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Abstract—Adaptive Bitrate (ABR) algorithms have become increasingly important for delivering high-quality video content over
fluctuating networks. Considering the complexity of video scenes, video chunks can be separated into two categories: those with
intricate scenes and those with simple scenes. In practice, it has been observed that improving the quality of intricate chunks yields
more substantial improvements in Quality of Experience (QoE) compared with focusing solely on simple chunks. However, the current
ABR schemes either treat all chunks equally or rely on fixed linear-based reward functions, which limits their ability to meet real-world
requirements. To tackle these limitations, this paper introduces a novel ABR approach called CAST (Complex-scene Aware bitrate
algorithm via Self-play reinforcemenT learning), which considers the scene complexity and formulates the bitrate adaptation task as an
explicit objective. Leveraging the power of parallel computing with multiple agents, CAST trains a neural network to achieve superior
video playback quality for intricate scenes while minimizing playback freezing time. Moreover, we also introduce a new variant of our
proposed approach called CAST-DU, to address the critical issue of efficiently managing users’ limited cellular data budgets while
ensuring a satisfactory viewing experience. Furthermore, we present CAST-Live, tailored for live streaming scenarios with constrained
playback buffers and considerations for energy costs. Extensive trace-driven evaluations and subjective tests demonstrate that CAST,
CAST-DU, and CAST-Live outperform existing off-the-shelf schemes, delivering a superior video streaming experience over fluctuating
networks while efficiently utilizing data resources. Moreover, CAST-Live demonstrates effectiveness even under limited buffer size
constraints while incurring minimal energy costs.

Index Terms—Video streaming, bitrate adaption, data budget, parallel computing, limited buffer, self-play reinforcement learning,
scene complexity.
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1 INTRODUCTION

THE proliferation of intelligent mobile devices and the
widespread availability of wireless connectivity have

resulted in a substantial surge in network traffic attributed
to video streaming. As a preferred method for delivering
video content over fluctuating networks, HTTP Adaptive Bi-
trate Streaming, also known as Dynamic Adaptive Stream-
ing over HTTP (DASH) [2], has gained prominence. In
the DASH system, video content is pre-encoded and pre-
chunked at different quality levels (bitrates) on the server
side. On the client side, the player dynamically selects the
most appropriate bitrate for each chunk, considering an esti-
mation of network capacity and measured buffer occupancy,
with the aim of providing viewers with a high QoE.

Existing DASH system utilizes two primary encoding
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methods for video content delivery: Constant Bitrate (CBR)
and Variable Bitrate (VBR). Under the CBR approach, the
entire video is encoded using a fixed bitrate for a given
quality level, leading to uniform bit allocation across all
video chunks. Consequently, this uniformity may result in
inconsistent quality across chunks with different scenes [3].
Conversely, VBR employs a more dynamic allocation of bits,
which allocates more bits to intricate scenes characterized
by high dynamics while giving fewer bits to low-motion
scenes, aiming to achieve consistent quality across chunks
with the same bitrate level. The benefits of VBR, including
the capacity to attain equivalent quality with a reduced
bit budget, have prompted content providers to shift their
encoding strategies from CBR to VBR in recent years [4].

Limitations of Prior Arts. (i) In spite of the efforts made
by VBR encoding to achieve consistent quality across video
chunks with varying scene complexity, the quality of chunks
with intricate scenes (referred to herein as “intricate,” “com-
plex,” or “dynamic” chunks) remains noticeably lower than
that of chunks with simple scenes (termed as “simple”
chunks) due to limitations inherent in existing encoding
techniques, as discussed in Section 3.1. Given the significant
role played by intricate chunks in determining viewing
quality, enhancing the quality of such chunks can lead to
more substantial improvements in QoE [6]. Unfortunately,
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the majority of existing ABR algorithms rarely consider
the impact of scene complexity, resulting in subpar quality
for intricate chunks and subsequent degradation in QoE.
Although some approaches account for scene complexity
by aiming to optimize a score using a linear-based formula
with fixed weighted sum metrics, accurately calculating the
optimization function remains challenging [3], [55]. The de-
sign of an appropriate function is critical, as an inadequately
formulated one can mislead ABR algorithms to make inap-
propriate bitrate decisions, ultimately compromising users’
viewing experience.

(ii) Moreover, video streaming represents one of the most
bandwidth-intensive applications, with even a single hour
of High Definition (HD) video consumption significantly
impacting a user’s monthly data plan [18]. Therefore, it be-
comes crucial to optimize mobile video streaming to strike
a balance between reducing data usage and minimizing its
potential impact on users’ QoE. This optimization enables
users to enjoy good-quality content within the confines of
their specific monthly data budgets. Moreover, the reduction
in data usage per streaming session not only benefits indi-
vidual users but also has broader implications for the overall
network performance. By alleviating the load on cellular
networks, this optimization can lead to an enhanced QoE
for all users who share the same network infrastructure.
Nevertheless, it is noteworthy that existing ABR approaches
primarily concentrate on maximizing video quality within
the constraints of network bandwidth, rather than actively
limiting data usage. As such, there is a pressing need for
novel ABR strategies that explicitly address data usage
optimization in video streaming.

(iii) Live streaming has become a significant part of
society recently, covering live sports events, virtual con-
certs, real-time tutorials, interactive product launches, and
more. To guarantee an outstanding viewing experience with
improved interactivity, content providers strive to achieve
low end-to-end latency, along with high QoE, encompassing
high playback quality and low freezing time. To achieve
low latency, the player is equipped with a small buffer ca-
pacity, approximately 6 seconds [60], distinguishing it from
traditional Video on Demand (VoD) streaming, where the
buffer size is typically on the minute level [14]. Therefore,
maintaining a low rebuffering time under a limited buffer
size is more challenging, as a larger buffer size is better
suited to absorb network variations and chunk variations.

Our Proposed Solution and Contributions. Motivated
by the aforementioned challenges, this paper aims to lever-
age parallel training to introduce a novel ABR algorithm.
Machine learning is chosen as the methodology due to the
ability of learning-based schemes to derive bitrate selection
strategies by interacting with the environment without be-
ing constrained by any specific assumptions, such as net-
work capacity stability over a short time frame [3], [6]. Thus,
learning-based approach typically leads to superior perfor-
mance compared to traditional heuristic-based methods in
most cases [11]. In practical scenarios, the task of bitrate
adaptation can be perceived as a straightforward objective
or rule. For instance, the primary goal of most ABR schemes
is to minimize rebuffering time while ensuring a high play-
back quality [45]. In this paper, we propose an approach
that utilizes multi-agent self-play reinforcement learning to

parallelly train the neural network. For CAST, the objective
is to deliver high-quality video chunks with intricate scenes
without excessively compromising the quality of simple
chunks and minimizing rebuffering time on networks with
variable conditions. To address the challenge of explicitly
constraining the amount of data used during a streaming
session without significantly compromising the viewing
experience, we further propose a variant called CAST-DU.
Given the rising popularity of live streaming, we acknowl-
edge the necessity of maintaining robust ABR algorithm
performance even with constrained buffer sizes. Moreover,
we tackle the energy consumption related to download and
playback operations by introducing an energy-conscious
variant, CAST-Live. By training via distinct actual goals,
CAST, CAST-DU, and CAST-Live can accurately fulfill spe-
cific requirements. In summary, our contributions in this
research can be outlined as follows:

(i) Integration of VBR Features: Our approach integrates
VBR features, considering that different chunks have vary-
ing sizes based on scene complexity due to VBR encoding.
While some works have recognized the importance of in-
tricate chunks, such as [3], [55], they either select bitrates
using a heuristic approach relying on naive assumptions
like the network bandwidth remaining stable in the short
term or learn the selection policy using a fixed linear reward
function, posing challenges in reflecting user requirements
in practice. In contrast to existing works that consider in-
tricate chunks, we employ self-play reinforcement learning
to train the bitrate selection policy, learning from explicit
video streaming requirements. This approach better reflects
user demand in practice, resulting in improved performance
across various metrics.

(ii) Data Budget Consideration: Unlike many existing
methods that focus on maximizing overall QoE without
considering data usage, we prioritize the user’s data bud-
get during video content downloading. Acknowledging
the substantial impact of video consumption on a user’s
monthly data plan, we carefully restrict data usage below
the user’s designated budget while ensuring a commend-
able viewing experience. Importantly, CAST-DU can be
easily built upon the existing CAST approach, providing
an effective solution to manage data usage during video
streaming sessions.

(iii) Adaptability to Live Streaming: Recognizing the rising
prevalence of live streaming, our approach places impor-
tance on ensuring effective ABR algorithm performance
even under limited buffer sizes, such as 6 seconds, to
guarantee low latency. Additionally, we address the energy
costs associated with the download and playback processes
by introducing an energy-aware CAST-Live.

To assess the performance of CAST, CAST-DU, and
CAST-Live, we conduct an extensive trace-driven evalua-
tion encompassing various network environments. The ex-
perimental findings illustrate the remarkable improvements
achieved by CAST in enhancing the quality of intricate
chunks and minimizing playback freezing time. Regard-
ing CAST-DU, we observe that our variant significantly
reduces the disparity between the actual data usage and
the target usage across various traces, while concurrently
providing a satisfactory viewing experience. For CAST-Live,
our method excels in both operating under tight buffer



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXXX XXXX 3

constraints and reducing energy costs when compared to
existing approaches. To validate the practical effectiveness
of our proposed method, we perform a subjective assess-
ment by recruiting 20 volunteers to watch an online video
using different ABR algorithms. The results of this exper-
iment show that 19 out of the 20 participants affirm that
CAST provides them with good quality for intricate chunks
while avoiding extended playback interruption time. This
positive feedback underscores the efficacy of our approach
in delivering an enhanced viewing experience for users.

2 RELATED WORK

2.1 Heuristic-based

The classic heuristic-based approaches include FESTIVE
[35], which estimates available bandwidth based on past
throughput and selects the highest bitrate not exceeding
the estimated capacity. BBA [36] employs a function to
map buffer occupancy to available video bitrate. On the
other hand, BOLA [37] is a more sophisticated buffer-based
scheme that optimizes an objective function using the Lya-
punov optimization formulation. MPC [6] maximizes an op-
timization problem over a horizon of several chunks ahead
by combining the signal of rate and buffer. QUETRA [7]
transforms the video streaming task into a queuing model
and utilizes queuing theory along with bandwidth predic-
tion to select the bitrate for each chunk, maintaining buffer
occupancy fluctuating around half of the maximum buffer
size. CAVA [3] considers scene complexity and obtains the
playback bitrate by optimizing a predefined function based
on a set of assumptions. PIA [8] strategically harnesses
Proportional-Integral-Derivative (PID) control concepts and
incorporates novel strategies for various requirements of
ABR streaming to improve overall QoE. MSPC [9] leverages
the Kalman filter to predict network bandwidth and adopts
multi-step prediction to provide responsive adaptation and
smooth playback for mobile video applications.

Limitations: Although heuristic methods have demon-
strated efficacy in some cases, they do come with certain
limitations. One significant drawback is that these methods
often require careful parameter tuning, and they heavily
rely on some naive assumptions, such as negligible band-
width variations over short periods. Consequently, their
performance might be inadequate in fluctuating network
conditions, particularly when dealing with highly variable
cellular networks [11].

2.2 Learning-based

Due to the challenge of tuning parameters for heuristic
algorithms, considerable efforts have been directed towards
enhancing the performance of ABR schemes using learning-
based approaches. For instance, Pensieve [10] utilizes Deep
Reinforcement Learning (DRL) to train a neural network
for bitrate adaptation, maximizing a linear QoE function.
Stick [20] employs DRL to determine optimal parameter
settings for BBA under various network conditions, thereby
maximizing QoE. BayesMPC [12] leverages Bayesian neural
network models to improve bandwidth predictions and
employs MPC for bitrate selection in upcoming video seg-
ments. Fugu [13] employs online learning techniques to

estimate download times for video chunks at each level
and applies MPC to select the optimal bitrate for subse-
quent chunks. Comyco [11] and DAVS [5] employ imitation
learning for attaining the bitrate selection for each video
chunk. RAV [21] and SPA [22], [23] respectively utilize deep
reinforcement learning and self-play reinforcement learning
techniques to acquire bitrate selection policies for both audio
and video content, effectively reducing the bitrate gap be-
tween audio and video chunks with the same index. PRIOR
[14] introduces an accurate network bandwidth prediction
method with an attention mechanism and uses DRL to learn
a bitrate selection policy, maximizing QoE. Zwei [16] em-
ploys self-play reinforcement learning to develop a bitrate
selection policy based on a pre-defined rule.

Limitations: However, these approaches have limitations
as they often overlook the differences in scenes between
diverse chunks, which can result in inferior quality for in-
tricate chunks. Furthermore, other learning-based methods,
such as [11], [26], [27], also suffer from the same drawback,
lacking the consideration of scene differences and appropri-
ate methods for scene-aware bitrate adaptation.

2.3 Data-usage-aware
The majority of existing ABR approaches primarily prior-
itize optimizing video quality under network bandwidth
constraints, with limited consideration for the user’s data
budget. QUAD [4], in contrast, assumes a user-specified
target quality and aims to avoid segments whose qualities
exceed the target quality, resulting in data savings.

Limitations: However, some of these capped approaches,
including [4], [18], may be overly conservative, leading to
significant data discrepancy.

2.4 Data-wastage-aware
Approaches such as [39], [40] focus on mitigating data
wastage by adjusting the buffer size, but their emphasis
differs from ours. DeepBuffer [39] and PSWA [40] primarily
concentrate on adjusting bitrate and playback buffer size to
mitigate data wastage resulting from various user-triggered
behaviors such as early departure and video skip. In con-
trast, our work, CAST-DU, specifically aims to align the
data usage for downloading video content explicitly with
the allocated data budget.

2.5 Live Streaming
Recognizing the growing demand for live streaming, several
bitrate adaptation algorithms have been developed [24],
[25], [60]. Cratus [60] aims to regulate buffer dynamics by
designing an ideal buffer model to achieve target levels
through heuristic methods. Fleet [25] comprises four main
modules: bandwidth measurement, throughput prediction,
bitrate adaptation, and latency management, with a stochas-
tic MPC controller at the heart of its bitrate adaptation mod-
ule. However, their heuristic designs may lead to inferior
robustness due to reliance on naive assumptions.

2.6 Summary
In summary, existing methods often fail to account for vari-
ations in scene complexity, data budget constraints, and the
challenges of operating effectively under tight buffer sizes,
leading to suboptimal performance such as compromised
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quality for intricate chunks, inappropriate data usage, or
high rebuffering times. While some recent approaches have
addressed scene complexity [3], [55], they either rely on
meticulous parameter tuning and network bandwidth as-
sumptions or utilize fixed-weighted linear reward functions
for bitrate selection, resulting in reduced robustness. Given
these limitations, there is a pressing need for a novel and
robust approach capable of effectively managing fluctua-
tions in scene complexity, data budget constraints, and live
streaming scenarios.

3 MOTIVATION

3.1 Scene Complexity
The content of video chunks can vary in terms of scene
complexity, with some chunks featuring low-motion and
straightforward scenes, while others present high-motion
and intricate scenes. In order to investigate the impact of
chunk size on quality, we conducted experiments using the
video “Big Buck Bunny” [28] as our test case. The video
was encoded into six different tracks, ranging from 144p
to 1080p, using two different encoding schemes: H.264 and
H.265. Each track was then divided into chunks with a fixed
duration of 2 seconds.

When assessing the scene complexity, several metrics
such as Spatial Information (SI) and Temporal Information
(TI) [30] may be utilized. Nevertheless, implementing these
metrics in commercial streaming services is challenging due
to the computationally intensive content-level analysis they
require, which would necessitate significant modifications
to the streaming pipeline [3]. Fortunately, in VBR encoding,
the size of a chunk can effectively indicate relative scene
complexity, with intricate chunks allocated more bits than
simple ones. Given that scene complexity is constant across
quality levels at a given playback point, we designate a
middle-quality track (480p) as a reference track and clas-
sify chunks based on their size, with larger chunks in the
first half classified as intricate and the remaining chunks
classified as simple [5]. It is important to note that the clas-
sification method is not fixed, and other strategies, such as
using four classes, can be employed. In this study, we utilize
the Video Multi-method Assessment Fusion (VMAF) metric
[38] to evaluate the quality of each chunk, as it is known to
accurately reflect users’ subjective viewing experience [11],
[15], [31], [33].
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Fig. 1: Analysis of chunk size and quality. (a) Comparison
of the size of simple and intricate chunks. (b) Comparison
of the quality of simple and intricate chunks.

As depicted in Figure 1(a), we can observe that intricate
chunks are considerably larger than simple ones, with an

average size of around 1.18× and 1.10× higher under the
H.264 and H.265 codecs, respectively. However, despite
utilizing more bits for encoding, the quality of intricate
chunks is still inferior to that of simple ones, as shown in
Figure 1(b). Specifically, under the H.264 and H.265 formats,
the average quality of intricate chunks is respectively 7.88%
and 6.73% lower than that of simple chunks. These findings
have prompted us to consider different treatment strategies
for intricate and simple chunks to achieve optimal viewing
experience for users. It is critical to allocate bandwidth to
prioritize the transmission of intricate chunks while ensur-
ing that the quality of simple chunks is not significantly
compromised. Additionally, minimizing stall time is of ut-
most importance, as this can significantly impact the overall
viewing experience [23].

3.2 Data Usage

To investigate the data usage of different ABR algorithms
across various network scenarios, we conduct experiments
using the ”Envivo-Dash3” video [5]. This video is en-
coded with six distinct bitrates: {300, 750, 1200, 1850, 2850,
4300}Kbps, and each chunk has a duration of 4 seconds. For
our evaluation, we select MPC [6] and Zwei [16] as the ABR
algorithms and employ 142 HSDPA [51] and 200 FCC [52]
traces to represent different network conditions.

For the data budget setting, we designate a reference
track at 1850Kbps from the test video. Subsequently, the
data budget scale factor γ is established at 1.05. This in-
dicates that the data budget is calculated as 1.05 times the
cumulative size of all chunks within the reference track. As
suggested by [18], users have the flexibility to adjust the
data budget scale factor within a broad range, such as from
1.0 to 1.5. This adjustment allows exploration of different
levels of stringency in the data budget relative to the size
of the reference track. Accordingly, the final data budget is
determined as 40MB.

Figure 2 presents the data usage of downloading the
video over various network traces, indicating substantial
variations in the data usage of different ABR algorithms
across diverse network scenarios. For example, under the
HSDPA and FCC traces, the data usage of MPC ranges from
8.31MB to 90.53MB and 6.69MB to 70.53MB, respectively.
During low network rates, these algorithms tend to select
lower bitrates to avoid playback interruptions. However,
when the network capacity is high, these algorithms become
more aggressive in selecting high bitrates for each chunk,
without adequately considering the users’ data budget.

TABLE 1: Percentage of network traces exceeding the target
data budget.

Percentage MPC Zwei

HSDPA 10.56% 10.56%
FCC 17% 21.82%

In Table 1, we list the proportion of traces that exceed
the data budget 40MB. For instance, using MPC, we ob-
serve that 10.56% and 17% of traces exceed the target data
budget over the HSDPA and FCC traces, respectively. These
results underscore the fact that existing ABR approaches
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Fig. 2: Data usage (MB) over different network traces.
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Fig. 3: Data usage (MB) with capped MPC over different
network traces.

lack control over data usage when selecting the bitrate for
each chunk.

While there are data-capped methods that limit the
maximum selected bitrate to ensure the sum of all chunk
sizes at that bitrate level does not exceed the data budget
[4], [46], this strategy often results in significant data usage
gaps. Specifically, when the cumulative size of all chunks
in the i-th bitrate level does not exceed the predetermined
data budget N , and the (i+ 1)-th bitrate level surpasses N ,
the upper capped bitrate is set as the i-th bitrate level. For
example, when configuring the target budget to 40MB and
implementing the data-capped method on MPC, as depicted
in Figure 3, a substantial data gap emerges. This gap is
evident in the disparity between the total downloaded size
of the video on each trace (indicated by the blue line) and
the designated target budget. Such a discrepancy results in
inefficient utilization of network resources and may lead to
potential degradation of playback quality. Furthermore, the

fixed target bitrate fails to fully consider scene complexity
in different chunks, potentially resulting in suboptimal play-
back quality for segments with intricate scenes.

3.3 Summary
Based on the above analysis, we draw the following conclu-
sions: (i) existing ABR algorithms mainly treat all chunks
indiscriminately, resulting in inferior quality for intricate
chunks due to their larger size and lower VMAF; (ii) re-
cent bitrate adaptation solutions rarely consider the data
budget when selecting the bitrate for each chunk, leading
to excessive data usage. The naive data-capped method also
incurs significant data discrepancy. An alternative strategy
involves dynamically adjusting the target bitrate by recalcu-
lating it each time a video chunk selects a playback bitrate
based on the remaining data budget for subsequent chunks.
This continuous adjustment results in a new target bitrate,
potentially differing from the previous one. However, this
method heavily depends on making real-time adjustments
for each individual chunk, which could lead to challenges
in swiftly adapting to sudden changes in network condi-
tions or scene complexity [18]. Additionally, ABR schemes
face challenges in delivering good performance under con-
strained buffer sizes in live streaming scenarios [60]. These
limitations of current ABR approaches inspire the design
of a new algorithm that optimizes the video streaming
experience by considering both chunk complexity and data
budget, while also performing effectively under tight buffer
constraints.

4 DESIGN

4.1 CAST Design
4.1.1 The Selection of the Learning Method
This paper introduces a novel approach, CAST, which em-
ploys self-play reinforcement learning to learn a bitrate se-
lection policy that takes scene complexity into account. Un-
like the widely adopted deep reinforcement learning (DRL)
that trains using a linear reward function, CAST formulates
the ABR problem as an explicit objective and treats the
learning task as a competition between different trajectories
collected by itself. By training the neural network to ap-
proach the predefined goal’s gradient, the converged policy
can effectively meet the actual demands [47]. The decision
to employ self-play reinforcement learning is grounded in
its proven effectiveness when compared to existing learn-
ing methods for various tasks, including video streaming,
network congestion control, and games, as demonstrated
in [16], [56], [57]. Although some related works in video
streaming such as [16], [23] also employ self-reinforcement
learning, our approach differentiates itself in several ways.
In contrast to [16], our method considers a wider array of
crucial features essential to video streaming, including scene
complexity, data usage, energy cost, and constrained buffer
size. Additionally, we conduct an extensive evaluation in
Section 5 to effectively demonstrate the superiority of our
method over [16]. On the other hand, literature [23] focuses
on audio bitrate adaptation, considering video streaming
from a different perspective, and thus we do not include
a comparison with it.
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4.1.2 Training Process

The training process begins by sampling D distinct trajec-
tories denoted as Td =

{
sd0, a

d
0, s

d
1, a

d
1, · · · , sdt , adt

}
from the

same environment and starting point using a deep neural
network. These trajectories are recorded in a collection M ,
where D is the total number of trajectories collected, d ∈ D,
st represents the environment status at the t-th time, and at
denotes the action for video bitrate selection at the t-th time.
Further details about the status and action can be found in
Section 4.4.

As shown in Algorithm 1, CAST evaluates the perfor-
mance of the current policy by comparing each trajectory’s
performance. For any two different samples Tp and Tq from
the sample setM , CAST first computes their average quality
for intricate chunks Cp and Cq , average rebuffering time
Bp and Bq , and average quality for simple chunks Sp and
Sq (Line 2). The comparison process follows a deterministic
rule with two cases.

Case 1: Given three thresholds α, β, and η, if the absolute
differences |Cp − Cq| < α, |Bp −Bq| < β, and |Sp − Sq| <
η, the competition between Tp and Tq is considered a draw
(Lines 4-6).

Case 2: Otherwise, the competition process is based on
a priority (Lines 7-14). First, CAST compares the average
rebuffering time between Tp and Tq (Line 7). If the absolute
difference |Bp − Bq| exceeds the threshold β, the sample
with a shorter rebuffering time is the winner (Line 13), and
the competition ends. If not, the competition continues by
comparing the absolute difference in intricate chunks’ qual-
ity (Line 8), followed by comparing the absolute difference
in simple chunks’ quality (Line 9). The thresholds α, β, and
η are set as 1, 0.01, and 1, respectively.

After completing the competitions, each trajectory re-
ceives a win countAi based on how many times it won in all
sampled trajectories D. Consequently, the win rate of each
sample is Ai

|D|−1 , as there is no battle between a trajectory
and itself.

The final step of CAST involves training a neural net-
work using the collected trajectory samples and their cor-
responding win rates. To achieve this, the neural network
is trained using the state-of-the-art Dual-clip Proxy Policy
Optimization (Dual-PPO) algorithm [48], known for its im-
proved stability and convergence compared with existing
learning methods, including the original PPO algorithm.
The neural network comprises a policy network and a value
network. During training, the policy network is optimized
to increase the probability of winning samples and decrease
the probability of losing samples using a specific loss func-
tion. The loss function for the policy network is expressed
as follows.

L =

{
Êt[max(min(pt(θ)Ât, clip(pt(θ), 1− ε, 1 + ε)Ât), cÂt)],Ât < 0,

Êt[min(pt(θ)Ât, clip(pt(θ), 1− ε, 1 + ε)Ât)],Ât ≥ 0,

The loss function of the policy network incorporates the
advantage function Ât and the policy ratio pt(θ), which
represents the ratio between the current policy πθ and the
old policy πθold . The hyper-parameters ε and c are assigned
the same values as in [48]. Conversely, the value network
is trained to minimize the estimated error of the advantage
function, denoted as LV = 1

2 Êt[Ât]
2. Additionally, an en-

Algorithm 1 Battling Rule for CAST
Input: Agent results for two agents.
Output: Battling outcome f .

1: function CAST RULE(agent results)
2: Compute the average quality for complex chunks,

represented by Cp and Cq , as well as the average
rebuffering time denoted by Bp and Bq . Additionally,
calculate the average quality for simple chunks, denoted
as Sp and Sq , all based on trajectories Tp and Tq .

3: f ← [−1,−1];
4: if |Bp −Bq| < β and |Cp − Cq| < α and |Sp − Sq| <
η then

5: f ← [0, 0]; ▷ a tie competition.
6: return f
7: if |Bp −Bq| < β then
8: if |Cp − Cq| < α then
9: f [argmax([Sp, Sq])]← 1;

10: else
11: f [argmax([Cp, Cq])]← 1;

12: else
13: f [argmin([Bp, Bq])]← 1;

14: return f

tropy term is introduced to the loss function to encourage
exploration. Therefore, the overall loss function is defined
as follows:

∇LCAST = −∇θL+∇θpLV +∇θγH
πθ (st).

where γ denotes the entropy weight.

4.2 CAST-DU Design

To ensure that each viewing session adheres to the target
data budget, we introduce a new variant called CAST-DU,
which builds upon the original CAST algorithm. In contrast
to the basic CAST, CAST-DU incorporates an additional
metric, data usage, into the evaluation process of each
trajectory, denoted as Up and Uq , respectively. The battling
rule of two trajectories Tp and Tq is shown in Algorithm 2.

Like CAST, the process commences by computing var-
ious metrics from the collected trajectories Tp and Tq , in-
cluding the average quality of intricate and simple chunks,
the average rebuffering time, and the total data usage (Line
2). We initialize the target data budget N (Line 3). To set
the data budget for a video, we use a relative approach
with respect to a reference track, typically the middle track
[18]. The data budget scale factor, denoted as γ, is subject
to flexible adjustments over a broad range of 0.5 to 1.5.
This approach allows for the exploration of different levels
of data budget constraints in relation to the cumulative
size of all chunks within the reference track. Subsequently,
employing four thresholds α, β, η, and κ, we determine
whether the absolute differences in the average rebuffering
time, quality of intricate/simple chunks, and the deviation
of actual data usage from the target budget are smaller
than their respective thresholds. If this condition is met, we
consider the competition between Tp and Tq as a draw game
(Lines 5-6). In this case, the thresholds α, β, η, and κ are
configured to 1, 0.01, 1, and 20, respectively.
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Conversely, we approach the competition with a priori-
tized strategy (Lines 8-18). Firstly, we prioritize the rebuffer-
ing time as the top consideration since it holds the utmost
importance for viewers when they watch a video in practice
[45]. Subsequently, given that the data budget is often linked
to users’ monthly data plans and associated with monetary
costs [34], we establish this metric as the second priority. The
next priority is to maximize the quality of intricate chunks,
and finally, we concentrate on improving the quality of
simple chunks. To begin the competition, we compare the
average rebuffering time (Line 8). If the absolute difference
in rebuffering time is smaller than β, we proceed to compare
the deviation of actual data usage from the target budget
N . However, suppose the absolute difference in rebuffering
time is no smaller than β. In that case, we identify the
trajectory with the shorter rebuffering time as the winner
and assign a value of 1 to that trajectory (Line 17). The
subsequent stages of the competition follow the same logical
approach. Ultimately, we determine the winning trajectory
and update the neural network by optimizing for the gradi-
ent that increases the likelihood of winning samples, in line
with the fundamental principle of CAST. By employing this
approach, we can effectively achieve the goal of reducing
rebuffering time and maintaining data usage within a range
close to the target budget.

Algorithm 2 Battling Rule for CAST-DU
Input: Agent results for two agents.
Output: Battling outcome f .

1: function CAST-DU RULE(agent results)
2: Calculate the average quality for intricate chunks,

represented by Cp and Cq , as well as the average
rebuffering time denoted by Bp and Bq . Additionally,
compute the average quality for simple chunks, denoted
as Sp and Sq , along with the sum of data usage denoted
by Up and Uq , all based on trajectories Tp and Tq ;

3: N ← Target Budget; ▷ a self-defined value.
4: f ← [−1,−1];
5: if |Bp −Bq| < β and |Cp − Cq| < α and |Sp − Sq| <
η and ||Up −N | − |Uq −N || < κ then

6: f ← [0, 0]; ▷ a draw competition.
7: return f
8: if |Bp −Bq| < β then
9: if ||Up −N | − |Uq −N || < κ then

10: if |Cp − Cq| < α then
11: f [argmax([Sp, Sq])]← 1;
12: else
13: f [argmax([Cp, Cq])]← 1;

14: else
15: f [argmin([|Up −N | , |Uq −N |])]← 1;

16: else
17: f [argmin([Bp, Bq])]← 1;

18: return f

4.3 CAST-Live Design
To capture content complexity for live streaming, we can
leverage a metadata field on the server side [41]. The
metadata is generated during the content preparation stage
as part of the encoding/packaging process, incorporating

a single numeric value representing the event intricacy
for each chunk. This intricacy serves as a measure of the
chunk’s content-wise importance, with values ranging from
0 to 1. A value of 0 indicates that the chunk is not important
(featuring simple scenes), while a value of 1 indicates that
the chunk is important (with intricate scenes). Once the
server completes the encoding/packaging process for this
chunk, it can transmit the corresponding metadata to the
client first. Since the metadata is typically small in size,
we can transmit it without consuming a significant amount
of bandwidth. We can determine whether a chunk is an
intricate one by checking its metadata. If the event intricacy
exceeds a threshold, we can deem this chunk as an intricate
one.

Furthermore, given the pressing environmental concerns
highlighted by the climate crisis, there is an urgent need
for research to address the energy costs associated with
video streaming and promote eco-friendly practices. The
energy cost measurement method we employ is not limited
to live streaming tasks but can also be adapted for other
variants. Here, we specifically focus on live streaming as
a representative instance. In practice, energy consumption
primarily consists of mobile data transmission and screen
display cost [42]. In accordance with [43], the model for data
download energy based on throughput can be accurately
defined as Di = ( ω

rate + δ) ∗Si. In this equation, Ei denotes
the energy consumption for downloading the i-th chunk,
rate represents the average rate during the download of
the i-th chunk, and Si signifies the total size (in bits) of
the i-th chunk. The recommended values for the constants
ω and δ are 210 and 28, respectively [43]. Then we take
into account the energy cost associated with screen display.
Generally, the display cost is intricately tied to screen bright-
ness, wherein higher brightness levels result in increased
energy consumption. Additionally, longer rebuffering times
contribute to increased display costs. For example, let’s use
the Motorola Moto G5 phone as an instance. When the
screen brightness is set to 50% or 80% of the full brightness,
the associated power consumption values are 573 and 858
mW, respectively [44]. Assuming the screen brightness is
adjusted to 50%, the display cost Yi for the i-th chunk is
computed as 573 times the total playback time, considering
both the playing time and the rebuffering time during the
download of the i-th chunk. Therefore, we estimate the
energy cost Ei associated with downloading and playing
the i-th chunk during the live streaming session as the sum
of Di and Yi. Other factors, such as speaker operations,
also contribute to the overall energy cost. However, we
have omitted consideration of these factors in the current
analysis. A more detailed energy estimation will be part of
our future work.

Note that we employ a straightforward linear-based
calculation method for display energy cost in current study,
primarily focusing on screen brightness and display dura-
tion. While our initial methodology lays a foundation for
understanding energy costs, we acknowledge the necessity
of incorporating more sophisticated display energy models
in future research endeavors. A promising direction for
improvement entails integrating models like Active Matrix
OLED (AMOLED), which consider the nuanced luminance
efficiencies of red, green, and blue (RGB) pixel elements [64].
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The separation of display energy costs within our current
paper aims to provide a more nuanced depiction and evalu-
ation. We recognize that energy consumption may not solely
be influenced by rebuffering events but can also be affected
by various factors, including device-specific characteristics.
Hence, the choice to separate display energy costs lays the
groundwork for future enhancements in our methodology.

To optimize CAST performance in a live streaming sce-
nario, it is essential to control buffer occupancy within a
specific range, preventing playback stalls while maintaining
low latency. Additionally, our objective includes delivering
superior playback quality for chunks with high complexity
and effectively constraining data usage under data limita-
tions. To achieve this, we establish the priorities for CAST-
Live as outlined in Algorithm 3. Our primary emphasis is on
minimizing rebuffering time, given its significant impact on
the user’s viewing experience. Following this, we prioritize
constraining data usage, as it is directly associated with user
costs. Subsequently, our focus shifts to enhancing playback
quality for intricate chunks. Additionally, we concentrate
on reducing energy costs and maximizing the playback
quality for simple chunks. Finally, we address controlling
buffer fluctuations around a target buffer length to prevent
prolonged latency. Note that the priority setting is not fixed;
users can adjust the priority based on their preferences.

Throughout the training process, we use the following
parameter values: β is set to 0.01, α, ϵ, and η are set to 1,
while ϑ and κ are both set to 20. The selection of parameter
values, such as κ, is flexible, and assigning values like 1 will
not substantially affect the performance [19].

4.4 Neural Network Structure

We will now delve into the neural network in greater detail,
focusing on its inputs, outputs, and network architecture.

Inputs. CAST takes inputs that fall into three distinct
categories:

Player environment features, denoted as P =
(
c⃗k, b⃗k, et

)
,

include essential information about the player’s environ-
ment. Here, c⃗k represents the network capacity for down-
loading the last k chunks, b⃗k denotes the buffer occupancy
of the last k chunks, and et indicates the quality of the last
chunk. To maintain consistency with previous research [10],
the value of k is set to 8.

Intricate chunk features, denoted as C =
(
Q⃗t, G⃗t, It, Rt

)
,

provide relevant details about the intricate chunks. Specif-
ically, Q⃗t represents the quality of each track for the next
intricate chunk, G⃗t is the size of each track for the next
intricate chunk, It is the index of the next intricate chunk,
and Rt indicates the number of unretrieved intricate chunks
in the video.

Simple chunk features, denoted as S = (q⃗t, g⃗t, rt), encom-
pass pertinent information about the simple chunks. Here,
q⃗t denotes the quality of each track for the next simple
chunk, g⃗t represents the size of each track for the next simple
chunk, and rt indicates the number of unretrieved simple
chunks in the video.

It is crucial to note that the classification of intricate
and simple chunks is based on their size distribution, and
further details regarding the classification methodology can
be found in Section 5.1.

Algorithm 3 Battling Rule for CAST-Live
Input: Agent results for two agents.
Output: Battling outcome denoted as f .

1: function CAST-LIVE RULE(agent results)
2: Calculate the average quality for intricate chunks,

denoted as Cp and Cq , along with the average rebuffer-
ing time represented by Bp and Bq , and the average
buffer utilization denoted by Mp and Mq . Addition-
ally, determine the average quality for simple chunks,
expressed as Sp and Sq , the cumulative data usage
denoted by Up and Uq , and the cumulative energy cost
denoted by Ep and Eq , all based on trajectories Tp and
Tq ;

3: N ← Target Budget; ▷ An adjustable parameter.
4: F ← Target Buffer Length; ▷ An adjustable

parameter.
5: f ← [−1,−1];
6: if |Bp −Bq| < β and |Cp − Cq| < α and
||Mp − F | − |Mq − F || < ϵ and |Sp − Sq| < η and
|Ep − Eq| < ϑ and ||Up −N | − |Uq −N || < κ then

7: f ← [0, 0];
8: return f
9: if |Bp −Bq| < β then

10: if ||Up −N | − |Uq −N || < κ then
11: if |Cp − Cq| < α then
12: if |Ep − Eq| < ϑ then
13: if |Sp − Sq| < ϵ then
14: f [argmin([|Mp − F | , |Mq − F |])]←

1;
15: else
16: f [argmax([Sp, Sq])]← 1;

17: else
18: f [argmin([Ep, Eq])]← 1;

19: else
20: f [argmax([Cp, Cq])]← 1;

21: else
22: f [argmin([|Up −N | , |Uq −N |])]← 1;

23: else
24: f [argmin([Bp, Bq])]← 1;

25: return f

For CAST-DU, we introduce an additional feature
named the used data budget R. This feature is derived
by tracking and recording the data already utilized for
downloading previous chunks. For CAST-Live, we exclude
the inputs It, Rt, and rt as they may not be available in a
live streaming scenario.

Outputs. The output of CAST and CAST-DU is rep-
resented by a v-dimensional vector, indicating the prob-
abilities of selecting each video bitrate under the current
environment. In CAST, CAST-DU, and CAST-Live, we set v
to 6, corresponding to the bitrate levels used in [10].

Network Architecture. In Figure 4, the neural network
utilized in CAST consists of six Conv1D layers with a
feature number of 128 and a kernel size of 4, followed by
four fully connected layers with 128 neurons. For CAST-
DU, we introduce an additional fully connected layer with
128 neurons to accommodate the used data budget as in-
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put. These layers are responsible for extracting the player
environment feature, intricate chunk feature, and simple
chunk feature. The network is then divided into the policy
and value networks by combining these features through a
concatenated layer.

The policy network produces a v-dimensional vector that
represents the probabilities of selecting each bitrate, while
the value network generates a scalar value. In the policy
network, the activation function ReLU is used for each layer,
and softmax is applied to the last layer to obtain the output
probabilities. Meanwhile, the value network employs tanh
as the activation function.
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Fig. 4: Neural network architecture of CAST.

5 EVALUATION

5.1 Methodology
Implementation. The implementation of CAST, CAST-DU,
and CAST-Live is carried out using TensorFlow [49], and
the neural network is constructed using the TFlearn [50]
library. The policy network and value network share the
same network structure and hyperparameters. To achieve
convergence, we set the number of sampled trajectories
D as 16 and the learning rate as 10−4. We leverage eight
parallel agents instead of a single process on a worksta-
tion equipped with an Intel Xeon W-2255 Processor and
an NVIDIA RTX3090 GPU card to expedite the training
process. The training lasts approximately 12 hours, after
which a stable convergence is reached.

Virtual Player. To train CAST and CAST-DU, we employ
a faithful Python-based virtual player with a maximum
buffer size of 60 seconds that accurately simulates the
dynamics of video streaming using network traces and
video information [10], [11]. For training CAST-Live, the
maximum playback buffer is set to 6 seconds [60]. This ap-
proach is more efficient than training on an actual streaming
platform and can significantly reduce the training time.

Network Traces. To assess the performance of CAST and
CAST-DU under various real-world network conditions, we
utilize two widely used public datasets, namely HSDPA
[51] and FCC [52], to generate bandwidth traces. For our
evaluation, we partition the dataset by randomly selecting
80% of the traces for training, while reserving the remaining
20% for testing [10].

To thoroughly evaluate the robustness and generalizabil-
ity of our method in handling unseen network scenarios,
we extend our evaluation to include network traces from
three additional datasets, namely Oboe [59], LTE [58], and
Puffer 2022 [13]. The Oboe dataset comprises measurements
collected from wired, WiFi, and cellular networks, providing
a diverse range of network conditions. The LTE dataset com-
prises throughput measurements captured while mobile
devices streamed video content over LTE networks in China.
The Puffer dataset is sourced from the Puffer platform, and
for this analysis, we have selected traces from the year 2022.

Video Parameters. For our evaluation of CAST and
CAST-DU, we opt for the widely used test video, “Envivo-
Dash3” [5], which is encoded with six different bitrates:
300Kbps, 750Kbps, 1200Kbps, 1850Kbps, 2850Kbps, and
4300Kbps. Each video chunk has a duration of 4 seconds.

For CAST-Live, To assess the performance of CAST-
Live, we opt for the “Big Buck Bunny (BBB)” video, which
is divided into 60 chunks. These chunks are encoded at
bitrates of {263, 791, 1245, 2134, 3079, 4220} Kbps, each with
a duration of 2 seconds.

Chunk Classification. We differentiate video chunks
into intricate and simple categories based on their size
distribution. For this study, we designate the 1850Kbps
bitrate as the reference track and divide the chunks into
four categories, namely Q1-Q4, with Q4 having the largest
chunk size. Chunks falling into Q4 are classified as intricate
chunks, while the remaining chunks belong to the simple
chunk category. Note that the classification method is flexi-
ble, and alternative approaches can also be utilized, such as
dividing the chunks into five categories.

Additionally, for CAST-Live, considering the complexity
of each chunk event, we set the number of intricate chunks
to 15 out of 60 chunks.

Benchmarks. To assess the effectiveness of our pro-
posed CAST algorithm, we have chosen to compare its
performance against several established ABR schemes, en-
compassing both heuristic-based and learning-based ap-
proaches. Specifically, we have selected the following rep-
resentative ABR schemes for evaluation:

(i) FESTIVE [35]: This method utilizes the harmonic
mean of the past five throughput measurements as the
capacity prediction value and selects the highest available
bitrate below the predicted capacity. (ii) BOLA [37]: BOLA
reformulates the adaptive bitrate streaming task as a utility
maximization problem addressed through the Lyapunov
function. (iii) MPC [6]: This hybrid-based approach com-
bines both the rate and buffer signal and chooses the bitrate
by maximizing a linear-based reward function using infor-
mation on estimated throughput and buffer occupancy. (iv)
RobustMPC (RMPC) [6]: Similar to MPC, RobustMPC also
maximizes the linear-based reward function using estimated
throughput and buffer occupancy information. However,
to mitigate the impact of estimation errors, RobustMPC
employs a normalization technique for capacity estima-
tions, which involves dividing the capacity estimations by
the maximum prediction error observed in the past five
chunks. (v) Zwei [16]: Zwei, a state-of-the-art learning-based
method, utilizes self-play reinforcement learning to derive a
bitrate selection policy without relying on any prior envi-
ronmental assumptions. This approach has demonstrated
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substantial improvements in QoE compared to heuristic-
based and learning-based algorithms, such as Comyco [11]
and Pensieve [10]. As a result, we chose to compare our
approach with Zwei and excluded Comyco and Pensieve
due to its superior performance relative to other learning-
based methods.

Furthermore, there is limited work considering chunk
complexity [3], [5], with DAVS [5] being the most state-of-
the-art method that employs imitation learning for training.
To facilitate a clear comparison, we evaluate our scheme
against DAVS separately in Section 5.5.

Evaluation Metrics. In this study, we adopt the Elo rat-
ing system [53], a well-established method for determining
the relative skill levels of players in zero-sum games, as our
evaluation metric. In self-play reinforcement learning, the
Elo score is also an important metric for assessing an agent’s
performance and skill level compared to other agents. It
provides a quantitative measure that ranks agents based
on their performance, thereby helping to identify more
effective strategies that meet users’ actual needs. The Elo
rating system computes a player’s skill level as a numerical
value that changes depending on the outcome of each
game. Specifically, after each game, the winner gains points
from the loser, and the number of points gained or lost is
determined by the difference between the ratings of the two
players [54]. For this experiment, we set the initial Elo score
to 1000, which is consistent with previous studies [16], [17].

QoE Representation. To assess the overall performance
of different ABR schemes, we adopt the following QoE
function. In practice, quality switching is often considered
negligible in most cases and thus omitted in the QoE metric,
as reported in prior studies [16], [45]. Here, V represents
VMAF, T denotes rebuffering time, and φ, ζ , ψ are set as 3,
1, and 100, respectively [55].

QoE =
∑

h∈Intricate

φ ∗ V (Rh) +
∑

h∈Simple

ζ ∗ V (Rh)− ψ
N∑
i=1

Ti.

The inclusion of the QoE function in our evaluation is
solely aimed at providing an assessment using the widely-
used linear-based reward function (recall that our method
is not trained by the reward function). The differentiation
between intricate and simple chunks in the QoE function
is based on their varying impact on users’ viewing expe-
riences. Acknowledging the higher significance of intricate
chunks for viewers, we assign them higher priority, while
simple chunks receive lower priority. The weight configura-
tion is adjustable, and we set their weight ratio to 3:1. Such
settings for the reward-engineering methods encourage the
policy to select higher quality for intricate chunks. This
differential QoE function design choice for intricate and
simple chunks is inspired by insights from [32], [55].

5.2 Elo Score Comparison
We initially employ the Elo rating system to assess the
performance of various ABR methods. As illustrated in
Figure 5, our analysis reveals that CAST surpasses these
ABR benchmarks, showcasing performance enhancements
of 11.9% (Zwei), 19.62% (RobustMPC), 97.93% (MPC),
43.71% (BOLA), and 39.13% (FESTIVE), respectively.

Specifically, the fluctuations in the Elo scores of our
CAST method represent the dynamic evolution of perfor-

mance during the offline training process, reflecting changes
in Elo over training epochs. In contrast, the Elo scores
for other comparative schemes, such as the learning-based
method Zwei, are derived from pre-trained models, reflect-
ing their performance levels. The superiority of CAST can
be attributed to two pivotal factors: (i) its ability to priori-
tize intricate chunks without excessively compromising the
overall quality of all chunks and triggering prolonged re-
buffering time; and (ii) its reliance on well-defined objectives
rather than the fixed-weight linear reward function.
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Fig. 5: Elo rating for different ABR algorithms over the
HSDPA traces.

5.3 CAST vs. Existing ABR Approaches
Figure 6 - Figure 8 offer a comprehensive comparative
analysis of the performance of different ABR schemes con-
cerning intricate/all chunk quality, rebuffering time, and
QoE across the HSDPA and FCC datasets. The evaluation
focused only on CAST trained with the FCC and HSDPA
datasets. Several key insights can be derived from these
findings.

Firstly, in Figure 6(a) and Figure 7(a), CAST consistently
outperforms existing algorithms in terms of the quality of
intricate chunks on both network datasets. The average
quality of intricate chunks achieved by CAST, as depicted in
Figure 8, hovers around 80 for both datasets. This represents
an improvement of up to 32.87% on HSDPA traces and
32.55% on FCC traces compared with existing methods. Ad-
ditionally, compared to the heuristic MPC and RobustMPC,
our method enhances the average playback quality for intri-
cate chunks by 14.9% and 18.66%, respectively, over the FCC
traces. These results affirm the efficacy of prioritizing the op-
timization of intricate chunk quality as a primary objective.
Additionally, according to [61], a VMAF score exceeding
80 corresponds to good quality, further validating CAST’s
ability to provide superior quality for intricate chunks.

Secondly, as depicted in Figure 6(b) and Figure 7(b), the
overall quality of all chunks produced by CAST remains
comparable to existing methods. Additionally, we also con-
duct a comparison of the quality of simple chunks in CAST
with those of existing methods. For example, in the HSDPA
dataset, the quality of simple chunks in CAST is on par with
the state-of-the-art learning-based method, Zwei, with no
more than a difference of 6 on VMAF. Such a difference is
not easily perceivable by users, as a VMAF difference of 6
or higher is considered noticeable to viewers [62].

Thirdly, from Figure 6(c) and Figure 7(c), we observe that
CAST effectively minimizes rebuffering time. Notably, in the
HSDPA dataset, CAST achieves zero rebuffering time in 69%
of the traces, and this figure rises to 86% for the FCC dataset.
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Fig. 6: Performance comparison of CAST vs. existing algorithms over the HSDPA dataset.
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Fig. 7: Performance comparison of CAST vs. existing algorithms over the FCC dataset.
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Fig. 8: Average value of CAST vs. existing algorithms over the HSDPA and FCC datasets.

When compared to the heuristic MPC and RobustMPC, our
method decreases rebuffering time by 188.23% and 20.41%,
respectively, over the FCC traces. On average, CAST reduces
rebuffering time by up to 486.14% on the HSDPA dataset
and 188.27% on the FCC dataset compared with existing
approaches. This underscores CAST’s capability to deliver
a seamless viewing experience by substantially mitigating
playback interruptions.

Lastly, CAST persistently achieves the highest QoE com-
pared with existing methods (Figure 6(d) and Figure 7(d)).
On average, CAST improves the average QoE by 7.45%
to 22.41% and 4.74% to 19.89% over the HSDPA and FCC
traces, respectively, validating its remarkable effectiveness.

5.4 Performance under Different Settings

5.4.1 Different Network Environments
In the previous experiments, CAST was trained and eval-
uated on the HSDPA and FCC datasets. However, in real-
world scenarios, CAST might encounter various network
conditions. To assess the generalization capability of CAST,
we conducted tests on three additional datasets: LTE [58],
Oboe [59], and Puffer 2022 [13]. The results are presented in
Figure 9 - Figure 12.

As depicted in Figure 9(a), Figure 10(a) and Figure
11(a), we observe that CAST’s ability to enhance the qual-
ity of intricate chunks remains optimal even under new

network conditions, resulting in improvements of up to
16.08%, 13.32% and 21.08% across the LTE, Oboe, and Puffer
2022 datasets, respectively (Figure 12). Furthermore, CAST
demonstrates similar overall quality for all chunks and ex-
hibits low rebuffering time. As indicated in Figure 9(c), the
rebuffering time for CAST is 0 in all traces. Overall, CAST
achieves the highest QoE in both LTE and Oboe traces,
surpassing existing methods by 1.9%-8.14%, 1.13%-8.11%,
and 3.63%-22.93% in the LTE, Oboe, and Puffer 2022 traces,
respectively, validating its effectiveness and robustness.

5.4.2 Different Player Settings
Here, we perform a sensitivity analysis of CAST using
HSDPA traces by altering player configurations and varying
the maximum buffer size to 30 seconds. The results, de-
picted in Figure 13, demonstrate the consistent superiority
of CAST. Specifically, it excels in maintaining the quality
for intricate chunks (as shown in Figure 13(a)), displaying
improvements ranging from 15.93% to 33.64%. Furthermore,
CAST effectively minimizes rebuffering time, as evidenced
by 73% of traces achieving a zero rebuffering time. Overall,
CAST stands out by delivering the highest QoE.

5.5 CAST vs. Complexity-aware scheme DAVS

Figures 14 and 15 depict the performance of CAST and
DAVS. As observed in Figures 14(a) and 15(a), CAST
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Fig. 9: Performance comparison of CAST vs. existing algorithms over the LTE dataset.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Average Quality

 FESTIVE

 BOLA

 MPC

 RMPC

 Zwei

 CAST

(a) Average Quality (Intricate
Chunks).

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Average Quality

 FESTIVE

 BOLA

 MPC

 RMPC

 Zwei

 CAST

(b) Average Quality (All Chunks).

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Average Rebuffering Time (s)

 FESTIVE

 BOLA

 MPC

 RMPC

 Zwei

 CAST

(c) Average Rebuffering Time.

0 40 80 120 160
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Average QoE

 FESTIVE

 BOLA

 MPC

 RMPC

 Zwei

 CAST

(d) Average QoE.

Fig. 10: Performance comparison of CAST vs. existing algorithms over the Oboe dataset.
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Fig. 11: Performance comparison of CAST vs. existing algorithms over the Puffer 2022 dataset.
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Fig. 12: Average value of CAST vs. existing algorithms over the LTE, Oboe, and Puffer 2022 datasets.
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Fig. 13: CAST vs. existing algorithms over the HSDPA
dataset with a different buffer size setting (30 seconds).

achieves higher playback quality for intricate chunks and
lower rebuffering time compared to DAVS. This improve-
ment is primarily attributed to DAVS relying on imitation
learning with guidance from MPC. However, MPC’s bitrate
selection depends on a fixed-weighted linear QoE function
without explicit buffer occupancy control, resulting in more
rebuffering events. In contrast, CAST prioritizes the met-
rics of rebuffering time and playback quality for intricate
chunks, leading to superior performance. Overall, as shown
in Figures 14(b) and 15(b), CAST enhances the average
QoE by 4.97% and 16.5% over the HSDPA and FCC traces,
respectively, compared to DAVS.
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Fig. 14: CAST vs. DAVS over the HSDPA dataset.
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Fig. 15: CAST vs. DAVS over the FCC dataset.

5.6 CAST with Different Chunk Classification Methods
Here, we categorize video chunks into three and five groups
based on their sizes. In the three-category classification (Q1-
Q3), chunks in Q3 are considered intricate, while the rest
are deemed simple. For the five-category classification (Q1-
Q5), chunks in Q5 are labeled intricate, with the remaining
chunks labeled simple. Figure 16 illustrates the performance
of our method and the compared baselines under different
category methods using both the HSDPA and Puffer 2022
traces. The results of each metric are standardized based on
the outcomes of CAST. We observe that our method main-
tains high playback quality for intricate chunks across differ-
ent category methods. For instance, when categorizing into
five groups, our method improves the quality for intricate
chunks by up to 15.18% according to the Puffer 2022 traces.
Additionally, our method achieves low rebuffering times
across various network traces and classification approaches.
Overall, our method enhances the viewing experience by up
to 20.76% across the HSDPA dataset when divided into five
categories.
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Fig. 16: Average value of CAST vs. existing algorithms over
different classification methods.

5.7 CAST with Quality Switching
We integrate quality switching considerations into the train-
ing rule by establishing a priority order as follows: 1)
minimizing rebuffering time, 2) maximizing quality for
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intricate chunks, 3) maximizing quality for simple chunks,
and 4) minimizing the quality switching between two con-
secutive chunks. The evaluation function is defined as:
QoEswitch =

∑
h∈Intricate

φ ∗ V (Rh) +
∑

h∈Simple
ζ ∗ V (Rh) −

ψ
N∑
i=1

Ti − ω
N∑
i=2
|Ri+1 −Ri|, where φ, ζ , ψ, and ω are set as

3, 1, 100, and 1, respectively.
As depicted in Figure 17, the integration of quality

switching considerations in CAST-Switch leads to a substan-
tial reduction in the frequency of quality switches compared
with the conventional CAST approach, with decreases of
74.57% and 77.39% observed in the HSDPA and FCC traces,
respectively. CAST-Switch also exhibits significantly smaller
quality fluctuations compared to BOLA, with a reduction
of 32.49% observed in HSDPA traces (figures omitted). More-
over, when assessing the QoE improvement, CAST-Switch
exhibits enhancements of 14.06% and 17.85% for the HSDPA
and FCC traces, respectively.
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Fig. 17: Comparative performance analysis of CAST with
and without quality switching.

Here, we demonstrate how integrating bitrate switching
into the training rule can mitigate quality fluctuations. In
this analysis, bitrate switching was assigned the lowest
priority. However, prioritizing bitrate switching can further
reduce its impact. By assigning it a higher priority, we can
tailor the algorithm to accommodate different user prefer-
ences, effectively meeting the needs of users who prioritize
bitrate switching.

5.8 CAST-DU vs. Existing ABR Schemes

In this section, we assess the performance of CAST-DU
under a data budget constraint. Specifically, we choose the
2850Kbps bitrate as the reference track and set the data
budget scale factor γ to 0.7. This implies that the data budget
is calculated as 70% of the cumulative size of all chunks
within the reference track. Note that other values of γ can also
be considered for analysis. For instance, we also set γ to 1.4, and
CAST-DU continues to exhibit superior performance.

Figure 18 depicts the Elo scores of various ABR algo-
rithms when factoring in the data budget. We note that
CAST-DU achieves the highest Elo score among the com-
pared benchmarks, showing improvements ranging from
6.32% to 103.11%.
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Fig. 18: Elo rating for different ABR algorithms over the
HSDPA traces considering the data budget.

Next, we examine the correlation between playback
quality and data usage across the HSDPA dataset. As
demonstrated in Figure 19, the data usage of CAST-DU
remains within the constrained data budget for all traces,
thereby affirming the successful integration of data budget
considerations. Furthermore, the average QoE of CAST-
DU is also comparable to the compared baselines, such
as Zwei and RMPC, hovering around 94 (figure omitted),
underscoring the efficacy of CAST-DU in ensuring a sat-
isfying viewing experience while achieving data savings.
Additionally, since DAVS also does not consider data usage,
it easily exceeds the designated data budget, making it less
effective compared to CAST-DU (figure omitted).
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Fig. 19: Data usage for different ABR algorithms over the
HSDPA traces.

Recalling the details provided in Section 3.2, there exist
some data-capped methods to constrain data usage. Here,
we also apply the data-capped approach to vanilla CAST,
MPC and Zwei, and subsequently compare their results to
those of CAST-DU. As depicted in Figure 20, the analysis
reveals that while the data usage of MPC-Capped, Zwei-
Capped, and CAST-Capped stays within the prescribed data
budget, these strategies tend to exhibit suboptimal band-
width utilization. In contrast, CAST-DU efficiently narrows
the disparity between data usage and the target budget.
Furthermore, we calculate and normalize the gap between
data usage and the target budget for each trace, using
CAST-DU as the reference. The results tabulated in Table
2 indicate that the gap observed in MPC-Capped, Zwei-
Capped and CAST-Capped is larger compared with CAST-
DU, thus validating the bandwidth efficiency superiority of
CAST-DU over these capped alternatives.
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Fig. 20: Data usage for different capped ABR algorithms
over the HSDPA traces.
TABLE 2: Discrepancy in data usage among various adapta-
tion approaches.

Scheme Data Usage Gap

CAST-DU 1
CAST-Capped 1.07
MPC-Capped 1.03
Zwei-Capped 1.06

5.8.1 Diverse Scenarios: Different Network Environments
We vary the network environment to assess its influence
on the data budget, utilizing both the FCC dataset [52]
and the Puffer 2022 dataset [13]. In Figure 21, we present
the data usage comparison across different ABR algorithms.
Notably, CAST-DU consistently keeps the data usage below
the specified data budget. Even when exposed to the un-
familiar Puffer 2022 trace, CAST-DU exhibits robustness in
effectively managing data usage.
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(a) FCC.
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(b) Puffer 2022.

Fig. 21: Data usage for different ABR algorithms over differ-
ent traces.

5.8.2 Diverse Scenarios: Different Videos and Data Us-
ages
To enhance the effectiveness and robustness of CAST-DU,
we conduct training on multiple video datasets [66]. Specifi-
cally, we select six bitrates: {375, 750, 1050, 1750, 2350, 4300}
kbps, with each chunk encoded at a duration of 4 seconds.
The 2350 kbps bitrate serves as the reference track, and the
data budget for each video is determined as 70% of the

cumulative size of all chunks within the reference track. The
remaining settings align with CAST. We randomly allocate
80% of the video traces for training and reserve the remain-
ing 20% for testing. Figure 22 depicts the performance of
CAST-DU across the Puffer 2022 traces, showcasing results
on a randomly selected test video from the music category.
We observe that on both network traces, when the network
bandwidth is sufficient, the data usage of our CAST-DU is
always close to the predefined data usage. The low data
usage of all algorithms indicates a low network bandwidth.
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(a) HSDPA.
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Fig. 22: Data usage for different ABR algorithms over differ-
ent traces with the music video.

5.8.3 Diverse Scenarios: Comparison with PSWA
Furthermore, we applied PSWA to MPC and conducted a
performance comparison with CAST-DU using the Puffer
2022 traces. Figure 23 illustrates the data usage of MPC-
PSWA and CAST-DU. Our observation indicates that CAST-
DU consistently maintains the actual data usage close to
and below the designated data budget, whereas MPC-PSWA
does not achieve the same level of control, resulting in data
usage either falling too low or rising too high.
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Fig. 23: Data usage comparison of CAST-DU and MPC-
PSWA on the Puffer 2022 traces.

5.9 CAST-Live vs. Exsiting ABR Schemes

For CAST-Live, the target data usage value is set to 70%
of the accumulated size of the reference track [18], which
we have chosen as 3079 Kbps. Figure 24 illustrates the
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TABLE 3: Subjective tests from 20 real users via watching an online video with different ABR schemes.
Questions Disagree Neutral Agree

CAST provides you the optimal viewing experience. 2 2 16
CAST delivers a good overall playback quality. 1 2 17

CAST offers you a satisfactory quality for chunks with intricate scenes. 0 1 19
CAST incurs few playback freezing events. 1 4 15

performance of various ABR algorithms in the live stream-
ing scenario. As depicted in Figure 24(a), presenting the
average value of each metric normalized to the results of
CAST-Live, we observe that CAST-Live achieves the highest
playback quality compared to the benchmarks. Moreover,
CAST-Live sustains commendable overall playback quality
and demonstrates low rebuffering time, showcasing its abil-
ity to maintain a good playback buffer level even under
limited buffer settings. Through evaluation, we note that
our method keeps the average buffer occupancy around 3
seconds, which is smaller than that of the compared base-
lines (all around 5 seconds), resulting in reduced latency.
Additionally, the energy cost of CAST-Live is significantly
lower than that of MPC and RMPC. Zwei also achieves a
low energy cost, but this comes at the expense of lower
playback quality. Figure 24(b) illustrates the data usage
of different methods, revealing that CAST-Live effectively
constrains data usage close to the designated data budget,
avoiding additional costs for users’ mobile data in practical
scenarios.
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Fig. 24: Performance evaluation of ABR algorithms in live
streaming scenarios using HSDPA traces.
5.10 Subjective Tests from Real Users
To assess the practical performance of CAST, we establish
a testbed configuration comprising a client player utilizing
Dash.js [63], an ABR server, and a content server responsi-
ble for hosting video content. To alleviate the computational
load on the video client [10], CAST is implemented on the
local ABR server. To evaluate the real-world effectiveness
of various ABR schemes, we enlist the participation of 20
volunteers to watch an online video within an HSDPA
network environment.

Given the complexity of capturing viewers’ subjective
experiences, we employ a questionnaire-based approach,
asking participants to rate their responses rather than as-
signing quantitative scores to overall viewing quality [21],

[65]. The questionnaire outcomes are summarized in Table
3. The subjective evaluation data analysis demonstrates that
CAST contributes to an enjoyable viewing experience, as
endorsed by 16 out of 20 volunteers. Furthermore, 19 out of
20 volunteers agree with CAST’s capability to deliver sat-
isfactory quality for intricate video chunks. These findings
affirm the practical effectiveness of CAST.

6 FUTURE WORK

Similar to many existing ABR algorithms such as [9], [20],
[21], [27], [67], [68], our paper focuses on application-
layer bitrate selection. In practical application scenarios, the
model can be deployed at the client side, usually with only
one player per client. In this way, each client can indepen-
dently make decisions based on the model according to its
perceived network conditions and player states. Thus, our
approach supports multi-user scenarios. However, ensuring
fairness in QoE among multiple clients is also an important
area in the video streaming domain [69], [70]. Addressing
the challenges of QoE fairness across diverse clients is a
key direction for our future research. We aim to enhance
the adaptability of our algorithm in various multi-client
scenarios by integrating sub-layer information. Specifically,
we plan to utilize data from the transport layer to inform
bitrate selection for clients sharing a common bottleneck
link, ultimately achieving a high level of fairness in QoE.

7 CONCLUSIONS

This paper introduces CAST, a novel self-play reinforcement
learning-based bitrate adaptation solution that considers
scene complexity. Additionally, we present CAST-DU, a
variant that incorporates data budget constraints into the
adaptation process. Moreover, we introduce CAST-Live to
enable our method to attain good performance under live
streaming scenarios with tight buffer lengths, considering
energy costs. Through explicit goal-oriented training, our
methods effectively meet specific system requirements. Ex-
perimental evaluations highlight CAST’s superiority over
existing ABR methods in terms of quality for intricate
chunks across diverse network conditions. Furthermore,
CAST maintains comparable average quality for all chunks
as prior methods while minimizing rebuffering incidents.
Meanwhile, CAST-DU successfully constrains data usage
within budget limitations while maintaining satisfactory
QoE. Moreover, CAST-Live maintains robustness under
tight buffer sizes while achieving low energy costs.
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