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Abstract

We derive some key extremal features for stationary kth-order Markov chains

that can be used to understand how the process moves between an extreme

state and the body of the process. The chains are studied given that there is an

exceedance of a threshold, as the threshold tends to the upper endpoint of the

distribution. Unlike previous studies with k > 1, we consider processes where

standard limit theory describes each extreme event as a single observation

without any information about the transition to and from the body of the

distribution. Our work uses different asymptotic theory which results in non-

degenerate limit laws for such processes. We study the extremal properties of

the initial distribution and the transition probability kernel of the Markov chain

under weak assumptions for broad classes of extremal dependence structures

that cover both asymptotically dependent and asymptotically independent

Markov chains. For chains with k > 1, the transition of the chain away from the

exceedance involves novel functions of the k previous states, in comparison to

just the single value, when k = 1. This leads to an increase in the complexity

of determining the form of this class of functions, their properties and the

method of their derivation in applications. We find that it is possible to derive

an affine normalization, dependent on the threshold excess, such that non-

degenerate limiting behaviour of the process, in the neighbourhood of the

threshold excess, is assured for all lags. We find that these normalization

functions have an attractive structure that has parallels to the Yule–Walker

equations. Furthermore, the limiting process is always linear in the innovations.

We illustrate the results with the study of kth order stationary Markov chains

with exponential margins based on widely studied families of copula dependence

structures.

Keywords: conditional extremes; extremal index; homogeneous and stationary

Markov chain; recurrence equation; tail chain
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1. Introduction

The extreme value theory of sequences of independent and identically distributed

(i.i.d.) random variables has often been generalised to include the situation where the
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variables are no longer independent, as in the monograph of Leadbetter et al. (1983),

where for stationary processes the focus is on long-range dependence conditions and

local clustering of extremes as measured by the extremal index. Among the most useful

stochastic processes are positive recurrent Markov chains, with a continuous state

space, which provide the backbone of a broad range of statistical models for stationary

time series. Such models have attracted considerable interest in the analysis of extremes

of stochastic processes. These processes meet the required long-range dependence

conditions (O’Brien, 1987; Rootzén, 1988), so it is their local clustering properties of

extreme values that is of interest. By considering the behaviour of the process when

it is extreme, that is, when it exceeds a high threshold, Rootzén (1988) showed that,

under certain circumstances, the times of extreme events of stationary Markov chains

that exceed a high threshold converge to a homogeneous Poisson process and that the

limiting characteristics of the values within an extreme event, including the extremal

index θ with θ ∈ (0, 1] being the reciprocal of the mean extreme event duration, can be

derived as the threshold converges to the upper endpoint of the marginal distribution.

This limit result only reveals the behaviour of the process whilst it remains at the

same level of marginal extremity as the threshold, and therefore it is only informative

about the temporal structure of extreme events for a subset of processes, i.e. those with

θ < 1. This excludes all processes with θ = 1, where extreme values occur in temporal

isolation, with no apparent clustering of extreme values revealed through this limit

theory. Processes with θ = 1 include all Gaussian processes, so they can exhibit

strong temporal dependence. The behaviour of extreme events of these processes are

of interest, but cannot be studied through the existing methods. So we are interested

in deriving the detailed characteristics of a positive recurrent Markov chain within an

extremal event, irrespective of whether θ < 1 or θ = 1, to provide more insights than

are currently available.

We focus on real-valued stationary kth-order Markov processes {Xt : t ∈ Z}, for

k ∈ N, with the marginal distribution function F of Xt and with a copula (Joe, 2015)

for the joint distributions of (Xt−k, . . . , Xt), for all t ∈ Z, which is invariant to time,

so that the one-step forward transition probability kernel π is invariant to t, as it is

a function of F and this copula. Motivated by the limitations of the established limit

theory for stationary Markov chains, we seek to understand better the behaviour of
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such processes within an extreme event under less restrictive conditions through using

a more refined limit theory. Specifically, our analysis aims to characterise the temporal

behaviour of extreme events transitioning between an extreme state and the body of

the distribution irrespective of whether the process has θ < 1 or θ = 1.

The case where k = 1 has been well-studied. Under weak conditions, Rootzén (1988)

and Smith (1989) show that the powerful general Poisson limit gives that the extremal

index is either θ < 1 or θ = 1, respectively, depending on whether χ1 > 0 or χ1 = 0,

where

χ1 = lim
u→1

Pr{F (Xt) > u |F (Xt−1) > u},

for all t ∈ Z. These two limiting properties are known as asymptotic dependence and

asymptotic independence of (Xt−1, Xt), respectively, in bivariate extremes literature.

To derive greater detail about the behaviour within extreme events for asymptotically

dependent Markov chains the appropriate strategy is to study tail chains (Janßen and

Segers, 2014). A tail chain arises as a limiting process after witnessing an extreme

state, under rescaling of the future Markov chain by the value of the process in the

extreme state, resulting in the tail chain being driven by a random walk. Tail chains fail

to reveal the detailed structure of extreme events for any asymptotically independent

process. For k = 1, Papastathopoulos et al. (2017) take a different approach, using

a new limiting theory involving hidden tail chains, defined below by the limit (2),

which treat both asymptotically dependent and asymptotically independent chains in

a unified theory. They establish the extremal event properties that we require more

generally for when k > 1. So, the focus of our paper is similar to Papastathopoulos

et al. (2017), but with the added difficulties that the complexity of extreme events

substantially increases with k.

Markov processes with order k > 1 extend the traditional concept of first-order

Markov processes by incorporating information from the k ∈ N most recent states

into the transition behaviour of the next state. The fundamental importance of these

higher-order Markov processes lies in their ability to capture and model dependencies

in time-series data in real-world scenarios, which first-order Markov processes would

fail to do. Specifically, the first-order process only can account for the current level of

the process and not whether at that time the process has just moved up or down, k = 2
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is required in such a scenario, with larger k needed as more subtle memory of the past

is important to determine the future behaviour. To the best of our knowledge, key

characteristics of the extremal behaviour of higher-order Markov chains have not been

dealt with in-depth, yet these are crucial for understanding the evolution of extreme

events of random processes and for providing well-founded parametric models that can

be used for inference, prediction and assessment of risk, e.g. Winter and Tawn (2015,

2017).

Modelling stationary kth-order Markov processes requires the modelling of (k +

1)-dimensional multivariate distributions of (Xt−k, . . . , Xt) to describe the transition

distributions π of Xt | (Xt−1, . . . , Xt−k), so the extremal properties processes cannot

be characterised as simply as by the measure χ1. In fact, it is known from multivariate

extreme value theory that the challenge grows exponentially with k (Chiapino et al.,

2019; Simpson et al., 2020). Resnick and Zeber (2013) and Janßen and Segers (2014)

work on tail chains when k > 1, but restrict themselves to processes which, in addition

to other conditions, require that χj > 0 for all j = 1, . . . , k, where

χj = lim
u→1

P(F (Xt) > u |F (Xt−j) > u),

for all t ∈ Z, termed full pairwise asymptotic dependence across all variables in the

transition, and restrict the Markov chain from moving from an extreme state to the

body of the process in a single step. Even in these restrictive cases few results exist,

e.g. Perfekt (1997); Yun (1998); Janßen and Segers (2014), however, we provide some

extensions for these. We also derive the extensive extremal properties for full pairwise

asymptotically independent processes, i.e. with χj = 0 for j = 1, . . . , k − 1. Finally,

we determine the behaviour for extreme events for a class of processes which allow a

subset of the k > 1 consecutive states to be in the body of the process while the rest

are in an extreme state. This class of process falls between previous investigations and

our core developments here.

To work with hidden tail chains, we study the effect of different dependence struc-

tures for stationary Markov chains with marginal distributions with exponential tails,

for which Papastathopoulos et al. (2017) show that more general results can be achieved

when k = 1 when using affine normalizations than when the marginals have regularly

varying tails, which is typically used to studying tail chains. There is no loss of
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generality in making such a transform, as through the probability integral transform we

can transform from any marginal distribution to any other, e.g. from regularly varying

tails to being in the Gumbel max-domain of attraction.

Without loss of generality, we assume that sup{x : F (x) < 1} =∞. For k > 1, we

assume that there exist k − 1 norming functions at : R → R and bt : R → R+, for

t = 1, . . . , k − 1, such that{
Xt − at(X0)

bt(X0)
: t = 1, . . . , k − 1

} ∣∣∣∣ {X0 > u} d−→ {Zt : t = 1, . . . , k − 1} (1)

as u → ∞, where
d−→ denotes convergence in distribution and (Z1, . . . , Zk−1) is a

random vector that is non-degenerate in each component. Then our aim is to find

conditions that guarantee the existence of an infinite sequence of additional functions

at : R→ R and bt : R→ R+ for t = k, k + 1, . . ., such that

{
Xt − at(X0)

bt(X0)
: t = 1, 2, . . .

} ∣∣∣∣ {X0 > u} d−→ {Zt : t = 1, 2, . . .}, (2)

where each Zt is non-degenerate, with the limit process {Zt : t = 1, 2, . . .} termed the

hidden tail chain. The hidden tail chain generalises the tail chain studied by Janßen

and Segers (2014) as with our marginal choice, the tail chains require norming functions

to be at(x) = x and bt(x) = 1 for all t, and any Zt can be degenerate at {−∞}. In cases

where we find that at(x)/x → αt < 1 as x → ∞ for all t = 1, 2, . . . , k − 1, that is, as

Heffernan and Tawn (2004) show, the process has asymptotic pairwise independence

for all lags up to k − 1, then the tail chain degenerates as {−∞,−∞, . . .} but the

hidden tail chain is non-degenerate and stochastic for all components. Furthermore,

we find that if the process is asymptotically dependent for all lags t = 1, . . . , k− 1, i.e.

at(x) ∼ x and bt(x) ∼ 1 as x→∞ for all t = 1, 2, . . . , k− 1, then the hidden tail chain

is identical to the tail chain. So the hidden tail chain reveals important structure of

the extreme events lost by the tail chain when the tail chain becomes degenerate but it

equals the tail chain otherwise. So, hidden tail chains have wider use than tail chains.

Our primary targets are, under weak conditions, to find how the first k− 1 norming

functions at(·) and bt(·) in limit (1), control those in limit (2) where t ≥ k and to identify

the transition dynamics of the hidden tail chain along its index and across its state

space. For the former, to find the behaviour of the t ≥ k norming functions requires a
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step-change in approach relative to the case when k = 1, studied by Papastathopoulos

et al. (2017). In particular, the transitions involve novel functions, a and b, of the

k previous values in comparison to just the single value when k = 1. This instantly

makes the problem more challenging as the transition functions do not simply have

more arguments, but there can be interaction effects from these arguments. Here

we develop results for determining the form of this class of functions and present a

method of their derivation in applications. We find some parallels between the extremal

properties of the norming functions and the Yule–Walker equations, used in standard

time-series analysis (Yule, 1927; Walker, 1931). We also make the surprising finding

that we can always express the hidden tail chain in the form of a non-stationary scaled

autoregressive process. Specifically,

Zt = ψat (Zt−k : t−1) + ψbt (Zt−k : t−1) εt for all t > k, (3)

where Zt−k : t−1 = (Zt−k, . . . , Zt−1), ψat : Rk → R, ψbt : Rk → R+ are continuous

update functions which fall in a particular class of functions, and {εt : t = 1, 2, . . . } is

a sequence of non-degenerate i.i.d. innovations.

Using the values of at, bt and the properties of Zt, as t → ∞, we are able to

investigate how the Markov chain returns to a non-extreme state following the occur-

rence of an extreme state. We focus almost exclusively on forward in time hidden tail

chains, as in limit (1), but we also briefly discuss back-and-forth hidden tail chains,

expanding on the equivalent feature for tail chains that Janßen and Segers (2014)

study. The limit theory developed in this paper is the first that considers asymptotic

independence when studying extreme values of any structured process other than a

first-order Markov processes. The extension to stationary kth-order Markov processes

opens the possibility to developing similar theory for much broader classes of graphical

models. Studying multivariate extreme values on graphical structures has been a rich

vein of research recently, with several influential papers such as Engelke and Hitz

(2020); Segers (2020); Asenova and Segers (2023) and Engelke and Ivanovs (2021).

However, all these papers focus on the case of all underlying distributions of cliques on

the graph being asymptotically dependent. We believe that the results in this paper

will help to unlock these approaches to enable the case when some, or all, cliques have

asymptotic independence.
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Organization of the paper. In Section 2, we state our main theoretical results for

higher-order Markov chains with affine update functions under rather broad assump-

tions. In particular, in that section we relax the requirement for the Markov chain to be

stationary, instead assuming only that it is homogeneous. This allows us to show that

the new developments here apply more generally. However, from Section 3 onwards

we restrict attention to stationary processes as they allow for the derivation of a much

a more refined characterisation of extreme events and enable comparisons with past

literature. Specifically, in Section 3 we study hidden tail chains of full pairwise asymp-

totically dependent and full pairwise asymptotically independent stationary Markov

chains with standardized marginal distributions. Based on the theory established in

Sections 2 and 3 we study a number of special cases and obtain either simpler or closed-

form solutions in Sections 4 and 5. Specifically, in Section 4 we characterise closed-form

solutions for the norming functions for a class of asymptotically independent Markov

chains, with the structure of these functions paralleling that of the autocovariance in

Yule–Walker equations. In Section 5, we provide examples of Markov chains constructed

from widely studied classes of joint distributions such as Gaussian, max-stable, and

inverted max-stable copulas, and provide a detailed analysis for particular parametric

sub-families of these classes. All proofs are postponed to Appendix A.

Some notation. We use the following notation linked to vector and multivariate

function operations. Vectors are typeset in bold and vector algebra is interpreted

as componentwise throughout the paper. For example, when x = (x1, . . . , xk) and

x′ = (x′1, . . . , x
′
k) are two vectors of the same size then x/x′ = (x1/x

′
1, . . . , xk/x

′
k).

We also use dx0 : t as shorthand for dx0 × · · · × dxt. The notation x>y is reserved

for the scalar product of two vectors x,y ∈ Rk, that is, x>y =
∑k
i=1 xi yi. For a se-

quence of measurable functions {gt}t∈N and real valued numbers {xt}t∈N, the notation

gt−k : t−1(x) and xt−k : t−1, , for t, k, t− k ∈ N, is used to denote (gt−k(x), . . . , gt−1(x))

and (xt−k, . . . , xt−1), respectively. By convention, univariable functions on vectors are

applied componentwise, e.g. if f : R → R, x ∈ Rk, then f(x) = (f(x1), . . . , f(xk)).

The symbols 0p and 1p, where p ∈ N are used to denote the vectors (0, . . . , 0) ∈ Rp and

(1, . . . , 1) ∈ Rp. We use the notation ‖x‖ for the L1 norm of a k-dimensional vector

x. For a Cartesian coordinate system Rk with coordinates x1, . . . , xk, ∇ is defined
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by the partial derivative operators as ∇ =
∑k
i=1(∂/∂xi)ei for an orthonormal basis

{e1, . . . , ek}. The gradient vector of a differentiable function f : Rk → R at x is

denoted by ∇f(x) = ((∇f)1(x), . . . , (∇f)k(x)).

We use the following notation for sets and special functions. The closure of set A is

denoted by A. The (k − 1)-dimensional unit-simplex {ω ∈ [0,∞)k : ‖ω‖= 1}, k ∈ N,

is denoted by ∆k−1. Given cones K ⊆ Rk+ and K′ ⊆ Rk+, a function f : K → K′ is

called homogeneous of degree ρ ∈ R if f(λx) = λρf(x) for all x ∈ K and λ > 0. Given

cones K ⊆ Rk+ and K′ ⊆ Rk+, a map f : X → X ′ with X ⊆ Rk+ and X ′ ⊆ Rk+ is said to

be order-preserving if y−x ∈ K implies f(y)− f(x) ∈ K′. An identity map is denoted

by id : X → X , taking every element in a set X and mapping it back to itself.

Notation linked to convergence is defined as follows. For a topological space E we

denote its Borel-σ-algebra by B(E) and the set of bounded continuous functions on E

by Cb(E). If fn, f are real-valued functions on E, we say that fn converges uniformly on

compact sets to f if for any compact C ⊂ E the convergence limn→∞ supx∈C |fn(x)−

f(x)| = 0 holds true. Moreover, fn is said to converge uniformly on compact sets to

infinity if infx∈C fn(x)→∞ for compact sets C ⊂ E as n→∞. Weak convergence of

measures on E is abbreviated by
w−→ . For random elements X,X1, X2, . . . defined on

the same probability space, we say {Xn} converges in distribution to X, and we write

Xn
d−→ X, if the distributions Pn of the Xn converge weakly to the distribution P of

X, that is, if Pn
w−→ P .

2. Theory for hidden tail chains of homogeneous Markov chains

2.1. Overview

In this section we present results for {Xt : t ∈ Z} being a homogeneous Markov

chain, with an extreme value at X0. That is, we assume that we have the distribution

function F0 for X0, for k > 1 with an initial conditional joint distribution function

F1:k−1|0(x1 : k−1 | x0) = Pr(X1 : k−1 ≤ x1 : k−1 | X0 = x0), for x1 : k−1 ∈ Rk−1, and

we have time invariant forward and backward one-step transition probability kernels
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π and π− given by

π(xt−k : t−1, xt) := P(Xt ≤ xt | Xt−k : t−1 = xt−k : t−1) and

π−(x−(t−k) :−(t−1), x−t) := P(X−t ≤ x−t |X−(t−k) :−(t−1) = x−(t−k) :−(t−1)) (4)

for t ≥ k and t ≥ 1, respectively. So, in Section 2 we do not impose structure on

the marginal distribution of Xt for t 6= 0, or derive how the results relate to the joint

distributions of Xt−k :t for any t, that is considered in Section 3, where stationarity

assumptions are made.

Under weak assumptions, in Section 2 we show how the functions at(x), bt(x) for

t = 1, . . . , k − 1 and the update functions of (1) and (3), respectively, are connected

to transition functionals a and b and the hidden tail chain. From the chosen initial

conditional distribution F1:k−1|0, we can derive the norming functions at(x) and bt(x)

for t = 1, . . . , k−1. We consider three different scenarios for their asymptotic behaviour.

Specifically, in Section 2.3, we have at(x)/bt(x) → ∞ as x → ∞. In Section 2.4 we

cover the case where at(x) = 0 for all x > 0 and bt(x)→∞ as x→∞, but implicitly

that section also covers the case at(x) = O(bt(x)) as x → ∞, where in that case the

associated at(x)/bt(x) term in (2) may tend to a constant. In Section 2.5 we consider

the cases where both at(x) and bt(x) are invariant to x. Sections 2.3–2.5 focus on

forward hidden tail chains, whereas in Section 2.6 we look at the joint behaviour of

backward and forward hidden tail chains, and so drop the term forward in describing

π until then.

2.2. Marginal standardization

To facilitate the generality of our theoretical developments, our assumptions about

the margins of the process throughout Section 2 only concern the tail behaviour of

the random variable at which we condition the Markov process to exceed a level. This

assumption is in the style of theoretical approaches in conditional extreme value theory

(Heffernan and Resnick, 2007) and is made precise by Assumption A0.

Assumption 2.1. F0 has upper end-point ∞ and there exists a non-degenerate prob-

ability distribution H0 on [0,∞) and a measurable norming function σ(v) > 0, such
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that
F0(v + σ(v)dx)

F 0(v)

w−→ H0(dx) as v →∞.

From Pickands (1975), the limit distribution H0 can be identified by a generalized

Pareto distribution with a non-negative shape parameter, i.e. H0(x) = 1−(1+ξx)−1/ξ,

for x > 0 and ξ ≥ 0. This covers the Pareto distribution, with power-law decay, when

ξ > 0, and the exponential distribution when ξ = 0, taken as the limit as ξ → 0.

2.3. Transitional behaviour for chains with location and scale norming

In this section we consider homogeneous Markov chains where the initial conditional

distribution F1 : k−1 | 0 is such that in limit (1) we have functions at(x)/bt(x) → ∞ as

x → ∞ for all t = 1, . . . , k − 1 when k > 1. Specifically, Assumption A1 ensures

that given an extreme event {X0 = v} occurs at time t = 0, there exists normalising

functions at(x) and bt(x) for t = 1, . . . , k − 1 such that if the arguments of F1 : k−1 | 0

are affine transformed using these functions, then a non-degenerate limiting initial

conditional distribution G is obtained for F1 : k−1 | 0, in the limit as v → ∞. This

provides the first k − 1 renormalized states of the Markov process after X0.

Assumption 2.2. (Behaviour of initial states in the presence of an extreme event.)

If k > 1, the initial conditional joint distribution function F1 : k−1 | 0 is such that there

exist

(i) for t = 1, . . . , k − 1, measurable functions at : R → R and bt : R → R+,

satisfying at(v) + bt(v)x→∞ as v →∞, for all fixed x ∈ R;

(ii) a distribution G supported on Rk−1 that has non-degenerate margins such that

P
(
X1 : k−1 − a1 : k−1(v)

b1 : k−1(v)
∈ dz1 : k−1

∣∣∣ X0 = v

)
w−→ G(dz1 : k−1) as v →∞.

Note that such conditions are not required by Papastathopoulos et al. (2017) when

k = 1. Assumption 2.2 implies that at(v) → ∞ and bt(v) = o(at(v)) as v → ∞, since

if bt(v) grew as fast as, or faster than, at(t), then for a suitably selected x ∈ R, with x

negative, we would have that at(v) + bt(v)x→ −∞ as v →∞.

Remark 2.1. When saying that a distribution is supported on a subset A of Rk,

we do not allow the distribution to place mass at the boundary ∂A of A. This is an
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important distinction which restricts the class of possible initial conditional distribution

functions F1 : k−1 | 0 that the homogeneous Markov chain can possess. See Example 5.4

in Section 5.3 for a stationary Markov chain which has limit G with mass on the

boundary, and hence breaks the conditions of Assumption 2.2.

After initializing the states X0, . . . , Xk−1, a complete characterization of the ad-

vancing sequence of states for t ≥ k is given by the one-step transition probability

kernel π(xt−k : t−1, xt). To motivate our next assumption about the behaviour of the

transition probability kernel of the process, consider how a complete characterization

may be given for higher-order Markov processes with k > 1 using induction on N. Fix

a t ≥ k > 1 and assume that there exist sequences of norming functions ai and bi,

i = 1, . . . , t− 1, such that,

X1 : t−1 − a1 : t−1(X0)

b1 : t−1(X0)

∣∣∣ {X0 > u} d−→ Z1 : t−1 as u→∞,

where each Zi is a random variable with a non-degenerate distribution on R. Therefore,

what is required is to assert that, under the induction hypothesis, we can find at and

bt such that for a1 : t = (a1 : t−1, at) and b1 : t = (b1 : t−1, bt), we have that {X1 : t −

a1 : t(X0)}/b1 : t(X0) | {X0 > u} d−→ Z1 : t, as u → ∞, where Zt is a random variable

with a non-degenerate distribution supported on R. To motivate our assumptions that

guarantee this latter convergence, it suffices to consider marginal convergence, that is,

the case where the distribution of {Xt − at(X0)}/bt(X0) | {X0 > u} converges weakly

under the induction hypothesis. Standard calculations give that

P
(
Xt − at(X0)

bt(X0)
≤ xt

∣∣∣ X0 > u

)
= (5)

=

∞∫
u

∫
Rt−1

P (X0 : t−1 ∈ dx0 : t−1)

F 0(u)

[ xt∫
−∞

P
(
Xt − at(X0)

bt(X0)
∈ dzt

∣∣∣ X0 : t−1 = x0 : t−1

)]

for t ≥ k. This expression can be simplified by exploiting the Markov chain properties

of {Xt} and by re-arranging the expression to clarify the connections with transitions

from the initial k − 1 states after an extreme event by a change of the variables being

integrated. First, replace at(X0) by at(x0) in the innermost integral, by virtue of

the conditioning on the exact value of X0 being equal to x0. Second, use the Markov

property so that the conditioning on all previous states is reduced to conditioning

on the previous k states. Third, change variables to z0 = {x0 − u}/σ(u) and zi =
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{xi − ai(x0)}/bi(x0), for i = 1, . . . , t − 1. This sequence of operations shows that (5)

equals

∞∫
0

F0{vu(dz0)}
F 0(u)

×

[
∫

Rt−1

P
(
X1 : t−1 − a1 : t−1(vu(z0))

b1 : t−1(vu(z0))
∈ dz1 : t−1

∣∣∣ X0 = vu(z0)

)
× (6)

×

{ xt∫
−∞

P
(
Xt − at(vu(z0))

bt(vu(z0))
∈ dzt

∣∣∣ Xt−k : t−1 − at−k : t−1(vu(z0))

bt−k : t−1(vu(z0))
= zt−k : t−1

)}]

for t ≥ k, where a0(x) = x, b0(x) = 1 for all x ∈ R and vu(z0) = u + σ(u) z0. Hence,

convergence of the innermost integral in the curly parentheses in (6), is necessary for

marginal convergence of probability (5) as v → ∞. To further simplify this integral,

for z ∈ Rk−1, let

At(v, z) = at−k : t−1(v) + bt−k : t−1(v) z. (7)

Then, observe that for functions a : Rk → R and b : Rk → R+, which for the present

are arbitrary functions but are made precise in Proposition 2.1, the innermost integral

can be written as

xt∫
−∞

P
(
Xt − a(Xt−k : t−1)

b(Xt−k : t−1)
∈

dzt
ψbt,u(Xt−k : t−1)

− ψat,u(Xt−k : t−1)
∣∣∣ Xt−k : t−1 = At(vu(z0), zt−k : t−1)

)
=

=

xt∫
−∞

π

(
At(vu(z0), zt−k : t−1),

a(Xt−k : t−1) + b(Xt−k : t−1)

(
dzt

ψbt,u(Xt−k : t−1)
− ψat,u(Xt−k : t−1)

))
,

where ψat,u and ψbt,u are given in expression (8) and depend on the functions a, b and

the normings at, bt, t ≥ k. Writing the integral in this way provides the connection

between the convergence of the transition probability kernel π, defined in expression

(4), and the required marginal convergence.

These observations motivate our next assumption, serving as an extension to higher

order (k > 1) of the conditions established by Papastathopoulos et al. (2017) in the
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context of first-order Markov chains. Specifically, to establish the convergence of this

re-arranged integral, the oscillation of the functions a and b in a neighbourhood of

infinity needs to be controlled, i.e. a and b need to be chosen such that the functions

ψat,u and ψbt,u converge locally uniformly to real-valued limits (ψat and ψbt , respectively),

as u→∞. These conditions are made precise by Assumption 2.3.

Assumption 2.3. (Behaviour of the next state of the process as the previous k states

become extreme.) Let k ≥ 1, a0(x) = x and b0(x) = 1. If k > 1, suppose that for

X1 : k−1, the Assumption 2.2 holds with norming functions a1 : k−1 and b1 : k−1. Then

assume that π is such that there exist,

(i) for t = k, k+1, . . . , measurable functions at : R→ R and bt : R→ R+, continuous

update functions ψat : Rk → R, ψbt : Rk → R+ and measurable functions a : Rk → R,

b : Rk → R+, such that, for all z ∈ Rk

ψat,v(zv) :=
a(At(v,zv))− at(v)

bt(v)
→ ψat (z) and ψbt,v(zv) :=

b(At(v, zv))

bt(v)
→ ψbt (z),

(8)

whenever zv → z as v →∞, where At(v, z) is defined by (7);

(ii) a non-degenerate distribution KA supported on R, such that for all z ∈ Rk and

for any f ∈ Cb(R)∫
R
f(x)π[At(v, zv), a(At(v,zv))+b(At(v,zv)) dx]→

∫
R
f(x)KA(dx), t = k, k+1, . . . ,

(9)

whenever zv → z as v →∞.

We are now able to characterise the hidden tail-chain for this type of homogeneous

Markov chain. Specifically, we combine assumptions about the marginal tail behaviour

of X0, via H0, the conditional limiting behaviour of initial state vector given X0 is

extreme, being given by G; and the restrictions on the transitional behaviour π of the

chain, expressed through the functions a and b. This is asserted by Theorem 2.1.

Theorem 2.1. Let {Xt : t ∈ Z} be a homogeneous kth order Markov chain satisfying

Assumptions 2.1, 2.2 and 2.3. Then as v →∞(
X0 − v
σ(v)

, X1 − a1(X0)

b1(X0)
, · · · , Xt − at(X0)

bt(X0)

) ∣∣∣ {X0 > v} d−→ (E0, Z1, . . . , Zt), (10)

where
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(i) E0 ∼ H0 and the vector (Z1, Z2 . . . , Zt) are independent, for all t ≥ 1,

(ii) Z0 = 0 a.s., (Z1, . . . , Zk−1) ∼ G and

Zt = ψat (Zt−k : t−1) + ψbt (Zt−k :t−1) εt, t = k, k + 1, . . . , (11)

for a sequence of i.i.d. random variables εk, εk+1, . . ., with non-degenerate marginal

distribution function KA, defined by limit (9).

Theorem 2.1 provides a highly structured limiting hidden tail chain, with the first

value distributed as a generalised Pareto variable, with non-negative shape parameter,

which is independent of the rest of the hidden tail, an initial conditional distribution

given by G and subsequently, a kth-order autoregressive behaviour. In Theorem 2.1,

we do not attempt to clarify what properties ψat and ψbt possess, or to give how the

transition functionals a and b are derived. Additional assumptions in later sections

provides these details. However, under the current assumptions, Proposition 2.1 makes

a connection between the required at and bt functions for t ≥ k with these functions

for 1 ≤ t ≤ k − 1.

Proposition 2.1. Let a : Rk → R and b : Rk → R+ be measurable maps. Let t ≥ k

and z ∈ Rk. The following statements are equivalent

(i) There exist measurable functions at : R → R, bt : R → R+ and continuous

functions ψat : Rk → R and ψbt : Rk → R+, such that convergence (8) holds.

(ii) There exist continuous functions λat : Rk → R and λbt : Rk → R+, such that for

all z ∈ Rk

a(At(v,zv))− a(At(v,0k))

b(At(v,0k))
→ λat (z) and

b(At(v, zv))

b(At(v,0k))
→ λbt(z),

whenever zv → z as v →∞, where a and b are defined in Assumption 2.3 and

At(v, z) is defined by (7).

2.4. Transitional behaviour for nonnegative chains with only scale norming

Consider nonnegative homogeneous Markov chains, i.e. with Ft(0) = 0 for all t ∈ Z,

where the initial conditional distribution F1 : k−1 | 0 is such that in limit (1) we have

functions such that where no need for norming of the location, i.e. we can take at(X0) =
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0, and yet we need a scaling as bt(x) → ∞ for t = 1, . . . , k − 1, when k > 1. As in

Papastathopoulos et al. (2017), we require extra care relative to Section 2.3 since the

convergences in Assumption 2.3 (i) will be satisfied for all x ∈ (0,∞), but not all

x ∈ [0,∞). Hence, we have to control the mass of the limiting renormalized initial

conditional distribution and the limiting renormalized transition probability kernel of

the Markov process. The strategy in this case is otherwise similar to that of Section 2.3,

so we give only the statement of the key equivalent results.

Assumption 2.4. (Behaviour of initial states in the presence of an extreme event.)

If k > 1, the initial conditional joint distribution function F1 : k−1 | 0 is such that there

exist measurable functions bt : R+ → R+ for t = 1, . . . , k − 1, such that bt(v) → ∞

as v → ∞ and a non-degenerate distribution function G on [0,∞)k, with no mass at

any of the half-planes Cj = {(z1, . . . , zk−1) ∈ [0,∞)k−1 : zj = 0}, i.e. G({Cj}) = 0 for

j = 1, . . . , k − 1, such that

P
(
X1 : k−1

b1 : k−1(v)
∈ dz1 : k−1

∣∣∣ X0 = v

)
w−→ G(dz1 : k−1) as v →∞.

Assumption 2.5. (Behaviour of the next state of the process as the previous k states

become extreme.) Let k ≥ 1 and b0(x) = x and when k > 1 additionally suppose that

for X1 : k−1, the Assumption 2.4 holds with norming functions b1 : k−1. Then assume

that π is such that there exists

(i) for t = k, k + 1, . . . , measurable functions bt : R+ → R+, continuous update

functions ψbt : Rk+ → R+ and a measurable function b : Rk+ → R+, such that for

all δ1, . . . , δk > 0 and z ∈ [δ1,∞)× . . .× [δk,∞),

lim
v→∞

b(Bt(v, zv))

bt(v)
=ψbt (z) > 0, (12)

whenever zv → z as v → ∞ and sup{‖z‖∞ : z ∈ Ac} → 0 as c ↓ 0, where

Bt(v,z) := bt−k : t−1(v) z and Ac = {z ∈ (0,∞)k : ψbt (z) ≤ c}, with the

convention that sup(∅) = 0;

(ii) a non-degenerate distribution KB supported on [0,∞) with no mass at {0}, that

is, KB{0} = 0, such that, for any f ∈ Cb(R+),∫
R+

f(x)π[Bt(v,zv), b(Bt(v,zv)) dx]→
∫
R+

f(x)KB(dx), t = k, k + 1, . . . , (13)

whenever zv → z as v →∞.
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Theorem 2.2. Let {Xt : t ∈ Z} be a homogeneous Markov chain satisfying Assump-

tions 2.1, 2.4 and 2.5. Then as v →∞(
X0 − v
σ(v)

, X1

b1(X0)
, · · · , Xt

bt(X0)

) ∣∣∣ {X0 > v} d−→ (E0, Z1, . . . , Zt), (14)

where

(i) E0 ∼ H0 and the vector (Z1, Z2 . . . , Zt) are independent for any t ≥ 1,

(ii) Z0 = 1 a.s., (Z1, . . . , Zk−1) ∼ G and

Zt = ψbt (Zt−k :t−1) εt, t = k, k + 1, . . . , (15)

for a sequence of i.i.d. random variables εk, εk+1, . . ., with non-degenerate marginal

distribution function KB, defined by limit (13).

Remark 2.2. Theorem 2.2 appears simply to be the kth-order extension of Theorem

3.1 in Kulik and Soulier (2015) but it differs as H0 includes both Pareto and exponential

tails, so it is in a more general class than the Pareto family considered by them.

2.5. Transitional behaviour for near extremally independent chains

In this section, we consider homogeneous Markov chains where the initial conditional

distribution F1 : k−1 | 0 is such that there no norming of the location and no norming

of the scale are needed for limit (1) to hold. This case resembles the formulation of

Theorem 2.1, but has at(v) = 0 and bt(v) = 1, for all t ≥ 1. Thus, the next assumption

ensures that after an extreme event at time t = 0, a non-degenerate distribution, given

{X0 = v}, is obtained in the limit as v → ∞ for the first k states of the Markov

process, without any renormalization.

Assumption 2.6. (Behaviour of next k states in the presence of an extreme event.)

If k > 1, the initial conditional joint distribution function F1 : k−1 | 0 is such that there

exists a distribution G supported on Rk that has non-degenerate margins such that

P (X1 : k ∈ dz1 : k | X0 = v)
w−→ G(dz1 : k) as v →∞.

Heffernan and Tawn (2004) showed that Assumption 2.6 holds for the Morgenstern

copula, with exponential marginals, for k ≥ 1. A related assumption also appears
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Maulik et al. (2002) for the case k = 1 with (X0, X1) being nonnegative random

variables. Here, we note that if X0 : k has the independence copula, then G(z1 : k) =∏k
j=1 Fj(zj) whereas cases with Gj(z) ≥ Fj(z) (Gj(z) ≤ Fj(z)) for all z ∈ R, with

Gj being the jth marginal distribution of G, correspond to positive (negative) near

extremal independence at lag j in the hidden tail chain.

Assumptions 2.1 and 2.6 are sufficient to establish the weak convergence of the

conditioned Markov chain to a hidden tail-chain in Theorem 2.3 below. The proof of

this theorem follows along the lines of the proof of Theorem 2.1 and is omitted for

brevity.

Theorem 2.3. Let {Xt : t ∈ Z} be a homogeneous kth order Markov chain satisfying

Assumptions 2.1 and 2.6. Then as v →∞(
X0 − v
σ(v)

, X1, . . . , Xt

) ∣∣∣ {X0 > v} d−→ (E0, Z1, . . . , Zt), (16)

where

(i) E0 ∼ H0 and the vector (Z1, Z2 . . . , Zt) are independent for any t ≥ 1,

(ii) (Z1, . . . , Zk) ∼ G and

Zt = π−1(Zt−k : t−1, Ut), t = k + 1, k + 2, . . . ,

where {Ut} is a sequence of i.i.d. uniform(0, 1) random variables for t ≥ k + 1,

π is the one-step transition probability kernel for the original Markov chain, and

π−1 : Rk × (0, 1)→ R with π−1(z, u) := inf{x ∈ R : π(z, x) > u}.

We note that if X0 : k has the independence copula, then π−1(z, u) is independent of

z.

2.6. Back-and-forth hidden tail chains

In the discussion above, formally the entities we have referred to as tail chains and

hidden tail chains are in fact forward tail and hidden tail chains (cf. Janßen and Segers,

2014). These describe the behaviour of the Markov chain only forward in time from

a large observation. There is also the parallel interest in a backward tail/hidden tail

chain, to give how the chain evolves into an extreme event, and the joint behaviour of

the two, known as back-and-forth tail processes.
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Here we focus on an extension of the back-and-forth tail chains developed by Janßen

and Segers (2014). The backward hidden tail chain characteristics are similar in struc-

ture to the forward hidden tail chain properties identified in Sections 2.3–2.4. To save

repetition, here we outline the back-and-forth hidden tail chains for the assumptions

in Section 2.3 only. For this purpose, it suffices to consider a straightforward extension

of Assumption 2.3 which allows us to characterise the backward behaviour of the chain

from an extreme event by requiring a functional normalization for the backward chain

X−s |X−(s−1) :−(s−k), s ∈ N. Clearly, if the chain is time-reversible, then Assumption

2.3 holds backwards with the same functional normalizations a and b and the same limit

distribution KA. In general, however, there is no mathematical connection between

these forward and backward quantities and Assumption 2.7 below considers this more

general case.

Assumption 2.7. (Behaviour of the backward state of the process.) Let k ≥ 1,

a0(x) = x and b0(x) = 1. If k > 1, suppose that for X1 : k−1, the Assumption 2.2 holds

with norming functions a1 : k−1 and b1 : k−1. Then assume that π− is such that there

exist,

(i) for s = 1, 2, . . . , measurable functions a−s : R→ R and b−s : R→ R+, continuous

update functions ψa
−

−s : Rk → R, ψb
−

−s : Rk → R+ and measurable functions a− :

Rk → R, b− : Rk → R+, such that, for all z ∈ Rk

a−(A−s(v,zv))− a−s(v)

b−s(v)
→ ψa

−

−s(z) and
b−(A−s(v,zv))

b−s(v)
→ ψb

−

−s(z), (17)

whenever zv → z as v →∞, where A−s(v, z) := a−s+1 :−s+k(v) + b−s+1 :−s+k(v) z;

(ii) a non-degenerate distribution K−A supported on R, such that for all z ∈ Rk and

for any f ∈ Cb(R),∫
R
f(x)π−[A−s(v,zv), a

−(A−s(v,zv)) + b−(A−s(v,zv)) dx]→
∫
R
f(x)K−A (dx), (18)

s = 1, 2, . . . , whenever zv → z as v →∞.

The back-and-forth hidden tail chain is presented in Theorem 2.4. For the sake of

brevity, we do not include its proof as this is identical to the proof of Theorem 2.1.
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Theorem 2.4. Let {Xt : t ∈ Z} be a homogeneous kth order Markov chain satisfying

Assumptions 2.1, 2.2, 2.3 and 2.7. Then as v →∞(
X−s :−1 − a−s :−1(X0)

b−s :−1(X0)
, X0 − v
σ(v)

, X1 : t − a1 : t(X0)

b1 : t(X0)

) ∣∣∣ {X0 > v}

d−→ (Z−s :−1, E0,Z1 : t), t, s ∈ N,

where

(i) E0 ∼ H0 is independent of the vector (Z−s :−1,Z1 : t) for each s, t ≥ 1,

(ii) Z0 = 0 a.s., Z1 : k−1 ∼ G,

Zt = ψat (Zt−k : t−1) + ψbt (Zt−k :t−1) εt, t = k, k + 1, . . .

and

Z−s = ψa
−

−s(Z−s+1 :−s+k) + ψb
−

−s(Z−s+1 :−s+k) ε−s, s = 1, 2, . . .

for independent sequences of i.i.d. random variables {ε−s}∞s=1 and {εt}∞t=k, where

ε−s ∼ K−A and εt ∼ KA, and K−A and KA are defined by limits (18) and (9),

respectively.

In general there is a relationship between the forward and backward hidden tail

chains. When k = 1 these are independent, but when k > 1 and t + s > k, then

Zt is conditionally independent of Z−s given (Z−s+1 :−1,Z1 : t−1). Hence, given any

consecutive block of terms in the back-and forth hidden tail chain of size k, then

the values before and after this block are independent. We remark that the precise

dependence conditions between the forward and backward hidden tail chains have

been given for the case where only aj(x) = x and bj(x) = 1 for all j 6= 0 by Janßen

and Segers (2014). Subsequently, we focus on the forward hidden tail chain and do not

address the inter-connections between the different aj(x) and bj(x) for positive and

negative j.

Remark 2.3. When k = 1, due to Proposition 2.1 we can choose, without loss of

generality, a(v) = a1(v) and b(v) = b1(v) so that ψa1 (0) = {a(v)−a1(v)}/b1(v) = 0 and

ψb1(0) = b(v)/b1(v) = 1. Consequently, (11) implies that Z1 = ε1 and thus, the special
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case of k = 1 in Theorem 2.1 corresponds to the results of Papastathopoulos et al.

(2017). The methods to identify the functions a and b more generally are discussed in

Sections 3 and 5.

3. Dependence and recurrence equations under stationarity

3.1. Stationarity and parametric conditional extremes models

For homogeneous Markov chains, the theory presented in Section 2 generalizes to

kth-order homogenenous Markov chains (with k > 1) the results for k = 1 presented

in Papastathopoulos et al. (2017). Although working with homogeneous chains embeds

the theory in a rather broad setting, it is impossible to explore more details of the

results of Theorems 2.1–2.4 without imposing further structure, and we do this by

assuming stationarity of the Markov chains for the remainder of the paper.

So we now have a common marginal distribution function F over t, with this

distribution satisfying Assumption A0, unlike previously, where this was only assumed

for variable X0. Specifically, we assume that the stationary Markov chain {Xt} has

unit-exponential marginal distributions, that is, F (x) := P(Xt ≤ x) = (1−exp(−x))+,

for t ∈ Z, which implies that the limit distribution H0 in Assumption 2.1 is also unit

exponential. This marginal choice gives the clearest mathematical formulation for our

needs (Papastathopoulos et al., 2017), and if a stationary Markov chain {X̃t} has

marginal distribution F̃ 6= F then transformation by the probability integral transform

Xt = − log[1 − F̃ (X̃t)], for t ∈ Z, gives the required properties. Furthermore, from

stationarity we have a time invariant copula for Xt−k : t, for all t ∈ Z, which together

with the marginals can be used to derive the initial conditional distribution F1 : k−1|0

and the corresponding at(x) and bt(x) for t = 1, . . . , k− 1, as well as the forms of both

π and π−, and to show that they are also time-invariant functions.

With the marginal distribution now fully defined, we look to narrow down the

properties of the copula into a single class that covers all of the scenarios discussed

in Section 2. This approach is in the style of copula methods where the assumption

of identical margins is typical when identifying the extremal dependence structure of

a random vector. In particular, Heffernan and Tawn (2004) found that for a broad

range of copula models for a random vector X0 : d, d ∈ N, with exponentially tailed
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random variables, the conditional distribution of the renormalized states {X1 : d −

a1 : d(X0)}/b1 : d(X0) given X0 > v, weakly converges to some distribution with non-

degenerate margins. They also identified that this convergence typically holds with

the normalization functions taking the simple form a1 : d(v) = α1 : d v and b1 : d(v) =

vβ1d, where (α1 : d = (α1, . . . , αd), β) ∈ [0, 1]d × [0, 1). The parameters αt and β

have a simple interpretation and control the strength of extremal association between

variables X0 and Xt, for t = 1, . . . , d. Informally, in the presence of an extreme

event X0 with X0 > v and v sufficiently large, we may then think of Xt as Xt =

αtX0 + Xβ
0 Zt where Zt has a non-degenerate distribution. Thus, αt and β are slope

and scale parameters, respectively, with larger values of αt indicating stronger linear

dependence between Xt and the big values of X0, and, for fixed αt, the larger values of

β indicating a more diffuse distribution for Xt | X0 > v. The links to Section 2 and full

pairwise asymptotically dependent and full pairwise asymptotically independent kth-

order Markov processes can now be made much clearer. Specifically, αt ∈ (0, 1] for all

t = 1, . . . , k corresponds to a family of copulae satisfying the conditions of Section 2.3

with the special case of αt = 1 and β = 0 for all t = 1, . . . , k − 1 being a full pairwise

asymptotically dependent Markov chain, with χt > 0 for t = 1, . . . , k−1, so only arises

as a special case in Section 2.3. In contrast, full pairwise asymptotically independent

processes arise as a broad class in Section 2.3 and all scenarios in Sections 2.4 and 2.5.

Specifically, we have pairwise asymptotic independence in Section 2.3 when αt ∈ [0, 1)

for all t = 1, . . . , k − 1, in Section 2.4, when αt = 0 for all t = 1, . . . , k − 1 and

β ∈ (0, 1), and in Section 2.5 when αt = 0 for all t = 1, . . . , k − 1 and β = 0. Here we

assume that the Heffernan and Tawn (2004) formulation holds for the initial conditional

distribution, i.e. giving αt for t = 1, . . . , k−1 and β and focus on deriving the structure

of αt and βt for all t ≥ k, and the stochastic recurrence properties of the hidden tail

chains for both full pairwise asymptotically dependent and full pairwise asymptotically

independent kth-order stationary Markov chains.

3.2. Full pairwise asymptotically dependent Markov chains

Corollary 3.1. (Full pairwise asymptotically dependent Markov chains.)

Let {Xt : t ∈ Z} be a k-th order stationary Markov chain with unit-exponential

margins. Suppose that Assumption 2.2 holds with at(x) = x and bt(x) = 1, for t =
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1, . . . , k−1. Suppose further that Assumption 2.3 holds with functions a and b, defined

there, such that a is non-zero and continuous, such that exp{a(logx)}, x ∈ Rk+, is

1–homogeneous, that is,

a(v1k + y)− v = a(y) for all v ∈ R and all y ∈ Rk, (19)

with a(0k) ≤ 0 and b(·) ≡ 1. Then, the convergence (10) holds with at(x) = x and

bt(x) = 1 for t ≥ k, and

Zt = a(Zt−k : t−1) + εt, t = k, k + 1, . . . ,

for a sequence {εt}∞t=k of i.i.d. random variables with a distribution KA, defined in

limit (9), supported on R. Furthermore, E(Zt) < 0 for all t ≥ 1.

So in terms of the Heffernan and Tawn (2004) parameters here αt = 1 and βt = 0

for all t ∈ Z, and consequently the process is pairwise asymptotically dependent for

(X0, Xt), i.e., χt > 0, for any t ≥ k. Although this gives that at(x) = x and bt(x) = 1

for all t ≥ 1, suggesting that asymptotically dependent Markov chains stay extreme

forever after witnessing an extreme value, they do in fact return to the body of the

distribution due to the negative drift of the tail chain, that is, E(Zt) < 0 for all

t ≥ 1 which ensures that the Markov chain will return to the body regardless of

the behaviour of the norming functions. Corollary 3.1 refines the understanding of

full pairwise asymptotically dependent Markov chains by identifying a class of update

functions a whose defining property is (19), also known as topical maps, which can

be regarded as non-linear generalizations of row-stochastic matrices (Lemmens and

Nussbaum, 2012).

3.3. Full pairwise asymptotically independent Markov chains

As there are different types of dependence that lead to full pairwise asymptotic inde-

pendent behaviour we separate our findings into Corollaries 3.2 and 3.3 corresponding

to the conditions of Sections 2.3 and 2.4, respectively.

Corollary 3.2. (Full pairwise asymptotically independent Markov chains with loca-

tion and scale norming.)

Let {Xt : t ∈ Z} be a k-th order stationary Markov chain with unit exponential

margins. Suppose Assumption 2.2 holds with at(v) = αt v, αt ∈ (0, 1) and bt(v) = vβt ,
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βt = β ∈ [0, 1), for t = 1, . . . , k − 1. Suppose that Assumption 2.3 holds with the

function a being a twice continuously differentiable, order-preserving 1–homogeneous

function, with a(1k) < 1, and the function b being β−homogeneous when β ∈ (0, 1)

and unity when β = 0. Then, convergence (10) holds with for t ≥ k, at(v) = αt v and

bt(v) = vβ, where

αt = a(αt−k : t−1), t = k, k + 1, . . . , (20)

with αt ∈ (0, 1) for all t ≥ k, and

Zt = ∇a(αt−k : t−1)>Zt−k : t−1 + b(αt−k : t−1) εt, t = k, k + 1, . . . , (21)

for a sequence {εt}∞t=k of i.i.d. random variables from a non-degenerate distribution

KA, defined in limit (9), on R. Consequently, the process is pairwise asymptotically

independent for (X0, Xt), i.e. χt = 0, for any t ≥ k, and αt → 0 as t→∞.

In Section 4 we are able to explicitly solve the recurrence equation (20) for a flexible

parametric class of the function a, and find a geometric decay to zero in αt as t

increases. Even for an arbitrary functional a, satisfying the weak assumptions of

Corollary 3.2, considerable insight into the behaviour of the hidden tail chain is achieved

from Corollary 3.2. It shows that the norming functions at, t = k, k + 1, . . . , have a

particularly neat structure, not least at(X0) = αtX0, where αt is determined by the

recurrence equation (20) of the k previous values αt−k : t−1 through the 1–homogeneous

function a.

Since Corollary 3.2 gives that αt → 0 as t → ∞ this leads to eventually there

being no location norming in the limit, which is consistent with the independence

case. However, for practical usage we need to consider the limit at t→∞ whilst also

allowing the level of extremity of X0 to increase, i.e. the value v → ∞. We address

these issues for the cases β = 0 and β ∈ (0, 1). When β = 0 the behaviour of the

forward Markov chain as t→∞ and v →∞, is almost entirely given by Corollary 3.2

as Xt|{X0 = v} = αt v+Zt+op(1). If we can suitably link how t→∞ with v →∞ the

location term αt v will tend to zero and Xt converges to the process {Zt}, which is a

non-degenerate autoregressive process. So, with such combined limiting operations, we

have that Xt | {X0 = v} returns to the body of the distribution as t → ∞, becoming

independent of X0. Here, if there is a constant A ∈ (0, 1), with αt ∼ At as t → ∞,
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i.e. the αt exhibit geometric decay, as in the parametric class for a in Section 4, then

we would need t/ log(v) → ∞, as v → ∞ for this result to hold. When 0 < β < 1 the

limiting behaviour of the forward hidden chain Xt|{X0 = v} as t→∞ is only partially

implied by Corollary 3.2. This is because Zt
p−→ 0, since both the location and scale

terms of εt in (21) tend to zero, but it’s scaling vβ tends to infinity. Consequently, the

limiting behaviour is determined by the relative speed of convergence of αt v → 0 and

vβ Zt
p−→ 0 if we link the growth rate of t to that of v.

In general we can view the recurrence relation in (20) as the parallel of the Yule–

Walker equations and hence, we term them the extremal Yule–Walker equations. The

Yule–Walker equations provide a recurrence relation for the autocorrelation function

in standard time series that is used to determine the dependence properties of a linear

Markov process. For a kth order linear Markov process Yt =
∑k
i=1 φi Yt−k+i−1 + ηt

with {ηt}∞t=−∞ a sequence of zero mean, common finite variance and uncorrelated

random variables, where the set of regression parameters φ1, . . . , φk are real valued

constants such that the characteristic polynomial 1− φk z − φk−1 z
2 − · · · − φ1 z

k 6= 0

on {z ∈ C : |z|≤ 1}, the Yule–Walker equations relate the autocorrelation function of

the process ρt = cor(Ys−t, Ys) at lag t with the regression parameters φ1, . . . , φk and

the k lagged autocorrelations according to ρt =
∑k
i=1 φi ρt−i, t ∈ Z. The sequence

{αt} has a similar structure for extremes via recurrence (20).

In Corollary 3.2 we exclude the case β < 0, considered by Heffernan and Tawn

(2004), corresponding to the case where location only normalization gives limits that

are degenerate, with all limiting mass at {0}. For simplicity, the theory developed in

this paper deals only with positive extremal association in Markov chains and hence, in

Corollary 3.2, the case where X0 and Xt exhibit negative extremal association, is also

ruled out. We note, however, that this latter case potentially can be accommodated by

suitable transformations of the marginal distributions, e.g. by standardizing margins

to standard Laplace distributions and then allowing αt < 0, see for example Keef et al.

(2013) and Papastathopoulos et al. (2017, Theorem 3), however some modifications in

the conditions will be required to address the complications that some arguments will

tend to −∞ whilst the conditioning variable will still go to ∞.

Corollary 3.3. (Full pairwise asymptotically independent Markov chains with only
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scale norming.) Let {Xt : t ∈ Z} be a k-th order stationary Markov chain with unit-

exponential margins. Suppose that Assumption 2.4 holds with bt(x) = xβ, β ∈ (0, 1),

for t = 1, . . . , k − 1. Suppose further that Assumption 2.5 holds with the function

b being continuous and β−homogeneous. Then convergence (14) holds with bt(x) =

xβt , βt ∈ (0, 1), t ≥ k, where βt satisfies the recurrence relation log βt = log β +

log(maxi=1,...,k βt−i), with β1 = . . . = βk−1 = β. This gives the solution

log βt = (b1 + (t− 1)/kc) log β, t ≥ k,

where bxc denotes the integer part of x. It follows that βt ∈ (0, 1) for all t ≥ k and that

βt → 0 as t→∞. Also, for t ≥ k we have

Zt =


b(Zt−k,0k−1) εt when modk(t) = 0,

b(Zt−k, . . . , Zt−1) εt when modk(t) = 1,

b(Zt−k, . . . , Zt−j ,0j−1) εt when modk(t) = j ∈ {2, . . . , k − 1},

for a sequence {εt}∞t=k of i.i.d. random variables with distribution KB, defined by

limit (13), supported on R+ and Z0 = 1 a.s.. As a consequence, the process is pairwise

asymptotically independent for (X0, Xt), i.e. χt = 0, for any t ≥ k.

In contrast to Corollary 3.2, where the location parameter αt changed with t, here

it is the power parameter βt of the scale function that is decaying. As with Corollary

3.2 we find a form of geometric decay in the dependence parameters βt as t increases,

leading eventually to extremal independence (αt = 0 and βt → 0) in the limit as t→∞,

so that Xt returns to the body of the distribution as it becomes independent of X0. In

particular, βt decays geometrically to 0 stepwise, with steps at every k lags. At time t

the resulting hidden tail chain depends only on the last j values, with j = modk(t).

4. A class of recurrence relations for dependence parameters in

asymptotically independent Markov chains with closed form solutions

The results of Section 3 provide insight into the form of the norming and updating

functions of Theorems 2.1 and 2.2, not least for asymptotically independent Markov

chains where (αt, βt) 6= (1, 0) for all t > 0. A precise formulation of the location and

scale parameters αt and βt for t ≥ k, however, depends on the forms of functionals a(·)

and b(·) which are opaque even when these are assumed to be homogeneous functionals.
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Motivated by examples considered in Section 5.3, here we give an explicit characteri-

zation of the solution to the extremal Yule–Walker equations (20) in Corollary 3.2 for

a parsimonious parametric subclass of functionals aM, of a, which embeds many of the

examples of Section 5.

For x = (x1, . . . , xk) ∈ Rk+, 0 < c < 1, δ ∈ R, and (γ1, . . . , γk) ∈ ∆k−1 with

minj=1,...,k(γj) > 0, consider the function aM : Rk+ → R+ defined by

aM(x; δ) = c

{
γ1 (γ1 x1)δ + · · ·+ γk (γk xk)δ

γ1+δ
1 + · · ·+ γ1+δ

k

}1/δ

. (22)

Here aM satisfies the conditions of Corollary 3.2 as it is order preserving, 1–homogeneous,

and the bound on c ensures that a(1k) < 1. The functional aM is continuous in δ ∈ R,

though its values at δ = −∞, 0,∞ need careful treatment as they are not immediately

apparent from (22). Specifically,

aM(x, 0) = lim
δ→0

aM(x, δ) = c xγ11 xγ22 · · · x
γk
k , (23)

and

aM(x,∞) = c
maxj=1,...,k(γjxj)

maxj=1,...,k γj
, aM(x,−∞) = c

minj=1,...,k(γjxj)

minj=1,...,k(γj)
. (24)

Proposition 4.1. Consider the function aM defined by (22). Suppose that the s ∈ N

distinct (possibly complex) roots of the characteristic polynomial

xk − cδ
(

γ1+δ
k

γ1+δ
1 + · · ·+ γ1+δ

k

)
xk−1 − · · · − cδ

(
γ1+δ

1

γ1+δ
1 + · · ·+ γ1+δ

k

)
= 0

are r1, . . . , rs with multiplicities m1, . . . ,ms,
∑
imi = k. Then the solution of the

recurrence relation (20) with a(x) = aM(x) for all x ∈ Rk+, subject to the initial

condition (α1, . . . , αk−1) ∈ (0, 1)k−1, is

αt =

( s∑
i=1

(Ci0 + Ci1 t+ · · ·+ Ci,mi−1t
mi−1) rti

)1/δ

for t = k, k + 1, . . .,

where the constants Ci0, . . . , Ci,mi−1, i = 1, . . . , s, are uniquely determined by the initial

condition via the system of equations, α0 = 1 and

αt =

( s∑
i=1

(Ci0 + Ci1 t+ · · ·+ Ci,mi−1t
mi−1) rti

)1/δ

for t = 0, . . . , k − 1.
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From Corollary 3.2, it follows that the sequence {αt} in Proposition 4.1 satisfies

αt → 0 as t → ∞. Let Ir = {I ∈ {1, . . . , s} : |rI | = maxi=1,...,s |ri|}. Under the

assumption that |Ir| = 1, then we have that αt satisfies αt ∼ CI,mI−1 t
(mI−1)/δr

t/δ
I →

0, I ∈ Ir, δ ∈ R \ {0}, as t→∞.

Remark 4.1. Although aM in (22) is defined for any δ ∈ R, it is not evident from

Proposition 4.1 what form the solution takes when δ = 0 or when δ = ±∞. These cases

are considered separately below.

Case δ → 0: A logarithmic transformation in limit (23) results in the linear nonho-

mogeneous recurrence relation

logαt − γ1 logαt−1 − · · · − γk logαt−k = log c.

Suppose that the s ∈ N distinct (possibly complex) roots of the characteristic polyno-

mial

xk − γk xk−1 − · · · − γ1 = 0, (25)

are r1, . . . , rs with multiplicities m1, . . . ,ms,
∑
mi = k. Then the solution of recurrence

(20) is,

αt = exp

{
s∑
i=1

(Ci0 + Ci1 t+ · · ·+ Ci,mi−1t
mi−1) rti +

c

γ1 + 2γ2 + · · ·+ kγk
t

}
,

for t = k, k + 1, . . ., where the constants Ci0, . . . , Ci,mi−1, i = 1, . . . , s, are uniquely

determined by the system of equations

αt = exp

{
s∑
i=1

(Ci0 + Ci1 t+ · · ·+ Ci,mi−1t
mi−1) rti +

c

γ1 + 2γ2 + · · ·+ kγk
t

}
,

for t = 0, . . . , k − 1, with α0 = 1 and αt ∈ (0, 1) for t = 1, . . . , k − 1.

Case |δ| → ±∞: Using forward substitution, we have that for δ →∞ the solution of

(20) is

αt = ct max
i=1,...,k

(dt−i αi−1), dt−i = max

k∏
n=1

γjnk+1−n, t ≥ k, (26)

where the maximum for dt−i in (26) is taken over 0 ≤ j1 ≤ . . . ≤ jk ≤ t− i such that∑t−i
m=1mjm = t− i. The case δ → −∞ is obtained by replacing the maximum operator

in (26) by the minimum operator.
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5. Results for kernels based on important copula classes

5.1. Strategy for finding norming functionals

Our results in Section 3 provide powerful results for stationary kth order Markov

processes which derive the behaviour of hidden tail chains over all lags, given the ap-

propriate norming functions at, bt, for lags t = 1, . . . , k−1, and the norming functionals

a and b after an extreme event at time t = 0. However, these results do not explain

how to derive these quantities. Here we discuss general strategies for how to find these

norming functions, with Section 5.3 providing a step-by-step illustration of how these

strategies are implemented.

The methods for finding at, bt for t = 1, . . . , k − 1 are well established, specifically

these can be obtained from Theorem 1 of Heffernan and Tawn (2004). So, the novelty

here is in the derivation of a and b, which wasn’t required in Papastathopoulos et al.

(2017). Here we explain the general strategy for the case a 6= 0 and note that the

case a = 0 and b 6= 1 is handled in similar manner. Assuming that the conditional

distribution of Xk | X0 : k−1 admits a Lebesgue density almost everywhere, a similar

argument as in the proof of Theorem 1 in Heffernan and Tawn (2004) guarantees that

the functionals a and b can be identified, up to type, by finding the functional forms

of a and b which satisfy the following two asymptotic properties for all z ∈ Rk

lim
v→∞

P (Xk < a(X0 : k−1) |X0 : k−1 = At(v,z)) = p for some p ∈ (0, 1), (27)

and

b(At(v, z)) ∼ P (Xk > a(X0 : k−1) |X0 : k−1 = At(v,z))

[dP (Xk ≤ y |X0 : k−1 = At(v, z))/dy]|y=a(At(v,z))
as v →∞, (28)

where At(v, z) is defined by (7) with at−k : t−1 and bt−k : t−1 as in Assumption 2.3.

Expression (28) can be cumbersome to use in practice so we resort to asymptotic

inversion in order to identify b. In particular, to find a representative form for b we

make an informed choice based on the leading order terms in an asymptotic expansion,

as v →∞ of the conditional distribution in (27) to obtain

P (Xk < a(X0 : k−1) + b(X0 : k−1) y |X0 : k−1 = At(v,z))
w−→ KA(y), (29)

for all y ∈ R and z ∈ Rk, where KA is a non-degenerate distribution on R.
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5.2. Examples of copula families and transition probability kernels

To illustrate the results in Theorems 2.1 and 2.2, we study the extremal behaviour

of kth order stationary Markov chains with unit exponential margins, with transi-

tion probability kernels derived from the copula of k + 1 consecutive values given

in Section 5.3. Here we define the classes of copula families, and the associated

transition probability kernels, that we use in Section 5.3, to derive the hidden tail

chain behaviour. We have selected these copula families so we have families which give

full pairwise asymptotically dependence, full pairwise asymptotic independence and

cases in between these, see Section 1 for the definition of these extremal process types.

We can achieve all of these different properties from studying Gaussian, max-stable

and inverted max-stable copula families. The theory which motivates these copulae

families does not matter here, we simply view them as a range of interesting and well

known copula families for which we study their extremes in a Markov setting.

First we present the link between a general (k + 1)-dimensional copula C and its

associated transition probability kernel π when working with a kth order stationary

Markov process with exponential margins. Let F denote the joint distribution function

of a random vector X = (X0, . . . , Xk), assumed to be absolutely continuous with

respect to Lebesgue measure with unit exponential margins, that is, Fi(x) = FE(x) =

(1 − exp(−x))+, i = 0, . . . , k. Writing C : [0, 1]k+1 → [0, 1] for the copula of X, that

is, C(u) = F (F←E (u0), . . . , F←E (uk)), where u = (u0, . . . , uk) ∈ [0, 1]k+1, we define the

Markov kernel πE : B(Rk)→ [0, 1] of the stationary process by

πE(x0 : k−1, xk) =

[
∂k

∂u0 · · · ∂uk−1
C(u0 : k−1, uk)

/ ∂k

∂u0 · · · ∂uk−1
C(u0 : k−1, 1)

]
,

with u0 : k = {1 − exp(−x0 : k)}+. Assuming the copula function satisfies appropriate

conditions that ensure stationarity (Joe, 2015), then the initial distribution F (x0 : k−1,∞)

is k dimensional invariant distribution of a Markov process with unit exponential

margins and kernel πE .

Gaussian copula: Consider a stationary Gaussian autoregressive processes with pos-

itive dependence transformed componentwise to have exponential marginal distribu-

tions. Let Σ ∈ R(k+1)×(k+1) be a (k+ 1)-dimensional Toeplitz correlation matrix, that

is, Σ = (ρ|i−j|)1≤i,j≤k+1 with ρ0 = 1, ρi > 0, for i = 1, . . . , k, which is assumed to
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be positive definite, and let and Q = Σ−1 = (qi−1,j−1)1≤i,j≤k+1. The distribution

function of the standard (k + 1)-dimensional Gaussian with mean 0k+1 and positive-

definite variance-covariance matrix Σ, in exponential margins, is

F (x0 : k) =

Φ←{1−exp(−xk)}∫
−∞

· · ·
Φ←{1−exp(−x0)}∫

−∞

{det(Q)}1/2

(2π)(k+1)/2
e−s

>Qs/2 ds,

for x0 : k ∈ Rk+1
+ and s = (s0, . . . , sk)>, where Φ← : [0, 1] → R denotes the quantile

function of the standard normal distribution function Φ(·). This choice of correlation

function ensures stationarity of the resulting Markov chain and the joint distribution

gives the transition probability kernel

πE (x0 : k−1, xk) = πG {Φ←{1− exp(−x0 : k−1)},Φ←{1− exp(−1/xk)}},

for (x0 : k−1, xk) ∈ Rk × R, where the kernel πG is the full conditional distribution

function of the multivariate normal given by

πG(x0 : k−1, xk) = Φ

[
q

1/2
kk

{
xk −

k−1∑
t=0

(
− qtk
qkk

)
xt

}]
,

where Φ is the standard normal distribution function. The condition ρi > 0, for i =

1, . . . , k appears restrictive but is made to simplify the presentation. If we worked with

standard Laplace marginals, instead of exponential marginals, as say in Keef et al.

(2013), the presentation would be equally simple for any values |ρi| > 0, i = 1, . . . , k,

of the correlation matrix Σ.

Max-stable copula: A class of transition probability kernels for asymptotically de-

pendent Markov processes is obtained from the class of multivariate extreme value

distributions (Resnick, 1987). The k + 1 dimensional distribution function of the

multivariate extreme value distribution with exponential margins is given by

F (x0 : k) = exp(−V (y0 : k)), where y0 : k = T (x0 : k) := −1/ log(1− exp(−x0 : k)),

(30)

for x0 : k ∈ Rk+1
+ , with V : Rk+1

+ → R+ a −1-homogeneous function, known as the

exponent function, given by

V (y0 : k) =

∫
∆k

max
i=0,...,k

(ωi/yi) H(dω), (31)
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where H is termed the spectral measure on ∆k that has total mass k + 1 and satisfies

the moment constraints
∫

∆k ωiH(dω) = 1, for i = 0, . . . , k. Throughout this section,

we assume that V has continuous mixed partial derivatives of all orders which ensures

that a density for F exists (Coles and Tawn, 1991). For any J ⊆ [k], we write VJ to

denote the higher-order partial derivative ∂|J|V (x0 : k)/
∏
j∈J ∂xj and Πm for the set

of partitions of [m] := {0, 1, . . . ,m}, where m = 0, . . . , k. Furthermore, for a vector

z = (x0 :m,xm+1 : k), we write V (z) = V (x0 :m,xm+1 : k). For m = 0, . . . , k − 1 we

define V (x0 :m, ∞ · 1k−m) := limxm+1 :k→∞·1k−m
V (x0 :m,xm+1 : k), and for J ⊆ [m],

we define VJ(x0 :m,∞ · 1k−m) := ∂|J| V (x0 :m,∞ · 1k−m)/
∏
j∈J ∂xj . Stationarity is

achieved by requiring that for any set A ⊂ Z, the distributions of {Xi : i ∈ A} and

{Xi : i ∈ B} are identical when set B is a translation of the set A, i.e., when there

exists a unique ω ∈ Z such that B = {x + ω : x ∈ A}. Given the Markov property,

stationarity is ensured if V satisfies the property that

lim
x[k]\A→∞

V (x)
∣∣∣
xA=y

= lim
x[k]\B→∞

V (x)
∣∣∣
xB=y

, y ∈ R|A|+ . (32)

for any set A ⊆ [k], where B is a translation of the set A, with B ⊆ [k]. The transition

probability kernel induced by the multivariate extreme value copula, in exponential

margins, is

πE(x0 : k−1, xk) =

[∑
p∈Πk−1

(−1)|p|
∏
J∈p VJ(y0 : k)

][∑
p∈Πk−1

(−1)|p|
∏
J∈p VJ(y0 : k−1,∞)

]×
× exp{V (y0 : k−1,∞)− V (y0 : k)}, (33)

where (x0 : k−1, xk) ∈ Rk × R and with y0 : k as defined in (30).

Inverted max-stable: The final class of transition kernels is based on the class of

inverted max-stable distributions (Ledford and Tawn, 1997; Papastathopoulos and

Tawn, 2016). The specification of this distribution is most elegantly expressed in terms

of its (k + 1)-dimensional survivor function. In exponential margins, this is expressed

as

F (x0 : k) = exp(−V (1/x0 : k)), (34)

where V denotes an exponent function as defined by (31). To ensure stationarity, V

is assumed to satisfy conditions (32). This distribution gives the transition probability
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kernel

πinv(x0 : k−1, xk) = 1− πE [− log{1− exp(−1/x0 : k−1)},− log{1− exp(−1/xk)}], (35)

where (x0 : k−1, xk) ∈ Rk × R and πE as given by (33).

5.3. Examples of norming function and hidden tail chains

For a range examples of kth order Markov processes we illustrate how the theory we

have developed is applicable and we derive the forms for the required norming functions

and identify the properties for the hidden tail chains. The examples include the full

pairwise asymptotically dependent max-stable distribution family, and specifically two

subclasses known as the logistic (Beirlant et al., 2004) and Hüsler–Reiss (Huser and

Davison, 2013; Engelke et al., 2015) dependence structures, and two classes of full pair-

wise asymptotically independent distributions, the Gaussian copula and the inverted

max-stable distribution with logistic dependence structure. We also illustrate the sub-

asymptotic behaviour of these hidden tail chains in Figure 1, through simulation of the

Markov process after a large event. Our proofs that the required the weak convergence

of each transition probability kernel satisfies the assumptions of Section 2 are presented

in Appendices A.5–A.9 where we implement step-by-step the strategy we outlined in

Section 5.1 to find the required norming functions.

We also consider an example of a Markov process not covered by the theory we

have developed, but for which we can directly derive the norming functions and the

hidden tail chain behaviour. Specifically, this is a second-order stationary Markov chain

with a transition probability kernel using a max-stable distribution which permits the

possibility of sudden switches from extreme to non-extreme states and vice versa.

In this setting, a novel form of normalization of the transition probability kernel is

required which, together with the associated hidden tail chain, carries information

about the mechanism that governs the sudden transitions. In Figure 2 we illustrate that

the subasymptotic properties of this process are captured by our asymptotic results.

Although the development of general theory for this type of process is beyond the scope

of this paper, this example serves to motivate future extensions of our theory.

Example 5.1. (Stationary Gaussian autoregressive process—positive dependence.) For

this copula, under the notation and conditions described in Section 5.2, Heffernan and
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Tawn (2004, Section 8.6) showed that Assumption 2.2 holds with norming functions

ai(v) = ρ2
i v, bi(v) = v1/2, that is, αi = ρ2

i and βi = 1/2, for i = 1, . . . , k − 1

and initial limiting distribution G(z0 : k−1minone) = Φk(z0 : k−1minone; Σ0), where

z0 : k−1minone ∈ Rk−1 and Φk(·; Σ0) denotes the cumulative distribution function

of the k-dimensional multivariate normal distribution with a zero mean vector and

covariance matrix Σ0 = (2ρi ρj(ρ|j−i| − ρi ρj))1≤i,j≤k−1. Appendix A.5 shows that

Assumption 2.3 holds with norming functionals

a(u) =
( k∑
i=1

φi u
1/2
i

)2

, b(u) = a(u)1/2, u = (u1, . . . , uk) ∈ Rk+, (36)

where φi = −qk−i,k/qkk, i = 1, . . . , k denote the first k partial autocorrelation coef-

ficients of the stationary Gaussian process (on Gaussian margins), and the transition

probability kernel of the renormalized Markov chain converges weakly to the distribu-

tion

KA(x) = Φ
(
(qkk/2)1/2 x

)
, x ∈ R. (37)

Corollary 3.2 asserts that a suitable location normalization after t ≥ k steps has αt =

a(αt−k : t−1) = ρ2
t and βt = 1/2. This equivalence arises from the a function in (36)

and the Yule-Walker equations for stationary Gaussian autoregressive processes, that

is, ρt =
∑k
i=1 φi ρt−i, for t ≥ k. As all stationary Gaussian, finite order, Markov chains

have that ρt → 0 geometrically as t→∞, it follows that αt does likewise.

Now consider the hidden tail chain. The gradient vector of a is

∇a(u) =
{

(φjuj)
−1/2

k∑
i=1

φiu
1/2
i : j = 1, . . . , k

}
.

Thus, based on the Yule–Walker equations, we have

∇a(αt−k : t−1)> = ρt(φ1/ρt−1, . . . , φk/ρt−k).

Also, b(αt−k : t−1) = a(αt−k : t−1)1/2 = ρt. This leads to the scaled autoregressive

hidden tail chain

Zt = ρt

k∑
i=1

φi
ρt−i

Zt−i + ρt εt, t ≥ k, (38)

and {εt}∞t=k is a sequence of i.i.d. random variables with distribution KA given by (37).

The hidden tail chain is a non-stationary kth order autoregressive Gaussian process
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with zero mean and autocovariance function cov(Zt−s, Zt) = (2ρt−s ρt(ρs − ρt−s ρt))

when t 6= s. The variance of the process satisfies var(Zt) = O(ρ2
t ) as t→∞, hence the

hidden tail chain degenerates to 0 in the limit as t→∞. This long-term degenerative

behaviour is illustrated in panel (a) of Figure 1.

Remark 5.1. The location functional a in (36) can be written in form (22) with

c =
∑k
i=1 φi and γi = φ

2/3
i /

∑
j φ

2/3
j for i = 1, . . . , k.

Example 5.2. (Inverted max-stable copula with logistic dependence.) Consider a

stationary kth-order Markov chain with a (k + 1)-dimensional survivor function (34)

and exponent function of logistic type given by

V (y0 : k) = ‖y−1/α
0 : k ‖

α, y0 : k ∈ Rd+, (39)

where α ∈ (0, 1), which gives a stationary process as V is an exchangeable function.

Heffernan and Tawn (2004, Section 8.5) showed that Assumption 2.4 holds with bi(v) =

v1−α, that is, βi = 1−α for i = 1 . . . , k−1, and limiting initial conditional distribution

G(z) =
∏k−1
i=1 {1−exp(−αz1/α

i )}, z ∈ (0,∞)k−1. Appendix A.6 shows that Assumption

2.5 holds with normalizing functionals

a(u) = 0, b(u) = ‖u1/α‖α (1−α), u = (u1, . . . , uk) ∈ Rk+, (40)

and the transition probability kernel of the renormalized Markov chain converges

weakly to the distribution

KB(x) = 1− exp(−αx1/α), x ∈ R+,

as u → ∞. Corollary 3.3 asserts that a suitable normalization after t ≥ k steps is

at(v) = 0, log bt(v) = ((1− α)1+b(t−1)/kc) log v, which leads to the scaled random walk

hidden tail chain

Zt =


‖(Zt−k,0k−1)1/α‖α(1−α) εt when modk(t) = 0

‖Z1/α
t−k : t−1‖α(1−α) εt when modk(t) = 1

‖(Z1/α
t−k : t−j ,0j−1)‖α(1−α) εt when modk(t) = j ∈ {2, . . . , k − 1},

where {εt}∞t=k is a sequence of i.i.d. random variables with distribution KB .

This hidden tail chain is a non-stationary process, specifically, after a logarithmic

transfomation, it is a non-stationary non-linear kth order autoregressive process. The
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first element of the process is Z0 = 1 a.s., the next k − 1 elements of the process

Z1 : k−1 are i.i.d. positive random variables with distribution function KB(x), x > 0.

Subsequent elements Zt, for t ≥ k, have distributions that vary both in mean and

variance. We see that for b given by (40) and any x1:k ∈ Rk+, then b(x1:k) > b(x2:k, 0) >

· · · > b(xk,0k−1). This leads to an oscillating behaviour which is illustrated in panel

(b) of Figure 1. In particular, both the mean and variance of the hidden tail chain can

be seen to decrease in a segment of k consecutive time points (s, s + 1, . . . , s + k − 1)

for any s > k such that modk(s) = 1.

Example 5.3. (Multivariate extreme value copula–all mass on interior of simplex.)

Heffernan and Tawn (2004, Section 8.4) showed that if the spectral measure H in (31)

places no mass on the boundary of ∆k, then Assumption 2.2 holds for distribution (30)

with norming functions ai(v) = v, bi(v) = 1, i.e. αi = 1, βi = 0, for i = 1, . . . , k − 1

and limiting distribution

G(z1 : k−1) = −V0[exp{(0, z1 : k−1)},∞], z1 : k−1 ∈ Rk−1. (41)

In this set up we trivially have that the functional b ≡ 1. When determining the

functional a, Appendix A.7 shows that for any choice of a satisfying condition (19),

the limit integral (9) is
∫
R f(x)K(dx; z1 : k−1), with z1 : k−1 ∈ Rk−1, which is not in the

form required by Assumption A2, as the K term is not independent of z1 : k−1 as in

KA in the statement of the assumption. Specifically, we find that K, has the following

form

K(x; z1 : k−1) =
V0 : k−1[exp(z0 : k−1), exp(a(z0 : k−1) + x)]

V0 : k−1[exp(z0 : k−1),∞]
, x ∈ R. (42)

Without additional assumptions of the max-stable copula, i.e. of the exponent measure

V , it seems impossible to find the form of the location functional a to make K, in

(42), independent of z1 : k−1, or to know if such a functional even exists. Without

Assumption A2 we cannot use Corollary 3.1 to find the norming functions for t ≥ k.

To get around this problem, here we can make an additional assumption about V ,

which ensures that K in independent of z1 : k−1, that ensures Assumption A2 holds.

The new assumption exploits the property that both V0 : k−1(·,∞) and V0 : k−1(·) are

−(k + 1)–homogeneous functions, so the map

Rk+1
+ 3 y0 : k 7→ V0 : k−1(y0 : k−1, yk)/V0 : k−1(y0 : k−1,∞) ∈ R+ (43)
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is 0–homogeneous and this latter property restricts the possible forms the function

V0 : k−1 can take. One such simple form is given by Property K1, which holds for a

wide variety of parametric models for the exponent measure including the logistic

dependence and Hüsler–Reiss dependence structure discussed below.

Assumption 5.1. There exists a continuous function aP : Rk+ → R+ which is 1–

homogeneous, and a non-degenerate distribution function KP on R+, such that,

(i) K←P (p?) = 1 for some p? ∈ (0, 1), where K←P (p) = inf{x ∈ R+ : KP (x) > p};

(ii) V0 : k−1(y0 : k−1, yk) = V0 : k−1(y0 : k−1,∞)KP {yk/aP (y0 : k−1)}, for all y0 : k ∈

Rk+.

When Assumption 5.1 holds, then additional information about the location functional

a and the limit distribution KA of Corollary 3.1 can be given. This is established in

Proposition 5.1 below.

Proposition 5.1. Suppose that for a max-stable distribution with exponent function

V , Assumption 5.1 holds. Let a(x0 : k−1) = log[aP {exp(x0 : k−1)}], x0 : k−1 ∈ Rk and

assume that there exists a right-inverse R × Rk+ 3 (q,y0 : k−1) 7→ V←0 : k−1(q;y0 : k−1) ∈

R+ such that V0 : k−1{y0 : k−1, V
←
0 : k−1(q;y0 : k−1)} = q for all q and y0 : k−1 in the

domain of V←0 : k−1. Then

(i) the location functional a satisfies property (19) and for all x0 : k−1 ∈ Rk,

a(x0 : k−1) = log V←0 : k−1{p? V0 : k−1(ex0 : k−1 ,∞); ex0 : k−1}. (44)

(ii) Assumption 2.3 holds with normalizing functionals a, as given by (44), and b ≡ 1,

and KA(x) = KP (ex), x ∈ R.

(iii) For all x ∈ R,

KP (ex) =
V0 : k−1{exp(z?0 : k−1), exp(x)}
V0 : k−1{exp(z?0 : k−1),∞}

,

where z?0 : k−1 satisfies aP (z?0 : k−1) = 1.

So for a Markov chain with max-stable copula under the assumptions of Proposi-

tion 5.1 we now have new general results from Corollary 3.1, on the hidden tail chain,
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which here is identical to the tail chain and a and KA have been derived. To help

interpret these results, given the generality of the terms for a andKA in Proposition 5.1,

we now investigate two well-established multivariate extreme value distribution depen-

dence models which satisfy the assumptions of Section 2 and Proposition 5.1.

Logistic dependence: The exponent function of the (k+ 1)-dimensional max-stable

distribution with logistic dependence is given in (39), where α ∈ (0, 1) controls the

strength of dependence, with stronger dependence as α decreases. The case α = 1 is

excluded as that corresponds to independence. Heffernan and Tawn (2004) show that

the initial limiting distribution (41) is

G(z1 : k−1) = {1 + ‖exp(−z1 : k−1/α)‖}α−1, z1 : k−1 ∈ Rk−1,

in addition to having ai(v) = v, bi(v) = 1 for i = 1, . . . , k − 1. Appendix A.8 shows

that Assumption 2.3 holds with normalizing functionals

a(u) = −α log(‖exp(−u/α)‖), b(u) = 1, u = (u1, . . . , uk) ∈ Rk+,

and the transition probability kernel of the renormalized Markov chain converges

weakly to the distribution

KA(x) = {1 + exp(−x/α)}α−k, x ∈ R.

Corollary 3.1 then asserts that the suitable normalization is at(v) = v, bt(v) = 1 for

t ≥ k, which leads to the hidden tail chain

Zt = −α log ‖exp(−Zt−k : t−1/α)‖+ εt, t = k, k + 1, . . . , (45)

where {εt}∞t=k is a sequence of i.i.d. random variables with distribution KA. Note that

the hidden tail chain can also be expressed as

Zt = Zt−k − α log ‖exp{−(0, Zt−k1k−1 −Zt−k+1 : t−1)/α}‖+ εt, t = k, k + 1, . . . .

Here the hidden tail chain is identical to the tail chain as at(x) = x and bt(x) = 1 for

all t = 1, 2, . . . . When k = 1, the tail chain can be seen to reduce to the random walk

results of Smith (1992) and Perfekt (1994), but when k > 1, the tail chain behaves like

a random walk with an extra additive factor which depends in a non-linear way on the

“profile” Zt−k1k−1 −Zt−k+1 : t−1, of the k − 1 previous values.
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Hüsler–Reiss dependence: The exponent function of the (k+ 1)-dimensional max-

stable distribution with Hüsler–Reiss dependence is

V (y0 : k) =

k∑
i=0

1

yi
Φk[{log(yj/yi) + σ2 − σij}j 6=i; Σ(i)], y0 : k ∈ Rk+1

+ ,

where Φk( · ; Σ(i)) denotes the multivariate normal distribution function with mean

zero and covariance matrix Σ(i) = Ti ΣT
>
i , for Σ = (σij)

k
i,j=0 a positive definite

Toeplitz covariance matrix with common diagonal elements σii = σ2, and Ti is a

k × (k + 1) matrix with the (i + 1)th column having −1 for each entry and the other

columns being the k standard orthonormal basis vectors of Rk, that is,

Ti =


1 0 · · · 0 −1 0 · · · 0

0 1 · · · 0 −1 0 · · · 0

. . . · · · · · · · · · · · · · · ·

0 0 · · · 0 −1 0 · · · 1

 , i = 0, . . . , k.

The matrix Σ controls the strength of dependence, with larger values for σij indicating

stronger dependence between the associated elements of the random vector. The initial

limiting distribution (41) is G(x) = Φk−1[x − {−diag(Σ(0))/2}; Σ(0)], x ∈ Rk−1 in

addition to having ai(v) = v, bi(v) = 1 for i = 1, . . . , k − 1 (Engelke et al., 2015).

Appendix A.9 shows that Assumption 2.3 holds with normalizing functionals

a(u) = −τK>01CK10 · u, b(u) = 1, u = (u1, . . . , uk) ∈ Rk+,

where the quantities τ, q,C,K10 and K01 are constants with respect to u, but depend

on the parameters of Σ, and are defined in Appendix A.9. The transition probability

kernel of the renormalized Markov chain converges weakly to the distribution

KA(x) = Φ{(x/τ) + (K>01Σ
−11>k+1)/(1>k+1q)}, x ∈ R.

Corollary 3.1 asserts that a suitable normalization is at(v) = v, bt(v) = 1 for t ≥ k

which leads to the hidden tail chain (identical to the tail chain)

Zt = −τK>01CK10 ·Zt−k : t−1 + εt, t = k, k + 1, . . . ,

where {εt}∞t=k is a sequence of i.i.d. random variables with distribution KA. Note that

the tail chain can also be expressed as

Zt = Zt−k + τK>01CK10 · (0, Zt−k1k−1 −Zt−k+1 : t−1) + εt, t = k, k + 1, . . . ,
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which shows, similarly with the logistic copula, that the tail chain behaves like a

random walk with an extra factor which depends linearly on the “profile” Zt−k1k−1−

Zt−k+1 : t−1, of the k − 1 previous values, so differs from the previous example in this

respect.

Panels (c) and (d) in Figure 1 show an almost linear behaviour for two special cases

of the tail chains presented. Although the copulae used to derive both (hidden) tail

chains have the same extremal coefficient (see Schlather and Tawn, 2003), ensuring

that the core level of extremal dependence is common in both, the decay rate of the

two processes is markedly different. This shows that the type of drift function and

distribution for the innovation term εt impact upon the characteristics of transitioning

from an extreme state to the main body of the process.

Example 5.4. (Multivariate extreme value copula with asymmetric logistic structure

(Tawn, 1990).) This is a second-order Markov process for which Assumptions 2.2 and

2.3 fail to hold and it has more complicated structure than we have covered so far

where weak convergence on Rk was studied. In this example, the weak convergences

in Assumptions 2.2 and 2.3 no longer hold on Rk−1 and R (cf. Remark 2.1), but on

Rk−1
and R, respectively. The example is a special case of a stationary Markov chain

with transition probability kernel (33) and exponent function given by

V (x0, x1, x2) = θ0 x
−1
0 + θ1 x

−1
1 + θ2 x

−1
2 +

+θ01

{(
x
−1/ν01
0 + x

−1/ν01
1

)ν01
+
(
x
−1/ν01
1 + x

−1/ν01
2

)ν01}
+

+θ01

(
x
−1/ν02
0 + x

−1/ν02
2

)ν02
+

+θ012

(
x
−1/ν012
0 + +x

−1/ν012
1 + x

−1/ν012
2

)1/ν012
, (46)

where νA ∈ (0, 1) for any A ∈ 2{0,1,2} \ ∅, and

θ0 + θ01 + θ02 + θ012 = 1, θ1 + 2θ01 + θ012 = 1, θ2 + θ01 + θ02 + θ012 = 1

with θ0, θ1, θ2, θ01, θ02, θ012 > 0.

Despite this distribution not satisfying the assumptions of Section 2, strategy that

is implemented to find the normalising functions and hidden tail chain is similar to

the strategy presented in Section 5.1. In particular, the initial distribution of the

Markov process is F01(x0, x1) = F012(x0, x1,∞) = exp{−V (y0, y1,∞)}, with (y0, y1)
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Figure 1: Properties for each hidden tail chain for Examples 1–3 with k = 5. Presented

for each chain are: pointwise 2.5% and 97.5% quantiles of the sampling distribution (shaded

region), mean of the sampling distribution (dashed line) and one realization from the (hidden)

tail chain (solid line). The copula of X0 : k used to derive the (hidden) tail chain comes

from: (a) standard multivariate Gaussian copula with Toeplitz positive-definite covariance

matrix Σ generated by the vector (1, 0.70, 0.57, 0.47, 0.39, 0.33), (b): inverted logistic with

α = log(1>k+1 Σ−1 1k+1)/ log k = 0.27. The value of the function modk(t) is also highlighted

on the mean function of the time series with numbers ranging from 0 to 4 for all t, (c): logistic

copula with α = 0.32. (d): Hüsler–Reiss copula with Toeplitz positive-definite covariance

matrix generated by the vector (1, 0.9, 0.7, 0.5, 0.3, 0.1). The parameters for all copulas are

chosen such that the coefficient of residual tail dependence η (Ledford and Tawn, 1997) and

the extremal coefficient θ (Beirlant et al., 2004) are equal for the copulas in panels (a) and

(b), and (c) and (d), respectively.

defined in (30). It can be seen that the transition probability kernel π(x0, x1) =

−y2
0 V0(y0, y1,∞) exp(y−1

0 − V (y0, y1,∞)) associated with the conditional distribution

of X1 | X0, converges with two distinct normalizations, that is, π(v, dx)
w−→ K0(dx)
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and π(v, v + dx)
w−→ K1(dx) as v → ∞, to the distributions K0 = (θ0 + θ02)FE +

(θ01 + θ012) δ+∞, and K1 = (θ0 + θ02) δ−∞ + θ01G01 + θ012G012, respectively, where

FE(x) = (1 − exp(−x))+, GA(x) = (1 + exp(−x/νA))νA−1 and δx is a point mass

at x ∈ [−∞,∞] (cf. Example 5 in Papastathopoulos et al., 2017). Distributions K0

and K1 have entire mass on (0,∞] and [−∞,∞), respectively. In the first and second

normalizations, mass of size (1− θ01− θ012) escapes to +∞ and mass of size (θ0 + θ02)

escapes to −∞, respectively. As explained by Papastathopoulos et al. (2017), the

reason for this behaviour is that the separate normalizations are related to two different

modes of the conditional distribution of X1 | X0. This phenomenon also manifests in

the conditional distribution of X2 | {X0, X1}, which is given by

π(x0:1, x2) =
(V0V1 − V01)(y0:2)

(V0V1 − V01)(y0:1,∞)
exp(V (y0:1,∞)− V (y0:2)),

where g(f1, f2, f3)(x) := g(f1(x), f2(x), f3(x)) for maps g and fi, i = 1, 2, 3. Here

the problem is more complex, with this transition probability kernel converging with

2 (2k − 1) = 6 distinct normalizations. Letting

a11,1(v1, v2) = −ν012 log{exp(−v1/ν012) + exp(−v2/ν012)}

a10,1(v1, v2) = v1, a01,1(v1, v2) = v2 (47)

a11,0(v1, v2) = a01,0(v1, v2) = a10,0(v1, v2) = 0,

it can be shown that for (x0, x1) ∈ R2 and as v →∞,

π((v + x0, v + x1), a11,1(v + x0, v + x1) + dy)
w−→ K{1,1},{1}(dy;x0, x1) on [−∞,∞)

π((v + x0, v + x1), a11,0(v + x0, v + x1) + dy)
w−→ K{1,1},{0}(dy;x0, x1) on (0,∞]

π((v + x0, x1), a10,1(v + x0, x1) + dy)
w−→ K{1,0},{1}(dy;x0, x1) on [−∞,∞),

π((v + x0, x1), a10,0(v + x0, x1) + dy)
w−→ K{1,0},{0}(dy;x0, x1) on (0,∞]

π((x0, v + x1), a01,1(x0, v + x1) + dy)
w−→ K{0,0},{1}(dy;x0, x1) on [−∞,∞)

π((x0, v + x1), a01,0(x0, v + x1) + dy)
w−→ K{0,1},{0}(dy;x0, x1) on (0,∞],

where the limiting measures are given by

KA,{1} = mA δ−∞ + (1−mA)GA,{1} and KA,{0} = mAGA,{0} + (1−mA) δ∞,
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for A ∈ {0, 1}2 \ {0, 0}, with

mA(x0, x1) =



{
1 +

(
κ012

κ01

)
eλ(x0+x1)Wν01−1(ex0 , ex1 ; ν01)/Wν012−1(ex0 , ex1 ; ν012)

}−1

,

θ0/(θ0 + θ02),

θ1/(θ1 + θ01),

for A = {1, 1}, A = {1, 0}, and A = {0, 1}, respectively, and

G{1,1},{1}(y ; x0, x1) = W2{1, exp(y) ; ν012}

G{1,1},{0}(y ; x0, x1) = FE(y)

G{1,0},{1}(y ; x0, x1) = W1{1, exp(y) ; ν02}

G{1,0},{0}(y ; x0, x1) = [θ1 + θ01{1 +W1(1, T (y)/T (x1); ν01)}+ .

+ .θ012W1(1, T (y)/T (x1) ; ν012)]g10(x, y)

G{0,1},{1}(y ; x0, x1) = W1{1, exp(y) ; ν01}

G{0,1},{0}(y ; x0, x1) = [θ0 + θ01 + θ02W1(1, T (y)/T (x0) ; ν02) + .

+ .θ012W1(1, T (y)/T (x0) ; ν012)]g01(x, y).

Here, the function T is defined in (30), κA = θA (νA − 1)/νA, Wp(x, y ; ν) = (x−1/ν +

y−1/ν)ν−p, with x, y > 0, p ∈ R, ν ∈ (0, 1),

log g10(x, y) = V (∞, T (x),∞)− V (∞, T (x), T (y)), and

log g01(x, y) = V (T (x),∞,∞)− V (T (x),∞, T (y)).

To help explain the necessity for requiring the normalizing functionals (47) to describe

the evolution of an extreme episode after witnessing an extreme event in this 2nd order

Markov process, it is useful to consider the behaviour of the spectral measureH, defined

in equation (31), for the initial distribution F012 of this process. Here, the spectral

measure H places mass of size |A| θA on each subface A ∈ P([2]) of ∆2 (Coles and

Tawn, 1991) which implies that different subsets of the variables (Xt−2, Xt−1, Xt) can

take their largest values simultaneously, see for example Simpson et al. (2020). Hence,

if the Markov process is in an extreme episode at time t − 1, t ≥ 3, then it follows

that there are four possibilities for the states (Xt−2, Xt−1), that is, either the variables

Xt−2 and Xt−1 are simultaneously extreme or just one of them is. Consequently, there
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are two possibilities for the state of the process at time t, that is, the variable Xt can

be either extreme or not, and this is demonstrated by bimodality in the transition

probability kernel under all four distinct possibilities for the states Xt−2 and Xt−1.

In total, this gives rise to 6 distinct possibilities which necessitate an “event specific”

normalizing functional to guarantee the weak convergence of the transition probability

kernel. This justifies the labelling of the functionals in (47) where the label (A, b)

appearing in the subscript, with A ∈ {0, 1}2 and b ∈ {0, 1}, indicates transitioning

from one of four possible configurations (A) at times t− 2 and t− 1 into two possible

configurations (b) at time t—with 1 indicating that the state is extreme and 0 otherwise.

The case where the Markov process is in an extreme episode at time t− 1, for t = 2, is

handled similarly noting now that X0 is, by virtue of the conditioning, already extreme

and hence there are two possibilities for X0 and X1, that is, either X1 is extreme or

not. Although complex, these modes can be identified by any line determined by the

loci of points (max(xt−2, xt−1), ζ max(xt−2, xt−1)), where xt−2, xt−1 ∈ R, for some

ζ ∈ (0, 1), in the distribution of Xt | max{Xt−2, Xt−1} > v, see panels (b), (c) and (d)

Figure 2, where v is taken equal to 9. This facilitates accounting for the identification

of the normalizing functionals by introducing the stopping times, TX0 = 0 a.s., and

TXj = inf{t ∈ (TXj−1, T
X ] : Xt ≤ ζ max(Xt−2, Xt−1)}, j ≥ 1,

where

TX = inf{t ≥ 2 : Xt−1 ≤ ζ max(Xt−3, Xt−2), Xt ≤ ζ max(Xt−2, Xt−1)},

subject to the convention X−s = 0 for s ∈ N\{0}, that is TXj , with j ≥ 1, is the jth time

that ζ multiplied by the maximum of the previous two states is not exceeded after time

0, and the termination time TX is the first time after time 0 where two consecutive

states did not exceed ζ times the maximum of their respective two previous states.

Define

a1(v) =

v, TX1 > 1

0, TX1 = 1

and bt(v) = 1 for all t ≥ 1.
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Figure 2: (a): time series plot showing a single realization from the 2nd order Markov chain

with asymmetric logistic dependence (46) initialized from the distribution of X0 | X0 > 9.

For this realization, there are three change-points TX
1 , T

X
2 and TX

3 and are highlighted with

a cross. (b): Scatterplot of states {(Xt−1, Xt) : Xt−1 > 9} drawn from 103 realisations

of the Markov chain initialized from the distribution of X0 | X0 > 9. Points for which

Xt−2 < 9 and Xt−2 ≥ 9 are highlighed with grey crosses and black circles, respectively.

(c): Scatterplot of consecutive states (Xt−2, Xt). Points for which Xt−1 < 9 and Xt−1 ≥ 9

are highlighed with grey crosses and black circles, respectively. (d): Scatterplot of states

{(max(Xt−2, Xt−1), Xt) : max(Xt−2, Xt−1) > 9} and line Xt = c max(Xt−2, Xt−1) with

c = 1
2

superposed. (e): Histogram of termination time TB obtained from 104 realizations

from the hidden tail chain. The Monte Carlo estimate of the mean of the distribution is

8.42 and shown with a dashed vertical line. (f): pointwise 2.5% and 97.5% quantiles of the

sampling distribution (shaded region), mean of the sampling distribution (dashed line) and

one realization from the hidden tail chain (solid line), conditioned on TB = 8. The value of

the latent Bernoulli process Bt is highlighted with a cross when Bt = 0 and with a circle

when Bt = 1. For all plots presented, θ0 = θ1 = θ2 = θ01 = θ02 = 0.3, θ012 = 0.1, and

ν01 = ν02 = ν012 = 0.5.
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Then for t ∈ (TXj−1, T
X
j ], letting

at(v1, v2) =



a11,1(v1, v2) if t 6= TXj , t− 1 6= TXj−1, t− 2 6= TXj−1

a11,0(v1, v2) if t = TXj , t− 1 6= TXj−1, t− 2 6= TXj−1

a10,1(v1, v2) if t 6= TXj , t− 1 = TXj−1, t− 2 6= TXj−1

a10,0(v1, v2) if t = TXj , t− 1 = TXj−1, t− 2 6= TXj−1

a01,1(v1, v2) if t 6= TXj , t− 1 6= TXj−1, t− 2 = TXj−1

a01,0(v1, v2) if t = TXj , t− 1 6= TXj−1, t− 2 = TXj−1,

yields the hidden tail chain of this process. Specifically, let {Bt : t = 0, 1, . . .}

be a sequence of latent Bernoulli random variables. Define the hitting times TBj =

inf{TBj−1 < t ≤ TB : Bt = 0} with TB0 = 0 a.s. and TB = inf{t ≥ 2 : Bt−1 = 0, Bt =

0}. Then the hidden tail chain process {Zt} together with the latent Bernoulli process

{Bt} form a second-order Markov process with initial distribution (B0, Z0) = (1, 0)

a.s., B1 ∼ Bern(θ01 + θ02), and

P(Z1 ≤ y | Z0,B0:1) =

θ01G01(y) + θ012G012(y) B1 = 1

FE(y) B1 = 0.

The transition mechanism is given by

Bt | (Bt−2 : t−1,Zt−2 : t−1, {t ≤ TB}) ∼ Bern(m{Bt−2 : t−1}(Zt−2 : t−1)),

and

P(Zt ≤ z | Bt−2 : t,Zt−2 : t−1, {t ≤ TB}) = G{Bt−2 : t−1},{Bt}(z − aBt−2 : t−1,Bt
(Zt−2 : t−1)).

Panel (a) in Figure 2 illustrates a realization from a special case of this 2nd order

Markov process. This realized path shows that after witnessing an extreme event at

time t = 0 the process transitions to the body of the process at time t = 1 and then, has

two extreme states at t = 2 and 3 and two non-extreme states at t = 4 and 5. After two

non-extreme values the process has permanently transitioned to its equilibrium, that is,

for t = 6, . . . in this realization. The sampling distribution of the average termination

time TB of the hidden tail chain is presented in panel (e) whereas the behaviour of

hidden tail chain conditioned on it terminating after 8 steps, that is, TB = 8, is shown
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in panel (f). This shows that whilst at an extreme state, the average value of Zt is

stable through time.

Appendix A. Proofs

A.1. Preparatory results for Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 are based on Lemmas A.1 and A.2 below whose

proofs are similar to Lemmas 1 and 2 in Papastathopoulos et al. (2017) and are omitted

for brevity.

Lemma A.1. Let {Xt : t = 0, 1, . . .} be a homogeneous k-th order Markov chain

satisfying Assumption 2.3. Then, for any g ∈ Cb(R) and for each time step t = k, k +

1, . . . , as v →∞∫
R
g(x)π (At(v, z), at(v) + bt(v) dx)→

∫
R
g(ψat (z) + ψbt (z)x)K(dx),

and the convergence holds uniformly on compact sets in the variable z ∈ Rk.

Lemma A.2. Let {Xt : t = 0, 1, . . .} be a homogeneous k-th order Markov chain

satisfying Assumption 2.5. Then, for any g ∈ Cb([0,∞)) and for each time step t =

k, k + 1, . . ., as v →∞∫
[0,∞)

g(y)π (Bt(v,x), bt+1(v) dy)→
∫

[0,∞)

g(ψbt (x) y)K(dy),

and the convergence holds uniformly on compact sets in the variable x ∈ [δ1,∞) ×

· · · × [δk,∞) for any (δ1, . . . , δk) ∈ (0,∞)k.

Lemma A.3. [Slight variant of Kulik and Soulier (2015)] Let (E, d) be a complete

locally compact separable metric space and µn be a sequence of probability measures

which converges weakly to a probability measure µ on E as n→∞.

(i) Let ϕn be a uniformly bounded sequence of measurable functions which converges

uniformly on compact sets of E to a continuous function ϕ. Then ϕ is bounded

on E and limn→∞ µn(ϕn)→ µ(ϕ).

(ii) Let F be a topological space. If ϕ ∈ Cb(F × E), then the sequence of functions

F 3 x 7→
∫
E
ϕ(x, y)µn(dy) ∈ R converges uniformly on compact sets of F to the

(necessarily continuous) function F 3 x 7→
∫
E
ϕ(x, y)µ(dy) ∈ R.
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A.2. Proofs of Theorems 2.1 and 2.2

Preliminaries. Let a0(v) ≡ v and b0(v) ≡ 1 and define

vu(z0) = u+ σ(u)z0, At(v, x) = at(v) + bt(v)x, and

At−k : t−1(v,xt−k : t−1) = (At−k(v, xt−k), . . . , At−1(v, xt−1)). (48)

We note that in our notation, when k = 1, the initial conditional distribution of the

rescaled Markov chain is

F0(vu(dz0))

F 0(u)
= P

(
X0 − u
σ(u)

∈ dz0 | X0 > u

)
. (49)

whereas when k > 1, it equals to the product of the right hand side of equation (49)

with

π0(vu(z0),A1 : k−1(vu(z0), dz1 : k−1)) := P

(
k−1⋂
j=1

{
Xj − aj(X0)

bj(X0)
∈ dzj

} ∣∣∣∣ X0 − u
σ(u)

= z0

)
.

For j ∈ {k, . . . , t} with t ≥ k ≥ 1 the transition kernels of the rescaled Markov chain

can be written as

π(Aj−k : j−1(vu(z0), zj−1,k), Aj(vu(z0), dzj))

= P

(
Xj − aj(X0)

bj(X0)
∈ dzj

∣∣∣∣ {Xj−i − aj−i(X0)

bj−i(X0)
= zj−i

}
i=1,...,k

)
.

Proof of Theorem 2.1. Consider, for t ≥ k ≥ 1, the measures

µ
(u)
t (dz0, . . . , dzt) =

t∏
j=k

π(Aj−k : j−1(vu(z0), zj−k : j−1), Aj(vu(z0), dzj))

×[π0(vu(z0),A1 : k−1(vu(z0), dz1 : k−1))]1(k>1)F0(vu(dz0))

F 0(u)

and

µt(dz0, . . . , dzt) =

t∏
j=k

K

(
dzj − ψaj (zj−k : j−1)

ψbj(zj−k : j−1)

)
[G(dz1 × · · · × dzk−1)]1(k>1)H0(dz0),

on [0,∞) × Rt, where 1(k > 1) denotes the indicator function of {k > 1}. For f ∈

Cb([0,∞)× Rt), we may write

E
[
f

(
X0 − u
σ(u)

,
X1 − a1(X0)

b1(X0)
, . . . ,

Xt − at(X0)

bt(X0)

) ∣∣∣∣ X0 > u

]
=

=

∫
[0,∞)×Rt

f(z0 : t)µ
(u)
t (dz0, . . . , dzt)
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and

E[f (E0, Z1, · · · , Zt)] =

∫
[0,∞)×Rt

f(z0 : t)µt(dz0, . . . , dzt).

We need to show that µ
(u)
t converges weakly to µt. Let g0 ∈ Cb([0,∞)) and g ∈ Cb(Rk).

The proof is by induction on t. For t = k it suffices to show that

∫
[0,∞)×Rk

g0(z0)g(z1, . . . , zk)µ
(u)
k (dz0, dz1, . . . , dzk)

=

∫
[0,∞)

g0(z0)

[ ∫
Rk

g(z1 : k)π((vu(z0),A1 : k−1(vu(z0), z1 : k−1)), Ak(vu(z0), dzk))

π0(vu(z0),A1 : k−1(vu(z0), dz1 : k−1))1(k>1)

]
F0(vu(dz0))

F 0(u)
, (50)

converges to E(g0(E0))E(g(Z1, . . . , Zk)).

By Assumptions 2.2 and 2.3, the integrand in the term in square brackets in (50)

converges pointwise to a limit and is dominated by

sup{g(z) : z ∈ Rk} × π((vu(z0),A1 : k−1(vu(z0), z1 : k−1)), Ak(vu(z0), dzk)).

Lebesgue’s dominated convergence theorem yields that the term in square brackets

of (50) is bounded and converges to E[g(Z1 : k)] for u → ∞ since vu(z0) → ∞ as

u → ∞. The convergence holds uniformly in the variable z0 ∈ [0,∞) since σ(u) > 0.

Therefore Lemma A.3 applies, which guarantees convergence of the entire term (50)

to E(E0)E(g(Z1 : k)) due to Assumption 2.1.

Next, assume that the statement is true for some t > k. It suffices to show that for

any g0 ∈ Cb([0,∞)× Rt, g ∈ Cb(R),

∫
[0,∞)×Rt+1

g0(z0 : t)g(zt+1)µ
(u)
t+1(dz0, dz1, . . . , dzt+1)

=

∫
[0,∞)×Rt

g0(z0 : t)

[ ∫
R
g(zt+1)π(At−k+1 : t(vu(z0), zt−k+1 : t), At(vu(z0), dzt+1))

]

µ
(u)
t (dz0, dz1, . . . , dzt) (51)
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converges to∫
[0,∞)×Rt+1

g0(z0 : t)g(zt+1)µt+1(dz0, dz1, . . . , dzt+1)

=

∫
[0,∞)×Rt

g0(z0 : t)

[ ∫
R
g(zt+1)K

(
dzt+1 − ψat (zt−k+1 : t)

ψbt (zt−k+1 : t)

)]
µt(dz0, dz1, . . . , dzt).

(52)

The term in square brackets of (51) is bounded, and by Lemma A.1 and Assumptions

2.2 and 2.3, it converges uniformly on compact sets in both variables (z0, zt−k+1 : t) ∈

[0,∞) × Rk jointly, since σ(u) > 0. Hence the induction hypothesis and Lemma A.3

imply the desired result. �

Proof of Theorem 2.2. Define

bt−k : t−1(v,xt−k : t−1) = (bt−k(v)xt−k, . . . , bt−1(v)xt−1).

Consider the measures

µ
(u)
t (dz0, . . . , dzt) =

[ t∏
j=k

π(bj−k : j−1(vu(z0), zj−k : j−1), bj(vu(z0)) dzj)

]
×

×[π0(vu(z0), b1 : k−1(vu(z0), dz1 : k−1))]1(k>1)F0(vu(dz0))

F 0(u)
(53)

and

µt(dz0, . . . , dzt) =

[ t∏
j=k

K

(
dzj

ψbj(zj−k : j−1)

)]
[G(dz1, . . . , dzk−1)]1(k>1)H0(dz0),(54)

on [0,∞)× [0,∞)t. We may write

E
[
f

(
X0 − u
σ(u)

,
X1

b1(X0)
, . . . ,

Xt

bt(X0)

) ∣∣∣∣X0 > u

]
=

∫
[0,∞)×[0,∞)t

f(z0 : t)µ
(u)
t (dz0, . . . , dzt)

and

E[f(E0, Z1, . . . , Zt)] =

∫
[0,∞)×[0,∞)t

f(z0 : t)µt(dz0, . . . , dzt)

for f ∈ Cb([0,∞) × [0,∞)t). Note that bj(0), j = 1, . . . , t need not be defined in

(53), since vu(z0) ≥ u > 0 for z0 ≥ 0 and sufficiently large u, whereas (54) is well-

defined, since the measures G and K put no mass at any half-plane Cj = {(z1 : k−1) ∈
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[0,∞)k−1 : zj = 0} ∈ [0,∞)k−1 and at 0 ∈ [0,∞), respectively. Formally, we may

set ψbj(0k) = 1, j = 1, . . . , t in order to emphasize that we consider measures on

[0,∞)t+1, instead of [0,∞) × (0,∞)t. To prove the theorem, we need to show that

µ
(u)
t (dz0, . . . , dzt) converges weakly to µt(dz0, . . . , dzt). The proof is by induction on t.

We show two statements by induction on t:

(I) µ
(u)
t (dz0, . . . , dzt) converges weakly to µt(dz0, . . . , dzt) as u ↑ ∞.

(II) For all ε > 0 there exists δt > 0 such that µt([0,∞)× [0,∞)t−1 × [0, δt]) < ε.

We start proving the case t = k.

(I) for t = k: It suffices to show that for any g0 ∈ Cb([0,∞)) and g ∈ Cb([0,∞)k−1)∫
[0,∞)×[0,∞)k−1×[0,∞)

g0(z0)g(z1 : k)µ
(u)
1 (dz0, . . . , dzk)

=

∫
[0,∞)

g0(z0)×

×
[ ∫

[0,∞)k−1

∫
[0,∞)

g(z1, . . . , zk)π((vu(z0), b0 : k−1(vu(z0), z0 : k−1)), bk(vu(z0))dzk)

]
×

× π0(vu(z0), b1 : k−1(vu(z0), dz1 : k−1))
F0(vu(dz0))

F 0(u)
(55)

converges to∫
[0,∞)×[0,∞)k

g0(z0)g(z1 : k)µ1(dz0, . . . , dzk) = E(g0(E0))E(g(Z1, . . . , Zk)).

By Assumptions 2.1 and 2.5, the integrand in the term in square brackets converges

pointwise to a limit and is dominated by

sup{g(z) : z ∈ Rk+} × π((vu(z0), b1 : k−1(vu(z0), z1 : k−1)), bk(vu(z0)) dzk).

Lebesgue’s dominated convergence theorem yields that the term in square brackets

of (55) is bounded and converges to E(g(Z1 : k)) for u ↑ ∞, since vu(z0)→∞ for u ↑ ∞.

The convergence is uniform in the variable z0, since σ(u) > 0. Therefore, Lemma A.3 (i)

applies, which guarantees convergence of the entire term (55) to E(g0(E0))E[g(Z1 : k)]

due to Assumption 2.1.

(II) for t = k: Since K({0}) = 0, there exists δ > 0 such that K([0, δ]) < ε, which

immediately entails µk([0,∞)k× [0, δ]) = H0([0,∞)) [G([0,∞)k−1)]1(k>1)K([0, δ]) < ε.
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Now, let us assume that both statements ((I) and (II)) are proved for some t ∈ N.

(I) for t+ 1: It suffices to show that for any g0 ∈ Cb([0,∞)× [0,∞)t), g ∈ Cb([0,∞))∫
[0,∞)×[0,∞)t+1

g0(z0 : t)× g(zt+1)µ
(u)
t+1(dz0, dz1, . . . , dzt, dzt+1)

=

∫
[0,∞)×[0,∞)t

g0(z0 : t)×

×
[ ∫

[0,∞)

g(zt+1)π(bt−k+1 : t(vu(z0), zt−k+1 : t), bt+1(vu(z0)) dzt+1)

]
× (56)

× µ(u)
t (dz0, dz1, . . . , dzt) (57)

converges to ∫
[0,∞)×[0,∞)t+1

g0(z0 : t)g(zt+1)µt+1(dz0, dz1, . . . , dzt, dzt+1)

=

∫
[0,∞)×[0,∞)t

g0(z0 : t)

[ ∫
[0,∞)

g(zt+1)K(dzt+1/ψ
b
t (zt−k+1 : t))

]
×

× µt(dz0, dz1, . . . , dzt). (58)

From Lemma A.2 and Assumptions 2.4 and 2.5 we know that, for any δ > 0, the

(bounded) term in the square brackets of (56) converges uniformly on compact sets in

the variable zt−k+1 : t ∈
∏k
i=1[δi,∞) to the continuous function∫
[0,∞)

g(ψbt (zt−k+1 : t)zt+1)K(dzt+1)

(the term in the square brackets of (58)). This convergence holds even uniformly

on compact sets in both variables (z0, zt−k+1 : t) ∈ [0,∞) ×
∏k
i=1[δi,∞) jointly, since

σ(u) > 0. Hence, the induction hypothesis (I) and Lemma A.3 (i) imply that for any

δ > 0 the integral in (56) converges to the integral in (58) if the integrals with respect

to µt and µ
(u)
t were restricted to Aδ := [0,∞)×[0,∞)t−1×[δ,∞) (instead of integration

over [0,∞)× [0,∞)t−1 × [0,∞)).

Since g0 and g are bounded, it suffices to control the mass of µt and µ
(u)
t on the

complement Acδ = [0,∞) × [0,∞)t−1 × [0, δ). For some prescribed ε > 0 it is possible

to find some sufficiently small δ > 0 and sufficiently large u, such that µt(A
c
δ) < ε and

µ
(u)
t (Acδ) < 2ε. Because of the induction hypothesis (II), we have indeed µt(Aδt) < ε

for some δt > 0. Choose δ = δt/2 and note that the sets of the form Aδ are nested.

Let Cδ be a continuity set of µt with Acδ ⊂ Cδ ⊂ Ac2δ. Then the value of µt on all
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three sets Acδ, Cδ, A
c
2δ is smaller than ε and because of the induction hypothesis (I), the

value µ
(u)
t (Cδ) converges to µt(Cδ) < ε. Hence, for sufficiently large u, we also have

µ
(u)
t (Acδ) < µ

(u)
t (Cδ) < µt(Cδ) + ε < 2ε, as desired.

(II) for t+ 1: We have for any δ > 0 and any c > 0

µt+1([0,∞)× [0,∞)t × [0, δ]) =

∫
[0,∞)×[0,∞)t

K([0, δ/ψbt (zt−k+1 : t)])µt(dz0, . . . , dzt).

Splitting the integral according to {ψbt (zt−k+1 : t) > c} or {ψbt (zt−k+1 : t) ≤ c} yields

µt+1([0,∞)× [0,∞)t × [0, δ]) ≤ K([0, δ/c]) + µt([0,∞)× [0,∞)t−1 × (ψbt )
−1([0, c])}).

By Assumption 2.5 (i) and the induction hypothesis (II) we may choose c > 0 suffi-

ciently small, such that the second summand µt([0,∞) × [0,∞)t−1 × (ψbt )
−1([0, c])})

is smaller than ε/2. Second, since K({0}) = 0, it is possible to choose δt+1 = δ > 0

accordingly small, such that the first summand K([0, δc ]) is smaller than ε/2, which

shows (II) for t+ 1. �

A.3. Proof of Propositions

Proof of Proposition 2.1. We start by proving that (i) implies (ii). Let 0 := 0k and

suppose there exist at, bt ψ
a
t and ψbt such that (i) holds. Then, for t = k, k + 1 . . . ,

a(At(v,zv))− a(At(v,0))

b(At(v,0))
=

=
a(At(v,zv))− at(v)

bt(v)

bt(v)

b(At(v,0))
− a(At(v,0))− at(v)

bt(v)

bt(v)

b(At(v,0))

→ ψat (z)

ψbt (0)
− ψat (0)

ψbt (0)
=
ψat (z)− ψat (0)

ψbt (0)
whenever zv → z as v →∞,

and

b(At(v, zv))

b(At(v,0))
=
b(At(v,zv))

bt(v)

bt(v)

b(At(v,0))
→ ψbt (z)

ψbt (0)
whenever zv → z as v →∞.

Next we prove (ii) implies (i). Let at(v) = a(At(v, 0)) − c b(At(v,0)) and bt(v) =

d b(At(v,0)) for arbitrary constants c ∈ R, d ∈ R+. Then, for t = k, k + 1 . . . ,

a(At(v,zv))− at(v)

bt(v)
=
b(At(v,0))

bt(v)

[
a(At(v,zv))− a(At(v,0))

b(At(v,0))
+ c

]
→ λbt(z)

d
[λat (z) + c] whenever zv → z ∈ Rk as v →∞.
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Define ψat (z) = (λat (z) + c)/d and ψbt (z) = λbt(z)/d. By assumption, λat (0) = 0 and

λbt(0) = 1. Hence, λat (z) = [ψat (z) − ψat (0)]/ψbt (0) and λbt(z) = ψbt (z)/ψbt (0), which

completes the proof. �

Proof of Proposition 4.1. The recurrence relation

αt = c
[ k∑
i=1

γi(γi αt−k+i−1)δ/(γ1+δ
1 + · · ·+ γ1+δ

k )
]1/δ

can be converted to the homogeneous linear recurrence relation yt =
∑k
i=1 ci yt−k+i−1,

where {yt} = {αδt} and ci = cδγ1+δ
i /(γ1+δ

1 + · · ·+γ1+δ
k ). Solving the recurrence relation

and transforming the solution to the original sequence {αt} leads to the claim. �

Proof of Proposition 5.1. (i) Because aP is 1–homogeneous, a satisfies property (19).

By definition of the right-inverse V←0 : k−1 and due to Assumption 5.1, we have that, for

all (y0 : k−1, q) in the domain of V←0 : k−1,

V0 : k−1{y0 : k−1, V
←
0 : k−1(q;y0 : k−1)} =

= V0 : k−1(y0 : k−1,∞)KP {V←0 : k−1(q;y0 : k−1)/aP (y0 : k−1)} = q.

Hence, V←0 : k−1(q;y0 : k−1) = aP (y0 : k−1)K←P {q/V0 : k−1(y0 : k−1,∞)}. Taking logarithms,

setting y0 : k−1 = ex0 : k−1 , and letting q = p? V0 : k−1(y0 : k−1,∞) where p? satisfies

K←P (p?) = 1 gives

a(x0 : k−1) = log V←0 : k−1(p? V0 : k−1(ex0 : k−1 ,∞); ex0 : k−1)− logK←P (p?).

(ii) Since a satisfies property (19), then Appendix A.7 shows that Assumption 2.3 holds

with limit distribution K(x; z0 : k−1) given by (42). Using Assumption 5.1, we further

have that under the normalizing functionals a and b, (42) simplifies to K(x; z0 : k−1) =

KP (ex) for all z0 : k−1 ∈ Rk.

(iii) The limit distribution K(x; z0 : k−1) in (42) does not depend on z0 : k−1. Because

aP is positive, 1–homogeneous, and continuous, 1 is in the image of aP and thus, 0

is in the image of a. Hence, there exists z?0 : k−1 ∈ Rk such that a(z?0 : k−1) = 0 and

KP (ex) = K(x; z?0 : k−1) which proves the claim. �

A.4. Proof of Corollaries

Proof of Corollary 3.1. Since a is continuous, we have that a(v1k + zv) − v =

a(zv) → a(z) whenever zv → z ∈ Rk. Hence, convergence (8) holds true with
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ψat (z) = a(z) and ψbt (z) = 1.

For any s ∈ N, Asenova and Segers (2023) show that under the assumptions of

Corollary 3.1, the random vector XP = exp(X0 : s) is multivariate regularly varying,

that is, for any A ⊂ ∆s,

P
(
XP

‖XP ‖
∈ A, ‖XP ‖ > v r

∣∣∣ ‖XP ‖ > v

)
→ H(A) r−1, r ≥ 1,

where H is a Radon measure on ∆s satisfying H(∆s) = s+1 and
∫

∆s wjdH(w0 : s) = 1

for j = 0, . . . , s. Theorem 2.1 and Proposition 4 of Heffernan and Resnick (2007) imply

that Zt ∼ Gt where

Gt(z) =

∫ q(z)

0

(1− w)Ht(dw) with q(z) = ez/(1 + ez), z ∈ R,

where Ht denotes the lag t bivariate spectral measure associated with H, that is, for

every t ≥ 1, Ht is a Radon measure on ∆1 that satisfiesHt(∆
1) = 2 and

∫
∆1 wdHt(w) =

1. Thus, we have that the expected value of Zt satisfies

E(Zt) =

∫
R
z dGt(z) =

∫
R

z∫
0

du dGt(z) = −
0∫

−∞

Gt(z) dz +

∞∫
0

[1−Gt(z)] dz =

= −
1/2∫
0

u∫
0

(1− w) dHt(w) d log
( u

1− u

)
+

1∫
1/2

1∫
u

(1− w) dHt(w) d log
( u

1− u

)
=

= −
1/2∫
0

1/2∫
w

[
d log

( u

1− u

)]
(1− w) dHt(w) +

1∫
1/2

w∫
1/2

[
d log

( u

1− u

)]
(1− w) dHt(w) =

=

∫
∆1

log{w/(1− w)} (1− w) dHt(w) < log
(∫

∆1

w dHt(w)
)

= 0.

The strict inequality follows from Jensen’s inequality, the strict concavity of the log

function, and due to Assumption 2.2 (ii) which requires Gt to be a non-degenerate

distribution. The latter ensures Ht 6= 2 δ1/2, where δx denotes the Dirac measure at

{x}. �

Proof of Corollary 3.2. First we prove the statement that the αi < 1 for all i ≥ k

if the recurrence relation (20) holds. Let α?t−k : t−1 := maxαt−k : t−1, then when t = k

then α?0 : k−1 = 1 by the conditions of Corollary 3.2 as α0 = 1. Then from relation (20)

with t = k we have that αk = a(α0:k−1) ≤ a(α?0 : k−11k) = α?0:k−1a(1k) < 1 × 1 = 1.

Here, the first inequality comes from the order preserving property of a and the second
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last equality comes from a being 1-homogeneous. The result αt < 1 for all t ≥ k follows

by induction over t ≥ k, noting that all α?t−k:t−1 < 1 for t ≥ k + 1.

For the remainder of the proof it suffices to show that for at(x) = αt x and bt(x) =

xβ , with αt given by (20), then convergence (8) holds true with ψat (z) = ∇a(αt−k : t−1)·

z and ψbt (z) = b(αt−k : t−1), and that αt → 0 as t→∞. Since a is twice continuously

differentiable, we have

v−β [a(αt−k : t−1 v + vβ zv)− a(αt−k : t−1 v)] =

= ∇a(αt−k : t−1 v) · zv + vβz>v ∇∇>a(αt−k : t−1v)zv +O(v2(β−1))

= ∇a(αt−k : t−1) · zv + vβ−1z>v ∇∇>a(αt−k : t−1)zv + o(vβ−1) as v →∞,

where the last equality follows because a is 1–homogeneous, which gives that

∇a(αt−k : t−1v) = ∇a(αt−k : t−1) and ∇∇>a(αt−k : t−1v) = v−1∇∇>a(αt−k : t−1).

Similarly, because b is continuous and β–homogeneous with β ∈ [0, 1), this gives

v−βb(αt−k : t−1 v + vβ zv) = b(αt−k : t−1 + vβ−1 zv)→ b(αt−k : t−1), as v →∞. Hence,

convergence (8) holds true with ψat (z) = ∇a(αt−k : t−1) · z and ψbt (z) = b(αt−k : t−1).

Lastly, we show that αt → 0 as t → ∞. Let f : Rk+ → Rk+ with f(x0 : k−1) =

(x1 : k−1, a(x0 : k−1)) for all x0 : k−1 ∈ Rk+. Let rt = fkt := f ◦ f ◦ · · · ◦ f , f0 := id,

t = 0, 1, . . . , denote the (kt)-fold composition of f with itself. Since a is assumed

order-preserving, 1-homogeneous, with a(1k) < 1, it follows that the function r is also

an order-preserving 1-homogeneous function, mapping Rk+ into Rk+, with r(1k) < 1k

componentwise. Since α0 : k−1 ∈ [0, 1]k and r is order-preserving, we have r(α0 : k−1) <

1k componentwise too. The latter inequality implies that there exists ν ∈ (0, 1) such

that r(α0 : k−1) ≤ ν1k. Similarly, the 2-fold composition of r gives r2(α0 : k−1) =

r(r(α0 : k−1)) ≤ r(ν1k) = ν21k, where the latter equality follows from the homogeneity

of the map r. Likewise, iterating forwards yields rt(α0 : k−1) ≤ νt1k → 0k as t →

∞. The claim is proved after noting that the function r satisfies {rt(α0 : k−1) : t =

0, 1, . . . } = {αt : t = 0, 1 . . . }. �

Proof of Corollary 3.3. Let log βt = log β + log(maxi=1,...,k βt−i) and consider con-

vergence (12). For t = k, we have

v−βb(vz0, v
βz1, . . . , v

βzk−1) = b(z0, v
β−1z1, . . . , v

β−1zk−1)→ b(z0,0k−1) as v →∞.
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For t = k + 1 we have

v−β
2

b(vβz0, v
βz1, . . . , v

βzk−1) = b(z0, z1, . . . , zk−1).

and for t = k + j with j ∈ {2, . . . , k − 1}, we have

v−β
2

b(vβz0, . . . v
βzk−j , v

β2

zk−j+1 . . . , v
β2

zk−1) =

= b(z0, . . . zk−j , v
β(β−1)zk−j+1, . . . , v

β(β−1)zk−1)→ b(z0, . . . , zk−j ,0j−1) as v →∞.

Iterating forwards for t = 2k, 2k + 1, . . . , we see that convergence (12) holds with

ψbt (z) =


b(z0,0k−1) when modk(t) = 0

b(z0, . . . , zk−1) when modk(t) = 1

b(z0, . . . , zk−j ,0j−1) when modk(t) = j ∈ {2, . . . , k − 1},

which completes the proof. �

A.5. Convergence of multivariate normal full conditional distribution

Let XN = (XN,0, . . . , XN,k) ∼ N (0k+1,Σ), where Σ ∈ R(k+1)×(k+1) is a positive

definite correlation matrix with (i+ 1, j + 1) element ρij , i, j = 0, . . . , k. Let Q = Σ−1

and write qij for its (i + 1, j + 1) element, i, j = 0, . . . , k. For k ≥ 1 and z0 : k−1 ∈

Rk, the conditional distribution of XN,k given XN,0 : k−1 = z0 : k−1 is normal with

mean −q−1
kk

∑k−1
i=0 qik zi and variance q−1

kk . Let X = (X0, . . . , Xk) with Xi = − log{1−

Φ(XN,i)}, so that Xi ∼ Exp(1) for i = 0, . . . , k. Following the strategy outlined in

Section 5.1, we have that for any t ≥ k ≥ 1,

P(Xk < a(X0 : k−1) |X0 : k−1 = At(v, z0 : k−1)) =

= Φ

[
q

1/2
kk

{
Φ−1
t,v −

k−1∑
i=0

(
− qik
qkk

)
Φ−1
t−k+i,v

}]
, (59)

where

Φ−1
i,v := Φ←[1− exp{−Ai(v, zi)}], for i = t− 1, . . . , t− k,

and

Φ−1
t,v := Φ←{1− exp(−[a{At(v,z0 : k−1)}])}.
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Now, let t = k. First, we seek to find a function a such that the conditional

probability in equation (59) converges to a number p ∈ (0, 1). Suppose that this

function satisfies a(at − k : t − 1(v)) → ∞ as v → ∞. Using standard asymptotic

series for the cumulative distribution function of the standard normal distribution, we

have

Φ−1
i,v = {2Ai(v, zi)}1/2 −

logAi(v, zi) + log 4π

2{2Ai(v, zi)}1/2
+ o(Ai(v, zi)

−1/2), i = t− k, . . . , t− 1,

Φ−1
t,v = {2 a(At(v,z0 : k−1))}1/2 − log a(At(v,z0 : k−1)) + log 4π

2{2 a(At(z0 : k−1))}1/2
+

+o(a(At(v,z0 : k−1))−1/2),

as v →∞. Therefore,

Φ−1
t,v −

k−1∑
i=0

(
− qik
qkk

)
Φ−1
t−k+i,v =

= (2[a{At(v,z0 : k−1)}])1/2 −
k−1∑
i=0

(
− qik
qkk

)
{2At−k+i,v(zi)}1/2 + o(1), (60)

as v →∞. Substituting in (59), we observe that for the choice of a being a(y0 : k−1) ={∑k−1
i=0 (−qik/qkk) |yi|1/2

}2
, for y0 : k−1 ∈ Rk, the conditions set out in Section 5.1 are

met. In particular, due to (60) converging to zero and since Φ is continuous, we have

the conditional probability (59) converging to p = 1/2, that is

lim
v→∞

Φ

[
q

1/2
kk

{
Φ−1
t,v −

k−1∑
i=0

(
− qik
qkk

)
Φ−1
t−k+i,v

}]
= 1/2.

Using similar asymptotic series, we have that for b(y0 : k−1) = a(y0 : k−1)1/2 and any

xk ∈ R,

lim
v→∞

P (Xk < a(X0 : k−1) + b(X0 : k−1)xk

∣∣∣ X0 : k−1 = At(v, z0 : k−1)) =

= Φ{(qkk/2)1/2 xk}. (61)

The convergence in (61) holds uniformly on compact sets in the variable z0 : k−1 by

continuous convergence (see Section 0.1 in Resnick, 1987). That is, (61) holds true

after replacing z0 : k−1 by z0 : k−1(v) satisfying z0 : k−1(v) → z0 : k−1 as v → ∞ and
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since the limit function is continuous in z0 : k−1 (constant function), the argument

follows. Additionally, we have that for any αt−k : t−1 ∈ (0, 1]k,

lim
v→∞

v−1/2 [a(αt−k : t−1 v + v1/2z0 : k−1)− a(αt−k : t−1 v)] = ∇a(αt−k : t−1) · z0 : k−1

lim
v→∞

v−1/2 b(αt−k : t−1 v + v1/2z0 : k−1) = b(αt−k : t−1),

where both convergences hold uniformly on compact sets in the variable z0 : k−1 since

monotone increasing functions (in every argument) are converging point-wise to a

continuous limit. Thus, Assumption 2.3 holds true for the special case t = k with

at(v) =

{ k−1∑
i=0

(
− qik
qkk

)
ρ

1/2
t−k+i

}2

v and bt(v) = v1/2.

Finally, observe that the entire argument after (59) remains unchanged upon changing

t = k to t = k + 1. The claim is proved through iteration.

A.6. Convergence of multivariate inverted logistic full conditional distribu-

tion

The transition probability kernel of this process is given by (35) with V (x) =

‖x−1/α‖α, x ∈ Rk+1
+ . For t ≥ k ≥ 1 and z0 : k−1 ∈ Rk+, we have that P(Xk/b(X0 : k−1) <

1 |X0 : k−1 = Bt(v, z0 : k−1)) is equal to

L (v, z0 : k−1) exp
{∥∥Bt(v,x0 : k−1)1/α

∥∥α − ∥∥(Bt(v,z0 : k−1), b{Bt(v,z0 : k−1)})1/α
∥∥α},
(62)

where Bt(v, z0 : k−1) = (Bt−k(v, z0), . . . , Bt−1(v, zk−1)) and L (v, z0 : k−1) = 1 + o(1)

for all z0 : k−1 ∈ Rk+ as v →∞.

Now let t = k and set z0 = 1. First, we seek to find a function b such that the

conditional probability in equation (62) converges to a number p ∈ (0, 1). Suppose

that this function satisfies b(b0 : k−1(v)) → ∞ as v → ∞ with b(b0 : k−1(v)) = o(v).
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Under this assumption, we have that as v →∞,

log πinv[Bt(v,z0 : k−1), b{B(v,z0 : k−1)}] =

= ‖{Bt(v,z0 : k−1)}1/α‖α−‖[{Bt(v,z0 : k−1)}1/α, {b(Bt(v, z0 : k−1))}1/α]‖α+o(1)

=
( t−1∑
i=t−k

Bi(v, zi)
1/α + [b{Bt(v,z0 : k−1)}]1/α

)α
−
( t−1∑
i=t−k

Bi(v, zi)
1/α
)α

+ o(1)

=
( t−1∑
i=t−k

Bi(v, zi)
1/α
)α(

1 +
[b{Bt(v,z0 : k−1)}]1/α∑t−1

i=t−k Bi(v, zi)
1/α

)α
−
( t−1∑
i=t−k

Bi(v, zi)
1/α
)α

+ o(1)

= α
( t−1∑
i=t−k

Bi(v, zi)
1/α
)−(1−α)

[b{Bt(v,z0 : k−1)}]1/α + o(1).

This expression converges to a positive constant provided

b(B(v,z0 : k−1)) = O
[{ k−1∑

i=0

Bt(v, zi)
1/α
}α(1−α)]

as v →∞.

Hence, choosing b equal to b(y) = ‖y1/α‖α(1−α), y ∈ Rk+, gives the conditional

probability (62) converging to p = 1− exp(−α), that is

πinv[Bt(v, z0 : k−1), b{B(v, z0 : k−1)}]→ 1− exp(−α), α ∈ (0, 1),

and generally, we also have that for any xk ∈ R+,

lim
v→∞

πinv(B(v, z0 : k−1), b(B(v, z0 : k−1)) zk) = 1− exp(−αx1/α
k ). (63)

Lastly, we note that the convergence in (63) holds uniformly on compact sets in the

variable x0 : k−1 ∈ [δ1,∞)× · · · × [δk,∞) by continuous convergence (see Section 0.1 in

Resnick, 1987). That is, (63) holds true after replacing z0 : k−1 by z0 : k−1(v) satisfying

z0 : k−1(v)→ z0 : k−1 ∈ [δ1,∞)× · · · × [δk,∞) as v →∞ and since the limit function is

continuous in z0 : k−1 (constant function), the argument follows.

Let βt satisfy the recurrence relation log βt = log(1 − α) + log(maxi=1,...,k βt−i)

subject to βi = 1 − α for i = 1, . . . , k − 1. For all δ1, . . . , δk > 0 and z0 : k−1 ∈

[δ1,∞)× . . .× [δk,∞),

v−βt b(Bt(v, zv))→ ψbt (z) whenever zv → z as v →∞,

where ψbt > 0 is continuous and has the same form as in Corollary 3.3. Thus,

Assumption 2.5 holds for the special case t = k with bt(v) = vβt .

Finally, observe that the entire argument after (62) remains unchanged upon chang-

ing t = k to t = k + 1. The claim is proved through iteration.
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A.7. Convergence of max-stable full conditional distribution - no mass on

boundary

Suppose that a(v1k) → ∞ as v → ∞. Let Πk−1 denote the set of partitions of

[k− 1] = {0, . . . , k− 1}. Then, for z0 : k−1 ∈ Rk and with some rearrangement, P(Xk <

a(X0 : k−1) |X0 : k−1 = At(v,z0 : k−1)) is equal to

1 +
∑
p∈Πk−1\[k−1](−1)|p|{

∏
J∈p VJ(y0 : k)}/V0 : k−1(y0 : k)

1 +
∑
p∈Πk−1\[k−1](−1)|p|{

∏
J∈p VJ(y0 : k−1,∞)}/V0 : k−1(y0 : k−1,∞)

×

× V0 : k−1(y0 : k)

V0 : k−1(y0 : k−1,∞)
× exp{V (y0 : k−1,∞)− V (y0 : k)}, (64)

where

y0 : k−1 = −1/ log[1− exp{−At(v,z0 : k−1)}] and

yk = −1/ log[1− exp{−a(At(v,z0 : k−1))}]

. Since VJ is a −(|J | + 1)-homogeneous function (Coles and Tawn, 1991), it follows

that∏
J∈p VJ(y0 : k)

V[k−1](y0 : k)
= O(exp{(1− |p|) v}),

∏
J∈p VJ(y0 : k−1,∞)

V[k−1](y0 : k−1,∞)
= O(exp{(1− |p|) v}),

(65)

as v → ∞. Because |p| ≥ 2 for any p ∈ Πk−1 \ [k − 1], it follows that the first

fraction in (64) converges to unity as v →∞ whereas the homogeneity property of the

exponent function V also guarantees that the last term in (64) converges to unity since

V (y0 : k−1,∞) = O{exp(−v)} and V (y0 : k) = O{exp(−v)}. This leads to

P(Xk < a(X0 : k−1) |X0 : k−1 = At(v,z0 : k−1)) =
V[0 : k−1](y0 : k−1, yk)

V[0 : k−1](y0 : k−1,∞)
(1+o(1)), (66)

as v →∞. Therefore, for any functional a satisfying property (19), we have

lim
v→∞

V0 : k−1(y0 : k−1, yk)

V0 : k−1(y0 : k−1,∞)
=
V0 : k−1[exp(z0 : k−1), exp{a(z0 : k−1)}]

V0 : k−1[exp{z0 : k−1,∞}]
. (67)

Similarly, for xk ∈ R, P(Xk < a(X0 : k−1) + xk | X0 : k−1 = At(v, z0 : k−1)) converges

to K given by (42). The convergence in (67) holds uniformly on compact sets in the

variable z0 : k−1 by continuous convergence (see Section 0.1 in Resnick, 1987). That is,

(67) holds true after replacing z0 : k−1 by z0 : k−1(v) satisfying z0 : k−1(v) → z0 : k−1 as

v →∞ and since the limit function is continuous in z0 : k−1, the argument follows.
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A.8. Convergence of logistic full conditional distribution

Under Assumption 2.3, (66) implies that for all z0 : k−1 ∈ Rk,

P (Xk < a(X0 : k−1) |X0 : k−1 = At(v, z0 : k−1)) =

[
1 +

exp{−a(y0 : k−1)/α}∥∥ exp(−y0 : k−1/α)
∥∥
]α−k

×

×(1 + o(1))

as v →∞, where y0 : k−1 = −1/ log[1− exp{−At(v,z0 : k−1)}]. Making the choice of a

to be a(z0 : k−1) = −α log {‖exp(−z0 : k−1/α)‖} we see that

lim
v→∞

P(Xk < a(X0 : k−1) |X0 : k−1 = Av(z0 : k−1)) = 2α−k ∈ (0, 1),

and more generally, for any xk ∈ R,

lim
v→∞

P(Xk < a(X0 : k−1) + xk |X0 : k−1 = At(v, z0 : k−1)) = {1 + exp(−xk/α)}α−k.

The limit distribution does not depend on z0 : k−1 since a satisfies property (19).

A.9. Convergence of Hüsler–Reiss full conditional distribution

Wadsworth and Tawn (2014, equation (15)) and (66) imply that for all z0 : k−1 ∈ Rk,

P(Xk < a(X0 : k−1) |X0 : k−1 = Av(z0 : k−1)) =

= Φ[τ−1{a(Av(z0 : k−1))− µ(Av(z0 : k−1))}](1 + o(1))

as v → ∞, where Φ denotes the cumulative distribution function of the standard

normal distribution and µ(y0 : k−1) = −τ(K>01CK10 · y0 : k−1 +K>01Σ
−11>k+1/1

>
k+1q),

where τ−1 = K>01CK01, C = (Σ−1−qq>/1>k+1q) is a (k+ 1)× (k+ 1) matrix of rank

k, q = Σ−1 1k+1, and

K10 =

 Ik

01,k

 , K01 =

0k,1

1

 .

Making the choice of a to be a(z0 : k−1) = −τK>01CK10 · z0 : k−1 we see that for any

xk ∈ R,

lim
v→∞

P(Xk < a(X0 : k−1) + xk |X0 : k−1) =

= At(v,z0 : k−1)) = Φ[{xk + τ(K>01Σ
−11>k+1/1

>
k+1q)}/τ ].

The limit distribution does not depend on z0 : k−1 since a satisfies property (19). The

latter follows from the properties K10 · 1k = 1k+1 −K01 and C · 1k+1 = 0k+1,1 which

give −τK>01CK10 · 1k = 1.
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