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Abstract—The rapid adoption of IPv6 has increased network
access scale while also escalating the threat of Distributed Denial
of Service (DDoS) attacks. By the time a DDoS attack is
recognized, the overwhelming volume of attack traffic has al-
ready made mitigation extremely difficult. Therefore, continuous
network monitoring is essential for early warning and defense
preparation against DDoS attacks, requiring both sensitive per-
ception of network changes when DDoS occurs and reducing
monitoring overhead to adapt to network resource constraints.
In this paper, we propose a novel DDoS incident monitoring
mechanism that uses macro-level network traffic behavior as a
monitoring anchor to detect subtle malicious behavior indicative
of the existence of DDoS traffic in the network. This behavior
feature can be abstracted from our designed traffic matrix sample
by aggregating continuous IPv6 traffic. Compared to IPv4, the
fixed-length header of IPv6 allows more efficient packet parsing
in preprocessing. As the decision core of monitoring, we construct
a lightweight Binary Convolution DDoS Monitoring (BCDM)
model, compressed by binarized convolutional filters and hierar-
chical pooling strategies, which can detect the malicious behavior
abstracted from input traffic matrix if DDoS traffic is involved,
thereby signaling an ongoing DDoS attack. Experiment on IPv6
replayed CIC-DDoS2019 shows that BCDM, being lightweight
in terms of parameter quantity and computational complexity,
achieves monitoring accuracies of 90.9%, 96.4%, and 100% when
DDoS incident intensities are as low as 6%, 10%, and 15%,
respectively, significantly outperforming comparison methods.

Index Terms—DDoS monitoring, Binary-CNN, Traffic matrix,
Network behavior, IPv6 network.

I. INTRODUCTION

ODAY, the state of global cybersecurity is deteriorating

seriously. According to the Cybersecurity Forecast 2024
Report[1], the number of global cybersecurity incidents has
increased 11 times in the past eight years, where the proportion
of DDoS (Distributed Denial of Service) attacks is as high
as 50.2%. DDoS attack is a type of attack against network
services, where attackers send massive traffic to the target
by commanding the distributed botnets, in order to exhaust
the service capacity of the victim host or server, making it
unable to receive or respond to normal service requests from
legitimate users. With the increasing spread on a global scale,
DDoS has become one of the common network attacks that is
large-scale, harmful and difficult to prevent.

As a next-generation Internet technology, IPv6 is rapidly
being popularized worldwide, such as France 73.47%, India
68.88%, Germany 65.93%, United States 49.17%, and United
Kingdom 43.71%][2]. Concurrently, more and more Internet
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service providers are continuously increasing the business on
IPv6 networks. As shown in Fig. 1, in 2023, the proportion of
users providing services through pure IPv6 network of Google
has reached 42.42%|3] and Facebook 37.27%][4] , with these
numbers expected to rise at an accelerating pace in the future.
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Fig. 1: IPv6 business of Google and Facebook[3,4]

However, as shown in Fig. 2, even though IPsec is intro-
duced to enhance IPv6 security, there are still severe security
risks, with DDoS attacks representing the biggest threat as
68%][5]. Alarmingly, in March 2018, internet engineers en-
countered the first DDoS assault relying solely on IPv6. The
Report[6] indicate that over the past few years, a major rise in
the share of malicious DDoS traffic carried IPv6 protocol to
the tune of 600%. In the future, the larger address range and
greater access volume brought about by the IPv6 continued
adoption will inevitably be accompanied by more intense
DDoS attacks[7]. Up to now, the peak traffic of DDoS attacks
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Fig. 2: IPv6 vulnerability classes[5]



on record has reached 1.45 Tbps. Often, by the time the victim
is aware that they are being attacked, the already evolved
massive DDoS traffic is challenging to mitigate[8].
Consequently, considering the forward-looking nature of
IPv6 network DDoS defense, it is not solely about filtering
DDoS attack traffic but, more importantly, providing early
warnings when DDoS incidents occur. The earlier the inter-
vention, the more time can be gained for deploying defense
measures, thereby reducing the pressure. This is the DDoS
incident monitoring problem targeted by this paper, which will
be more valuable as the threat of DDoS increases[9]. How-
ever, this endeavor faces multifaceted challenges: a. Real-time
processing: The monitoring system requires efficient traffic
processing and analysis capabilities to respond in real-time to
sudden DDoS attacks; b. High Sensitivity: Higher sensitivity
can detect signals at the onset of abnormal behavior and
trigger alarms promptly, depending on the selected monitoring
features and methods; c. Resource constrains: As a long-
running task, monitoring must maintain lightweight overhead
within the limited computing and storage resources of network
devices[10]; d. Attack diversity: The diversity and continuous
evolution of DDoS attacks necessitate that the monitoring
system be comprehensive and flexible in analyzing traffic
patterns; and e. Analytical ability: Amidst the exponential
growth of network scale and traffic volume, the monitoring
system requires robust data analysis capabilities, including the
application of big data analysis and deep learning methods.
While IPv6 network introduce additional challenges to the
research and deployment of DDoS monitoring[11]. The vast
address space of IPv6 places higher demands higher efficiency
of traffic parsing in monitoring system, and new protocols
like ICMPv6 may become new attack vectors that need to be
considered. Despite being launched many years ago, IPv6 still
lacks mature security tools and protection solutions compared
to IPv4[12], especially evident in the scarcity of IPv6 DDoS
datasets. In contrast to the widely used IPv4 DDoS datasets,
such as CIC-DDo0S2019 and CAIDA, the IPv6 environment
lacks corresponding widely recognized data resources, signifi-
cantly impeding the progress of defense research in this field.
To address these challenges, we propose a novel DDoS in-
cident monitoring mechanism in IPv6 networks. By designing
a two-dimensional traffic matrix sample to aggregate packet-
level data of continuous network traffic, a sensitive macro-
scopic network behavior feature is abstracted as the anchor
point for our monitoring, which can reflect the existence of
DDoS traffic in the network. Compared to traditional flow-
level monitoring, packet-level data, with its complete payload
and header information, can serve as a more detailed data
source for real-time, flexible, and resource efficient network
activity monitoring[13]. At the heart of our mechanism lies
a deep learning DDoS monitoring model (called BCDM)
based on the binary convolutional neural network[14], which
not only possesses robust feature extraction and analysis
capabilities, but has also been meticulously optimized for
computational efficiency and parameter reduction, ensuring a
lightweight monitoring overhead. Upon training, even with
sporadic DDoS traffic interspersed in the network, BCDM
can perceive the subtle malicious behavior in the network

traffic through the traffic matrix input, thus providing sensitive
early warning of the start of a DDoS incident. The main
contributions are summarized as follows:

e To enhance the comprehensiveness and flexibility of
monitoring application, our mechanism considers three
primary traffic protocols in IPv6 network: ICMPv6, UDP,
and TCP, thereby covering most DDoS attack types.
Unlike IPv4, the unique fixed-length format of IPv6
header enables us to design a more efficient traffic
preprocessing strategy, reducing memory overhead and
improving processing efficiency. The hexadecimal packet
fields, as our data source for monitoring, are directly
parsed from raw traffic through traversal, which improves
the real-time performance and perform scalability under
the growth trend of IPv6 network scale and complexity.

« Innovatively, we propose a macro network traffic behavior
feature as our monitoring anchor point, which is derived
through the aggregation of continuous network traffic
data within our meticulously designed 100x82 traffic
matrix sample. On this basis, we construct a BCDM
deep learning model as the decision-making core of
monitoring, capable of detecting the subtle malicious
behavior caused by the existence of low-rate DDoS traffic
in the network, thereby inferring the early start of DDoS
incidents. To meet the resource constrains of network
devices in monitoring deployment, BCDM is designed
to be lightweight, utilizing binarized convolutional filters
and hierarchical pooling strategies.

« In our experiment, to address the absence of IPv6 DDoS
public datasets, we first attempt to construct our reli-
able IPv6-DDoS traffic sources by utilizing NAT 4to6
Jool tool[15] to perform IPv6 replay of IPv4 CIC-
DDoS2019[16] public set within self-built IPv6-LAN
topology, situated in CERNET2[17] IPv6 environment.
Then, referring to the DDoS intensity indicator—defined
as the percentage of DDoS traffic rate to the total network
rate-we construct traffic matrix samples under varying in-
tensities, controlling the variables through the assumption
of uniform distribution to ensure the stability of training
and testing. On this basis, BCDM is evaluated in terms
of accuracy, precision, recall, Fl-score, ROC(Receiver
Operating Characteristic), and AUC(Area Under ROC
Curve) under different DDoS intensity, that outperforms
with compared methods.

The rest of this work is organized as follows. Section II
reviews the related work. Section III introduces the system
framework. Sections IV and V illustrate the IPv6 traffic
preprocessing strategy and BCDM monitoring model design
in detail. Our experiment topology, setup, and results are
presented in Section VI. The conclusion is in Section VII.

II. RELATED WORK

In related work, we first analyze the DDoS traffic detection
researches based on deep learning, that is, how to distinguish
whether a single packet or flow is DDoS traffic, which inspires
us to apply the deep learning concept into DDoS monitoring
scenario. Secondly, we introduce the existing DDoS mon-
itoring researches, outline the drawbacks and describe the



improvement aspects of our proposed mechanism. Finally, we
compare the different compression methods of CNN models
to demonstrate the adaptability of binary-CNN in DDoS
monitoring scenario.

A. DDoS traffic detection based on deep learning

DDoS traffic detection aims to distinguish DDoS attack traf-
fic from normal traffic by analyzing network traffic characteris-
tics, and in recent years, the introduction of deep learning tech-
nology has gradually increased. Abdallah et al. [18] employed
a Deep Neural Network (DNN), achieving a significantly
lower false alarm rate compared to traditional entropy-based
methods. Cil et al. [19] demonstrated that DNNs can swiftly
and accurately detect DDoS in small sample sets. Aydin et
al. [20] introduced LSTM-CLOUD, utilizing Long Short-Term
Memory (LSTM) networks for DDoS detection and prevention
in cloud networks. In IPv6 network, Manickam et al. [21]
proposed an ICMPv6 DDoS detection framework (v6IIDS)
based on a back-propagation neural network. Meanwhile, the
CNN model of the basis of our work is also used in DDoS
traffic detection. Shieh et al. [22] built a Convolutional Neural
Network (CNN) construction featuring geometrical metric
(CNN-Geo) to utilize deep learning techniques to enhance
DDoS attack detection accuracy. Shalaka et al. [23] proposed
an intelligent intrusion detection system (IDS) using a CNN,
i.e., HetloT-CNN IDS to solve the DDoS traffic detection of
the heterogeneous IoT (HetloT). Yousif et al. [24] combined
mininet, Ryu controller, and one dimensional-CNN to detect
and mitigate DDoS attacks in SDN environments. Sharma
et al. [25] proposed an efficient deep learning-based CNN-
Bidirectional LSTM for the DDoS detection, where the LSTM
is used to extract features for the classification of CNN part.

The aforementioned studies fully demonstrate the ability of
neural networks to identify DDoS traffic features, including
the wide identification types, high accuracy and strong time
series perception[26], especially the CNN model. In our DDoS
monitoring study, we attempt to extend this DDoS feature
recognition capability by designing a CNN-based BCDM
mechanism, enabling it to monitor the occurrence of DDoS
incident through identifying the malicious changes of network
traffic behavior abstracted by traffic matrix view.

B. DDoS incident monitoring works

Different from traffic detection, the DDoS incident moni-
toring aims to dynamically monitor the macro characteristics
of the network to more sensitively perceive the occurrence
of DDoS attacks in a normal network. The early classic work,
Yuan et al. [27] introduced a macro-monitoring approach using
cross-correlation at network observation points to detect traffic
pattern changes indicative of DDoS attacks. As the intensity
of DDoS attacks increases, monitoring tasks are increasingly
being studied as triggers for initiating DDoS defense, thereby
enriching defense preparations and reducing the pressure of
mitigation. Segura et al. [28] offered a lightweight, efficient
detection method based on change point analysis to identify
anomalies in packet delivery rates and overhead. Entropy
value is a more common monitoring index, Li et al. [29]

presented an early detection method in SDN networks using
(p-entropy to enhance traffic feature distinctions. Ahalawat
et al. [30] proposed a DDoS detection technique based on
Renyi Entropy with Packet Drop (REPD) where packets drop
method is used for the purpose of mitigation. Aladaileh et
al. [31] devised an entropy-based method for DDoS detection
in SDN, aiming to increase accuracy for high-rate attacks
and lower false positives in varied scenarios. There are also
methods based on machine learning or deep learning. Xie
et al. [32] introduced an anomaly detector using a hidden
semi-Markov model to capture dynamic access distribution
changes for attack monitoring. Zhou et al. [33] proposed an
online Internet traffic monitoring framework based on Spark
Streaming and Flink for real-time DDoS monitoring. Feng
et al. [34] combined Generalized Network Temperature with
deep learning to enhance predictions and classifications of
network congestion, improving DDoS early warnings. Kirtas et
al. [35] utilized a photonic neuromorphic lookaside accelerator
for real-time inspection of DDoS attack indicators, such as
port-scanning operations.

To sum up, as DDoS monitoring has advanced, the continu-
ous development of new methods such as macro-observation,
entropy-based statistical, clustering, Markov chain, and neural
network enable detectors to identify and respond to the occur-
rence of DDoS incidents at an early stage with lower intensity;
however, the application of deep learning is still relatively
simple. In this paper, we further expand the strong traffic
feature recognition ability of deep learning model, and design
a lightweight BCDM model to improve the performance of
DDoS incident monitoring.

C. Compression strategies on CNN model

CNN models are gradually being applied in network traffic
analysis, where different compression strategies are used to
reduce their overhead. For instance, Saiyed et al. [36] em-
ployed parameter pruning to lower memory and processing
requirements for DDoS attack detection, while Li et al. [37]
utilized tensor decomposition for reconstructing binary adja-
cency matrices. Wang et al. [38] also compressed MSSTRNet
into the lightweight LENet using knowledge distillation, and
LEE et al. [39] applied low-rank tensor decomposition and
lossy tensor compression to reduce training memory usage.
Additionally, He et al. [40] showed that adding depthwise
separable convolution (DSC) to PyConv reduces network
complexity, Lu et al. [41] used dilated convolution in anony-
mous traffic recognition to expand the receptive field without
increasing parameters or computational complexity, and Le
et al. [42] demonstrated that binary-CNN can significantly
reduce model size and computational cost.We summarize
the different aspects of these compression methods in Ta-
ble I. In fact, effective compression methods should align
with the requirements of their specific working scenarios.
Therefore, after analyzing above compression strategies, we
choose binary-CNN as the main compression strategy for
our CNN monitoring core, as its advantages can match the
requirements of DDoS monitoring scenario. a. Large scale
data monitoring: Binary-CNN significantly reduces the storage



TABLE I: Detail of CNN model compression strategies

Distillation[38] teacher model to small student model.

Strategy Working principle Benefits Drawbacks or limitation
Reduce parameter count, Additional iteration steps,
. Reduce redundant parameters . . .
Pruning[36] . maintain performance, increase model complexity,
and connections. . .
improve reasoning speed. unstable performance.
. . . Reduce parameter count, Complex decomposition algorithm,
Tensor Decompose high-dimensional tensors P . . P P &
.. . . . reduce computational complexity, data dependency,
Decomposition[37] into several low dimensional tensors. X .
suitable for large-scale models complex parameter tuning.
Improvement of small model, Increase training complexity,
Knowledge Transfer knowledge from large P £ plexity

high flexibility,
reduce inference time.

teacher model dependency,
complex parameter tuning.

Reduce parpmeter count,

Complex decomposition algorithm,

Low-rank Decompose convolutional kernels . .
N . . reduce computation complexity, data dependency,
Factorization[39] into smaller matrices. . . . .
compatible with multiple models. complex parameter tuning.

. Lo Reduce computational load Need more layers

Depthwise Decompose standard convolution into P ’ Yrs,
- o . reduce parameter count, performance drop,

Separable[40] depthwise and pointwise convolutions.

easy to combine.

debugging complexity.

Insert holes (zeros) between

Dilated Convolution[41] convolutional kernel elements.

Expand the receptive field,
increase of efficiency,
maintain resolution.

Gradient instability,
complex implementation,
task limitations.

Restrict weights and activations

Binary-CNN[42] to binary values (-1 and 1).

Extreme compression rate,
high efficient bitwise computation,
simple structure with low overhead.

Performance drop,
increase training complexity,
specific hardware support.

and computational requirements through extreme compression
rates, enabling efficient large-scale data monitoring. b. Real-
time Processing: The efficient bitwise computation ensures that
binary-CNN allows for rapid processing of high-throughput
data streams, ensuring timely response of DDoS attacks, and
enabling swift countermeasures. c. Diversified deployment:
The simple model structure with low overhead enables binary-
CNN to be flexibly deployed on various resource constrained
edge devices, achieving broad monitoring coverage to meet
the diverse needs of DDoS monitoring. On this basis, we
further deepen and optimize the binary-CNN model structure,
achieving our DDoS incident monitoring mechanism.

III. SYSTEM FRAMEWORK

With the development of DDoS attacks, although the emerg-
ing attack methods are complex and changeable, such as re-
flection and amplification methods, “traffic” is still a necessary
component of DDoS attacks. As a result, starting from the
analysis of network traffic, we implement the monitoring of

Network link

early DDoS incidents in IPv6 environment based on packet-
level traffic information. We design a BCDM monitoring core,
which is a lightweight deep learning model based on Binary-
CNN, and design a traffic matrix sample as model input to
abstract traffic behavior pattern by aggregating continuous
traffic information. When DDoS traffic exists, BCDM can
perceive the maliciousness of the traffic behavior pattern. The
workflow of our DDoS monitoring mechanism is shown in
Fig. 3. First, the monitor device dynamically captures ongoing
network traffic from IPv6 network and stores it directly into
the pcap traffic file format. Secondly, the traffic will next
be preprocessed; based on the fixed-length property of IPv6
packet headers, we quickly parse the pcap file, extract the
hexadecimal header fields, and aggregate the information from
every 100 packets into a traffic matrix. Finally, traffic matrices
will be input into our designed BCDM model as samples,
which can directly detect the malicious abstracted traffic
behavior, that is, the existence of DDoS traffic in the network,
thereby inferring the start of a DDoS incident.
Next, we will introduce the above workflow in detail.
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IV. IPV6 TRAFFIC PREPROCESSING STRATEGY
A. Extraction of IPv6 packet header information

The purpose of the IPv6 traffic preprocessing strategy is
to convert network-captured IPv6 data into samples suitable
for our deep learning monitoring model. In our work, we
use wireshark to capture IPv6 traffic and store into pcap files
as sources. Then, based on the fixed-length characteristic of
IPv6 traffic header, we directly parse the hexadecimal fields
stored in pcap as sample data, omitting the traditional traffic
translation steps to improve the traffic preprocessing efficiency.

Traffic packet information
Frame part Data part

well as the starting position of the next packet’s frame part.
Finally, we will determine the packet’s protocol type according
to the 21st byte in the data part. For instance, the bold
”11” in packet 1 indicates that this protocol type is ICMPv6.
In this way, combined with the fixed-length properties of
different protocols headers in IPv6 traffic, the complete header
fields can be parsed out. In Fig. 5, we analyze the header
fields and corresponding byte positions of ICMPv6, TCP and
UDP packets commonly encountered in IPv6 network DDoS
monitoring, including the common fields (ETH and IPv6) and
the special fields of different protocol types[43].
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Fig. 4: pcap storage format

As shown in Fig. 4, a pcap file begins with a file header,
which has a set length of 24 bytes and records the time interval
and packet numbers captured in the current pcap file. Then
there are packets stored in sequence, where the part surrounded
by a dotted line is the first packet information, consist of two
parts: the frame part, denoted by double underlines, which is
used to record the arrival time, elapsed time, capture length,
and etc., has a fixed length of 16 bytes; and the data part,
denoted by wavy underlines, which is used to record the header
fields and payload data, has a variable length.

On the basis of this, the process of our parsing pcap is
as shown in Fig. 6. First, the 24-byte pcap file header is
skipped. Then, the 13th to 14th bytes of the frame part store
the length of current packet in reverse order, as 0042 in
Fig. 4, that is, 66 bytes. Therefore, we can get the data part
content by extracting 66 bytes from the end of frame part as

the fixed-length property
and cycle the next packet

A TCP packet ?
A UDP packet ?
A ICMPv6 packet ?

Fig. 6: The process of pcap prasing

As indicated in Table II, the three DDoS attack methodolo-
gies we address occur at the foundational levels of network
communication, namely the network and transport layers.
Hence, the characteristics of these attacks are primarily ev-
ident in the header fields of the network and transport layer
protocols. Our information parsed in Fig. 5 can furnish ample
data to identify potential attack behaviors, highly relevant for
DDoS monitoring. Additionally, these three protocols cover
most known DDoS attack types, the all considered can enhance
the comprehensiveness and effectiveness of our monitoring.

TABLE II: ICMPv6, TCP, and UDP DDoS attack

DDoS protocal type | Layer Typical DDoS attack
TPv6 Ping flood Attack, Smurf Attack,
ICMPv6 Network layer Neighbor Discovery Attack
TCP Transport 1 SYN Flood, ACK Flood,
ransport lAYer | RST Flood, TCP Connection Flood
UDP Flood, UDP Amplification,
UDP Transport layer Fraggle Attack

[ ICMPv6 header (Byte 55-END) | or

IPv6 packet _ [ Common Special | _ Eth header IPv6 header UDPh
= = eader (Byte 55-END or
header header | T | header ( Byte114 | T | Byte15-54 )+ | (By )|
[ TCP header (Byte 55-END) |
Common Eth header IPv6 header
Byte 1-6 7-12 13,14 15(1/2) 15(212) 16(1/2) 15_(1252) 19,20 21 22 23-38 39-54
Name Eth. Eth. Eth. IPV6. 1PV6. IPV6. IPV6. IPV6. IPV6. IPV6. IPV6. IPV6.
dst addr type ver tclass.dscp tclass.ecn flow plen nxt hlim src dst
Special ICMPVv6 Special UDP
Byte 55 56 57-58 59-60 60-62 63-END Byte 55-56 57-58 59-60 61-62 63-END
Name | type | code | checksum | identifier ssgsqe;:re payload | Name | srcport | dstport | length | checksum | payload
Special TCP
Byte 55-56 57-58 59-62 | 63-66 | 67(1/2) 67(212)-68 69-70 7172 73-74 75-END
Name | srcport | dstport | seq | ack | hdr_len flags yvmdow checksum ur_gent payload
size value pointer

Fig. 5: Header fields and byte positions of ICMPv6, TCP, and UDP in IPv6 network packet
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Fig. 7: The format of traffic matrix sample

B. Design of the traffic matrix input sample

In this paper, we monitor DDoS incidents by determining
whether sporadic DDoS traffic appears in the network; how-
ever, under the background of normal network traffic rate,
the traditional methods of distinguishing packets one by one
is not feasible, which is not only inefficient but also result
in significant overhead. Therefore, as shown in Fig. 7, we
design a more effective two-dimensional traffic sampling unit
to aggregate traffic sets, leveraging the overall malicious traffic
posture characteristics induced by the presence of DDoS traffic
to realize a high-efficiency solution. Based on the header
analysis in Fig. 5, we finally set up 82 bytes in X-axis, where
X1 _54 are the common header fields. The remaining parts are
the unique fields, where ICMPv6 fills in Xs55 56,7580, TCP
fills in X57—72,81—827 UDP fills in X57—60,73—76' When ﬁllmg,
we first fill the header fields into the corresponding positions
of each row according to the protocol type of each packet,
and finally fill the empty fields with 0. And the matrix’s row
count is set to 100, representing a collection of 100 packets
per matrix, is rationalized by several key considerations: a.
After investigating the input aspect ratio of related DDoS
convolution detection, such as Shaaban[44] 1.17, Kim[45] 0.7,
and Hussain[46] 1, the matrix with an aspect ratio around 1
can better match the square convolution kernel receptive field.
b. Satisfy the adjustment of the number of DDoS packets
within the matrix in accordance with the percentage-based
DDoS intensity value we set in this paper. c. The size of
100x82 strikes a good balance between model performance
and overhead, even though larger input sizes that provide more
contextual detail could potentially increase accuracy. However,
doubling the row count to 200 would lead to 424.90% and
133.12% increase of computational load and memory overhead
for our BCDM model. Given that the network environment is
inherently constrained in terms of computational resources, the
current input size of 100x82 is likely more optimal.

X=8 Matrix X=82 Matrix
Normal packe label label
traffic backe
packets packe ——
1 I
E s —>
Traffic Input B
] splicing packet 98
- DD(_)_bv packet 99
Traffic packet 100
packets Normal Malicious
traffic matrix Traffic matrix

Fig. 8: Two categories of the traffic matrix samples labels

Further, we build our traffic matrix data set, that consist of
<traffic matrix, matrix label>. As shown in Fig. 8, the traffic
matrix samples are divided into two categories, namely, the
normal traffic matrix (label 0) containing all normal packets,
and the malicious traffic matrix (label 1) mixed with DDoS
packets. After training, our BCDM model can monitor network
traffic with a large matrix view, sense the malicious behavior
changes caused by DDoS traffic involved, and directly make
coarse-grained and rapid judgments on the existence of DDoS
traffic in the network. Meanwhile, by adjusting the mixed
percentage of DDoS packets in the traffic matrix sample, we
can simulate the network traffic behavior with different DDoS
intensities, so as to train and test the monitoring performance
of BCDM model in the experiment.

V. BCDM: THE BINARY CONVOLUTION BASED DD0OS
MONITORING MODEL

In our DDoS monitoring mechanism, we take the traffic ma-
trix as input sample to dynamically monitor the occurrence of
DDoS incidents in the network. To realize this matrix analysis
vision, we first introduce the convolutional neural network to
design the base structure (Base-CNN) of monitoring core. On
this basis, considering the normalized operation characteristic
of monitoring, we further introduce the binary convolution
kernel method, combined with model compression methods
such as global average pooling, to build a more efficient
and low-overhead deep learning decision-making core, called
BCDM, whose structure is shown in Table III.

TABLE III: The structure of Base-CNN and BCDM

Base-CNN BCDM
Input 100%82 Input 100%82
Layername | Output size | 7 layers Layername Output size | 12 layers
Conv_1_x | 94*76,2 7*7,2,stride 1 | Conv_1 94*%76,4 7*7,4,stride 1
5%5,4,stride 1 5%5,8,stride 1
Conv_2_x | 94%76,4 5%5,4,stride 1 | Binary_convl_x | 47*38,8 5%5,8,stride 1
2*2 max pooling, stride 2
3*3,8,stride 1 3%3,16,stride 1
Conv_3_x 94%76,8 3%3,8,stride 1 | Binary_conv2_x | 23*19,16 3%3,16,stride 1
2%2 max pooling, stride 2
Flatten 57152 Binary_conv3_x | 11%9,16
Dense 5 GAP 16 global average pool, stride 2
Dense 2

The Base-CNN model contains 7 layers, with a total of
113,566 parameters, including one 7*7, two 5*5 and two 3*3
convolutional layers, one flatten layer and one dense layer for
output two types classification. During the design process of
Base-CNN, we start with two convolutional layers structure



and gradually increase the convolutional layers, depth, and
channels to improve the identification ability; until Base-CNN
is able to achieve 98.3% accuracy on traffic matrices with 10%
DDoS traffic intensity, we determine the above model structure
and optimize it as a the starting point.

In Fig. 9, we compare the structure diagram of our BCDM
model and Base-CNN. As present in Table III, BCDM model
consists of a total of 12 layers, starting from the input layer, in-
cluding one normal 7*7 convolutional layer(conv_X), two 5*5
and four 3*3 binarized convolutional layers(binary_convX),
one Global average pooling (GAP) layer, and one softmax
layer for output binary classification, where every two bina-
rized convolutional layers are followed by a max pooling layer.
When compared to Base-CNN, the optimization of the BCDM
model is primarily reflected in three aspects:

a. Compression of fully connected parameters: Firstly, Base-
CNN contains 98.5% of fully connected parameters. There-
fore, to compress the model, we use GAP to replace the
original flatten layer, reducing the number of variables input
to the softmax layer from 57152 to 16. In this way, the model
parameter quantity decreases from 113566 to 11114.

b. Compression of convolutional parameters: Secondly, we
further study the lightweight of the convolutional layer part
of the model. We introduce the idea of binarized parameter
to form the binarized convolutional layer[42] (Binary_conv),
that can binarize the float-type convolution kernel parameters
into one bit 1 or -1 through the Equation 1 deterministic
binarization function.

+1 if x>0
—1 otherwise

X" = Sign(z) = { (1)

Algorithm 1 demonstrates our procedure for training a CNN
with binary weights. First, we binarize the weight filters at
each layer by computing A;; and By, where ¢, w, and h
represent the size of channels, width, and height of kernels.

Feature maps

Algorithm 1. BCDM parameters training forward propagation

Input:The minibatch of inputs and targets (I,Y), cost

function C(Y,Y’), current weight W* and current learning rate n°.
Output: The updated weight W' and updated learning rate n'**
01: Binarizing weight filters:

02: for k=1 to L do (cycle from the 1°* layer to the L*" layer)

03: A = ﬁ”wfknu
04: By = Sign(W)
05: Wi = A Bk
06: END for
07: Y = BinaryForward(I, B, A)
. 9C _ p aC 1
08: oW = BinaryBackward( oy W)
09: W = UpdateParameters(Ws, g—q, n")

10: '™ = Reduce LROnPlateau(n’, t)

Then we call the BinaryForward function (I & B)A with
the binary weights(B) and its scaling factors(A). Then, we
call BinaryBackward function to compute the gradients with
respect to the estimated weights and update the value with
UpdateParamters function. Lastly, the learning rate will be dy-
namically updated with the ReduceLROnPlateau rule. In this
way, the parameters can be binarized during model training.
Until the last layer, the activation value will be directly output
to the full connection without binarization. In addition, in
this convolution model, the first convolutional layer cannot be
binarized in order to preserve the matrix features. This binary
convolution method can bring the following two lightweight
advantages in DDoS normalized monitoring:

« Significant reduction in model size and running memory:
The convolution kernel parameters of Base-CNN are
stored in 32-bit floating point, while the binarized param-
eters can only be stored in one bit. Therefore, after GAP
involved, the binarization of the convolution parameters
can reduce the overall storage size and running memory
overhead of the model to 1/32 of the original.

Feature maps Feature maps Layer
INPUT 2@94*76 4@94776 8@94*76 57152 OUTPUT
100*82 2
Traffic Matrix
Dense
Base-CNN: [j:
D ——
Va . = }
conv_1: /
7*7,2, stride 1 Conv_2_x: Conv_3_x: Flatten:
5*5 4, stride 1 3*3, 8, stride 1 Two dimensional to One
5*5 4, stride 1 3*3, 8, stride 1 dimensional
Feature maps
Feature maps Feature maps |
INPUT 4@94*76 8@47738 1602319 emiie Layer ouTPUT
100*82 16 2
Traffic Matrix
BCDM:
[I Dense
D ——
/ /4 == Global Average
/ 1 Pooling
conv_1: binary_convl_x: binary_conv2_x: binary_conv3_x:
7*7, 4, stride 1 5*5, 8, stride 1 3*3, 16, stride 1 3*3, 16, stride 1
5*5, 8, stride 1 3*3, 16, stride 1 3*3, 16, stride 1
2*2 max pooling, stride 2 2*2 max pooling, stride 2 2*2 max pooling, stride 2
Fig. 9: Base-CNN and BCDM model structure diagram



« Significant reduction in calculation complexity: In Base-
CNN model, the calculation of the convolution kernel
parameters and the input matrix variables are two float-
type calculations. While the calculation of BCDM is
between the binary convolution kernel parameters and the
float-type, that can reduce the time complexity by 60%.

c. Model deepening enhancement: After introducing the

above lightweight methods, there is a certain decline in
the accuracy performance, the original simple convolutional
structure loses much analysis ability. Therefore, we deepen the
convolutional structure, double the number of convolutional
channels, and add two additional 3*3 convolutional layers.
Lastly, we add max pooling layer after every two binary_convs
to boost the significance of strong features and reduce over-
fitting problems. After the above steps, we finish the BCDM
model construction. Later, we will fully compare the volume,
speed, overhead, etc. before and after compression in the
experiments to verify the above lightweight improvements.

VI. EXPERIMENT
A. Setup

In this section, we mainly introduce our self-built IPv6-LAN
experimental topology environment as well as the generation
method of IPv6-DDoS traffic sources for our test. The exper-
imental equipment of the IPv6-LAN is shown in Table IV.

TABLE IV: Environment for experimental hardware

Server name Dell PowerEdge R470

OS: Ubuntu 18.04.1

CPU: Intel(R) Xeon(R)Gold 6238R 2.20GHz
RAM: 16G

GPU: NVIDIA GeForce GTX 1080 16G
OS: Ubuntu 18.04.1

Other host environment CPU:Intel(R) Xeon(R)Gold 6238R 2.20GHz
RAM:8G

Python 3.7.6, Tensorflow-gpu 1.14.0, Keras 2.2.5,
Cuda 10.0.130, Cudnn 7.6.5

Traffic capture tool Wireshark 3.4.5

Monitor host environment

Project environment

Attacker_1 Monitor
FCO00:36::3 FC00:35::3

Victim
FC00:35::4

NAT 4t06

NAT 4t0 6

ens1:FC00:36::1 ens2:FC00:37::2
ens2:FC00:37::1  ens3:FC00:35::1

Segment1:FC00:36::
Background Segment2:FC00:37:: Attacker_2

FC00:36::2 Segment3:FC00:35:: FC00:35::2

Fig. 10: IPv6-LAN: IPv6 DDoS simulation topology

Fig. 10 shows the topology of IPv6-LAN, which is con-
structed on the server running in the [Pv6 CERNET?2 environ-
ment, including 7 virtual hosts of 5 types and three network
segments to simulate DDoS attack scenarios:

o Attacker_1&2: Two nodes are designated to send DDoS

traffic to the victim. To address the lack of IPv6 DDoS

public traffic datasets, we use NAT4to6-Jool tool on these
nodes to replay the CIC-DDoS2019 dataset, generating
DDoS attack traffic with IPv6 characteristics. The trans-
parent conversion feature of NAT4to6 ensures that the
converted IPv6 traffic can maintain the same communi-
cation targets and application data transmission as the
original IPv4 traffic, thereby ensuring data reliability and
consistency. Not only that, this experiment leverages the
recognized CIC-DDo0S2019 dataset as the experimental
source, which can significantly improve the credibility,
comparability, and repeatability of the research results,
allowing other researchers to verify and compare based
on the same data. The static address translation strategy
of NAT4to6 is shown in the following Table V. And the
replay steps includes: a. IPv4 source address rewriting:
All DDoS traffic in CIC-DD0S2019 is originally sent
from the source IP 172.16.0.5 to the destination IP
192.168.50.1. However, the fixed source will introduce
unreasonably strong features in the model, leading to
overfitting and failing to reflect the distributed nature
of real DDoS attacks. To address this, we randomly
rewrite the IPv4 source addresses to introduce diversity;
b. Configure the NAT4to6 pool and network interface
in Jool: Map the IPv4 address and network interface to
the IPv6 space. Specifically, the attack node specifies
FC00:35/36 as the IPv6 prefix and connects the IPv4
address in hexadecimal form; c. Set NAT4to6 rules to
implement address translation: Use iptables and ip6tables
to configure NAT translation rules for inbound IPv4 traffic
and outbound IPv6 traffic. This setup ensures proper
address translation and traffic forwarding; d. Replay CIC-
DDoS2019 as IPv6 traffic: During the replay process, the
intensity of the DDoS attack can be flexibly adjusted by
changing the replay rate. This allows us to simulate DDoS
attacks of different intensities and conduct comprehensive
testing of the monitoring mechanism.

TABLE V: The static address translation of NAT 4to6

CIC-DDo0S2019 | IPv4 IPv6 (NAT4to6)
Hkk ok ok k| FC00:36::Hexadecimal IPv4 address
Source IP
For example: For example:
172.16.0.5 ’ FC00:36::AC:10:0:5 (Attacker_1)
T FC00:35::AC:10:0:5 (Attacker_2)
Destination IP 192.168.50.1 FC00:35::4

o Route_1&2: The soft routing node in the topology, which

used to route and forward the IPv6 traffic between dif-
ferent network segments. CIC-DDo0S2019 after NAT4to6
conversion can be correctly forwarded through routing
also indirectly proves the feasibility of the replay method.
Background: During the DDoS simulation process, it can
generate normal traffic in IPv6-LAN topology as back-
ground traffic. We capture the IPv6 business traffic from
CERNET?2 network in advance and inject into IPv6-LAN.
As the backbone of the education network, CERNET?2
has a strict internal security review system; therefore, our
background traffic source can be guaranteed as normal
business traffic without attacks. During the background
traffic replay process, we first redirect the destination to



”FC00:35::4”, and then replace the source address seg-
ment with "FC00:36” to meet the routing requirements. In
the experiment, the background node can cooperate with
attack nodes to adjust the traffic rate, thereby simulating
different DDoS intensities in the topology.

o Victim host: The target host, that used to receive DDoS
attack traffic, as well as normal background traffic.

e Monitor host: Used to monitor the traffic to the victim
host in real-time. By setting the mirroring command on
ip6tables of Router_2, all traffic forwarding to the victim
host can be mirrored and saved as pcap files.

B. Experimental dataset

In this section, based on the traffic captured from our
IPv6-LAN topology, we aggregate the traffic preprocessing
strategies designed in Section IV to build our traffic matrix
dataset for BCDM training and testing.

1) Data sets types: As Equation 2, we define the intensity
value (Int) of DDoS incident in our paper. Referencing
existing work[29], it is defined as the ratio (%) of DDoS
rate to the total network traffic rate. In the experiment, in
order to control variables during the training process of the
BCDM model to maintain the stability of learning, we regard
that the traffic packets from different sources in the network
are ideally uniformly distributed. Thus, the rate ratio intensity
can be translated into the proportion of DDoS packets within
the total number of network packets in the traffic matrix
sample. We can adjust the proportion of DDoS packets in
the traffic matrix to train and test the performance of BCDM
under different intensities of DDoS incidents. For example, to
generate a traffic matrix sample representing a network under a
10% intensity DDoS, we can randomly insert 10 DDoS attack
packets into the matrix containing 100 network packets.

Int(%) = DDoS traffic rate

~ Total network traf fic rate @)
_ No. of DDoS packets inmatriz

100(No. of matriz rows)

Furthermore, we also consider two types of intensity indica-
tors to enrich the different behaviors of DDoS attack, as shown
in Table VI, including fixed-intensity and dynamic-intensity.

Fixed intensity: We set 15 traffic sets with DDoS intensities
ranging from 1% to 15%, where the malicious traffic matrices
in each set have same intensity.

Dynamic intensity: We set 4 traffic sets with dynamic DDoS
intensity in 1%-3%, 4%-7%, 8%-11% and 12%-15% intervals,
where the malicious traffic matrices of each set have random
intensities within each interval, so as to simulate the intensity
fluctuations among different captured traffic matrices during
DDoS incident monitoring.

2) Division of samples in data set: For our traffic matrix
dataset of any intensity type, it contains 10,000 traffic matrices
and 10,000 labels, including 5,000 normal matrices and 5,000
malicious matrices containing DDoS packets. With a ratio of
7:2:1, We divide each data set into train set, valid set, and test
set. Among them, the train set and the valid set participate
in the training process to fit and tune the model parameters,
whilst the test set does not participate in training process, is
only used to evaluate the performance of the trained model.

C. Evaluation Metrics

In experiment, based on the confusion results during BCDM
model testing in Table VII, where the number of samples
with TP (positive sample predicted as positive class), TN
(negative sample predicted as negative class), FP (negative
sample predicted as positive class), and FN (positive sample
predicted as negative class), we evaluate the performance of
our BCDM model in terms of the following metrics, includ-
ing: loss value during model training and testing, accuracy

— ____TP4TN isi = ZIP
(ACC = TPEINAFPEFN ), precmon(];];;E = TPIEP )
_ . — 9PREXRecall -
Recall = TP+FF]\}/D7 F1 - score = 2PRE+Recall’ ROC
curve(FPR = zp75 as the abscissa, TPR = TPIFN a8

the ordinate), and AUC(Area Under ROC-Curve).

TABLE VII: Confusion results

True value Pre<.ii.c  value -
Positive | Negative

Positive TP FN

Negative FP TN

D. Performance evaluation

The evaluation of this mechanism mainly includes five parts:
the most important is RQ1. Performance evaluation of the
BCDM monitoring model, including evaluation in a single
intensity data set, a dynamic intensity data set, and a dynamic
network; and RQ2. Performance comparison of the BCDM
monitoring mechanism and related algorithms; in addition,
it also includes RQ3. Efficiency evaluation of the IPv6 traf-
fic preprocessing strategy, RQ4. Lightweight verification of
BCDM, and RQS5. Feasibility analysis of our proposed IPv6-
DDoS attack source replayed by NAT4to6.

1) RQI-1: BCDM performance on traffic set: In this sec-
tion, we train and test the BCDM model on the data set in
Section V, and demonstrate performance of the model based
on these above metrics. In training, we set train epohs =
100, batchsize = 64 and learning rate start from 0.01 with
the ReduceLROnPlateau dynamical change. Table VIII shows
the performance metrics of BCDM model on the train set,
valid set, and test set of the fixed and dynamic intensity data

TABLE VI: Data sets types

Type

Percentage of DDoS packets in traffic matrix (DDoS intensity)

Fixed intensity

1% | 2% | 3% | 4% | 5% | 6% | 1% | 8% | 9% | 10% | 11% | 12% | 13% | 14% | 15%

Dynamic intensity | 1%-3% \ 4%-7%

\ 8%-11% \ 12%-15%




TABLE VIII: BCDM performance on [Pv6-DDoS traffic matrix set

Train set [ Valid set Test set

Intensity LOSS ACC Fl-score PRE RECALL AUC LOSS ACC Fl-score PRE RECALL AUC LOSS ACC Fl-score PRE RECALL AUC

1% 0.5706 0.7024 0.7033 0.7089  0.7047 0.7651 0.5830 0.6850 0.6843 0.6889  0.6866 0.7651  0.5908 0.6920 0.6899 0.6941  0.6904 0.7651
2% 0.4872  0.7474 0.7710 0.7752  0.7717 0.8405 0.4650 0.7710 0.7703 0.7755 0.7710 0.8405 0.4698 0.7650 0.7640 0.7682  0.76455 0.8405
3% 0.4194  0.8033 0.8047 0.8145 0.8061 0.8816 0.4340 0.8030 0.8017 0.8104 0.8029 0.8817 0.4202 0.7840 0.7792 0.7979 0.7824 0.8981
4% 0.3804 0.8196 0.8287 0.8308 0.8288 0.9032 0.3570 0.8380 0.8379 0.8396  0.8375 0.9033 0.3312 0.8430 0.8429 0.8446 0.8438 0.9033
5% 0.2983 0.8734 0.8703 0.8707 0.8703 0.9400 0.2780 0.8830 0.8834 0.8834 0.8835 0.9401 0.3018 0.8720 0.8720 0.8726  0.8723 0.9401
6% 0.2495  0.8959 0.8981 0.8984 0.8981 0.9493  0.2420 0.8880 0.8884 0.8884 0.8888 0.9494  0.2275 0.9090 0.9087 0.9083  0.9093 0.9494
7% 0.2004 09110 0.9145 0.9145 09146 0.9694 0.2070 0.9080 0.9078 0.9076  0.9081 0.9694 0.1904 09130 0.9127 0.9125 09129 0.9694
8% 0.2102 0.9164 0.9220 0.9220 0.9219 0.9632  0.2050 0.9200 0.9194 0.9194 09194 0.9632 0.2125 09190 0.9189 0.9189 09189 0.9633
9% 0.1892  0.9254 0.9254 0.9256  0.9254 0.9688 0.1510 0.9440 0.9434 0.9435 0.9437 0.9689 0.2047 0.9180 0.9179 0.9184 0.9180 0.9689
10% 0.1065 0.9557 0.9615 0.9616 0.9617 0.9873  0.0950 0.9660 0.9654 0.9656  0.9653 0.9873  0.0936 0.9640 0.9638 0.9644  0.9634 0.9873
11% 0.1065 0.9596 0.9687 0.9690 0.9687 0.9857 0.1000 0.9610 0.9609 0.9613  0.9610 0.9858 0.1018 0.9580 0.9579 0.9585 0.9580 0.9858
12% 0.0340 0.9870 0.9891 0.9891 0.9891 0.9930 0.0340 0.9900 0.9894 0.9896  0.9894 0.9930 0.0309 0.9890 0.9889 0.9890 0.9889 0.9930
13% 0.0281 0.9873 0.9932 0.9933  0.9932 0.9974 0.0249 09915 0.9915 0.9914  0.9915 0.9929 0.0244 0.9920 0.9919 0.9916  0.9924 0.9980
14% 0.0165 0.9996 0.9987 0.9990 0.9987 0.9957 0.0197 0.9910 0.9909 0.9913  0.9910 0.9858 0.0101 0.9980 0.9979 0.9985  0.9980 0.9970
15% 0.0181 0.9943 0.9994 0.9994  0.9994 0.9968 0.0024 0.9995 0.9995 0.9995  0.9995 0.9997 0.0049 1.0000 0.9990 0.9991  0.9989 1.0000
1%-3% 0.4379 0.7866 0.7859 0.7860 0.7859 0.8604 0.4750 0.7680 0.7683 0.7684 0.7682 0.8605 0.4832 0.7700 0.7698 0.7698 0.7705 0.8605
4%-1% 0.1586 0.9447 0.8721 0.8967 0.8765 0.9580 0.3060 0.8750 0.8744 0.8974 0.8795 0.9581 0.3046 0.8810 0.8785 0.9055 0.8783 0.9580
8%-11% 0.1220  0.9460 0.9454 0.9467 0.9459 0.9770 0.1200 0.9470 0.9463 0.9483  0.9458 09771 0.1294 0.9420 0.9419 0.9435  0.9420 0.9771
12%-15% 0.0145 0.9949 0.9967 0.9967  0.9967 0.9980 0.0090 0.9980 0.9975 0.9975 0.9974 0.9980 0.0112  0.9960 0.9959 0.9958  0.9961 0.9980

sets in IPv6. When the DDoS intensity increases from 1%
to 15%, BCDM can achieve 69.2% to 100.0% ACC on the
test set, while performs similarly on the train and valid sets.
This demonstrates that our proposed BCDM model has good
generalization ability with no overfitting, and can effectively
monitor the existence of DDoS packets in the traffic matrix. In
Fig. 11, we select four fixed DDoS intensity of 1%, 3%, 5%
and 10%, and show the change of ACC, LOSS and ROC of
BCDM training process in detail, proving that the monitoring
accuracy will rise with the rise in DDoS incident intensity.
Similarly in Table VIII, BCDM can also performs well on
the dynamic intensity datasets, being able to exhibit 99.6%
ACC in 12%-15% intensity interval. As shown in Fig. 12,
we also show the change of ACC, Loss, and ROC curve
in BCDM training on dynamic intensity data sets. Overall,
the performance of BCDM model on each intensity interval

is roughly equivalent to the average performance on each
including fixed intensity, which indicates that BCDM can still
maintain performance in the face of DDoS incidents with
slight fluctuations in intensity.

2) RQI-2: Monitoring performance in dynamic network:
Furthermore, we test BCDM in a real network environment,
generate traffic matrices for analysis by dynamically capturing
network packets. The result is shown in Fig. 13 below, where
the sum of the normal background traffic and DDoS attack
traffic rates is 500 packets/s. On this basis, we adjust the rates
of normal traffic and DDoS attack traffic in different time
intervals to simulate the network status when DDoS attacks
of different intensities occur. We conduct 10 rounds of tests
respectively, where the performance of BCDM in the dynamic
network is consistent with that on the traffic matrix data
sets. This experiment well verify the monitoring capability
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Fig. 12: Change of ACC, Loss, and ROC in BCDM training on dynamic intensity data sets

of our mechanism in a realistic dynamic traffic scenario, all
can realize the monitoring task at different intensities with an
alarm accuracy of 95% confidence interval. But the average
numbers of traffic matrices required to analyze is different.
At low intensities, BCDM needs to capture multiple traffic
matrices to accurately warn, but this situation will improve as
the attack intensity increases. It was not until the rate of DDoS
rate reach 11% that BCDM can always maintain accurate
alarms through one-time analysis of the traffic matrix. The
reason for this phenomenon is the instability of the captured
traffic matrix samples caused by the uneven distribution of
traffic in the dynamic network. It also reflects the necessity of
controlling variables by assuming uniform distribution in our
manually produced traffic matrix samples.

3) RQ2: Monitoring performance comparison: In the task
of DDoS monitoring, the excellent solution mechanism lies in
the minimum intensity of DDoS incident that it can accurately
alert. The smaller this alert intensity value is, the faster
the detector can react to DDoS incidents that occurs in the
network. In the experiment, we use the same data set, that
is, our self-built pure IPv6-DDoS traffic from the converted
CIC-DDo0S2019, to test the monitoring performance of dif-
ferent network behaviors including DDoS attack incidents of
different intensities. First, based on the performance of ACC
in Table IX, we draw the ACC curve of the proposed BCDM
as Fig. 14, where X-axis represents the DDoS intensity, and Y-
axis represents the ACC on the corresponding test set. As can
be observed, BCDM can reach an ACC of more than 90.9%
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when the DDoS intensity is over 6%, more than 95.8% when
the DDoS intensity is over 10%, more than 99.2% when the
DDoS intensity is over 13%, and 100% at 15% intensity.
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Fig. 14: BCDM DDoS monitoring sensitivity
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On this basis, as shown in Table IX, we compare
the recent works in Setction II.B, showing the moni-
toring accuracy(ACC,,) of DDoS incidents with different
intensities(],,).During this experiment, we reproduce each
comparison algorithm respectively and build corresponding
feature environments based on the same CIC-DDoS2019
dataset to ensure the consistency of data quality. Our compar-
ison includes two aspects: First, as shown in Fig. 15, we test
the monitoring ACCy and ACCs under 6%(11) and 10%(15)
DDoS intensities to compare the accuracy performance of
each method. Secondly, as shown in Fig. 16, we keep upping
the intensity and record the value(/3) when each method
can reach 100%(ACC3), so as to compare the monitoring
credibility performance. In this process, the intensity span is
also increased, 1 in 1%-20%, 2 in 21%-40%, and 5 over 40%.

TABLE IX: Monitoring performance comparison

Mechanism Intensity | ACC Intensity | ACC Intensity | ACC
Li [29] 6% 54.80% | 10% 58.00% | 35% 100%
Ahalawat [30] | 6% 68.81% | 10% 75.53% | 20% 100%
Aladaileh [31] | 6% 83.12% | 10% 84.97% | 75% 100%
Feng [34] 6% 72.05% | 10% 80.42% | 22% 100%
Kirtas [35] 6% 80.29% | 10% 83.65% | 30% 100%
Ours 6% 90.90% | 10% 96.40% | 15% 100%

The majority of DDoS monitoring methods are based on
observing the network behavior changes[27], where entropy
is an important quantitative indicator of it. Such as the recent
p-entropy method Li et al.[29], the Renyi entropy method
Ahalawat et al.[30], and Aladaileh et al.[31]. Generally speak-
ing, if the entropy change exceeds 10%, the DDoS behavior
can be 100% recognized, while in other cases, the accuracy
can be measured based on the statistical degree of change.
So although ¢-entropy can reach 100% under 35% intensity,
but only 54.8% and 58% accuracy at 6% and 10% intensities.
Renyi entropy can perform better, reaching 100% accuracy
under 20% intensity, and maintaining 68.81% and 75.53%
accuracy at 6% and 10% intensities. Aladaileh’s method can
achieve the best 83.12% and 84.97% at 6% and 10% inten-
sities, but cannot get close to 100% accuracy until the DDoS
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intensity reached 75%. In addition to entropy, recent monitor-
ing approaches also leverage techniques such as deep learning
for analyzing network behavior and traffic. Feng’s method[34]
uses stacking of base learners to analyze flow statistics and
network congestion, attaining 74.05% and 83.42% accuracies
at the 6% and 10% intensities and achieves 100% accuracy at
22% intensity. Kirtas[35] introduces photonic neuromorphic
deep learning and combine port information in traffic anal-
ysis to enhance monitoring, achieving 84.29% and 87.65%
accuracies at the 6% and 10% intensities and hitting 100%
at 30% intensity. In contrast, our proposed BCDM model
can give 90.9% and 96.4% ACC at 6% and 10% intensity
respectively, and 100% ACC at just 15% intensity. Obviously,
our monitoring mechanism that combines BCDM and traffic
matrix can more precisely monitor the emergence of the lower-
intensity DDoS incidents in the network, enabling us to take
defensive action more quickly.

4) RQ3: Efficiency evaluation of IPv6 preprocessing strat-
egy: In this section, we evaluate the advantages of our pro-
posed IPv6 traffic preprocessing strategy in Section IV.A, in-
cluding its time and memory overhead. From two perspectives,
first, we compare it with general algorithm library methods,
such as Pyshark, to verify the efficiency advantage. Secondly,
we put similar traversal idea into IPv4 traffic for comparison
to verify the unique matching of our strategy to IPv6. We
prepare pcap files containing 10,000 IPv6 and IPv4 packets
respectively and combine the traversal strategy and pyshark to
form four parsing scenarios. The time and memory overhead
of pcap prasing is shown in the following Table X.



TABLE X: The time and memory overhead of pcap prasing

Scenario Name Time taken | Memory used
Our strategy-IPv6 | 2.24s 24576 bytes
Pyshark-IPv6 45.74s 2777088 bytes
Traversal-1Pv4 4.72s 28672 bytes
Pyshark-I1Pv4 33.44s 2784128 bytes

It can be seen that the parsing method of traversing the
binary data packet content of pcap is extremely lightweight
in terms of time and memory overhead. Compared to the
existing library Pyshark[47], it is more efficient and faster
because of avoiding the additional library calls and abstraction
layers. Compared with IPv4, the unique fixed-length header
feature of IPv6 makes our parsing strategy perform the fastest
efficiency 2.24s. This is because the dynamic length of the
IPv4 header and the presence of optional fields require more
processing in parsing, making it inefficient and has the risk of
errors, especially in high-performance network environments
that need to process a large number of packets.

5) RQ4: Lightweight verification of BCDM Model: In order
to meet the normalization characteristic of DDoS monitoring
operation, our design of BCDM places a focus on lightweight.
Therefore, we compare the running overhead of our Base-CNN
model and the BCDM model to verify the effectiveness of the
lightweight strategy we used. In Table XI, we compare the
number of parameters, model size, memory access, FLOPs,
operational intensity, reasoning time, and ACC.

TABLE XI: Lightweight of Base-CNN and BCDM

the lightweight BCDM can better match the requirements of
DDoS monitoring scene, that means the normalized detector
has a lower overhead and resource consumption.

P (TFLOP/s)

Attainable Bound based on bandwidth .
Performance i
Bound based on peak performance
9
BCDM
Base-CNN
5.56
|
14.9 24.13

/

382GB/s

Fig. 17: Roof-line of Base-CNN and BCDM running on our
GTX1080 test platform

Intensity

6) RQ5: Feasibility evaluation of the NAT4to6 strategy: In
this section, we introduce different DDoS attack traffic sources
to verify the feasibility of the NAT4to6 strategy based on the
Jool tool for replaying the CIC-DD0S2019 dataset in an IPv6
network. This involves ensuring the successful retention of
DDoS attack traffic characteristics during the replay process.
To achieve this, we observe the performance differences of
the BCDM model under the following three ICMPv6 DDoS
source as the only DDoS traffic type: a. our replayed traffic of
CIC-DDo0S2019; b. The ICMPv6-DDoS traffic set published
by Manickam[49] with THC-IPv6 toolkit; and c. THC-IPv6
DDoS tool stimulated in Fig.10 by us.

Obviously, the BCDM model has a clear advantage in
lightweight and computational efficiency. First, in terms of
model volume, the number of parameters and the storage
size of BCDM are compressed by 90.2% and 99%. Second,
BCDM includes a deeper convolutional structure to make up
for the performance loss brought on by model compression.
This makes BCDM have 5.3 * 107 FLOPs during inference,
which is 2.4 times that of Base-CNN model, while its memory
access is reduced by 32.8%. Third, as Fig. 17, we draw
the roof-line model[48] of the GTX1080 graphics card we
used in the experiment, and indicate the performance coor-
dinates of the two models. It can be seen that due to the
difference in computing intensity, Base-CNN can only use
5.5TFLOP/s computing power, while BCDM can use full
9TFLOP/s computing power for reasoning. However, BCDM
still has space for development in terms of making full use
of the CPU capability even with the advancement of the
graphics card. When detecting the same size traffic matrix, the
reasoning time of BCDM is reduced by 34.3%. In conclusion,
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Model name Base-CNN BCDM

Num of pramters 113,566 11114 TABLE XII: BCDM performance with different DDoS sources
Model size(MBytes) 0443 0.004 DDoS traffic source DDoS intensity ACC
;fg’;sry access(MBytes) ;"2‘2‘1‘0 - 2'23? 57 CIC-DD0S2019+NAT4t06 (ICMPV6) 5% 89.1%

. . . . CIC-DDo0S2019+NAT4to6 (ICMPv6) 10% 97.7%
Operatlonal Intensny(FLOPs/Byte) 14.9 53.6 ICMPv6 DDoS Traffic set[49] 5% 88.5%
Reasoning time(ms) 0.399 0.262 ICMPv6 DDoS Traffic set[49] 10% 97.0%
(Intensity, ACC) (10%, 98.3%) | (10%, 96.4%) The-IPv6 in IPV6-LAN 5% 87.8%

The-IPv6 in IPv6-LAN 10% 95.9%

The performance is summarized in Table XII, we found
that compared to traffic matrices containing ICMPv6, TCP,
and UDP DDoS traffic, those containing only ICMPv6 traffic
are easier to identify for malicious behavior. The reason is
likely that single-protocol traffic is simpler, and the model
only needs to recognize ICMPv6 characteristics without con-
sidering the complexities of TCP and UDP. Additionally,
although BCDM has similar overall performance, it performs
best on the NAT4to6 replay of CIC-DDoS2019, and worst
on our the-ipv6 tool, even though Manickam’s dataset is also
generated using thc-ipv6. This indicates that: a. Data Quality
and Stability: CIC-DDo0S2019, published by the Canadian
Institute for Cybersecurity, features more rigorous and realistic
attack simulations, making it widely recognized and used in
academia and industry. b. Feasibility of NAT4to6 replay: The
similar performance across the three data sources proves that
the attack traffic replayed through NAT4to6 is effective, as
its DDoS attack characteristics remain intact when replayed

Operational (FLOP/Byte)



in an IPv6 network. Although ICMPv4 and ICMPv6 have
some differences in protocol details, their essential charac-
teristics and attack patterns are the same in the context of
DDoS attacks. The same is true for DDoS attacks based on
TCP and UDP in IPv6 network environments. Thus, based
on CIC-DDo0S2019, we can introduce diversified IPv6-DDoS
traffic with ICMPv6, TCP, and UDP, achieving comprehensive
coverage and enhancing response of monitoring.

VII. CONCLUSIONS

The rapid expansion of access devices in the IPv6 network
increases the future threat of DDoS attacks. To enhance
defense capability, we need to be aware of undergoing DDoS
incidents in the early stages, intervene as early as possible
to reduce defense pressure. Therefore, we innovatively design
a two-dimensional traffic matrix, which abstracts a network
behavior feature as monitoring anchor point by aggregating
continuous network traffic. On this basis, we build a moni-
toring core with BCDM deep learning model. After training,
it can use the matrix as model input to overall perceive the
malicious changes in abstracted network behavior when spo-
radic DDoS traffic is mixed in, thereby warning the ongoing
DDoS incident. However, in this paper, the field of view for
network monitoring is limited to a single traffic matrix of
size 100x82, which has certain limitations. In future work, we
plan to enhance traffic coverage and monitoring efficiency by
expanding this field of view. Specifically, we will use the com-
bined continuous traffic matrix samples and introduce LSTM
to capture the sequence dependencies between matrices. Based
on CNN’s ability to analyze abstract network behavior in a
single traffic matrix, the changing relationships of continuous
network behaviors will be incorporated into the model analysis
to explore better monitoring performance. Additionally, to
promote the feasible deployment of monitoring mechanisms,
we also need to comprehensively consider multiple aspects
such as collaborative scalability, data privacy and security, and
trustworthy supervision of monitoring activities.
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