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Abstract

The origin of magnetic fields in astrophysics remains one of the most
crucial scientific questions, given that their temporal and spatial scales
are fundamental for explaining observations of energetic events such as
gamma-ray bursts (GRBs) and supernova remnants (SNRs). It is now
widely recognised that the creation and intensification of magnetic fields
depend significantly on plasma instabilities. For instance, the Weibel
instability (WI), also known as the current filamentation instability (CFI),
can amplify magnetic fields and lead to the formation of electromagnetic
shock waves, where particles can be accelerated to high energies while
emitting strong bursts of radiation. Significant efforts have been made
to reproduce these fundamental mechanisms in the laboratory through
experiments that preserve the scale differences of astrophysical scenarios.
Due to advancements in sophisticated simulation tools, it is now possible to
understand a wide range of astrophysical problems and develop laboratory
experiments to replicate these events. In this thesis, I examine the onset
and long-term development of the CFI in counterstreaming electron-ion
flows. Using two-dimensional kinetic simulations performed with the semi-
implicit energy-conserving code ECsim, I investigate the evolution of the
instability on ion timescales. The numerical results indicate that the
magnetic field driven by the instability survives for hundreds of ion plasma
periods. The instability produces magnetic field filaments that evolve from
sub-electron scales to beyond the ion inertial length, depending on the flow
velocity and the plasma anisotropy. The ion anisotropy, which remains
substantial throughout the simulations, sustains the coalescence process of
magnetic filaments. In the second phase of the numerical investigation
into CFI, I studied the interaction between a neutral ultra-relativistic
electron-positron beam and a magnetised plasma using the PIC code
OSIRIS. I investigated how a pre-existing magnetic field, oriented parallel
to the beam propagation, modifies the growth and saturation of kinetic
instabilities. Without a magnetic field, the dominant instability is the
CFI, which causes modes perpendicular to the direction of the beam. By
increasing the strength of the magnetic field, it is possible to observe a
transition toward progressively more oblique modes. The growth rate of
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these modes is smaller than that of the CFI. In all cases, these instabilities
generate a magnetic field perpendicular to both the beam velocity and the
wavenumber. These simulations indicate that the instability-driven field
reaches higher values at saturation in the presence of higher degrees of
magnetisation. The effect of longitudinal beam variation was also explored,
demonstrating that even less dense, longer longitudinal beams can still
cause kinetic instabilities, although the magnetic field grows at a slower
rate. Finally, to probe the physics underpinning the interaction in the
laboratory, I examined the propagation of the electron beam into the
plasma, considering the CLARA laboratory parameters. The preliminary
results show the growth of the electric field components and the transverse
magnetic field.
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Chapter 1

Introduction

1.1 Importance of magnetic field generation and

plasma microinstabilities in astrophysical con-

texts

Understanding how the magnetic field is generated and evolves in plasmas is of
great importance for the study of astrophysical scenarios.

Synchrotron radiation associated with processes such as gamma-ray bursts
(GRBs), supernova remnant (SNRs) and pulsar wind outflows hints at the presence
of strong magnetic fields [1], [2]. The latter fields are usually related to collisionless
shock waves and colliding plasmas [3], [4], but a full modelling of their origin and
long-term evolution is still lacking.

Collisionless shocks are found across various astrophysical environments, where
there is a significant release of energy over a short period, such as in active galaxy
nuclei (AGNs), pulsar wind nebulae, and SNRs. These shocks are also responsible for
producing non-thermal particles, such as cosmic rays (CRs) [5]. A shock, which may
be defined as a discontinuity in the macroscopic plasma state can develop when fast
plasma flows are present. At a macroscopic level, a shock is characterised by a sudden
and pronounced change in the plasma state [6]. The discontinuity in the plasma state
in hydrodynamic shock waves is caused by collisional effects that irreversibly dissipate
the kinetic energy of the fluid crossing the shock. However, in the absence of particle
collisions, plasma microinstabilities can be responsible for the dissipation of kinetic
energy, leading to the formation of shocks in the plasma [3], [7], [8].

In astrophysical contexts such as AGNs and GRBs, collisionless kinetic instabilities
are being considered as potential explanations for the origin of magnetic fields. These
instabilities may play a role in generating the magnetic fields observed in these
phenomena [3], [9]. Among the different instabilities, the Weibel instability and the
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Chapter 1. Introduction

current filamentation instability (CFI) are known to provide efficient mechanisms for
the generation of magnetic fields in unmagnetised plasmas [10], [11]. The Weibel
instability occurs when there is an anisotropy in the velocity distribution of particles
in the plasma. This anisotropy can arise from various processes, such as shock
formation or laser-plasma interactions. When such an anisotropy exists, it leads to the
filamentation of current within the plasma, resulting in the formation of small scale
current filaments. These filaments then give rise to localied magnetic fields due to the
Ampere’s law, which states that a current produces a magnetic field around it. The
CFI, on the other hand, is driven by current perpendicular to an external magnetic
field. When there is a sufficient gradient in the current density perpendicular to the
magnetic field, small perturbations in the current density can grow rapidly through
the process of filamentation. This leads to the formation of filamentary structures in
the plasma, accompanied by the generation of magnetic fields. These instabilities can
mediate the formation of collisionless shocks, which can accelerate particles to high
energies [3], [7], [8].

The material released by SNRs typically moves at non-relativistic speeds (up to
10% the speed of light) [12], meanwhile, shocks in the other astrophysical environments
mentioned above are propelled by relativistic and even ultra-relativistic streams.
Indeed, electromagnetic instabilities develop in each of these systems as a result of
the ejected plasma interacting with the surrounding medium. These instabilities
can produce strong fields, enough to isotropise the flows and eventually drive shock
formation. In these cases, information on accelerated particle dynamics can be
retrieved by indirect astrophysical observations that rely on the high-energy particle
radiation spectrum. SNRs have contributed the majority of the information available,
and evidence of a synchrotron spectrum is particularly clear in SN1006. Figure 1.1
provides Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite X-ray
measurements of the supernova SN1006 remnant [13]. These observations demonstrate
that the emissions from the edges of the remaining shell are dominated by radiation
from electrons. Inside the shock front, electrons were accelerated to an energy of
roughly 100 TeV. Very high-energy CRs are probably the product of ion acceleration
at energies similar to those in the shell [13].

Many astrophysical phenomena, including GRBs, have shown how essential
large-scale magnetic fields are [14]. Also in these cases, electromagnetic plasma
microinstabilities can provide the powerful magnetic fields needed to explain the
non-thermal radiation. Gamma-ray bursts manifest in two distinct phases: an
initial burst of radiation dominated by high-energy emissions, followed by a longer-
lasting afterglow emitting across various wavelengths. Recent observations have
unveiled that certain GRBs emit in the TeV band, expanding the comprehension
of these phenomena. These bursts originate from ultra-fast jets emitted by compact
objects, resulting in two phases of emission: the initial burst and the subsequent
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Chapter 1. Introduction

Figure 1.1: SN1006 from NASA’s Chandra X-ray Observatory revealing SNR. The
colour in the figure shows the radio (red), X-ray (blue) and visible light (yellow).
SN1006 is located about 7, 000 light years from Earth [13].

afterglow. Indeed, measurements of GRBs in the afterglow zone seem to indicate that
synchrotron emission, which can only be explained by the existence of strong magnetic
fields, is the most plausible source for the fast emission [15]. GRBs are considered
the brightest objects in the cosmos [1]. They were accidentally detected in the late
1960s by U.S. military spy satellites called Vela [16], which were launched to search for
possible Soviet nuclear tests in violation of the Treaty on the Prohibition of Nuclear
Weapons Tests in the Atmosphere, signed in 1963. These satellites were equipped
with gamma-ray detectors since a nuclear explosion produces gamma-rays. After
that, several GRBs have been observed. In 1991, the Burst and Transient Source
Experiment (BATSE) was launched to understand the source of these mysterious
events. For nine years, the sky was observed and thousands of GRBs were recorded.
In March 2000, BATSE published startling results that seemed to confirm the cosmic
distribution of GRBs as shown Fig. 1.2. The physics of GRBs is still unclear, although
numerous satellites are nowadays engaged in observing them. A GRB event is a
rare event that can last from one millisecond to tens of minutes, often reaching
a peak energy of 100 keV. Gamma-ray burst photons typically carry significantly
higher energies compared to photons emitted by the Sun. GRB photons are often
detected with energies ranging from a few hundred kiloelectronvolts (keV) to several
megaelectronvolts (MeV). In contrast, photons emitted by the Sun are mainly in the
visible light range, peaking around 1 to 3 electronvolts (eV), corresponding to the
visible spectrum. Light from a typical GRB is also hundreds of times brighter than
that from a typical supernova. Most GRBs observed so far emit energy E on the order
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Chapter 1. Introduction

Figure 1.2: Location of 2704 GRBs recorded by the BATSE satellite. The projection
is in galactic coordinates; the plane of the Milky Way Galaxy is along the horizontal
line in the middle of the figure. The burst locations are colour-coded based on the
fluence, which is the energy flux of the burst integrated over the total duration of the
event. Long duration, bright bursts appear in red, and short duration, weak bursts
appear in purple. Grey is used for bursts for which the fluence cannot be calculated
due to incomplete data [17] .
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Chapter 1. Introduction

of approximately 1051−54 erg, which is about a few per cent of an almost complete
conversion of the Sun mass into radiant energy. The time T90 during which 90% of
the outburst energy is visible is commonly used to divide GRBs into two groups:
long outbursts with T90 > 2 s and short outbursts with T90 < 2 s. The gamma-ray
photons of the outbursts often reach a peak value of a few hundred keV and have a
non-thermal spectrum that can be described with a power law:

N(E)dE ∝ E−βdE, (1.1)

with a spectral index β ≈ 2, where N is the number of photons with energy E [18].
The rate of detected GRBs is about one burst per day. The object or the system of
objects responsible for the GRBs, the so called internal engine, is still unknown, due
to the optical thickness of the engine which impedes direct observations. It is unclear
how such an emission might occur from a small source. The discovery of GRB 030329
indicates that catastrophic star deaths involving core collapse can produce GRBs [19].

There is a compactness problem that is related to these energetic events and arises
due to the large energy involved in a short time variability. A small percentage of
high energy gamma-ray photons can be seen in the measured GRB spectrum. These
photons can form electron-positron couples when they interact with photons of lower
energy via γγ −→ e+e−. Considering a fluence F of gamma-rays for an isotropic
source of size Ri at a distance D, the initial optical depth τγγ for the pair production
process is defined as:

τγγ =
fpσTFD

2

R2
imec

, (1.2)

where fp is the fraction of photons involved in the process, σT is the Thomson cross-
section, me the electron or positron mass and c is the speed of light in vacuum [18].The
optical depth measures how likely a photon is to scatter when passing through a
medium with charged particles. Higher optical depth means a greater chance of
scattering. In dense environments, like those where pair production occurs, optical
depth also indicates the likelihood of high-energy photons producing particle pairs
as they travel through the medium. It would be impossible to observe the radiation
released by the source because, for typical GRB conditions, the resulting optical depth
τγγ is incredibly thick [20]. By supposing that gamma-rays are produced by ultra-
relativistic sources travelling towards us, the compactness problem can be solved. In
this regime, the fraction of photons fp is smaller by a factor γ−2β and the radius
from which the radiation is emitted is larger by a factor γ2, where γ is the Lorentz
factor of the source moving towards an observer at rest and β is the spectral index
of the emission. The optical depth of Eq. (1.2) is then reduced by a factor γβ. The
compactness problem can then be resolved by assuming sources moving relativistically
towards us with a Lorentz factor γ ≈ 100. This result led to the relativistic fireball
model, which explains gamma-ray production and afterglow.
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1.1.1 The fireball beam model

The fireball model is one of the few models proposed to explain why GRBs have
such high energy levels [1], [21], [22]. It also tries to explain the time scales that govern
them, as well as why they produce an afterglow. Moreover, the model contributes
to answering important questions about GRBs, such as why they are so variable
over short time scales. The interaction of the fireball beam, which has relativistic
factors ranging from 102 to 106, with the external medium can drive plasma kinetic
instabilities, which generate field structures that accelerate particles to high energies.
As particles accelerate to such high speeds, their kinetic energy is dissipated to produce
strong radiation bursts with wavelengths ranging from gamma-rays to radio waves.
The remainder of the energy is stored in the interstellar medium (ISM) and creates
the observed afterglow. The central idea behind the fireball model is that gamma-ray
emission in GRBs occurs behind a shock that has evolved within a shell moving with
a Lorentz factor greater than one.

Figure 1.3 shows a schematic diagram of the internal/external shock model that
evolves in four stages: 1) a compact source (not directly observable) generates a
relativistic energy flow; 2) the energy is relativistically transferred from the source
regions; 3) when faster shells pass slower ones, a shock is formed, converting the kinetic
energy of the relativistic ejecta into interior energy of accelerated particles, then,
the visible gamma-rays are produced; 4) the afterglow is caused by the surrounding
ISM, which further slows down the relativistic outflow, whose speed has already been
reduced but not stopped by the internal shocks. The internal shocks refer to collisions
that occur within the relativistic outflow ejected from the central source. This outflow
consists of shells of material moving at different velocities. As these shells propagate
outward, the faster-moving ones catch up to and collide with the slower-moving ones.

The scientific community generally agrees that plasma instabilities are reasonable
mechanisms for magnetic field generation in GRBs. These plasma instabilities occur
naturally. Sources of free energy in the plasma, which might be connected to
anisotropies or shear velocities can rapidly lead to instabilities and produce the
magnetic fields necessary to explain non-thermal radiation [24]. When a GRB
explodes, it ejects a dense relativistic jet into the interstellar plasma. As a result, a
return current may form, and plasma microinstabilities can be triggered. In many
cases, the simultaneous growth of longitudinal and transverse instabilities results
in the exponential amplification of oblique modes, which are combinations of these
instabilities. It is known that these instabilities can produce strong magnetic fields
[25]. These intense magnetic fields scatter charged particles, causing the emission of
electromagnetic radiation.
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Chapter 1. Introduction

Figure 1.3: The fireball model for GRB and afterglow generation [26]. The fireball
model is a theoretical model used to explain the generation of GRBs and their
afterglows. According to this model, GRBs are produced when a massive star collapses
into a black hole or a neutron star, and the resulting explosion generates afterglows
at progressively longer wavelengths from gamma-ray, X-ray to optical (O) and radio
(R) bands.

1.2 Relevance of magnetic field generation and

plasma microinstabilities for laboratory plas-

mas

The generation of magnetic fields in plasmas is not only relevant in astrophysical
frameworks, but also in laser-plasma experiments.

The availability of ultra-intense (intensities > 1019 W/cm2) and ultra-short
(duration ≈ fs) laser pulses and ultra-relativistic particle beams has opened the
possibility of mimicking astrophysical environments in the laboratory [27]–[29]. The
physics underpinning astrophysical events can be thus clarified by the design of
properly scaled laboratory experiments, which leverage these technologies.

In particular, plasma microinstabilities relevant to magnetic field generation have
been explored in the laboratory through the interpenetration of counterstreaming
collisionless plasma flows [29]–[31]. The experimental setup typically involves two
solid targets that are irradiated by laser pulses to create two interpenetrating plasma
flows. This configuration is favorable for the development of the CFI, which arises
due to the interaction between the two counterstreaming plasmas. As the two plasma
flows interact, the CFI may also lead to the formation of two collisionless shock fronts
spreading away from each other, with the shocked plasma in between. Understanding
how these shocks form and evolve is important for a wide range of astrophysical
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Chapter 1. Introduction

Figure 1.4: Experimental setup to produce two counterstreaming plasmas by
irradiating two plastic targets with kJ-ns laser pulses. Proton radiography is used
to examine the interaction zone [30].

systems, including SNRs, GRBs, and AGN. Several studies have shown magnetic
field creation via Weibel-like instabilities in interpenetrating flows [27], [29], [30]. The
configuration shown in Fig. 1.4, obtained at the OMEGA Laser Facility, involved the
interpenetration of flows with a density of ne ≈ 5×1018 cm−3 and a measured plasma
velocity of 1000/2000 km s−1 [30]. Proton radiography was used to investigate the
interaction zone, revealing the filamentary structure typical of the early stages of the
CFI.

An analogous configuration with higher plasma density (ne ≈ 1019 cm−3) has
been investigated at the National Ignition Facility. In this experimental campaign
symmetric and counterstreaming plasma flows were produced by the ablation of
deuterated carbon targets with each target irradiated by 84 laser beams [32]. X-
ray self-emission measurements from the plasma indicate the formation of a strongly
compressed and heated zone when the two flows interact. This interaction region
becomes Weibel-unstable, potentially driving the development of two collisionless
shock fronts propagating away from each other within the plasma, with the shocked
plasma situated in between. The processes related to the development of the Weibel
instability and of Weibel-mediated collisionless shocks in the context of laboratory
astrophysics is confirmed by electron energy measurement. These measurements
show that electrons can be accelerated to relativistic non-thermal energy levels
through small-scale turbulence induced during the shock transition. This particular
experiment is relevant to understand electron acceleration at shocks in young SNRs
[32].

The CFI has been driven in the laboratory also via the interaction of an ultra-
relativistic electron beam with a static plasma [33]. The experiment involved a
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Chapter 1. Introduction

plasma-filled vacuum chamber created by ionising a gas with an electric discharge.
A high-current electron beam generated outside the chamber was then injected into
the plasma. Optical imaging techniques were used to measure the properties of the
plasma and to image the possible formation of current filaments due to the instability.
The study showed that when the transverse size of the relativistic electron beam is
sufficiently large, the propagation of the beam drives the CFI, which manifests by
splitting the beam into filaments. The filaments are observed to grow in both length
and diameter over time and their growth rate appears to be strongly influenced by
the plasma density and beam current [33], [34]. These series of experiments inspired
novel proposals to investigate the CFI using a quasi-neutral fireball beam composed
of electrons and positrons instead of an electron beam only [35], [36]. It is important
to note that the polarisation of the synchrotron radiation emitted by a fireball
beam is significantly impacted by the presence of weak magnetic field background.
Therefore, understanding the structure and composition of current filaments and fields
generated by the CFI in the presence of a background magnetic field is crucial for
the interpretation of recent observations [37]–[39]. It is important to notice that this
setup is particularly relevant to mimicking GRBs in the laboratory [40].

Simulation results reveal the possibility of driving Weibel-like instabilities and
turbulent fields also when an intense laser pulse impinges on an overdense or near-
critical target [41]–[44]. In this context, a near-critical target denotes a plasma whose
density closely approaches the critical density corresponding to the laser wavelength
employed in the interaction. The laser can either generate strong temperature
anisotropies [45] or act as a piston and generate a fast flow of electrons [41]. In
the first case, the temperature anisotropy causes the development of the Weibel
instability. In the second case, similarly to that is thought to occur in astrophysics,
the stream of electrons flowing through the target is balanced by a return current
which creates the counterstreaming flows that lead to the CFI. In both cases a strong
long-living magnetic field is produced whose characteristics could be probed with
relevant diagnostics.

In recent experimental investigations, the growth and saturation of the electron
Weibel instability were observed by employing a moderate-intensity laser and a
gas target. The plasma, characterised by controlled density and temperature, was
generated through the process of ionisation induced by intense laser fields [46], [47].
The growth and saturation of the electron Weibel instability in the created plasma
were directly observed [46]. The evolution of magnetic fields was observed, revealing
the formation of a distinct helicoid structure associated with the electron thermal
Weibel instability. The study identified magnetic trapping as the dominant saturation
mechanism. Furthermore, the analysis of electron velocity distributions indicated the
presence of further instabilities, which led to a more uniform electron distribution.

Finally strong magnetic fields developing on the back of solid targets due to Weibel-
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like instabilities have been reported also by teams performing experiments on laser-
driven ion acceleration [48]–[50]. In these cases, the magnetic field resulted in an
unexpected spatial modulation of the produced proton beams, which deteriorated
their quality. Therefore, in these cases it is crucial to understand the conditions to
quench the instability.

Magnetic field generation due to the CFI has also crucial relevance for fast
ignition [51], a promising alternative to more conventional inertial confinement fusion
approaches, where fusion is achieved via hydrodynamic compression of a deuterium-
tritium pellet [52]. In the fast ignition scheme, compression and ignition occur
separately. Initially, a suitable driver is used to compress the deuterium-tritium
pellet to very high densities. After this phase, an external source is employed to
ignite the compressed fuel, as depicted in Fig. 1.5. This requires lower driver energy
with respect to the hydrodynamic approach and thus it allows for achieving higher
energy gains. Additionally, the impact of asymmetries and hydrodynamic instabilities
is reduced [51]. The original idea behind fast ignition was to use a second short pulse
laser to generate relativistic electrons in the tenuous plasma corona surrounding the
compressed pellet [51]. Later, it was also proposed to implant a gold cone on the fuel
pellet to guide the laser and ensure a more stable laser-plasma interaction [53], [54].
Fast electrons travel through the target and deposit their energy in the compressed
core, which gets heated to million of degrees celsius. In turn, this produces the ignition
spark that initiates the thermonuclear reaction chain. It was noted that in order to
deposit their energy in the core, fast electrons must propagate through the micrometer
long corona whose density is 10− 1000 times higher that the beam density and these
conditions might trigger kinetic microinstabilities, such as the CFI [55]. In turn, these
instabilities might consume the free energy of the electron beams and, hence, impede
fusion.

1.3 Outline of the thesis

The aim of this doctoral thesis is to describe the process of the development of
microinstabilities as one of the possible mechanisms for the generation of magnetic
fields in plasmas. The generation and long-time evolution of magnetic fields in the
CFI are studied in the first part of the thesis, while the possibility of exploring the
generation of magnetic fields in unmagnetised and slightly magnetised plasmas in
the laboratory using ultra-relativistic particle beams is investigated in the second
part. The studies involve a combination of theoretical derivations and numerical
simulations. The latter simulations were performed by employing a kinetic approach
and using two different Particle-In-Cell (PIC) codes: OSIRIS and ECsim. These
codes adopt different time discretisations and, as a consequence, allow for focusing on
different physics regimes and spatio-temporal scales. OSIRIS is an effective instrument

10



Chapter 1. Introduction

Figure 1.5: Fast ignition scheme. A capsule containing DT fuel and a gold cone is
exposed to a group of symmetrically positioned laser beams (a). As a result, the
material around the tip of the gold cone collapses, causing the density of the DT fuel
to increase hundreds of times over that of solid matter (b). Then, a highly powerful
laser is directed at the gold cone tip, resulting in the generation of numerous high-
energy electrons (c). These energetic electrons travel into the dense DT fuel and
deposit their energy in the compressed fuel, causing the ignition spark (d) [56].

for studying relativistic electron physics. ECsim allows for focusing on the ion physics.
The thesis is organised as follows:
In Chapter 2, the numerical approach utilised in this thesis is described. I illustrate
the main ideas behind the PIC method and report the fundamental equations upon
which the technique relies. The different numerical discretisations adopted in OSIRIS
and ECsim are explained and the advanteges of the two codes revealed.
In Chapter 3, I investigate the onset and evolution of the CFI driven by two identical
counterpropagating plasmas composed of electrons and ions with realistic mass ratio.
By using the code ECsim, I explore how the instability generates an intense magnetic
field and how this field is amplified over time scales of hundreds of ion plasma periods
and evolves towards larger and larger spatial scales. Thus this study provides an
overview of the non-linear dynamics of the ion CFI on unprecedented spatial and
temporal scales.
In Chapter 4, through 2D kinetic simulations performed with the code OSIRIS,
I illustrate the physics underpinning the propagation of ultra-relativistic electron-
positron fireball beams through a static slightly magnetised plasma. This study
employs beam and plasma parameters attainable at the SLAC National Accelerator
Laboratory. In this chapter, I also illustrated the propagation of a relativistic electron
beam in a static and unmagnetised plasma. The simulation beam parameters are
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achievable at CLARA, Compact Linear Accelerator for Research and Applications,
located at the Cockcroft Institute of Accelerator Science and Technology.
Chapter 5 presents conclusions and perspectives for future work.

The work described in this thesis was presented at:

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella,
On the Current Filamentation Instability in counterpropagating plasma setups,
62nd Annual Meeting of the APS Division of Plasma Physics, (fully remote
meeting), 2020, (Poster contribution).

• C. Chiappetta, A numerical systematic study of the current filamentation insta-
bility of relevance for laser-solid interaction, Cockcroft Institute Postgraduate
Conference, (fully remote meeting), 2020, (Oral contribution). Award for
second best presentation.

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella,
Numerical study of the non-linear phase of the current filamentation instability
in electron-ion plasmas, 47th IOP Plasma Physics Conference, (fully remote
meeting), 2021, (Poster contribution).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella, On
the long-term dynamics of the Current Filamentation Instability, EPS Confer-
ence on Plasma Physics, (fully remote meeting), 2021, (Poster contribution).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella,
The Current Filamentation Instability in the long-time evolution, National
Astronomy Meeting, (fully remote meeting), 2021, (Oral contribution).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella, In
silico magnetic field generation in plasmas, Postgraduate Research Conference,
Lancaster University, (fully remote meeting), 2021, (Poster contribution)

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella, Ex-
ploring the interaction between ultra-relativistic fireball beams and magnetised
plasmas, 63rd Annual Meeting of the APS Division of Plasma Physics, (fully
remote meeting), 2021, (Poster contribution).

• C. Chiappetta, Ultra-relativistic electron-positron beam interaction with mag-
netised plasma as a platform to explore processes relevant for astrophysics
in the laboratory, Cockcroft Institute, Postgraduate Conference, (fully remote
meeting), 2021, (Oral contribution).
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• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella, In
silico magnetic field generation in plasmas, Faculty of Science and Technology
Science Week, (Lancaster University), 2022, (Poster contribution).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella,
Numerical simulations modelling the interaction of ultra-relativistic neutral
fireball beams with magnetised plasmas, EPS Conference on Plasma Physics,
(fully remote meeting), 2022, (Poster contribution).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella,
Current filamentation instability on ion time scales, 48th IOP Annual Plasma
Physics Conference, (fully remote meeting), 2022, (Oral contribution).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella, Non-
linear evolution of the current filamentation instability on ion time scales, 64th
Annual Meeting of the APS Division of Plasma Physics, (Spokane, Washington),
2022, (Oral contribution).

This work is also currently being summarised in the following publications:

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, and E. Boella, The
Current Filamentation Instability in the long-time evolution, to be submitted
to The Astrophysical Journal (2023).

• C. Chiappetta, M. E. Innocenti, K. M. Schoeffler, N. Shukla, T. Silva, and
E. Boella, Multidimensional simulations of ultra-relativistic particle beam
interaction with magnetised plasma, to be submitted to Journal of Plasma
Physics (2023).
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Chapter 2

Numerical techniques to explore
the onset and development of
microinstabilities in collisionless
plasmas

2.1 Introduction

The aim of this thesis work is the study of magnetic field generation in collisionless
plasma due to Weibel-like instabilities [57]–[59]. This requires the analysis of the
linear and non-linear phases of kinetic instabilities. If the linear phase of kinetic
instabilities can be investigated resorting to analytical models, to explore the non-
linear dynamics of plasmas during the evolution of these micro-instabilities and the
interaction between particles and waves, which naturally follow their development, a
numerical approach is necessary. In addition, numerical simulations are also crucial
to examine multi-dimensional effects, which are hardly treated by analytical models
because of the objective difficulty in carrying out calculations involving two or three
dimensions. The dynamics of collisionless plasmas at a kinetic level may be described
using Vlasov equation [60]. Thus, to model these plasmas using computer simulations,
the Vlasov equation could be solved numerically using for instance finite difference or
finite elements techniques [61]. This is what so-called Vlasov codes do by modelling
the evolution of the distribution function of particles in phase space. However, the fact
that the plasma distribution function is 6-dimensional makes solving Vlasov equation
for all the plasma species a challenge also with modern computing resources. This is
why a Lagrangian approach employing a particle method is usually adopted. This is
the idea underpinning the PIC method. When adopting this technique, the motion of a
large number of computational particles representative of several real plasma particles
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and their interactions with the electromagnetic fields are tracked. Furthermore,
modern codes implementing this numerical technique are easily parallelisable and
can take full advantage of today supercomputing resources. Thus, PIC simulations
have been widely used in this work to reach the pre-fixed goal. Access to the essential
computational resources was crucial for conducting these simulations, made possible
by utilising both the High End Computing Cluster (HEC) at Lancaster University
and the Galileo 100 supercomputer at CINECA (Italy).

This chapter will describe the main ideas behind the PIC method. Particle-In-
Cell techniques use both explicit and implicit methods to simulate plasma dynamics;
each has distinct characteristics. Explicit schemes, such as the leapfrog system, are
very efficient in terms of computing and are appropriate for well-resolved timescales
such as those encountered in collisionless plasmas. Nevertheless, especially at high
plasma densities, they may be subject to numerical instabilities. On the other
hand, implicit approaches are more favorable for collisional plasmas or systems with
stiff timescales due to their stability benefits, despite their computational intensity.
Choosing between the two can be affected by various elements, including what kind of
plasma being simulated, the needed resolution, and computer resources. Selecting the
appropriate method involves balancing these factors to ensure accurate and efficient
simulations tailored to the specific characteristics of the plasma system under study.

2.2 PIC Algorithm

In the PIC method, macro-particles are utilised to represent a large number of
individual particles in the plasma. Unlike point-like particles, macro-particles have
a finite-size, which introduces an important characteristic: a reduced interaction
between computational particles, even when they overlap. This means that a single
macro-particle can account for multiple real particles, resulting in computational
efficiency while still capturing the collective behavior of the plasma. PIC techniques
rely on solving the fundamental physical equations governing particle motion and
electromagnetic field evolution.

The Vlasov-Maxwell system is a set of equations that most accurately describes a
collisionless plasma (i.e. a plasma with ν/ωp � 1, being ν the collision frequency and

ωp =
√

4πne2/m the plasma frequency and εp � 1, being εp the plasma parameter,
which is the ratio of the plasma potential and kinetic energy). The Vlasov equation
is given by [62]:

∂fα
∂t

+ v · ∂xfα + qα

(
E +

v×B

c

)
· ∂pfα = 0, (2.1)

where fα(x,p, t) is the distribution function of the species α, having mass mα and
charge qα, x = (x, y, z) is the position, v = (vx, vy, vz) = p/mαγ is the velocity, p the
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momentum, γ =
√

1 + p2/m2
αc

2 the Lorentz factor. The electric and magnetic fields
are E and B, respectively. The Vlasov equation has to be coupled with Maxwell’s
equations for the description of the electromagnetic fields:

∇ · E = 4πρ, (2.2)

∇ ·B = 0, (2.3)

∇× E = −1

c

∂B

∂t
, (2.4)

∇×B =
4π

c
J +

1

c

∂E

∂t
. (2.5)

The charge density ρ and current density J for all the plasma species α are given by
[62]:

ρ(x, t) =
∑
α

qα

∫
fα(x,p, t)d3p, (2.6)

J(x, t) =
∑
α

qα

∫
p

γmα

fα(x,p, t)d3p. (2.7)

The distribution function has 6 dimensions, which poses a significant challenge when
attempting to solve a combination of the Vlasov and Maxwell equations (Eq. (2.1)
and Eqs. (2.2)-(2.5), respectively). Such a task would require computational resources
that are currently unavailable.

A simple technique for simulating the behaviour of a system of interacting
particles, such as a plasma, is to track the dynamics of each of its individual particles
by computing the force acting on each of them as the total of the contributions of all
the particles making up the system. This approach, although extremely intuitive, is
computationally expensive. For a system of N particles, each particle is subject to
the interactions with (N − 1)/2 other particles, ensuring that each pair of particles is
counted only once. Consequently, the total number of operations needed to describe
the system’s dynamics is N(N − 1)/2. This particle-particle method, which considers
interactions between individual particles, is sometimes a requirement when dealing
with strongly coupled systems. However, very often the large number of particles
and the large number of the operations required make this approach inconvenient.
Luckily, for weakly coupled plasmas as those of interest for this work a workaround
can be adopted which make simulations feasible: the use of particle clouds. Particle
clouds, called macro-particles, or computational particles are alternatives to modelling
each individual point particle and may all be thought of as pieces of phase space.
This approach is defined as finite-size particle approach. The Coulomb force between
point-like particles is proportional to r−2, with r the distance between two particles
and this indicates that for r → 0 the force has a singularity, while for r → ∞ it
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gradually decreases. This trend for large values of r is the reason behind the collective
behaviour of a collisionless plasma. Finite-size particles suffer the same long-range
force as point particles, but when the distance between them becomes less than their
diameter, they start to overlap, causing the force to tend to 0. This behaviour allows
then to avoid the singularity when finite-size particles approach each other while also
precisely simulating the long-range interactions between them, de facto modelling the
dynamics of a collisionless plasma. This suggests that a system may still be thought
of as weakly coupled in finite-size particle methods even when the effective number
of interacting particles is reduced [59].

In a PIC approach, the phase space is approximated by the superposition of macro-
particles p, so that the distribution function of each species α can be estimated as:

fα(x,p, t) =
∑
p

fp(x,p, t). (2.8)

The PIC method works by assigning a specific distribution, containing free parameters
representing the particle position and velocity to each macro-particle. In this
approach, the distribution function in a section of phase space whereNp computational
particles are included may be characterised by a relation of the form:

fp(x,p, t) = NpWx(x− xp)δ(p− pp), (2.9)

where Wx is the spatial shape function of the computational particle.
By inserting the discrete distribution function, as provided by Eq. (2.9), into

the Vlasov Eq. (2.1), and considering each macro-particle independently, it can be
observed that the relativistic equations of motion are satisfied by:

dxp
dt

=
pp
mpγp

, (2.10)

dpp
dt

= qp

(
Ep +

vp
c
×Bp

)
, (2.11)

where the subscript p is used to indicate the pth particle, with p = 1, 2, · · ·Np.
The PIC algorithm has several implementations that depend on the temporal

discretisation adopted for Maxwell’s and motion equations. The forthcoming sections
will provide a thorough examination of explicit and semi-implicit methods.

2.3 Explicit method

In a typical electromagnetic explicit PIC algorithm, Maxwell’s and motion
equations are solved in staggered order. The electromagnetic field is computed by
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keeping the particle frozen. The fields are then updated in accordance with the
currents and charges determined from the locations and velocities that were collected
at the previous time interval [63].

The leap-frog algorithm is a popular method used in the explicit PIC method to
discretise motion equations in time. In the leap-frog scheme a second-order accuracy
scheme is used for time integration [57]. The charge-conserving current deposition
algorithm firstly proposed by Villasenor and Buneman is used to ensure that the
discretised charge conservation equation holds at any time if it is satisfied at t = 0
[64]. Using this scheme, the discretised relativistic motion equations read:

p
n+ 1

2
p = p

n− 1
2

p + qα∆t

[
En
p

(
xnp
)

+

(
v
n+ 1

2
p + v

n− 1
2

p

2c

)
×Bn

p (xnp )

]
, (2.12)

xn+1
p = xnp + ∆t

pp
n+ 1

2

mpγp
. (2.13)

In this algorithm position and momentum are staggered by half-time interval: the
momentum at time n + 1/2 is used to update the position from time interval n to
n + 1. Similarly to this, the momentum is updated through quatitites computed at
time n from time n− 1/2 to time n+ 1/2 (see Fig. 2.1). In addition, the presence of
En
p and Bn

p in the equations implies that the fields have been computed beforehand
and are known before the implementation of the particle mover. This allows for the
calculation of the momentum using the fields interpolated to the already determined
particle position. Usually, two successive time levels are averaged, as in the example
below:

Bn
g =

1

2
(Bn+1/2

g + Bn−1/2
g ). (2.14)

Figure 2.1: Visual representation of the leap-frog algorithm.

A possible discretisation method for Maxwell′s equations based on the leap-frog
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Figure 2.2: Time cycle of the explicit PIC algorithm. Particles are indicated with
indexes p = 1, 2, 3 · · ·Np and grid cells with indexes g.

algorithm can be expressed as follows:

∇g × En = −1

c

Bn+1/2
g −Bn−1/2

g

∆t
, (2.15)

∇g ×Bn+1/2 =
1

c

En+1
g − En

g

∆t
+

4π

c
Jn+1/2
g , (2.16)

where notation ∇g represents the application of the curl operator to calculate the
field at a specific grid point g. According to Eq. (2.12), a conventional explicit PIC
method requires the magnetic field at time n to compute the velocity at time n+ 1/2.
However, Eq. (2.15) provides the magnetic field at time n+ 1/2 as Eq. 2.14.

Maxwell’s equations are generally solved using the so-called finite difference
time domain (FDTD) approach. In this method, the spatial discretisation of
electromagnetic fields involves using a Yee grid, where the fields are discretised in
a staggered manner in space [65]. In the Yee scheme, time is discretised using a
second-order leap-frog scheme as given by Eqs. (2.15) and (2.16). In the Yee scheme
for FDTD approach, the curl operators in the Faraday (Eq. (2.15)) and Ampere’s (Eq.
(2.16)) equations are spatially centred. It also ensures that the other two Maxwell’s
equations (Eq. (2.2) and Eq. (2.4)), which are not solved in typical explicit PIC
codes, are automatically satisfied at any time if they hold at t = 0 and special care is
taken to deposit the current density on the grid (for instance employing the Villasenor
and Buneman’s scheme).

The typical explicit PIC loop is shown in Fig. 2.2. Explicit PIC methods are the
simplest and most straightforward type of PIC methods. In this method, particle
positions and velocities are updated explicitly at each time step based on the electric
and magnetic fields calculated at the previous time step. The explicit method is easy

19



Chapter 2. Numerical techniques to explore the onset and development of
microinstabilities in collisionless plasmas

to implement, computationally efficient and can be highly accurate for problems with
smooth solutions or small time steps. However, this scheme introduces significant
constraints due to the numerical discretisation of Maxwell’s equations. The Courant-
Friedrichs-Lewy (CFL) condition is a crucial stability criterion that must be satisfied
in numerical simulations [66]. This condition places an upper limit on the time step
to ensure that the simulation captures the propagation of signals at the speed of light
c through grid cells accurately and stably. Mathematically, the CFL condition can be
expressed as:

∆t <
1

c

(∑
i

1

∆x2
i

)−1/2

, (2.17)

where ∆t is the time step and ∆xi is the spatial resolution of the grid in the i-th
direction. Equation (2.17) relates the time step to the spatial resolution on the grid
and ensures that the simulation is numerically stable by preventing information from
propagating faster than the grid resolution can resolve. However, even with this
stability condition, certain numerical artefacts can still arise in PIC simulations. For
instance, simulating ultra-relativistic particles can lead to the unphysical emission of
Cherenkov-like radiation due to the numerical Cherenkov instability. This instability
arises if c∆t is too small compared to the grid resolution. In this case, the numerical
phase velocity of electromagnetic waves has a dependency on the wavenumber and
becomes less than c for high frequency small wavelength electromagnetic waves.
Clearly this is a purely numerical artefact [67]. As a consequence particles can
reach velocities higher than the numerical phase velocity of electromagnetic waves.
This numerical effect is more pronounced for high frequency, small wavelength
electromagnetic waves, leading to larger numerical errors.

Furthemore, the numerical solution may become unstable due to the particle mover
discretisation when the following condition is not respected:

ωpe∆t < 2, (2.18)

where ωpe =
√

4πnee2/me with ne the electron number density, me the electron mass
and e the elementary charge. The stability condition expressed by Eq. (2.18) can be
obtained by performing a Von Neumann stability analysis of the numerical scheme
used to solve the motion equations. The violation of the condition (2.18), i.e. when
the time step is too large leads to the unphysical heating of particles, making the
simulation results unreliable [68]–[70].

Finally, when a grid is used to solve field equations, a numerical instability called
the finite grid instability could be triggered. This is due to the loss of information that
occurs when continuous particle motion is approximated by projecting the particle
onto grid points and integrating over control volumes to determine densities. This loss
of information leads to aliasing errors, which can cause numerical instabilities in the
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simulation [57], [71]. The problem of aliasing in the explicit PIC algorithm becomes
severe when the spatial resolution, ∆x, is much greater than the Debye length λD =√
kBTe/4πe2ne where kB is the Boltzmann constant and Te the electron temperature

[57], [72], [73]. This instability, in turn, causes unphysical electron heating. The
instability can be avoided in the case of linear interpolation by ensuring:

∆x < λDπ. (2.19)

The spatial resolution of explicit PIC simulations is severely limited by this constraint.
As a consequence, when using explicit PIC, one is very often forced to over-resolved
with respect to the physics of interest (the majority of electromagnetic processes in
plasmas occur at scales that are orders of magnitude bigger than λD).

During the development of this thesis, the explicit PIC code OSIRIS [74], [75]
has been employed to explore the propagation of ultra-relativistic beams into static
plasmas (Chapter 4). OSIRIS is a massively parallel, fully relativistic and fully object-
oriented PIC code. In order to advance the particles, the Boris pusher [76] has been
used. The code is electromagnetic, so only Ampere’s (Eq. (2.4)) and Faraday’s (Eq.
(2.5)) equations are used to advance the fields. The code implements a traditional
finite difference time domain scheme leveraging the Yee discretisation. In recent years,
it has been equipped also with a customised spectral solver, the so-called Fei algorithm
[77], [78]. When using this algorithm, instead of being solved in real space, Maxwell’s
equations are solved in Fourier space. Thus the solver is numerically dispersionless,
which means that it does not suffer from the numerical Cherenkov instability [77], [78].
As a consequence the solver is particularly useful when modelling ultra-relativistic
particle beams as done for the study which will be presented in Chapter 4.

2.4 Fully implicit method

The numerical constraints typical of the explicit PIC algorithm pose limitations
on the plasma spatial and temporal scales that can be modelled. These limitations
are a consequence of the fact that particles are advanced using frozen fields and
fields are computed using the current calculated freezing the particles [63]. A fully-
implicit approach reintroduces the coupling between particles and fields typical of
plasmas. According to this approach, an implicit discretisation in time for Maxwell’s
and motion equations is adopted. As a consequence, the severe stability constraints
that affect the explicit implementation of the PIC algorithm are overcome. However,
the implicit scheme requires the solution of a set of non-linearly coupled equations
[63]. This obviously increases the mathematical cost of the algorithm and, since
iterative methods must be adopted, could lead to convergence issues [79]. The semi-
implicit PIC scheme represents a good compromise in this sense. It avoids the severe
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constraints of the explicit PIC algorithm, but removes the complexity of the non-
linear coupling and reduces the computational cost per time step of the fully implicit
PIC algorithm [80].

2.5 Semi-implicit method: the Implicit Moment

Method

The computational cost of the fully implicit PIC method has become manageable
only in recent years thanks to the availability of larger and larger computational
resources and the progress in the mathematical development of non-linear solvers.
Thus, alternative approaches were developed mainly to simplify the non-linear
coupling between fields and particles introduced by the fully implicit method, while
still retaining the benefits of an implicit discretisation in time of the relevant equations
[63]. As a result, what are called semi-implicit PIC techniques were formulated.
The overarching idea behind the semi-implicit algorithm is to linearise the coupling
between particles and fields, so to obtain a coupled linear system of equations instead
of a full non-linear system. This concept has been introduced in both the Implicit
Moment Method [81] and the direct implicit method [82] with some variations.
Essentially, in these algorithms, the plasma response to the field changes over a time
step that goes into Maxwell’s equations is approximated. The rest of this section is
dedicated to describe the Implicit Moment Method and the non-relativistic PIC code
iPIC3D [79], predecessor of the code ECsim [80], [83]–[85] used to perform the studies
presented in Chapter 3.

The Implicit Moment Method implements non-relativistic discretised equations of
motion, which are expressed as follows [79]:

xn+1
p = xnp + ∆tv̄p, (2.20)

vn+1
p = vnp +

qp
mp

∆t

[
En+θ
p (x̄p) +

v̄p ×Bn
p (x̄p)

c

]
, (2.21)

where all quantities evaluated at n + θ are computed using the equation ξn+θ =
θξn+1 + (1 − θ)ξn, where θ = 0 implies an explicit scheme, and θ = 1 implies a fully
implicit scheme [63]. The quantities denoted with an overbar as v̄p and x̄p, represent
an average between the time steps n and n+ 1.

By employing the θ-scheme, the discretised Faraday and Ampere’s equations
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become:

∇g × En+θ = −1

c

Bn+1
g −Bn

g

∆t
, (2.22)

∇g ×Bn+θ =
1

c

En+1
g − En

g

∆t
+

4π

c
Jn+θ
g . (2.23)

Equations (2.22) and (2.23) are combined to obtain the following equation for En+θ:

En+θ = En
g + cθ∆t

(
∇×Bn

g −
4π

c
Jn+θ
g

)
− (cθ∆t)24π∇ρn+θ

g , (2.24)

where the charge density ρg and current density Jg need to be evaluated at n+θ. These
quantities, for each species α, are found via a Taylor expansion of the interpolation
function used to transfer information between the grid and particles and read:

ρn+θ
αg = ρnαg − θ∆t

∑
p

qpv̄p∇W (xg − xnp ) = ρnαg − θ∆t∇ ·
∑
p

qpv̄pW (xg − xnp ),

(2.25)

Jn+θ
αg = Ĵαg −

∆t

2
µαg · Eθ −

∆t

2
∇ · Π̂αg, (2.26)

the current and the pressure tensor are defined respectively as:

Ĵαg =
∑
p

qpv̂pW (xg − xnp ), (2.27)

Π̂αg =
∑
p

qpv̂pv̂pW (xg − xnp ). (2.28)

The current for each species is thus defined as:

Jn+θ
αg = Ĵαg − θ∆t∇ ·

∑
p

qpv̂pv̂pW (xg − xnp ) +
µαg · En+θ

4πθ∆t
, (2.29)

where v̂p = βnpvnp provides the velocity rotated by the magnetic field through the
matrix βnp defined as:

βnp =
1

1 + (Φα|Bn
p |)2

[
I + ΦαI×

Bn
p

c
+ Φ2

α

Bn
pB

n
p

c2

]
, (2.30)

with Φα = qp∆t/2mp [63]. The dielectric tensor µαg in Eq. (2.25) describes the impact
of the electric field on the plasma density and current [63] and reads:

µnαg = 4πθ∆tρn
∑
p

βnp . (2.31)
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The Taylor expansion used to express ρn+θ and Jn+θ leads to moment equations,
which provide a linear approximation of the particle response to the fields [84]. As a
result, the temporal cycle is similar to that implemented in an explicit PIC method,
albeit more complex [84] (see Fig. 2.3).

Figure 2.3: Diagram of the time cycle in a semi-implicit PIC technique. Through
the linearisation of moment equations, the current is estimated outside the loop. The
current may be roughly calculated in this way without moving the particles.

2.6 Energy Conserving Semi-Implicit Method

As a consequence of the linearisation introduced into Maxwell’s equations to
simplify the particle response to the fields, the Implicit Moment Method does not
conserve energy. This usually leads to an artificial numerical cooling of the plasma
that needs to be carefully monitored and assessed during simulations. In practice, the
way to reduce the impact of the numerical cooling translates into choosing spatial and
temporal steps sufficiently small with negative impact on the modelling of multiscale
problems [84].

The Energy Conserving Semi-Implicit Method, in short ECsim, was introduced to
remedy this issue.

In ECsim a new particle mover is used. According to this mover, the position of
the particles is advanced as in the DIM D1 [86] scheme, while their velocity according
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to the θ-scheme [81]:

xn+1/2
p = xn−1/2

p + ∆tvnp , (2.32)

vn+1
p = vnp +

qp
mp

∆t

[
En+θ
p (xn+1/2

p ) +
v̄p ×Bn

p (x
n+1/2
p )

c

]
, (2.33)

where electric and magnetic fields at the position x
n+1/2
p are known. The term v̄p =

(vn+1
p + vnp/2) is the averaged particle velocity. If one rewrites the velocity v̄p that

appears in Eq.(2.33) as:
v̄p = v̂p + ΦαÊp, (2.34)

where the hatted quantities have been rotated with the rotation matrix βnp provided

by Eq. (2.30) (e.g. Êp = βnpEn
p and v̂p = βnpvn+θ

p ) then the source term Jn+1/2
g = Jg =∑

α Jgα in Eq. (2.23) is readily found as:

J̄αg =
1

Vg

∑
p

qpv̄pW (xn+1/2
p − xg) = Ĵαg +

Φα

Vg

∑
p

qpβ
n
pEn+θ

p Wpg. (2.35)

Here, Ĵαg = 1
Vg

∑
p qpv̂pWpg and Wpg = W (x

n+1/2
p − xg). The current term is

normalized to the cell volume Vg. Expressing En+θ
p as a function of the electric field

evaluated on the grid, Eq. (2.35) becomes:

J̄αg = Ĵαg +
Φα

Vg

∑
g′

(∑
p

qpβ
n
pWpgWpg′

)
En+θ
g′ = Ĵαg +

Φα

Vg

∑
g′

M ik
α,gg′E

n+θ
g′ , (2.36)

where the mass matrices definition M ik
α,gg′ =

∑
p qpβ

ik,n
p WpgWpg′ [87] has been

introduced. Note that here, the subscript g refers to the index of the cell where the
mass matrix is computed, g′ refers to the index of the cell where the particle is located.
The indexes i and k stand for the Cartesian vector components e.g. i, k = 1, 2, 3. For
each grid node, there are 27 mass matrices in 3D. However, due to symmetry only 14
mass matrices are computed at each time step [80].

The new mover (Eqs. (2.32) and (2.33)) and the exact formulation for the current
density that can be derived with it (Eq. (2.36)) have the striking consequence to
ensure perfect energy conservation in the code [83]. Thus, the artificial cooling typical
of the Implicit Moment Method is avoided. This means that spatial and temporal
resolutions of simulations can be chosen only based on the physics of interest, hence
allowing for modelling multiscale plasma problems at a limited computational cost
with respect to fully implicit methods.
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Chapter 3

The current filamentation
instability on ion time scales

3.1 Introduction

This chapter focuses on studying the growth of the CFI in non-relativistic electron-
ion plasma flows that are counterstreaming.

The CFI arises from an infinitesimal magnetic field perturbation, leading to the
formation of current filaments that amplify the magnetic field. While the linear phase
of the instability has been extensively studied (see [88] and references therein), the
long-term evolution of the fields on ion time scales and the mechanism behind the
instability saturation remain largely unexplored.

This study utilises a kinetic approach to provide a statistical description of the
plasma and investigates the non-linear dynamics of the CFI using two-dimensional
kinetic simulations. The results of this work highlight the transition from an electron-
driven phase to an ion-driven phase and examine the merging of current filaments and
the mechanism of instability saturation. Understanding the non-linear phase of the
instability and the evolution of fields on large spatial and long temporal scales is
essential to gain deeper insight into astrophysical and laboratory processes, such as
shock formation.

In the following chapter, the statistical description of purely transverse elec-
tromagnetic waves in plasma was employed to derive the CFI dispersion relation.
Two-dimensional kinetic simulations were then conducted using the ECsim code to
investigate the non-linear dynamics of the instability on ion time scales for hundreds
of ion plasma periods. The main PIC simulation results were analysed, with a focus
on the shift from the electron-driven phase to the ion-driven phase. A detailed study
was conducted on the current filaments generated by the instability, including an
analysis of their merging trend. The merging rate deduced from the study, along with
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Chapter 3. The current filamentation instability on ion time scales

the analysed instability saturation mechanism, contributes to a better understanding
of the system dynamics.

3.2 Derivation of the analytical dispersion relation

In the current section, the analytical description of the linear phase of the purely
transverse ion CFI is presented. This can be studied by linearising the Vlasov equation
(Eq. (2.1)) and Faraday and Ampere’s equations (Eqs. (2.4) and (2.5)). Physical
quantities, which are dependent on space and time, can be expressed in the following
form:

Φ(x, t) = Φ0 + Φ1 exp (ik · x− ωt), (3.1)

where 0 and 1 identify the equilibrium and perturbative states, respectively and
|Φ1| � |Φ0| as required by the perturbative approach. By introducing Eq. (3.1)
into Eq. (2.1) and neglecting higher order terms, an expression for the perturbed
distribution function for the species α is obtained:

fα1 =
qα
mα

(
E1 + v

c
×B1

)
· ∂fα0

∂v

i(ω − k · v)
. (3.2)

Using the same technique, the linearised Faraday and Ampere’s Eqs. (2.4) and (2.5)
are obtained:

ik× E1 =
1

c
iωB1, (3.3)

ik×B1 =
4π

c
J1 −

i

c
ωE1. (3.4)

Combining Eqs. (3.3) and (3.4) leads to:

[k× (k× E1)] +
4π

c2
iωJ1 +

ω2

c2
E1 = 0, (3.5)

where the first order perturbation of the current density reads:

J1 =
∑
α

qαnα

∫
d3vvfα1 = σ · E1. (3.6)

Here, σ is the conductivity tensor and its components are given by:

σij = −i
∑
α

nαq
2
α

mα

∫ ∞
−∞

d3v
vi

(ω − k · v)

[(
1− v · k

ω

)
∂fα0

∂vj
+

(
k

ω
· ∂fα0

∂v

)
vj

]
. (3.7)
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By utilising the (A× (B×C)) = (A ·C)B− (A ·B)C identity vector the first term
on the left-hand side of Eq. (3.5) can be written as:

[k× (k× E1)] = (k · E1)k− k2E1. (3.8)

Introducing Eq. (3.6) to express J1 and Eq. (3.8) into Eq. (3.6), the following is
obtained:

(k · E1) k− k2E1 +
4π

c2
iωσ · E1 +

ω2

c2
E1 = 0, (3.9)

whose generic ith component reads:(∑
j

kjEj1

)
ki − k2Ei1 +

4π

c2
iω
∑
j

σijEj1 +
ω2

c2
Ei1 = 0. (3.10)

Equation (3.10) can be rewritten as:∑
j

(
kikj − k2δij +

ω2

c2
δij +

4π

c2
iωσij

)
Ej1 =

∑
j

ΛijEj1 = 0. (3.11)

Equation (3.11) represents a system of 3 equations (one for each i = 1, 2, 3 cartesian
component). A non-trivial solution can be found only for:

det(Λij) = 0. (3.12)

In order to solve Eq. (3.12), it is useful to reformulate the expression for Λij in terms
of the dielectric tensor εij:

Λij = kikj − k2δij +
ω2

c2
εij, (3.13)

where εij = δij + 4πi
ω
σij, or:

εij = δij +
∑
α

ω2
pα

ω

∫ ∞
−∞

d3v
vi

(ω − k · v)

[(
1− v · k

ω

)
∂fα0

∂vj
+

(
k

ω
· ∂fα0

∂v

)
vj

]
. (3.14)

The solution of Eq.(3.12) provides the dispersion relation of all the waves allowed
in the system. Assuming real wavenumber k, the frequency ω could be complex:
ω = ωR + iΓ. In this case, Γ < 0, would correspond to an exponentially damped
solution, while Γ > 0 would give an exponentially growing mode, i.e. an instability.
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3.3 Weibel or Current Filamentation Instability

The Weibel instability [10] is a purely growing electromagnetic mode. The initial
condition to trigger the Weibel instability can be produced by a strong temperature
anisotropy (the scenario originally envisioned by [10]) or by counterstreaming flows.
In this latter case, the instability is also known as CFI. The instability transfers
energy from the particles to the magnetic field. Additionally, during this energy
transfer process, the particle distribution function, which describes how particles are
distributed in velocity space within the plasma, becomes more isotropic.

The physical picture of the Weibel instability in the presence of counterstreaming
electron beams in plasmas was given by B. D. Fried [11]. To understand the physical
mechanism of the Weibel instability, it is useful to consider a system with fixed ions
and counterstreaming electrons moving parallel and anti-parallel to the x axis (see Fig.
3.1). Initially, no net currents are present because the electrons streaming in different
directions are equally distributed in space. In the presence of a small perturbation
of the magnetic field of the form B = ẑBz cos(kyy), arising from noise, the electrons
moving rightwards are pushed into layer I, while those moving leftwards are pushed
into layer II. The magnetic field deflects electrons thus creating micro-currents. These
micro-currents in turn increase the initial magnetic fluctuation. In the presence of two
non-relativistic electron flows this field grows with a rate Γ = ωpve/c where ve is the
electron bulk speed [3].

The Weibel instability is thought to be significant in a variety of astrophysical
plasmas, including galactic cosmic settings, SNRs, and GRBs sources, where it is
considered the source of the intense magnetic fields necessary to explain the level of
observed radiation [1], [3], [9].

3.4 Linear phase of the ion Weibel instability

In the following section, the CFI dispersion relation is obtained for symmetric
counterstreaming electron and ion flows that interact along the x direction. Both
electrons and ions can be described at equilibrium using a drifting Maxwellian
distribution:

fα0 =
mα

2π
√
Tα,xTα,y

exp

(
− mα(vx − vα)2

2Tα,x
−
mαv

2
y

2Tα,y

)
, (3.15)

where the subscript α = e, i has been used to indicate electrons (e) and ions (i),
respectively. In Eq. (3.15), vα represents the drift velocity and Tα,x and Tα,y the
temperature in the longitudinal and in-plane transverse direction, respectively. These
temperatures are expressed in energy units. A case Tα,y = Tα,x and Te = Ti was
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Figure 3.1: Physical picture of Weibel-like instabilities (Weibel instability and CFI).
The direction of streaming (for the filamentation instability) or greater thermal
velocities (for the Weibel Instability) is x. The red electrons experience negative
magnetic field fluctuations, the blue electrons positive magnetic field fuctuations.
The resulting motion is marked by the dashed arrows, the areas of particle clustering
are indicated as I and II. Adapted from [3].

considered. The counterstreaming plasmas have initial density ne = ni = n0/2 and
drift velocity ve = vi = ±vx̂.

Considering the distribution function expressed by Eq. (3.15) and transverse
modes only (e.g. k = (0, ky, 0)), Eq. (3.12) becomes:

ω2εxx − k2
yc

2 = 0, (3.16)

with εxx given by:

εxx(ky, ω) = 1 +
∑
α

ω2
pα

ω

∫
d3v

(
vx

ω − kyvy

)[(
1− kyvy

ω

)
∂fα0

∂vx
+
kyvx
ω

∂fα0

∂vy

]
. (3.17)

Using the distribution function Eq. (3.15), then Eq. (3.17) becomes:

εxx(ky, ω) = 1 +
∑
α

ω2
pα

ω2

[
−1 + Z(ξα)

Tα,x
Tα,y

+
mα

Tα,y
v2
αZ(ξα)

]
, (3.18)
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where the plasma dispersion function Z(ξ) [89] defined as

Z(ξ) =
1√
π

∫ ∞
0

e−x
2

x− ξ
dx (3.19)

has been introduced. Considering only purely growing modes (ω = iΓ, Γ > 0), then
Eq.(3.16) can be written as [90]:

Γ2 + c2k2
y +

∑
α

ω2
pα −

∑
α

ω2
pα(aα + 1)< [1 + ξαZ(ξα)] = 0, (3.20)

where ξα = i Γ
ky

√
mα

2Tα,y
, < identifies the real part and aα denotes the anisotropy ratio

defined as:

aα =
mαv

2
α + Tα,x
Tα,y

− 1. (3.21)

By solving Eq. (3.20), the growth rate of the CFI can be found as a function of the
wavenumber k.

3.5 Comparison between simulations and linear

theory

Here, a comparison will be made between the outcomes of linear theory and the
simulation results of the CFI. This step is crucial to validate the numerical code ECsim
which will be used for exploring the non-linear evolution of the CFI.

The theoretical dispersion relation Eq. (3.20) is numerically solved to find Γ vs
k. This is done by using the in-built Mathematica function FindRoot [91]. In order
to compute the growth rate of the purely ionic CFI, electrons will be considered fully
isotropic.

The first step to solve Eq. (3.20) with Mathematica consists of expressing the
plasma dispersion function (Eq. (3.19)) in terms of the Dawson function:

Dawson(ξ) = e−ξ
2

∫ ξ

0

et
2

dt. (3.22)

By using Eq. (3.22), Eq. (3.19) can be written as:

Z(ξ) = i
√
πe−ξ

2 − 2Dawson(ξ), (3.23)

and the dispersion relation for the CFI (Eq. (3.20)) becomes:

k̂2
y + Γ̂2 + 1− (âe + 1)<(1 + ξ̂eZ(ξ̂e)) +

me

mi

− me

mi

(âi + 1)<(1 + ξ̂iZ(ξ̂i)) = 0. (3.24)
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Here, hatted quantities identify normalised variables according to:

Γ̂ =
Γ

ωpi

, k̂y =
kyc

ωpi

, T̂α =
Tα
mec2

, v̂α =
vα
c
, (3.25)

âi =
(mi/me)v̂

2
i + T̂i,x

T̂i,y
− 1, âe =

v̂2
e + T̂e,x

T̂e,y
− 1, (3.26)

and

ξ̂i = i

√
(mi/me)

2T̂i,y

Γ̂

k̂y
, ξ̂e = i

√
1

2Te,y

Γ̂

k̂y
. (3.27)

As a first step, the growth rate provided by the solution of Eq. (3.24) has been
compared with the results of a two-dimensional (2D) simulation.

In this simulation, two counterstreaming plasmas composed of electrons and ions
with mass ratio mi/me = 100 have been initialised. At this stage, singly charged
ions are employed, with a reduced mass ratio to alleviate the computational cost.
All species are distributed according to a drifting Maxwellian with temperature
Te,xy = Ti,xy = 0.01mec

2 and drift velocity ve = vi = ±0.2 c. After taking these
latter parameters into account, the resulting anisotropies are ai = 401 and ae = 4 (see
Eq. (3.27)). The temperature and velocity of the particles under consideration cause
the high value of ion anisotropy. A high value of ion anisotropy is needed to drive
the current filamentation instability significantly. The large anisotropy ensures that
the instability can be triggered and grow rapidly, affecting the plasma dynamics. The
longitudinal and transverse sizes of the 2D simulation box was choosen to be Lx =
Ly = 10.44 di, where di = c/ωpi is the ion skin depth. The box has been discretised
with Nx = Ny = 1044 cells for a resolution of ∆x = ∆y = λD = 0.01 di = 0.1 de,
where de = c/ωpe is the electron skin depth. A time resolution ∆t = 0.0069ω−1

pi has

been adopted and the simulation has run up to tend = 59.43ω−1
pi = 5943ω−1

pe . In
this simulation 100 particles-per-cell per species were employed. Periodic boundary
conditions have been used for fields and particles in both directions. It could be
observed that there might be an excessive level of detail in this simulation, and that
ECsim may not require such fine resolution of quantities [83], [84]. This observation
relates to the computational resolution of space and time, pointing out that the
ECsim scheme doesn’t exhibit the same strict correlation between quantities as an
explicit system does. Consequently, it is possible to remodel the values to reduce the
computational cost while preserving the underlying physics.

In the simulation, the instability develops starting from the numerical noise due
to the granularity of the particles. As a result of the instability, the magnetic field
grows along the out-of-plane transverse direction z. Since the instability has not been
seeded, all the modes that the simulation box can accommodate are allowed to grow.
Indeed a variety of waves is observed to grow on different timescales.
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Figure 3.2: Theoretical growth rate of the instability (computed solving numerically
Eq. (3.24)) as a function of the wavenumber for the following plasma parameters
mi/me = 100, Ti,xy = 0.01mec

2, vi = ±0.2 c, ai = 401 and ae = 0. The theoretical
maximum growth rate ΓTh = 0.13ωpi occurs for k = 7.50 d−1

i (a). Evolution in time
of the Fourier transform of Bz for k = 7.50 d−1

i (b). The red dashed line corresponds
to the numerical growth rate ΓNum = 0.12ωpi.

The theoretical growth rate resulting from the dispersion relation (Eq. (3.24))
is shown in Fig. 3.2 (a). The maximum growth rate Γ = 0.13ωpi is associated
to a wavenumber k = 7.50 d−1

i and wavelength λ = 2π
k

= 0.838 di. This means
that the simulation box is large enough to roughly contain 13 wavelengths of the
fastest growing mode. The time evolution of the Fourier transform of Bz as provided
from the numerical simulation is reported in Fig. 3.2 (b). The mode with k =
7.50 d−1

i , corresponding to the fastest growing mode indicated by linear theory has
been selected. In the simulation, the magnetic field develops on electron-time scales
first, then on ion-time scales. By analysing the slope of the curve in Fig. 3.2 (b),
it was determined that the numerical growth rate, ΓNum = 0.13ωpi, is in excellent
agreement with the theoretical value of ΓTh = 0.12ωpi. Thus this test confirms that
ECsim can appropriately model the CFI.

3.6 Convergence study

Before performing larger simulations, it was essential to determine the appropriate
numerical resolution in order to balance computational costs and ensure accurate re-
sults. The convergence study was crucial to determine the appropriate computational
parameters for investigating the non-linear phase of the CFI on ion time scales. The
focus of this study was on spatial scale, temporal resolution, and particles-per-cell
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settings.
The convergence study employed the same simulation setup considered in Section

3.5. In each simulation numerical parameters have been varied to understand their
impact on the numerical results and verify that coarser resolutions still provide
meaningful physical results. To ascertain this last point, the temporal evolution of
the transverse magnetic field energy density εBz =

∫
B2
zdV/8π of all k wavenumber

spectrum. The magnetic field topology at saturation time resulting from different
runs were compared.

Spatial resolution

The effect of the spatial resolution was analysed by gradually increasing ∆x and
∆y. A coarser resolution allows for decreasing the number of cells used to discretised
the simulation domain with the advantage of decreasing the computational cost of
the simulation.

In all simulations the instability grows from numerical noise. Since the noise
depends on the total number of particles N with a proportionality of 1√

N
, for this

study on the impact of the spatial resolution, the total number of particles in the
simulation has been kept constant. This means that when larger values of ∆x and ∆y
were selected the number of particles-per-cell was increased. Increasing grid resolution
significantly increases computational time because there are more grid cells to process.
This effect is greater than simply increasing the number of particles. While doubling
the number of particles doubles the time, increasing the grid resolution can increase
the time by much more than double due to the higher complexity of calculations.

Figure 3.3 (a) reports the evolution in time of the Bz energy for different values
of spatial resolution. The level of resolution has been gradually reduced. While
the most detailed resolution (∆x = ∆y = 0.01 di = 0.1 de) was enough to resolve
λD, the coarsest resolution is ∆x = ∆y = 12λD. However, Fig. 3.3 (a) indicates
that the growth rate of the instability both on electron time scales (t . 10ω−1

pi ) and

ion time scales (17ω−1
pi . t . 38ω−1

pi ) is well reproduced in all the cases analysed.
Indeed the slope of the curves, which indicate the growth rate of the instability,
is nearly the same for t & 10ω−1

pi and for 17ω−1
pi . t . 38ω−1

pi . Figure 3.3 (a)
also reveals that the level of magnetic field at saturation is well reproduced by all
the resolutions. Figures 3.3 (b) and (c) show the snapshots of the topology of the
magnetic field Bz at saturation time for the highest (∆x = ∆y = 0.01 di) and lowest
(∆x = ∆y = 0.12 di) spatial resolution, respectively. These plots also indicate that
the field amplitude at saturation is equivalent for the smallest and largest cell size
considered, thus confirming that a resolution in this range can still reproduce the
physics of the non-linear phase of the CFI correctly.

By looking carefully at the evolution of energy and the field topology, it was
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Figure 3.3: Evolution in time of the out-of-plane magnetic field energy for ∆x =
∆y = 0.01 (magenta), 0.04 (red), 0.08 (blue) and 0.12 (brown) di (a). Out-of-plane
transverse magnetic field at saturation for ∆x = ∆y = 0.01 di (b) and ∆x = ∆y =
0.12 di (c).

decided that a spatial grid with ∆x = ∆y = 0.06 di (not shown in Fig. 3.3) provides
the most accurate results. This resolution stands out as optimal because it lies midway
between the resolutions of 0.01 di and 0.12 di, where there is no significant difference
in the physics observed. Additionally, it is computationally more efficient compared
to ∆x = ∆y = 0.01 di, considering that computational costs increase with system
resolution. It is important to emphasize that ∆x = ∆y = 0.06 di correspond to
∆x = ∆y = 6λD. This largely exceeds the stability condition dictated by Eq. (2.19).
Therefore, if such a resolution was to be used with an explicit algorithm, it would
quickly leads to the development of numerical instabilities such as the finite grid
instability.

Temporal resolution

Another parameter scan has been dedicated to identifying the best temporal
resolution. For the analysis of ∆t, the same plasma parameters as those illustrated
in Section 3.5 were used. A box size of 10.44 × 10.44 d2

i with grid cell size
∆x = ∆y = 0.06 di as determined in the scan about the spatial resolution has been
employed. The simulations explored the effect of increasingly larger time steps, with
the aim of decreasing the number of temporal cycles required to attain saturation. In
turn, a smaller number of temporal cycles allows for saving computing resources.

In the first simulation, a time step of ∆t = 0.06ω−1
pi was used, considering the CFL

condition (2.17). It is well known that the semi-implicit approach utilised in ECsim
allows for the relaxation of this constraint [83]. The goal of this part is to determine
how far this may be pushed while still producing accurate findings.
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Figure 3.4 (a) reports the evolution in time of the magnetic field energy Bz in the
simulation box for progressively larger values of ∆t. All the curves follow extremely
similar trends in the linear and non-linear regimes when the magnetic field reaches
the maximum value. Snapshots of the out-of-plane magnetic field at saturation (t ≈
60ω−1

pi ) for various values of ∆t are presented in Figs. 3.4 (b) and (c). Studying the
filamentary structure of Bz at saturation time reveals a comparable intensity for all
∆t. In virtue of this analysis, it has been decided that ∆t = 0.08ω−1

pi offered the best
compromise in term of correctness of the simulation and its duration. Considering
that future simulations will run for longer periods, the largest time step was not
selected to prevent a significant increase in computational time. Notably, ECsim can
accurately simulate the physics with a time step ∆t that is 30% larger than the value
required by the CFL condition (Eq. (2.17)). This is quite remarkable because when
the CFL condition in not satisfied, in an explicit PIC simulation becomes quickly
unstable. This means that when employing explicit PIC codes, one is restricted to
selecting extremely small ∆t, resulting in many more computational iterations and
therefore raising the total cost of the simulation in terms of CPU time. While this
is not a problem when studying electron physics, it becomes a significant issue when
studying ion dynamics.
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Figure 3.4: Same as Fig. 3.3 (a), but for ∆t = 0.04 (black), 0.06 (blue), 0.08 (red),
0.16 (magenta), 0.24 (orange) and 0.32 (grey) ω−1

pi (a). Same as Fig. 3.3 (b), but for

∆t = 0.06 (b), 0.08 (c), 0.24 (d) and 0.32 (e) ω−1
pi .

36



Chapter 3. The current filamentation instability on ion time scales

Particles-per-cell

The last parameter to be examined is the number of particles-per-cell.
The computational cost of a simulation strongly depends on the number of

particles used. The number of operations to be performed increases with the number of
particles. Furthermore, ECsim requires the generation and storage of mass matrices
for each particle, thus further increasing the number of CPU hours and memory
requirements whenever the number of particles-per-cell employed increases. As a
result, it is crucial to keep the number of particles-per-cell as low as possible, but at
the same time it is important to ensure that numerical results are physical and not
concealed by numerical noise. This is particular relevant for ECsim, which employs
only first order splines to interpolate particles to the grid.

In order to identify the lowest number of particles-per-cell, which still ensure
consistent results, a series of simulations with a progressively increasing number
of particles has been performed. In this parameter scan, grid size and temporal
resolution were fixed to the best values identified in the previous convergence studies
(∆x = ∆y = 0.06 di and ∆t = 0.08ω−1

pi ). The result of this set of simulations can
be seen in Fig. 3.5 (a), which reports the evolution of the magnetic field energy for
simulations employing a different number of particles-per-cell. The first thing to note
is that the curves are very similar regardless of the number of particles-per-cell. In the
ion phase of the instability (13ω−1

pi . t . 31ω−1
pi ), the growth rate is approximately

Γ/ωpi = 0.121 for 225 particles per cell and 0.119 for 3600 particles per cell. These
values are very similar. When the number of particles per cell increases from 225 to
3600, the growth rate decreases by about 1.65%.

Although the reduction in particles-per-cell values does not have a significant
impact on the total magnetic field energy, the same cannot be said for the features
within the field. Indeed the transverse magnetic filed at saturation shows variation
depending on the number of particles-per-cell, as shown in Figs. 3.5 (b) and (c). The
most evident variation of the filamentary structure is evident in the 225 particles-per-
cell case (Fig. 3.5 (b)), where the central negative field filament has become split
and twisted, resulting in the weakening of the magnetic field in the centre of the
simulation box. A particle-per-cell case of 3600 is considered the most suitable choice
for simulating the ion CFI.

3.7 Non-linear phase of the ion current filamenta-

tion instability

This section focuses on the long-time non-linear evolution of the CFI on ion time
scales. To explore the non-linear phase of the instability, simulations were performed
using the same setup described in Section (3.5), but considering temperatures Te =
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Figure 3.5: Same as Fig. 3.3, but for particles-per-cell 225 (blue), 900 (red), 2025
(brown) and 3600 (black) per species (a). Same as Fig. 3.3, but for 225 (b) and 3600
(c) particles-per-cell per species.

Ti = 0.0025mec
2, drift velocities v = ve = vi in the range [0.044− 0.1] c and mi/me

in the range [200− 1000]. The thermal velocities are given by vth,e =
√
Te/me for

electrons and vth,i =
√
Ti/mi for ions. The typical simulation box had size Lx = Ly =

26λ = 21.76 di with the mesh size ∆x = ∆y = 6λD = 0.06 di. The temporal step
was 0.056ω−1

pi and particles were pushed for more than 80000 iterations. Each cell
contained 3600 macro-particles per species.

The results of a simulation with mi/me = 1000 and v = ±0.044 c are shown
first. The ion-to-electron mass ratio is sufficiently close to the real proton-to-electron
mass ratio to allow for correctly observing scale separation effects. Figure 3.6 shows
the temporal evolution of the normalised out-of-plane magnetic and longitudinal and
transverse in-plane electric field energies in the CGS system εB =

∫
B2
zdV/8πεk and

εE =
∫
E2
x,ydV/8πεk where εk represents the initial total kinetic energy in the system

(me +mi)v
2LxLy.

This normalised quantity is known as an equipartition parameters and illustrates
how much kinetic energy is converted into electromagnetic energy.

The magnetic field equipartition parameter clearly indicates that in the case of
counterstreaming electrons and ions, the instability evolves according to three different
phases. At first, the magnetic field energy has a very rapid growth until ' 50ω−1

pi ,
mainly sustained by the electrons. Indeed, comparing the evolution of the normalised
energy in Bz in this simulation with the same quantity but in a simulation with
counterpropagating electrons only and ions forming only an isotropic neutralising
background, the curves perfectly overlap until t ' 50ω−1

pi . This confirms that the

instability is mainly fuelled by the electrons in this phase. For t & 50ω−1
pi , the energy

in the magnetic field remains nearly constant for about 20ω−1
pi . After that, it starts
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growing again exponentially until t ' 320ω−1
pi and saturates at t ' 720ω−1

pi , after
which it remains nearly constant until the end of the simulation. This dynamics is
completely different from the case where ions are not streaming. Here, the magnetic
field energy starts decaying right after t ' 50ω−1

pi .
The second exponential growth phase in the electron-ion simulation is sustained

by the ions, which begin to feel the effect of the magnetic field and participate in the
instability right after the electron phase. The energy of the flow is mainly converted
into magnetic field energy. However, the energies of the longitudinal (Ex) and in-
plane transverse (Ey) electric field components also increase with time. The electric
field component Ey is mainly due to charge separation. The magnetic field drives
particles with different charges into different filaments creating regions that are richer
in electrons or ions [92].
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Figure 3.6: Temporal evolution of Bz energy normalised to the total initial
kinetic energy for a simulation with counterstreaming electrons and ions (solid) and
counterstreaming electrons solely (dashed). The inset illustrates the time evolution
of Ex (blue) and Ey (red) energies in the simulation with counterstreaming electrons
and ions. In this simulation, mi/me = 1000, Ti = Te = 0.0025mec

2 and v = 0.044 c.

Figure 3.7 shows the snapshots of the out-of-plane magnetic field Bz generated by
the CFI. The magnetic field exhibits a filamentary structure due to the micro-currents
generated by the particles. Figure 3.7 (a) shows the out-of-plane magnetic field at
t = 44.80ω−1

pi , where the electron Weibel instability generates small filaments with
weak intensity. Following the saturation of the electron Weibel instability, the ions
begin to respond to the instability, resulting in a further growth of the magnetic field
(as observed in Fig. 3.6 for 80ω−1

pi . t . 200ω−1
pi ). Almost at the end of the CFI

linear phase, t = 224ω−1
pi , as illustrated in Fig. 3.7 (b), the field is more intense and

the filaments weakly interact.
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the merging rate growth is ∝ t.

As time progresses, the intensity of the magnetic field keeps increasing until t
' 400ω−1

pi , when the instability saturates. In the meantime, also the wavelength
increases. This process continues even after the saturation of the instability (t &
1120ω−1

pi ), when the magnetic field stops growing. At t = 1120ω−1
pi near the end of

the simulation (Fig. 3.7 (c)), filaments are much larger and the average wavelength
in the box increases. During the non-linear phase of the instability, the magnetic
filaments become more and more tilted as they attract each other and merge. This
gives rise to longitudinal wave modes, which leads to the growth of the Ex energy.

The magnetic field filaments generated by the instability evolve towards larger
spatial scales during the simulation. This evolution is driven by the attraction and
merging of filaments with opposite polarity. These filaments carry currents and induce

40



Chapter 3. The current filamentation instability on ion time scales

magnetic fields around them. As the simulation progresses, these filaments start
to interact with each other. When filaments with opposite polarity come close to
each other, their magnetic fields interact. This interaction can lead to a process
of magnetic reconnection where the magnetic field lines break and then reconnect,
causing a rearrangement of the magnetic field and the merging of adjacent filaments.
These processes start during the linear phase of the instability and continue in the non-
linear phase and beyond the point of maximum magnetic field energy [4], [93], [94].
Also the kink instability can contribute significantly to the coalescence of magnetic
filaments and the formation of large-scale magnetic structures [95], [96]. However,
this seems to mainly occur in 3D simulations, where modes in the third direction can
develop. The merging process of filaments can be observed in Fig. 3.8, where the
temporal evolution of the instability wavelength λ is shown together with a power
law fit to determine its rate of variation. The averaged wavelength λ was determined
using the formula λ = 2π/k where k represents the wavenumber derived from the
power spectrum of the magnetic field component. The power-law fit for t & 400ω−1

pi

in the non-linear phase of the instability indicates that the merging rate is ∝ tβ with
β = 1.0. Previous simulations and theoretical models identify a similar power law
for the evolution of the correlation length [3], [4]. However, according to these works,
β ≈ 0.7. The slightly slower rate with respect to the simulations of this thesis is
probably due to the fact that previous works focused on relativistic regimes. In this
latter case, due to the higher flow velocity, particles are more difficult for the field to
be bent and so the merging process is slower.

As mentioned before, the instability grows at the expense of the particle flows. The
free energy of the particles is converted into magnetic field energy causing the growth
of the out-of-plane component of the magnetic field in the simulation (see Fig. 3.7).
In turn, the field acts on the particles modifying their distribution. Figure 3.9 depicts
this phenomenon and shows the phase space of electrons and ions initially flowing
from left to right. At t = 0, both species exhibit a drifting Maxwellian distribution,
as illustrated in Fig. 3.9 (a) and (b). During the electron instability phase, the
distribution of electrons undergoes modifications, while the ions remain unaffected.
Figure 3.9 (c) depicts this change, which results from the bending of the electrons by
the magnetic field. This bending converts their drift velocity into heating and leads
to the presence of non-Maxwellian features in their phase space [97]–[99]. During the
electron instability, the phase space of ions does not undergo any significant change
as shown in Fig. 3.9 (d). However, when the magnetic field strength becomes strong
enough to deflect the ions at t & 200ω−1

pi , their distribution also starts to display
phase space modification. As shown in Fig. 3.9 (f), the parallel drift velocity of the
ions is transformed mainly into perpendicular heating as a result of this response.
The phase space area occupied by the electrons increases throughout the ion phase
which means that electron continue to heat up (Fig. 3.9 (e)). Figures 3.9 (g) and (h)
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display the phase space at t = 1120ω−1
pi for the electron and ion species, respectively.

The ion phase space exhibits strong non-Maxwellian features, indicating significant
deviations from the initial drifting Maxwellian distribution. In contrast, the electron
distribution appears to be thermalised and has returned to a Maxwellian form. By
looking at Fig. 3.9, it thus becomes evident that ions provide the free energy for the
instability once the electrons have been thermalised [100].
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Figure 3.10: Evolution of the electron drift velocity (a), electron thermal speed
along x (brown) and y (red) (b), electron anisotropy (c) and inverse electron Larmor
radius (d). Solid lines represent results obtained modelling counterstreaming plasmas
composed of electrons and ions, while dashed lines are results obtained considering
counterstreaming electrons only. The same simulation setup as Fig. (3.6) has been
considered.

The analysis of the evolution of some characteristics bulk parameters in the
simulation confirms and reinforces the findings of Fig. 3.9. The electron drift velocity
averaged over the simulation box, reported in Fig. 3.10 (a), is observed to rapidly
decrease during the first phase of the instability where the magnetic field grows on
electron time-scales (t � 50ω−1

pi ). When the electron instability reaches saturation

(t ' 80ω−1
pi ), electrons still have a bulk velocity different than 0. Their velocity keeps

decreasing during the ion phase of the instability (t & 100ω−1
pi ), but at a slower rate.
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At t ' 400ω−1
pi , when the magnetic field saturates, the electrons have lost their drift

velocity. At this point, the bulk velocity is 0 and stays like this until the end of the
simulation. It is interesting to compare this trend with the evolution of the electron
drift velocity in a simulation with counterstreming electrons only. In this latter case,
the drift velocity decreases at the same rate until t ≈ 80ω−1

pi , where electron CFI
reaches saturation. However, while in the simulation where ions participate to the
instability, the electron bulk velocity eventually becomes 0, in this simulation, it keeps
decreasing but very slowly and after 80 ion plasma periods, their bulk velocity is still
considerable. This implies that the presence of drifting ions further enhances the
electron slow-down process. This drift velocity is converted into electron heating.
Both temperatures along x and y directions are observed to increase during the
simulation (Fig. 3.10 (b)). It is interesting to notice that initially vthe,y increases
at a higher rate with respect to vthe,x. When the magnetic field reaches the first
local maximum at t ' 80ω−1

pi , vthe,x also seems to saturate. It then starts to increase

again during the non-linear phase of the ion CFI (t & 320ω−1
pi ). The thermal velocity

along y increases at a slightly slower rate after the magnetic field reaches the local
maximum and its growth seems to saturate when the ion CFI enters in its non-linear
phase. However, after t ' 320ω−1

pi , vthe,y starts again to increase. Figure 3.10 (b)
thus indicates that electrons keep getting heated even during the non-linear phase of
the instability when their drift velocity approaches 0. In this phase their temperature
appears to increase linearly with time. This picture contrasts with the results obtained
from the electron only simulation, where both vthe,x and vthe,y increase only during
the linear phase of the instability. The presence of ions impacts the behaviour of
the plasma system. The ions play a role in dragging along the process of electron
heating. By altering the structure of the magnetic field, ions influence the heating
of electron. Combining ve, vthe,x and vthe,y as defined by Eq. (3.21), the evolution
of the electron anisotropy averaged over the simulation box can be computed. This
is reported in Fig. 3.10 (c). In the linear regime of the electron scale instability,
the anisotropy decreases abruptly. It reverses sign for 160ω−1

pi . t . 320ω−1
pi during

the ion CFI. The change in sign indicates that the temperature along the y axis
exceeds the combined temperature and velocity along the x axis. Consequently, this
change substantially alters the anisotropy direction, leading to the predominance of
CFI growth with kx over ky. It then increases and becomes approximately 0 during
the non-linear phase of the instability. Also this parameter follows a different trend in
the case of counterstreaming electrons only. The electron anisotropy decreases with
the same rate as in the simulation with streaming electrons and ions until t ≈ 80ω−1

pi ,
when the electron scale instability saturates. Then it slowly approaches 0. The
evolution of the inverse electron Larmor radius defined as r−1

L,e = e|Bz |
mecve

, where ve is
the drift electron speed, is also shown in Fig. 3.10 (d). The evolution of this quantity
is characterised by an exponential growth with two different growth rates during the
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linear phase of the electron and ion instabilities. After the instability on ion time
scale saturates, this value remains nearly constant. The ratio rL,e/λ = 0.002, where
λ is provided by Fig. (3.8), being significantly less than 1 indicates that electrons are
fully trapped within the magnetic field filaments at the end of the simulation.
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Figure 3.11: Evolution of the ion drift velocity (a), ion thermal speed along x (brown)
and y (red) (d), ion anisotropy (c) and inverse ion Larmor radius (d). The red dashed
line in (c) represents the rate of decrease of the ion anisotropy. The same simulation
setup as Fig. (3.6) has been considered.

The ion bulk parameters are reported in Fig. 3.11. In particular Fig. 3.11 (a)
shows the evolution in time of the drift velocity of the ions averaged over the simulation
box. This quantity remains unchanged for t . 160ω−1

pi , when the instability is solely
governed by electrons. After that, the drift velocity starts to decrease. Ions loses
their drift primarily during the non-linear phase of the instability (t & 400ω−1

pi ). The
longitudinal ion momentum gets converted mainly into perpendicular heating, as it
can be seen from Fig. 3.11 (b), which shows the evolution of the ion thermal velocity
along x and y averaged over the simulation box. While the ion temperature along
y greatly increases during the non-linear phase of the instability, their temperature
along x remains almost unchanged and it is observed to only slightly increase towards
the end of the simulation. The evolution of the ion anisotropy, computed according
to Eq. (3.21), is reported in Fig. 3.11 (c). The anisotropy of the ions shows a
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trend similar to the electron anisotropy but the important difference is that at the
end of the simulation the value is still high and this is what drives the merging
processes. In particular, in the non-linear phase of the ion CFI, the ion anisotropy
is observed to decrease as t−1.1. If this trend remains unchanged, with a qualitative
assessment, the merging process can be expected to continue for more than another
20 ion plasma periods. Finally, the inverse Larmor radius has been computed also for
ions as r−1

L,i = e|Bz |
micvi

(Fig. 3.11 (c)). The inverse Larmor radius increases exponentially
during the electron and ion linear phase of the instability according to two different
growth rates, similar to the electrons inverse Larmor radius. At saturation, the value
of the inverse Larmor radius continues to increase very slowly as a result of the ion
drift velocity becoming progressively smaller, while Bz is nearly constant. At the
end of the simulation, the ratio between the ion Larmor radius and the average Bz

wavelength in the simulation box is rL,i/λ = 25. This is 4.4 order of magnitude larger
than the electron ratio and suggests that in the simulation the ions are still free to
move and are not trapped in the magnetic field filaments. As a consequence the
instability can evolve toward larger and larger spatial scales.

3.8 Study of the impact of artificially small ion-

to-electron mass ratios on the evolution of the

instability

Previous numerical studies have explored the non-linear phase of the CFI on ion
time scales using either ions with reduced mass ratios with mi/me in the range [25−40]
[35], [94], [100] or relativistic flows with Lorentz factors of up to 10 [92], [101]. In
order to understand the impact of using artificially lighter ions, a series of simulations
with increasing ion-to-electron mass ratio mi/me have been performed. In these
simulations, vi = ve = ±0.1 c, Te,x, Te,y = 0.0025mec

2 and mi/me = 200, 400 and
1000.

The evolution of the out-of-plane transverse magnetic field equipartition parameter
for each of the three mi/me values mentioned above is shown in Fig. 3.12. Here, the
lack of electron instability in the simulation is connected to the moment of data
collection coinciding with electron saturation. The three curves are observed to
increase with the same slope, which suggests that the evolution of the equipartition
parameter is independent of the ion mass ratio. Hence, the growth rate of the ion CFI
appears to be independent on the ion-to-electron mass ratio. Also the magnitude of
εBz at saturation does not seem to depend on this parameter. Indeed at saturation,
this quantity is approximately the same in all three simulations. This might be due
to the fact that changing the mass ratio, but keeping a fixed value of drift velocity
increases the initial anisotropy of the ions. This increase in initial anisotropy might
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Figure 3.12: Evolution of the out-of-plane transverse magnetic field equipartition
parameter for an electron-ion flow with drift velocity v = ±0.1 c and mass ratio
mi/me = 200 (red), mi/me = 400 (blue) and mi/me = 1000 (black).
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Figure 3.13: Out-of-plane magnetic field Bz in the simulation box at t = 772.80ω−1
pi

for mi/me = 200 (a), 400 (b) and 1000 (c). The simulation setups correspond to those
used in Fig. (3.12).

then compensate for the different ion-to-electron mass ratios and leads to similar
evolutions for the equipartition parameter. The most evident difference in these
simulations is given by the out-of-plane transverse field topology at the end of the
simulations (t ' 800ω−1

pi ) as shown in Fig. 3.13. In the case of mi/me = 200, the
magnetic field filaments are big (Fig. 3.13 (a)). Few wavelengths are present in the
simulation box. The filaments are very tilted and the absolute value of the field is high.
For mi/me = 400, the size of the filaments is slightly smaller and the field is weaker
(Fig. 3.13 (b)). When mi/me is increased to 1000, several filaments are still visible
in the simulation box (Fig. 3.13 (c)). The wavelength of the instability is about half
the value reached at the end of the simulation for mi/me = 200. The evolution of the
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average wavelength of Bz in the simulation box, reported in Fig. 3.14, quantitatively
explains what observed in the plots of the field topology (Fig. 3.13). The average
value of the wavelength increases throughout the duration of the whole simulation
and it does not seem to saturate despite each simulation modelling hundreds of ion
plasma periods. Depending on the value of mi/me, filaments in the magnetic field
cascade towards larger and larger spatial scales at different merging rates. In all cases
investigated, the merging rate is proportional to tβ with β varying between 0.63 and
1.05. Furthermore, the rate at which filaments merge does not appear to be uniform
during the duration of the simulation, but it decreases. A possible factor is the effect
of secondary plasma instabilities, which can develop as the filaments merge. These
instabilities can modify the merging process and introduce additional complexity to
the system, leading to a decrease in the merging rate. The geometry of the magnetic
field and the properties of the plasma can also play a role in the merging dynamics.
For example, the presence of asymmetric or irregularly shaped magnetic fields can
lead to a decrease in the merging rate due to the increased complexity of the merging
process.

3.9 Study of the impact of different flow velocities

on the evolution of the instability

This section is dedicated to understand the impact on the instability of the initial
drift velocity when the same mass ratio is considered. For this reason a series of
simulations with mi/me = 1000, Te,x = Te,y = 0.0025mec

2 and vi = ve = v in the
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Figure 3.15: Evolution of the out-of-plane transverse magnetic field equipartition
parameter for simulations with mi/me = 1000 and drift velocity vi = ve = v = ±0.1
(red), ±0.075 (black), ±0.06 (purple) and ±0.044 (green) c. The dashed blue line is
the results of a simulation with mi/me = 200 and v = ±0.1 c. Please note that t on
the x axis has been normalised to (c/v)ω−1

pi for allowing a better comparison of the
different curves.

range [0.1−0.044] c has been performed. The role of the initial ion anisotropy has also
been investigated and previous results have been compared with a simulation where
mi/me = 200 and vi = ve = ±0.1 c, which lead to an initial ion anisotropy of 816
(same as for the simulation with mi/me = 1000 and vi = ve = ±0.044 c).

Figure 3.15 shows the evolution in time of the Bz equipartition parameter for the
aforementioned simulations. Note that time here has been normalised to (c/v)ω−1

pi .
By analysing this plot, it appears clear that the growth rate and the magnetic field at
saturation have distinct values in the different simulations. Given the normalisation
used, this result seems to indicate that the growth rate depends only on the drift
velocity, with higher velocities corresponding to higher growth rates and higher values
of Bz equipartition parameter at saturation. This appears to be confirmed also by
comparing the two simulations with the same initial bulk flow, but different mass
ratios. Indeed, in this case, the growth rate trends are similar in the linear and non-
linear regime. It is also interesting to consider simulations starting from the same level
of initial anisotropy (e.g. mi/me = 200, ve = vi = v = ±0.1 c and mi/me = 1000,
ve = vi = v = ±0.044 c). In these cases, different values for field growth rate and
equipartition parameter at saturation are observed, meaning that therefore, as long
as the drift velocity is the same, the growth rate is not significantly influenced by the
anisotropy.

Figure 3.16 illustrates the transverse out-of-plane field topology at saturation time.
By decreasing the drift velocity, the magnetic field undergoes filament modifications
that result in straighter and less intense field compared to the case with the smallest

49



Chapter 3. The current filamentation instability on ion time scales

y
 [
c
/ω

p
i]

20

15

10

5

0

x [c/ωpi]

20151050

B
z
 [
m

i c
 ω

p
i/e

]

4 10
-3

2 10
-3

0

-2 10
-3

-4 10
-3

a) v = ± 0.1 c b) v = ± 0.075 c c) v = ± 0.06 c d) v = ± 0.044 c

Figure 3.16: Out-of-plane magnetic field Bz in the simulation box at t = 884.8ω−1
pi

for simulations with mi/me = 1000 and vi = ve = v = ±0.1 (a), ±0.075 (b), ±0.06
(c) and ±0.044 (d) c.

drift velocity. This change in the field is attributed to the merging of magnetic
filaments, which redistributes the magnetic field energy and can cause magnetic field
coalescence that alters the magnetic field topology. As a result, certain regions may
have a more uniform magnetic field with weaker intensity. These considerations are
reinforced by looking at Fig. 3.17, where the evolution of the average wavelength
in the simulation box is reported. Again in this case, to have a better grasp of the
underpinning physics, time has been normalised to (c/v)ω−1

pi . With this normalisation,
it can be observed that the average wavelength follows the same dynamics in all the
simulations with the same ion-to-electron mass ratio. Indeed all the curves overlap,
which is an indication of the fact that, given the same ion mass, the merging rate
depends on the initial flow velocity. Since in these simulations, the initial anisotropy
is different, Fig. 3.17 also indicates that given the same ion mass, the anisotropy does
not have a significant impact on the evolution of the merging rate and the rate at
which the magnetic field cascades towards larger scales. As before, it is interesting
also to connect these results on the merging rate with that of a simulation performed
with a reduced mass ratio. By comparing the simulation with mi/me = 200 and
v = ±0.1 c and the simulation with mi/me = 1000 and v = ±0.1 c, it is evident
that in the former case the field evolves toward larger scales more rapidly. The same
conclusion holds when the simulation with mi/me = 200 and v = ±0.1 c is compared
with the simulation with mi/me = 1000 and v = ±0.044 c, where the instability is
triggered by the same initial level of ion anisotropy. Indeed also in this case, the
field evolves toward larger scales more rapidly in the simulation with smaller mass
ratio. Thus these tests seem to indicate that the ion-to-electron mass has a significant
impact on the speed at which Bz evolves towards larger spatial scales. This means
that previous works which consider artificially smaller mass ratios to speed up the
simulations might have overestimated this quantity.
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3.10 Summary

In this study, the growth and saturation of electron-ion counterstreaming plasma
flows were investigated using PIC simulations. The plasma dynamics on ion time
scales was examined using the semi-implicit energy-conserving code ECsim [102]. The
evolution of the magnetic field was analysed for various ion-to-electron mass ratios,
different initial ansotropy values and many drift velocities.

The findings demonstrate that the magnetic field generated by the instability
maintains its strength over hundreds of plasma periods. The behaviour of ions is
observed to undergo significant changes during the initial linear phase of the instabil-
ity. This is characterized by a rapid reduction in ion anisotropy, accompanied by the
conversion of parallel kinetic energy into perpendicular heating. This phenomenon
indicates a dynamic process where the ions motion transitions, influencing energy
distribution and thermalisation. Following the linear phase of the instability, the
ion anisotropy exhibits a continuous decrease. The role of the anisotropy becomes
important in driving the long-term behaviour of the instability, marked by the
continuous coalescence of magnetic filaments. The relationship between mass ratios
and filament merging rates becomes evident as smaller mass ratios consistently
translate to accelerated rates of filament coalescence. This observation highlights the
significant role that mass ratios play in shaping the dynamics of this phenomenon.
Meanwhile, higher drift velocities lead to a more rapid merging of the filamentary
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structures.
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Chapter 4

Magnetic field generation due to
microinstabilities driven by
ultra-relativistic particle beams

4.1 Introduction

Ultra-relativistic particle jets composed of electrons and positrons are common
in astrophysical environments and are associated with some of the most luminous
astrophysical objects, such as GRBs, SNRs and AGNs. The interaction of these
jets with the surrounding medium drives a variety of plasma phenomena including
the generation of intense magnetic fields and particle acceleration, which then cause
the emission of gamma rays via synchrotron radiation. The possibility to explore
in the laboratory the physics of relativistic outflows would be of great interest
not only for astrophysics, but also to understand the physics of relativistic beam-
plasma interactions. Although it is extremely challenging to replicate astrophysical
conditions experimentally, modern accelerator facilities such as FACET-II at the
SLAC National Accelerator Laboratory [103] may offer a solution. This chapter
explores via simulations the possibility to recreate some astrophysical scenarios in
the laboratory. In particular, it examines the prospect of using relativistic and ultra-
relativistic electron and electron-positron (fireball) beams to mimic the interaction
of astrophysical jets with the surrounding plasma with focus on possible kinetic
instabilities, such as the CFI [33]. In the first part of the chapter, numerical
simulations are employed to investigate the microphysics governing the movement
of a neutral electron-positron beam into a magnetised plasma. A range of plasma
magnetisation levels is considered to capture the different interaction scenarios. The
longitudinal size of the beam is systematically varied to analyse its impact on the
interaction process. The simulations are designed to emulate future laboratory
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astrophysics experimental setups, targeting parameters achievable at FACET-II where
both ultra-relativistic electron and positron bunches will soon be available. The
second part of the chapter focuses on analysing the microphysics connected to the
propagation of a relativistic electron beam into an unmagnetised plasma. In this case,
simulations model beam parameters achievable at the Compact Linear Accelerator for
Research and Applications (CLARA) at the Cockcroft Institute of Accelerator Science
and Technology [104]. The final goal of this study is then to propose an experiment
in the near future to probe the physics demonstrated in these simulations and make
connections with astrophysical settings.

4.2 Relativistic fireball beam propagation through

a static magnetised plasma

This section presents a series of 2D simulations conducted to investigate the
microphysics underpinning the propagation of a neutral beam composed of electrons
and positrons, known as fireball beam, into a magnetised plasma. The simulations aim
at finding a possible configuration to explore the interaction between ultra-relativistic
astrophysical jets with the interstellar medium in the laboratory via properly scaled
experiments.

In the absence of a background magnetic field, the propagation of an ultra-
relativistic beam composed in equal measures of electrons and positrons may drive
the CFI and generate a strong magnetic field [22], [35]. This occurs as the ultra-
relativistic beam propagates through the plasma, inducing a return current in the
plasma to maintain charge neutrality. The interaction between the beam and the
return current can lead to the growth of instabilities, such as the CFI. In this process,
the return current acts as a seed for the development of filamentary structures and
amplifies magnetic fields through this mechanism. In particular, the development of
the instability is determined by two parameters: the transverse beam size σr relative
to the plasma skin depth and the Lorentz factor of the beam γb [33]. In the regime
where the transverse beam size is larger than the plasma skin depth (σr > c/ωp) the
return current passes through the beam, creating conditions for kinetic instabilities
to develop. In this regime, if γb � 1, the interaction between the beam and the
plasma leads to the generation of filamentary structures and the development of the
CFI, while if γb � 1, the longitudinal two stream instability is expected to occur.
In both cases, these microinstabilities can significantly affect the beam stability and
propagation. On the other hand, when the transverse beam size is smaller than the
plasma skin depth (σr < c/ωp), the plasma return current flows outside the beam.
This particular regime is highly favourable for plasma wakefield accelerators (PWFA)
and the CFI does not occur [30], [33]. In PWFA setups, where the transverse beam size
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is smaller than the plasma skin depth, the beam-plasma interaction primarily involves
the formation of plasma waves that can efficiently accelerate charged particles. By
understanding the interplay between the transverse beam size, the Lorentz factor and
the plasma skin depth, it is possible gain insights into the conditions necessary for
the CFI to occur [33].

The presence of a pre-existing background magnetic field, as that characterising
the intergalactic medium, could lead to different physics. Understanding how this
pre-existing field modifies the onset and development of plasma microinstabilities and
the generation of strong magnetic fields is the focus of the PIC simulations illustrated
in this section. For this purpose, simulations model a beam made of an equal number
of electrons and positrons with a density profile nb(x, y) = nb0 exp (−x2/σ2

x − y2/σ2
y),

where σx = 0.99 c/ωp = 10.2µm is the bunch length root mean square (RMS) and
σy = 2.0 c/ωp = 20.4µm is the bunch transverse size RMS. The peak beam density is
nb0 = 0.37n0 where n0 = 2.7× 1017 cm−3 is the electron plasma background density.
Simulations follow the beam with a moving window travelling at the speed of light c
along the x axis. The beam moves with a velocity ub = vbγbex and an initial Lorentz
factor of γb = 56000. An isotropic Maxwellian in velocity space with a thermal
spread of vth = 1.7 × 10−5 c for both electrons and positrons has been considered.
The typical simulation box has dimensions of Lx = 14.08 c/ωp and Ly = 46.08 c/ωp,
from −Ly/2 to Ly/2. The spatial resolution is set to ∆x = ∆y = 0.02 c/ωp, with
a time step of 0.011ω−1

p , unless differently specified. Each cell in the simulation
contains 9 particles-per-cell per species and a fourth order interpolation scheme has
been selected. The box has absorbing boundary conditions in the transverse direction,
which means that particles that pass through the boundary in the transverse direction
are eliminated from the simulation. Perfectly Matched Layers (PML) are an advanced
method used as absorbing boundary conditions in simulations to prevent reflections
of electromagnetic waves at the boundaries. Vay’s hybrid algorithm effectively
implements PML. In the code, this is achieved by introducing additional damping
terms and modifying the field equations within the PML region to simulate absorption.
Additionally, the fields are absorbed at the boundary by gradually reducing them to
zero, in order to prevent the reflection of waves back into the box. The fireball beam is
initially set up in vacuum and when it starts to propagate meets a plasma with density
profile ∝ 0.5(tanh(10x1) + 1). This density profile was chosen to prevent misleading
fields brought on by an abrupt plasma-to-vacuum transition. An intense beam in
the absence of external fields propagating in vacuum evolves in its self-fields. The
radial electric force due to the beam space charge always dominates the self-magnetic
pinching force. The simulation started with a neutral fireball beam in vacuum to
ensure its stable propagation with a constant radius. The plasma was modelled with
mobile cold electrons with vth = 1.7 × 10−5 and immobile ions which only provide
charge neutrality. It is acceptable to ignore the motion of ions that are typically
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Figure 4.1: Sketch of the simulation setup. The e−e+ neutral beam drifts in the x
positive direction interacting with a static plasma.

mobile, as the relevant processes of interest operate on timescales significantly shorter
than those associated with ion movement. The Fei algorithm [77], [78] mentioned in
Chapter 2 has been employed to avoid numerical effects due to the presence of ultra-
relativistic particles. Finally, it has been verified that different spatial and temporal
resolutions, number of particles per cell and interpolation levels yield similar results
showing that the obtained results are physical and not due to numerical artefacts
[105]. The external magnetic field was set up as B0 = B0ex. The simulation setup
is schematically presented in Fig. 4.1, where the e−e+ neutral beam drifts in the x
positive direction interacting with a static plasma.

The presence of a background magnetic field in the direction parallel to the particle
propagation is expected to influence the growth and development of kinetic instabil-
ities. For instance, it has been shown that in the case of infinite counterstreaming
electron plasmas the presence of an external magnetic field aligned with the electron
bulk motion suppresses the formation of filaments due to the CFI when such field is
above a critical threshold [43].

In order to analyse the influence of a background magnetic field on the micro-
physics of the interaction between an electron-positron beam and a static plasma, a
series of simulations has been carried out. In these simulations, a uniform background
magnetic field with increasing amplitude has been considered. In particular B0 has
been varied between 0 and 8.5 MG.

Figure 4.2 displays the evolution of the magnetic and electric field energies versus
beam propagation distance for different magnetisation levels of the plasma. The
electromagnetic field energies are normalised to the total kinetic energy of the particles
εp = mec

2(γb− 1)Vb, where Vb = σxσyπ is the volume of the beam (values are then re-
normalised to εBg , where Bg is the field at which the growth turns exponential, usually
after 5 cm of propagation; this re-normalisation was performed to enable a direct
comparison with [22]). By normalising the magnetic field energy to εp, can relate the
energy stored in the fields to the total rest energy of the particles in the beam and the
spatial extent of the beam. Figure 4.2 (a) shows that in the absence of a background
magnetic field the propagation of the beam into the plasma causes the generation
and amplification of the magnetic field in the out-of-plane direction. The out-of-plane
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magnetic field is observed to grow at a rate ΓBz = 1.41 × 10−3 ωp. Simultaneously,
the growth of the electric field components in the propagation direction Ex and
in the in-plane transverse direction Ey occurs. Both fields exhibit similar growth
rates to the Bz. When a background magnetic field with strength of 2.8 MG in the
beam propagation direction is present, the out-of-plane magnetic field (Bz) exhibits a
slightly lower growth rate of 1.21× 10−3 ωp (Fig. 4.2 (b)). In this case, the growth of
the longitudinal and transverse electric field components (Ex and Ey) is also evident,
although these fields grow at a lower rate with respect to the unmagnetised case of Fig.
4.2 (a). The similarity in the growth between Ey and Bz for B0 = 2.8 MG suggests
a strong correlation between these two field components. By increasing the external
magnetic field intensity to 5.6 MG (Fig. 4.2 (c)), Bz is observed to grow at a much
lower rate of 8.9× 10−4 ωp. Furthermore, the saturation level begins to shift forward
in propagation, indicating a modified behaviour under the increased magnetic field
intensity. For a higher magnetisation value of B0 = 8.5 MG (Fig. 4.2 (d)), the growth
rate of Bz decreases to 6.5×10−4 ωp. In the case shown in Fig. 4.2 (d), the saturation
level, where the growth rates of Bz, Ex and Ey stabilise, occurs after approximately
25 cm of beam propagation into the plasma. This indicates that the system requires a
long plasma for the instability caused by the beam to saturate. Figure 4.3 (a) presents
the growth rate (Γ/ωp) of Bz for a range of initial external magnetic field values from
0 to 8.5 MG and provides confirmation of the observations made earlier. The growth
rates of the out-of-plane magnetic field component (Bz) are significantly influenced
by the level of background magnetisation. Specifically, as the external magnetic field
intensity increases, a distinct decrease in the growth rate of Bz, as well as Ex and Ey,
is observed. In particular, the growth rate of Bz appears to decrease linearly with
B0. The variation of Γ/ωp within a small range of magnetisation values, specifically
from 0 to 0.6 MG, is depicted in Fig. 4.3 (b). As this plot shows, a low level of
magnetisation does not significantly impact the growth of the out-of-plane magnetic
field (Bz), as it remains relatively constant across this range.

Figure 4.4 provides snapshots of the out-of-plane magnetic field configuration after
the fireball beam has propagated a distance of 29.5 cm into the plasma. This distance
(29.5 cm) was selected in order to compare the non linear phase of the instability.
In the absence of an external magnetic field aligned with the beam bulk speed
(Fig. 4.4 (a)), the magnetic field in the out-of-plane direction presents a filamentary
structure characterised by straight horizontal filaments. The presence of completely
perpendicular modes seems to indicate that in this case the magnetic field growth is
caused by the CFI. Indeed the instability growth rate appears to be in good agreement
with the maximum growth rate predicted by the theory for the relativistic CFI driven
by a beam: ΓTh = vb/c

√
η/γbωp ' 2.6× 10−3ωp [106]; here the small difference could

be justified by the fact that the theory is derived for an infinite beam, but also by
the fact that in the simulations, the growth rate is computed from the energy of Bz,
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Figure 4.2: Equipartition parameter of Bz (violet), Ex (red) and Ey (orange) versus
fireball beam propagation distance for B0 = 0 (a), 2.8 (b), 5.6 (c) and 8.5 (d) MG.
The dashed lines show the growth rate of Bz energy.

b)a)

Figure 4.3: Growth rate of longitudinal electric field Ex (red), transverse electric field
Ey (orange) and magnetic field Bz (purple) versus background magnetic field B0 (a).
The black dashed line results from a linear fit of the data. Detail of Fig. (a) showing
Bz for B0 between 0 and 0.6 MG (b).

58



Chapter 4. Magnetic field generation due to microinstabilities driven by
ultra-relativistic particle beams

thus summing over the contribution of all wavenumbers. As a fireball beam passes
through a plasma, its electrons repel the background electrons, while its positrons
attract them. To maintain overall charge neutrality in the plasma, a return current
forms. The presence of a return current passing through the beam induces the CFI
with the amplification of every infinitesimal perturbation of the magnetic field. The
development of CFI and the growth of the magnetic field induce the development
of transverse and longitudinal electric fields of electrostatic and inductive nature,
respectively [35].

The presence of a background magnetic field in the direction of the beam
propagation enhances the oblique characteristics of the filaments. As higher values
of background magnetic field are considered, the out-of-plane magnetic field due to
the instability stops exhibiting only straight filaments (Figs. 4.4 (b)-(d)). Oblique
filaments start to appear as the beam propagates through the plasma. The topology
of the field thus hints to the growth of oblique modes together with the growth of
transverse modes. As the magnitude of the external magnetic field becomes higher
and higher, filaments become more and more tilted indicating that oblique modes
become more and more important. Perpendicular modes still develop in front of the
oblique modes, but their spatial extent is reduced. The presence of a background
magnetic field thus appears to change the nature of the instability triggered by the
ultra-relativistic beam. If for small B0 up to about 0.6 MG, given the field topology
and the almost constant growth rate, the growth of Bz is due to the CFI, for higher
values of B0, Bz is certainly due to the interplay of different kinetic instabilities.

Figure 4.5 (a) shows electron and positron particle densities in the absence of B0.
The tail of the beam clearly shows filaments visible in both the electron and positron
densities. For B0 = 2.8 MG, a slight tilt can be observed in the electron and positron
density filaments (Fig. 4.5 (b)), along with a corresponding tilt in the Ex profile (Fig.
4.5 (f)). As the magnetisation level increases to B0 = 5.6 MG, the tilt of the filaments
in the electron particle density becomes more pronounced (Fig. 4.5 (c)), arising in
a oblique configuration of the Ex field (Fig. 4.5 (g)). Figure 4.5 (d) illustrates the
electron-positron particle density for the highest value of background magnetic field
considered (B0 = 8.5 MG). In this case, the filaments become more twisted, displaying
complex interconnections. The corresponding longitudinal electric field (Ex) exhibits
oblique modes with an increased number of filaments (Fig. 4.5 (h)). Thus, these
plots show that the presence of an external magnetic field alters the characteristics
of the modes triggered by the propagation of an ultra-relativistic fireball beam in a
static plasma. The magnetic field introduces additional forces and constraints on the
charged particle motion, leading to more complex and distorted filament structures in
both the particle density and the longitudinal electric field, as well as the generated
out-of-plane magnetic field.

The impact on the growth of Bz of a progressively longer beam has also been
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longitudinal electric field Ex (lower panels) after the beam has propagated 29.5 cm
into the plasma for B0 = 0 (a, e), 2.8 (b, f), 5.6 (c, g) and 8.5 (d, h) MG.
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B0 = 5.6 MG
σy = 2 c/ωp = 20.4µm

Cases σx nb0/n0 Lx[c/ωp]× Ly[c/ωp]
I σx = σx,0 = 0.99 c/ωp = 10.2µm 0.37 14.08× 46.08
II 1.25 σx,0 0.29 17.60× 46.08
III 1.50 σx,0 0.24 21.10× 46.08
IV 1.75 σx,0 0.21 24.60× 46.08
V 2 σx,0 0.185 28.16× 96.16
VI 3 σx,0 0.123 42.23× 138.20
VII 4 σx,0 0.092 56.31× 138.20
VIII 5 σx,0 0.074 70.40× 184.32
IX 6.29 σx,0 0.058 89.60× 184.32

Table 4.1: Summary of the simulations performed to investigate the effect of
longer beams on the generation of magnetic field via kinetic instabilities. In these
simulations, B0 = 5.6 MG. The number of total particles composing the fireball
beams has been kept constant, as well as the transverse beam size σy. As larger
values of σx are considered, the peak density of the beam nb0/n0 decreases. The last
column reports the size of the simulation box in the different runs.

analysed. To explore the effect on the instability of a longer fireball beam, 2D
simulations modelling the beam propagation through a static magnetised plasma
with a B0 = 5.6 MG have been performed. In these simulations, the real number of
particles composing the fireball beam has been maintaied constant. This choice has
been made to better simulation results with possible experiments, where stretching the
particle beams will lower the bunch peak density. As a consequence in the simulations,
when considering larger values of σx, lower values of η = nb0/n0 were initialised. In
particular, σx assumes values in the range from 1 to 6.29 c/ωp and the corresponding
density η varies from 0.37 to 0.058. Table 4.1 lists the simulations performed and
the values of σx and beam density considered. The table also reports the size of the
simulation box for the different runs. Lx was increased to accomodate longer beams,
while Ly was increased to allow the oblique modes to develop without worrying about
the transverse boundary conditions. In these simulations, the box was divided into
cells with dimensions of ∆x = ∆y = 0.02 c/ωp. The number of cells Nx and Ny was
determined based on the size of the box.

Figure 4.6 displays the evolution of the magnetic and electric field energies versus
beam propagation distance, normalised to the kinetic energy εp and the value of the
out-of-plane magnetic field Bz when the its growth starts to be exponential. Figures
4.6 (a) and (e) show these quantities for the smallest σx considered (σx = σx,0 =
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Figure 4.7: Growth rate of longitudinal electric field Ex (orange), in-plane transverse
electric field Ey (purple) and transverse out-of-plane magnetic field Bz (blue) versus
longitudinal beam size. The black dashed line represents a fit of the simulation data
∝ σ−2

x .

10.2µm). In this case, the transverse electric field (Ey) and the transverse magnetic
field (Bz) energy trend overlap, and both energies present a growth rate of ΓBz =
ΓEy = 8.5 × 10−3 ωp, while the Ex energies grow at a slightly lower rate. The out-
of-plane magnetic field shows the presence of transverse modes followed by oblique
modes characterised by tilted beam filaments at the back of the bunch. When the
longitudinal beam size σx is doubled and η gets reduced to 0.18, the magnetic field
growth rate slightly decreases to ΓBz = 7.6× 10−4 ωp (Fig. 4.6 (b)). Here, Ey and Bz

energies continue to show an overlapping trend while the growth rate of Ex energy
becomes more similar. The out-of-plane magnetic field shows more oblique filaments
(Fig. 4.6 (f)). In the case of σx = 5σx,0 and η = 0.074, Bz, Ex and Ey energies trend
overlap perfectly, as displayed in Fig. 4.6 (c). The fields exhibit the same growth rate
ΓBz = ΓEx = ΓEy = 6.5× 10−4 ωp. In this case the fields start to grow exponentially
approximately after the beam has propagated 15 cm into the plasma, slightly later
than when shorter beams are considered. Figure 4.6 (g) illustrates the topology of Bz

for the same case. The field exhibits a lower intensity compared to the fields driven
by shorter beams but displays a higher number of filaments. The largest longitudinal
beam size modelled has been 6.29σx,0, corresponding to one plasma wavelength, λp
with λp = 2πc/ωp. In this case the rate at which Bz grows is observed to decrease
to ΓBz = 4.1 × 10−4 ωp (Fig. 4.6 (d)). Here Ex and Bz energies display the same
trend while the Ey energy starts to increase before the other components. Thus, this
study suggest that longer longitudinal beams with lower density still trigger kinetic
instabilities leading to the generation of magnetic fields. By analysing the slope of the
curve in Fig. 4.6 (a)-(d) it was represented the growth rate versus the longitudinal
beam size in Fig 4.7. The growth of these fields occurs at a slower rate, as shown in
Fig. 4.7. Moreover, the plot of Fig. 4.7 points out that for beam shorter than λp, the
growth rate decreases quadratically, increasing the beam length. Additionally, as the
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longitudinal beam size increases, a corresponding decrease in the magnitude of Bz is
observed.

4.3 Relativistic electron beam propagation through

a static plasma

This section explores the microphysics connected to the propagation of a rel-
ativistic electron beam in a static unmagnentised plasma. It is known that such
configuration leads to the generation of strong magnetic fields due to the CFI [33].
The primary goal of the present study is to test whether the physics of the CFI and
the resulting magnetic field generation can be probed with electron beams produced
by CLARA [104]. Thus, 2D simulations using OSIRIS [74], [75] were performed to
investigate the interaction between an electron beam and a uniform plasma. The
beam velocity was set to ub = γbvbex, with a Lorentz factor of γb = 117.24, equivalent
to 59.5 MeV. This energy closely matches that of the CLARA electron beam. An
electron bunch with longitudinal and transverse sizes of σx = 4 c/ωp = 30µm and
σy = 8.30 c/ωp = 62.5µm respectively, was considered. The beam density was
nb0 = 8.47 × 10−4n0 where n0 = 5 × 1017cm−3 is the electron plasma background
density. The thermal velocity of the beam was vth/c = 0.01. These beam parameters
will be attainable at CLARA with the upgrade that provide a beam energy up to
250 MeV. The system was studied numerically with a window of sizes Lx = 78 c/ωp
and Ly = 336 c/ωp (from −Ly/2 to Ly/2) moving at the speed of light along the x
direction and discretised in Nx = 624 and Ny = 2688 cells with absorbing boundary
conditions for fields and particles in the transverse direction. The time step was set
to 0.072ω−1

p . Each cell in the simulation contains 16 particles-per-cell per species and
a fourth order interpolation scheme has been selected.

The temporal changes in electromagnetic energy that occur during the propagation
of the electron beam into the static unmagnetised plasma are shown in Fig. 4.8,
(the parameters are normalised to the total kinetic energy of the particles εp). As
the electron beam passes through the plasma, the electromagnetic fields start to
grow. The electric field components Ex and Ey undergo significant amplification,
reflecting the pronounced influence of the beam-plasma interaction. Simultaneously,
the magnetic field component Bz experiences an increase due to the beam current,
which is responsable for the magnetic field itself. During the non-linear stage, which
occurs approximately after 2.5 cm of propagation, distinct changes are observed in
the evolution of the electromagnetic field components. The Ey component shows
a decreasing energy trend while the Bz component remains constant. Additionally,
the Ex component shows an amplification of the energy. The out-of-plane transverse
magnetic field topology is reported in Fig. 4.9 for two distinct plasma penetration
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Figure 4.8: Electromagnetic energy of Bz (black), Ex (blue) and Ey (red) versus
electron beam propagation distance for the interaction between a relativistic electron
beam and a plasma. The black dashed line shows the fit of Bz growth rate.

distances 2.04 cm (Fig. 4.9 (a)) and 4.90 cm (Fig. 4.9 (b)). The filaments begin to
become evident qualitatively after the beam has propagated for 2 cm into the plasma
(Fig. 4.9 (a)). After approximately 4 cm of beam propagation through the plasma,
the filaments increase the size and intensity (Fig. 4.9 (b)). This phenomenon can
be attributed to the non-linear effects and interactions between the filaments as they
travel through the plasma. Figure 4.10 shows the electric field component in the
box Ex. The filamentary structures observed in the longitudinal electric field after
a propagation distance of 2.04 cm (Fig. 4.10 (a)) are a direct consequence of the
collective plasma response to the presence of the electron beam. The longitudinal
electric field Ex has undergone transversal expansion after propagating a distance of
4.90 cm (Fig. 4.10 (b)).

The particle density of the electron beam is reported in Fig. 4.11. After 2 cm of
electron beam propagation into the plasma, interesting filamentary structures start
to appear within the beam (Fig. 4.11 (a)). These filaments correspond to localised
regions of enhanced particles density or electron clustering. The presence of these
filaments indicates the formation of the CFI resulting from the interplay between
the beam and the surrounding plasma. With continued propagation of the electron
beam beyond 4 cm (Fig. 4.11 (b)), the filaments of the particle density become more
pronounced.

4.4 Summary

The interaction of an ultra-relativistic neutral electron-positron beam with a
magnetised plasma has been investigated using 2D numerical simulations based on the
PIC method. The development of a mixture between purely transverse and oblique
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modes has been observed. For the modelled beam parameters, in the absence of a
background magnetic field in the beam propagation direction, transverse modes due
to the CFI are predominant. When a background magnetic field is considered, the
importance of oblique modes over transverse modes increases when increasing the
magnetisation level. In any case, the kinetic instabilities triggered by the fireball
beam propagation lead to the exponential growth of a magnetic field in the transverse
out-of-plane direction. The rate at which this magnetic field grows slows down as
the plasma magnetisation level increases. Oblique modes becomes more significant
as filaments become more tilted with greater amounts of plasma magnetisation. The
effect of longitudinal beam variation was also explored, demonstrating that even less
dense, longer longitudinal beams can still cause kinetic instabilities, although the
magnetic field grows at a slower rate. For ISM magnetisation levels significantly lower
(≈ Gauss) than those considered in this study, a strong magnetic field is generated
by the CFI. These findings are useful for understanding the results of Sinha [37], who
investigated the polarisation effect of the external magnetic field on the synchrotron
radiation produced by a fireball beam. Sinha’s research provided valuable insights into
the polarisation characteristics influenced by such magnetic fields. However, limited
research has been conducted on the structure of the filaments and fields generated
by the CFI in an external magnetic field. By elucidating the detailed dynamics
of CFI under various magnetisation levels and longitudinal beam variations, this
work supports and expands upon Sinha’s observations. This deeper understanding
of filament structures and magnetic field growth is essential for interpreting the
polarisation effects noted by Sinha, particularly in explaining the recent observations
of circularly polarised radiation from GRBs.

The second phase of the numerical investigation into CFI involved the examination
of CLARA laboratory parameters for the relativistic electron beam. The primary
objective of this experiment was to understand if the propagation of the electron
beam into the plasma induces the generation of transverse magnetic. The results
show the growth of the electric field components and also the transverse magnetic
field. Considering the CLARA electron beam parameters is possible to observe that
the CFI is the mechanism responsible for magnetic field generation.
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5.1 Conclusions

In plasma physics, the development and amplification of magnetic fields in
originally unmagnetised plasmas is a long-standing challenge that has relevance to
both laboratory studies and astrophysics events. The generation of collisionless
shocks in the absence of the ambient magnetic field appears to be caused by the
CFI. The observation of GRBs and their afterglows prompted scientific investigations
into the filamentation instability, with the goal of understanding how it could account
for the substantial increase in magnetic fields necessary for generating the observed
electromagnetic spectrum in GRBs. This thesis examines the importance of plasma
instabilities in the self-consistent creation of magnetic fields in the astrophysics
context as well as the implications for exploring magnetic field structure in beam-
plasma interactions. The studies involve a combination of theoretical derivations and
numerical simulations. The numerical simulations, specifically, were executed through
a kinetic methodology, employing two distinct PIC codes: OSIRIS and ECsim.

Chapter 3 examined the onset and evolution of the CFI driven by two identical
counterpropagating plasmas composed of electrons and ions. The 2D simulations were
conducted using the ECsim code to evaluate its accuracy in modeling the CFI. The
growth rate of the instability was analyzed, yielding a numerical growth rate of ΓNum =
0.13ωpi. This result was compared to the theoretical growth rate ΓTh = 0.12ωpi. The
close agreement between these values demonstrates the high accuracy and reliability of
the ECsim code in modeling the CFI. The evolution of the magnetic field was analysed
for various ion-to-electron mass ratios mi/me = 200, 400 and 1000, different initial
anisotropy values and drift velocities in a range vi = ve = [0.1−0.044] c. The main case
analyzed considered the macroscopic parameters of the system with an ion-to-electron
mass ratio of mi/me = 1000 and ion and electron velocities of vi = ve = ±0.044 c.
The ion-to-electron mass ratio used in the simulations is sufficiently close to the
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actual proton-to-electron mass ratio, enabling accurate observation of scale separation
effects. The magnetic field generated by the instability maintains its strength over
hundreds of plasma periods. Significant changes in ion behavior occur during the
initial linear phase of the instability. This phase is characterised by a rapid reduction
in ion anisotropy. It is accompanied by the conversion of parallel kinetic energy
into perpendicular heating. This phenomenon indicates a dynamic process in which
ion motion transitions, influencing energy distribution and thermalisation. After the
linear phase of the instability, there is a continuous decrease in ion anisotropy. The
significance of anisotropy becomes evident in guiding the long-term behavior of the
instability, characterised by the continual coalescence of magnetic filaments. The
relationship between mass ratios and the rates at which filaments merge becomes
apparent as smaller mass ratios consistently result in accelerated rates of filament
coalescence. The magnetic field cascades filaments towards larger and larger spatial
scales at different merging rates, depending on the value of mi/me. In all cases
investigated, the merging rate is proportional to tβ with β varying between 0.63
and 1.05. As observed, mass ratios significantly influence the dynamics of filament
merging. Furthermore, higher drift velocities contribute to a more rapid merging of
the filamentary structures.

Chapter 4 utilised 2D kinetic simulations conducted with the OSIRIS code to
depict the underlying physics of ultra-relativistic electron-positron fireball beams
propagating through a static, slightly magnetised plasma. These simulations involved
a uniform background magnetic field B0 with varying amplitudes, specifically ranging
from 0 to 8.5 MG.

An evolution toward a mixture of both purely transverse and oblique modes has
been noted. When considering the beam parameters in the absence of a background
magnetic field in the direction of beam propagation, the dominant modes are
transverse modes attributed to the CFI. However, when incorporating a background
magnetic field, the significance of oblique modes relative to transverse modes grows
with the increasing level of magnetisation. In any case, kinetic instabilities triggered
by the fireball beam’s propagation lead to exponential growth of a magnetic field
in the transverse out-of-plane direction. The growth rate of this magnetic field
slows as the level of plasma magnetisation increases. Simultaneously, oblique modes
gain greater significance as filaments tilt more with increasing plasma magnetisation.
Additionally, it was illustrated the propagation of a relativistic electron beam within
a static and non-magnetised plasma. The numerical investigation of CFI involved
exploring potential CLARA laboratory parameters for the relativistic electron beam.
The primary goal of this experiment was to determine if the electron beam’s entry
into the plasma leads to the creation of a transverse magnetic field. The results
demonstrate the growth of electric field components and the development of the
transverse magnetic field.
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5.2 Future work

The research presented in this thesis can serve as a foundation for investigating
the formation of magnetic fields in laboratory settings. For an extension of Chapter 3,
it would be interesting to investigate on multi-dimensional simulation of finite plasma
interactions. Recent studies have demonstrated that during electron-positron plasma
collisions, the plasma clouds decelerates. As a result, kinetic energy is transferred to
the electromagnetic field through the Weibel instability. Nonetheless, the electron-
proton cloud interactions remains unexplored and necessitate further investigation.
This study aims to determine if ion Weibel instability contributes to slowing down
the clouds further and strengthening the magnetic field. The results of this research
are important for understanding how this instability evolves over space and time
in systems of finite size. This preliminary research on the fireball beam can give
a global comprehension of an external magnetic field on the CFI driven by an
ultra-relativistic neutral fireball beam when travelling through a static plasma. The
OSIRIS code, which performed the 2D particle-in-cell simulations, has been used to
investigate the effects of various magnetic field intensities and the effect of beam flow
velocities. A comprehensive experiment will certainly need to be designed using fully
3D simulations. The higher dimension may alter how interactions take place and how
powerful the resulting fields are.
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