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Abstract

The current and future stability of the Antarctic ice sheet under rising global

temperatures is critical to understand with wide-ranging implications, such as

influencing ocean currents and having a significant contribution to global sea level

rise. Sea level rise results in submergence of land as well as more regular and intense

flooding, leading to wide-spread displacement of communities and collapse of coastal

ecosystems. Climate models provide invaluable, spatiotemporally comprehensive

estimates of past, current and future climatology that are integral for predictions

of the stability of the Antarctic ice sheet - impact studies utilise the climate model

product to predict events such as ice shelf collapse. Confidence in the findings of

impact studies are partially limited though due to systematic errors in the climate

model output that are difficult to quantify adequately across the ice sheet.

The first aim of this thesis is to fill a gap in the literature by providing a

thorough examination of systematic errors in state-of-the-art regional climate model

simulations over Antarctica with a focus on: how the errors vary spatially across the

ice sheet; the different sources of errors and their relative contributions; errors across

different temporal scales; and errors in variables important for prediction of ice shelf

collapse events, including snowfall, snow melt and near-surface air temperature.

Following on from this, the second aim of the thesis is to develope a novel approach

for bias correction that is specifically designed for the requirements of correcting

climate model output over Antarctica. The bias correction methodology is developed

with and tested against several simulated data examples and then subsequently with
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the real-world case study of correcting near-surface air temperature climate model

output over the ice sheet using automatic weather station records. Throughout the

thesis several statistical techniques are applied for the first time in this specific area

of application, including techniques such as seasonal and trend decomposition using

LOESS, Gaussian process regression and hierarchical Bayesian modelling. Utilising

these techniques provides useful advantages over previous studies in the literature,

including: presenting systematic errors at different temporal scales; explicitly

modelling underlying spatial covariance patterns in the data and in systematic

errors; and robustly estimating uncertainty in bias corrected climate model output.
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Chapter 1

Introduction

1.1 Thesis Structure

The focus of this thesis is to study differences in climate model outputs for snowfall,

near-surface air temperature and melt over Antarctica, as well as developing a

technique for correcting systematic errors using sparse in situ observations. The

thesis is written in the style of a collection of papers, with chapters 2, 3 and 4 each

comprising a full paper’s worth of work. These primary chapters are all clearly

linked, with a logical flow throughout the body of work and with each subsequent

chapter being informed from the previous chapter’s results. While each primary

chapter contains a detailed and specific introduction to the corresponding piece of

work, chapter 1 provides an overarching introduction, which motivates the body of

work as a whole and highlights links between the papers. An overarching conclusion

is provided in chapter 5 with future directions discussed in chapter 6.

1.2 Background

Climate models are invaluable tools for climate change impact studies (CCIS),

such as those contained within the international panel for climate change (IPCC)

assessment reports, which are of key importance to society for understanding,
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Chapter 1. Introduction

mitigating and adapting to the effects of climate change (Pörtner et al., 2022).

The models are underpinned by fundamental laws of atmospheric, ocean and land

surface physics - providing skilful, comprehensive and physically realistic estimates

of past, present and future climatology (Flato et al., 2013). Continual improvements

in the models are made through for example incorporating advancements in process

understanding and increasing the spatial resolution as computational capacity grows

(Gutowski et al., 2020). Despite this, significant systematic model errors remain

that impede direct interpretation of the results (Ehret et al., 2012) and that require

thorough analysis to understand the impact on studies utilising the product (Giorgi,

2019). Climate model intercomparison projects, such as the coordinated regional

downscaling experiment (CORDEX) (Gutowski Jr. et al., 2016), provide large

ensembles of model outputs with consistent initialisation specifications that enable

characterisation of systematic errors (Vautard et al., 2021). Within this context, this

thesis aims to explore systematic errors across climate models for the specific case

of estimating past and current Antarctic surface climatology. Particular attention is

given to evaluating the regional dependency of systematic errors over the ice sheet

and on further developing current post-processing bias correction techniques that

explicitly incorporate spatial covariance.

Accurate estimates of surface climatology over Antarctica are essential for

improving process understanding of events such as ice shelf collapse (Kuipers

Munneke et al., 2014) and for assessing the current and future stability of the

Antarctic ice sheet (Martin et al., 2019; E. Gilbert and C. Kittel, 2021). The

stability of the ice sheet, often expressed in terms of the mass balance, has important

implications for sea level rise (SLR) estimates (Kopp et al., 2017), which will threaten

coastal regions through factors such as: submergence of land; more regular and

intense flooding; increased rates of erosion; collapse of ecosystems; salinisation of

land and water sources as well as reduced drainage (Oppenheimer et al., 2022).

Non-linear responses of the ice sheet, potentially sensitive to small changes in the

estimated surface climatology, could result in as much as 1 m of SLR by 2100 (R. M.
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1.2. Background

DeConto and Pollard, 2016), which in turn could result in hundreds of millions of

people being displaced (Nicholls et al., 2011). Systematic errors in estimates of

surface climatology propagate into these ice-sheet process studies and SLR estimates,

being a major source of uncertainty (Verjans et al., 2021).

Weather station data on Antarctica is sparse (Yetang Wang et al., 2023) and so

reliance is typically placed on climate models to accurately recreate high-resolution,

widespread and comprehensive climatology estimates. A collection of state-of-the-

art regional climate model (RCM) output for Antarctica, both in terms of model

physics and resolution, has recently become available through the international

Antarctic-CORDEX collaboration (Gutowski Jr. et al., 2016). Mottram et al.,

2021 provides the first inter-comparison of these outputs, showing significant global

systematic differences between outputs and focusing on the variable of surface

mass balance (SMB). While SMB is useful, understanding processes such as ice

shelf collapse additionally requires estimates of the components of mass change,

including snowfall and snowmelt (Kuipers Munneke et al., 2014). Also of key

importance is understanding how the systematic differences vary spatially across

the ice sheet. Chapter 2 of this thesis aims to explore these aspects, quantifying

systematic differences spatially across the ice sheet for the variables of snowfall,

snow melt and near-surface air temperature (an important driver of melt). The

importance of simulation features including atmospheric model dynamics, surface

schemes, parametrisations, driving data, boundary conditions, domain specification,

resolution and orography on systematic differences between model outputs is

discussed.

Modelling all the interdependent physical processes in the climate system along

with the requirement for high-resolution spatiotemporal grids make climate models

computationally demanding (Washington et al., 2008) and difficult to tune to

improve specific systematic errors. This points at the usefulness of statistical

approaches for correcting systematic errors. Post-processing, bias correction

techniques aim to improve the correspondence of the model output with observations

3



Chapter 1. Introduction

and with our understanding of the natural world (Ehret et al., 2012). Approaches

allow end users to apply corrections to the fields most relevant to their specific area

of research, providing significant added value to existing climate model simulation

outputs. Typical steps in bias correction involve: selecting in situ observational data

and applying quality checks, filtering outliers; interpolating the observational data

onto the climate model grid or averaging observations over grid cells; applying some

form of transfer function onto the climate model output timeseries at each grid cell

independently to align some metric of the marginal distribution with observations

(e.g. aligning the means through adding a constant to the climate model timeseries).

While convenient, bias correction techniques typically lack physical justification,

don’t explicitly consider spatial covariance between points or uncertainty in the

correction applied (Ehret et al., 2012). This is particularly important over regions

such as Antarctica where observations are extremely sparse and uncertainty in any

form of interpolation of the observations across the ice sheet is significant. In Lima

et al., 2021 a Bayesian approach to bias correction is formulated that captures

uncertainty when interpolating observations through modelling the underlying latent

field as generated from a Gaussian process (GP), which explicitly considers spatial

covariance between points. This approach is developed further in Chapter 3 and

extended to consider shared latent generating processes between the observations

and climate model output. This novel approach captures the physically realistic

covariance structure produced by the climate model and essentially utilises the

climate data and observations in predictions of the underlying unbiased fields.

Examples are synthetically generated to demonstrate the advantage of this novel

approach and to explore under what scenarios it provides the most added value.

This novel bias correction approach, while applicable to many different impact

studies utilising climate data, is developed specifically for the use case of correcting

climate data over Antarctica where observations are sparse. To this end, automatic

weather station (AWS) output over the ice sheet, collated in the recent Yetang Wang

et al., 2023 study, is utilised along with RCM output from the Antarctic-CORDEX
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1.2. Background

initiative to apply the bias correction methodology to correcting real-world near-

surface air temperature estimates. Chapter 4 explores the results, providing an

initial understanding of the effectiveness in real-world instances and the remaining

limitations of the methodology as well as future development opportunities.
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Chapter 2

Variability in Antarctic Surface

Climatology Across Regional

Climate Models and Reanalysis

Datasets

Regional climate models (RCMs) and reanalysis datasets provide valuable infor-

mation for assessing the vulnerability of ice shelves to collapse over Antarctica,

which is important for future global sea level rise estimates. Within this context,

this paper examines variability in snowfall, near-surface air temperature and melt

across products from the MetUM, RACMO and MAR RCMs, as well as the ERA-

Interim and ERA5 reanalysis datasets. Seasonal and Trend decomposition using

Loess (STL) is applied to split the monthly time series at each model grid-cell into

trend, seasonal and residual components. Significant, systematic differences between

outputs are shown for all variables in the mean and seasonal/monthly standard

deviations, occurring at both large and fine spatial scales across Antarctica. Results

imply that differences in the atmospheric dynamics, parametrisation, tuning and

surface schemes between models together contribute more significantly to large-scale

variability than differences in the driving data, resolution, domain specification, ice
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2.1. Introduction

sheet mask, digital elevation model and boundary conditions. Despite significant

systematic differences, high temporal correlations are found for snowfall and near-

surface air temperature across all products at fine spatial scales. For melt, only

moderate correlation exists at fine spatial scales between different RCMs and low

correlation between RCM and reanalysis outputs. Root mean square deviations

(RMSDs) between all outputs in the monthly time series for each variable are

shown to be significant at fine spatial scales relative to the magnitude of annual

deviations. Correcting for systematic differences results in significant reductions

of RMSDs, suggesting the importance of observations and further development of

bias-correction techniques.

2.1 Introduction

The largest source of uncertainty in 2100 Sea Level Rise (SLR) projections, for a

given Representative Concentration Pathway (RCP), is from the contribution of ice

sheets (Kopp et al., 2017). Non-linear instabilities in the Greenland and Antarctic

ice sheets give long tails to their SLR probability projections. For example, under

RCP 8.5 the median SLR from Antarctica is projected to be of the order of 20

cm, while the 95th percentile is six times higher, at 130 cm (Jonathan L. Bamber

et al., 2019). The Antarctic continent is fringed by ice shelves, which act like ‘ice

dams’, slowing down the flow of inland ice towards the sea (Rignot et al., 2004;

T. A. Scambos et al., 2004). The stability of the ice shelves under a warming

climate strongly determines the rate of SLR from Antarctica and it is, in part, the

difficulty of modelling their complex physical dynamics, leading to retreat/collapse,

that results in the large uncertainty in estimates of future SLR (Bulthuis et al.,

2019).

The primary method of ice shelf retreat, when considered across the entire ice

sheet, is currently through oceanic basal melting (Pritchard et al., 2012; Paolo et al.,

2015), although notable exceptions are recent and dramatic collapse events, such as
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the disintegration of the Larsen B ice shelf in 2002, which are linked to anomalous

atmospheric conditions through the process of melt-induced hydrofracture (Ted A.

Scambos et al., 2000; M. v. d. Broeke, 2005; Bell et al., 2018). Anomalously high

near-surface air temperatures (leading to enhanced melt events), as well as low

accumulation (leading to reduced pore space of surface snow), result in greater

lateral propagation of melt water into crevasses across the ice shelf, which then

deepen due to increased hydrostatic pressure (Kuipers Munneke et al., 2014). This

process reduces the structural integrity of the ice shelf and, in addition to fractures

created through supraglacial lake filling and drainage, can eventually lead to collapse

(Banwell et al., 2013; Kuipers Munneke et al., 2014). Recent ice sheet modelling

studies indicate the critical importance of atmosphere-driven hydrofracture events

in distant-past SLR variation (Pollard et al., 2015) and near-future 2100-2300

SLR estimates, particularly under high-emission scenarios (R. DeConto et al.,

2021). Comprehensive spatiotemporal estimates of near-surface air temperature

over Antarctica, as well as the accumulation of snowfall and quantity of melt water,

are thus important for SLR predictions and are typically provided by RCMs (Jan

Melchior van Wessem et al., 2018; Agosta et al., 2019; Mottram et al., 2021).

RCMs are limited-area, physically-based, nested models driven at the boundaries

by lower-resolution Global Climate Models (GCMs) or reanalysis datasets. The

high-resolution available from RCMs is important for capturing fine-scale climatic

processes in regions of complex topography, such as föhn winds that occur over

ice shelves on the Antarctic Peninsula (Luckman et al., 2014). The region-specific

domain enables the set-up and physical schemes of the RCM to be polar optimised

(Orr et al., 2021). In addition, further added-value of RCMs is provided through

inclusion of region-specific, sophisticated, surface and sub-surface schemes that

capture processes such as melt water percolation (Ettema et al., 2010; Datta et

al., 2019; Walters et al., 2019). Despite these features, RCMs still exhibit significant

systematic errors precluding their direct interpretation in Climate Change Impact

Studies (CCIS) (Christensen et al., 2008; Ehret et al., 2012).
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2.1. Introduction

The atmospheric model dynamics, surface scheme, parametrisation, driving

data, boundary conditions, domain, resolution and orography are all examples of

components that contribute to systematic error (Ehret et al., 2012; Giorgi, 2019;

Mottram et al., 2021). This paper examines the magnitude and spatial distribution

of systematic differences in an ensemble of RCM simulations for Antarctic-wide,

1980-2018 estimates of snowfall, near-surface air temperature and melt water.

The relative contribution from different components of the simulations, such as

the atmospheric model physics, are discussed. Comparisons of Antarctic-wide

RCM simulations of recent-historic surface climatology are present in the literature

(Mottram et al., 2021; Jan Melchior van Wessem et al., 2018; Agosta et al., 2019),

although the focus is predominantly on Surface Mass Balance (SMB). Surface melt

flux, when integrated over the Antarctic ice sheet, only represents a small fraction of

the total SMB, which is determined predominantly by the flux of snowfall (Lenaerts

et al., 2012; Agosta et al., 2019). This paper provides the first inter-comparison

of recent-historic Antarctic-wide RCM simulations framed within the context of ice

shelf instability and collapse events, giving specific focus to variability in near-surface

air temperature, snowfall and melt water.

Six Antarctic-wide RCM simulations are compared, two from each of the

Met Office Unified Model version 11.1 (MetUMv11.1), the Modèle Atmosphérique

Régional version 3.10 (MARv3.10) and the Regional Atmospheric Climate Model

version 2.3p2 (RACMOv2.3p2). Comparisons are also made to the reanalysis driving

data of ERA-Interim and ERA5. The resulting eight Antarctic-wide datasets

analysed in this paper are given in Table 2.1. MARv3.10 and RACMOv2.3p2

are both hydrostatic models specifically developed for use over polar regions and

their output from Antarctic-wide simulations have been rigorously compared to one-

another and against observations (Lenaerts et al., 2012; Jan Melchior van Wessem

et al., 2018; Agosta et al., 2019). The MetUMv11.1 is not specifically developed with

a focus on the polar regions, although it is a non-hydrostatic model meaning it can

be run at and simulate atmospheric circulation features at sub-kilometer resolutions
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(Orr et al., 2021), whereas MAR and RACMO are limited to maximum resolutions

of 5-10 km horizontal grid spacing (J. M. van Wessem et al., 2016; Datta et al.,

2019). Another feature of particular note in the MetUM simulations is that a ‘zero-

layer’ surface scheme is used, which has been identified as a major deficiency in

simulations compared with the multi-layer schemes included in MAR and RACMO

due to impacts such as that on heat transfer and not representing the insulating

properties of the column of snow (Slater et al., 2017; Walters et al., 2019). It is

therefore expected that the MetUM, as well as the reanalysis datasets ERA-Interim

and ERA5 that both use a single tile to represent snow, will produce much less

physically realistic evaluations of melt than MAR and RACMO. Further details on

key differences in the model specifications for the simulations analysed in this paper

are presented in section 2.

Historic, evaluation simulations are chosen to remove dependency on emission

scenarios, which have been shown to introduce divergent trajectories of variables

such as melt (Trusel et al., 2015; E. Gilbert and C. Kittel, 2021; Christoph Kittel

et al., 2021). Comparisons to observations are not included due to the sparse nature

of observations available over Antarctica. Papers including observations typically

require comparisons to be made across elevation bins (Mottram et al., 2021; Jan

Melchior van Wessem et al., 2018; Agosta et al., 2019). In this paper comparisons

are made at a 12 km grid-cell level and it is shown that variability between

the simulations has greater dependency on the (latitude, longitude) location than

elevation. To study the temporal dependence of variability time series decomposition

is applied, separating the signal at each location into an annual, seasonal and residual

component. These components are driven by different physical processes and the

previous inter-comparison papers cited have not focused on examining variability

at different temporal scales. Finally, despite the primary motivation for this paper

focusing on surface climatology over ice shelves, the analysis is extended to the whole

Antarctic ice sheet and surrounding Southern Ocean. This is done to aid discussion,

as surface climatology over the ice shelves is influenced by the behaviour of the
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RCM/Reanalysis Dataset Domain Driving Data Time Period of Forcing [hours] H.Resolution [km] Label

ERA-Interim Global - - 79 ERAI

ERA5 Global - - 31 ERA5

MetUMv11.1 Antarctica ERA-Interim 12 12 MetUM(011)

MetUMv11.1 Antarctica ERA-Interim 12 49 MetUM(044)

MARv3.10 Antarctica ERA-Interim 6 35 MAR(ERAI)

MARv3.10 Antarctica ERA5 6 35 MAR(ERA5)

RACMOv2.3p2 Antarctica ERA-Interim 6 27 RACMO(ERAI)

RACMOv2.3p2 Antarctica ERA5 3 27 RACMO(ERA5)

Table 2.1: The two reanalysis datasets and six RCM simulation outputs compared

in the paper. The label with which each simulation is referred to in the paper is

given.

models over the rest of the domain, and extending the analysis provides insights

useful for studies not only focused on ice shelves, thus increasing the scope of the

work.

2.2 Reanalysis Datasets and RCMs Specifications

The ensemble of Antarctic-wide RCM simulations examined in this paper are

part of the Coordinated Regional Climate Downscaling Experiment (CORDEX:

https://cordex.org/), which is a global project that provides coordinated sets

of RCM simulations worldwide. The model specifications for each of the RCM

simulations in the chosen ensemble, as well as for the ERA-Interim and ERA5

reanalysis products, are detailed here. There are significant differences, with some

of the key aspects being the following: different atmospheric dynamics components;

different surface schemes; differences in the vertical and horizontal resolutions,

with particular interest on the performance of the high-resolution 12 km MetUM

simulation against the low-resolution 49 km MetUM simulation; differences in the

driving data, with particular interest on the two RACMO and two MAR simulations

that are otherwise identical; and differences in the Digital Elevation Models (DEMs)

11
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and masks used by each model, with MAR and RACMO using comparatively similar

DEMs, while the MetUM uses a DEM similar to that of ERA5 (Fig. A.5).

2.2.1 ERA-Interim and ERA5

ERA-Interim, produced by the European Centre for Medium-Range Weather

Forecasts (ECMWF), is a global reanalysis dataset spanning 1979-2019 with 6-

hourly temporal resolution and approximately uniform horizontal resolution of

79 km spacing and 60 vertical levels up to 10 Pa (Dee et al., 2011). Era-

Interim was world leading and is included as the specified driving data in the base

criteria for the CORDEX simulations but has since been superseded by ERA5,

also produced by ECMWF (Hersbach et al., 2020), with a number of ERA5 driven

simulations also included in the Antarctic-CORDEX ensemble of RCM outputs.

The ERA5 reanalysis dataset uses the updated Cycle 41r2 version of the Integrated

Forecast System (IFS) numerical weather prediction (NWP) model, with significant

developments to model physics and assimilation methods (Hersbach et al., 2020). It

spans 1950-Present with an enhanced single hourly temporal resolution, horizontal

resolution of 31 km and 139 vertical levels up to 1 Pa. In addition, ERA5 has

uncertainty estimates derived from an ensemble of 10 data assimilations performed

at a 3 hourly temporal resolution and horizontal resolution of 63 km. The elevation

used by ERA-Interim comes from interpolating the GTOPO30 elevation product

(ECMWF, 2009), whereas for ERA5 surface elevation is derived from interpolation

of a combination of the SRTM30 elevation product along with other surface elevation

datasets (ECMWF, 2016). The coupled surface schemes used for ERA-Interim and

ERA5 are the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL)

and updated HTESSEL schemes respectively, both use a single tile to represent

snow, while one of the major differences is that HTESSEL allows surface runoff

(Balsamo et al., 2009).

12
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2.2.2 MAR

MAR is a hydrostatic RCM, specifically developed for the polar areas (X. Fettweis

et al., 2013). The Antarctic-wide simulations analysed in this paper have a spatial

horizontal resolution of 35 km with a vertical resolution of 24 atmospheric levels.

Specific details of the atmospheric component of MAR can be found in Gallée and

Schayes (1994) and Gallée (1995). The atmospheric model is fully coupled to the 1-D

SISVAT (Soil Ice Snow Vegetation Atmosphere Transfer) surface scheme (X. Fettweis

et al., 2013; Xavier Fettweis et al., 2017), which uses the Crocus multi-layer surface

snow model (Brun et al., 1992) that contains subroutines for processes such as snow

metamorphism as well as meltwater runoff, retention, refreezing and percolation.

SISVAT does not include a full radiative transfer scheme in snow/ice and surface

albedo is parameterised as a function of snow grain properties (Tedesco et al., 2016).

The relaxation technique is used to apply LBCs (Lateral Boundary Conditions) from

the driving data every 6 hours and spectral nudging is used to constrain the large-

scale behaviour in the upper atmosphere. The two Antarctic-wide MAR simulations

studied in this paper are identical apart from differing driving data from ERA-

Interim and ERA5 respectively. The orography used in the simulations is from

BEDMAP2 (Fretwell et al., 2013). For further detail on MAR and the specific

version used to generate the output examined in this paper (MARv3.10) the reader

is referred to Agosta et al., 2019 and Mottram et al., 2021.

2.2.3 RACMO

RACMO is a hydrostatic RCM with a polar version developed to represent the

climate specifically over ice sheets (Van Meijgaard et al., 2008). The RCM uses

the dynamical core from HIRHAM (High Resolution Limited Area Model) (Undén

et al., 2002) and the physics package CY33r1 version of the Integrated Forecast

System (IFS) NWP model from ECMWF. The Antarctic-wide simulations analysed

in this paper have a spatial horizontal resolution of 27 km with a vertical resolution

of 40 atmospheric levels. The simulations include a multi-layer snow scheme that

13
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simulates hydrological processes such as melt, percolation, refreezing and runoff as

well as firn densification (Ettema et al., 2010). In addition, a drifting snow scheme

simulates movement of snow from surface winds across the ice sheet (Lenaerts et al.,

2010; Lenaerts and M. R. v. d. Broeke, 2012). A snow albedo scheme is implemented,

which uses snow grain size as a prognostic variable as well as cloud optical thickness

and solar zenith angle to estimate albedo (Munneke et al., 2011). The relaxation

technique is used to apply LBCs from the driving data every 6 hours for the RACMO

simulation driven by ERA-Interim and every 3 hours for the simulation driven by

ERA5 and spectral nudging is used to constrain the large-scale behaviour in the

upper atmosphere. The two simulations studied are identical apart from differing

driving data from ERA-Interim and ERA5 respectively. The orography used in the

simulations is the same as from J. L. Bamber et al., 2009. For further detail on

RACMO and the specific version used to generate the output examined in this paper

(RACMOv2.3p2) the reader is referred to Jan Melchior van Wessem et al., 2018 and

Mottram et al., 2021.

2.2.4 MetUM

The MetUM is a non-hydrostatic climate model, not specifically developed or

optimised for use over the polar regions but adapted in these simulations for use

over Antarctica (Orr et al., 2021). The Regional Atmosphere physics configuration

for mid-latitudes (RA1M) is used (Bush et al., 2020), which is identified as the

most suitable configuration available for simulating near-surface climatology over

Antarctica (E. Gilbert et al., 2020; E. M. K. Gilbert et al., 2021). The Joint

UK Land Environment Simulator (JULES) (Walters et al., 2019) is used with the

option of a comparatively simple zero-layer snow/soil composite scheme that does

not capture processes such as refreezing of melt water (Best et al., 2011). The two

Antarctic-wide MetUM simulations analysed in this paper are identical apart from

their spatial horizontal resolutions of 12 km and 49 km respectively, both have a

common vertical resolution of 70 atmospheric levels. These limited-area, regional
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simulations are nested inside the global model configuration of the MetUM, which is

itself forced using ERA-Interim reanalysis data and follows a 12 hour re-initialisation

procedure that constrains the large-scale circulation in the interior of the domain

and prevents it from drifting too far from the driving data (E. M. K. Gilbert et al.,

2021). The global MetUM model runs for 24 hour periods, with a re-initialisation

happening throughout the domain every 12 hours and boundary conditions for the

nested run saved each hour. The first 12 hours of each 24 hour run is discarded

as spin-up, while the second 12 hours of each run is kept as output and stitched

together with following runs. The orography used in the simulations is the MetUM

standard GLOBE 1 km dataset (Elvidge et al., 2019).

2.3 Comparison Method

The RCM simulations examined in this paper all use an equatorial rotated

coordinate system, where a quasi-uniform horizontal-resolution grid is defined over

the region by first specifying the grid over the equator with constant latitude and

longitude spacing between each grid-cell and then applying a rotation that takes

the domain over the region of interest, for example Antarctica. Direct comparisons

between the model output are made by regridding onto a common grid, with a

common domain and spatiotemporal coordinates. Cubic precision Clough-Tocher

interpolation (Mann, 1999) is performed on the unrotated ‘grid latitude’ and ‘grid

longitude’ coordinates, which are assumed approximately euclidean, to regrid all

model outputs onto the MetUM(011) resolution grid. This grid is chosen as it is

the highest resolution grid of the simulations examined, meaning no information is

lost as part of the regridding. The domain is filtered to only include the regions

common across the model outputs, see Fig. 2.1. The time series examined is

filtered to the common 1981-2018 period and 3/6 hourly outputs are aggregated to

monthly averages, which captures the dominant annual and seasonal dependency in

the variability. For surface air temperature, filtering to only the common timestamps
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Figure 2.1: Map of Antarctica with some of the main regions and ice shelves

labelled, made using the Quantarctica mapping environment (Matsuoka et al., 2021).

The RCM simulation domains for the MetUM (green), RACMO (blue) and MAR

(purple) are shown. A 1 km resolution hill-shade has been applied from BEDMAP2

(Fretwell et al., 2013).

across the models is first applied and then the average temperature over each month

computed. The common timestamps are limited by ERA-Interim to 00 h, 06 h, 12

h and 18 h. This is not required for snowfall or melt, which are defined as fluxes in

the model output.

To study annual, seasonal and monthly variability separately, Seasonal and Trend

decomposition using Loess (STL) (Cleveland et al., 1990) is applied to the time series

of each variable at each grid-cell. This results in individual trend (T), seasonal (S)

and residual (R) components. The decomposition is additive, meaning for each data

point ν=1 to N, the components are summed to give the original time series (Y) (eq.[

2.1]). The trend component represents the low-frequency/long-timescale pattern of

the time series, after filtering out medium and high-frequency signals including the

seasonal component, which captures periodic patterns, and the residual component
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that explains fluctuations not caused by the long-scale trend or periodicity in the

time series.

Yν = Tν + Sν +Rν (2.1)

Basic time series decomposition involves first approximating the trend compo-

nent by applying a polynomial fit through the data. Subtracting this component

gives the de-trended data that is then split into seasonal sub-series (e.g. January,

February, ...) and an average of each sub-series gives the seasonal component of the

data. Subtracting both the trend and seasonal components then gives the residual

component of the series. STL is a more sophisticated procedure that allows options

such as robust fitting (where the influence of outliers is limited) and also a time-

varying seasonal component. The algorithm is iterative and involves two loops:

the outer loop reduces the influence of outliers by assigning weights based on the

magnitude of the remainder term; the inner loop involves estimation of the trend

and seasonal components through iterative feedback (Cleveland et al., 1990).

The seasonal component is allowed to vary smoothly over the time series, which

is done by applying a LOESS (LOcal RegrESSion) smoothing to the monthly sub-

series with window length ns. As ns →∞ the LOESS smoothing becomes equivalent

to simply taking the average over the sub-series. The value of ns is recommended

to be greater than 7 (Cleveland et al., 1990). As the value increases, the seasonal

component approaches a constant periodic state. In this work 13 is used as this

allows potential decadal oscillations in the climate to be captured in the seasonal

component, such as the Pacific Decadal Oscillation (PDO).

The trend component is estimated using LOESS with a window of default size

(nt) given by the smallest odd integer greater than the value in eq.[2.2], which for

a period (np) of 12 months and seasonal smoother (ns) of 13 gives nt = 21. This

means the seasonal component can be thought of as a 12 month periodic signal that

is allowed to change gradually over a 13 year period, while the trend component can

be thought of as similar to the result of taking a weighted moving average of the
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deseasonalized time series over a 21 month period. The residual component is then

the remaining signal not described by either the smoothly varying seasonal cycle

or the long-timescale trend. An example of applying STL decomposition to the

time series of snowfall, surface temperature and melt for a grid-cell on the Larsen

C ice shelf is available in section A.1 of the appendix. It is noted that for the melt

time series additional complications are present that impact the STL decomposition,

including no melt auto-correlated austral winter periods and non-homogeneity of the

variance. These are discussed in section A.1 of the appendix.’

nt ≥
1.5np

1− 1.5n−1
s

(2.2)

In this paper temporal variability between the ensemble of Antarctic-wide

datasets is assessed in several ways, including: calculating the Pearson linear

correlation coefficient between the outputs for each component of the time series and

each variable of interest; quantifying differences in the mean of the time series as well

as in the standard deviation of the seasonal and residual components; and calculating

the root mean square deviation (RMSD) between the outputs for each variable of

interest. Each metric is calculated for every grid-cell in the domain, with Antarctic-

wide plots showing spatial patterns. Differences in the monthly mean and standard

deviation of the components are calculated over the 37 year 1981-2018 period.

For snowfall and melt, differences at each grid-cell are expressed as a proportion

of the respective inter-annual deviations, providing some measure of the relative

significance of differences at each location. The impact of systematic differences

in snowfall and melt on estimates of ice shelf stability depend not only on absolute

magnitudes but also on the relative magnitude against a baseline variance. The inter-

annual, baseline deviation at each grid-cell is approximated as the ensemble average

standard deviation in the trend component of the time series. Results presented in

spatial maps then show the relative significance of systematic differences and are

not simply dominated by the sites with the highest magnitude snowfall/melt.
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2.4 Results

Variability in the ensemble of Antarctic-wide outputs (Table 2.1) for the monthly

time series of snowfall, near-surface air temperature and melt are quantified across

the domain through the evaluation of metrics including the correlation between

the outputs, systematic differences in the mean and seasonal/residual standard

deviations as well as the RMSDs between outputs. These metrics, for variability

in the time series, are evaluated at each grid-cell and the main results shown in

sections 2.4.1, 2.4.2 and 2.4.3. Spatial maps are used to show large and small scale

patterns in the metrics across the domain. Discussion around the results, including

features of variability and the relative importance of contributing factors, is given

in section 2.5.

2.4.1 Correlation

Results are presented for the correlation in the deseasonalized and detrended,

residual component of the time series between each of the 28 unique model output

pairs. The correlation is computed at every grid-cell and for melt, grid-cells where

the ensemble 40-year average monthly melt is less than 1 millimeter water equivalent

per month (mm w.e. m−1) are masked as these regions only experience sporadic and

insignificant magnitude melt events, essentially equating to numerical noise in the

simulations. The average grid-cell correlation across the entire ice sheet is then taken

and the results given in Fig. 2.2. High correlation is shown for snowfall (> 0.80)

and near-surface air temperature (> 0.90) across all model pairs, while results for

melt show a significant divide between the reanalysis datasets and the RCMs. The

correlation for melt between just the RCMs is moderate to high (> 0.55) across all

pairs, while for the reanalysis datasets the correlation is low (< 0.35) for comparisons

to all other models, including between ERA-Interim and ERA5. Another key

feature includes the comparatively high correlation shown in every variable between

simulations of the same RCM but differing resolution/driving data (MetUM(044)-
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MetUM(011), MAR(ERAI)-MAR(ERA5) and RACMO(ERAI)-RACMO(ERA5)).

It is noted that while not discussed further here, direct comparisons to correlations

shown for the trend component of the time series are presented in section A.4 of the

appendix.

Figure 2.2: The correlation for snowfall (a), near-surface air temperature (b) and

melt (c) between models averaged over the ice-sheet. The colour scale relates to the

value of correlation and the scale is adjusted for each plot. The size of each square

also relates to the value of correlation, although is kept constant across the figures,

going from 0-1, to make comparisons clear between the different variables.

A spatial map of the median correlation in the residual component across the

28 unique model output pairs is plot in Fig. 2.3. An ice sheet-only mask is applied

for melt using the high resolution shapefile from Depoorter et al., 2013, which is

found to remove the most prominent edge effects caused by comparing high- and

low-resolution models for a variable that is dependent on the sea/ice categorisation

of the grid-cell. In addition, grid-cells where the ensemble 40-year average melt is

less than 1 millimeter water equivalent per month (mm w.e. m−1) are again masked.

In Fig. 2.3 the median correlation for near-surface air temperature is shown to be
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Figure 2.3: The median correlation by grid-cell in the residual component of the

monthly time series between the 28 unique model pairs for snowfall (a), near-surface

air temperature (b) and melt (c). The colour scale relates to the value of correlation

and the scale/limits are adjusted for each plot.

high (> 0.8) across the ice sheet, while for snowfall the correlation remains high

again across the majority of the ice sheet but is moderate to low over regions such

as the Transantarctic mountains, where the topography varies sharply. For melt, the

correlation is moderate over the majority of ice shelves, although is noticeably low

over the Ronne ice shelf, the ice shelves bounding Victoria Land, and the interior of

the Amery ice shelf.

2.4.2 Mean and Standard Deviation: Magnitude and Spa-

tial Pattern of Differences

The 1981-2018 mean and standard deviation for each component of the monthly

time series of the ice sheet total snowfall, average near-surface air temperature

and total melt are displayed in Table 2.2. Results show that even aggregated

across the entire ice sheet significant systematic differences exist between the

outputs for each variable. For example, the magnitude of differences in the mean

across the ensemble are comparable in magnitude to the average trend standard
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deviation, which represents inter-annual variations. One particularly striking

feature is the contrast between the low monthly melt of ERA5 (1.1 GT/month)

compared to the high monthly melt of ERA-Interim (15.5 GT/month) and all

RCMs (9.1-14.2 GT/month). It is noted that the relative magnitudes of standard

deviations in each component of the time series depends on the variable and that

for temperature and melt the seasonal deviation is dominant, while for snowfall

both the seasonal and residual deviations have similar magnitudes. Another

feature, is that systematic differences are comparatively low between simulations

of the same RCM but differing resolution/driving data (MetUM(044)-MetUM(011),

MAR(ERAI)-MAR(ERA5) and RACMO(ERAI)-RACMO(ERA5)) when compared

with differences present between the different RCMs.

To understand how systematic differences vary spatially the 1981-2018 mean and

seasonal/residual standard deviations for the monthly time series of each variable

are also computed at a 12 km grid-cell level. Since it is found that systematic

differences in the mean and standard deviations are most pronounced between

different models in the ensemble, results presented in Fig. 2.4, 2.5 and 2.6 are

filtered to only include: ERA5; MetUM(011); MAR(ERA5); and RACMO(ERA5).

Differences for each model are then plotted relative to this reduced ensemble average

(model-ensemble avg.). Results showing direct comparisons between same/similar

model pairs are given in Fig. A.2, A.3 and A.4 in the appendix and include

differences in the mean and standard deviations between: ERA-Interim and ERA5;

MetUM(044) and MetUM(011); MAR(ERAI) and MAR(ERA5); RACMO(ERAI)

and RACMO(ERA5). Differences in the standard deviation of the trend component

are excluded from grid-cell level results as it is shown in Table 2.2 that the relative

magnitude against standard deviations in the seasonal and residual components is

low. For snowfall and melt, differences at each grid-cell are expressed as a proportion

of the respective inter-annual deviations, approximated by the ensemble average

standard deviation in the trend component.

In Fig. 2.4, it can be seen that for snowfall there exists high-magnitude, spatially-
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Snowfall / GT ERAI ERA5 MetUM(044) MetUM(011) MAR(ERAI) MAR(ERA5) RACMO(ERAI) RACMO(ERA5) Average

Monthly Mean 179.3 225.8 212.4 222.8 234.9 235.6 229.6 231.3 221.5

Trend St.D. 7.1 9.8 9.6 9.8 8.7 8.8 8.6 9.1 8.9

Seasonal St.D. 25.9 34.1 26.8 25.8 38.7 38.8 30.1 31.0 31.4

Residual St.D. 21.8 28.3 28.3 28.9 26.3 26.3 28.0 28.2 27.0

Temperature / K ERAI ERA5 MetUM(044) MetUM(011) MAR(ERAI) MAR(ERA5) RACMO(ERAI) RACMO(ERA5) Average

Monthly Mean -32.6 -33.3 -34.2 -33.9 -32.2 -32.2 -34.0 -33.8 -33.3

Trend St.D. 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4

Seasonal St.D. 9.0 7.7 9.3 9.2 8.7 8.6 8.8 8.7 8.7

Residual St.D. 1.1 1.1 1.0 1.0 1.0 1.0 1.2 1.2 1.1

Melt / GT ERAI ERA5 MetUM(044) MetUM(011) MAR(ERAI) MAR(ERA5) RACMO(ERAI) RACMO(ERA5) Average

Monthly Mean 15.5 1.1 13.2 14.2 11.9 12.1 9.3 9.1 10.8

Trend St.D. 2.4 0.4 3.0 3.1 3.3 3.1 2.9 2.7 2.6

Seasonal St.D. 29.3 2.0 25.8 27.0 23.1 23.4 18.5 18.2 20.9

Residual St.D. 5.3 0.8 6.8 6.9 7.0 6.8 7.1 6.7 5.9

Table 2.2: After aggregating across the ice sheet, the mean and standard deviation

for each component of the monthly time series for total snowfall, average near-surface

air temperature and total melt are given. Values for snowfall and melt are expressed

in units of gigatonnes while values for temperature are expressed in Kelvin.

coherent systematic differences over both the ocean and ice sheet, particularly in

the mean of the time series (Fig. 2.4a,d,g,j), for each model relative to the ensemble

average. A specific example is the strong negative difference in the mean snowfall

over the ocean and strong positive difference over the majority of the ice sheet

shown by MAR (Fig. 2.4g). In general, the +ve/-ve sign of the differences in the

mean and standard deviations for snowfall over the interior of the ice sheet, over

the Transantarctic mountains and over the oceans show a relatively large spatial

correlation length scale. In contrast, near the periphery of the ice sheet, the sign

of the differences exhibit a smaller correlation length scale. Regions such as the

Antarctic Peninsula exhibit direction dependent length scales, with a comparatively

large length scale in the latitude direction and a comparatively short length scale

in the longitude direction. The magnitude of the differences shown over the ice

sheet appear greater over sharply varying topography, such as the Transantarctic
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mountain range and the steep coastal slopes of the ice sheet. An exception to

this being high magnitude differences also shown in the mean component over the

comparatively flat region of the interior of East Antarctica for the MetUM(011) and

MAR(ERA5) (Fig. 2.4d,g).

It can be seen that for snowfall the difference present in the mean of the time

series has a similar spatial signature and sign as the difference in the standard

deviation of the seasonal and residual components (e.g. Fig. 2.4g,h,i). Exceptions

to this include for example the difference in snowfall from the MetUM(011) relative

to the ensemble in the interior of East Antarctica, where despite having a lower

mean snowfall the standard deviation in the seasonal component is greater than the

average of the ensemble (Fig. 2.4d and 2.4e).

As with snowfall, there exists significant differences over both the ocean and

land for near-surface air temperature between the models, again particularly in the

mean of the time series (Fig. 2.5). For example, MAR shows a significant positive

difference in the mean of the time series over the majority of the ice sheet (Fig. 2.5g)

and a significant negative difference over the majority of the surrounding ocean. The

magnitude of differences shown over the ice sheet again appear greater over regions of

steep topography, particularly for the MetUM(011) and MAR(ERA5) outputs (Fig.

2.5d,g). The spatial patterns of differences in near-surface air temperature differ in

shape compared to those present for snowfall. In particular, near the edge of the

ice sheet there are less positive-to-negative fluctuations with changing longitude and

instead the patterns are more parallel to the coastline (Fig. 2.5d,g). While there are

similar spatial patterns between the mean temperature difference and the seasonal

standard deviation difference (as for Fig. 2.4), the sign of the differences in Fig.

2.5 is in general shown to change, for example over the majority of the ice sheet in

Fig. 2.5d compared with Fig. 2.5e. In Fig. A.1e in the appendix, which gives the

temperature profiles from each simulation over an example grid-cell on the Larsen

C ice shelf, a colder mean temperature is shown to be the result of similar summer

temperatures with more severe winter temperatures.

24



2.4. Results

A land-only mask has been applied for melt in Fig. 2.6 as well as a filter

masking any grid-cells where the ensemble mean average monthly melt is less than 1

mm w.e. m−1. This limits discussion of the patterns in differences of the mean and

standard deviations to the peripheral areas, which are predominantly ice shelves.

The magnitude of the differences present is, as for snowfall, significant relative to

the inter-annual variability of melt at each grid-cell. Unlike for snowfall and near-

surface temperature, the relative magnitude of differences across the ensemble in

the standard deviation of both the seasonal and residual components of the time

series are greater than differences present in the mean of the time series. It is noted

that for melt, which occurs primarily over just the summer months, greater values of

standard deviation in the seasonal component are expected to represent both/either

higher magnitudes over peak months and/or a prolonged melt season. As with

near-surface temperature and snowfall there are both short and long spatial length

scale patterns. An example of a relatively localised spatial pattern is that of the

strong positive difference shown by MAR over the interior of the Amery ice shelf in

the mean of the time series, as well as the standard deviation of the seasonal and

residual components. An example of a large-scale pattern is that ERA5 shows a

considerable negative difference in the mean and standard deviations of melt over

the majority of ice shelves.
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Figure 2.4: The difference to the ensemble average (model-ensemble avg.) for the

1981-2018 time series of snowfall, in the mean (a,d,g,j), the standard deviation of the

seasonal component (b,e,h,k) and the standard deviation of the residual component

(c,f,i,l). The ensemble includes: ERA5 (a,b,c); MetUM(011) (d,e,f); MAR(ERA5)

(g,h,i); and RACMO(ERA5) (j,k,l). Differences at each grid cell are expressed as a

proportion of average inter-annual variation and so do not have units.
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Figure 2.5: The difference to the ensemble average (model-ensemble avg.) for the

1981-2018 time series of near-surface air temperature, in the mean (a,d,g,j), the

standard deviation of the seasonal component (b,e,h,k) and the standard deviation of

the residual component (c,f,i,l). The ensemble includes: ERA5 (a,b,c); MetUM(011)

(d,e,f); MAR(ERA5) (g,h,i); and RACMO(ERA5) (j,k,l).

27



Chapter 2. Variability in Antarctic Surface Climatology Across Regional Climate
Models and Reanalysis Datasets

Figure 2.6: The difference to the ensemble average (model-ensemble avg.) for the

1981-2018 time series of melt, in the mean (a,d,g,j), the standard deviation of the

seasonal component (b,e,h,k) and the standard deviation of the residual component

(c,f,i,l). The ensemble includes: ERA5 (a,b,c); MetUM(011) (d,e,f); MAR(ERA5)

(g,h,i); and RACMO(ERA5) (j,k,l). Differences at each grid cell are expressed as

a proportion of average inter-annual variation and so do not have units. Grid-cells

where the ensemble mean average monthly melt is less than 1 mm w.e. m−1 are

masked.
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2.4.3 RMSD

The RMSD of the monthly time series is evaluated at each grid-cell for each of the

28 unique output pairs of the ensemble. For snowfall and melt, the metric is scaled

at each grid-cell by the ensemble average inter-annual standard deviation, described

here as the proportional RMSD value. The average is then taken across the ice sheet

for each variable and results given in Fig. 2.7a-c. The average RMSD across the ice

sheet provides a measure of the average deviation between the time series of 2 model

outputs at each grid cell, while the average proportional RMSD gives a measure of

the average relative magnitude of deviations with respect to inter-annual variability.

To evaluate what proportion of the RMSD is the result of systematic differences,

the RMSD is recalculated after adjusting the time series at each grid cell to

have the same mean, seasonal standard deviation and residual standard deviation

(RMSDAdj). This is taken as the ensemble average value at each grid cell. The

adjusted RMSD is then averaged across the ice sheet and the percentage change

computed as ((RMSD −RMSDAdj)/RMSD), with results given in Fig. 2.7d-f.

From Fig. 2.7 it can be seen the average values for the RMSD/proportional

RMSD are significant for all variables, with upper thresholds of 3 K for near-

surface air temperature and proportional values of 4 for snowfall and 10 for

melt. Values are comparatively low between simulations of the same RCM

but differing resolution/driving data (MetUM(044)-MetUM(011), MAR(ERAI)-

MAR(ERA5) and RACMO(ERAI)-RACMO(ERA5)) when compared with differ-

ences present between the different RCMs. For melt, ERA-Interim has noticeably

higher values of proportional RMSD compared to the other models, while for snowfall

and temperature differences are less pronounced but the two simulations from MAR

show higher average proportional RMSD for snowfall compared with the other

models.

The percentage change in RMSD/proportional RMSD after adjusting for equal

means and seasonal/residual standard deviations is significant for all variables, as

shown in Fig. 2.7. Upper thresholds on the percentage reduction are 50%, 70%
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Figure 2.7: The RMSD/proportional RMSD for snowfall (a), near-surface air

temperature (b) and melt (c) between models averaged over the ice-sheet. It is noted

for melt that grid-cells where the ensemble average is less than than 1 mm w.e. m−1

are excluded. After adjusting the mean and seasonal/residual standard deviations of

all outputs to the ensemble average the percentage reduction in RMSD/proportional

RMSD is plot for snowfall (d), near-surface air temperature (e) and melt (f).

and 60% for snowfall, near-surface air temperature and melt respectively. For melt,

the most significant reductions are for ERA-Interim, while ERA5 shows the least

significant reductions with proportional RMSD actually increasing between ERA5

and the RACMO products. Across the variables it can be seen that the percentage

reduction in RMSD between the high/low resolution MetUM simulation pairs is

of greater magnitude than reductions between the two ERA-Interim/ERA5 driven

30



2.5. Discussion

RACMO pairs and two ERA-Interim/ERA5 driven MAR pairs. An interesting

feature shown for NST is that the percentage change in RMSD shown between the

MetUM simulations is significantly higher in magnitude than shown between the

MAR and RACMO simulations (Fig. 2.7e). This indicates that the impact of the

higher-resolution MetUM simulation is primarily on the systematic qualities of the

time series rather than on the occurrence and movement of climatic events.

2.5 Discussion

The results presented in this paper show that for all variables studied, when

considered across the entire ice sheet, the outputs that came from the same

model (MetUM(011/044), MAR(ERAI/ERA5), RACMO(ERAI/ERA5)) exhibit

the highest correlations in the time series as well as the smallest systematic

differences and RMSDs. This is despite significant differences in resolution

between the MetUM runs, which span the highest and lowest resolution RCM

simulations made available from the Antarctic-CORDEX project, as well as

significant differences in the driving data for the two MAR and RACMO runs.

Note that, although ERA5 is an update to ERA-Interim, the results in Table 2 and

in section A.2 of the appendix show that the magnitude of systematic differences

in the mean and standard deviations between the reanalysis datasets are of similar

or greater magnitude to that of differences between different RCM outputs (Fig.

2.4, 2.5 and 2.6). Updates in the model physics and assimilation techniques used

by ERA5 (Hersbach et al., 2020) compared to ERA-Interim are hypothesised to

be the primary reason for large-scale differences in snowfall and near-surface air

temperature identified between the reanalysis outputs. While EAR-Interim and

ERA5 exhibit large differences in their DEMs (Fig. A.5), it is argued in section 2.5.1

that differences in DEM are not primary contributors to systematic differences in the

models output. The particularly significant difference (over an order of magnitude)

for ice-sheet-wide melt between ERA-Interim (15.5 GT) and ERA5 (1.1 GT) is
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hypothesised to be primarily due to an updated surface scheme (HTESSEL) used

in ERA5 that allows run-off (Balsamo et al., 2009).

Results therefore suggest, that differing resolution and driving data are not

primary contributors to large-scale spatial variability across the ensemble. Similarity

in the spatial and temporal patterns between Antarctic-wide outputs of the same

RCM with different driving data agrees with findings from (Agosta et al., 2019),

where outputs from MAR are compared with differing reanalysis driving data from

ERA-Interim, JRA-55 and MERRA-2. Similarity in results aggregated over the ice

sheet (Table 2.2) between Antarctic-wide outputs of the same RCM with different

driving data agrees with findings from Mottram et al., 2021 where SMB for two

simulations of differing resolution (12/50 km) for the RCM HIRHAM5 are compared

against other RCMs. At finer, more localised scales differing resolution is shown to

create significant differences in the mean and seasonal/residual standard deviations

for the monthly time series of each variable, see Fig. A.2, A.3 and A.4 (d-f) in

the appendix that show direct comparisons between the high- and low-resolution

MetUM simulations.

The magnitude of differences in snowfall and near-surface air temperature due

to resolution are greatest over regions of sharply varying topography, such as: the

Transantarctic mountains; the coastal slopes of the ice sheet; and the Antarctic

Peninsula. The representation of atmospheric processes occurring over mountainous

regions including foehn winds that occur over the Antarctic Peninsula and katabatic

winds occurring over the coastal slopes of East Antarctica are known to be resolution

dependent (Orr et al., 2014; Heinemann and Zentek, 2021; Orr et al., 2021). Foehn

and katabatic winds have been shown to impact climate over ice shelves, which

are often in close vicinity of steep terrain, and are an important driver of surface

melt (Bromwich, 1989; Cape et al., 2015; Lenaerts et al., 2017; Datta et al., 2019;

Elvidge et al., 2020). In Fig. A.3d the difference in the mean near-surface air

temperature, due to resolution, extends over ice shelves such as the interior of the

Amery ice shelf, which is a well-known katabatic wind confluence zone (Parish and
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Bromwich, 2007). Despite this influence of resolution on the climatology over ice

shelves, greater systematic differences in melt shown in Fig. 2.6 compared with Fig.

A.4(d-f) indicate the potentially more significant importance of differences in surface

schemes across the particular ensemble of RCMs studied. It is expected that even

at 12 km resolution climatically important terrain-induced atmospheric processes,

such as foehn/katabatic winds, are not being realistically resolved as is shown in

Orr et al., 2021 where output from the MetUM RCM at 4 km, 1.5 km and 0.5 km

during a foehn wind event on the Larsen C ice shelf show no obvious convergence

towards observations during the event.

The same-model RCM simulations in the ensemble, as well as having identical

model physics, parametrisation and tuning, also share factors such as the domain

specification, ice mask applied, digital elevation model and boundary conditions.

The relative contribution of these additional factors is explored in section 2.5.1

and from this it is argued that the joint influence of choices in model physics,

parametrisation and tuning is the primary factor influencing large-scale variability

across the ensemble. The impact of parameter tuning is discussed in Gallée and

Gorodetskaya, 2008 where it is shown that adjusting the relative contribution of

snow particles compared to ice particles in MAR’s radiative scheme has a significant

impact on near-surface air temperature. A higher relative contribution of snow

particles leads to greater flux in long-wavelength downwards radiation. In addition

to exploring the relative contribution of different factors to the large spatial scale

variability in the ensemble, in section 2.5.2 specific features of the variability that

are mentioned in results section 2.4 are discussed and the nature of variability for

different variables, regions and time-scales is examined.

2.5.1 Contribution to Variability from the choice of Do-

main, Ice Mask, Boundary Conditions and DEM

The exact spatial domains differ between the RCM simulations as shown in Fig. 2.1.

However, the spatial domain for all RCM simulations examined is Antarctic-wide
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and domain boundaries all exist over the ocean, implying there should be no strong

local forcing at any of the boundaries. The effect of increasing domain size over

the ocean on the output of simulations from MAR over the Greenland ice sheet has

previously been studied and found to not significantly impact results over the ice

sheet (Franco et al., 2012). In general, the domain size should be great enough such

that the buffer zone, in which boundary conditions are applied, does not intersect

the region of interest, which in this case is the Antarctic ice sheet. It is found that

for the MetUM(044) run, the buffer zone intersects some areas of the periphery of

the ice sheet, shown clearly in Fig. A.2d. Despite this, it can be seen that effects

are localised to the buffer zone boundary, and that even for the regions of the ice

sheet that intersect this the relative impact on systematic differences appears less

significant than other factors explored. Overall it is assumed that, for the ensemble

of RCM simulations studied, differences in the domains does not have a significant

effect on the model output for surface climatology over the ice sheet.

As well as having differences in the outer domain boundaries, the different models

also have slight differences in the specified boundaries of the ice sheet due to different

coordinates and ice masks used. This creates edge effects at the periphery of the

ice sheet, particularly noticeable for melt in for example Fig. 2.5d at the edges of

the Filchner-Ronne and Ross ice shelves. It is shown in Mottram et al. (2021) and

Hansen et al. (2022) that these edge effects, due to inconsistent ice masks, can have

a significant impact on the total estimated SMB over the ice sheet. In this paper,

although ice sheet wide totals are computed (Table 2.2), the focus is primarily on

evaluating variability in the time series at each 12 km grid cell after regridding

products to a common high-resolution grid. Results for spatial maps of differences

for melt are masked using an ice-sheet only mask from Depoorter et al. (2013), which

is found to exclude the most significant edge effects from areas where low-resolution

models overestimate the extent of the ice sheet after regridding. The same mask is

applied before calculating average correlations and RMSDs also reducing the impact

of edge effects. Results presented and discussed here, particularly regarding large-
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scale spatial patterns, are therefore assumed to not be significantly impacted by the

different ice masks used in the ensemble of simulations.

Another important consideration when comparing RCM simulations is how the

method of applying boundary conditions varies across the ensemble. In particular,

although all RCMs examined are nudged at the boundaries within buffer zones, MAR

also uses spectral nudging and RACMO indiscriminate nudging that constrains the

large scale circulation in the interior of domain, while the MetUM instead uses

a re-initialisation procedure. Spectral nudging involves applying the relaxation

technique throughout the interior of the domain to the long wavelength components

of the climate model fields (Storch et al., 2000). This constrains the large-scale

climatology of the RCM output to that of the driving data, while allowing value-

added by the RCM in the small-scale features. The indiscriminate nudging, upper-

air relaxation (UAR) technique used in the RACMO simulations also improves

consistency with large-scale forcing fields, although results in partially suppressing

small-scale patterns in the RCM absent from the driving data. The same goals

of spectral and indiscriminate nudging are aimed to be achieved with the re-

initialisation of the MetUM throughout the domain every 12 h, as discussed in

Sect. 2.4.

As mentioned previously, the fact that the driving data appears to not be a

primary contributor to large-scale spatial variability across the ensemble of outputs

also suggests the specific approaches of spectral nudging, indiscriminate nudging or

re-initialisation are not one of the main features contributing to spatial variability

in the mean and the seasonal and residual standard deviations of snowfall, near-

surface air temperature and melt. It is noted, however, that in general the MetUM

simulations, rather than the MAR and RACMO simulations, show slightly higher

correlation to the reanalysis driving data across the ice sheet for the monthly

time series of snowfall and surface temperature (Fig. 2.2), indicating that the re-

initialisation procedure potentially constrains the output across the ice sheet more

than spectral or indiscriminate nudging.
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The differences between DEMs used across the ensemble are plot in Fig. A.5

in the appendix. The elevation profiles can be split into three main groups: the

coarse elevation profile of ERA-Interim (Fig. A.5a); the elevation profiles of ERA5

and the MetUM high- and low-resolution runs (Fig. A.5b,c,d); and the elevation

profiles of MAR and RACMO (Fig. A.5e,f). Differences in the DEMs do not

mirror the systematic differences shown in section 2.4.2. For example, while MAR

and RACMO share comparatively similar DEMs, the models do not share similar

patterns in systematic differences (Fig. A.2, A.3 and A.4). This indicates differences

in the DEMs are not primary contributors to systematic differences in the models

output, which is further supported by results displayed in Fig. A.6 where weak

linear correlation is found between differences in elevation and differences in mean

near-surface air temperature.

In this section, features including the domain specification, ice mask applied,

digital elevation model and boundary conditions applied are argued to not be

the primary contributors responsible for the large-scale systematic differences

between the ensemble of model outputs. This result, in addition to the previously

discussed secondary contributions of resolution and driving data towards large-scale

differences, by way of elimination gives that the joint influence of choices in model

physics, parametrisation and tuning is the primary factor influencing large-scale

systematic differences across the ensemble.

2.5.2 Specific Features of the Variability

Specific features in the variability, identified and mentioned in section 2.4, are

discussed here. In section 2.4.1 it is mentioned that for melt there is a clear divide

in the average correlation in the residual component of the time series between

reanalysis datasets compared with RCMs (Fig. 2.2). That is the correlations

between different RCMs are greater than between reanalysis datasets and RCM

outputs. This is not the case for snowfall and near-surface air temperature,

suggesting the divide in correlation for melt is primarily due to differences in the
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sophistication and polar specific tuning of the surface schemes used for the RCM

simulations and the global reanalysis products. It is shown in Hansen et al. (2021)

that the subsurface scheme and the handling of layers within the scheme can have

a significant impact on melt.

In section 2.4.1 it is also shown that, particularly for snowfall and melt, the

median correlation between the outputs is strongly dependent on the specific region

and topography. For melt, three regions are highlighted that show low correlation

including the Ronne ice shelf, the ice shelves bounding Victoria Land, and the

interior of the Amery ice shelf. In the case of the Ronne ice shelf, the low correlation

in melt is due to relatively low average melt occurring over the region, so fluctuations

away from no melt are small and erratic. Low correlation over ice shelves bounding

Victoria Land is expected to be caused by a combination of their fine scale and

the sharply varying topography in the region, making the climatology around them

difficult to resolve with the resolution available in the climate models. Finally, the

pattern of low correlation around regions such as the interior of the Amery ice shelf

is likely the result of atmospheric processes difficult to represent fully in the models,

for example: katabatic winds, driven by gravity, flowing from the interior of the

ice sheet to the exterior down elevation channels have a significant impact on the

climate on the Amery ice shelf, particularly near the grounding line (Lenaerts et al.,

2017).

As with for correlation, the systematic differences shown between the outputs

in the ensemble vary depending on the region and topography, see section 2.4.2.

This is true at large and small spatial scales and for all variables. An example of

a dependency at large scale is in Fig. 2.4g where MAR shows a significant positive

difference in the 40-year mean monthly snowfall relative to the other outputs over

the majority of the ice sheet and a significant negative difference over the majority

of the surrounding ocean. In the case of MAR this is hypothesized to be due to a

couple of reasons: MAR is forced at the boundaries by humidity and needs time to

transform this into precipitation; MAR allows precipitation to be advected through
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the atmospheric layers until reaching the surface. The advection of precipitation in

MAR through each atmospheric layer, in comparison to the instantaneous depositing

of precipitation by RACMO, leads to increased snowfall towards the interior of the

ice sheet, previously identified in Agosta et al., 2019.

In section 2.4.3 the RMSD between each model pair, calculated at each grid cell

and then averaged across the ice sheet, is presented. This metric of average deviation

is dependent on the temporal correlation and presence of systematic differences

between the outputs. High values of proportional RMSD for melt, shown in Fig.

2.7 are the result of relatively low temporal correlations between models as well

as relatively high systematic differences. It is noted that for melt, despite there

being a clear divide in temporal correlations between reanalysis datasets and RCMs

(Fig. 2.2), the RMSD between ERA5 and the RCMs is of comparable magnitude

to values between the RCMs. This is due to particularly low values of total melt

exhibited from ERA5 (Table 2.2) and resulting low magnitude fluctuations of melt.

The percentage change in RMSD, after adjusting the mean and seasonal/residual

standard deviations of all outputs to the ensemble average, further supports this

as it can be seen for melt that ERA5 exhibits the smallest reduction in RMSD

after adjustments (Fig. 2.7). The converse of the above argument is true for

ERA-Interim, which shows particularly high values of total melt and so particularly

significant values of RMSD and of percentage reductions after adjusting the mean

and seasonal/residual standard deviations. Differences in the model outputs for

melt across Antarctica remain significant with respect to inter-annual deviations

even after adjusting for systematic differences in the mean and standard deviation

of the seasonal/residual components of the time series, indicating the importance of

improving surface schemes across the models.
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2.6 Conclusion

The spatial nature and magnitude of variability present in an ensemble of current,

state-of-the-art Antarctic-wide RCM outputs and global reanalysis datasets is

examined for snowfall, near-surface air temperature and melt. This is done at a

12 km grid level, rather than across elevation bins, which reveals significant spatial

patterns in correlation and systematic differences in the mean and seasonal/residual

standard deviation. Time series decomposition is used to split comparisons across

an approximately inter-annual trend component, a periodic seasonal component

and a monthly residual component, which is useful for impact assessments where

knowledge of variability in the climate data across different time-scales and climate

drivers is needed.

It is found that the RCM outputs and reanalysis datasets show high correlation

for the monthly time series of snowfall and surface temperature across the majority of

Antarctica and the bounding Southern Ocean. Despite this, there exists significant

differences, with respect to both magnitude and spatial scale, in the mean and

seasonal/residual standard deviations of the time series. In addition, high RMSD

between the outputs is found for all variables and is particularly significant for

melt with respect to the proportional values relative to annual fluctuations. The

primary sources of large-scale, systematic differences between the simulations, for

all variables and components, are identified as deriving from differences in the model

dynamical core, the surface scheme and the parametrisation and tuning. Differences

in driving data, resolution, domains, ice masks, DEMs and boundary conditions are

identified as having a secondary contribution. On local, fine spatial scales the relative

contribution from different factors is more complex and differences in for example

resolution are shown to have a more significant impact.

The variability in snowfall, near-surface air temperature and melt shown is

expected to introduce significant uncertainty in estimates of the ice shelf stability

with regard to collapse events, which as discussed may have an important

contribution to future SLR estimates. It is suggested that the magnitude and
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scale of systematic differences across the ensemble precludes the direct use and

interpretation of individual outputs in impact assessments regarding ice shelf

collapse. Results show that removing systematic differences between the ensemble

of outputs, significantly reduces the average RMSD. Therefore, as concluded in

Mottram et al. (2021), there is an importance on observational campaigns to correct

for systematic differences. Improved coverage and quality of observations will

provide greater constraints with which to both tune and update the model physics

and parametrisations, as well as to use and reduce uncertainties in post-processing

bias correction. In addition, further development of RCMs, with particular focus on

improvements to the performance of surface schemes over regions of high-melt, is

needed to reduce uncertainties around collapse events and future SLR. Finally, it is

suggested that further development of sophisticated techniques for bias correction

are needed, that are compatible with sparse observations and make use of factors

such as the spatial distribution of variability identified in this paper.
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Chapter 3

Bias Correction of Climate Models

using a Bayesian Hierarchical

Model

Climate models, derived from process understanding, are essential tools in the study

of climate change and its wide-ranging impacts on the biosphere. Hindcast and

future simulations provide comprehensive spatiotemporal estimates of climatology

that are frequently employed within the environmental sciences community, although

the output can be afflicted with bias that impedes direct interpretation. Bias

correction approaches using observational data aim to address this challenge.

However, approaches are typically criticised for not being physically justified and not

considering uncertainty in the correction. These aspects are particularly important

in cases where observations are sparse, such as for weather station data over

Antarctica. This paper attempts to address both of these issues through the

development of a novel Bayesian hierarchical model for bias prediction. The model

propagates uncertainty robustly and uses latent Gaussian process distributions to

capture underlying spatial covariance patterns, partially preserving the covariance

structure from the climate model which is based on well-established physical laws.

The Bayesian framework can handle complex modelling structures and provides
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an approach that is flexible and adaptable to specific areas of application, even

increasing the scope of the work to data assimilation tasks more generally. Results in

this paper are presented for one-dimensional simulated examples for clarity, although

the method implementation has been developed to also work on multidimensional

data as found in most real applications. Performance under different simulated

scenarios is examined, with the method providing most value added over alternative

approaches in the case of sparse observations and smooth underlying bias. A major

benefit of the model is the robust propagation of uncertainty, which is of key

importance to a range of stakeholders, from climate scientists engaged in impact

studies, decision makers trying to understand the likelihood of particular scenarios

and individuals involved in climate change adaption strategies where accurate risk

assessment is required for optimal resource allocation.

3.1 Introduction

Climate models are invaluable in the study of climate change and its impacts

(Bader et al., 2008; Flato et al., 2013). Formulated from physical laws and

with parameterisation and process understanding derived from past observations;

climate models provide comprehensive spatiotemporal estimates of our past, current

and future climate under different emission scenarios. Global climate models

(GCMs) simulate important climatological features and drivers such as storm

tracks and the El Niño–Southern Oscillation (ENSO) (Greeves et al., 2007;

Guilyardi et al., 2009). In addition, independently developed GCMs agree

on the future direction of travel for many important features such as global

temperature rise under continued net-positive emission scenarios (Tebaldi et al.,

2021). However, GCMs are computationally expensive to run and also exhibit

significant systematic errors, particularly on regional scales (Cattiaux et al., 2013;

Flato et al., 2013). Regional climate models (RCMs) aim to dynamically downscale

GCMs and more accurately represent climatology for specific regions of interest
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and have parameterisation, tuning and additional physical schemes optimised to the

region (Giorgi, 2019; Doblas-Reyes et al., 2021). Despite this, significant systematic

errors remain, particularly for regions with complex climatology and with sparse in

situ observations available to inform process understanding, such as over Antarctica

(Carter et al., 2022b). These systematic errors inhibit the direct interpretation of

climate model output, particularly important in impact assessments (Ehret et al.,

2012; Liu et al., 2014; Sippel et al., 2016).

There are many fundamental causes of systematic errors in climate models,

including: the absence or imperfect representation of physical processes; errors in

initialisation; influence of boundary conditions and finite resolution (Giorgi, 2019).

The inherent complexity and computationally expensive nature of climate models

makes direct reduction of systematic errors through model development and tuning

challenging (Hourdin et al., 2017). End users are typically interested in only a narrow

aspect of the output (e.g. possibly only one or two variables), which the model is

unlikely to be specifically tuned for. Post-processing, bias correction techniques

allow improvements to the consistency, quality and value of climate model output,

specific to the end user’s focus of interest, with manageable computational cost

and without requirement of in-depth knowledge behind the climate model itself

(Ehret et al., 2012). Different end users are focused on different types of systematic

errors, whether that’s errors in the mean climatology, the multi-year trends or in

other features of the output such as the covariance structure. This paper follows a

common approach to focus on systematic errors in the parameters that describe the

probability density function (PDF) at each site. Further, detailed discussion of this

is given in Sect. 3.2 as are approaches to bias correction within this context.

One of the fundamental issues often attached to bias correction is the lack of

justification based on known physical laws and process understanding (Ehret et al.,

2012; Maraun, 2016). Transfer functions are derived that are applied to the climate

data to improve some aspect of consistency with observations, such as the mean in

for example the delta method (Das et al., 2022) or the overall PDF in the case of
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quantile mapping (Qian and Chang, 2021). The spatiotemporal field and associated

covariance structure from the climate model, which is consistent with accepted

physical laws, is typically not considered and so not preserved. Resulting corrected

fields may exhibit too smooth or sharply varying behaviour over the region and

discontinuities near observations. In addition, many approaches of bias correction

fail to adequately handle uncertainties or estimate them at all. Reliable uncertainty

estimation is valuable for inclusion in impact studies to inform resulting decision

making. This is especially true for regimes with tipping points, such as ice shelf

collapse over Antarctica, where uncertainties in the climatology can cause a regime

shift (R. M. DeConto and Pollard, 2016).

In this paper a fully Bayesian approach using a hierarchical structure and latent

Gaussian processes (GP) is proposed for bias correction, discussed in detail in Sect.

3.3. Parameter uncertainties are propagated through the model and the underlying

covariance structure is derived both from observations and the climate model output.

The approach is developed with the focus of applying bias correction to regions with

sparse in situ observations, such as over Antarctica, where capturing uncertainty

is of key importance and where including data from all sources during inference

is particularly valuable. In the method, climate model output is assumed to be

generated from two underlying and independent stochastic processes, one relating

to the true underlying field of interest (that also generates the in situ observations)

and one that generates the bias present in the climate data. The aim is to separate

these two processes and to infer their covariance structures. Posterior predictive

estimates of the true underlying field across the region can then be made, which in

turn can be used for bias correction. The ability of the model in doing this depends

on factors such as the density of observations and the relative smoothness of the

truth and bias components. Simulated data is used to test the performance under

scenarios with differing data density and latent covariance length scales, with results

and discussion presented in Sect. 3.4.

While simple simulated scenarios are focused on in this paper, the applicability
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of GPs for modelling complex spatial patterns seen in real-world climatology is

already illustrated in Zhang et al., 2021 and Lima et al., 2021. The non-parametric

nature of GPs makes the model flexible and able to capture complex non-linear

spatial relationships. Additionally, features of GPs such as uncertainty estimation,

sensible extrapolation, kernel customisation and the ability to produce accurate

predictions with limited data are desirable for real-world case studies. Finally,

advancements in approximate inference methods have improved the scalability of

GPs, improving the applicability to large climate data sets, as demonstrated in

Yali Wang and Chaib-draa, 2017. In addition to the main results presented in

Sect. 3.4, to further demonstrate the flexibility and applicability of the methodology

presented in this paper to potential real-world scenarios, some additional simulated

scenarios are created with added complexity and results presented in appendix B.4.

These additional scenarios test the robustness of the model to potential real-world

situations where not all the assumptions of the model will necessarily completely

hold.

The model is developed in a flexible Bayesian framework, where adjustments

can easily be incorporated while maintaining robust uncertainty propagation. For

example, extra predictors, such as elevation and latitude, can be included either in

the mean function or covariance matrix of the latent GPs. Alternatively, the model

could be expanded to incorporate a temporal component of the bias accounting for

variability across different seasons. This flexibility is important and increases the

scope of the work, allowing the model to be applied to a wide range of scenarios,

including for example application to many different meteorological fields and also

combining observation data from different instruments rather than necessarily with

respect to climate model output. Additionally, the Bayesian framework allows

incorporation of domain specific, expert knowledge of different data sources and

their uncertainties through the choice of prior distributions.
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3.2 Bias in Climate Models

Bias in climate models is defined in a number of similar ways across different papers.

In Maraun, 2016 it is defined as the systematic difference between any statistic

derived from the climate model and the real-world true value of that statistic. While

in Haerter et al., 2011, bias is defined as the time-independent part of the error

between the climate model simulated values and the observed values. In general,

across the community involved with climate change impact studies, bias is used to

refer to any deviation of interest between the model output and that of the true

value (Ehret et al., 2012). Deviations of interest are typically with respect to the

statistical properties of the data, for example the mean and variance as well as

spatial properties such as the covariance length scale. The methodology developed

in this paper treats bias with respect to deviations in the PDFs of the climate model

output and observations at each site. Assuming a parametric form for the PDF, this

translates to evaluating bias in the parameters of the site-level PDFs, as discussed

in Sect. 3.2.1. In order to model bias in real-world phenomena while considering

the intrinsic spatial structure, the parameters are allowed to vary spatially using

stochastic processes, see Sect. 3.2.2. After evaluating bias across the domain, the

methodology in this paper can be combined with current approaches of correcting

bias in climate models, such as quantile mapping, discussed further in Sect. 3.2.3.

3.2.1 Bias in Random Variables

Consider a specific in situ observation site (e.g. an automatic weather station) with

measurements of some variable y = [y1, y2, . . . , yn], such as midday temperature,

and also comprehensive predictions from a climate model at the same location z =

[z1, z2, . . . , zk]. In this scenario, bias can be defined in terms of discrepancy between

the PDFs of the in situ observations and the climate model predictions. In particular,

assuming a parametric density function for both random variables, bias is translated

to the discrepancy between the parameters of the PDFs. For example, assuming
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the observation measurements are independent and identically distributed (i.i.d.)

with normal distribution Y ∼ N (µY , σY ) and the equivalent for the climate model

outcomes Z ∼ N (µZ , σZ), then bias can be quantified by some discrepancy function

of the mean parameters (µZ , µY ) and the standard deviations (σZ , σY ). This function

can be defined in different ways, such as the difference b(µZ , µY ) = µZ − µY or the

ratio b(σZ , σY ) = σZ/σY .

3.2.2 Bias with Spatially Varying Parameters

Real-world applications, such as impact studies, typically require bias to be

evaluated over a spatial region rather than just at a point. Consider a collection

of n observational sites [ys1 , . . . ,ysn ], where for each site i there exists m daily

measurements of some property such as midday temperature ysi = [ysi,1, . . . , ysi,m].

In addition, consider gridded output from a climate model of the same property

at different locations s∗. In this scenario, instead of defining bias in terms of the

discrepancy in the PDFs at a single point, bias can be defined with respect to the

two latent spatial processes underlying the observed data {Y (s)} and the climate

model output {Z(s)}. This allows bias to be estimated across the domain.

As an example, assume that observations and the climate model output come

from the spatial stochastic processes {Y (s) ∼ N (µY (s), σY (s))} and {Z(s) ∼

N (µZ(s), σZ(s))} respectively, where the distribution of data at each location s

is normal with spatially varying parameters [µ(s), σ(s)]. The spatial structures

of the latent processes are inherited from the spatial structures in the parameters,

which are themselves modelled throughout the domain as spatial stochastic processes

{µY (s)}, {σY (s)}, {µZ(s)} and {σZ(s)}. In this paper, GPs are used to model

the spatial structures, which explicitly capture relationships for the expectation

and covariance between points across the domain, see Sect. 3.3.3. Bias is then

defined by some discrepancy function of these spatially varying parameters, such as

b(µZ(s), µY (s)) = µZ(s)− µY (s).
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3.2.3 Bias Correction

Climate model simulations are useful for impact assessments due to the their

comprehensive spatiotemporal coverage and ability to predict climate change signals,

although bias in the output precludes direct interpretation (Ehret et al., 2012).

Bias correction involves using observational data to predict and then reduce bias

in the climate model output. Techniques vary in focus and complexity, from using

observations to apply an adjustment to the mean in the case of the delta change

method (Das et al., 2022), to adjusting the whole PDF of the climate model output

in the case of quantile mapping (Qian and Chang, 2021), and to approaches that use

Generalised Additive Models (GAMs) to approximate transfer functions between the

climate data and the observed values (Beyer et al., 2020). Various studies compare

relative performance between methods (Teutschbein and Seibert, 2012; Räty et al.,

2014; Beyer et al., 2020; Mendez et al., 2020). Typically all approaches fail to capture

uncertainty and explicitly model the spatial dependency between points and of the

processes under study, not considering correlation between nearby measurements.

The approach proposed in this paper combines the use of a Bayesian hierarchical

model for predicting bias across the region, while explicitly modelling underlying

spatial structures and capturing uncertainty, with the established approach of

quantile mapping for applying the final correction to the climate model output.

The details of the Bayesian hierarchical model are given in Sect. 3.3. The data

is treated as generated from latent stochastic processes, as in Sect. 3.2.2, and

estimates are made for parameters of the site-level PDFs of the observations and

climate model output across the domain. This allows quantile mapping at each

grid point of the climate model output to then be applied. Specifically, for each

value of the time series from the climate model output at a given point (zsi,j),

this involves finding the percentile of that value and then mapping the value onto

the corresponding value of the equivalent percentile of the PDF estimated from

observational data. The cumulative density function (CDF) returns the percentile

of a given value and the inverse CDF returns the value corresponding to a given
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percentile, which results in the following correction function ẑsi,j = F−1
Ysi

(FZsi (zsi,j)),

where F ,si represents the CDF at the site si. The CDF can be estimated as an

integral over the parametric form assumed for the PDF. The Bayesian hierarchical

model presented provides a collection of realisations for the PDF parameters at each

site from an underlying latent distribution. Applying quantile mapping with each

set of realisations then results in a collection of bias corrected time series, with an

expectation and uncertainty.

The approach presented builds upon that of Lima et al., 2021 where the spatial

dependency between in situ observations is modelled when estimating the PDF

parameters and then quantile mapping applied. In Lima et al., 2021 the spatial

structure in the climate model output is not explicitly modelled though, whereas

in this paper the shared spatial structure between the observations and the climate

model output is accounted for when conditioning, discussed further in Sect. 3.3.3.

This is particularly important for regions of sparse in situ observations and results

in conserving some of the information available from the climate model on the true

spatial variation of parameters. Incorporating and partially conserving the spatial

covariance structure of the climate model is desirable as it is derived from well

established physical laws and reflects the assumption that the climate model itself

provides skill in assessing the site level parameters across the domain (Ehret et al.,

2012). Additionally, in this paper the hierarchical model is embedded in a fully

Bayesian framework and uncertainty in the PDF parameter estimates is propagated

through the quantile mapping procedure to the bias corrected climate time series,

which is missing from Lima et al., 2021.

3.3 Bias Prediction Methodology

The goal of the methodology developed and presented in this paper is to evaluate

the bias in the climate model output across the domain in a framework that captures

uncertainty robustly and that preserves information available from both the in
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situ observations and climate model output on underlying spatial structures. The

resulting predictive bias can be coupled with known bias correction methods, such

as quantile mapping, with the benefits of uncertainty quantification and inherited

spatial structure. The overarching approach is summarised in Sect. 3.3.1 with a

specific example given in Sect. 3.3.2. The properties of GPs are discussed in Sect.

3.3.3.

3.3.1 Model Overview

In a probabilistic framework, the in situ observations and climate model output are

treated as realisations from latent spatiotemporal stochastic processes, denoted as

{Y (s, t) : s ∈ S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T }, respectively. Stochastic

processes are sequences of random variables indexed by a set, which in this case are

the spatial and temporal coordinates in the domain (S,T ). A random variable is

attributed to each spatiotemporal coordinate (Y (s, t), Z(s, t)). The data observed

is then considered a realisation of the joint distribution over a finite set of random

variables across the domain.

For the purpose of bias prediction, the random variables are treated as

independent and identically distributed across time, such that for a given location s,

Y (s, t) | φY (s)
i.i.d.∼ FY (φY (s)) and Z(s, t) | φZ(s)

i.i.d.∼ FZ(φZ(s)), where FY (·) and

FZ(·) represent some generic site-level distributions with spatially varying vector

parameters φY (s) and φZ(s). This follows from evaluating the time-independent

component of the climate model bias. Consider evaluating bias in the values

of January midday near-surface temperature over a region. While the values of

nearby days are clearly dependent on each other, since focus is on evaluating time-

independent bias, the time component of the data is dropped and only the marginal

distribution considered. The marginal distribution in this case gives the probability

of a certain value of January midday temperature just based on location and could

for example be approximated as normal with mean and variance parameters, as

mentioned in Sect. 3.2.1. In the case of other climatological fields such as rainfall
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a more appropriate distribution might be that of a Bernoulli-Gamma with its own

collection of parameters, as used in Lima et al., 2021. Caution in this treatment

should be applied in cases where, for example, the observational site only has a

limited number of days of data and these are bunched around the same relatively

short time period, since this period is unlikely to be representative of the time series

as a whole.

The disparity between the spatially varying parameters φY (s) and φZ(s) in the

site-level marginal distributions serves as a measure of bias. Specifically, as in Sect.

3.2.2, the bias for each parameter φi can be defined by some discrepancy function

φB,i(s) = bi(φY,i(s), φZ,i(s)). Alternatively, the parameters associated with the

climate model output φZ,i(s) can be defined as a function of the unbiased parameters

φY,i(s) and a latent bias function φB,i(s). In this paper an additive relationship is

used, such that φZ,i(s) = φY,i(s)+φB,i(s). Additionally, the bias φB,i(s) is considered

independent of the value of φY,i(s). To estimate the parameters across the domain

and quantify the bias, these spatially varying parameters are modelled as spatial

stochastic processes with hyper-parameters θ. It’s important to note that since the

collection of parameters may not necessarily all belong to the same parameter space,

their representation can be standardized by applying a link function transformation

to some of the parameters φ̃i = hi(φi) so that all parameters can be represented by

the same family of stochastic processes. In the methodology presented in this paper

the family of Gaussian processes is used to model spatial dependencies. The full

hierarchical model is then the following, with dependencies illustrated through the

plate diagram shown in Fig. 3.1.
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Y (s, t) | φY (s)
i.i.d.∼ FY (φY (s)) (3.1)

Z(s, t) | φZ(s)
i.i.d.∼ FZ(φZ(s)) (3.2)

φZ,i(s) = φY,i(s) + φB,i(s) if correct support,

φY,i(s) ⊥⊥ φB,i(s)

φY,i(s)∼GP(·, ·|θφY,i)

φB,i(s)∼GP(·, ·|θφB,i)

φ̃Z,i(s) = φ̃Y,i(s) + φ̃B,i(s) if link function required for correct support.

φ̃Y,i(s) ⊥⊥ φ̃B,i(s)

φ̃Y,i(s)∼GP(·, ·|θφ̃Y,i)

φ̃B,i(s)∼GP(·, ·|θφ̃B,i)

(3.3)

θY

φY (s)

Y (s)

θB

φB(s)

φZ(s)

Z(s)
Site (si ∈ S)

Figure 3.1: Plate diagram showing a generic version of the full hierarchical

model. The in-situ observations Y and climate model output Z are generated

from distributions with the collection of parameters φY and φZ respectively. The

parameters φZ are modelled as some function of the parameters φY and some

independent bias φB. The parameters φY and the corresponding bias φB are each

themselves modelled over the domain as generated from Gaussian processes with

hyper-parameters θY and θZ .
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Gaussian processes naturally introduce spatial structure into the parameters and

enable inference with misaligned data. Predictive estimates of the PDF parameters

for each data source can be made for any set of locations across the domain.

Estimates at the climate model output locations are needed for bias correction,

while there’s also the possibility to compute estimates at higher resolution and

combine with a downscaling approach, as in Lima et al., 2021. Additional added

benefits of GPs include properties that facilitate inference, for example the additive

property where the sum of two independent GPs is itself also represented as a GP.

More details following on from this and the application of GPs in the methodology

is provided in Sect. 3.3.3.

Inference on the parameters of site-level and spatial distributions of the model

given the data is applied in a Bayesian hierarchical framework, where parameters

of the model are treated as random variables with distributions. The distribution

prior to conditioning on any data is known as the prior distribution and allows

the incorporation of a domain specific expert’s knowledge in the estimates of the

parameters. The updated distribution after conditioning on the observed data

is known as the posterior and is approximated using Markov chain Monte Carlo

(MCMC) methods, which provide samples from the posterior. An important

advantage of this framework is it allows flexible extensions of the model while

automatically maintaining robust uncertainty estimation. This results in the model

being applicable to a wide range of problems and domains, especially important for

correcting climate model output since there’s a broad range of users interested in

different variables and domains with varying levels of complexity.

3.3.2 Specific Model Example

Take the case of evaluating bias in the output of near-surface temperature from

a climate model relative to some in situ observations. The output from the

in situ observations and the climate model are each considered as realisations

from latent spatiotemporal stochastic processes, {Y (s, t) : s ∈ S, t ∈ T } and
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{Z(s, t) : s ∈ S, t ∈ T } respectively. To evaluate bias the time-independent

marginal distributions are taken and the data treated as realisations from the

spatial stochastic processes {Y (s) : s ∈ S} and {Z(s) : s ∈ S}. Temperature is

known to have diurnal and seasonal dependency and so for the in situ observation

measurements to be representative of the time-independent marginal distribution

there must be an equal spread of the data over the time of day and season. To reduce

this requirement the data can be filtered to just midday January values. Filtering

the data has the added benefit of simplifying the marginal distribution and so also

the interpretation of bias, allowing the bias to be evaluated for different seasons

individually. In the case of January midday temperature, the site-level marginal

distributions can be approximated as normal, such that Y (s) ∼ N (µY (s), σY (s))

and Z(s) ∼ N (µY (s), σY (s)).

Treating the site-level distributions as normal results in bias being defined in

terms of disparities in the mean and standard deviation parameters between in situ

observations and climate model output, such that µB(s) = b1(µY (s), µZ(s)) and

σB(s) = b2(σY (s), σZ(s)). Bias in the climate model output and the parameters

of the in situ observations are considered independent and both generated from

separate spatial stochastic processes. For example, the bias in the mean µB(s) is

considered independent of the mean of the in situ observations µY (s) and both are

modelled as generated from separate GPs: µY (s) ∼ GP(mµY , kRBF (s, s′|vµY , lµY ))

and µB(s) ∼ GP(mµB , kRBF (s, s′|vµB , lµB)). In this example the mean function of

the GP is considered a constant and the kernel/covariance function is considered a

radial basis function parameterised by a kernel variance and length scale. Defining

the relationship µZ(s) = µY (s) + µB(s) allows advantage of the property that

the sum of 2 independent GPs is itself a GP, such that µZ(s) ∼ GP(mµY +

mµB , kRBF (s, s′|vµY , lµY ) + kRBF (s, s′|vµB , lµB)). see Sect. 3.3.3.

In the case of the standard deviation the parameter space (σ(s) ∈ R>0)

is not the same as the sample space of a GP (R) and so a link function is

applied log(σ(s)) = σ̃(s) ∈ R. The transformed parameters are then modelled
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as being generated from GPs: σ̃Y (s) ∼ GP(mσ̃Y , kRBF (s, s′|vσ̃Y , lσ̃Y )) and σ̃B(s) ∼

GP(mσ̃B , kRBF (s, s′|vσ̃B , lσ̃B)). To again take advantage of the property that the

sum of 2 independent GPs is itself a GP, the relationship σ̃Z(s) = σ̃Y (s) + σ̃B(s)

is defined. The parameter σ̃Z(s) is then distributed as: σ̃Z(s) ∼ GP(mσ̃Y +

mσ̃B , kRBF (s, s′|vσ̃Y , lσ̃Y ) +kRBF (s, s′|vσ̃B , lσ̃B)). After predictions across the domain

are made of the transformed parameter the inverse link function can be applied to

get estimates of the non-transformed parameter.

The diagram in Fig.3.2 gives a representation of this full model in a hierarchical

framework. Applying MCMC inference provides posterior realisations of the

parameters of the model. This includes realisations from the posterior distribution of

µY and σ̃Y at all in situ observation locations and all climate model output locations,

as well as realisations from the posterior of µB and σ̃B at all the climate model

output locations. These realisations in addition to those of the parameters from the

generating GPs can be used to compute the posterior predictive distribution of the

parameters [µY , σ̃Y , µB, σ̃B] everywhere in the domain. For the purpose of applying

bias correction, the posterior predictive distribution for these parameters can be

evaluated at the locations of the climate model output. The parameters µZ and

σ̃Z can then be computed and quantile mapping applied to transform the predicted

distribution of the climate model output onto that of the predicted distribution for

in situ observations. Applying quantile mapping or alternative methods for multiple

realisations of the parameters provides an expectation and uncertainty band for the

bias corrected output.
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mµY vµY lµY mσ̃Y vσ̃Y lσ̃Y mµB vµB lµB mσ̃B vσ̃B lσ̃B

µY (s) σ̃Y (s) µB(s) σ̃B(s)

µZ(s) σ̃Z(s)

Y (s) Z(s)

Y (s) ∼ N (µY (s), σY (s))

Z(s) ∼ N (µZ(s), σZ(s))

σ̃Y (s) = log(σY (s))

σ̃Z(s) = log(σZ(s))

µZ(s) = µY (s) + µB(s)

σ̃Z(s) = σ̃Y (s) + σ̃B(s)

µY (s) ∼ GP(mµY , kRBF (s, s
′|vµY , lµY )) σ̃Y (s) ∼ GP(mσ̃Y , kRBF (s, s

′|vσ̃Y , lσ̃Y ))
µB(s) ∼ GP(mµB , kRBF (s, s

′|vµB , lµB )) σ̃B(s) ∼ GP(mσ̃B , kRBF (s, s
′|vσ̃B , lσ̃B ))

Sites (s ∈ S)

Figure 3.2: Plate diagram with directed acyclic graph showing the full hierarchical

model for the case where the site-level distributions are assumed normal with

parameters µ and σ. The distribution of these parameters across the domain is

modelled with Gaussian processes.

3.3.3 Capturing Spatial Structure with Gaussian Processes

A collection of random variables φ = [φs1 , φs2 , ..., φsk ] indexed according to location

in a domain can be modelled through a spatial stochastic process, such as {φ(s) :

s ∈ S} (shorthand {φ(s)}), where S represents the region under study. The

family of Gaussian processes (Rasmussen, 2004) have the property that any finite

subset of random variables across the domain are modelled as multivariate normal

(MVN) distributed. Consider a collection of k random variables, then the joint

distribution between these variables is MVN with φ ∼ Nk(µ,Σ) where φ is some

k dimensional random vector, µ is some k dimensional mean vector and Σ is some

k · k dimensional covariance matrix. Parameterising the mean and covariance of the

MVN distribution then gives the GP, which provides a distribution over continuous

functions φ(s) ∼ GP(m(s), k(s, s′)). The collection of parameters for the mean and

covariance functions are often referred to as hyper-parameters.

56



3.3. Bias Prediction Methodology

The mean function m(s) of a GP gives the expectation of the parameter at the

location index, allowing global relationships for the variable given predictors. In this

paper the mean function is considered as a constant across the domain for simplicity,

such that m(s) = m. In real-world applications a more complex relationship is

likely to be useful, for example Eq. (3.4) assumes a second order polynomial in two

predictors, where the predictors x1(s) and x2(s) could be elevation and latitude.

m(s) = b0+b1·x1(s)+b2·x2(s)+b3·x1(s)·x2(s)+b4·x1(s)2+b5·x2(s)2 = x(s)Tβ (3.4)

The kernel (covariance) function is typically some function of distance between

points d(s, s′), parameterised by a length scale l and kernel variance v, for example

Eq. (3.5) gives the well known Radial Basis Function (RBF) for the kernel.

The function of distance could be Euclidean or geodesic and arbitrarily complex,

including factors such as wind paths, etc. The 2D Euclidean case is given in Eq.

(3.6), where predictors x3(s) and x4(s) could for example be latitude and longitude,

which for relatively small distances near the equator are approximately Euclidean.

In Fig. 3.3, an example of how the covariance decays with distance is given for

the RBF kernel and realisations of a conditioned GP with the equivalent kernel are

illustrated.

kRBF (s, s′) = v · exp
(
−d(s, s′)2

2l2

)
(3.5)

d(s, s′) =
√

(x3(s′)− x3(s))2 + (x4(s′)− x4(s))2 (3.6)

The kernel is often assumed stationary for simplicity, as in Lima et al., 2021,

meaning that the relationship between covariance and distance is consistent across

the domain of study. This assumption is used in the methodology presented in

this paper and in the simulated examples given in Sect. 3.4. The validity of the

stationarity assumption should be assessed on an application basis, with factors such

as complex topography contributing to non-stationarity.
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Figure 3.3: A) Values of the RBF function with a kernel variance equal to 1 and

length scale equal to 20. B) Realisations of the GP with the equivalent kernel as

in A and conditioned on 3 data points. The expectation and uncertainty of the

distribution are shown.

Gaussian processes have the property that the sum of independent GPs is also a

GP. This property is utilised in this paper as the additive relationship φZ = φY +φB

is assumed, where φY and the bias φB are taken as independent and generated

from latent Gaussian processes. Note that in the case of different supports between

the parameter space and that of the sample space of a Gaussian process, then

a link function is included and the relationship φ̃Z = φ̃Y + φ̃B assumed, where

the parameters φ̃Y and φ̃B are modelled as independent and generated from GPs.

Assuming an additive relationship results in an easy to define distribution for φZ

(or φ̃Z), which is a GP where the mean and covariances are simply the sum of the

values from the independent GPs:

mφZ = mφY +mφB (3.7)

kφZ (s, s′) = kφY (s, s′) + kφB(s, s′) (3.8)

This relationship captures the belief that the climate model output has some
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shared latent spatial covariance structure with the in situ observations but is

inflicted by an independent bias. This relationship is shown graphically in Fig.

3.4. Additionally, an illustration for simulated realisations of φY (s) and φB(s) from

two underlying, independent latent GPs is provided in Fig. 3.5, where φZ(s) is also

shown as the sum of the two realisations.

mφY vφY lφY

φY (s)

mφB vφB lφB

φB(s)

φZ(s)

Figure 3.4: Directed acyclic graphs showing the joint dependency of the population

parameters from the observations and the climate model.
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Y (m = 1, kRBF(s, s′|v = 1, l = 3))
B (m = 1, kRBF(s, s′|v = 1, l = 10))
Z = Y + B

Figure 3.5: An illustration in 1 dimension of the parameters φY and φB across some

domain 0 ≤ s ≤ 100. The parameters are realisations generated from GPs with

different means and length scales. The parameter φZ is given as the sum of φY and

φB.

In order to estimate the parameters relating to for example the in situ

observations across the domain at some new locations φY (ŝ), conditioning is then

performed on both the values of the parameter observed at the observation locations
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φY (s∗) and the values of the parameter for the climate model output at the locations

predicted by the climate model φZ(s′).

3.4 Simulated Examples

The goal of the model is primarily to estimate, with reliable uncertainties, the true

unbiased values of the PDF parameters at each location of the climate model output

so bias correction can be applied. The model additionally infers the spatial structure

of these parameters and their bias. Results are presented to highlight the advantage

of two key features of the methodology over other approaches in the literature:

modelling shared spatial covariance between the in situ data and climate model

output through the inclusion of a shared generating latent process (Sect. 3.4.1) and

the Bayesian hierarchical nature and uncertainty propagation (Sect. 3.4.2). One

dimensional simulated examples are chosen for clarity in illustrating these features,

although it is noted the implementation works for higher dimensional domains as

is useful in real-world scenarios. The steps for generating the data and the results

are presented separately for each example, while the discussion of results is done

together in Sect. 3.5.

Inference of the parameters of the models is done in a Bayesian framework using

MCMC and the No-U-Turn Sampler (NUTS) algorithm (Hoffman and Gelman,

2014) implemented in Numpyro (Phan et al., 2019). The number of MCMC steps

for warm up is taken as 1000, while the number of MCMC samples to take of

parameters after warmup is 2000 and the number of chains is taken as 2. The

parameters are treated as random variables with associated probability distributions.

A prior distribution is set for each parameter and represents the belief on the

distribution before observing any data, which typically incorporates knowledge from

application specific experts. In the examples presented, relatively non-informative

priors are chosen since the data is simulated and represents generic examples. The

posterior distribution of each parameter is the updated distribution after observing
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and conditioning on the data. Estimates of the parameters φY (s), φZ(s) and the

corresponding bias φB(s) across the domain given the posterior and the observed

data is then referred to as the posterior predictive.

3.4.1 Shared Latent Generating Processes: Non-Hierarchical

Example

A non-hierarchical example is presented where direct measurements are assumed

for one parameter of the PDFs for the in situ observations φY (s) and for the

climate model output φZ(s). The goal is to predict the parameter φY (s) across

the spatial domain using information from both the simulated in situ observations

and climate model output, which are related through φZ = φY +φB. The parameters

φY (s) and φB(s) are considered independent and generated from Gaussian processes.

Comparison is made to the approach of inferring φY (s) just from the in situ data,

as in Lima et al., 2021. The purpose of this example is to illustrate the advantage

of modelling shared latent generating processes between the observational data and

the climate model output, as in Fig. 3.4. Relative performance is evaluated for

three alternative simulated scenarios that correspond to different possible real-world

situations.

3.4.1.1 Simulated Data

The simulated data in this example is generated assuming the dependency in Fig. 3.4

and the relationship φZ = φB+φY , where φY and φB are assumed independent. The

latent Gaussian process distributions that generate φY and φB across the domain are

taken with constant mean and an RBF kernel (Eq. (3.5)). The hyper-parameters

of these latent distributions and the number of simulated observations are set for

three scenarios, as given in Table 3.1. The prior distributions of the parameters are

taken as the same for each scenario. Specifics of the data generation are given in

Sect. B.2 of the appendix.

The three scenarios represent different potential real-world situations and the
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data generated for each is shown in Fig. 3.6. The first scenario (Fig. 3.6a) represents

an example case where it is expected that there is ample data provided in the form

of in situ observations to capture the features of the underlying complete realisation

of φY without significant added value provided from inclusion of the climate model

output during inference. The second scenario (Fig. 3.6b) is an adjustment where the

in situ observations are relatively sparse and the underlying bias is relatively smooth.

In this situation the climate model output should provide significant added value in

estimating φY across the domain since it is only afflicted by a comparatively simple

bias that is easy to estimate. The final scenario (Fig. 3.6c) also involves sparse in situ

observational data but with a reduced smoothness of the bias compared to other

scenarios. In this scenario the climate model output should provide added value

in estimating φY across the domain but this will be limited compared to scenario

two due to the difficulty of disaggregating and estimating the comparatively more

complex bias.

Scenario 1 Scenario 2 Scenario 3

In-Situ Kernel Variance (vφY ) 1.0 1.0 1.0

In-Situ Kernel Lengthscale (lφY ) 3.0 3.0 3.0

In-Situ Mean Constant (mφY ) 1.0 1.0 1.0

In-Situ Observation Noise (σφY ) 0.1 0.1 0.1

Bias Kernel Variance (vφB ) 1.0 1.0 1.0

Bias Kernel Lengthscale (lφB ) 10.0 20.0 5.0

Bias Mean Constant (mφB ) -1.0 -1.0 -1.0

# In-Situ Observations 80.0 20.0 20.0

# Climate Model Predictions 100.0 80.0 80.0

Table 3.1: A table showing the hyper-parameters of the two latent Gaussian

processes used to generate the complete underlying realisations of φY , φB and hence

φZ , as well as observations of φY and φZ , on which inference is done for three

scenarios. The number of observations representing in-situ data and climate model

output is also given.
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Figure 3.6: A figure showing simulated observed data for the parameters φY , φZ as

well as the underlying latent functions for each parameter and the underlying bias

φB, defined through φZ = φB + φY . Three scenarios are shown and correspond to

data generated from parameters in Table 3.1. The Std.Dev of the noise term when

generating the in situ observations is 0.1.

3.4.1.2 Results

The expectation, standard deviation and 95% credible intervals for the prior

distribution and posterior distribution after inference of each parameter under the

three different scenarios is given in Table 3.2. Comparisons are shown in the statistics

between the posterior distributions of the full model presented in this paper, referred

to as the shared process model, and the case where only the parameters for the in

situ data are modelled as generated from a latent Gaussian processes, referred to

as the single process model. In Sect. B.3 of the appendix, an illustration is given

of the prior and posterior distributions of each parameter after inference with the
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shared process model for scenario one.

Under all scenarios and for both the shared process and single process models the

95% credible interval of the posterior for every hyper-parameter bounds the value

specified in generating the data. The expectation for the posterior distribution of

the shared process model is in general closer to the specified value than the single

process model and the range of the credible interval is smaller. In scenario one the

differences between the models posteriors are relatively insignificant, although the

shared process model does show a reduction in the uncertainty of the length scale for

the latent process generating φY . In scenario two the difference is more significant

and clear improvement is shown in both the expectation and uncertainty of latent

parameter estimates for the shared process model. Improvement is also clear in

estimates from the 3rd scenario, although the relative difference in performance

between models is less significant.

Predictions for the underlying fields of the parameters φY (s), φZ(s) and the

corresponding bias φB(s) across the domain given the data, referred to as the

posterior predictive, are shown in Fig. 3.7 for each scenario and for both the

shared and single process models. The true underlying fields that the simulated

observations were sampled from is also shown. The single process model is only

concerned with estimating the underlying field of φY (s) across the domain given

observations of the parameter for the in situ data, so in Figs. 3.7a, 3.7c and 3.7e the

climate model output and bias fields are excluded. To perform bias correction of

the climate model output through quantile mapping, posterior predictive estimates

of φY (s) at the climate model output locations are required. The relative ability of

the shared and single process models to estimate this is further assessed through R2

scores, presented in Table 3.3.

In Fig. 3.7 it can be seen that the predictions of φY (s) across the domain

in the shared process case (Fig. 3.7b, 3.7d and 3.7f) are closer to the true

underlying field and with smaller but still realistic uncertainty compared to the single

process model. In addition to visual examination, further validation of the credible
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intervals could be performed by re-running the results for multiple realisations of the

underlying data for the scenarios, keeping the parameter values used for generating

the data the same. For a specific location the credible interval could be evaluated

by computing the proportion of the time the actual value is within the credible

interval of the prediction. In scenario one, the difference between the posterior

predictive distributions for φY (s) across the domain between the two approaches is

not substantial, with both models performing adequately, having R2 scores of 0.99

and 0.97 respectively. In scenario two, the difference between estimates of φY (s)

between the models is significant with R2 scores of 0.99 and 0.68 for the shared

and single process models respectively. Finally, in scenario three there is again a

significant difference in the estimates of φY (s) between the models, with R2 scores of

0.74 and 0.52 respectively, although the difference is reduced compared with scenario

two.
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Scenario 1 Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In Situ Kernel Variance vφY 1.0 0.67 0.67 0.02 2.46 1.25 0.30 0.73 1.86 1.04 0.31 0.57 1.69

In Situ Kernel Lengthscale lφY 3.0 15.00 8.66 3.09 36.12 2.96 0.06 2.85 3.08 2.73 0.20 2.32 3.10

In Situ Mean Constant mφY 1.0 0.00 2.00 -3.92 3.92 1.14 0.28 0.61 1.68 1.23 0.26 0.74 1.76

In Situ Observation Noise σφY 0.1 2.00 2.00 0.05 7.38 0.11 0.01 0.09 0.12 N/A N/A N/A N/A

Bias Kernel Variance vφB 1.0 15.00 8.66 3.09 36.12 2.10 1.30 0.48 4.72 N/A N/A N/A N/A

Bias Kernel Lengthscale lφB 10.0 0.00 2.00 -3.92 3.92 11.45 1.28 9.07 14.00 N/A N/A N/A N/A

Bias Mean Constant mφB -1.0 0.25 0.14 0.01 0.49 -1.00 0.64 -2.31 0.24 N/A N/A N/A N/A

Scenario 2 Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In Situ Kernel Variance vφY 1.0 0.67 0.67 0.02 2.46 1.13 0.28 0.66 1.66 1.49 0.53 0.65 2.55

In Situ Kernel Lengthscale lφY 3.0 15.00 8.66 3.09 36.12 2.97 0.06 2.86 3.09 3.70 0.44 2.83 4.56

In Situ Mean Constant mφY 1.0 0.00 2.00 -3.92 3.92 0.70 0.27 0.15 1.22 0.69 0.40 -0.14 1.44

In Situ Observation Noise σφY 0.1 2.00 2.00 0.05 7.38 0.12 0.03 0.08 0.18 N/A N/A N/A N/A

Bias Kernel Variance vφB 1.0 15.00 8.66 3.09 36.12 1.24 0.99 0.16 3.23 N/A N/A N/A N/A

Bias Kernel Lengthscale lφB 20.0 0.00 2.00 -3.92 3.92 23.69 5.79 12.29 34.90 N/A N/A N/A N/A

Bias Mean Constant mφB -1.0 0.25 0.14 0.01 0.49 -0.66 0.64 -1.87 0.62 N/A N/A N/A N/A

Scenario 3 Specified Prior Distribution Posterior Dist. (Shared Process) Posterior Dist. (Single Process)

Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In Situ Kernel Variance vφY 1.0 0.67 0.67 0.02 2.46 1.18 0.33 0.62 1.83 0.85 0.33 0.30 1.50

In Situ Kernel Lengthscale lφY 3.0 15.00 8.66 3.09 36.12 3.00 0.07 2.87 3.14 3.08 0.49 2.03 3.96

In Situ Mean Constant mφY 1.0 0.00 2.00 -3.92 3.92 0.95 0.30 0.35 1.53 0.90 0.29 0.33 1.48

In Situ Observation Noise σφY 0.1 2.00 2.00 0.05 7.38 0.16 0.06 0.03 0.27 N/A N/A N/A N/A

Bias Kernel Variance vφB 1.0 15.00 8.66 3.09 36.12 1.50 1.02 0.28 3.56 N/A N/A N/A N/A

Bias Kernel Lengthscale lφB 5.0 0.00 2.00 -3.92 3.92 6.34 1.71 3.23 9.20 N/A N/A N/A N/A

Bias Mean Constant mφB -1.0 0.25 0.14 0.01 0.49 -1.17 0.50 -2.11 -0.10 N/A N/A N/A N/A

Table 3.2: A table showing summary statistics for the prior and posterior

distributions including the expectation (Exp.), standard deviation (Std. Dev.) and

lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The

posterior distributions for the shared and single process models are given. The

specified value for each parameter used to generate the data is also shown.
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Figure 3.7: Expectation and 1σ uncertainty of the posterior predictive distributions

across the domain for the parameter φY (s) and the corresponding bias φB(s) for

three scenarios. The underlying latent functions that the data are measurements of

is included.

67



Chapter 3. Bias Correction of Climate Models using a Bayesian Hierarchical
Model

Shared Process Model Single Process Model

Exp. Std.Dev. Exp. Std.Dev.

Scenario 1 0.99 0.00 0.97 0.01

Scenario 2 0.99 0.01 0.68 0.07

Scenario 3 0.74 0.12 0.52 0.10

Table 3.3: A table showing the expectation and standard deviation of R2 scores for

the posterior predictive estimates of φY at the climate model output locations for

the shared and single process models for each scenario.
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3.4.2 Bayesian Framework: Hierarchical Example

A hierarchical example is presented in this section where the in situ data and climate

model output are simulated at each site as generated from normal distributions, as

in the specific example given in Sect. 3.3.2. The goal of the model is the same as

in Sect. 3.4.1, that is to predict the parameters of the PDFs for the climate model

output and in situ observations at the locations of the climate model output. An

example of how uncertainty in these predictions can be propagated through bias

correction techniques such as quantile mapping is then presented. The purpose

of this section is to demonstrate the model working in the intended hierarchical

structure and to illustrate the benefit of having a fully Bayesian hierarchical model

for uncertainty estimation.

3.4.2.1 Simulated Data

The simulated data in this example is generated assuming the dependencies in Sect.

3.3.2 and Fig. 3.2. Defining Y (s, t) and Z(s, t) as the in-situ data and climate model

output respectively, then the time-independent PDF at each site is taken as normal

such that Y (s) ∼ N (µY (s), σY (s)) and Z(s) ∼ N (µY (s), σY (s)). The following

relationship is assumed for the mean parameters µZ(s) = µY (s) + µB(s), where

µB(s) is the bias in the mean for the climate data. For the standard deviation,

the parameters are first transformed using a logarithmic link function and then

the relationship σ̃Z(s) = σ̃Y (s) + σ̃B(s) is assumed, where σ̃B(s) is the bias in the

transformed parameter. The latent distributions that generate µY (s), µB(s), σ̃Y (s)

and σ̃B(s) across the domain are assumed as independent GPs with constant mean

and an RBF kernel. The hyper-parameters for these latent generating processes

are set for a single scenario, as given in Table 3.4. Further specifics of the data

generation is provided in Sect. B.2 of the appendix.

There are 40 locations corresponding to simulated in situ observation sites,

where for each site 20 measurements are generated. Likewise, there are 80 locations

corresponding to simulated climate model output and at each location 100 samples
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are generated. This reflects the typical scenario where the climate model output has

greater spatiotemporal coverage than in situ observations but is also afflicted with

greater bias. In Fig. 3.8 examples of the generated samples are shown corresponding

to the nearest sites for three locations. It is clear that, due to limited observations,

there will be significant uncertainty in estimates of the mean and standard deviation

parameters at each site and it’s important this uncertainty is propagated when

estimating the parameters across the domain. The underlying, complete realisations

of the parameters µY (s), µZ(s), σY (s) and σZ(s), as well as the bias µB(s) and σB(s),

are shown in Fig. 3.9. In addition, the mean value and standard deviation of the

generated data is given at the simulated in situ observation and climate model sites.

Hierarchical Scenario

In-Situ Mean, Kernel Variance (vµY ) 1.0

In-Situ Mean, Kernel Lengthscale (lµY ) 3.0

In-Situ Mean, Mean Constant (mµY ) 1.0

In-Situ Transformed Variance, Kernel Variance (vσ̃2
Y

) 1.0

In-Situ Transformed Variance, Kernel Lengthscale (lσ̃2
Y

) 3.0

In-Situ Transformed Variance, Mean Constant (mσ̃2
Y

) 1.0

Bias Mean, Kernel Variance (vµB ) 1.0

Bias Mean, Kernel Lengthscale (lµB ) 10.0

Bias Mean, Mean Constant (mµB ) -1.0

Bias Transformed Variance, Kernel Variance (vσ̃2
B

) 1.0

Bias Transformed Variance, Kernel Lengthscale (lσ̃2
B

) 10.0

Bias Transformed Variance, Mean Constant (mσ̃2
B

) -1.0

# Spatial Locations of In-Situ Observations 40.0

# Spatial Locations of Climate Model Predictions 80.0

# Samples per Location of In-Situ Observations 20.0

# Samples per Location of Climate Model Predictions 100.0

Table 3.4: A table showing the hyper-parameters used to generate the complete

underlying realisations and the measurement data on which inference is done for

the hierarchical scenario. The number of sites where data is generated along with

the number of samples for each site is also given.
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Figure 3.8: Histograms for the climate model output at three locations and the

corresponding data from the nearest in situ observation site. The locations are

a) s=11.4, b) s=46.8 and c) s=79.7. The latent normal distribution the data was

generated from is illustrated as a dotted line.
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Figure 3.9: Simulated underlying functions for the parameters µY (s), µB(s), µZ(s),

σ̃Y (s), σ̃B(s) and σ̃Z(s) as well as the values at the observation locations for the in

situ and climate model data. Vertical lines indicate values referred to in Fig. 3.8.

3.4.2.2 Results

The expectation, standard deviation and 95% credible intervals for the prior and

posterior distributions of each parameter are given in Table 3.5. The 95% credible

interval of the posterior for every hyper-parameter bounds the value specified in

generating the data. As expected the posterior distribution for each parameter

is concentrated closer to the value specified when generating the data than the

relatively non-informative prior distributions. The prior and posterior distributions
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for each parameter are plot in Fig. B.2 of the appendix.

Hierarchical Scenario Prior Distribution Posterior Distribution

Specified Value Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

In-Situ Mean, Kernel Variance vµY 1.0 0.67 0.67 0.02 2.46 1.00 0.32 0.49 1.63

In-Situ Mean, Kernel Lengthscale lµY 3.0 15.00 8.66 3.09 36.12 3.00 0.22 2.56 3.43

In-Situ Mean, Mean Constant mµY 1.0 0.00 2.00 -3.92 3.92 0.73 0.28 0.17 1.26

In-Situ Transformed Variance, Kernel Variance vσ̃2
Y

1.0 0.67 0.67 0.02 2.46 0.70 0.25 0.30 1.17

In-Situ Transformed Variance, Kernel Lengthscale lσ̃2
Y

3.0 15.00 8.66 3.09 36.12 2.94 0.24 2.47 3.40

In-Situ Transformed Variance, Mean Constant mσ̃2
Y

1.0 0.00 2.00 -3.92 3.92 1.12 0.24 0.66 1.61

Bias Mean, Kernel Variance vµB 1.0 0.67 0.67 0.02 2.46 1.38 0.63 0.42 2.58

Bias Mean, Kernel Lengthscale lµB 10.0 15.00 8.66 3.09 36.12 12.02 3.59 5.08 18.50

Bias Mean, Mean Constant mµB -1.0 0.00 2.00 -3.92 3.92 -0.78 0.56 -1.89 0.29

Bias Transformed Variance, Kernel Variance vσ̃2
B

1.0 0.67 0.67 0.02 2.46 0.92 0.48 0.24 1.86

Bias Transformed Variance, Kernel Lengthscale lσ̃2
B

10.0 15.00 8.66 3.09 36.12 8.97 1.96 5.07 12.58

Bias Transformed Variance, Mean Constant mσ̃2
B

-1.0 0.00 2.00 -3.92 3.92 -0.86 0.42 -1.73 -0.06

Table 3.5: A table showing summary statistics for the prior and posterior

distributions including the expectation (Exp.), standard deviation (Std. Dev.) and

lower and upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The

specified value for each parameter used to generate the data is also shown.

The posterior predictive estimate for the underlying fields of µY (s), µB(s), σY (s)

and σB(s) across the domain given the data is shown in Fig. 3.10. The true

underlying fields of the parameters are also shown, as are the mean and standard

deviation values of the samples of simulated in situ observations and climate model

outputs at the locations where they are sampled. The posterior predictive appears

to perform well at capturing the spatial features of the underlying fields while also

exhibiting a reasonable one sigma uncertainty range that bounds the majority of

the underlying function. For example, in the range of s ∈ [15, 25], where the

main data source is the biased climate model output, the prediction accurately

captures features of the true, unobserved latent mean µY (s) and standard deviation

σY (s). Uncertainty in the parameters of µY (s) and σY (s) at the observation sites,

due to limited samples, is propagated through the model. This is reflected in the
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uncertainty shown in estimates of the posterior predictive at the observation sites.

Bias correction of samples from the climate model output for a single site is

shown in Fig. 3.11. The site chosen is at s = 11.4 and is the same as in Fig.

3.8a. A generic time series for the climate model output and in situ observations is

generated from the correct mean and standard deviations of the samples. Quantile

mapping of the climate model time series is performed for each posterior predictive

realisation of µY (s), µZ(s), σY (s) and σZ(s). This results in multiple realisations of

bias corrected time series with an expectation and uncertainty.
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Figure 3.10: A figure showing the expectation and one sigma uncertainty of the

posterior predictive distribution across the domain for the parameters µY (s), µB(s),

σY (s) and σB(s) as well as their true underlying latent functions.
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Figure 3.11: Simulated time series for the climate model output at location s =

11.4 and for the nearest in situ observation site. Realisations of the climate model

bias corrected time series are shown along with the expectation and three sigma

uncertainty range.
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3.5 Discussion

The methodology presented in this paper assumes that each spatially varying

parameter of the PDF for the climate model output is generated from two

independent, latent GPs. One of these latent processes is also modelled to

generate the equivalent parameter for the PDF of the in situ data, while the other

latent process generates the bias. This reflects the belief that the climate model

provides skilful estimates of these parameters across the domain and that the spatial

covariance structure, generated from equations based on established physical laws,

has similar features to the true underlying structure. The climate model output,

while afflicted with bias, has comprehensive spatiotemporal coverage and provides

useful information in the inference of the true values of the parameters across the

domain, assuming the bias signal can be adequately deconstructed from the climate

model output with the use of in situ observations. Incorporating this into the model

presented in this paper provides added value over approaches where the parameters

φY (s) are inferred from the in situ observations alone, as in Lima et al., 2021. This

is demonstrated in Sect. 3.4.1, where added value is assessed for three scenarios

with differing density of observations and complexity of the bias signal.

Added value is assessed with respect to: summary statistics for the posterior

distributions of the parameters of the latent GPs, visual examination of the

expectation and standard deviation for posterior predictive estimates of the site-

level PDF parameters across the domain, and comparison of R2 scores for the PDF

parameter φY (s) at the locations of the climate model output. In Sect. 3.4.1.2

it is shown that most added value is provided, across all these measures, in the

case of scenario two, where in situ observations are sparse compared to the climate

model output and the underlying bias is relatively smooth compared to the unbiased

signal. The bias can be estimated with high accuracy and precision, despite sparse in

situ observations, since it varies smoothly across the domain, which also means the

climate model output can be disaggregated and the unbiased component estimated

across the domain with high accuracy and precision.
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It is also shown in Sect. 3.4.1.2 that if the density of in situ observations is

increased to similar levels as the climate model output itself, then the value added

from the climate model output in inference of the unbiased parameters is reduced.

This is demonstrated in scenario one, where the number of in situ observations is

sufficient to adequately capture the spatial features of the underlying process (Fig.

3.7) as well as the latent spatial covariance structure, encoded through the hyper-

parameter estimates of the latent GP (Table 3.2). Additionally, if the complexity

of the bias signal is increased, through for example reducing the length scale of

the latent generating process, then again added value is reduced. This is shown in

scenario three, where a relatively more complex bias compared with scenario two

makes it more difficult to disaggregate the climate model output into its biased and

unbiased components, thus reducing the benefit provided in estimates of φY (s). It

is noted that, while added value is reduced relative to scenario two, benefits are still

shown for scenarios one and three and incorporating the climate model output in

inference improves overall performance. It is noted, in real-world applications there

are various methods to evaluate the model performance. One method is Leave-One-

Out Cross-Validation (LOOCV), where a single observation is left out and used as

a validation point. The validation is repeated for each observation in turn and an

average performance metric computed.

In addition to shared latent processes, another important feature of the method-

ology presented in this paper is the Bayesian framework, where the parameters of the

model are treated as random variables with associated distributions. This framework

is flexible and allows for robust uncertainty propagation, which is important for

making the model applicable to a wide range of real-world applications where bias

prediction is required. Additionally, expert knowledge can be incorporated in the

inference through the choice of prior distributions, which is especially important

where the data is sparse. In Sect. 3.4.2 results for a simulated one dimensional

hierarchical example illustrate uncertainty propagation between parameter values

of the PDF at each sample site and the values of the hyper-parameters of the
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latent generating processes. Uncertainty present in the different levels of the

hierarchical model are incorporated in the final posterior predictive estimates of

the PDF parameters across the domain. These posterior predictive estimates can

be used in bias correction techniques, such as quantile mapping, which is illustrated

in Fig. 3.11. This results in multiple realisations of the final bias corrected time

series, with an expectation and uncertainty range. Robust uncertainty computation

that incorporates the spatial relationships between points is important for impact

assessments and resulting decision making. Having multiple realisations for the

final bias corrected time series is also useful for further propagation of uncertainty

in process models driven by climate model output, such as land surface models Liu

et al., 2014.

3.6 Conclusions

Current approaches for bias prediction and correction do not aim to preserve the

spatial covariance structure of the climate model output (Ehret et al., 2012). Climate

models are fundamentally based on established physical laws and so the covariance

structures are desirable since it is reasonable to assume that they are physically

realistic. In addition, current approaches typically either neglect uncertainty or

inadequately model uncertainty propagation through the model. In this paper a

fully Bayesian hierarchical model for bias correction is presented where latent GP

distributions are used to capture and preserve underlying covariance structures. The

Bayesian nature allows robust uncertainty propagation under a flexible modelling

framework where the model is easily expanded for specific real-world scenarios,

increasing the scope of the work.

Simple simulated examples are chosen to illustrate the key features of the model.

In Sect. 3.4.1, results are displayed for a non-hierarchical example where the focus

is on illustrating the nature of GPs and how assuming a shared latent GP between

the in situ data and climate model output allows inference on the unbiased field
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from both sources of data. This is shown to be particularly important in the case of

sparse data and a simple bias, where the climate model output provides significant

value added in predictions. In Sect. 3.4.2, results are presented for a hierarchical

case and focus is on illustrating how the model propagates uncertainty between the

different levels and to the final parameter predictions that are used in bias correction.

Uncertainty in the parameter estimates is easily propagated in bias correction of the

time series from the climate model at every location through the existing approach of

quantile mapping. This results in a bias corrected time series with uncertainty bands,

which is desirable for use in impact studies that compute predictions on responses

to climate change and for informing decisions based on these. This is especially true

in areas where the climatology is hard to model and in situ observations are sparse,

such as Antarctica, meaning the uncertainty is expected to be significant (Carter

et al., 2022b).

The model presented is a step towards adequately capturing uncertainty and

incorporating underlying spatial covariance structures from the climate model in

bias correction. The primary limitation is the assumption that the spatial structure

of the site-level parameters can be adequately modelled through a stationary GP.

Over large and complex topographic regions it is likely that the covariance length

scale will vary across the domain and this is something that will need assessing for

each specific application. Additionally, many real-world applications will necessitate

specific model adjustments, such as incorporating a mean function dependent on

factors like elevation and latitude, handling non-Gaussian data, and accounting for

other bias structures. Since the model is developed in a Bayesian framework and

inference on the parameters conducted with MCMC, model adjustments are simple

to incorporate with adequate uncertainty propagation. The next step then is to

apply the methodology to a real-world dataset, incorporating additional modelling

components and further exploring advantages as well as limitations that arise.
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Chapter 4

Applying Bias Correction to

Surface Climatology over

Antarctica

Accurate and comprehensive estimates of climatology over Antarctica are essential

for modelling the current and future stability of the ice sheet. Climate models

provide invaluable estimates of climatology useful for driving physical process

models, although the impact of biases in the output is not always considered or

adequately modelled. This paper provides the first real-world application case study

of a novel Bayesian hierarchical model for bias prediction and correction. This

novel approach considers underlying spatial covariance patterns in the data and

uncertainty in the correction applied. Near-surface air temperature output from the

state-of-the-art Modèle Atmosphérique Régional climate model is utilised and along

with in situ automatic weather station records, compiled across the ice sheet in a

recent study. Results are promising, with the methodology resistant to overfitting,

producing spatially smooth predictions over the ice sheet that improve agreement

with in situ observations and that demonstrate realistic estimates of uncertainty.
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4.1 Introduction

Antarctic surface climatology is an important driver of changes in mass balance

over the continent, with wide-ranging implications for the biosphere (Oppenheimer

et al., 2022). Non-linear, physical processes, such as ice shelf collapse (Banwell et al.,

2013; Pollard et al., 2015) and albedo feedbacks (Buzzard et al., 2018) among others,

can result in regime shifts where dramatic mass change can occur (Shuman et al.,

2011). In R. M. DeConto and Pollard, 2016 it is hypothesised that under certain

regimes by 2100 Antarctica could contribute over 1 m of sea level rise, displacing

hundreds of millions of people (Nicholls et al., 2011). Accurate estimates of surface

climatology across Antarctica are therefore imperative to inform impact assessments

and our understanding of the likelihood of regime shifts, for which the community

is primarily dependent on physically based climate models due to sparse in situ

observations.

To understand the current state and predict the future state of the ice sheet

requires high-resolution, skilful estimates of local climatology, typically provided

by dynamical downscaling from regional climate models (RCMs) (Luckman et al.,

2014). These are comparatively high-resolution climate models nested inside lower-

resolution Global Climate Models (GCMs) or reanalysis datasets. The RCMs are

typically tuned for the specific continent/region of interest and include features such

as sophisticated land-surface schemes with region-specific adaptations (Lenaerts and

M. R. v. d. Broeke, 2012; Giorgi, 2019). While RCMs are shown to provide skilful

estimates of surface climatology over regions such as Antarctica (Jan Melchior van

Wessem et al., 2015; Agosta et al., 2019), significant systematic errors/differences

between the models are also shown, both globally and regionally (Mottram et

al., 2021; Carter et al., 2022a). It’s important to consider the influence of these

biases on impact assessments, propagating uncertainty in the driving climatology.

Biases in climate models originate from factors such as required parameterisations

of physical processes and incomplete process understanding. The computationally

demanding nature of climate models coupled with complex topography-induced
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climatology over Antarctica, such as föhn winds (Munneke et al., 2018), and complex

feedback mechanisms make direct reduction in these errors through climate model

development challenging. Statistical post-processing bias correction techniques have

been developed to try to solve this issue, being adaptable for the specific focus of

the end user and adding value to RCM simulation outputs.

These statistical bias correction techniques range from relatively simple methods,

such as the delta change method (Das et al., 2022), to more involved and

complex approaches using for example generalised additive models (Beyer et al.,

2020). Complex modelling approaches generally provide improved consistency with

observations although interpretation of the methodology is more difficult and non-

physical sharp variations in the predictions can occur. Some approaches focus on

correcting errors further upstream in the global driving dataset (Bruyère et al.,

2014), while others focus directly on the RCM output. Across the literature,

methodologies typically fail to consider uncertainty in the correction and neglect

to preserve the physically-realistic spatial structures produced from the physically-

based climate models, which among other aspects preserve energy and mass across

the domain (Ehret et al., 2012). This is of particular importance over regions such as

Antarctica, where sparse in-situ observations limit confidence in observation-based

corrections. To this end a novel technique is developed in (Carter et al., 2024), which

considers the in situ observations and climate model output to be generated from

shared underlying Gaussian processes (GPs). In this paper this novel approach is

explored for the first time with respect to real-world data and the challenging case

study of bias correcting near-surface air temperature climate model output from the

Modèle Atmosphérique Régional version 3.10 (MARv3.10) RCM over Antarctica.

In-situ observations of near-surface air temperature over Antarctica are pre-

dominantly provided from automatic weather stations (AWSs), which are sparsely

distributed over the continent. This paper utilises AWS output from a recent

compilation (Yetang Wang et al., 2023) with 267 AWS sites available. This equates

to approximately 1 station per 50, 000 km2 (an equivalent density to 5 stations
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over the whole of the United Kingdom). Additionally, the data is distributed

highly heterogeneously in space, with much lower densities occurring over much of

East Antarctica. Despite limited observational data, AWS records still potentially

provide useful information for bias correcting climate model output, especially with

respect to any large-scale, relatively smooth spatial patterns of the bias. Significant

uncertainty is expected due to the spatial and temporal data sparsity, which is

important to capture. The novel approach for bias correction applied in this paper

is specifically designed for this type of scenario, with robust uncertainty propagation

through the model and inference on the unbiased parameters that utilises the skilful

climate model output as well as the in situ observations (Carter et al., 2024).

Remaining challenges and future development of the methodology, such as modelling

non-stationary lengthscales are discussed.

4.2 Data Exploration

This section provides a brief exploration of the in situ observational data (section

4.2.1) and climate model output (section 4.2.2) used in this paper. Important

features of the data are highlighted and any modelling choices as well as data filtering

are discussed. Figure 4.1 shows an overview of Antarctica for reference against, with

key place names and elevation contour lines shown. Ice shelves are displayed in light

blue and rocky outcrops in black.
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Figure 4.1: Map of Antarctica, generated using the Quantarctica mapping

environment (Matsuoka et al., 2021).

4.2.1 Automatic Weather Station Data

The recently published AntAWS dataset is a quality controlled compilation of

records from 267 AWSs covering a time period of 1980-2021 (Yetang Wang et al.,

2023). Five meteorological variables are provided: air temperature; air pressure;

relative humidity; wind speed and direction. This paper focuses on the air

temperature product, which has the highest data continuity and integrity of the

variables (Yetang Wang et al., 2023). Temporal resolutions offered for the processed

data are 3 hourly, daily and monthly. Quality control measures implemented are

applied to the 3 hourly records and include: removing records outside the viable
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measurable range of the sensors; removing records with unrealistic, rapid changes in

temperature (threshold of ∆5°C over 6 hours); removing records outside 3 standard

deviations from the monthly mean; removing records for air temperature in the

Antarctic summer months (Dec-Feb) with wind speeds less than 2 m s−1 that

can exhibit warm biases due to lack of ventilation; removing records that visually

appear as outliers during comparison with corresponding outputs from the reanalysis

product ERA5 (Hersbach et al., 2020) and output from the MARv3.10 RCM (Agosta

et al., 2019). Two reliability threshold bands (25% and 75%) are provided for the

daily and monthly products, which are computed from aggregations of the quality

controlled 3 hourly data. The bands only give aggregated values where 25% and

75% respectively of the 3 hourly data exists for the time period. Air temperature

records are measured at approximately 2-3 m height and have ventilated radiation

shields, obstructing direct sunlight. Thermistor or resistive platinum probes are

used for measurements and uncertainty is within ± 0.5°C (Yetang Wang et al.,

2023). It is noted that the relative height change in the sensor, typically from snow

accumulation, partially influences the temporal component of records, particularly at

sites in the Antarctic Plateau during winter where significant temperature inversions

exist (Genthon et al., 2021).

In this paper the 75% reliability threshold monthly product is used. The higher

reliability threshold is chosen since bias induced in the AWS records themselves are

not considered, while the monthly timescale is chosen for computational reasons and

since significant systematic errors are known to exist at this temporal scale (Carter

et al., 2022a). An example monthly timeseries output from the Manuela AWS is

illustrated in Fig. 4.2 with the corresponding marginal PDF also shown. This site

has one of the longest and most complete records with measurements from 1984-

2021, only containing significant gaps in the years 2006 and 2008. The majority of

sites have much fewer records (as shown in Fig. 4.5a.), either running for a much

shorter period of time or with longer gaps in the records. The PDF over all months,

as given in Fig. 4.2b, contains multiple peaks corresponding to seasonal temperature
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variations. The PDFs for the individual months of January (austral summer) and

June (austral winter) are shown in Fig. 4.2c and can be approximated as normal

with mean and variance parameters. For this reason, bias correction techniques are

typically applied to each month separately (Lima et al., 2021) and this paper follows

this approach, focusing on correcting bias in just June temperatures for simplicity

and clarity of results presented.
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Figure 4.2: Monthly near-surface air temperature records from the Manuela AWS

(lat:-74.95,lon:163.69) located near the coast over Victoria Land. The timeseries is

shown in (a) with the corresponding empirical marginal PDF given in (b) and the

marginal distributions filtered to just January and June illustrated in (c).

The number of AWS monthly temperature records, aggregated across all stations,

is shown against the year and month in Fig. 4.3. There is an overall increasing trend

with records against year (the exception being over the last 5 years of records),

indicative of improvements in technology and Antarctic climate modelling efforts.

In theory this should translate to a reduction in uncertainty for later years in any

bias corrected product. In reality, bias is typically considered time-independent,

which is also the approach taken in this paper. The distribution of records against

the month of the year (Fig 4.3b) shows the number of records is lower in the austral

summer months (December, January and February) than the austral winter months

(June, July and August). This disparity would induce an observational bias in
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the marginal PDF over all months (Fig. 4.2b) and again provides motivation for

handling bias correction in the climate model output for each month separately.
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Figure 4.3: The number of AWS records across the entire ice sheet given by the year

(a) and the month of the year (b).

The locations of AWSs over Antarctica and the number of monthly records for

each site is displayed in Fig. 4.4. The total number across all months is given in

Fig. 4.4a, while in Fig. 4.4b data is filtered to just June records and sites that

are outside the shape file for the main ice sheet and or have less than 5 years of

June monthly records are excluded. This filtering is done to again simplify the

bias correction task and improve interpretability of results, with sites very close to

the periphery and on islands expected to exhibit more challenging climatologies to

model. In Fig. 4.4 stations are shown to be distributed highly heterogeneously in

space, in particular with respect to the concentration of records around the south-

east side of the Ross ice shelf. There is also a disproportionately high number of

sites over West Antarctica compared to East.
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Figure 4.4: Locations of AWSs over Antarctica with the number of monthly records

illustrated for each site. The sum over all months is given in (a), while (b) is filtered

to just June aw well as only sites within the main ice sheet shapefile and with more

than 5 years worth of data.

Histograms of the number of AWS sites against the total number of monthly

records (a) and against elevation (b) and latitude (c) are illustrated in Fig. 4.5.

Greater uncertainty near sites with fewer records is important to consider as part of

the bias correction methodology and is done in this paper. Additionally, an uneven

distribution across elevation and latitude bands is handled through modelling their

dependency with near-surface air temperature. Various factors impact the location

of weather stations, including accessibility and research interest, with areas such as

ice shelves being high-priority due to events such as ice shelf collapse.
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Figure 4.5: Histograms showing the frequency of AWS stations against the number

of monthly records at each station (a), as well as against elevation (b) and latitude

bands (c).

4.2.2 Climate Model Output

The climate model output used in this paper is an Antarctic-wide hindcast

simulation from the MARv3.10 RCM (Agosta et al., 2019), driven at the domain

boundaries by global ERA5 reanalysis output. This model is specifically designed

for polar regions and is coupled with sophisticated surface schemes that account

for processes such as melt water run-off and retention (X. Fettweis et al., 2013;

Xavier Fettweis et al., 2017). The native spatial resolution is 35 km and temporal

resolution 3 hourly. In this paper the monthly near-surface air temperature product

from the RCM intercomparison of Carter et al., 2022a is used, which as well as

being aggregated in time is has been interpolated onto a common 12.25 km grid for

intercomparison. This product is used for convenience and so that the methodology

can be easily extended to incorporate more RCM outputs.

The empirical mean June near-surface air temperature and annual standard

deviation are plot in Fig. 4.6. The mean June temperature is lowest over central

East Antarctica and highest near the periphery of the ice sheet, over the ice

shelf grounding lines and over the Antarctic Peninsula. The standard deviation

89



Chapter 4. Applying Bias Correction to Surface Climatology over Antarctica

in June temperatures varies more sporadically over the ice sheet, with various peaks

including over the interior of Wilkes Land and over regions of the Filchner-Ronne

and Ross ice shelves, as well as various troughs such as over the Transantarctic

Mountains, Oates Land and Dronning Maud Land.
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Figure 4.6: The empirical mean (a) and standard deviation (b) for June near-surface

air temperatures from an Antarctic-wide MAR RCM simulation.

The pairwise distributions between the mean June near-surface air temperature,

standard deviation, elevation and latitude are given in Fig. 4.7. Strong correlation

(-0.87) is shown between the mean temperature and elevation, as well as a moderate

correlation (0.41) given between the mean temperature with latitude. The equivalent

correlations between elevation and latitude with standard deviation are weak (0.21

and -0.06 respectively). This is incorporated in the bias correction methodology,

where domain-wide relationships between the mean temperature with elevation and

latitude are modelled, while the standard deviation is considered independent of

these predictors. It’s interesting to note of a moderate correlation between the mean

temperature and standard deviation themselves. In the bias correction methodology

presented this is not considered as the parameters are treated as independent, but

this could be an area for future improvements.
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Figure 4.7: A corner plot showing pairwise relationships on the off diagonals between

the mean June temperature, standard deviation in June temperatures, elevation and

latitude. Marginal distributions along the diagonal are also given for each variable.
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4.2.3 Comparison and Bias Correction

The climate model output for the nearest grid cell to the Manuela AWS is plotted

against the station records in Fig. 4.8. The marginal PDF is also given for all

months and for just June (Fig. 4.8b,c). The climate model provides a comprehensive

time series, useful for process studies and impact assessments, although has a clear

bias captured here as differences in the PDFs. In the case of June temperatures

the PDF can be approximated as normal and differences in the PDF summarised

by differences in the mean and standard deviation parameters. Quantile mapping

is a bias correction technique that maps the PDF for the climate model output

onto the unbiased observational PDF. The task is then to acquire estimates of the

unbiased mean and standard deviation at each climate model grid cell (the focus of

the methodology presented) so that quantile mapping can be applied across the

ice sheet. Uncertainty in the unbiased parameter estimates can be propagated

through the quantile mapping procedure to give multiple realisations of the final

bias corrected timeseries with uncertainty bands.
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Figure 4.8: Comparison of records from the Manuela AWS with output from the

nearest grid cell of the MAR RCM simulation (a). Marginal distributions across all

months (b) and across just June (c) are also given.

An important assumption in the methodology utilised in this paper for predicting
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the underlying unbiased parameters across the domain is that the climate model

output itself provides skilful estimates of these parameters and reflects what is seen

in the in situ observations with the addition of a bias component. Figure 4.9 shows

the correlation between the AWS records and the output of the nearest grid cell

from the climate model for the mean and standard deviation in June temperatures.

Higher correlation is shown in the mean (0.98) than the standard deviation (0.65)

indicating the the climate model is better at accounting for the underlying physical

processes that impact the mean than the standard deviation. For both metrics the

climate model provides useful information for estimating the true values across the

domain. Global bias is exhibited in these parameters, as shown for example in Fig.

4.9a where the climate model output has a tendency to overpredict the mean June

temperature. Additionally, significant regional patterns in bias of the parameters

are expected, making it important to model the spatial covariance in bias between

points.
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Figure 4.9: A scatter plot showing correlation between empirical values of the mean

(a) and standard deviation (b) from the climate model output and AWS records.
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4.3 Methodology

The methodology for bias prediction and correction in this paper follows the

approach of (Carter et al., 2024). In this section the key components of the model

are described in brief, with adaptations incorporated due to the specific real-world

application of correcting near-surface air temperature over Antarctica highlighted

and discussed.

4.3.1 Model Overview

Data from the AWS in situ observations and output from the MAR climate model

simulation are considered as realisations from latent spatiotemporal stochastic

processes, denoted as {Y (s, t) : s ∈ S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T }

respectively. Meaning a random variable is attributed to each spatiotemporal

coordinate (Y (s, t), Z(s, t)) and the data observed at a set of locations and times

is then considered a realisation of the joint distribution of that particular finite set

of random variables. For the purpose of bias prediction, the time component is

marginalised and the data instead treated as realisations from the spatial stochastic

processes {Y (s) : s ∈ S} and {Z(s) : s ∈ S}. In the case of monthly

temperature averages filtered to just June the site-level marginal distributions can

be approximated as normal, such that Y (si) ∼ N (µY (si), σY (si)) and Z(si) ∼

N (µY (si), σY (si)).

Bias at each site is then defined with respect to deviations in the mean and

standard deviations parameters, such that: µB(si) = µY (si)− µZ(si) and σB(si) =

σY (si)/σZ(si). The bias in the parameters is assumed independent of the true

unbiased values that generate the observations: µY (s) ⊥⊥ µB(s) and σY (s) ⊥⊥ σB(s).

The spatial distribution of the bias and unbiased values of the parameters are

modelled throughout the domain assuming the parameters are generated from

independent underlying GPs. For example, considering the mean this gives µY (s) ∼

GP(mµY (s), k(s, s′)) and µB(s) ∼ GP(mµB(s), k(s, s′)), where m(s) represents the
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mean function and k(s, s′) the covariance function, otherwise known as the kernel.

In the case of the standard deviation, a logarithmic transformation is utilised to

map the parameter space onto that of a GP, specifically log(σ(s)) = σ̃(s) ∈ R.

The transformed parameter and its bias are then modelled as generated from GPs,

such that: σ̃Y (s) ∼ GP(mσ̃Y (s), k(s, s′)) and σ̃B(s) ∼ GP(mσ̃B(s), k(s, s′)). The

parameters for the climate model output µZ(s) and σ̃Y (s) are then considered

as generated from the sum of these independent latent GPs, one that generates

unbiased estimates of the parameters and one that generates the bias in the climate

model.

In Carter et al., 2024 the mean function for each underlying GP is taken as

a constant for simplicity. In this paper, since a clear global relationship is shown

between the mean June temperature with elevation and latitude in Fig. 4.7, a

multiple linear relationship is included such that mµ(s) = β0µ + β1µ · x1 + β2µ ·

x2. The predictors x1 and x2 are standardised versions of the elevation and

latitude respectively. For the standard deviation in June temperatures, only a

comparatively weak relationship is observed between with elevation and latitude,

so the corresponding generating GP is assumed to have constant mean mσ̃(s) = β0σ̃ .

Similarly, the mean function of the GPs that generate the bias in both parameters

is assumed constant.

Another adaptation for the real-world scenario implemented in this paper is

that the kernel is chosen to be a Matern 3/2 instead of a radial basis function

(RBF). This is typically preferred for real data where the covariance is not as smooth

across the domain. The distance metric between points for the kernel function is

computed from approximately Euclidean rotated geodesic grid latitude and grid

longitude coordinates. A single lengthscale is assumed along with kernel variance

and noise hyper-parameters. Finally, in Carter et al., 2024 the model is run in

a fully Bayesian hierarchical set-up, whereas here it is chosen to split the model

inference into two separate stages. Firstly the mean function is fit (section 4.3.2)

and then the underlying spatial covariance structures considered (section 4.3.3).
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This is done for aiding understanding of model performance at each stage as well

as for computational reasons. The final bias correction of the climate model output

is done through quantile mapping, where uncertainty in the unbiased parameter

predictions is propagated to the final bias corrected climate model timeseries, which

is explained in section 4.3.4.

4.3.2 Stage one: Fitting the mean function

The first stage involves estimating the parameter values for the observations and

climate model output at each location where there is data (µY , σ̃Y ,µZ , σ̃Z). The

following global mean functions are fit for each parameter, where x1 and x2 are

standardised versions of the elevation and latitude respectively:

mµY (s) = β0µY
+ β1µY

· x1 + β2µY
· x2 (4.1)

mσ̃Y (s) = β0σ̃Y
(4.2)

mµZ (s) = β0µZ
+ β1µZ

· x1 + β2µZ
· x2 (4.3)

mσ̃Z (s) = β0σ̃Z
(4.4)

(4.5)

The bias in the mean function components across the ice sheet are then given as

mµB(s) = mµZ (s) −mµY (s) and mσ̃B(s) = mσ̃Z (s) −mσ̃Y (s). The parameters µ(s)

and σ̃(s) at each location are modelled as the sum of the mean function component

and some residual. The residual in this stage is modelled as generated from a normal

distribution with mean zero and some noise parameter. The model is illustrated in

Fig. 4.10, with underlying parameters obtained from MCMC inference with the no-

u-turn sampler (NUTS) implemented from Numpyro. The residual component is the

part of the data not explained by the Antarctic-wide relationships, so the component

not explained by a constant or linear relationships with elevation and latitude. To

estimate the residual components away from observations the underlying spatial
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covariance structures are considered, which is done in stage two of the methodology

(section 4.3.3).

β0µY
β1µY

β2µY
β0σ̃Y

β0µZ
β1µZ

β2µZ
β0σ̃Z

nµY nσ̃Y nµZ nσ̃Z

mµY (s) rµY (s) mσ̃Y (s) rσ̃Y (s) mµZ (s) rµZ (s) mσ̃Z (s) rσ̃Z (s)

µY (s) σ̃Y (s) µZ(s) σ̃Z(s)

Y (s) Z(s)

Y (s) ∼ (µY (s), σY (s))

Z(s) ∼ (µZ(s), σZ(s))

σ̃Y (s) = log(σY (s))

σ̃Z(s) = log(σZ(s))

µY (s) = mµY (s) + rµY (s)

σ̃Y (s) = mσ̃Y (s) + rσ̃Y (s)

µZ(s) = mµZ (s) + rµZ (s)

σ̃Z(s) = mσ̃Z (s) + rσ̃Z (s)

mµY (s) = β0µY
+ β1µY

· xele + β2µY
· xlat mσ̃Y (s) = β0σ̃Y

mµZ (s) = β0µZ
+ β1µZ

· xele + β2µZ
· xlat mσ̃Z (s) = β0σ̃Z

rµY (s) ∼ (0, nµY )

rµZ (s) ∼ (0, nµZ )

rσ̃Y (s) ∼ (0, nσ̃Y )

rσ̃Z (s) ∼ (0, nσ̃Z )

Sites (s ∈ S)

Figure 4.10: Plate diagram with directed acyclic graph showing the model for stage

one of the bias correction methodology for the case where the site-level distributions

are assumed normal with parameters µ and σ.

4.3.3 Stage two: Considering underlying spatial covariance

structures

In stage one of the methodology posterior realisations are generated for µY and σ̃Y

at each in situ observation site, and for µZ and σ̃Z at each climate model grid cell.

Additionally these parameters are modelled as being composed of a mean component

and residual component, for which posterior realisations are also provided. In this

second stage the residual components are estimated across the ice sheet by modelling

the underlying spatial covariance in the values from stage one. In particular, the

aim is to make estimates of the unbiased residuals rµY (s) and rσ̃Y (s) at the climate

model grid cell locations for the purpose of bias correction. To do this residuals are

modelled as generated from latent GPs with zero mean and hyper-parameters for

the kernel including a kernel lengthscale (l), kernel variance (v) and kernel noise
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(n). The residuals for the climate model output are modelled as composed of the

sum of the residuals from the observations and some independent bias component,

such that rµZ (s) = rµY (s) + rµB(s) and rσ̃Z (s) = rσ̃Y (s) + rσ̃B(s). It is then these

independent components that are modelled as generated from GP distributions with

Matern3/2 kernel and the model is illustrated in Fig. 4.11.

lµY vµY nµY lσ̃Y vσ̃Y nσ̃Y lµB vµB nµB lσ̃B vσ̃B nσ̃B

rµY (s) rσ̃Y (s)

rµZ (s) rσ̃Z (s)

rµB (s) rσ̃B (s)

rµZ (s) = rµY (s) + rµB (s) rσ̃Z (s) = rσ̃Y (s) + rσ̃B (s)

rµY (s) ∼ GP(0, k(s, s′|vµY , lµY )) rσ̃Y (s) ∼ GP(0, k(s, s′|vσ̃Y , lσ̃Y ))
rµB (s) ∼ GP(0, k(s, s′|vµB , lµB )) rσ̃B (s) ∼ GP(0, k(s, s′|vσ̃B , lσ̃B ))

Sites (s ∈ S)

Figure 4.11: Plate diagram with directed acyclic graph showing the full hierarchical

model for the case where the site-level distributions are assumed normal with

parameters µ and σ. The distribution of these parameters across the domain is

modelled with Gaussian processes.

Posterior realisations of the hyper-parameters of the model are again obtained

from MCMC inference with the NUTS sampler. Posterior predictive estimates of

rµY (s) and rσ̃Y (s) throughout the domain can then be made after conditioning on

the values observed at the AWS sites as well as the values for rµZ (s) and rσ̃Z (s) at

the climate model locations.

4.3.4 Quantile Mapping

The final bias correction of the climate model output is done through quantile

mapping, which involves applying the following transformation to the climate model

output (zsi,j) for every record j at each location i: ẑsi,j = F−1
Ysi

(FZsi (zsi,j)). The
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term F−1
Ysi

represents the inverse cumulative density function (CDF) for the in situ

observational data at the site si, while the term FZsi is the CDF for the climate

model output at the equivalent site. The CDF is given as the integral over the PDF

at each site and can be computed using posterior predictive realisations of [µYsi , σ̃Ysi ]

and [µZsi , σ̃Zsi ] respectively. Making estimates of µY (s) and σ̃Y (s) at the locations of

the climate model grid cells is done through estimates of the components mµY (s),

rµY (s), mσ̃Y (s) and rσ̃Y (s) at the climate model locations. The components mµY (s)

and mσ̃Y (s) are estimated from Eq. 4.1 and 4.2 respectively using standardised

values of elevation and latitude available from the climate model. The residual

components rµY (s) and rσ̃Y (s) are estimated at the climate model locations taking

posterior predictive estimates from the corresponding generating GP with hyper-

parameters given from the posterior realisations after fitting stage two of the model.

Applying the quantile mapping procedure multiple times for different realisations

of the parameter estimates gives an expectation and uncertainty band for the bias

corrected output.

4.4 Results

Results are presented for bias correcting near-surface air temperature climate

model output from an Antarctic-wide MAR RCM simulation using in situ AWS

observations. The data is aggregated to monthly time scales and data is filtered to

just the month of June, with stations that have less than five annual June records

excluded, as are any sites that fall outside the main ice sheet shape file, as in Fig.

4.4b. The climate model output is scaled up for computational reasons before fitting

the mean function or spatial model, averaging groups of 14 x 14 cells, reducing the

resolution from 12.25 · 12.25 km2 to 171.5 · 171.5 km2. The difference between the

elevation for the mesh of the climate model and the point like in-situ observations

is accounted for by incorporating a mean function that is dependent on elevation

in the model. Once the model is fit, the predictions on the climatology will depend
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on the elevation product used, for example high-resolution digital elevation model

output could be used to made predictions at high-resolution and downscale the

climate model output. Final predictions of the unbiased parameters are made at

the original, high-resolution grid. The elevation and latitude values for each data-

set were standardised using the mean and standard deviation of values from the

AWSs (elevation mean = 868.09, elevation std.dev. = 916.78, latitude mean =

76.65, latitude std.dev. = 5.73). Rotated geodesic grid latitude and grid longitude

coordinates are chosen to compute L2 distances between points. Prior distributions

for each parameter were chosen to be relatively non-informative. The full model is

split into two stages as described in section 4.3. Results from the inference of each

stage are presented in sections 4.4.1 and 4.4.2 respectively. The final joint prediction

of the unbiased mean and log-variance are presented in section 4.4.3 along with the

bias. Bias correction to the climate model timeseries of June monthly temperatures

is demonstrated in section 4.4.4.

4.4.1 Mean Function Model Results

The mean and log-variance parameters of the marginal distribution for both the

monthly June AWS output at each station site and the coarsened climate model

output at each grid-cell are estimated. A multiple linear regression model is assumed

for the mean parameter dependency with elevation and latitude, see section 4.3.2.

The log-variance parameter is only weakly correlated with elevation and latitude, as

shown in Fig. 4.7, so no equivalent dependency is assumed. The prior distributions

for the parameters of the model are displayed in Fig. C.1 of the appendix, along

with the posterior distributions after inference. The summary statistics for the

distributions are presented here in Table 4.1. The same model is fit separately to

the AWS data and the climate model output.

The standard deviations and 95% confidence intervals in the model parameters

posterior distributions, shown in Table 4.1, are lower in magnitude for the climate

model output than AWS data. The expectation for posterior realisations of the
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intercept terms (β0,µ and β0,log(σ2)) and the regression coefficient with elevation (β1,µ)

are quite similar between the two datasets. The expectation for posterior realisations

of the regression coefficient with latitude (β2,µ) shows greater dependency for the

climate model output (2.8) than the AWS observations (1.92). Additionally, lower

values for the expectations of the noise parameters (nµ, nlog(σ2)) are shown for the

climate model output compared to the AWS output. The R-squared scores for the

mean µ after fitting the model are R2
AWS = 0.71 ± 0.05 and R2

C.M. = 0.82 ± 0.01

respectively.

Dependent Variable Model Parameters Distribution Exp. Std. Dev. 95% C.I. L.B. 95% C.I. U.B.

Mean

β0,µ

Prior -33.70 10.00 -53.30 -14.10

Posterior AWS -33.61 0.68 -34.90 -32.26

Posterior Climate Model -33.07 0.30 -33.68 -32.47

β1,µ

Prior -10.00 5.00 -19.80 -0.20

Posterior AWS -10.13 0.66 -11.42 -8.84

Posterior Climate Model -10.32 0.25 -10.82 -9.85

β2,µ

Prior 0.00 5.00 -9.80 9.80

Posterior AWS 1.92 0.70 0.58 3.30

Posterior Climate Model 2.80 0.22 2.38 3.22

nµ

Prior 5.00 2.88 0.26 9.75

Posterior AWS 6.85 0.51 5.89 7.84

Posterior Climate Model 5.03 0.16 4.70 5.34

Log Variance

β0,log(σ2)

Prior 2.00 1.00 0.04 3.96

Posterior AWS 2.02 0.07 1.88 2.16

Posterior Climate Model 2.13 0.02 2.09 2.17

nlog(σ2)

Prior 1.00 0.58 0.05 1.95

Posterior AWS 0.56 0.07 0.43 0.69

Posterior Climate Model 0.36 0.02 0.32 0.39

Table 4.1: A table showing summary statistics for the prior and posterior

distributions of the parameters for the global mean function model. Statistics

include the expectation (Exp.), standard deviation (Std. Dev.) and lower and

upper bounds for the 95% credible interval (C.I. L. and C.I. U.).

The expectation as well as the uncertainty in estimates of the mean and log-
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variance parameters for the AWS and coarsened climate model output are shown

for each site and grid-cell respectively in Fig. 4.12. Strong correlation (0.90) is

shown for the mean parameter expectations between the AWS sites and nearest-

neighbour climate model output (Fig. 4.12a). Weaker correlation (0.62) is shown

for expectations of the log-variance parameter (Fig. 4.12b). Uncertainties in the

parameter estimates are given in Fig. 4.12c and d, which show greater uncertainty

in the parameter estimates for the AWS sites than for the climate model output,

with the uncertainty related to the number of records at each site.
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Figure 4.12: Expectations (a,c) and one sigma uncertainty (b,d) for posterior

realisations of the mean and log-variance respectively in marginal distributions of

the AWS at the station sites and climate model output at the grid cell locations.

The size of the circles for AWS locations represents the number of monthly June

records available at each site.

The parameter estimates shown in Fig. 4.12 are made considering a global mean

function and some noise. The noise estimates at each location are here referred to

as the residual, as mentioned in section 4.3.2. Residuals are computed for each AWS

site and each climate model grid cell and shown in Fig. 4.13. There are obvious

spatial correlation patterns in both sets of residuals and additionally correlation

shown between the residuals of the two datasets. A zoomed-in region is illustrated

over Victoria land where there’s a relatively high density of AWS sites (Fig. 4.13c,d),
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with sharp variations shown between values in some nearby sites. This indicates the

importance of considering a noise term in stage two, where residual estimates are

made across the ice sheet considering underlying GPs that explicitly capture spatial

covariance. The residual estimates from Fig. 4.13 are used as input data for stage

two.
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Figure 4.13: Expectations for posterior realisations of the residual in the mean and

log-variance (a,b) at the station sites and grid cell locations. A zoomed in region is

shown in c and d. The size of the circles for AWS locations represents the number

of monthly June records available at each site.

4.4.2 Residuals Spatial Model Results

The components of the mean and log-variance not explained by global functions,

referred to here as the residuals, are modelled across the domain assuming latent

generating GPs. The residuals for the climate model output are modelled as
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composed of the sum of an unbiased and biased component, as explained in section

4.3.3. The aim is to get estimates of the residuals rµY (s) and rσ̃Y (s) throughout

the domain by considering their spatial covariance as well as spatial covariance in

the bias. The input data to the model consists of the residuals from stage one,

with uncertainty incorporated during inference of the GP hyper-parameters. The

GP hyper-parameters consist of a lengthscale, kernel variance and additional noise

term that helps account for any sharp variations. Comparisons are made between

the approach outlined in this paper, referred to as the shared process approach

(section 4.3.3), and the approach of just modelling covariance in the observations

alone, referred to as the single process approach. The prior distributions for the

hyper-parameters of the model are displayed in Fig. C.2 and C.3 of the appendix,

along with the posterior distributions after inference. The summary statistics for

the distributions are presented here in Table 4.2, with Fig. C.5 of the appendix

providing a reference for the relative magnitude of the lengthscale values against

the ice sheet extent.

The expectation of the lengthscale hyper-parameter for the unbiased residuals

in the mean and log-variance (lµY and llog(σ2
Y )) is greater for the shared process than

the single process model, while the kernel variance (vµY and vlog(σ2
Y )) and noise terms

(nµY and nlog(σ2
Y )) are greater in the single process model. The spread of the posterior

distributions for all hyper-parameter estimates, given by the standard deviation and

credible intervals, is less for the shared process model than the single process model.

An important benefit of the shared process model is direct modelling of the bias.

The expectations for the lengthscale hyper-parameters of the latent bias processes

(lµB and llog(σ2
B)) are over twice the values for the unbiased process. Expectations

for the kernel variance of the bias processes (vµB and vlog(σ2
B)) are significantly lower

than for the unbiased process, as are expectations for the noise hyper-parameter for

the mean (nµB). The expectation for the noise hyper-parameter of the log-variance

(nlog(σ2
B)) is similar to the value for the unbiased process.
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Dependent

Variables
Model Parameters Distribution Exp. Std. Dev. 95% C.I. L.B. 95% C.I. U.B.

Mean

Residuals

(rµY ,rµB )

vµY

Prior 50.05 28.84 2.60 97.50

Posterior Shared Process 43.95 14.61 22.29 75.98

Posterior Single Process 46.33 15.14 22.30 79.11

lµY

Prior 5.77 2.75 1.24 10.30

Posterior Shared Process 4.67 0.94 3.04 6.61

Posterior Single Process 3.83 1.13 1.96 6.05

nµY

Prior 10.05 5.74 0.60 19.50

Posterior Shared Process 6.11 1.26 3.65 8.58

Posterior Single Process 9.45 2.88 4.36 15.33

vµB

Prior 15.00 8.66 0.75 29.25

Posterior Shared Process 10.09 6.80 0.09 23.75

Posterior Single Process N/A N/A N/A N/A

lµB

Prior 11.04 5.80 1.50 20.58

Posterior Shared Process 13.34 4.57 5.95 21.07

Posterior Single Process N/A N/A N/A N/A

nµB

Prior 2.00 1.15 0.10 3.90

Posterior Shared Process 0.57 0.56 0.00 1.74

Posterior Single Process N/A N/A N/A N/A

Log Variance

Residuals

(rlog(σ2
Y

),rlog(σ2
B
))

vlog(σ2
Y

)

Prior 0.376 0.216 0.020 0.731

Posterior Shared Process 0.139 0.084 0.039 0.271

Posterior Single Process 0.153 0.094 0.039 0.342

llog(σ2
Y

)

Prior 11.042 5.798 1.502 20.583

Posterior Shared Process 5.024 1.683 2.625 8.315

Posterior Single Process 5.762 2.349 2.106 10.697

nlog(σ2
Y

)

Prior 0.013 0.007 0.001 0.024

Posterior Shared Process 0.007 0.005 0.000 0.017

Posterior Single Process 0.010 0.007 0.000 0.022

vlog(σ2
B
)

Prior 0.200 0.115 0.011 0.390

Posterior Shared Process 0.068 0.060 0.002 0.194

Posterior Single Process N/A N/A N/A N/A

llog(σ2
B
)

Prior 11.042 5.798 1.502 20.583

Posterior Shared Process 13.720 4.737 5.573 21.056

Posterior Single Process N/A N/A N/A N/A

nlog(σ2
B
)

Prior 0.013 0.007 0.001 0.024

Posterior Shared Process 0.010 0.006 0.000 0.021

Posterior Single Process N/A N/A N/A N/A

Table 4.2: A table showing summary statistics for the prior and posterior

distributions of the parameters for the global mean function model. Statistics

include the expectation (Exp.), standard deviation (Std. Dev.) and lower and

upper bounds for the 95% credible interval (C.I. L. and C.I. U.).

106



4.4. Results

Posterior realisations of the hyper-parameters allow multiple realisations of the

latent generating GPs to be defined. After conditioning these GP realisations on

the input data, posterior predictive estimates of the unbiased residuals (rµY (s)

and rσ̃Y (s)) can be made across the domain, as well as estimates of the bias in

the residuals (rµB(s) and rσ̃B(s)). Posterior predictive estimates of the unbiased

residuals are generated at the locations of the high-resolution climate model grid

and the expectations shown in Fig. 4.14 for both the shared and single process

models, with uncertainties shown in Fig. 4.15. The posterior predictive estimates

for the bias residuals are shown in Fig. C.4c,d of the appendix.
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Figure 4.14: The expectation in posterior predictive estimates of the residuals rµY (s)

and rσ̃Y (s) at the locations of the high-resolution climate model grid for the dual

(c,d) and single process models (e,f). The input data of rµY (s) and rσ̃Y (s) at the

AWS sites and rµZ (s) and rσ̃Z (s) at the coarse climate model grid locations are also

shown (a,b).

In both the shared and single process models the posterior predictive estimates

of the unbiased process across the domain are smoothly varying and appear visually
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4.4. Results

to align with the observational input data (Fig. 4.14). Posterior predictive estimates

for the shared process (Fig. 4.14c,d) are additionally seen to capture and incorporate

features of the climate model residuals in predictions away from observational

locations. An example of this is over the Ronne ice shelf, where only one in situ AWS

is present and while predictions from the single process model (Fig. 4.14e,f) tend

towards zero away from this observation, predictions for the shared process model

tend towards the values given by the climate model. The average uncertainty in

estimates over the ice sheet is shown to be significantly greater in the single process

model (Fig. 4.15c,d) than the shared process model (Fig. 4.15a,b). In both models

reduced uncertainty is shown near the AWS observation locations. Patterns in the

uncertainty away from observations are more pronounced in the single process model

predictions.
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Figure 4.15: The two sigma uncertainty in posterior predictive estimates of the

residuals rµY (s) and rσ̃Y (s) at the locations of the climate model grid for the single

process (c,d) and shared process models (a,b). The location of AWS sites are shown

for reference as white markers.

4.4.3 Final Joint Prediction

The final predictions for the unbiased mean and log-variance across the domain

are made from the sum of expectations for the mean function and residual, such

that: E[µY (s)] = E[mµY (s)] + E[rµY (s)] and E[σ̃Y (s)] = E[mσ̃Y (s)] + E[rσ̃Y (s)].

The resulting estimates are shown in Fig. 4.16a,b. Uncertainties are computed from

summing up the respective variances and taking two times the square root to get the

two sigma range. The noise term of the latent GPs in section 4.4.2 that accounts

for sharp variations in the residuals is also incorporated, such that: V [µY (s)] =
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4.4. Results

V [mµY (s)]+V [rµY (s)]+E[nµY (s)] and V [σ̃Y (s)] = V [mσ̃Y (s)]+V [rσ̃Y (s)]+E[nσ̃Y (s)].

Resulting uncertainties are shown in Fig. 4.16c,d. Estimates are only shown

considering the shared process model for the residuals, not the single process model.
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Figure 4.16: The expectations (a,b) and uncertainties (c,d) of unbiased estimates of

the mean (µY ) and log-variance (σ̃Y ) at the locations of the high-resolution climate

model grid.

The expectation and uncertainty in predictions of the final joint bias across

the domain are shown in Fig. 4.17. Predictions of the bias in the mean June

temperatures range from approximately -5 °C. to +5 °C. Predictions of the bias in

the log-variance of monthly June temperatures range from approximately -0.2 to

+0.1. Taking the exponential of the bias in the log-variance and then the square

root gives an estimate of the ratio between the standard deviations of the climate
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Chapter 4. Applying Bias Correction to Surface Climatology over Antarctica

model output and in situ observations (σZ/σY ). Estimates of this ratio then vary

between approximately
√

(e−0.2) = 0.90 and
√

(e0.1) = 1.05. The uncertainty of the

bias estimates incorporates a noise term in the latent GPs that generate the residual

component of the bias. This noise term accounts for sharp variations not captured

by modelling the residuals with a stationary, single lengthscale GP.
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Figure 4.17: The expectations (a,b) and uncertainties (c,d) of the bias in estimates of

the mean (µB) and log-variance (σ̃B) at the locations of the high-resolution climate

model grid.

4.4.4 Bias Corrected Timeseries

To apply bias correction to the monthly June temperatures output from the high-

resolution climate model the empirical mean and log-variance is first computed for

each grid cell. Estimates of the unbiased mean and log-variance at these locations
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4.4. Results

(Fig. 4.16) are then used to perform quantile mapping to the timeseries from the

climate model output. Instead of using the expectation of posterior predictive

parameter estimates, realisations of the posterior predictives of the unbiased

parameters are utilised and quantile mapping performed with each realisation

separately. This allows propagation of uncertainty, producing multiple realisations

for the corrected timeseries and thus an uncertainty band on the correction. To

illustrate this six AWS sites are chosen and the timeseries from the AWS records

plot alongside the timeseries for the original and corrected climate model output

from the nearest grid cell. Additionally, the original and bias corrected climate

model timeseries are shown for a site isolated from any nearby AWSs. These seven

locations are illustrated in Fig. 4.18, with results presented in Fig. 4.19.

Henry

Manuela

Butler Island

Byrd

Relay Station

Dome C

Isolated Location

Figure 4.18: Locations of AWS sites used in predictions across the ice sheet. Six

AWS sites are highlighted where results for the bias corrected timeseries will be

compared against. An isolated location is also marked where the bias corrected

timeseries is examined.

The expectation of realisations for the bias corrected time series in Fig 4.19 shows

a visual shift in the corrected climate model output towards closer agreement with
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nearby AWS records. The two sigma uncertainty band of the correction covers the

AWS timeseries at each site. In the case of the isolated location the expectation

for the corrected time series is very close to the original climate model output,

although with large uncertainty bands. A couple of interesting features are shown

for the AWS records, including an anomalously high temperature-record for the

Butler Island AWS (Fig. 4.19c) occurring in the year 1988 and an apparent step

change in the bias for the Relay AWS (Fig. 4.19e) when comparing the period

1995-2005 with the period 2010-2021.
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Figure 4.19: Average June temperature records for six AWS sites and the equivalent

output from the nearest grid cell for the original and bias corrected climate model

timeseries (a-f). The timeseries for the original and bias corrected climate model

output is also demonstrated for a site isolated from any nearby AWSs (g).

115



Chapter 4. Applying Bias Correction to Surface Climatology over Antarctica

4.5 Discussion

A novel methodology for bias prediction and correction of climate model output is

applied to the case study of correcting bias in monthly near-surface air temperature

output over Antarctica from the MARv3.10 RCM. Bias is defined with respect to

the time-independent marginal PDFs at each site. To simplify the form of the

PDF the data is filtered to just the month of June, for which the distribution can be

approximated as normal with mean and variance parameters. Bias is then evaluated

in these parameters and bias correction involves estimating the true unbiased values

at each grid cell. These estimates are used to apply quantile mapping to the climate

model output at each location to improve agreement with AWS records.

The unbiased parameter values across the domain are inferred from both AWS

in situ observations and the climate model output itself. This is done in two

stages: fitting a global mean function dependent on elevation and latitude (section

4.4.1) and subsequently fitting a spatial model to the residuals from the first

step to make estimates away from the AWS sites and across the domain (section

4.4.2). Exploratory analysis showed a clear dependency between the mean June

temperature with elevation and latitude, so multiple linear regression is used to

capture this in stage one. A comparatively weak relationship was observed between

the same predictors and the log-variance in June temperatures and so for the log-

variance only a mean constant is fit. Results show that for both the climate model

and AWS output, most of the variability in the mean June temperature can be

explained by linear relationships with elevation and latitude (R2
AWS = 0.71± 0.05

and R2
C.M. = 0.82 ± 0.01 respectively). This highlights the potential benefit and

importance of downscaling using higher resolution elevation data than was utilised

in the RCM simulation, as for example is done in Noël et al., 2023. Differences

in the relationships with elevation and latitude between the AWS records and the

climate model output induce a bias, with the most significant difference shown for

the relationship with latitude. The component of the mean and log-variance not

explained by the relationship with elevation and latitude is referred to as the residual.
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4.5. Discussion

The expectations for the residuals show spatial covariance patterns across the ice

sheet (Fig. 4.13) and strong correlations between expectations for the AWS records

and climate model output. This indicates the advantage of incorporating patterns

shown in the climate model output as well as in AWS records when estimating

the unbiased component across the ice sheet, which is done in stage two of the

methodology.

In stage two of estimating the unbiased PDF parameters across the ice sheet, the

residual estimates from stage one are modelled across the ice sheet considering latent

GP distributions that inherently capture spatial covariance. Residuals from the

climate model output are considered the sum of an unbiased and biased component,

where the unbiased component also generates the AWS residuals directly. This is

referred to as the shared process or dual process model. Considering shared latent

processes between the two data sets allows estimates to incorporate spatial features

from both datasets, which is illustrated in Fig. 4.14. Direct comparisons are made

to an approach proposed in Lima et al., 2021 where the unbiased component is

estimated from in situ observations alone, here referred to as the single process

model, with hyper-parameter estimates for the two models illustrated in Table 4.2.

Reduced credible intervals shown in the case of the shared process model show an

advantage of providing extra information in the form of residuals from the climate

model output. This extra information also results in smaller expectation values for

the kernel variance and noise hyper-parameters. Conditioned forms of the latent

GP distributions allow estimation of the unbiased residuals and the bias across the

domain. Performance of the two models near observations appears visually similar,

but away from observations some clear differences in the expectations (Fig. 4.14)

and uncertainties (Fig. 4.15) exist with the shared process model capturing features

from the climate model, such as the high negative values for the residuals over

the south side of the Ronne ice shelf, that the single process model misses. This

behaviour is desirable and reflects the belief that the climate model produces skilful

estimates over the ice sheet, while afflicted with bias. Having direct estimates of the
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bias from the shared process is also an advantage, with predictions across the ice

sheet displayed in Fig. C.4 of the appendix.

The final predictions for PDF parameters and their bias across the ice sheet are

composed from the sum of the mean function estimate, dependent on elevation and

latitude, and the residual estimate, dependent on spatial patterns observed in the

climate model and AWS datasets. Predictions for the unbiased component of the

mean and log-variance across the ice sheet reflect similar patterns to those observed

in the climate model output itself (Fig. 4.16), although smoothed and with closer

agreement to AWS observations. The smooth nature of predictions is desirable in

that it indicates the model is not over-fitting. While in reality the true underlying

fields will contain more sharp variations and exhibit a spatial covariance lengthscale

that varies depending on factors such as topography, to be able to statistically model

this adequately would require a greater spatial density and coverage of AWS sites

or the additional use of other datasets such as satellite products. Improved spatial

density of unbiased observations would motivate the use of more complex latent

processes in the modelling, with for example, multiple lengthscales considered and

non-stationarity.

Considering the various sources of uncertainty in the final predictions for the

mean and variance across the ice sheet, as well as their comparative magnitude,

reveals where most advancements in predictions can be made. Uncertainty can be

thought of as split between the estimation of the mean component and residual

component. Uncertainty in the mean component comes from uncertainty in the

parameters in stage one of the methodology. Uncertainty in the residual is

the combined result of uncertainty in the input data (residuals from stage one),

uncertainty in the hyper-parameters of the generating latent GPs, uncertainty

in predictions due to the noise term in the GPs that account for variation not

captured by a single lengthscale and uncertainty in predictions resulting from making

predictions away from observations after conditioning on the input data. While the

primary source of uncertainty is in the residual component rather than the mean
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function component, it’s important to note that including a more sophisticated mean

function that captures more of the total variance would in turn likely contribute to

a reduction in sources of uncertainty for the residual component. With respect to

the residual component it’s interesting to compare uncertainty between the single

process and shared process models. Uncertainty in predictions from the single

process model seem dominated by regions away from observations with clear peaks

forming in the regions with the lowest AWS density (Fig. 4.15c,d). Uncertainties

from the shared process are both smaller in magnitude and don’t show as clear a

dependency on AWS density, which is the result of utilising the climate model data

itself. It is proposed that focusing on increasing spatial coverage of AWS sites and

incorporating other forms of remote observations (such as satellite measurements)

is the most obvious next step to improve bias correction of climate model output

over the ice sheet. This would both reduce uncertainty in current techniques and

allow further development of bias correction techniques to incorporate features such

as non-stationary covariance lengthscales over the ice sheet.

Uncertainties propagated to the final bias corrected timeseries for June temper-

atures are illustrated for seven sites (Fig. 4.19). Six of these sites are deliberately

chosen near AWS sites that contain many records and additionally are distributed

widely across the ice sheet. For these locations improvement in the agreement with in

situ observations is shown for the bias corrected climate model product and realistic

uncertainty bands are demonstrated. Additionally, an isolated site chosen far away

from any AWS, illustrates the desirable property that predictions of the unbiased

component tend towards that of the climate model output far away from any counter

information. This is desirable since the climate model is assumed to produce

skilful estimates of the parameters. Interesting features are found in the AWS

records themselves, including an apparent temperature anomaly and an apparent

shift in bias after a break in AWS records for one of the sites. The temperature

anomaly, not explained by the climate model output, is an important consideration

in impact assessments. If physically meaningful and not just an instrumentation
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error, it highlights a potential deficiency in the climate model output that will not

be improved considering time-independent errors. Similarly, the step change in

bias observed will also not be reflected in the bias corrected output if only time-

independent biases are considered. If the step change is instead the result of biases

induced by measurement techniques, it’s important to consider this type of bias

in the observations themselves. Although not conducted here, it is noted that the

methodology could be further validated using a train-test approach such as Leave-

One-Out Cross-Validation (LOOCV). In LOOCV a single AWS would be left out

and used as a validation point, the approach is repeated for each observation in turn

and an average performance metric computed.

4.6 Conclusions

In this paper monthly near-surface air temperature output from the MARv3.10

RCM is bias corrected using AWS in situ records. The novel bias correction

approach proposed in Carter et al., 2024 is applied for the first time on real-

world data. The approach models the data using latent generating GP distributions

that explicitly consider underlying spatial covariance structures and uncertainties in

predictions, which is of key importance for regions with sparse in situ observations.

Shared generating processes are assumed for the climate model output and AWS

records, which allows incorporation of spatial patterns seen in the climate model

output to predictions of the unbiased underlying process. Initial data exploration

motivates additionally fitting a global mean function capturing the dependency of

temperature with elevation and latitude. For interpretability and computational

reasons, inference for parameters of the global mean function is done separately

to inference on parameters of the covariance structure for latent GPs. Bias in

the climate model output is defined in terms of deviation in the time-independent

marginal PDF at each location compared to the true distribution. To simplify the

form of the PDF, bias correction can be applied to each month separately, while

120



4.6. Conclusions

in this paper results for the month of June are focused on. The marginal PDF

distribution for monthly June temperatures can be approximated as normal with

mean and variance parameters. Bias can then be defined in terms of deviations

in these parameters from their true values, with AWS records assumed to provide

unbiased estimates of the true values. Using AWS records and the climate model

output itself, estimates of the unbiased parameters are then made across the domain.

The methodology shows promising results, with smoothly varying estimates of

the unbiased marginal PDF parameters across the domain and with the final bias

corrected time series showing improved agreement with AWS records as well as

realistic uncertainty. The PDF parameters are modelled across the domain as

composed of a mean component and a residual component. The mean component

is modelled with global relationships, such as the dependency with elevation and

latitude, with the primary source of bias in this component resulting from differences

in the dependency with latitude between the AWS records and climate model output.

The residual component is modelled spatially using latent GPs. Bias in the residual

components are found to exhibit longer lengthscale spatial patterns compared to

the unbiased residual components. Improvements in predictions for the unbiased

residual component are demonstrated when considering shared latent GPs between

the AWS records and climate model output, compared to the approach of only

considering latent processes for the AWS records. The relative impact of different

sources of uncertainty on predictions are discussed and it is hypothesised that the

greatest improvements in corrections would come from increasing spatial coverage

of AWS records. Increasing observational coverage would in turn motivate further

development of bias correction techniques that incorporate factors such as non-

stationary covariance lengthscales over the ice sheet.
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Chapter 5

Conclusions

This thesis provides an in-depth examination of systematic differences in surface

climatology across state-of-the-art Antarctic-wide RCM outputs, which motivates

the subsequent development of a novel approach to post-processing bias correction.

Chapter 2 provides the first inter-comparison of recent-historic Antarctic-wide

RCM simulations framed within the context of ice shelf instability that specifically

examines spatial patterns in systematic differences and that utilises time series

decomposition to consider variations in different components of the time series

separately. Significant magnitude differences are shown in the inter-annual mean and

amplitude of periodic seasonal variations as well as monthly residual fluctuations.

It is suggested that systematic differences across the ensemble limits the validity of

utilising individual outputs in impact assessments and directly interpreting results,

such as for prediction of the vulnerability of ice shelves to collapse events. In addition

to considering the impact of differences across the ensemble on impact assessments,

emphasis is also put on the importance of future observational campaigns with

improved coverage and quality. These campaigns are useful for providing tighter

constraints with which to both tune and update the climate model physics and

parametrisations, as well as for direct use in reducing systematic differences through

post-processing bias correction techniques.

Large-scale spatial patterns in the systematic differences are shown across the
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ice sheet and are attributed primarily to differences in the RCM dynamical core, the

surface scheme and the parametrisation and tuning. It is therefore suggested that

further development of sophisticated techniques for bias correction are needed that

explicitly incorporate underlying spatial covariances. Robust uncertainty estimation

is also required due to both the sparsity of in situ observations and magnitude of

systematic differences. Chapter 3 develops a novel Bayesian hierarchical model

for bias correction that fills these requirements. Latent GP distributions are used

to capture underlying covariance structures in both the observations and climate

model output. A shared generating GP is assumed for both data sources, with

an additional GP considered that generates bias in the climate model output.

Simulated examples that cover a range of real-world scenarios show promising

results, with improvements in the R2 score for predictions of the unbiased field

compared with the methodology from Lima et al., 2021 that doesn’t consider shared

processes between the data sources. Uncertainty estimation appears robust and

uncertainty propagation to the final corrected time series is demonstrated, desirable

for informing impact studies and the resulting decision making. Particular advantage

of the methodology is demonstrated for the case of sparse observational data

and a smooth bias, where considering shared latent processes provides significant

value added in predictions. The methodology is therefore desirable for correcting

surface climatology on Antarctica, where there exists sparse in situ observations

and systematic differences between RCM outputs that exhibit large-scale spatial

patterns as shown in chapter 2.

In chapter 4 the bias correction methodology developed in chapter 3 is tested

further on the real-world scenario of correcting near-surface air temperature output

from the Modèle Atmosphérique Régional version 3.10 RCM. Sparse automatic

weather station records are used from the recent ice-sheet wide collation performed

in Yetang Wang et al., 2023. The methodology shows promising results, producing

smooth estimates for the unbiased underlying fields with realistic uncertainty.

These estimates align with patterns shown in station observations and also capture
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some features of the climate model output over regions far away from weather

stations, where the skilful climate model predictions are utilised. Expectations

and uncertainty bands are demonstrated for the bias corrected timeseries over

several regions spanning the ice sheet. Comparisons at some of the sites to

nearby weather station records show improved consistency and realistic uncertainty

estimation. The implications of this work are significant, allowing impact studies

to incorporate spatially dependent and robust uncertainty of any driving climate

model output afflicted with bias. Additionally it provides support and information

useful for increasing efforts towards in situ observational campaigns, suggesting a

focus on improving spatial coverage of measurements to be incorporated into the

bias correction model. While developed specifically for Antarctic climatology, the

scope of the work is wide-ranging with the methodology being adaptable to other

continents, variables of interest and even detection of bias in other sources of data

than climatology. Future developments of the work are suggested in chapter 6.
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Chapter 6

Future Directions

There are many exciting directions for further methodology development and topic

research that are outside of the scope for this thesis but are discussed briefly

here. These include aspects such as: expanding the bias correction methodology

to incorporate non-stationary lengthscales for the covariance; including more

sophisticated modelling of the relationships between temperature with elevation

and latitude; considering time dependent systematic errors and time dependency

between months; incorporating additional datasets in the bias correction, such as

satellite measurements and other RCM simulations; capturing systematic errors in

the in situ observations themselves; considering differences in the spatial support

of the climate model (gridded area average) and in situ observations (point-

like); including higher-resolution elevation data for downscaling; applying the

methodology to additional variables and considering correlation across response

variables in multi-output models; and improving the computational efficiency of the

model through advancements in the model code and incorporation of techniques such

as sparse GP regression. Non-stationary covariance lengthscales, time-dependent

bias and including additional RCM simulations are discussed further below.

In the bias correction methodology presented, underlying Gaussian processes

are modelled to have a constant spatial covariance lengthscale over the ice sheet.

In reality, the lengthscale varies depending on factors such as the topography
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Chapter 6. Future Directions

with greater lengthscales observed over regions where the topography varies more

smoothly, such as over the Antarctic plateau compared with the Antarctic Peninsula.

Considering a single lengthscale with a noise term for the entire ice sheet captures the

structure of the covariance over large distances but not at more local scales. This

results in predictions of for example the unbiased mean temperature expectation

being over-smoothed for regions with sharply varying topography, such as over the

Antarctic Peninsula. Incorporating a non-stationary lengthscale in the modelling,

where the value is allowed to change across the domain, adds complexity but

would improve estimates over these regions of sharply varying topography, which is

particularly important in the case of predicting collapse events for ice shelves off the

Antarctic Peninsula where significant warming is observed.

An additional component of the bias correction methodology that could be

further developed to improve estimates is consideration of time-dependence in the

response variable and its bias. Currently the model assumes time-independent bias

and additionally models bias in each month separately without considering temporal

correlation between months. It is suggested that to improve this GPs could also be

used to provide a distribution over the whole timeseries for each location. Bias can

then be considered in the hyper-parameters of the temporal GPs, with the current

methodology developed able to consider the spatial correlation in hyper-parameters.

The mean function of the temporal GPs at each site could have some simple time-

dependent relationship for example a linear trend with intercept and gradient hyper-

parameters. In the case of near-surface air temperature, this formulation would allow

the unbiased mean and variance to be predicted for every spatial location and time

point. Quantile mapping could then be applied at every climate model output time

and spatial coordinate separately to get a final bias corrected timeseries.

Finally, currently the model only incorporates climate model output from a

single simulation. An ensemble of Antarctic-wide RCM simulations are available

through the CORDEX project, as compared in chapter 2. The methodology could be

extended to consider additional RCM output by considering each additional dataset
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as generated by the sum of two latent generating processes, one of which is shared

with the previous datasets and the other which generates a new bias to estimate. An

assumption would be that the biases in each climate model are independent and the

aim is to disaggregate an unbiased signal from the ensemble. All these advancements

are exciting but outside the scope of the PhD, they would be expected to improve

estimates but come at the cost of increased computational demands and complexity

that potentially makes interpretation of findings more challenging.
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A.1 STL Decomposition

Figure A.1 shows an example of applying STL decomposition to the time series of

snowfall, surface temperature and melt for a grid-cell on the Larsen C ice shelf. The

decomposition has been applied to each of the 8 model outputs examined in this

paper. The trend, seasonal and residual components are shown next to the original

time series. Decomposing the time series into these components allows some features

to be extracted. For example, in the case of snowfall and surface temperature the

models all show high correlation in the inter-annual trend, although there exists a

significant systematic difference in the mean between the models. Similarly, for

snowfall and surface temperature there is high correlation in the residual term

between the models but there is a systematic difference between the models in the

standard deviation of that component. In the case of melt, the correlation is more

moderate for the trend and residual components, meaning systematic differences

are less obvious. The seasonal and residual components in STL decomposition are

defined to have approximately zero mean.

The melt time series over Antarctica generally consists of two distinct periods,

being the austral summer months (December, January and February) and then

all other months of the year. Across all non-austral summer months, the melt

magnitude is typically zero. The periods are therefore distinct in that the magnitude

of melt over the austral summer doesn’t inform the magnitude over the following

non-summer months. Additionally, the variances over both periods are non-

homogeneous. The impact this has on the STL decomposition is that any deviations

in the magnitude of melt occurring over austral summer months, compared to the

mean over these months, gets primarily treated as noise rather than as a component

of the trend signal. Additionally, in the estimated noise component of the time

series, non-zero magnitude melt events are attributed to non-austral summer months

to account for the smooth trend component. To resolve these issues in future work,

the distinct periods could be separated and the time series for melt over just the

austral summer months analysed.
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Figure A.1: An example of STL decomposition applied to the monthly time series

of snowfall (a,b,c,d), surface temperature (e,f,g,h) and melt (i,j,k,l) for a grid-cell

near the grounding line on the Larsen C ice shelf. The original time series for the

years 2000-2010 are shown (a, e, i), as are the trend (b, f, j), seasonal (c, g, k) and

residual (d, h, l) decompositions. The model is additive meaning the sum of trend,

seasonal and residual components returns the original time series. Parameter values

are ns = 13 and nt = 21.
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A.2 Same Core Model Differences

131



Appendix A. Variability in Antarctic Surface Climatology Across Regional
Climate Models and Reanalysis Datasets

Figure A.2: The difference for the 1981-2018 time series of snowfall, in the

mean (a,d,g,j), the standard deviation of the seasonal component (b,e,h,k) and

the standard deviation of the residual component (c,f,i,l) between the following

pairs of outputs: ERA-Interim relative to ERA5 (a,b,c); MetUM(044) relative to

MetUM(011) (d,e,f); MAR(ERAI) relative to MAR(ERA5) (g,h,i); RACMO(ERAI)

relative to RACMO(ERA5) (j,k,l). Differences at each grid cell are expressed as a

proportion of average inter-annual variation and so do not have units.
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Figure A.3: The difference for the 1981-2018 time series of near-surface air

temperature, in the mean (a,d,g,j), the standard deviation of the seasonal component

(b,e,h,k) and the standard deviation of the residual component (c,f,i,l) between the

following pairs of outputs: ERA-Interim relative to ERA5 (a,b,c); MetUM(044)

relative to MetUM(011) (d,e,f); MAR(ERAI) relative to MAR(ERA5) (g,h,i);

RACMO(ERAI) relative to RACMO(ERA5) (j,k,l).

133



Appendix A. Variability in Antarctic Surface Climatology Across Regional
Climate Models and Reanalysis Datasets

Figure A.4: The difference for the 1981-2018 time series of melt, in the mean

(a,d,g,j), the standard deviation of the seasonal component (b,e,h,k) and the

standard deviation of the residual component (c,f,i,l) between the following pairs

of outputs: ERA-Interim relative to ERA5 (a,b,c); MetUM(044) relative to

MetUM(011) (d,e,f); MAR(ERAI) relative to MAR(ERA5) (g,h,i); RACMO(ERAI)

relative to RACMO(ERA5) (j,k,l). Differences at each grid cell are expressed as a

proportion of average inter-annual variation and so do not have units. Grid-cells

where the ensemble mean average monthly melt is less than 1 mm w.e. m−1 are

masked.
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A.3 DEM Differences

Figure A.5: The difference between the DEM used by each climate model is plot

relative to the ensemble average (a. ERA-Interim, b. ERA5, c. MetUM(044), d.

MetUM(011), e. MAR and f. RACMO). The DEMs are regrid onto the MetUM(011)

12.5 km2 grid for comparison. Units are meters of elevation difference.
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Figure A.6: A density scatter plot showing the correlation between the difference

in elevation for each model relative to the ensemble and the difference for near-

surface temperature in the mean of the time series (a), the standard deviation of

the seasonal component (b) and the standard deviation of the residual component

(c). The linear Pearson correlation coefficient is given for each plot.

136



A.4. Correlation in the Trend Component

A.4 Correlation in the Trend Component

Figure A.7 compares the correlation in the residual (a,b,c) and trend component of

the time series (d,e,f). The magnitudes and patterns shown are similar for the two

components, with the greatest difference visible for NST. The pattern shown for

NST where the MetUM simulations are more correlated with the reanalysis models

than the MAR and RACMO simulations, is not visible for the trend component.

This is hypothesised to indicate that the reinitialisation procedure that the MetUM

simulations utilise provides most added value in improving correlation with the

driving data over approaches in MAR and RACMO simulations for short frequency

climatic events.
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Figure A.7: The correlation in the residual (a,b,c) and trend component of the time

series (d,e,f) for snowfall (a,d), near-surface air temperature (b,e) and melt (c,f)

between models averaged over the ice-sheet. The colour scale relates to the value

of correlation and the scale is adjusted for each plot. The size of each square also

relates to the value of correlation, although is kept constant across the figures, going

from 0-1, to make comparisons clear between the different variables.
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B.1 Posterior and Posterior Predictives

B.1.1 Full Hierarchical Model

The in situ observations and climate model output are treated as realisations from

the stochastic processes {Y (s)} and {Z(s)} respectively, where the random variables

for a given site are distributed as:

Y (s) ∼ F(φY (s)) (B.1)

Z(s) ∼ F(φZ(s)) (B.2)

The symbols φY (s) and φZ(s) represent the collection of parameters that

describe the PDF at the site. For example if the PDF is normal, then φY (s) =

[µY (s), σY (s)] and φZ(s) = [µZ(s), σZ(s)].

Consider a collection of nY in situ observational sites, where for each site i there

exists mi measurements of some property. In addition, consider gridded output from

a climate model at nz locations, where at each location there exists mz measurements

of the same property. The data can then be represented through the following:

y = [ys1 , . . . ,ysny ] (B.3)

ysi = [ysi,1, . . . , ysi,mi ] (B.4)

z = [zs1 , . . . ,zsnz ] (B.5)

zsj = [zsj ,1, . . . , zsj ,mz ] (B.6)

Also, defining the collection of in situ observation sites as sy = [s1, . . . , sny ]

and the collection of climate model output locations as sz = [s′1, . . . , s
′
nz ], then the

collection of PDF parameter values for each set of locations is written as:

φY (sy) = [φY (s1), . . . ,φY (sny)] (B.7)

φZ(sz) = [φZ(s′1), . . . ,φZ(s′nz)] (B.8)
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The PDF parameters are themselves each modelled as being generated from

latent stochastic processes {φY (s)} and {φZ(s)}. The latent processes that generate

the parameters for climate model are considered composed of two independent

processes, one that also generates the equivalent parameters for the in situ

observations and another that generates some bias, such that φZ(s) = φY (s)+φB(s).

The family of GPs are chosen for the latent processes. A link function is used for

the case where the parameter space is not the same as the sample space for GPs.

Considering the case of no link function, the following can be be written:

φY (s)∼GP(·, ·|θφY ) (B.9)

φB(s)∼GP(·, ·|θφB) (B.10)

φZ(s)∼GP(·, ·|θφY ,θφB) (B.11)

The collection of hyper-parameters for the generating processes are given by θφY

and θφB respectively. Note the additive property of GPs allows φZ(s) to also be

represented by a GP, where the mean and covariances are computed from the sum

of the relative values from the independent processes. The posterior distribution for

the model can then be written as:

P (φY (sy),φZ(sz),θφY ,θφB |y, z) =
P (y, z|φY (sy),φZ(sz),θφY ,θφB) · P (φY (sy),φZ(sz),θφY ,θφB)

P (y, z)
(B.12)

The first part of the numerator for the fraction can be broken down into:

P (y, z|φY (sy),φZ(sz),θφY ,θφB) = P (y|φY (sy)) · P (z|φZ(sz)) (B.13)

The second part of the numerator for the fraction can be broken down into:

P (φY (sy),φZ(sz),θφY ,θφB) = P (φY (sy)|φZ(sz),θφY ,θφB)·P (φZ(sz)|θφY ,θφB)·P (θφY )·P (θφB)

(B.14)
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The above equations are inherently incorporated into the code implementation

through the model definition using the Numpyro python package (Phan et al., 2019).

The posterior distribution is approximated using MCMC, which returns realisations

of φY (sy), φZ(sz), θφY and θφB from the posterior. The posterior predictive

estimates of for example φY (ŝ) at any set of new locations ŝ across the domain

is then given by the following:

P (φY (ŝ)|y, z) =

∫
P (φY (ŝ),φY (sy),φZ(sz),θφY ,θφB |y, z)dφY (sy)dφY (sz)dφB(sz)dθφY dθφB

(B.15)

Where the integrand can be broken down into:

P (φY (ŝ),φY (sy),φZ(sz),θφY ,θφB |y, z) = P (φY (ŝ)|φY (sy),φZ(sz),θφY ,θφB)·P (φY (sy),φZ(sz),θφY ,θφB |y, z)

(B.16)

The second part of this expression is equivalent to the posterior distribution

defined earlier. The realisations from the posterior provided through the MCMC

inference can be used as parameter values in the first part of the expression

above to give a distribution that when sampled from provides posterior predictive

realisations for φY (ŝ). In the case of Gaussian processes the distribution of

P (φY (ŝ)|φY (sy),φZ(sz),θφY ,θφB) can be formulated in the following way, where

to start take the joint distribution:


φY (ŝ)

φY (sy)

φZ(sz)

 ∼ N


mφY (ŝ)

mφY (sy)

mφZ (sz)

 ,

KφY (ŝ, ŝ) KφY (ŝ, sy) KφY (ŝ, sz)

KφY (sy, ŝ) KφY (sy, sy) KφY (sy, sz)

KφY (sz, ŝ) KφY (sz, sy) KφZ (sz, sz)


 (B.17)

Note, that since φY (s) and φB(s) are independent and φZ(s) = φY (s) +φB(s),

the covariance between the parameters φY (s) and φZ(s) is simply COV
(
φY (s), φZ(s′)

)
=

COV
(
φY (s), φY (s′)

)
= KφY (s, s′). Additionally, the mean and covariance terms for

the process that generates φZ(s) are computed as mφZ (s) = mφY (s) + mφB(s) and

KφZ (s, s′) = KφY (s, s′) +KφB(s, s′).
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Then, defining the following:

U1 =
[
φY (ŝ)

]
, U2 =

φY (sy)

φZ(sz)

 ,U =

U1

U2

 ,M1 =
[
mφY (ŝ)

]
,M2 =

mφY (sy)

mφZ (sz)

 ,M =

M1

M2


(B.18)

K11 =
[
KφY (ŝ, ŝ)

]
, K12 =

[
KφY (ŝ, sy) KφY (ŝ, sz)

]
(B.19)

K21 =

KφY (sy, ŝ)

KφY (sz, ŝ)

 , K22 =

KφY (sy, sy) KφY (sy, sz)

KφY (sz, sy) KφZ (sz, sz)

 (B.20)

The distribution can be written as:

U1

U2

 ∼ N
M1

M2

 ,
K11 K12

K21 K22

 (B.21)

Where the conditional distribution P (U1|U2) is well known for Gaussian distri-

butions and is given as:

P (U1|U2) = N (M1|2, K1|2) (B.22)

With parameters values:

M1|2 = M1 +K12K
−1
22 (U2 −M2) (B.23)

K1|2 = K11 −K12K
−1
22 K21 (B.24)

This provides the distribution P (U1|U2), which is equivalent to the distribution

P (φY (ŝ)|φY (sy),φY (sz),θφY ) that is needed to compute the posterior predictive.

B.1.2 Non-hierarchical Case

In the non-hierarchical case used in Sect. 3.4.1, direct observations are assumed for

φY (sy) and φZ(sz). In this case the posterior for the model can be written out as:
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P (θφY ,θφB |φY (sy),φZ(sz)) =
P (φY (sy),φZ(sz)|θφY ,θφB) · P (θφY ,θφB)

P (φY (sy),φZ(sz))
(B.25)

Where the first expression of the numerator can be broken down into:

P (φY (sy),φZ(sz)|θφY ,θφB) = P (φY (sy)|φZ(sz),θφY ,θφB) · P (φZ(sz)|θφY ,θφB)

(B.26)

While the second part of the numerator can be split due to independence between

the generating processes, such that:

P (θφY ,θφB) = P (θφY ) · P (θφB) (B.27)

As with the full hierarchical model, the above equations are inherently incorpo-

rated into the non-hierarchical code implementation, with the posterior distribution

approximated using MCMC, which returns realisations of θφY and θφB from the

posterior. The posterior predictive estimates of for example φY (ŝ) at any set of new

locations ŝ across the domain is then given by the following:

P (φY (ŝ)|φY (sy),φZ(sz)) =

∫
P (φY (ŝ),θφY ,θφB |φY (sy),φZ(sz))dθφY dθφB

(B.28)

Where the integrand can be broken down into:

P (φY (ŝ),θφY ,θφB |φY (sy),φZ(sz)) = P (φY (ŝ)|θφY ,θφB ,φY (sy),φZ(sz))·P (θφY ,θφB |φY (sy),φZ(sz))

(B.29)

The second part of this expression is equivalent to the posterior distribution

defined earlier. The realisations from the posterior provided through the MCMC

inference can be used as parameter values in the first part of the expression above to

give a distribution that when sampled from provides posterior predictive realisations

for φY (ŝ). The distribution in the first part of the expression can be formulated in

the same way as presented in Sect. B.1.1.
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B.2 Data Generation

B.2.1 3.4.1

Define φY as one parameter of the probability density function for the in situ

observations and φZ as the corresponding parameter for the climate model output.

The following relationship is then assumed φZ = φY + φB, where φB is the bias

in the parameter and is assumed independent of φY . The latent distributions that

generate φY and φB across the domain are assumed GPs with mean and covariance

functions. The mean function is assumed constant for simplicity and the covariance

function is taken as an RBF kernel with a kernel variance and length scale parameter

(Eq. (3.5)). These hyper-parameters of the two latent generating processes are set

for three scenarios, as given in Table 3.1.

For each scenario, a sample of the parameters φY and φB is taken from the

distributions GPφY and GPφB at regularly spaced, high-resolution intervals. These

samples are referred to here as complete realisations and represent underlying

fields for each parameter across the domain, which the model aims to estimate.

Direct ‘observations’ of the parameter φY from the underlying field are simulated

at lower-resolution, randomised locations after conditioning the distribution GPφY
on the complete realisation and introducing some noise. In order to simulate

direct measurements of the parameter φZ of the climate model output, samples

are first generated for φY and φB at regularly spaced intervals after conditioning

the distributions GPφY and GPφB on the complete realisations, then the sum

of these samples at each location is taken to give φZ . The number of direct

observations/measurements for each parameter under the different scenarios is given

in Table 3.1.

B.2.2 3.4.2

A sample of the parameters µY , µB, σ̃Y and σ̃B is taken from the distributions GPµY ,

GPµB , GP σ̃Y and GP σ̃B at regularly spaced, high resolution intervals. These samples
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are referred to as complete realisations and represent the underlying fields for each

parameter across the domain. A sample of the parameters for the in situ data (µY

and σ̃Y ) are also generated at a selection of lower-resolution, randomised locations

after conditioning the latent distributions on the complete realisations. Observations

of the in situ data Y are then generated at these locations from the corresponding

normal distribution. In the case of the climate model data Z, samples are first

generated for µY , µB, σ̃Y and σ̃B at regularly spaced intervals after conditioning the

latent distributions on the complete realisations, then the sum of these samples at

each location is taken to give µZ and σ̃Z . The climate model data is then generated at

these locations from the corresponding normal distribution. The number of locations

and the number of samples per location are given in Table 3.4.

B.3 Prior and Posterior Distribution Examples

B.3.1 3.4.1

In Figure B.1 the prior and posterior distributions are illustrated for each parameter

given the measurement data in scenario one. As expected, it can be seen that the

density of the posterior distribution for each parameter is concentrated closer to the

value specified when generating the data than in the case of the prior distributions.

The extent of the variation between the prior and posterior distributions depends

on the specific parameter and the impact that parameter has on the likelihood of

the measured data. As an example, the posterior distribution for the length scale of

the latent GP that generates φY across the domain (Fig. B.1b) is more concentrated

around the specified value compared to the equivalent length scale for the bias (Fig.

B.1e).
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Figure B.1: A figure illustrating the prior and posterior distributions for the

parameters of the model in the case of scenario one. The value that was specified

when generating the data is also shown.

B.3.2 3.4.2

The prior and posterior distributions for all parameters of the hierarchical model is

presented in Figure B.2. Inference on the parameters was performed using MCMC in

a hierarchical Bayesian framework. Relatively non-informative prior distributions

are chosen and are equivalent to the choice of priors in Sect. 3.4.1. The model

assumes 4 generating GP distributions, one for each of the parameters µY , µB, σ̃Y
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and σ̃B. Each GP distribution has 3 associated parameters, being the mean constant

(m), the kernel variance (v) and the kernel length scale (l). The values specified in

generating the data are shown as a dotted line for each parameter.

As expected, the posterior distribution for each parameter is concentrated closer

to the value specified when generating the data than the relatively non-informative

prior distributions. As with the non-hierarchical case, more confidence is shown on

the value of some parameters than others in the posterior distributions, such as the

posterior of the length scale of the latent GP that generates µY across the domain

(Fig. B.2b) compared to the equivalent length scale for that of the bias (Fig. B.2h).
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Figure B.2: A figure illustrating the prior and posterior distributions for the

parameters of the model in the case of the 1D hierarchical example. The value

that was specified when generating the data is also shown.

B.4 Complex Scenarios

Real-world scenarios are expected to have more complex spatial features than the

simulated examples presented in Sect. 3.4.1, with some of the assumptions of

the model expected to be partially broken, such as stationarity and independence
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of the latent processes. To explore the performance of the methodology under

scenarios with more complex spatial features, as in real-world problems, results for

several additional simulated examples (A-D) are presented in Fig. B.3. The hyper-

parameter values used to generate the data are presented in Table B.1, while the

summary statistics for the posterior distributions after fitting the model proposed

in this paper are presented in Table B.2.

Scenario A represents a potential real-world scenario where the covariance length

scale changes across the domain. This could be due to topographic features and a

shift from relatively smooth topography to sharp mountainous terrain. For this

scenario, the length scale of the latent unbiased process changes abruptly at x = 50

with a length scale of 5 for x < 50 and a length scale of 1 for x > 50. The length

scale of the biased process is left constant across the domain in scenario A, although

in scenario B it is made to also change abruptly at x = 50 to show a case where

the latent spatial structure of the bias is also dependent on an extra factor such as

topography.

Scenario C represents the potential real-world scenario where there are multiple

sources of variation in the climate with different covariance length scales. An

example of this could be the combined influence of large-scale upper-atmosphere

circulation patterns and small-scale topographic changes over the domain. The

data is generated from the unbiased process after defining the kernel as the sum

of two independent components, one with a variance of 1 and length scale of 3

and the other with a variance of 0.2 and length scale of 0.6. Finally, scenario D

represents a potential real-world case where the bias in the parameter of study is

dependent on the parameter value itself, as might be the case if for example the

output from temperature sensors were skewed by over-heating. This correlation is

induced between the bias and the unbiased process by generating the data for the

bias as the sum of φB(s) = 0.2 ∗φY (s) +φBind.(s), where φBind.(s) is an independent

bias as generated in the other examples.

The result of fitting the model presented in this paper to each scenario is
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displayed in Table B.2 and Fig. B.3. From Table B.2 it is clear that in cases

where multiple length scales are used in generating the data, the expected value of

the assumed single length scale is in-between the true values tending more to the

smallest length scale. The reason the expectation of the single length scale tends

towards the shorter values present in generating the data is hypothesised to be the

result of more spatial features (peaks and troughs) being present for the shorter

length scale component. The model is better able to explain the data observed with

a length scale closer to the shortest value present and the 95% credible interval

for the single length scale does not necessarily cover the multiple values used in

generating the data.

In Fig. B.3 it can be seen that, despite the additional complexities, the

predictions on the unbiased parameter and on the bias are reasonable and capture

the main spatial patterns. This demonstrates the flexibility of GPs and the

robustness of the methodology proposed to fit different types of real-world data

where some of the assumptions made in the model partially don’t hold. Some

features of the results due to not fully capturing the dependencies involved in

generating the data are described here. In scenario A the length scale of the unbiased

process is estimated close to the value used in generating the data for x > 50, which

results in greater uncertainty than expected between nearby observations in the

region x < 50 where the length scale is greater. For example, in the extrapolation

range of x < 0 the prediction in the unbiased parameter values returns sharply to

the mean and with uncertainty independent of observed points, whereas if the length

scale was correctly estimated in this region the predictions would remain dependent

on the data observed at x = 0− 10 for longer. The same is true in scenario B with

the addition of the estimates of the bias being effected, making disaggregating the

climate model output into an unbiased and biased component more challenging, as

seen at x = 30. In scenario C again by only modelling a single length scale for the

unbiased process, disaggregating the climate model output into its two components

is effected and the longer length scale peak present at x = 20 is attributed to the bias
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incorrectly. Finally in scenario D, not accounting for the correlation between the

unbiased values and the bias results in a slightly greater uncertainty in predictions

than could be achieved by incorporating this relationship.

Overall the model is shown to perform adequately and not be over-sensitive to

some of the assumptions being partially broken, which supports the usefulness of the

methodology to real-world applications. In addition, other methodologies currently

applied to bias correction are likely more affected in these complex scenarios. It is

noted that the purpose of this paper is not to provide a final fixed model however,

instead aiming to provide a framework where additional complexities present in

real-world applications can be assessed on a case-by-case basis and further model

adjustments made where needed to account for specific features of the real-world

dataset. The model could be modified for each scenario to take into account the

extra complexity, something that a fixed-type model for bias correction would not

be able to handle.

Dependent Variable Model Parameters Scenario A Scenario B Scenario C Scenario D

Unbiased PDF Parameter φY

Kernel Variance (vφY ) 1.0 1.0 1.0 & 0.2 1.0

Kernel Lengthscale (lφY ) 5.0 (x < 50), 1.0 (x > 50) 5.0 (x < 50), 1.0 (x > 50) 3.0 & 0.6 3.0

Mean Constant (mφY ) 1.0 1.0 1.0 1.0

Noise (σφY ) 0.1 0.1 0.1 0.1

# Observations 40.0 40.0 40.0 40.0

Bias PDF Parameter φB

Kernel Variance (vφB ) 1.0 1.0 1.0 1.0

Kernel Lengthscale (lφB ) 10.0 10.0 (x < 50), 2.0 (x > 50) 10.0 10.0

Mean Constant (mφB ) -1.0 -1.0 -1.0 -1.0

Climate Model PDF Parameter φZ # Observations 80.0 80.0 80.0 80.0

Table B.1: A table showing the hyper-parameters of the latent Gaussian processes

used to generate the complete underlying realisations of φY (s?), φB(s?) and hence

φZ(s?), as well as observations of φY (sy) and φZ(sz), on which inference is done for

the additional scenarios. The number of observations representing in-situ data and

climate model output is also given.
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(a) Scenario A and B

Dependent Scenario A Posterior Dist. Scenario B Posterior Dist.

Variable Model Parameter Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased PDF

Parameter φY

Kernel Variance vφY 0.87 0.17 0.55 1.18 0.85 0.18 0.53 1.20

Kernel Lengthscale lφY 1.06 0.06 0.94 1.19 1.12 0.07 0.99 1.24

Mean Constant mφY 0.78 0.15 0.48 1.07 1.42 0.17 1.09 1.77

Noise σφY 0.12 0.03 0.06 0.17 0.15 0.05 0.05 0.24

Bias PDF

Parameter φB

Kernel Variance vφB 1.15 0.86 0.19 2.87 0.85 0.39 0.32 1.60

Kernel Lengthscale lφB 10.34 1.93 6.86 14.32 3.50 0.82 2.21 5.05

Mean Constant mφB -0.68 0.49 -1.59 0.34 -0.79 0.27 -1.33 -0.25

(b) Scenario C and D

Dependent Scenario C Posterior Dist. Scenario D Posterior Dist.

Variable Model Parameter Exp. Std. Dev. C.I. L. C.I. U. Exp. Std. Dev. C.I. L. C.I. U.

Unbiased PDF

Parameter φY

Kernel Variance vφY 0.52 0.10 0.34 0.72 0.88 0.23 0.49 1.33

Kernel Lengthscale lφY 0.75 0.08 0.61 0.92 2.95 0.06 2.82 3.07

Mean Constant mφY 1.03 0.11 0.81 1.25 0.93 0.26 0.42 1.44

Noise σφY 0.18 0.06 0.09 0.30 0.10 0.02 0.07 0.13

Bias PDF

Parameter φB

Kernel Variance vφB 0.57 0.44 0.11 1.38 0.42 0.22 0.14 0.84

Kernel Lengthscale lφB 6.71 2.11 3.19 10.84 4.31 0.53 3.26 5.33

Mean Constant mφB -0.12 0.30 -0.73 0.44 -0.02 0.21 -0.46 0.38

Table B.2: Tables showing summary statistics for the posterior distributions

including the expectation (Exp.), standard deviation (Std. Dev.) and lower and

upper bounds for the 95% credible interval (C.I. L. and C.I. U.). The prior

distributions are the same non-informative distributions given in Table 3.2.

153



Appendix B. Bias Correction of Climate Models using a Bayesian Hierarchical
Model

2

0

2

4

Pa
ra

m
et

er
 V

al
ue

(a) Scenario A

2

0

2

4

Pa
ra

m
et

er
 V

al
ue

(b) Scenario B

0

2

4

Pa
ra

m
et

er
 V

al
ue

(c) Scenario C

20 0 20 40 60 80 100 120
Location (s)

2

0

2

Pa
ra

m
et

er
 V

al
ue

(d) Scenario D

Unbiased Parameter Post.Pred. Exp. E[ Y(sz)]
Unbiased Parameter Post.Pred. Std.Dev. [ Y(sz)]
Bias Parameter Post.Pred. Exp. E[ B(sz)]
Bias Parameter Post.Pred. Std.Dev. [ B(sz)]

Unbiased Parameter Field Y(s )
Bias Parameter Field B(s )
Climate Model Parameter Field Z(s )
In Situ Parameter Observations Y(sy)
Climate Model Parameter Observations Z(sz)

Figure B.3: Expectation and 1σ uncertainty of the posterior predictive distributions

of the parameter φY (sz) and the corresponding bias φB(sz) for three scenarios. The

underlying functions (complete realisations) as well as the simulated input data are

also shown.
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C.1 Mean function model parameter prior and

posterior distributions
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Figure C.1: Prior and posterior distributions for the parameters of the global mean

function model fit to both the AWS and climate model output separately.
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C.2 Residuals spatial model parameter prior and

posterior distributions
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Figure C.2: Prior and posterior distributions for the parameters of the spatial model

fit to the residual components of the mean parameter.
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Figure C.3: Prior and posterior distributions for the parameters of the spatial model

fit to the residual components of the log-variance parameter.
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C.3 Bias Components
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Figure C.4: Bias in the mean and log-variance parameters split into components for

the mean function (a,b) and residual (c,d).
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C.4 Spatial Model Grid
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Figure C.5: A figure providing reference for the values obtained for the lengthscales

of the latent GPs in stage two of the model against the extent of the ice sheet.
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Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang,

Thierry Fichefet, and Xavier Fettweis (2021). “Diverging future surface mass

balance between the Antarctic ice shelves and grounded ice sheet”. In: The

Cryosphere. doi: 10.5194/tc-15-1215-2021.

Kopp, Robert E., Robert M. DeConto, Daniel A. Bader, Carling C. Hay, Radley

M. Horton, Scott Kulp, Michael Oppenheimer, David Pollard, and Benjamin

H. Strauss (2017). “Evolving Understanding of Antarctic Ice-Sheet Physics and

170

https://doi.org/10.1002/qj.3803
http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.5194/tc-15-1215-2021


References

Ambiguity in Probabilistic Sea-Level Projections”. In: Earth’s Future. doi: 10.

1002/2017EF000663.

Kuipers Munneke, Peter, Stefan R. M. Ligtenberg, Michiel R. van den Broeke, and

David G. Vaughan (2014). “Firn air depletion as a precursor of Antarctic ice-shelf

collapse”. In: Journal of Glaciology. doi: 10.3189/2014JoG13J183.

Lenaerts, J. T. M. and M. R. van den Broeke (2012). “Modeling drifting snow in

Antarctica with a regional climate model: 2. Results”. In: Journal of Geophysical

Research-Atmospheres. doi: 10.1029/2010JD015419.

Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, and

P. Kuipers Munneke (2012). “A new, high-resolution surface mass balance map

of Antarctica (1979-2010) based on regional atmospheric climate modeling”. In:

Geophysical Research Letters. doi: 10.1029/2011GL050713.

Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, G. König-Langlo, J. Ettema,
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