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Abstract: Snakebite affects ~1.8 million people annually. The current standard of care are 

antibody-based antivenoms, which are difficult to access and are not effective against local tissue 

injury, the primary cause of morbidity. Here we use a functional genomics approach to define 

human genes that genetically interact with spitting cobra venoms. Most genes that confer 

resistance to venom cytotoxicity control proteoglycan biosynthesis, suggesting heparinoids as 5 

possible inhibitors. We show that heparinoids prevent venom cytotoxicity by inhibiting three-

finger cytotoxins. Critically, the FDA-approved heparinoid tinzaparin was found to reduce tissue 

damage in vivo when given via a medically relevant route and dose. Overall, our systematic 

molecular dissection of cobra venom mechanisms provides insight into how we can treat cobra 

bites, information that can help improve the lives of millions of people worldwide.  10 

 

One-Sentence Summary: Spitting cobra venom cytotoxins use a common heparin-sensitive 

mechanism to cause tissue damage  
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Main Text:  

Snakebites kill an estimated ~138,000 people each year, with another ~400,000 people 

experiencing devastating long-term morbidity (1). Most of these envenomings occur in Sub-

Saharan Africa and South/Southeast Asia, with young adults and children disproportionately 

impacted (2, 3). This makes snakebite envenoming the deadliest of the neglected tropical diseases 5 

(NTDs) with its burden landing mainly on impoverished rural communities (4). Current antibody-

based antivenom treatments are species-specific, rely on a cold-chain, and require intravenous 

administration in hospital settings. Moreover, antivenoms can induce adverse reactions, and are 

often prohibitively expensive (5, 6). Crucially, antivenoms are ineffective against severe local 

envenoming, which involves painful progressive swelling, blistering and/or tissue necrosis around 10 

the bite site and can lead to loss of limb function, amputation, and lifelong disability (7). The 

resulting annual disease burden from snakebite in West Africa and Southeast Asia alone amounts 

to ~319,000 and ~392,000 disability adjusted life years (DALYs), respectively, with associated 

costs for the latter (2.5 billion USD) representing ~0.1% of the region’s GDP (8). Consequently, 

the World Health Organization (WHO) recently elevated snakebite to a ‘priority category A NTD’ 15 

and announced the ambitious goal of reducing the global burden of snakebite in half by 2030 (9). 

To meet this target, we require a basic molecular understanding of how diverse snake venoms 

interact with human physiology to inform the development of new therapeutics (10). Here we use 

a functional genomics approach to define venom/target genetic interactions that modify 

cytotoxicity and use this information to develop a local acting venom antidote. 20 

Results 

Whole genome CRISPR knockout screens for spitting cobra venom cytotoxicity 

Based on severe morbidity-causing pathology, such as local dermonecrosis and permanent 

disability (7, 11-13), the WHO lists many cobras (Naja spp.) as “Category 1” species of highest 

medical importance. Envenoming from the African red (N. pallida, Tanzania) and black-necked 25 

(N. nigricollis, Nigeria) spitting cobra (Fig. 1A) cause extensive local tissue damage (12) and these 

venoms showed potent cytotoxicity in the human haploid cell line, HAP1 (Fig. 1B). 

Pharmacological inhibition of apoptosis (Ac-DEVD-CHO; Z-VAD-FMK) did not suppress venom 

cytotoxicity, however the necroptotic inhibitor necrosulfonamide (NSA) limited some cell death, 

suggesting cobra venom cytotoxicity may partially trigger necroptotic death (fig. S1A). To guide 30 

the development of therapeutics, we defined the molecular mechanisms involved in venom-

induced cell death using whole genome CRISPR KnockOut (KO) screening (Fig. 1C). Cells were 

transduced with the TKOv3 library which targets most human protein-coding genes with ~4 

guides/gene (14). This pool of CRISPR KO cells was then selected with 5 µg/mL of N. pallida or 

N. nigricollis venom three times. After recovery, guide sgRNA in surviving cells was isolated, 35 

amplified by PCR, and quantified by next generation sequencing. Guide enrichment was compared 

to a control unselected population using the MaGeCK pipeline (15). Guide RNAs associated with 

venom sensitization (Log2<-2, FDR<0.1) or resistance (Log2>2, FDR<0.1) were identified, and 

substantial overlap was observed between the two snake species (Fig. 1D and E, and data S1 and 

S2). 40 

For N. pallida venom, the top significant genes that, when targeted, promoted venom sensitization 

include the chromatin remodelling SWI/SNF component SMARCD1 (16), the cyclin dependent 
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kinase CDK13 (17), the histone deacetylase HDAC3 (18), the anti-apoptotic protein ZFAT (19), 

and CRAMP1L, an uncharacterised gene linked with susceptibility to skin rash (20) (data S1). For 

N. nigricollis venom, the top sensitizers included the cell growth/tumour suppressors TSC1/TSC2 

(21), the TSC subunit TBC1D7 (22), the SWI/SNF component SMARCC1 (23), the lipid 

phosphatase Inositol Polyphosphate Phosphatase Like 1/SHIP2 (24), and the microtubule 5 

interaction protein APPBP2 (25) (data S2).  

For N. pallida venom, the top significant genes that, when targeted, promoted venom resistance 

included the uncharacterized transmembrane protein TMEM50A, the suppressor of growth 

hormone tetraspanin membrane protein LEPROTL1 (26), and components of proteoglycan 

biosynthesis NDST1, XYLT2, EXT1, EXTL3, and SLC35B2 (27). For N. nigricollis venom, the 10 

top promoters again included LEPROTL1 and TMEM50A, as well as multiple components of the 

proteoglycan biosynthesis machinery including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, 

NDST1 and SLC35B2. Further, pathway analysis of these data highlighted heparin sulfate, 

chondroitin sulfate, and dermatan sulfate biosynthesis as critical pathways required for 

cytotoxicity of both N. pallida and N. nigricollis venoms (Fig. 1F and G).  15 

Heparin biosynthesis is required for venom cytotoxicity 

The top pathway required for venom cytotoxicity from N. pallida or N. nigricollis was 

heparan/heparin sulfate biosynthesis (N. pallida: p<10-10, N. nigricollis: p<10-8) and our screening 

data showed that targeting of most of the heparan/heparin sulfate biosynthesis pathway 

components individually was sufficient to block venom activity (N. pallida 7/11, and N. nigricollis 20 

8/11 components of the pathway were hit, see Fig. 2A). To validate these results, we targeted each 

resistance gene individually (data S3) and tested cytotoxicity. Targeting each component of the 

heparan/heparin biosynthesis pathway conferred some resistance to each venom (Fig. 2B and 2C), 

confirming a role for heparan in cobra venom cytotoxicity. To test the generalizability of this 

requirement, we also treated gene targeted cells with an additional spitting cobra venom (Fig. 2D, 25 

fig. S2A; Tanzanian N. nigricollis), and again components of heparan/heparin sulfate biosynthesis 

were required for cytotoxicity.   

Heparan and heparin sulfate share a sugar backbone synthesized by a common pathway (Fig. 2A). 

While heparan sulfate is a ubiquitous component of the extracellular matrix, heparin is primarily 

produced by tissue mast cells. Heparin is a highly sulfated, polyanionic polysaccharide used 30 

clinically for its potent anticoagulant activity. Heparin is on the WHO Model List of Essential 

Medicines (EML), however, multiple low molecular weight (LMW) medical variants of heparin 

(tinzaparin, T; dalteparin, D) termed “heparinoids'' are also available and approved for 

antithrombotic use (28, 29) (Fig. 3A). Since heparan/heparin sulfate biosynthesis was necessary 

for venom to cause cytotoxicity, we hypothesized that adding excess free heparin or LMW 35 

heparinoids may be sufficient to block venom cytotoxicity. Indeed, immediate treatment with 

heparin, tinzaparin, or dalteparin, all block cytotoxicity in response to N. pallida (Fig. 3B, 

quantified in C), Nigerian N. nigricollis (Fig. 3B, quantified in D), or Tanzanian N. nigricollis 

(Fig. 3E) venom, and the related non-anticoagulant heparinoid N-acetyl-heparin (30) showed 

similar effects (Fig. 3F).  40 

To test if heparinoids can block venom cytotoxicity therapeutically, we first treated cells with N. 

nigricollis venom and then added heparin over time. Addition of heparin or tinzaparin up to 60 

minutes after venom could still block Nigerian N. nigricollis venom cytotoxicity (Fig. 3G, fig. 
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S2B) and heparin or tinzaparin treatment after N. pallida and Tanzanian N. nigricollis venom could 

also block cytotoxicity (fig. S2C-F). 

Heparinoids prevent venom interaction with the cell surface 

Since heparan sulfate and related molecules bind soluble effectors including growth factors and 

proteases (31, 32), we hypothesized that in the context of its venom antidote activity, heparin may 5 

act as a “decoy” venom receptor and block venom/cell interactions. To test this hypothesis, we 

labelled each cobra venom with an Alexa-488 fluorophore and then evaluated venom/cell 

interactions by flow cytometry. While labelled cobra venom showed a strong interaction with 

untreated cells (N. pallida venom shown in Fig. 4A-C), adding heparin (Fig. 4B) or tinzaparin 

(Fig. 4C) blocked venom/host cell interactions. These data are quantified in Fig. 4D, and similar 10 

results were observed for venom from the two geographical variants of N. nigricollis (fig. S3A-

H). Thus, by flooding the system with free heparin, we can suppress venom/target interactions, 

and this is sufficient to block cytotoxicity.  

Heparin interacts with three-finger cytotoxins to block venom/host interactions 

Snake venoms are variable mixtures of different toxins, and cobra venoms consist predominantly 15 

of multiple isoforms of phospholipases A2 (PLA2) and three-finger toxins (3FTx) (33). To identify 

which specific venom components interact with heparinoids, we separated N. pallida (Fig. 4E and 

F) and N. nigricollis (fig. S4A and B, and fig. S5A) venom using heparin affinity chromatography. 

Interestingly, most of the venom material bound to the column and was eluted in 3-4 main peaks 

(Fig. 4E, fig. S4A and fig. S5A), suggesting heparin has a broad capacity to interact with multiple 20 

venom components. The main proteins comprising each peak were identified by liquid 

chromatography mass spectrometry (LC-MS): P1 (weak heparin interaction) contained mainly 

acidic PLA2, P2 (moderate heparin interaction) contained the 3FTx cytotoxin 1 (CTx1), and P3 

(strong heparin interaction) contained both basic PLA2 (bPLA2) and the 3FTx cytotoxins CTx3 

and 4 (data S4-10). We then further fractionated P3 using cation exchange to separate basic PLA2 25 

(bPLA2) from the 3FTx cytotoxins CTx3 and 4 (Fig. 4F and fig. S4B) and assessed the purity of 

each fraction on SDS-PAGE (Fig. 4G, fig. S4C, and fig S5B).   

Isolated N. pallida toxins were then subjected to surface plasmon resonance (SPR) to assess 

binding affinity with heparin, dalteparin and tinzaparin. Fig. 4H-I shows that heparin binds with 

high affinity to CTx3 (KD = 37 nM) and CTx4 (KD = 36 nM), binds weakly to bPLA2 (KD 100 30 

nM) and exhibits no specific binding to CTx1 or PLA2. The same pattern of binding is observed 

for tinzaparin and dalteparin (fig. S6). Functionally, the 3FTxs CTx3 and 4 were highly cytotoxic 

and, in line with their binding profile, their activity was inhibited by heparin (Fig. 4J). While CTx1 

also showed strong cytotoxicity, this activity was not heparin sensitive (Fig. 4J). Similar binding, 

cytotoxicity and inhibition data were obtained for the two N. nigricollis venoms (fig. S4D-F and 35 

fig. S5C-E), with CTx3 and 4 demonstrating the most potent heparinoid binding properties. 

Collectively, these data demonstrate that heparin and related compounds block African spitting 

cobra venom cytotoxicity by acting directly on the cytotoxic 3FTxs CTx3 and 4. 

To assess the breadth of this anti-venom activity, we tested the ability of heparin to block other 

cytotoxic snake venoms (Fig. 4K-O). We found both heparin and N-acetyl-heparin (fig. S7A) 40 

could also suppress cytotoxicity caused by venom from the monocled cobra (Fig. 4K; Naja 

kaouthia), the Chinese cobra (Fig. 4L; Naja atra), and the Indian spectacled cobra (Fig. 4M; Naja 
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naja). However, neither had the ability to block cytotoxicity caused by West African saw-scaled 

viper (Fig. 4N; Echis ocellatus) or African puff adder (Fig. 4O; Bitis arietans) venom (fig. S7A). 

Importantly, while cobra venoms contain cytotoxic 3FTxs (33), the viper venoms do not (34). 

Overall, these data show that heparin and LMW heparinoid drugs can inhibit cytotoxic 3FTxs and 

may constitute a new and potent antidote for morbidity-causing cobra venoms. 5 

Heparinoids protect against spitting cobra venom-induced skin damage 

We investigated if heparin or heparinoids could protect human epidermal keratinocytes from N. 

pallida and N. nigricollis (Nigerian and Tanzanian) venom-induced cytotoxicity. Venom from 

each snake species induced cell death in a concentration-dependent manner (Fig. 5A), and 

treatment with heparinoids promoted cell survival (Fig. 5B) and inhibited this cell death (Fig. 5C). 10 

We next tested the ability of heparinoids to block venom-induced dermonecrosis in vivo using a 

WHO-recommended preclinical model of local envenoming (35–37). Mice were intradermally 

(ID) dosed with venom from N. pallida, Nigerian N. nigricollis, or Tanzanian N. nigricollis (25, 

57, and 63 µg, respectively), preincubated with saline vehicle or the heparinoids dalteparin or 

tinzaparin (60 µg [3 mg/mL]) (Fig. 5D). While animals injected with venom-plus-vehicle 15 

exhibited large dermonecrotic lesions, animals that received venom-plus-dalteparin or -tinzaparin 

showed significant (P<0.05) reductions in lesion sizes, irrespective of the venom or drug tested 

(Fig. 5E, fig. S8, quantified in Fig. 5F-H). Tinzaparin outperformed dalteparin by providing the 

greatest reduction in dermonecrosis across the three venoms (mean lesion size reduction of 94% 

versus 63%, respectively). For these reasons, we progressed tinzaparin into more challenging 20 

rescue studies that better reflect envenoming by delivering treatment after venom dosing (Fig. 

5I).   

We used Tanzanian N. nigricollis venom for rescue studies as it was the most dermonecrotic of 

the three venoms tested (Fig. 5H) and we evaluated the efficacy of ID tinzaparin delivered 

immediately after venom injection. Both a low dose (3 mg/kg) and moderate ‘human-equivalent’ 25 

dose (21.5 mg/kg) of tinzaparin significantly (P<0.05) reduced the resulting mean sizes of venom-

induced dermonecrotic lesions by 66 and 60%, respectively (Fig. 5J, fig. S9, quantified in K). 

Tinzaparin is an FDA-approved anti-thrombotic that is self-administered subcutaneously (SC) 

daily. Accordingly, we next challenged mice with the same ID venom dose before immediately 

delivering tinzaparin SC to a site underneath where venom was injected. The low (3 mg/kg) 30 

tinzaparin dose reduced the mean size of resulting dermonecrotic lesions by 32% though this trend 

did not meet statistical significance. However, the moderate (21.5 mg/kg) dose of SC tinzaparin 

significantly (P<0.01) reduced the size of venom-induced dermonecrotic lesions by 50% (Fig. 5L, 

fig. S9, quantified in M) demonstrating that the approved route of administration for this licensed 

drug is effective at reducing the severity of local envenoming caused by cobra bites in vivo. This 35 

inhibitory effect was further evidenced histopathologically, as skin tissue samples collected from 

mice injected with Tanzanian N. nigricollis venom exhibited prominent damage to all layers, with 

ulceration of the epidermis and necrosis of the underlying dermis, hypodermis and panniculus 

carnosus, while mice injected with venom and tinzaparin, either preincubated or delivered SC, 

showed substantial reduction in epidermal ulceration and underlying necrosis (Fig. 5N). Overall, 40 

these data show that heparinoid drugs are an effective new class of snake venom treatment that act 

to prevent severe local spitting cobra envenoming by blocking the cytotoxic actions of the 3FTx 

cytotoxins CTx3 and 4. 
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DISCUSSION 

Defining the essential molecular interactions between cytotoxic venoms and target cells provides 

fundamental understanding of how these venoms act and, importantly, how we can treat them 

medically. Here we describe multiple critical genes and pathways required for cobra venom 

cytotoxicity, and for one pathway, heparan/heparin biosynthesis, we characterise this interaction 5 

in detail. Our unbiased approach led to the surprising discovery of heparinoids as a pre-clinically 

effective, and broad acting cobra envenoming antidote. Further, we show heparinoids act by 

binding to and blocking 3FTx cytotoxicity, and 3FTx inhibitors represent a much-needed class of 

therapeutic. Overall, the results of our study provide valuable insight into cobra venom 

mechanisms, information that can help reduce morbidity caused by snakebite envenomings. 10 

Although antibody-based antivenoms are lifesaving therapies, there are issues with safety, 

specificity, and administration that impact their effectiveness. While progress has been made to 

generate broader acting recombinant antivenoms (38), systemic administration of antibody-based 

therapies are ineffective at preventing severe local envenoming (1, 7, 39). This is likely because 

of the rapid onset of snake venom-mediated cytotoxicity, delays in reaching a clinical environment, 15 

and the difficulty for centrally delivered antibodies to rapidly penetrate peripherally injured tissue.  

3FTxs are highly abundant components of elapid venoms characterised by three loops that connect 

to a central core. These low molecular mass proteins (~6-9 kDa) have diverse neurotoxic, 

cardiotoxic and cytotoxic effects (34). In the context of spitting cobras, 3FTxs are highly cytotoxic 

and cause local tissue necrosis in snakebite victims (40). Thus, there is a strong need for the 20 

development of cheap, stable anti-3FTx therapeutics that can be rapidly administered on-site soon 

after a snakebite (39).  

Our study demonstrates that heparinoids may have utility in treating cobra bites from diverse 

regions of Africa and Asia. While some snakebites cause venom-induced consumption 

coagulopathy (VICC), and use of heparin may be dangerous in these cases, spitting cobras are 25 

rarely, if ever, responsible for VICC (41). Further, several clinical trials have been conducted 

where snakebite patients presenting with a coagulopathy received anticoagulant heparinoids, and 

no concerning safety signals relating to worsening coagulopathy or increased bleeding events were 

observed in any of these trials  (42–45). Moreover, we found that both anticoagulant and non-

anticoagulant heparinoids block cobra venom cytotoxicity, and thus the activity we describe is 30 

independent of anticoagulation. Tinzaparin shows particularly strong translational promise 

because it is already an FDA-approved therapeutic (28), which should lead to reduced costs and 

time associated with its downstream clinical development. The potential for rapid community-

level heparinoid administration holds much long-term promise for preventing morbidity caused by 

cobra bites. 35 

Overall, our findings align with studies investigating the Chinese cobra (N. atra) 3FTx cardiotoxin 

(47, 48), as well as several studies using compositionally distinct viper venoms that suggest a 

protective effect by heparin. For example, preincubation with heparin reduced local skin lesions 

caused by Russell’s viper (Daboia russelii) venom (49), and also blocked jararacussu (Bothrops 

jararacussu) PLA2 myotoxin II damage to muscle or endothelial cells (50–53). Our work reaffirms 40 

the protective action of heparin and related compounds, extending it to cytotoxic 3FTxs and 

provides a molecular mechanism for this activity. Critically, we find the low molecular weight 

heparinoid, tinzaparin, is suitable to prevent dermonecrosis clinically in a post-envenoming 

context. Beyond venoms, cellular heparan sulfate has also recently been found essential for SARS-
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CoV-2 infection (54). Here as well, flooding the system with free heparin or related compounds 

was sufficient to block infection, and similar observations have been made with other viral and 

bacterial pathogens (55–58). Heparan sulfate proteoglycans are conserved and widely expressed 

on the cell surface (59). Thus, targeting these molecules may be an optimal evolutionary strategy 

to interact with a broad range of species. Conversely, by providing this structure in excess, free 5 

heparin/heparinoids may act as a decoy target for multiple unrelated environmental hazards. 

Overall, the emerging molecular evidence suggests that heparan sulfate is a common cellular entry 

point for diverse human threats, and heparinoids may have broad untapped activity to protect us. 

Our study does have limitations. While effective, in this study tinzaparin when given 

therapeutically could not completely block dermonecrosis. Therefore more preclinical 10 

development, including dosing, delivery route, and combinations with other toxin-targeting drugs 

(35, 46)  may be required to generate a fully effective local antidote. Moreover, our screening was 

performed in a cell line derived from blood and further insight into cobra venom cellular targets 

could be achieved by additional CRISPR screening using a human skin cell line. While we focused 

on heparan/heparin biosynthesis, our screening identified multiple other genes that may modify 15 

venom cytotoxicity that we have yet to investigate. Finally, cytotoxicity is only one physiologically 

relevant impact of snake envenoming, and further CRISPR screening using more functional 

cellular readouts beyond death may provide a more comprehensive understanding of venom 

mechanisms of action.  

To date, much of modern molecular medicine has focused on health challenges facing high income 20 

countries; however, here we apply these same approaches to understand snakebite envenoming, a 

significant neglected tropical disease. From these efforts, we identify multiple new genes and 

pathways essential for snake venom cytotoxicity including heparan/heparin sulfate biosynthesis.  

Using this knowledge, we uncover affordable, safe, and effective drugs that can prevent cobra 

venom associated morbidity, paving the way for important future therapies. 25 
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Fig. 1. A whole genome CRISPR-Cas9 knockout screen identified genes required for 

African spitting cobra venom cytotoxicity. (A) Red spitting cobra (Naja pallida) and black-
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necked spitting cobra (Naja nigricollis) and their distributions. (B) HAP1 cell viability as 

determined by resazurin assays after 24 h treatment with serial dilutions of spitting cobra venoms 

(n = 3). (C) Schematic of pooled CRISPR knockout library screens. HAP1 cells were transduced 

with a whole genome knockout library at MOI = 0.3. Venom was added to library cells and 

genomic DNA extracted from selected and unselected control populations before undergoing 5 

next generation sequencing. Analysis was calculated using the MAGeCK pipeline. (D-E) Gene 

enrichment analysis of screens performed using MAGeCK (14). Horizontal dotted line indicates 

-log10(false discovery rate) (FDR) = 1 and vertical dotted lines indicate log2(fold changes) 

(LFCs) of -2 and 2. Plots generated using EnhancedVolcano (v1.10.0) R package. (F-G) Top 

canonical pathways identified through Ingenuity Pathway Analysis (IPA). Photographs in panel 10 

A are by Geoffrey Maranga. 
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Fig. 2. Heparan sulfate biosynthesis is required for spitting cobra venom cytotoxicity. (A) 

Schematic representation of the heparan sulfate biosynthesis pathway. (B-D) Pools of single 

sgRNA knockout cells for heparan sulfate biosynthesis hits (XYLT2, B4GALT7, B3GAT3, 

EXTL3, EXT1, EXT2, NDST1 and SLC35B2) and a non-targeting control sgRNA (NTC) were 

generated via lentiviral transduction in HAP1 cells. Pooled knockout cells were treated with 10 5 

μg/mL N. pallida (B), Nigerian (NGA) N. nigricollis (C), or Tanzanian (TZN) N. nigricollis (D) 

venom for 24 h and viability ascertained through resazurin. Significance determined by one-

tailed Mann-Whitney test, *P<0.05, **P<0.01 (n = 4-5). 
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Fig. 3. Heparin and LMW variants block Naja venom action in vitro. (A) Chemical 

structures of low molecular weight heparinoids, dalteparin and tinzaparin. (B) Representative 

brightfield microscopy of HAP1 cells after 24 h exposure to 10 μg/mL N. pallida or Nigerian 

(NGA) N. nigricollis venom, simultaneously treated with 20 μM heparin, tinzaparin or 5 

dalteparin. Scale bar = 200 μm (C-E) Venoms (10 μg/mL) and serial dilutions of heparin (H), 

tinzaparin (T) and dalteparin (D) (1.25-20 μM) were added simultaneously to HAP1 cells. 



Submitted Manuscript: Confidential 

Template revised November 2022 

21 

 

Resazurin cell viability assays were performed after 24 h of treatment. Significance determined 

by 2-way ANOVA and Dunnett test, ****P<0.0001 (n = 3). (F) Venoms (10 μg/mL) and serial 

dilutions of N-acetyl-heparin (12.5-200 μM) added simultaneously to HAP1 cells. Resazurin cell 

viability assays were performed after 24 h of treatment. Significance determined by 2-way 

ANOVA and Dunnett test, *P<0.05 (n = 3).  (G) HAP1 cells were treated with 10 μg/mL N. 5 

nigricollis (NGA) venom before addition of 20 μM heparin immediately after, or 5-, 10-, 30-, 60- 

or 90-min post venom application. Significance determined by Ordinary one-way ANOVA and 

Dunnett test, **P<0.01, ***P<0.001, ****P<0.0001 (n = 3). 
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Fig. 4. Heparin binds 3FTxs and prevents their cytotoxicity. (A) Representative flow 

cytometry histograms of WT HAP1 cells in gray and cells exposed to Alexa488-tagged N. 

pallida venom (B) with heparin (C) or with tinzaparin. (D) Quantification of binding intensity (n 

= 5). Significance was determined by One-way ANOVA and Dunnett test, **P<0.01. (E) 

Heparin affinity chromatography of N. pallida venom. Unbound (U), Peak 1 (P1), Peak 2 (P2) 5 

and Peak 3 (P3). (F) Cation exchange chromatography of Peak 3. (G) SDS-PAGE gel of whole 

venom and resulting toxin fractions. (H) Surface plasmon resonance (SPR). Representative 

normalized sensorgrams of toxin binding to heparin. (I) Fits of the SPR data from (H) to a 1:1 

binding model are shown and KDs are indicated on each plot. (J) Cytotoxicity of 10 μg/mL of 

each toxin fractions and addition of 20 μM heparin. Significance determined by 2-way ANOVA 10 

and Sydak test, ****P<0.0001 (n = 3). (K-M) Cytotoxicity of venoms containing 3FTxs (K- 

Naja kaouthia, L- Naja atra, M- Naja naja) and addition of heparin. (N-O) Cytotoxicity of 

venoms from more distantly related snakes and addition of heparin (N- Echis ocellatus and O- 

Bitis arietans). Significance determined by simple linear regression. 

  15 
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Fig. 5. Snake venom induced dermonecrosis is inhibited by heparinoids in vivo. (A) MTT 

cell viability and PI cell death assays on HaCaT epidermal keratinocytes exposed to serial 

dilutions (4.74-47.4 µg/mL) of spitting cobra venoms. (B) MTT-quantified %-cell viability and 5 

(C) PI-quantified %-cell death of HaCaT keratinocytes treated with venoms (N. pallida 15 
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μg/mL, NGA N. nigricollis 10 μg/mL, and TZN N. nigricollis 15 μg/mL) preincubated with saline 

vehicle control or heparin, dalteparin or tinzaparin (1000 μg/mL). (D) Mice ID-injection with 

venom that had been pre-incubated with saline vehicle control, dalteparin or tinzaparin (60 µg [3 

mg/mL]). After 72 h mice were euthanized and the internal skin lesions excised for photographs 

and height and width measurements with calipers, from which area was calculated (bar graphs 5 

represent the mean lesion area for each treatment group and error bars represent SEM). (E) 

Representative images of necrosis, scale bar = 5 mm. Calculated areas for (F) 25 µg N. pallida 

(G) 57 µg Nigerian N. nigricollis (H) or 63 µg Tanzanian N. nigricollis venom, n≥4 

(significance was determined by One-way ANOVA and Dunnett test, *P<0.05, **P<0.01). (I) 

Post-envenoming treatment. (J, K) ID-injected with Tanzanian N. nigricollis venom (63 µg) 10 

immediately followed by ID-injection at the venom injection site with saline vehicle control, low 

dose (3 mg/kg) or moderate ‘human-equivalent’ dose (21.5 mg/kg) tinzaparin, and (L, M) ID-

injected with Tanzanian N. nigricollis venom (63 µg) immediately followed by SC-injection 

underneath the venom injection site with saline vehicle control, low dose (3 mg/kg) or moderate 

‘human-equivalent’ dose (21.5 mg/kg) tinzaparin. (N) Light micrograph images (100X) of 15 

hematoxylin & eosin (H&E)-stained skin lesion cross-sections from mice injected with 

Tanzanian N. nigricollis venom (63 µg) and pre-incubated saline control show severe damage, 

with complete loss of the epidermis and necrosis of the underlying dermis, hypodermis, and 

panniculus carnosus. Sections from mice injected with pre-incubated tinzaparin (3 mg/kg) or 

receiving SC-injected tinzaparin (21.5 mg/kg) immediately post-envenoming show only minimal 20 

damage, with mild reactive changes including epidermal hyperplasia and dermal inflammation. 

 


