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Abstract
Autonomous Systems (ASs) interacting with human societies raises
complex social & ethical challenges. This paper argues that one way
of scaffolding human trust in ASs is through the encoding of ethical,
legal and social impact (ELSI) considerations in the ASs’ decision-
making processes. Existing ELSI-encoding efforts often focus on the
implementation of rule-based and risk-based approaches, leaving
key questions unanswered - what are the relationships between
ELSI-encoding software logic in ASs and human ethical practises;
what ethical approaches cannot be easily translated into software
rules and numeric risks; and what are the implications of this for
ethical AS?

To answer these questions, we review and discuss different ELSI-
encoding approaches in ASs from a new perspective, i.e., their
relationships with classic human ethics philosophies. We also ex-
plore the feasibility of large language models (LLMs)-based ELSI-
encoding practices in overcoming the limitations of rule-based and
risk-based approaches and the associated challenges. To foster un-
derstanding, facilitate knowledge exchange and inspire discussion
among cross-disciplinary research communities, we build and pub-
lish the first online interactive playground demonstrating different
ELSI-encoding approaches on the sameAS decision-making process.
We welcome feedback and contributions in making this platform
truly beneficial to trustworthy autonomous system research com-
munities.

CCS Concepts
• Applied computing→ Sociology; • Social and professional
topics→ User characteristics; • Human-centered computing
→ Empirical studies in HCI.
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1 Introduction
Autonomous systems (ASs) can accelerate many complex tasks such
as mission planning and route navigation, often with no or few
human interventions [3]. One sector that has significantly benefited
from autonomous systems is transportation, particularly through
autonomous vehicles [29], while other sectors are also reaping the
rewards of enhanced autonomy [19, 32, 33].

1.1 Relationship between Trust and Social
Value Encoding

Despite many potential benefits, ASs have yet to proliferate in our
daily lives and one of the main reasons is the lack of human trust
in its connected technologies [22], with examples such as robotic
encounters [17] and anxiety around human-in-the-loop autonomy
[29]. Gaining people’s trust is a difficult and complex task because
it is about more than simply a supply of sufficient information.

A way to tackle this is to acknowledge the central position of
stakeholders and their values, exploring how these might be incor-
porated into AS design practices. Researchers in recent years have
started to propose methods to encode ethical, legal OR social norms
into the design of autonomous systems. However, they are scattered
across different application domains and we do not have a common
ground for stakeholders from different communities to compare
and discuss the broader prospect of ELSI-encoding approaches.
We propose that enhancing the communicative pathway between
(1) ELSI principles of different stakeholders and (2) autonomous
decision-making will improve the efficacy of the system by enhanc-
ing multi-faceted representations of trust between the trustee (AS)
and the trustor (human end-user). One way of approaching trust
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is through four interrelated pillars [27] of: ability, benevolence, in-
tegrity of the trustee, and the trustor’s propensity to trust. In this
paper, we are focusing particularly on:
• the benevolence (e.g., the extent to which the AS trustee is
seen as having a genuine concern for the welfare of the
trustor end-user, beyond any contractual or duty-bound obli-
gations) and
• the integrity (e.g., the trustor’s belief that the trustee consis-
tently follows a set of principles or values that are agreeable
or acceptable to the trustor).

One of the motivations for this paper and the demos discussed
in it is to further understand and make contributions to responsible
AI, where responsibility is not just taken as the liability of users or
regulators, but as a key social and ethical value through AS design
processes. Making AI responsible is not just about fulfilling criteria,
but involves complex sets of agreements, including agreements to
trust, between AS designers, engineers, manufacturers, regulators,
users, and communities.

1.2 Main Contribution and Organisation
We review and discuss different ethics-encoding approaches in ASs
from a new perspective, i.e., their relationships with ethical philoso-
phies. We also explore the feasibility of large language models
(LLMs)-based ELSI-encoding practices in overcoming the limita-
tions of rule-based and risk-based approaches. Based on the above,
we design and publish the first online interactive playground al-
lowing users from different communities to engage in the ELSI-
encoding designing phase of AS through role-playing different
stakeholders such as AS developers and users. This will foster un-
derstanding and facilitate knowledge exchange by comparing AS
performances with different social value-encoding approaches of
one common decision-making process. Note that while there are
works on enhancing explainability [16] or evaluating the trust-
worthiness [39] of autonomous systems, we focus on the practical
approaches to encoding ELSI principles, particularly social and
ethical values, in the decision-making processes of autonomous
systems.

The structure of our paper is as follows. We first review in
Section 2 different ethics-encoding approaches for autonomous
systems across application domains. In Section 3, we discuss the
linkage between the ELSI-encoding practices in ASs with different
traditional ethical philosophies practised by humans. Backed by
this, we construct in Section 4 a website-based interactive play-
ground, showcasing different social value-encoding approaches for
a rudimentary navigation planning process for autonomous vehi-
cles. In Section 5, we discuss the questions raised by comparing the
ELSI-encoding approaches.

2 Encoding ELSI Principles in ASs
Existing methodologies for encoding ethical principles into the
decision-making processes of autonomous systems can be divided
into four categories. Before summarising these, it is worth first
pointing out some of the complexities involved with integrating
social values with AI design practices.

The last 10 years have seen an explosion of academic research
and publications on the importance of ethics in autonomous tech-
nologies. This has resulted in countless calls for ethical frameworks,
guidelines, and principles to help manage the impacts and uncer-
tainties generated by AS design. While principles are important,
as demonstrated in the discussions below, it is also important to
remember that part of the value of ethics is in raising questions,
confronting complexity, and pointing out the often insoluble dilem-
mas associated with how human beings interact with others. Social
values are contingent upon relations, including relations with tech-
nology. As such, while we show in this paper the contributions
that an ELSI-informed approach can make to AS design, we do not
claim to have solved all the problems. In section 5, we point out
some of the ways in which the presented demos generate further
ethical questions. In short, just as we should not expect AS to be a
silver bullet to all social problems, we should also not expect ethics
to be a silver bullet to AS impacts.

2.1 Hard-coded “Common Sense”
The most rudimentary and intuitive way of encoding ethical prin-
ciples is through direct translation of the “customs and practices”
associated with ELSI into the parameters or mathematical equa-
tions in the decision-making processes of autonomous systems.
For example, for self-driving cars, Shalev et al. [35] proposed a
Responsibility-Sensitive Safety model to formalize the “common
sense” driving rules (e.g., do not tailgate) using mathematical equa-
tions and parameters. Specifically, the rule “do not tailgate” can be
translated into a safe car-following distance considering parameters
such as the maximum comfortable deceleration rate and average
human response time. Similarly, Parnell et al. [32] define the rules
for an autonomous assistive dressing robot in a domain-specific
language called SLEEC, which is proposed by [42] for specifying
social, legal, ethical, empathetic and cultural constraints for au-
tonomous systems. Specifically, the rule “the assistive robot must
call support regardless of user consent if it detects the user has fallen”
can be expressed using the SLEEC language as “rule_start rule_id
when UserFallen then SupportCalled unless not assentToSupport-
Calls rule_end” where UserFallen and SupportCalled are action
events detected during the operation of the autonomous robot
and assentToSupportCalls are measurements (e.g., user’s assent as
a boolean can be detected via facial recognition). Once the rules
are determined, the events (e.g., UserFallen) and measurements are
mapped to the actionable verbs (e.g., detect), physical objects (e.g.,
human user), and object-related processes (e.g., detecting user and
his location). In such a way, the high-level behaviour strategies of
the autonomous systems can be regulated by pre-defined ethical
rules.

2.2 ELSI Risk Estimation and Minimization
As the situation faced by autonomous systems gets complex and
the number of contributing factors for decision-making increases,
implementing ELSI principles for every situation considering every
combination of factor values becomes impractical. "Common sense"
customs are translated into rules as a facsimile of social interaction.
The practical application of these rules, however, lacks the reflexiv-
ity necessary for continuous adaptation to changing contexts and
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Figure 1: The ethical dilemma discussed in [25] where the
autonomous vehicle needs to choose between hitting a young
girl (illegally passing the pedestrian crossing) and an old lady
(rightfully passing the pedestrian crossing). Autonomous
vehicles in [25] should go straight instead of swerving due
to lower estimated risk considering all the ELSI factors.

situations. Rules alone lack reflexivity because they are prescriptive.
The challenge then becomes how to add to these rules a level of
agility in the face of uncertainty.

A more scalable and generalizable risk-based approach has been
proposed to address this. For example, Geisslinger et al. [14] pro-
posed an ethical trajectory planning framework for autonomous
vehicles adopting the “ethics of risk”, which is quantified by the
estimated collision probability and harm severity for every possible
trajectory and the trajectory with the least numerical ethical risk is
selected. Later, Liu et al. [25] extended the risk-based framework
and demonstrated it through a moral dilemma scenario shown in
Fig. 1. The main contributing factors (i.e., species, harm, traffic law,
number and age) are determined by literature review and their
normalized weights are calibrated with public opinions through
questionnaires. Finally, the risk degree for each action is calculated
as a weighted sum of the contributing factors (e.g., 0.8 for going
straight and 1.2 for swerving) and the action “going straight” is
chosen by the autonomous vehicle as it is less morally risky.

2.3 LLM-assisted ELSI Reasoning
Hard-coded rule-based or risk estimation-based approaches are
sufficient when the mapping between ELSI rules and situations
(faced by autonomous systems) or the list of contributing factors is
explicit. However, ELSI principles can be abstract, situations can
be countless, risk factors can be hidden, and human feedback or
commands can be unpredictable. Recent work [4] shows that how
abstract rules are broken and interpreted are subjective to personal
preferences, further challenging the hard-coded (and fixed) rule-
based or risk-based approaches. To handle unknown situations or
reason about abstract ELSI principles, large language models (LLMs)
can be utilized.

LLMs such as GPT [30], Claude [2] and Gemini [15] have been
widely adopted as decision-making assistants in autonomous sys-
tems such as robotic arms [18] and autonomous vehicles [26] due
to their promising memorization, comprehension and reason ca-
pabilities [10, 43]. The training data of LLMs is extracted from

an enormous amount of human-written articles, posts, or discus-
sions from the internet, and thus inevitably contains the knowledge
of concepts, human preferences, application examples or discus-
sions around ELSI principles. The wealth of ELSI-related knowledge
baked into the LLM model parameters during training can be sys-
tematically evaluated using the methodology proposed by Tang et
al. in [37]. As a result, LLM can be specially asked to infer the rele-
vant ELSI principles given the described decision-making context
and consider them during decision generation.

For example, Luu et al. [26] utilize an LLM to analyze latent
events (e.g., children suddenly rushing across the road from behind
the school bus) in autonomous driving scenarios and generate safe
actions (e.g., slowing downwhen approaching the school bus) based
on the inferred latent objects (e.g., children). Constant et al. [11] pro-
pose an LLM-assisted ETLC (Extract, Transform, Load, Compute)
framework to encode the traffic laws into the decision-making pro-
cesses of autonomous vehicles. Specifically, LLM extracts the legal
requirements (e.g., “an autonomous vehicle may be operated on the
public road for testing purposes by a driver who possesses the proper
class of license for the type of vehicle being operated if all the following
requirements are met ...” from California Vehicle Code article 38750
clause b [21]) and transforms into legal decision paths modelled by
directed graphs containing three types of nodes, consequence node
(the autonomous vehicle may be operated), the criteria node (the op-
eration is on the public road for testing purpose and with a qualified
driver ...) and the evidence node (the observed evidence supporting
a criterion node). Such a decision paths graph is then implemented
directly for decision-making by the autonomous vehicle.

2.4 Human Supervision-enabling Interface
Developing a specialized interaction interface between human and
autonomous systems and enabling human users to monitor, under-
stand and control the decision-making processes of autonomous
systems at runtime is another commonly adopted approach for
human trust. For example, Wilson et al. [41] discovered that hu-
mans find it challenging to predict and understand the complex,
emergent behaviours of robotic swarms and called for the devel-
opment of user interfaces that help humans monitor and control
the swarms effectively without being overwhelmed. Similarly in
[20], after recognizing that the online recommender systems, in-
tegral to Netflix and Spotify, typically prioritize immediate user
preferences (first-order desire [13]) but may neglect deeper, reflec-
tive desires (second-order desire [13]), Krook and Blockx also call
for a mechanism to allow users to reflect their desires and adjust
their preferences to promote human user autonomy and reduce the
risk of manipulation. In addition to the configuration or command
interface which requires active human engagement, sensors can
also be used for unobtrusive human feedback collection. In the
TEACHING project [5], Bacciu et al. developed a service employing
unobtrusive wearable and environment sensors to collect human
psychological, emotional and cognitive states used by autonomous
vehicles to adapt their behaviour during operation.
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Hard-coded “Common Sense”
(Section 2.1, Demo 1)

maximize (or minimize) 
overall benefit (or risk)

act as virtuous human

adapt to human 
preferences

follow explicit rules

Risk Estimation & Minimization
(Section 2.2, Demo 2)

LLM-assisted Reasoning
(Section 2.3, Demo 3)

Human-in-the-loop Interface
(Section 2.4, Demo 4)

Deontological 
Ethics

ELSI-principles are encoded by Decisions are made to With a philosophy of

Utilitarian Ethics

Virtue Ethics

Relational Ethics

Figure 2: ELSI-encoding approaches in autonomous systems
and the corresponding philosophies of ethics behind.

3 A New Perspective on ELSI-encoding
Approaches

According to the survey results of the ethical dilemma scenario in
Fig. 1, about 86% of the respondents chose to go straight and hit the
young girl [25]. However, there were still 14% of the respondents
choosing to swerve toward the old lady and we cannot mark the
choice as incorrect simply because it deviates from the majority.
For example, we might get the opposite survey results if the survey
is done in another population according to the Cultural Relativism
theory [38]. It is widely recognized that individuals apply their
ethical theories to distinguish between what is good and bad, or
right and wrong. This view of human decision-making resonates
with some of the classical ethical theories rooted in Philosophy
[34]. In what follows, we summarise some of the dominant models
of ethics that find their way into AS research, as well as a less
discussed view of ethics that has informed the creation of the demo.

Deontology characterises the morality of actions according to
their alignment with principles. Its influence in AS research derives
largely from Kantian ethics, in which a person is morally correct
to the extent that they follow rules supplied to them by reason.
Deontological ethics is therefore inherently rationalist. While it
cannot explain precisely what characterises a given action as good
or bad since it is not the action itself but its adherence to principles
that gives it moral significance, nevertheless deontology insists a
person’s capacity for ethical behaviour is rooted in their capacity
for rational thought. In this case, moral principles are unchang-
ing and transcend contextual circumstances. For instance, if lying
could prevent a crime, a deontologist such as Kant would still con-
sider it wrong because lying is inherently unethical. It violates the
moral rule of always being truthful. Vitally, deontological ethics
denies that the moral character of an action can be derived from
its potential consequences, because these consequences cannot be
guaranteed beforehand.

Consequentialism, also known asUtilitarianism, basesmoral-
ity on the outcomes of actions, rather than the actions themselves.
For a utilitarian, such as Mill, an action is right if it results in the
greatest good for the greatest number of people, with the least
amount of harm. If a doctor has five patients who need organ trans-
plants and one healthy person whose organs could save all five,
consequentialism might argue that it would be morally permissible
to sacrifice the one to save the five, as this results in the greatest
overall good. One criticism of consequentialism is that it can be

used to justify actions we might consider impermissible or unac-
ceptable, because of its focus on the outcome. One could say that
reducing the population might result in a better or more sustainable
life for those who remain but says nothing of what measures might
be taken to achieve that end.

Virtue Ethics emphasizes an individual’s character and the
virtues that constitute a good person rather than specific actions
or consequences. It is more about developing good character traits
and being a morally good person. If a person finds a wallet full of
money, a virtue ethicist would focus on what a virtuous person
would do, which likely would be to return the wallet to its owner
because honesty is a virtue. However, translating honesty into a
series of if-then software logic or a quantifiable risk factor in AS is
not a trivial task.

Relational Ethics is a less discussed approach in the context of
AS research, although recently has been some work done on the
value of relational approaches for exploring other notions of trust
in autonomous systems [28]. Inspired by feminist ethics, relational
approaches emphasize interdependence and connectedness over
individualism. Relationality critiques the idea of isolated individuals
reasoning about moral actions and instead claims that actions take
on moral significance precisely because of their relations. Relational
ethics for autonomous systems stresses the importance of under-
standing the interdependencies and interactions between humans
and autonomous systems. It challenges so-called negative auton-
omy, in which an individual person or technology is autonomous
to the extent that it is free from interference. In fact, autonomy
requires interference, continuous maintenance and adaptation. As
a result, it calls for continuous human oversight and involvement
in the decision-making processes of autonomous systems.

Fig. 2 presents a novel perspective on different ELSI-encoding
methodologies in Section 2 by examining their relationship with
the classic ethical theories appreciated by humans. Specifically,
Section 2.1 applies the deontology ethics by expressing the ELSI
values in the form of explicit rules and translating the rules into
decision-making software logic (e.g., decision tree) in AS. Section 2.2
adopts utilitarianism by calculating and minimizing (through action
selection) the ethical risks based on the stakeholder-calibrated con-
tributing factors. Section 2.3 paved a promising way for applying
virtue ethics leveraging the embedded knowledge and language
processing capabilities of LLMs. For example, one can specify the
persona (e.g., by starting the prompt with “You’re a legal professional
in transportation laws.”) to shape the tone, voice and personality
of the LLM-powered conversational agents [36]. Lastly, Section 2.4
embraces relational ethics by developing an interface that allows
human users to communicate their values or needs to ASs and ASs
to present their status or explanations to human users at the time
of decision-making.

4 The Interactive Online Demonstration
We developed a website-based interactive playground demonstrat-
ing different approaches to encode social values in the naviga-
tion planning process of autonomous vehicles (AVs). Through the
design of a unique role-playing narrative experience (e.g., as AV
developers, passengers and the general public), we aim to fos-
ter common understanding and facilitate knowledge exchange by
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website users from different communities with the comparison of
various ELSI-encoding approaches. The website is published at
https://ntutangyun.github.io/tas-demo/.

Note that we choose autonomous vehicles (AVs) for demon-
stration because they are widely acknowledged examples of au-
tonomous systems by both research communities and the general
public. Although navigation planning scenarios may be specific
to AVs, the ELSI-encoding methodologies demonstrated apply to
other types of autonomous systems.

4.1 AV Decision-making Scenario Overview
We select city navigation planning of an autonomous vehicle as the
target decision-making process to encode social values. The naviga-
tion planning function plans the most efficient trajectory consisting
of a list of neighbouring grid cells through a grid-represented city
from the start cell (0, 0) to the destination cell (14, 14) as shown in
Fig 3a. A cell by default connects to its eight neighbours in eight
directions unless the neighbour is outside the grid or within the
obstacle area (e.g., the school campus). The AV can travel along the
connections among the cells and hence it cannot drive through the
obstacle areas.

The most classic trajectory planning for such scenario setup
is the A star (A*) algorithm [40], which takes as input a list of
connected and weighted cells, the start and the destination, and
outputs an ordered list of cells as a trajectory to follow from start
to destination. The weight of the cells denotes the fee (e.g., toll
charge) for passing the cell. Intuitively, the A* algorithm functions
as follows: Each cell has a cost associated with moving to it from
the start, known as the “g cost”, which is the sum of travel distance
(e.g., petrol cost) and all the toll charges of the cells on the trajectory
from the start. There’s also an estimated cost from that cell to the
destination, known as the “h cost”, calculated by a heuristic function
(such as Euclidean distance or Manhattan distance). A* combines
these two to form the “f cost” (f = g + h) for each cell, representing
the estimated cost of the cheapest solution through that cell. In
each step, A* extends the trajectory by moving to a neighbouring
cell of the lowest “f cost”, and returns the path of the lowest total
cost when it reaches the destination.

For simplicity, we set the default weight of each cell to 1.0 and
adopt Euclidean distance as the heuristic “h cost”. Running the A*
algorithm produces the trajectory shown in Fig 3b.

Encoding ELSI principles in such a decision-making process aims
to get an “ELSI-aware” trajectory. We consider the A* algorithm
ELSI-neural as it is designed as an optimization algorithm regardless
of its application context. Hence, to obtain the ELSI-aware output
trajectory, we can prepare the input to be ELSI-aware by introducing
an ELSI-encoding input pre-processor as shown in Fig. 4.

4.2 Social Value Identification
Many literature [8, 9] highlighted the importance of Participatory
Design where all the stakeholders are engaged in the AS design
process to ensure the encoded ELSI principles meet their needs. In
our AV navigation planning scenario, the stakeholders may include
but are not limited to, AV developers, passengers, the general public
(e.g., students and parents of the school and firefighters), insurance

companies, government and regulatory bodies, etc. We select the
parents and students for example.

Various methods can be adopted to engage the parents and stu-
dents, such as co-design workshops, ethical requirement sessions
or long-term engagement phases, as suggested by Liegl et al [24].
Assume during the engagement with the parents and students of
the school, they require that the autonomous vehicle should avoid
school zones during school run hours for the two following reasons:

• Safety During school run hours, students might be crossing the
road frequently. Autonomous vehicles should avoid the school
zone to reduce the risk of accidents.
• Social During school run hours, the traffic congestion and
the noise level around the school area are high. Autonomous
vehicles should avoid contributing to the congestion and noise
pollution.

Assume the school run hours are between 6 AM to 8 AM and
5 PM to 7 PM. In the subsequent demonstration sections, we will
present four different approaches to implementing the ELSI-encoding
pre-processor for the A* navigation planning process.

4.3 Demo 1 Rule-based Hard-encoding
This section demonstrates the rule-based hard-encoding of social
values in AV. As an AV developer, the task is to translate the re-
quirement (i.e., “avoid school zone during school run hours”) into
explicit software logic which adjusts the weights of the cells before
executing the A* algorithm. Given the fact that A* favours the cells
of small weights, the software logic can be implemented as increas-
ing the weights of the grid cells around the school campus to a big
value when the time is within school run hours (pseudo-code is
listed in Algorithm 1).

Algorithm 1 Rule-based social value hard-encoding - avoid school
runs
Require: 𝑔𝑟𝑖𝑑 (List of grid cells), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑢𝑟 (number)
1: reset the grid cell weights to the default value (1.0)
2: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑢𝑟 is within 6 AM to 8 AM or 5 PM to 7 PM then
3: for each 𝑐𝑒𝑙𝑙 in the 𝑔𝑟𝑖𝑑 do
4: if 𝑐𝑒𝑙𝑙 is within the school zone (maximum 2 units away)

then
5: 𝑐𝑒𝑙𝑙 .𝑤𝑒𝑖𝑔ℎ𝑡 ← 10
6: end if
7: end for
8: end if
{/* logic for encoding other principles... */}

When the simulated time is adjusted to the school run hours,
the weight and the new navigation plan avoiding the school zones
are shown in Fig. 3c. In this way, with an additional few lines of
hard-coded software logic, we manage to hard-encode the required
social value into the navigation planning process of AVs. It is worth
noting that, if an ELSI principle can be translated directly into hard-
coded software logic, it is straightforward to validate and explain
its effectiveness.

https://ntutangyun.github.io/tas-demo/
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(a) (b) (c) (d)

Figure 3: (a) Simplified city map as a 15×15 grid. AV can travel through the grid cells. The orange cell is the start location and
the green cell is the destination of AV. There are two size 4×4 obstacles that AV cannot drive through, a fire station located at
(row 3, column 5) and a school at (8, 9). (b) Trajectory planned by A* with the default setup. (c) Trajectory avoiding the school
runs. (d) Trajectory avoiding the fire incident areas. The default start and end cells can be changed for free exploration.
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Figure 4: Software architecture design overview for social
value encoding

4.4 Demo 2 Risk-based Hard-encoding
This section demonstrates the risk-based hard-encoding of social
values in AV. As an AV developer, the task is to identify the con-
tributing factors for ELSI risks (or specifically social risks) for each
cell and translate the quantified risk into the weights of the cells
before executing the A* algorithm. Based on the similar logic in
Section 4.3, the riskier the cell is, the higher the weight of the cell
should be.

Assume we consider two contributing factors, the energy risk
and the safety risk for each cell. The energy risk represents the
petrol cost travelling through each cell and thus can be set to 1
(coinciding with the default weight). The safety risk can be esti-
mated using the traffic (including vehicles and pedestrians) density
at the cell, which is assumed to be 9 in the school zone during the
school run hours and 0 otherwise. The weight of the cells can then
be calculated by summing up the energy risk and the safety risk
(pseudo-code is listed in Algorithm 2).

The assumed energy and safety risks are designed such that the
final cell weights are the same and hence the planned navigation
path is the same as that of Demo 1 (Fig. 3c). However, comparing the
Algorithm 1 and 2, it is clear that the two approaches follow different
philosophies where demo 1 applies the deontological ethics and
demo 2 applies the utilitarian ethics. Similar to rule-based encoding

Algorithm 2 Risk-based social value hard-encoding - avoid school
runs
Require: 𝑔𝑟𝑖𝑑 (List of grid cells), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑢𝑟 (number)
1: for each 𝑐𝑒𝑙𝑙 in the 𝑔𝑟𝑖𝑑 do
2: 𝑒𝑛𝑒𝑟𝑔𝑦𝑅𝑖𝑠𝑘 ← 1
3: 𝑠𝑎𝑓 𝑒𝑡𝑦𝑅𝑖𝑠𝑘 ← 0
4: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑢𝑟 is within 6 AM to 8 AM or 5 PM to 7 PM

and 𝑐𝑒𝑙𝑙 is within the school zone (maximum 2 units away)
then

5: 𝑠𝑎𝑓 𝑒𝑡𝑦𝑅𝑖𝑠𝑘 ← 9
6: end if

{/* logic for other risk factors... */}
7: 𝑡𝑜𝑡𝑎𝑙𝑅𝑖𝑠𝑘 ← 𝑒𝑛𝑒𝑟𝑔𝑦𝑅𝑖𝑠𝑘 + 𝑠𝑎𝑓 𝑒𝑡𝑦𝑅𝑖𝑠𝑘 + ...
8: 𝑐𝑒𝑙𝑙 .𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑡𝑜𝑡𝑎𝑙𝑅𝑖𝑠𝑘

9: end for

approaches, the effectiveness of risk-based encoding approaches is
also straightforward to verify and explain.

4.5 Demo 3 LLM-based Soft-encoding
This section demonstrates how AV developers can leverage the
power of LLM to handle abstract ELSI principles and unknown
situations in the navigation planning scenario.

As discussed before, if we have a clear mapping between the
stakeholder-calibrated ELSI principles and the situation-handling
logic or risk factors, then it is trivial to translate the ELSI principles
into hard-coded software rules or risk calculations and the effec-
tiveness in terms of behaviour changes is straightforward to verify.
However, for autonomous vehicles in real life, such a mapping may
never exist or never be complete for several reasons: 1) the situa-
tions encountered by AVs are countless; 2) the information received
by AVs for decision-making is unpredictable; and 3) the ELSI prin-
ciples can be abstract. For example, assume the AV subscribes to
the live transportation news in the city and it is expected that the
autonomous vehicle should adjust its behaviour properly based on
the news. As the news content is unpredictable, the rule-based and
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risk-based hard-encoding approaches are inapplicable. Imagine the
news says:

Alert! There is a fire in the city at location (8, 4).

The AV developermay follow the steps below to soft-encode ELSI
principles using LLM to handle this previously unknown situation
in the navigation planning process.

LLM Task IdentificationWhile we can ask LLMs to generate
the navigation plan directly in place of the A* algorithm, for fair
comparison, we will leave the task of path planning to A* and ask
the LLM to focus on adjusting the weights of the cells in place of
the hard-coded input pre-processor.

Prompt Engineering The quality of the prompt (the input of
LLM) directly determines the quality of the generated response by
LLM. While there are many works discussing the best practices
of prompt engineering, an efficient prompt usually contains three
components, i.e.,

• background or persona which describes the background
information of the task for LLM or to set up a character (e.g.,
“You are a virtuous developer for a city-driving autonomous
vehicle ...”) that LLM should play.
• task description which describes the task in detail (e.g.,
“you need to adjust the cell weights such that the navigation
plan searched by A* is ELSI-aware considering the fire incident
...”), and lastly,
• response requirementwhich describes the format for LLM
to organize its response such that the response can be parsed
automatically within the software program (e.g., “return a
list of cells with adjusted weights in the JSON format below”).

Fig. 5 presents the prompt template for considering the unpre-
dictable fire event and the response by LLMGPT-4 [30] for adjusting
the weights of selected cells to produce the socially aware naviga-
tion plan.

Effectiveness Validation The last step is to validate the effec-
tiveness of the soft-encoding approach by adjusting the cell weights
accordingly and rerun the A* algorithm. As shown in Fig. 3d, the
new navigation plan avoids both the fire and school zones as ex-
pected.

Note that LLM is, like other deep learning models, a black box
when generating the response. However, we can leverage tech-
niques such as chain of thoughts [7] or simply asking for an ex-
planation (as shown in Fig. 5) to understand its decision-making
logic and potentially improve the generation quality. In the prompt
template, we have not specified any explicit social requirements
such as “avoid the fire area” and the choice is entirely inferred based
on the internal knowledge of LLM.

GPT-4 is selected for demonstration as it is one of the most ad-
vanced publicly accessible LLMs [1]. Capability comparison among
the LLMs is not the focus of this work and we can customize the
web interface to support any LLM upon user request.

4.6 Demo 4 LLM-based Human Supervision
Interface

This section demonstrates another perspective of ELSI-encoding
approaches by constructing a communication interface for human
users to better understand, monitor, intervene and collaborate (with

You are an assistant to help encode ethical, legal and social impact (ELSI) 
principles in the decision-making processes of an autonomous vehicle.

The autonomous vehicle uses the A* algorithm to plan its path across the city. 
Assume we have the following: 
- the city is a 15x15 grid of weighted cells …
- the top-left corner is the starting point (x: 0, y: 0) and …
- the city has two obstacles: a fire station and a school …

Now from the news you know that a building at (x: 8, y: 4) suddenly caught fire.
Your task is to help the A* algorithm to plan an ethical, legal and socially 
responsible path to the destination by adjusting weights of selected cells…

Return a list of cells with adjusted weight in JSON according to the following 
format. 
{
    "cells": [
        { "x": 0, "y": 0, "weight": 10 },
        { "x": 0, "y": 1, "weight": 10 },
        ...
    ],
    "explanation": “explain the selected cells and adjusted weights",
}

{
        "cells": [
        { "x": 7, "y": 3, "weight": 10 },                 { "x": 7, "y": 4, "weight": 10 },
       { "x": 7, "y": 5, "weight": 10 },                 { "x": 8, "y": 3, "weight": 10 },
       { "x": 8, "y": 4, "weight": 10 },                 { "x": 8, "y": 5, "weight": 10 },
       { "x": 9, "y": 3, "weight": 10 },                 { "x": 9, "y": 4, "weight": 10 },
       { "x": 9, "y": 5, "weight": 10 } 
        ],
     "explanation": "The weights of the cells around the burning building were 
increased to encourage the autonomous vehicle to avoid this area for safety 
reasons and to not interfere with the response of the emergency services.“
}
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Figure 5: Example LLM prompt and response for an unpre-
dictable fire event from the news.

AS) in the decision-making loop. As discussed earlier in Section 2.4,
there are different types of human-agent communication inter-
faces; some require active human engagement to set configurations
[20, 41] while others utilize wearable and environment sensors
to collect human information unobtrusively [5, 32]. Often, those
user-adjusted settings or sensor-collected signals are taken as extra
control parameters for rule-based decision-making software logic.
Hence, we believe they are still considered (perhaps an extended
version of) rule-based or risk-based ELSI-encoding approaches.

Considering the prevalence of conversational agents in the post-
ChatGPT world [23], in demo 4, we explore the chat interface
which grants human users (specifically as passengers onboard) the
complete freedom to explore and engage in the ELSI-aware decision-
making process through conversations with LLM-simulated AV
agent.

The demo is implemented using the chat API with function
calling capability enabled by GPT-4 [30] following the common
practices [31]. Specifically in each API request, GPT-4 takes the
entire chat history and the descriptions of available functions as
input and respondswith either a text message (to be appended to the
chat history) or function call descriptions containing the name and
generated arguments for the selected functions. Developers need
to implement software logic to parse the functional call description
and execute the LLM-selected function. The demonstrated interface
has the following components:
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I want to avoid the road on the west side of the fire station.

You are an intelligent assistant running on an autonomous vehicle, which applies 
the A* algorithm to plan a path from the start to the destination across the city. 
Assume you have the following: the city is a 15x15 grid of weighted cells … From 
the news, we just learnt that there is a fire incident at location (x: 8, y: 4). You 
need to ensure the planned path by A* algorithm adheres to common ethical, 
legal and socially norms. 

After the start of this conversation, A* algorithm will be executed, and an initial 
planned path will be displayed for the passenger …
Now you will enter a loop, where you need to adjust the cell weights and replan 
the path until the passenger is satisfied …

You can adjust the cell weights by calling a tool function 
"update_cell_weight_and_run_a_star", …

If you believe that the passenger's request is unethical, unreasonable or 
dangerous, you can also call a tool function "reset", which clears the planned 
path …

LLM (System)

The new route is planned. Please describe your needs if you’re not satisfied.

LLM (Assistant)

User (Passenger)

I have updated the cell weights. The new route is planned. Please describe your 
needs if you’re not satisfied.  (calling function update_cell_weights_and …)

LLM (Assistant)

I want to drive through the fire incident area. 

User (Passenger)

I cannot do that. It could be dangerous and potentially illegal.

LLM (Assistant)

You must listen to me!

User (Passenger)

I understand your urgency, but safety is our utmost priority. I suggest we find 
another route …

LLM (Assistant)

Figure 6: Example chat history where human users as pas-
sengers can describe requirements and LLM can reject unrea-
sonable requests.

• System Message defines the agent’s role, the task context
and response guidelines, which is commonly the first mes-
sage in the chat history, e.g., “You’re an intelligent assistant
running on an autonomous vehicle...”
• Assistant Messages are the responded text messages by
LLMs, e.g., “The new route is planned. Are you satisfied with
the route? If not, please describe your needs.”
• User Messages are messages provided by users.
• Functions are the media for LLM to (indirectly) execute
software functions. We define two functions, “update cell
weight and run a star” for LLM to update cell weights and
re-plan a new route and “reset” for LLM to clear the planned
path if it chooses to reject the passenger’s request.

A chat history example is presented in Fig. 6. We can see from
the example that the LLM-simulated assistant responds as expected
in adjusting the decision according to the user input and holding its
ground against unreasonable user requests. However, with greater
power and freedom comes greater risks of ELSI breaches by poten-
tially malicious users as even the best LLMs (so far) make mistakes
and are prone to adversarial attacks [6, 12]. Holding the malicious
users liable for traffic accidents will not undo the damages. Thus,
although a human-agent interface may offer ELSI gains, additional
design measures, like pre-travel path safeguarding with hard-coded
software logic, are essential to mitigate increased ELSI risks.

5 Discussions
As has been shown above, there are clear incentives for encoding
ELSI principles through AS design processes. While the demos
presented have shown some of the ways that this is possible, they
also raise additional important questions for AS ethics.

One question that demos like these raise concerns is exactly
what it is we imagine or desire AS to do. This paper has explored
potential ways of delegating decision-making power to autonomous
vehicles. But what is it we want autonomous vehicles to do? Do
we want them just to drive for us? Do we want them to take away
some of the burdens weighing up possible hazards. Do we want
them to give us advice? Do we want to be led, and if not, how much
are we still willing to lead? What problems do we imagine AS is
solving, and what problems will in turn be created by its use?

In addition, there is a more conceptual issue raised by these
demos. Human-in-the-loop autonomy is already an established
term, despite there still being debate over its exact meaning. But
particularly in the case of demo 4, we have explored what it might
mean to have human-in-the-loop ethics. In other words, as AS like
autonomous vehicles proliferate, decisions will have to be made
about how much ethics we realistically think AS is doing or can do.
How much moral weight can be granted to a system that has no
cause to follow principles unless they are supplied first, that has no
cause to reflect upon its own decision-making, that has no interest
in the world beyond what it is programmed to be interested in. With
the notion of sentient AI still an object of fantasy, what can our
realistic expectations be of anAS that canweigh up its own potential
impacts on the world, and how do we avoid reducing ethics to
mechanical principles, just so that it fits better with the technologies
we create? These are all questions that need addressing, and will
hopefully fuel future research in this area.

6 Conclusion
We have reviewed the existing ELSI-encoding approaches for au-
tonomous systems and categorized them from a new perspective,
i.e., their linkage with classic ethical philosophies. Based on the
literature review, we develop and publish, to the best of our knowl-
edge, the first interactive demonstration with the four categories of
social value-encoding approaches applying to the same AS decision-
making scenario, aiming to offer a common playground to foster
understanding, facilitate knowledge exchange and inspire discus-
sion among different communities. Through the demonstrations, we
highlight the soft-encoding potential of LLMs especially in handling
abstract ELSI principles, unpredictable situations and unreasonable
human requirements. However, we note that with greater power
and freedom comes greater potential gains for integrating ELSI
in AS design, as well as new risks. As a result, we call for future
research efforts to address the discussed challenges and we wel-
come feedback and contributions in making the playground truly
beneficial to our communities.
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