∗k =

{
(1−w)k +

k−1

∑
i=1

βi

(
k
i

)
wi(1−w)k−i +wk =: f (w)

∣∣∣∣∣ w ∈ [0,1],βββ ∈ [0,∞)k−1

}
. (4.1)

Functions in this family are unbounded from above, and f (0) = f (1) = 1 for all f ∈B∗k . Note

that functions in B∗k are not required to satisfy the lower bound of the ADF; this bound is instead
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imposed in a post-processing procedure, as detailed in Section 4.4.

For the remainder of this section, let λ (·; βββ ) ∈B∗k represent a form of the ADF from B∗k .

Interest now lies in estimating the coefficient vector βββ , which requires choice of the degree k ∈N.

This is a trade-off between flexibility and computational complexity; polynomials with small

values of k may not be flexible enough to capture all extremal dependence structures, resulting in

bias, while high values of k will increase computational burden and parameter variance.

4.1 Composite likelihood approach

One consequence of equation (2.1) is that, for all w ∈ [0,1], the conditional variable T ∗w := (Tw−

uw | Tw > uw)∼ Exp(λ (w)), approximately, for large uw. The density of this variable is fT ∗w (t
∗
w)≈

λ (w)e−λ (w)t∗w, t∗w > 0, resulting in a likelihood function for min-projection exceedances of uw. Let

(x,y) := {(xi,yi) : i = 1, . . . ,n} denote n independent observations from the joint distribution of

(X ,Y ). For each w ∈ W , where W denotes some finite subset spanning the interval [0,1], let

tw := {min(xi/w,yi/(1−w)) : i = 1, . . . ,n} and take uw to be the empirical q quantile of tw,

with q close to 1 and fixed across w. Letting t∗w := {tw−uw | tw ∈ tw, tw > uw}, we have a set of

realisations from the conditional variable T ∗w .

One approach to obtain an estimate of λ (w) while considering all w∈W simultaneously is to

use a composite likelihood, in which multiple likelihood components are treated as independent

whether or not they are independent. Provided each component is a valid density function, the

resulting likelihood function provides unbiased parameter estimates under the true model; see

Varin et al. (2011) for further details. For this model, the likelihood function is

LC(βββ ) = ∏
w∈W

∏
t∗w∈t∗w

λ (w; βββ )e−λ (w; βββ )t∗w =

[
∏

w∈W
λ (w; βββ )|t

∗
w|

]
× e−∑w∈W ∑t∗w∈t∗w λ (w; βββ )tw , (4.2)

where |t∗w| denotes the cardinality of the set t∗w. This composite likelihood function has equal

weights across all w ∈W (the ‘components’). An estimator of the ADF, λ̂CL, is λ (·; β̂ββCL), where
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β̂ββCL := argmaxβββ∈[0,∞)k−1 LC(βββ ).

To apply this method in practice, one must first specify a set W and a probability q. Given

some large, odd-valued m ∈ N, we let W := {i/(m−1) : i = 0,1, · · · ,m−1}; this corresponds to

a set of equally spaced rays W spanning the interval [0,1], with {0,0.5,1} ⊂W . Selection of m

and q are discussed in Section 4.5. The former is akin to selecting the degree of smoothing, while

the latter is analogous to selecting a threshold for the generalised Pareto distribution defined in

Section 2 in the univariate setting.

4.2 Probability ratio approach

With W and tw defined as in Section 4.1, consider two probabilities q < p < 1, both close to

one. Given any w ∈W , let uw and vw denote the q and p empirical quantiles of tw, respectively.

Assuming the distribution function of Tw is strictly monotonic, equation (2.1) implies that

1− p
1−q

= Pr(Tw > vw | Tw > uw)≈ e−λ (w)(vw−uw)⇒
∣∣∣∣1− p
1−q

− e−λ (w)(vw−uw)

∣∣∣∣≈ 0, (4.3)

Similarly to Murphy-Barltrop and Wadsworth (2024), we exploit equation (4.3) to obtain an

estimator for the ADF. Firstly, we observe that this representation holds for all w ∈W , hence

∑
w∈W

∣∣∣∣1− p
1−q

− e−λ (w)(vw−uw)

∣∣∣∣≈ 0.

To ensure equation (4.3) holds requires careful selection of q and p. This selection also repre-

sents a bias-variance trade off: probabilities too small (big) will induce bias (high variability).

Moreover, owing to the different rates of convergence to the limiting ADF, a single pair (q, p) is

unlikely to be appropriate across all data structures. We instead consider a range of probability

pairs simultaneously. Specifically, letting {(q j, p j) | q j < p j < 1,1 ≤ j ≤ h}, h ∈ N, be pairs of
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probabilities near one, consider the expression

S(βββ ) := ∑
w∈W

h

∑
j=1

∣∣∣∣[1− p j

1−q j

]
− e−λ (w; βββ )(vw, j−uw, j)

∣∣∣∣ ,
in which uw, j and vw, j denote q j and p j empirical quantiles of tw, respectively, for each j =

1, . . . ,h. Since minimising S(βββ ) should provide a reasonable estimate of λ over all W , we set

β̂ββ PR = argminβββ∈[0,∞)k−1 S(βββ ) and denote by λ̂PR the estimator λ (·; β̂ββ PR). Similarly to λ̂CL, one

must select the sets W and {(q j, p j) | q j < p j < 1,1 ≤ j ≤ h}, h ∈ N prior to applying this

estimator; see Section 4.5.

4.3 Incorporating knowledge of conditional extremes parameters

Assuming we know the conditional extremes parameters αy|x,αx|y, Corollary 3.2 implies that for

all w∈ [0,α∗x|y]
⋃
[α∗y|x,1], with α∗x|y = αx|y/(1+αx|y) and α∗y|x = 1/(1+αy|x), λ (w) = max(w,1−

w). In this section, we exploit this result to improve estimation of the ADF.

In practice, α∗x|y and α∗y|x are unknown; however, estimates α̂y|x and α̂x|y are commonly ob-

tained using a likelihood function based on a misspecified model for the distribution D in equation

(1.3) (e.g., Jonathan et al., 2014). The resulting estimates, denoted α̂∗x|y, α̂∗y|x, can be used to ap-

proximate the ADF for w ∈ [0, α̂∗x|y)
⋃
(α̂∗y|x,1]. What now remains is to combine this with an

estimator for λ (w) on [α̂∗x|y, α̂
∗
y|x].

A crude way to obtain an estimator via this framework would be to set λ (w) = max(w,1−w)

for w ∈ [0, α̂∗x|y)
⋃
(α̂∗y|x,1] and λ (w) = λ̂H(w), λ̂CL(w) or λ̂PR(w) for w ∈ [α̂∗x|y, α̂

∗
y|x]. However,

this results in discontinuities at α̂∗x|y and α̂∗y|x. Instead, for the smooth estimators, we rescale

B∗k such that the resulting ADF estimate is continuous for all w ∈ [0,1]. Consider the set of
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polynomials

B̃k =

{
(1− α̂

∗
x|y)

(
1−

v− α̂∗x|y
α̂∗y|x− α̂∗x|y

)k

+
k−1

∑
i=1

βi

(
k
i

)( v− α̂∗x|y
α̂∗y|x− α̂∗x|y

)i(
1−

v− α̂∗x|y
α̂∗y|x− α̂∗x|y

)k−i

+

α̂
∗
y|x

(
v− α̂∗x|y

α̂∗y|x− α̂∗x|y

)k

=: f (v)

∣∣∣∣∣ v ∈ [α̂∗x|y, α̂
∗
y|x], βββ ∈ [0,∞)k−1

}
.

(4.4)

For all f ∈ B̃k, we have that f (α̂∗x|y) = (1− α̂∗x|y) and f (α̂∗y|x) = α̂∗y|x, and each f is only defined on

the interval [α̂∗x|y, α̂
∗
y|x]. Letting λ̃ (· ;βββ ) ∈ B̃k represent a form of the ADF for w ∈ [α̂∗x|y, α̂

∗
y|x], the

techniques introduced in Sections 4.1 and 4.2 can be used to obtain estimates of the coefficient

vectors, which we denote β̂ββCL2 and β̂ββ PR2, respectively. The resulting estimators for λ are

λ̂CL2(w) =


λ̃ (w;β̂ββCL2) for w ∈ [α̂∗x|y, α̂

∗
y|x],

max(w,1−w) for w ∈ [0, α̂∗x|y)
⋃
(α̂∗y|x,1],

with λ̂PR2 defined analogously. We lastly define the discontinuous estimator λ̂H2 as

λ̂H2 :=


λ̂H(w) for w ∈ [α̂∗x|y, α̂

∗
y|x],

max(w,1−w) for w ∈ [0, α̂∗x|y)
⋃
(α̂∗y|x,1].

This is obtained by combining the pointwise Hill estimator with the information provided by

the estimates α̂∗x|y, α̂
∗
y|x. Illustrations of all the estimators discussed in this section, as well as in

Section 2, can be found in the Supplementary Material.

We note that estimation of the parameters, αx|y,αy|x, is subject to uncertainty and will not give

a perfect representation of α∗x|y and α∗y|x. However, we believe it is worth exploring the quality

of the resulting estimates, and find in Section 5 that they generally provide improvement over

estimators that do not exploit this link. We also note the potential for independent estimates of λ
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to be used for improving estimation of αx|y and αy|x in the conditional extremes model, but leave

exploration of this to future work.

4.4 Incorporating theoretical properties

All estimators introduced so far are not required to satisfy the property of λ introduced in Propo-

sition 3.1, or the lower bound on the ADF discussed in Section 1. Furthermore, the estimator λ̂H

is also not guaranteed to satisfy the endpoint conditions, i.e., λ (0) = λ (1) = 1.

There are several techniques one could use to impose these properties. For instance, one could

incorporate penalty terms to objective functions LC(βββ ) or S(βββ ) to penalise for cases when the

conditions of Proposition 3.1, or the ADF lower bound, are not satisfied. Alternatively, one could

also impose the theoretical properties of the ADF in post-processing steps; such a procedure

can be applied regardless of whether the original estimator is smooth or local. In unreported

results, we considered penalising the objective function LC(βββ ) for violations of ADF properties,

with larger penalties for greater violations. This approach allows for simpler optimisation of the

objective function than imposing a very strong penalty for any violation, but introduces the choice

of a penalty parameter and does not guarantee the properties are fully satisfied. We therefore opt

instead to apply a post-processing procedure to each of the ADF estimators; this has the added

advantage of also being applicable to the pointwise Hill estimators.

For any estimator λ̂−, assume that the set {w ∈ [0,1] | λ̂−(w)< max(w,1−w)} is non-empty.

To ensure the ADF is bounded from below, and satisfies the endpoint conditions λ (0)= λ (1)= 1,

we set

λ̂−(w) =


max

{
λ̂−(w),max(w,1−w)

}
for w ∈ (0,1),

1 for w ∈ {0,1}.

Next, we ensure the conditions outlined in Proposition 3.1 are satisfied. Define the angular sets

W ≤0.5 = (w≤0.5
1 ,w≤0.5

2 , . . . ,w≤0.5
(m−1)/2) := {i/(m−1) : i = (m−1)/2,(m−1)/2−1, . . . ,0} ⊂W
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and W ≥0.5 = (w≥0.5
1 ,w≥0.5

2 , . . . ,w≥0.5
(m−1)/2) := {i/(m−1) : i = (m−1)/2,(m−1)/2+1, . . . ,m−

1} ⊂W . We propose the following algorithm.

Algorithm 1: Algorithm for imposing Property 3.1.
for i← 2 to (m−1)/2 do

if w≤0.5
i−1 /λ̂−(w≤0.5

i−1 )< w≤0.5
i /λ̂−(w≤0.5

i ) then
set λ̂−(w≤0.5

i ) := w≤0.5
i λ̂−(w≤0.5

i−1 )/w≤0.5
i−1 ;

end
if (1−w≥0.5

i−1 )/λ̂−(w≥0.5
i−1 )< (1−w≥0.5

i )/λ̂−(w≥0.5
i ) then

set λ̂−(w≥0.5
i ) := (1−w≥0.5

i )λ̂−(w≥0.5
i−1 )/(1−w≥0.5

i−1 ) ;
end

end

This ensures the processed estimator λ̂− satisfies the conditions of Properties 3.1 for w ∈W ;

this is the finite window that we use to represent [0,1] in practice. This processing is applied to

all pointwise and novel estimators, i.e., λ̂H , λ̂CL, λ̂PR, λ̂H2, λ̂CL2 and λ̂PR2, ensuring that the ADF

estimates from each approach are always theoretically valid. In practice, we found that imposing

these theoretical results also improved estimation quality within the resulting ADF estimates,

both in terms of bias and variance. An illustration of the processing procedure is given in the

Supplementary Material.

4.5 Tuning parameter selection

Prior to using any of the ADF estimators introduced in this section, we are required to select at

least one tuning parameter. For the probability values required by the estimators introduced in

Sections 4.1 and 4.2, we set q = 0.90, {q j}h
j=1 := {0.87+( j−1)×0.002}h

j=1 and p j = q j+0.05

for j = 1, . . . ,h, with h = 31. These values were chosen to evaluate whether the resulting estima-

tors improve upon the base estimator λ̂H using (approximately) the same amount of tail informa-

tion in all cases. We tested a range of probabilities for both estimators and found that the ADF

estimates were not massively sensitive to these across different extremal dependence structures.

For example, for λ̂CL, a lower q resulted in mild improvements for asymptotically independent
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copulas, while simultaneously worsening the quality of ADF estimates for asymptotically depen-

dent examples, while a higher q led to higher variance.

For the angular interval W , we set m = 1,000, i.e., W = {0,0.001,0.002, . . . ,0.999,1}. This

set was sufficient to ensure a high degree of smoothness in the resulting ADF estimates without

too high a computational burden.

For each of the novel estimators (except λ̂H2), we must also specify the degree k ∈ N for the

polynomial families described by equations (4.1) and (4.4). In the case of the Pickands’ depen-

dence function, studies have found that higher values of k are preferable for very strong positive

dependence, while the opposite is true for weak dependence (Marcon et al., 2017; Vettori et al.,

2018). We prefer to select a single value of k that performs well across a range of dependence

structures, while minimising the computational burden; this avoids the need to select this param-

eter when obtaining ADF estimates in practice.

To achieve this objective, we estimated the root mean integrated squared error (RMISE), as

defined in Section 5.1, of the estimators λ̂CL and λ̂PR with k = 4, . . . ,11 using 200 samples from

two Gaussian copula examples, corresponding to strong (ρ = 0.9) and weak (ρ = 0.1) positive

dependence. Assessment of how the RMISE estimates vary over k for both estimators suggests

that k = 7 is sufficient to accurately capture both dependence structures. The full results can be

found in the Supplementary Material. We remark that this approach for selecting k is somewhat

ad hoc, and in practice, one could employ various diagnostic tools, such as the tool discussed in

Section 6.3, to select k on a case-by-case basis.

For each of the ‘combined’ estimators in Section 4.3, we take the same tuning parameters

as for the ‘non-combined’ counterpart, since the combined estimators have near identical for-

mulations only defined on a subset of [0,1]. For example, the empirical 90% threshold of the

min-projection is used for both λ̂H and λ̂H2. Finally, when estimating the conditional extremes

parameters, empirical 90% conditioning thresholds are used.
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5 Simulation Study

5.1 Overview

In this section, we use simulation to compare the estimators proposed in Section 4 to the existing

techniques described in Section 2. For the comparison, we introduce nine copula examples,

representing a wide variety of extremal dependence structures, and encompassing both extremal

dependence regimes.

The first three examples are from the bivariate Gaussian distribution, for which the depen-

dence is characterised by the correlation coefficient ρ ∈ [−1,1]. We consider ρ ∈{−0.6,0.1,0.6},

resulting in data structures exhibiting medium negative, weak positive, and medium positive de-

pendence, respectively. Note that in the case of ρ =−0.6, the choice of exponential margins will

hide the dependence structure (Keef et al., 2013a; Nolde and Wadsworth, 2022).

For the next two examples, we consider the bivariate extreme value copula with logistic and

asymmetric logistic families (Gumbel, 1960; Tawn, 1988). In both cases, the dependence is

characterised by the parameter r ∈ (0,1]; we set r = 0.8, corresponding to weak positive extremal

dependence. For the asymmetric logistic family, we also require two asymmetry parameters

(k1,k2) ∈ [0,1]2, which we fix to be (k1,k2) = (0.3,0.7), resulting in a mixture structure.

We next consider the inverted bivariate extreme value copula (Ledford and Tawn, 1997) for

the logistic and asymmetric logistic families, with the dependence again characterised by the

parameters r and (r,k1,k2), respectively. We set r = 0.4, corresponding to moderate positive

dependence, and again fix (k1,k2) = (0.3,0.7). Note that for this copula, the model described in

equation (1.5) is exact: see Wadsworth and Tawn (2013).

Lastly, we consider the bivariate student t copula, for which dependence is characterised by

the correlation coefficient ρ ∈ [−1,1] and the degrees of freedom ν > 0. We consider ρ = 0.8,

ν = 2 and ρ = 0.2, ν = 5, corresponding to strong and weak positive dependence.

Illustrations of the true ADFs for each copula are given in Figure 4, showing a range of
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extremal dependence structures. For examples where the ADF equals the lower bound, the copula

exhibits asymptotic dependence. While the fifth copula exhibits asymmetric dependence, the

limiting ADF is symmetric; the same is not true for its inverted counterpart.
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Figure 4: True ADFs (in red) for each copula introduced in Section 5.1, along with the theoretical
lower bound (black dotted line).

To evaluate estimator performance, we use the RMISE

RMISE
(

λ̂−
)
=

(
E
[∫ 1

0

{
λ̂−(w)−λ (w)

}2
dw
])1/2

,
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where λ̂− denotes an arbitrary estimator. Simple rearrangement shows that this metric is equal to

the square root of the sum of integrated squared bias (ISB) and integrated variance (IV) (Gentle,

2002), i.e.,

RMISE
(

λ̂−
)
=

∫ 1

0

[
E
{

λ̂−(w)
}
−λ (w)

]2
dw︸ ︷︷ ︸

ISB

+
∫ 1

0
E
([

E
{

λ̂−(w)
}
− λ̂−(w)

]2
)

dw︸ ︷︷ ︸
IV


1/2

.

Therefore, the RMISE summarises the quality of an estimator in terms of both bias and variance,

and can be used as a means to compare different estimators.

5.2 Results

For the copulas described in Section 5.1, data from each copula example was simulated on stan-

dard exponential margins with a sample size of n =10,000, and the integrated squared error (ISE)

of each estimator was approximated for 1,000 samples using the trapezoidal rule; see the Sup-

plementary Material for further information. The square root of the mean of these estimates was

then computed, resulting in a Monte–Carlo estimate of the RMISE.

The RMISE estimates for each estimator and copula combination are shown in Table 1.

Tables containing the corresponding Monte–Carlo error, ISB and IV values can be found in

the Supplementary Material, along with root mean squared error estimates for individual rays

w ∈ {0.1,0.3,0.5,0.7,0.9}. For each estimator, the bias varies significantly across the differ-

ent copulas. However, in the majority of cases, the bias/variance are similar across most of the

estimators. We remark that the magnitudes of the Monte–Carlo errors, as reported in the Sup-

plementary Material, are small enough such that the ordering of RMISE estimates in Table 1 is

likely to be a true reflection of the relative performance for each estimator.

While no estimator consistently outperforms the others, λ̂CL2 and λ̂ST tend to have lower

RMISE, ISB and IV values, on average. This is especially the case when comparing to the base
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Table 1: RMISE values (multiplied by 100) for each estimator and copula combination. Smallest
RMISE values in each row are highlighted in bold, with values reported to 3 significant figures.
Copulas 1-3 refer to the Gaussian copula with ρ =−0.6, ρ = 0.1 and ρ = 0.6, respectively. Cop-
ulas 4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asymmetric logistic
copulas, respectively. Copulas 8-9 refer to the student t copula with parameters ρ = 0.8, ν = 2
and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 61.2 61.3 66.2 61.4 61.9 66.7 63.7

Copula 2 3.44 3.36 3.67 3.41 3.35 3.66 2.95

Copula 3 3.43 3.46 3.83 3.21 3.22 3.57 1.09

Copula 4 4.58 4.71 6.89 4.24 4.24 6.17 2.77

Copula 5 14 14.1 17.1 14 14.1 17.1 12.1

Copula 6 2.05 2 2.18 1.78 1.75 1.92 2.12

Copula 7 2.79 2.68 2.93 2.77 2.69 2.93 3.96

Copula 8 1.04 1.05 1.44 0.562 0.535 0.72 1.87

Copula 9 11.9 12 14.9 11.9 12 14.9 11.1

estimator λ̂H . Furthermore, the ‘combined’ estimators outperform their non-combined coun-

terparts in many cases, suggesting that incorporating parameter estimates from the conditional

extremes model can reduce bias and variance. The Gaussian copula with ρ = −0.6 has much

higher RMISE values, indicating that none of the estimators capture negative dependence well,

though this is in part due to the choice of exponential margins.

We note that while the true ADFs are identical for the asymptotically dependent logistic,

asymmetric logistic, and student t copulas, the corresponding RMISE values in Table 1 vary

significantly. Notably, the asymmetric logistic, which possesses a complex asymmetric structure,

has substantially higher RMISE values compared to the other asymptotically dependent copulas.

We suspect these disparities arise at finite levels due to the different rates of convergence to

the limiting ADF in equation (1.5), alongside the fact many multivariate extreme value models

perform poorly in the case of asymmetric dependence (Tendijck et al., 2021).
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Overall, these results indicate that no one estimator is preferable across all extremal depen-

dence structures. However, we suggest using the estimators λ̂CL2 and λ̂ST since, on average, these

appeared to result in less bias and variance. The form of extremal dependence appears to affect

the performance of both of these estimators; since this is often difficult to quantify a priori, we

suggest using both estimators and evaluating relative performance via diagnostics, as we do in

Section 6.

6 Case Study

6.1 Overview

Understanding the probability of observing extreme river flow events (i.e., floods) at multiple

sites simultaneously is important in a variety of sectors, including insurance (Keef et al., 2013b;

Quinn et al., 2019; Rohrbeck and Cooley, 2021) and environmental management (Lamb et al.,

2010; Gouldby et al., 2017). Valid risk assessments therefore require accurate evaluation of the

extremal dependence between different sites.

In this section, we estimate the ADF of river flow data sets obtained from gauges in the north

of England, UK, which can be subsequently used to construct bivariate return curves. Daily

average flow values (m3/s) at six river gauge locations on different rivers were considered. The

gauge sites are illustrated in Figure 5. For each location, data is available between May 1993 and

September 2020; however, we only consider dates where a measurement is available for every

location. To avoid seasonality, we consider the interval October–March only; from our analysis,

it appears that the highest daily flow values are observed in this period. This results in n = 4,659

data points for each site. Plots of the daily flow time series can be found in the Supplementary

Material; these plots suggest that an assumption of stationarity is reasonable for the extremes of

each data set.

We fix the site on the river Lune to be our reference site and consider the extremal dependence
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Figure 5: Locations of river gauges in the north of England, UK. Individual rivers illustrated in
blue alongside the corresponding gauge locations.

between this and all other gauges. We first estimate the extremal dependence measure χ and the

coefficient η using the upper 10% of the corresponding joint tails. Both χ and η are limiting val-

ues; however, in practice, we are unable to evaluate such limits without a closed form for the joint

distribution. We therefore calculate these values empirically. Taking χ , for example, an estimate

is χ̂q = P̂r(X > x̂q,Y > ŷq)/P̂r(X > x̂q), where P̂r(·) denotes an empirical probability estimate

and x̂q and ŷq denote empirical q quantile estimates for the variables X and Y , respectively, and

q is some value close to 1. Specifically, we take q = 0.9. In practice, we are unlikely to observe

χ = χ̂q, even at the most extreme quantile levels, i.e., as q→ 1. This can be problematic when

trying to quantify the form of extremal dependence, since χ̂q > 0 may arise for asymptotically

independent data sets (for example). Therefore, the estimated coefficients should act only as a

rough guide for this quantification.
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The dependence measure estimates and 95% confidence intervals are shown in Figure 6 as

a function of distance from the reference site. Here and throughout, all confidence intervals

are obtained via block bootstrapping with block size b = 40; this value appears appropriate to

account for the varying degrees of temporal dependence observed across the six gauge sites.

These estimates suggest that asymptotic independence may exist for at least three of the site

pairings; therefore, modelling techniques based on bivariate regular variation would likely fail to

capture the observed extremal dependencies in this scenario.
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Figure 6: Estimated dependence coefficients as a function of distance from the Lune gauge, with
95% pointwise confidence intervals given by the shaded regions. Left: Estimates of χ (blue).
Right: Estimates of η (grey).

6.2 ADF Estimation

We transform each marginal data set to exponential margins using the semi-parametric approach

of Coles and Tawn (1991), whereby a generalised Pareto distribution is fitted to the upper tail

and the body is modelled empirically. The generalised Pareto distribution thresholds are selected

using the technique proposed in Murphy et al. (2024). In spite of the data violating the inde-

pendence assumption, diagnostic plots found in the Supplementary Material indicate reasonable
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model fits. Since our results from Section 5 suggest that the estimators λ̂CL2 and λ̂ST perform

best overall, we used these, alongside the base estimator λ̂H , to estimate the ADF for each com-

bination of the reference gauge and the other five gauges. The resulting ADF estimates can be

found in Figure 7.
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Figure 7: ADF estimates for each pair of gauge sites. The purple, pink and green lines represent
the estimates from λ̂H , λ̂CL2 and λ̂ST , respectively, with the theoretical lower bound denoted by
the black dotted lines.

One can observe contrasting shapes across the different pairs of gauges, illustrating the variety

in the observed extremal dependence structures. These results illustrate that on the whole, the

estimator λ̂CL2 is very much a smoothed version of λ̂H on the interval (α̂∗x|y, α̂∗y|x), owing to the

form of likelihood function used.
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6.3 Assessing goodness of fit for ADF estimates

Recall that, from equation (2.1), we have T ∗w ∼ Exp(λ (w)) as uw → ∞ for all w ∈ [0,1]. We

exploit this result to assess the goodness of fit for ADF estimates.

Let λ̂ (w),w ∈ [0,1], denote an estimated ADF obtained using the sample {(xi,yi) : i =

1, . . . ,n}. Given w ∈ [0,1], let uw denote some high empirical quantile from the sample tw,

and consider the sample t∗w, with tw and t∗w defined as in Section 4.1. If t∗w is indeed a sam-

ple from an Exp(λ̂ (w)) distribution, we would expect good agreement between empirical and

model quantiles. Analogously, λ̂ (w)t∗w should represent a sample from an Exp(1) distribution if

T ∗w ∼ Exp(λ (w)), independent of the ray w.

We use these results to derive local and global diagnostics for the ADF. First, for a subset of

rays w ∈ [0,1], corresponding to a range of joint survival regions, let nw = |t∗w| and t∗w( j) denote

the j-th order statistic of t∗w and consider the set of pairs

{(
− log(1− j/(nw +1))/λ̂ (w), t∗w( j)

)
: j = 1, . . . ,nw

}
.

With uw fixed to be the 90% empirical quantile of tw, quantile-quantile (QQ) plots for five indi-

vidual rays, w∈ {0.1,0.3,0.5,0.7,0.9}, are given in the first five panels Figure 8 for the third pair

of gauges and the λ̂CL2 estimator. Uncertainty intervals are obtained via block bootstrapping on

the set t∗w, i.e., the order statistics. We acknowledge a deficiency of this scheme that all sampled

quantiles will be bounded by the interval [t∗w(1), t
∗
w(nw)

]. However, alternative uncertainty quantifi-

cation approaches, such as parametric bootstraps or the use of beta quantiles for uniform order

statistics, would fail to account for the observed temporal dependence within the data.

For the global diagnostic, we propose the following: for each i ∈ {1, . . . ,n}, define the corre-

sponding angular observation wi := xi/(xi + yi) and let uwi denote the 90% empirical quantile of

twi . Randomly sample one point t∗ from the set t∗wi
and set ei := λ (wi)(t∗− uwi); repeating this

process over all i ∈ {1, . . . ,n}, we obtain the set E := {ei | i ∈ {1, . . . ,n}}. We then consider the
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set of pairs {(
− log(1− j/(n+1)),e( j)

)
: j = 1, . . . ,n

}
,

with e( j) denoting the j-th order statistic of E ; this comparison provides an overall summary for

the quality of model fit across all angles. The corresponding QQ plot for the third pair of gauges

and the λ̂CL2 estimator is given in the bottom right panel of Figure 8, with uncertainty bounds

obtained via block bootstrapping on set E . This diagnostic possesses a degree of stochasticity

due to sampling from the set t∗wi
. We can check the impact of this on our impression of the fit by

considering a few different random seeds; see the Supplementary Material for further details.

On the whole, the estimated exponential quantiles appear in good agreement with the ob-

served quantiles, indicating the underlying ADF estimate accurately captures the tail behaviour

for each min-projection variable. Analogous plots for λ̂H and λ̂ST are given in the Supplementary

Material. Similar plots were obtained when the other pairs of gauges were considered.

6.4 Estimating return curves

To quantify the risk of joint flooding events across sites, we follow Murphy-Barltrop et al. (2023)

and use the ADF to estimate a bivariate risk measure known as a return curve, RC(p), as defined

in Section 1. This measure is a direct bivariate extension of a return level, which is commonly

used to quantify risk in the univariate setting (Coles, 2001). Taking probability values p close

to zero gives a summary of the joint extremal dependence, thus allowing for comparison across

different data structures. In the context of extreme river flows, return curves can be used to

evaluate at which sites joint extremes (floods) are more/less likely to occur. For illustration,

we fix p to correspond to a 5 year return period, i.e., p = 1/(5ny), where ny is the average

number of points observed in a given year (Brunner et al., 2016). Excluding missing observations,

we have 28 years of data, hence the resulting curve should be within the range of data whilst

simultaneously representing the joint tail. The resulting return curve estimates for each ADF
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Figure 8: Local and global ADF QQ plots for the third pair of gauges, using the ADF estimate
obtained via λ̂CL2. Estimates given in black, with 95% pointwise tolerance intervals represented
by the grey shaded regions. Red lines correspond to the y = x line.

estimator and pair of gauge sites can be found in Figure 9.

There is generally good agreement among the estimated curves. The almost-square shapes

of the estimates for the first two pairs of gauges indicate higher likelihoods of observing simul-

taneous flood events at the corresponding gauge sites; this is as expected given the close spatial

proximity of these sites. In all cases, the curves derived via λ̂H are quite rough and unrealistic, and

are subsequently ignored. To assess the goodness of fit of the remaining return curve estimates,

we consider the first and fifth examples and apply the diagnostic introduced in Murphy-Barltrop

et al. (2023). Our results suggest good quality model fits for both of the estimates obtained using

λ̂CL2 and λ̂ST , though with potentially a slight preference for the estimate based on λ̂CL2 for the

fifth pair. Furthermore, we also obtain 95% return curve confidence intervals for these exam-

ples. The resulting plots illustrating the diagnostics and confidence intervals, along with a brief
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Figure 9: Estimated 5-year return curves (on original margins) for each pair of gauges. The
purple, pink and green lines represent the curve estimates from λ̂H , λ̂CL2 and λ̂ST , respectively.

explanation of the diagnostic tool, are given in the Supplementary Material.

7 Discussion

We have introduced a range of novel global estimators for the ADF, as detailed in Section 4.

We compared these estimators to existing techniques through a systematic simulation study and

found our novel estimators to be competitive in many cases. In particular, the estimators derived

via the composite likelihood approach of Section 4.1, alongside the estimator of Simpson and

Tawn (2022), appear to have lower bias and variance, on average, compared to alternative esti-

mation techniques. We also applied ADF estimation techniques to a range of river flow data sets,

and obtained estimates of return curves for each data set. The results suggest that our estimation

procedures are able to accurately capture the range of extremal dependence structures exhibited
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in the data.

From Section 5, one can observe that the ‘combined’ estimators proposed in Section 4.3 out-

perform their ‘uncombined’ counterparts in the majority of instances. This indicates that incorpo-

rating the knowledge obtained from the conditional extremes parameters leads to improvements

in ADF estimates. Furthermore, in most cases, ADF estimates obtained via approximations of

the set ∂G appeared to have lower bias compared to alternative estimation techniques. More

generally, these results suggest that inferential techniques that exploit the results of Nolde and

Wadsworth (2022) are superior to techniques which do not. Estimation of ∂G, and its impact on

estimation of other extremal dependence properties, represents an important line of research.

As noted in Section 1, few applications of the modelling framework described in equation

(1.5) exist, even though this model offers advantages over the widely used approach of Heffernan

and Tawn (2004) when evaluating joint tail probabilities. Inference via the ADF ensures consis-

tency in extremal dependence properties, and one can obtain accurate estimates of certain risk

measures, such as return curves.

For each of the existing and novel estimators introduced in Sections 2 and 4, we were required

to select quantile levels, which is equivalent to selecting thresholds of the min-projection. With

the exception of λ̂ST , similar quantile levels were considered for each estimator so as to provide

some degree of comparability. However, due to variation in estimation procedures, we acknowl-

edge that the selected quantile levels are not readily comparable since the quantity of joint tail

data used for estimation varies across different estimators. Moreover, as noted in Section 4.5, try-

ing to select ‘optimal’ quantile levels appears a fruitless exercise since the performance of each

estimator does not appear to alter much across different quantile levels.

As noted in Section 4.5, our proposed estimators require selection of several tuning parame-

ters. For all practical applications, we recommend this selection is done using a combination of

the diagnostic tools outlined in Section 6, since it is unlikely that one set of tuning parameters

will be appropriate across all observed dependence structures and sample sizes.
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Finally, we acknowledge the lack of theoretical treatment for the proposed ADF estimators

which is an important consideration for understanding properties of the methodology. However,

theoretical results of this form typically require in-depth analyses and strict assumptions, which

themselves may be hard to verify, whilst in practice one can only ever look at diagnostics obtained

from the data. We have therefore opted for a more practical treatment of the proposed estimators.

Supplementary Material

• Supplementary Material for “Improving estimation for asymptotically independent

bivariate extremes via global estimators for the angular dependence functions”: File

containing additional figures and tables. (.pdf file)

• Code and data: Zip file containing R scripts and the case study data sets. The script can

be used to reproduce results from Sections 5 and 6. (.zip file)
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Supplementary Material to ‘Improving estimation for asymptotically

independent bivariate extremes via global estimators for the angular

dependence function’

S1 Post-processing scheme illustration

Figure S1 illustrates an example ADF estimate before and after processing. Observe that enforc-

ing Proposition 3.1 forces the ADF to equal the lower bound for w≤ 0.39.

Figure S1: A single ADF estimate before (blue, left) and after (orange, right) processing. The
black dotted lines denote the lower bound max(w,1−w).

S2 Example ADF estimates

Examples of ADF estimates obtained using each of the estimators discussed in the main article

are given in Figure S2 for a bivariate Gaussian copula with ρ = 0.5. The different estimates are in

good agreement, and one can observe the roughness in estimates obtained via the Hill estimator.
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Figure S2: ADF estimates from each of the estimators discussed in the main article. Red repre-
sents the true ADF, with the theoretical lower bound given by the dotted black lines.

S3 Example boundary set estimates

Figure S3 illustrates estimates of the boundary set ∂G obtained using the technique proposed in

Simpson and Tawn (2022) for three copula examples.

S4 Tuning parameter selection

Figures S4 and S5 illustrate plots of scaled RMISE estimates against the polynomial degree k

for the estimators λ̂CL and λ̂PR, respectively. RMISE was estimated using Monte–Carlo tech-

niques: first, for each j = 1,2, . . . ,N, where N = 200 denotes the number of samples, the ISE

was estimated via the trapezium rule, i.e.,

ÎSE
(

λ̂ j

)
=

0.001
2

(
(λ̂ j(0)−λ (0))2 + ∑

w∈W \{0,1}
2(λ̂ j(w)−λ (w))2 +(λ̂ j(1)−λ (1))2

)
,
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Figure S3: The boundary set ∂G (given in red) for three copula examples, with estimates from
Simpson and Tawn (2022) given in green. Left: bivariate Gaussian copula with correlation co-
efficient ρ = 0.5. Centre: inverted logistic copula with dependence parameter r = 0.8. Right:
logistic copula with dependence parameter r = 0.8. In each plot, the coordinate limits of ∂G are
denoted by the black dotted lines.

where λ̂ j denotes the ADF estimate for sample j and W denotes the set of rays spanning the

interval [0,1], as defined in Section 3.4 the main article. Next, the mean integrated squared error

is estimated using Monte–Carlo approximation, i.e., M̂ISE := (1/N)∑
N
j=1 ÎSE

(
λ̂ j

)
. Finally, an

estimate of the RMISE given by

R̂MISE =

√
M̂ISE.

To quantify simulation error, we also compute the Monte–Carlo variability for each of the

R̂MISE estimates. We first estimate the Monte–Carlo variance of the ISE estimates, i.e.,

V̂ar(ÎSE) =
1

N−1

N

∑
j=1

{
ÎSE

(
λ̂ j

)
− M̂ISE

}2
.

Then, since the estimates ÎSE
(

λ̂ j

)
, j = 1,2, . . . ,N, are independent and identically distributed,

we have

V̂ar(M̂ISE) =
1
N

V̂ar(ÎSE).
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Finally, applying the delta method, the Monte–Carlo variance of the RMISE estimate is given by

V̂ar(R̂MISE) =
V̂ar(M̂ISE)

4M̂ISE
=

1
N−1 ∑

N
j=1

{
ÎSE

(
λ̂ j

)
− M̂ISE

}2

4
N ∑

N
j=1 ÎSE

(
λ̂ j

) . (S1)

For the polynomial degree, we considered k ∈ {4, . . . ,11}; higher values of k were not con-

sidered due to computational complexity. The left and right panels of Figures S4 and S5 cor-

respond to Gaussian copulas exhibiting strong (ρ = 0.9) and weak (ρ = 0.1) positive depen-

dence, respectively. For both figures, the error bars correspond to R̂MISE±2ŜD(R̂MISE), where

ŜD(R̂MISE) =
√

V̂ar(R̂MISE).
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Figure S4: RMISE estimates with error bars (multiplied by 100) over k obtained for λ̂CL using
N = 200 from Gaussian copulas with strong (left, ρ = 0.9) and weak (right, ρ = 0.1) positive
dependence.

One can observe that, for the strongly dependent example, the RMISE estimates tend to de-

crease as the value of k increases up to 7. This is in agreement with findings for the Pickands’

dependence function (e.g., Marcon et al., 2017; Vettori et al., 2018); strongly dependent copulas

require a higher degree of flexibility to capture the triangle-like shapes of the resulting depen-

dence functions. However, the RMISE estimates again increase as k increases above 7, owing to
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Figure S5: RMISE estimates with error bars (multiplied by 100) over k obtained for λ̂PR using
N = 200 from Gaussian copulas with strong (left, ρ = 0.9) and weak (right, ρ = 0.1) positive
dependence.

the higher variability that arises for large basis dimensions.

On the other hand, for the weakly dependent Gaussian copula, the value of k made little

difference to the resulting RMISE estimates. There is a slight increase in RMISE estimates as

k increases; this suggests that having a higher polynomial degrees for such data structures may

lead to over-fitting.

In practice, we set k = 7; this value is sufficient for obtaining low RMISE estimates under

both copula examples. Furthermore, for the strongly dependent Gaussian copula, there does not

appear to be any advantage in setting k higher than 7. This polynomial degree therefore appears

to offer sufficient flexibility without high computational burden and/or parameter variability.

S5 Additional simulation study results

The Monte–Carlo errors of the RMISE estimates for each estimator, computed by taking the

square root of equation (S1), are given in Table 1.
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Table 1: Monte–Carlo error of RMISE estimates (multiplied by 100) for each estimator and cop-
ula combination, with values reported to 3 significant figures. Copulas 1-3 refer to the Gaussian
copula with ρ =−0.6, ρ = 0.1 and ρ = 0.6, respectively. Copulas 4-7 refer to the logistic, asym-
metric logistic, inverted logistic, inverted asymmetric logistic copulas, respectively. Copulas 8-9
refer to the student t copula with parameters ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 0.076 0.0757 0.0687 0.0788 0.0844 0.0784 0.174

Copula 2 0.0431 0.0442 0.0424 0.0427 0.0437 0.0418 0.0469

Copula 3 0.0451 0.0453 0.0462 0.0405 0.0404 0.0402 0.0173

Copula 4 0.0435 0.0444 0.0475 0.039 0.04 0.0441 0.0624

Copula 5 0.0577 0.0578 0.0566 0.0578 0.0579 0.0563 0.0778

Copula 6 0.0374 0.0376 0.04 0.031 0.0313 0.0337 0.0373

Copula 7 0.0315 0.0326 0.0323 0.0309 0.0319 0.0312 0.0484

Copula 8 0.0498 0.037 0.0411 0.0256 0.027 0.0303 0.0685

Copula 9 0.0589 0.0589 0.0578 0.0591 0.0592 0.058 0.0938
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The ISB and IV estimates for each estimator are given in Tables 2 and 3. One can observe

that, while the λ̂ST appears to perform best in terms of ISB, the λ̂CL estimator exhibits the least

IV for five out of the nine copula examples. For the most part, one can observe similar ISB and

IV values across the different estimators.

Table 2: ISB values (multiplied by 1,000) for each estimator and copula combination. Smallest
ISB values in each row are highlighted in bold, with values reported to 3 significant figures. Cop-
ulas 1-3 refer to the Gaussian copula with ρ =−0.6, ρ = 0.1 and ρ = 0.6, respectively. Copulas
4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asymmetric logistic cop-
ulas, respectively. Copulas 8-9 refer to the student t copula with parameters ρ = 0.8, ν = 2 and
ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 372 374 436 374 380 442 402

Copula 2 0.348 0.366 0.452 0.321 0.333 0.409 0.00815

Copula 3 0.812 0.847 1.04 0.753 0.77 0.943 0.0181

Copula 4 1.74 1.84 4.2 1.52 1.49 3.25 0.299

Copula 5 19 19.2 28.4 18.9 19.1 28.1 13.6

Copula 6 0.0385 0.0412 0.0517 0.00212 0.00222 0.00365 0.0045

Copula 7 0.00711 0.0041 0.00818 0.00157 0.0023 0.00339 0.55

Copula 8 0.0236 0.0521 0.0953 0.0107 0.00757 0.0157 0.0755

Copula 9 13.5 13.8 21.3 13.4 13.7 21.1 10.9
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Table 3: IV values (multiplied by 1,000) for each estimator and copula combination. Smallest IV
values in each row are highlighted in bold, with values reported to 3 significant figures. Copulas
1-3 refer to the Gaussian copula with ρ =−0.6, ρ = 0.1 and ρ = 0.6, respectively. Copulas 4-7
refer to the logistic, asymmetric logistic, inverted logistic, inverted asymmetric logistic copulas,
respectively. Copulas 8-9 refer to the student t copula with parameters ρ = 0.8, ν = 2 and ρ = 0.2,
ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 2.58 2.02 2.11 3.09 3.23 3.13 4.7

Copula 2 0.834 0.761 0.897 0.843 0.787 0.927 0.863

Copula 3 0.363 0.35 0.426 0.276 0.269 0.334 0.1

Copula 4 0.362 0.371 0.551 0.281 0.31 0.55 0.468

Copula 5 0.717 0.674 0.868 0.734 0.718 0.944 1.07

Copula 6 0.382 0.359 0.423 0.316 0.306 0.366 0.445

Copula 7 0.772 0.714 0.848 0.768 0.719 0.854 1.02

Copula 8 0.0842 0.0586 0.113 0.0208 0.021 0.0362 0.273

Copula 9 0.751 0.701 0.901 0.79 0.763 0.983 1.28
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We also consider the performance of each estimator at different rays (i.e., different regions

in R2
+). For this, estimates of the the root mean squared error (RMSE) were computed via

Monte–Carlo techniques for the rays w ∈ {0.1,0.3,0.5,0.7,0.9}; these estimates are given in

Tables 4-8.

These results do not reveal any obvious patterns, besides the fact the λ̂ST estimator tends to

perform best for w = 0.5 (i.e., on the y = x line). As with the RMISE, ISB and IV estimates, the

performance of each estimator appears to vary over copulas. This is likely due to the different

rates of convergence to the limiting ADF for finite sample sizes.

We also observe that for w = 0.1 and w = 0.9, the λ̂ST has some notably small RMSE esti-

mates for the Gaussian copula with ρ = 0.6. What this shows is that for this dependence structure,

the estimates of ∂G at each iteration touch the boundary of the unit box [0,1]2 at some ray in the

ranges [0.1,0.5] and [0.5,0.9], ensuring that the estimated ADF correctly equals the lower bound

for w= 0.1,0.9. The estimators λ̂H2, λ̂CL2 and λ̂PR2 will all lead to this conclusion if the estimates

of the conditional extremes parameters satisfy α∗x|y > 0.1 and α∗y|x < 0.9. This explains the no-

table improvements over their non-combined counterparts in this case, and similar improvements

for copulas 4 and 8.
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Table 4: RMSE values (multiplied by 100) for each estimator and copula combination at w = 0.1.
Smallest RMSE values in each row are highlighted in bold, with values reported to 3 significant
figures. Copulas 1-3 refer to the Gaussian copula with ρ = −0.6, ρ = 0.1 and ρ = 0.6, respec-
tively. Copulas 4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asym-
metric logistic copulas, respectively. Copulas 8-9 refer to the student t copula with parameters
ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 59.7 56.9 62.2 59.8 58.3 63.5 61.8

Copula 2 3.45 3.74 4.12 3.48 3.7 4.02 2.47

Copula 3 1.76 2.15 2.4 0.424 0.416 0.436 1.11×10−14

Copula 4 2.01 2.52 3.19 0.424 0.458 0.42 2.78

Copula 5 4.15 4.68 5.48 3.27 3.1 3.54 4.58

Copula 6 1.88 2.21 2.42 1.08 1.09 1.17 0.175

Copula 7 3 3.29 3.69 3.15 3.44 3.82 4.84

Copula 8 1.07 0.755 1.27 0.237 0.244 0.315 2.42

Copula 9 6.76 7.59 8.72 6.64 7.27 8.26 5.98

10



Table 5: RMSE values (multiplied by 100) for each estimator and copula combination at w = 0.3.
Smallest RMSE values in each row are highlighted in bold, with values reported to 3 significant
figures. Copulas 1-3 refer to the Gaussian copula with ρ = −0.6, ρ = 0.1 and ρ = 0.6, respec-
tively. Copulas 4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asym-
metric logistic copulas, respectively. Copulas 8-9 refer to the student t copula with parameters
ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 62 63.7 68.6 62 63.7 68.6 63.8

Copula 2 3.5 3.36 3.63 3.5 3.31 3.59 3.13

Copula 3 3.65 3.67 4.07 3.64 3.85 4.24 0.71

Copula 4 3.22 3.2 5.31 2.59 2.6 3.58 2.93

Copula 5 10.2 10.1 13.7 10.2 10.3 13.8 9.83

Copula 6 2.18 2.01 2.22 2.19 2.19 2.44 2.67

Copula 7 2.89 2.66 2.91 2.89 2.68 2.95 4.46

Copula 8 0.837 0.587 0.99 0.257 0.26 0.337 1.88

Copula 9 10.9 10.7 13.9 10.9 10.8 13.9 11.6
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Table 6: RMSE values (multiplied by 100) for each estimator and copula combination at w = 0.5.
Smallest RMSE values in each row are highlighted in bold, with values reported to 3 significant
figures. Copulas 1-3 refer to the Gaussian copula with ρ = −0.6, ρ = 0.1 and ρ = 0.6, respec-
tively. Copulas 4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asym-
metric logistic copulas, respectively. Copulas 8-9 refer to the student t copula with parameters
ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 62.6 60.8 66.6 62.6 60.8 66.6 63.9

Copula 2 3.65 3.49 3.75 3.65 3.59 3.85 3.49

Copula 3 5.13 5.08 5.56 5.13 5.18 5.74 2.39

Copula 4 12.1 12.4 16.3 12.1 12 16.2 4.63

Copula 5 26.4 26.6 32 26.4 26.6 32.1 20.8

Copula 6 2.03 1.96 2.05 2.03 1.97 2.15 2.67

Copula 7 2.8 2.62 2.73 2.8 2.63 2.78 3.61

Copula 8 2.79 4.27 5 2.78 2.52 3.26 1.8

Copula 9 23.3 23.5 27.9 23.3 23.5 27.9 19
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Table 7: RMSE values (multiplied by 100) for each estimator and copula combination at w = 0.7.
Smallest RMSE values in each row are highlighted in bold, with values reported to 3 significant
figures. Copulas 1-3 refer to the Gaussian copula with ρ = −0.6, ρ = 0.1 and ρ = 0.6, respec-
tively. Copulas 4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asym-
metric logistic copulas, respectively. Copulas 8-9 refer to the student t copula with parameters
ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 62.1 63.8 68.4 62.1 63.8 68.4 63.8

Copula 2 3.53 3.38 3.8 3.53 3.34 3.76 3.27

Copula 3 3.7 3.67 4.13 3.7 3.89 4.35 0.592

Copula 4 3.1 3.08 5.16 2.52 2.6 3.69 2.82

Copula 5 16.8 16.9 19.3 16.8 16.9 19.2 16.4

Copula 6 2.21 2.06 2.27 2.22 2.25 2.49 2.71

Copula 7 2.78 2.54 2.66 2.78 2.57 2.71 4.42

Copula 8 0.835 0.571 0.858 0.233 0.227 0.269 1.85

Copula 9 10.9 10.7 13.9 10.9 10.7 13.9 11.6

13



Table 8: RMSE values (multiplied by 100) for each estimator and copula combination at w = 0.9.
Smallest RMSE values in each row are highlighted in bold, with values reported to 3 significant
figures. Copulas 1-3 refer to the Gaussian copula with ρ = −0.6, ρ = 0.1 and ρ = 0.6, respec-
tively. Copulas 4-7 refer to the logistic, asymmetric logistic, inverted logistic, inverted asym-
metric logistic copulas, respectively. Copulas 8-9 refer to the student t copula with parameters
ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, respectively.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 59.7 57.1 62.5 59.8 58.4 63.7 61.7

Copula 2 3.38 3.65 3.93 3.44 3.62 3.85 2.54

Copula 3 1.84 2.24 2.47 0.352 0.289 0.268 1.11×10−14

Copula 4 2 2.5 3.25 0.392 0.394 0.431 2.71

Copula 5 7.22 7.42 7.91 7.21 7.48 7.94 2.58

Copula 6 2.05 2.37 2.56 1.04 1.06 1.16 0.183

Copula 7 2.76 3.03 3.36 2.82 2.86 3.07 2.8

Copula 8 1.06 0.734 1.1 0.143 0.157 0.183 2.38

Copula 9 6.6 7.41 8.4 6.51 7.12 7.98 5.91
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S6 Additional case study figures

This section contains additional figures for the case study detailed in Section 4 of the main article.

Figure S6 illustrates daily river flow time series for each of the six gauges in the north of England,

UK. These series suggest a stationarity assumption is reasonable for the extremes of each data

set.
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Figure S6: Daily river flow time series for the six gauges in the north of England, UK.

Figure S7 illustrates the QQ plots from the fitted GPDs at each of the six gauges. Uncertainty

intervals are obtained via block bootstrapping on the order statistics; see the main article for

further details. One can observe that, in each case, the majority of points lie close to the y = x

line, indicating the fitted models capture the upper tails well.

Figures S8 and S9 illustrate the ADF QQ plots for the third pair of gauges using the estimates

obtained via λ̂ST and λ̂H , respectively. The estimated and observed quantiles appear in good

agreement at each of the considered rays.
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Figure S7: QQ plots for each of the fitted GPDs at each of the six gauges. Estimates are given
in black, with 95% bootstrapped tolerance intervals represented by the grey shaded regions. The
red line corresponds to the y = x line. The corresponding threshold quantile levels are given in
the subtitle of each plot.

Figures S10, S11 and S12 illustrate the global ADF diagnostic over six random seeds for

the third pair of gauges using the estimates obtained via λ̂CL2, λ̂ST and λ̂H , respectively. One

can clearly observe the variability in this diagnostic over different random seeds. Therefore,

in practice, we recommend computing this diagnostic multiple times to ensure one can fairly

compare the model fits from each estimator.

Figures S13 and S14 illustrate the return curve diagnostic of Murphy-Barltrop et al. (2023)

for the estimators λ̂ST and λ̂CL2, respectively. Note that for both of these figures, the ‘true survival

probabilities’ refer to the probability p at which return curve estimates have been obtained. For

this diagnostic, a subset of points are selected on a return curve estimate; these points correspond

to a set of m = 150 equally spaced angles θ in the interval [0,π/2], i.e., given (x,y) ∈ RC(p), we
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Figure S8: Local and global ADF QQ plots for the third pair of gauges, using the ADF estimate
obtained via λ̂ST . Estimates given in black, with 95% pointwise tolerance intervals represented
by the grey shaded regions. Red lines correspond to the y = x line.

have θ = tan−1(y/x). Empirical estimates of the joint survival function are computed for each

point and bootstrapping is used to evaluate uncertainty. Finally, the median empirical estimates,

alongside 95% pointwise confidence intervals, are plotted against the angle index and compared

to the true probability; see Murphy-Barltrop et al. (2023) for further details.

Both estimators appear to give a similar level of accuracy, though for the fifth gauge site

pairing, both λ̂ST and λ̂CL2 fail to capture the true probability at all angles.

Finally, Figures S15 and S16 illustrate estimated return curve uncertainty intervals obtained

using the λ̂ST and λ̂CL2 estimators, respectively, for the first and fifth gauge site pairings. In both

figures, one can observe the contrast in shapes of the uncertainty regions between the two site

pairings.
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Figure S9: Local and global ADF QQ plots for the third pair of gauges, using the ADF estimate
obtained via λ̂H . Estimates given in black, with 95% pointwise tolerance intervals represented
by the grey shaded regions. Red lines correspond to the y = x line.
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Figure S10: Global ADF QQ plot over six random seeds for the third pair of gauges, using
the ADF estimate obtained via λ̂CL2. Estimates given in black, with 95% pointwise tolerance
intervals represented by the grey shaded regions. Red lines correspond to the y = x line.
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Figure S11: Global ADF QQ plot over six random seeds for the third pair of gauges, using the
ADF estimate obtained via λ̂ST . Estimates given in black, with 95% pointwise tolerance intervals
represented by the grey shaded regions. Red lines correspond to the y = x line.
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Figure S12: Global ADF QQ plot over six random seeds for the third pair of gauges, using the
ADF estimate obtained via λ̂H . Estimates given in black, with 95% pointwise tolerance intervals
represented by the grey shaded regions. Red lines correspond to the y = x line.
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Figure S13: Diagnostic plots of the return curve estimates from the λ̂ST estimator for the first and
fifth gauge site pairings. The black and red lines indicate the empirical median and true survival
probabilities, respectively, with 95% bootstrapped confidence intervals denoted by the shaded
regions.
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Figure S14: Diagnostic plots of the return curve estimates from the λ̂CL2 estimator for the first
and fifth examples. The black and red lines indicate the empirical median and true survival
probabilities, respectively, with 95% bootstrapped confidence intervals denoted by the shaded
regions
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Figure S15: Median and mean return curve estimates in orange and brown, respectively, obtained
using the λ̂ST estimator for the first and fifth examples. The black dotted lines indicate 95%
confidence intervals.
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Figure S16: Median and mean return curve estimates in orange and brown, respectively, obtained
using the λ̂CL2 estimator for the first and fifth examples. The black dotted lines indicate 95%
confidence intervals.
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