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Transfer Learning for Cross-Modal Demand Prediction of Bike-Share and

Public Transit

Abstract: The urban transportation system is a combination of multiple transport modes,

and the interdependencies across those modes exist. This means that the travel demand

across different travel modes could be correlated as one mode may receive/create demand

from/for another mode, not to mention natural correlations between different demand time

series due to general demand flow patterns across the network. It is expected that cross-

modal ripple effects will become more prevalent with Mobility as a Service. Therefore, by

propagating demand data across modes, a better demand prediction could be obtained. To

this end, this study explores various transfer learning strategies and machine learning

models for cross-modal demand prediction. The trip data of bike-share, metro, and taxi are

processed as the station-level passenger flows, and then the proposed prediction method is

tested in the large-scale case studies of Nanjing and Chicago. The results suggest that

prediction models with transfer learning perform better than unimodal prediction models.

Fine-tuning without freezing strategy performs the best among all transfer learning

strategies, and the split-brain strategy can handle the data missing problem. Furthermore,

the 3-layer stacked Long Short-Term Memory model performs particularly well in cross-

modal demand prediction. These results verify our deep transfer learning method’s

forecasting improvement over existing benchmarks and demonstrate the good

transferability for cross-modal demand prediction in multiple cities.

Keywords: Transport demand, Cross-modal prediction, Transfer learning, Bike-share,

Public transit

1. Introduction

Compared with only a few decades back, today’s transportation system is much more large-scale,

heterogeneous, and dynamic. It is large-scale because of having a large quantity of spatial objects

(Lee et al., 2002) within each transport network, e.g., bike-share has thousands of stations. It is

heterogeneous because a myriad of new services exists, such as car sharing, ride sharing, shared
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micro-mobility of bike-share and scooter-share, and Mobility as a Service (MaaS) (Wong et al.,

2020) . Autonomous shuttles already operate in several places, and even existing traditional

modes, such as metro, bus, or taxi, have their modernized versions, often with smartphone apps,

increased electrification, and autonomy. The options for travellers are certainly more varied

today than before. It is also dynamic because these new technologies allow for within-day

(sometimes real-time) repositioning/control. For example, taxi and ride sharing companies often

redistribute their fleets during the day; shared micro-mobility and car sharing companies often

rebalance (Chen et al., 2018) at least during the night; and pricing of services can vary by time

and zone.

Many cities around the world have operated these new mobility services that can provide

users with convenient options, cost-saving benefits, and safe services (Hua et al., 2021) . As a

typical service of micro-mobility, bike-share has been proven to mitigate traffic congestion (Fan

and Zheng, 2020) , improve health benefits (Babagoli et al., 2019) , and protect the environment

(A. Li et al., 2021). Furthermore, these novel mobility services are promising to solve the first or

last-mile problems of public transit such as metro and bus (Yang et al., 2019). In such a dynamic

system, the risk of supply-demand misalignment is intuitively greater than in a static system.

Demand prediction is a prerequisite and basis for supply-demand rebalancing (Chen et al., 2021).

Thus, having an accurate demand prediction is vital for efficient responsiveness to demand.

Most existing studies focus on separately predicting real-time demand, e.g., shared

micro-mobility and public transit. Thus, even though users can interchange between various

transport modes, operators have difficulty in providing collaborative operation of new mobility

services and public transit. The key challenge of the collaboration is the lack of demand
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information exchange of multiple transport modes (Cleophas et al., 2019) . For example, bike-

share companies cannot know and then predict metro passenger flow, and metro companies also

cannot know and then predict bike-share passenger flow. In the absence of demand information

from other transport modes, it is virtually impossible to provide collaborative service and build

the MaaS platform. Therefore, it is essential but very hard to address the large-scale network

forecasting problem with thousands of spatial objects. This study is dedicated to filling this

research gap, particularly considering cross-modal predictions between bike-share, metro, and

taxi.

The concept of cross-modal predictions demands clarification: it refers to predictions of a

certain transport mode (target) that use information from another transport mode (source). This

includes situations where there is data missing for the target transport mode but rich data for the

source transport mode (e.g., using metro data to predict bike-share demand soon after it is

introduced in a city). It also includes situations of jointly predicting two or more transport modes

given the aggregation of their datasets in a combined model. Therefore, cross-modal prediction is

ultimately about data fusion across traditional and new transport modes, taking advantage of

inter-modal correlations to enhance predictability and data quality.

Of interest is also the concept of Transfer Learning, which is the improvement of learning

in a new task through the transfer of knowledge from a related task that has already been learned

(Olivas et al., 2009) . Transfer learning has the potential to resolve the above two problems

because it can pass the forecasting knowledge into new mobility services such as MaaS from

other traditional transport modes, which may have been in operation for many years. There is a

research gap in cross-modal demand prediction among multiple transport modes. In the existing
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studies of transport demand prediction, transfer learning has gained initial applications, enabling

knowledge transfer across time and space. However, these studies (Wang et al., 2019; J. Li et al.,

2021) focus only on a single transport mode, missing the opportunity for knowledge transfer

between different transport modes.

In order to build a transfer learning model among different transport modes, we need first

to determine the input-output frames. There are two input-output frames: single-station-input

single-station-output (SISO), and multiple-station-input multiple-station-output (MIMO). The

SISO frame is popular in demand prediction, and existing MIMO papers are limited. However,

the SISO framework has two insurmountable drawbacks. The first drawback is that SISO

consumes too much computing time in large-scale cases. The actual operation should consider

hundreds or thousands of stations (or other spatial objects) in the transport modes and predicting

the station demand one by one would cost too much time. The second drawback is that SISO is

not flexible enough to accommodate cases of different sizes. Therefore, in this study, we

establish transfer learning methods that can adapt to different input amounts and adopt the

MIMO frame, which is more suitable for the cross-modal prediction problem.

There is a trend of collaborative operation for multimodal mobility services in urban

transportation, so cross-modal demand prediction is very important in this trend. Besides,

demand prediction studies face difficulty in forecasting new services and often suffer from the

problem of data missing (Nie et al., 2022). Therefore, this paper proposes a cross-modal

forecasting framework that incorporates deep learning and transfer learning based on trip data of

shared micro-mobility (bike-share) and public transit (metro and taxi). The main contributions of

this paper are threefold: a) The cross-modal method is applied to get better prediction results of
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multimodal transport demands, overcoming the key challenge of collaboration between multiple

transport modes. b) A transfer learning framework is established aiming at the data missing

problem by passing the forecasting knowledge from traditional modes to new mobility services.

c) The proposed MIMO models address the difficulty of large-scale network prediction, as

demonstrated through two case studies conducted in Nanjing and Chicago. This study, to the best

of our knowledge, is the first paper to output large-scale cross-modal transport prediction results

with the transfer learning approach.

The rest of this study is organized as follows. Section 2 reviews the related works of

machine learning prediction and transfer learning methods. Section 3 elaborates on machine

learning models and transfer learning strategies in the cross-modal prediction framework.

Section 4 describes the data sources and presents the results of the developed method. Finally,

Section 5 discusses and concludes this study.

2. Literature review

This section reviews existing studies on transport prediction and focuses on two categories,

namely, transfer learning application and machine learning prediction, as they can be applied to

solve the challenging problems in transport forecasting: data missing problem and the inability

problem to cope with new mobility services.

2.1. Transfer learning in related studies

Transfer learning applies the knowledge of one domain to another related domain, which

can provide better performance. It has been widely applied in image processing (Guo et al.,

2023), classification (Liu et al., 2022), and prediction (Fawaz et al., 2018; Zhang et al., 2019).
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But transfer learning does not get enough attention in transport demand predicting. The existing

transfer learning research for transport prediction primarily focuses on road traffic forecasting

(Wang et al., 2018; Li et al., 2022) and mostly is limited to single-mode prediction.

Transfer learning is a promising method in cross-modal transport prediction and solving

data missing or lacking problems. Many studies have demonstrated the reliability and

effectiveness of transfer learning in addressing insufficient data ( Coston et al., 2019; Ma et al.,

2020). Besides, transfer learning can be used to transfer forecasting knowledge not only between

different areas on the same transport mode but also between different transportation modes in the

same area. If the forecasting knowledge is transferred from a small-scale mode to a large-scale

mode, transfer learning could also save the running time of large-scale demand prediction.

Therefore, transfer learning could be a tool for predicting newly-operated micro-mobility

services, especially bike-share and e-scooter sharing, using available public transit data. This is

explored in this study.

2.2. Machine learning for transport demand forecasting

In general, there are two types of machine learning models for transport demand

forecasting: single-mode demand model and cross-modal demand model. A single-mode demand

model is for a selected transport mode, and a cross-modal demand model (also considered as a

part of the cross-modal demand modal) is for multiple transport modes.

There are many papers discussing single-mode demand models, especially for bike-share

and public transit. In bike-share demand prediction, novel machine learning methods ( Li and

Zheng, 2020) and deep learning methods, especially deep neural networks ( Cho et al., 2021 ;

Chai et al., 2018) have been widely used. In public transit prediction, there are also many other
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studies applying decision trees and neural networks (J. Zhang et al., 2020; C. Li et al., 2021 ).

However, the single-mode demand model is based on sufficient data from one transport mode

and therefore cannot integrate the data from other transport modes and perform data imputation

both for better predictions and for compensating for insufficient/missing data.

The collaborative service of urban transportation is based on demand prediction in

multiple transport modes (Pan et al., 2019). For example, Li et al. (2021) first considered users’

preferred time windows in developing a user-friendly demand-responsive transit system. Yang et

al. (2023) conducted short-term passenger flow prediction for multi-traffic modes. Among the

relevant studies, bike-share is a popular type of shared transport, and its correlation with public

transit is significant (Chu et al., 2020) . Bike-share data can provide broader spatial information

for public transit prediction, and, in turn, public transit data can provide different demand

features for bike share prediction. Hence, it is necessary to develop a cross-modal demand

prediction methodology, which integrates multiple transport modes into one general prediction

framework.

Despite the necessity in practical operation, cross-modal demand prediction, or joint

demand prediction in multiple transport modes, has not received sufficient attention in existing

studies. Only a few papers (Toman et al., 2020; Wang et al., 2022; Liang et al., 2021; Li et al.,

2023) discuss joint demand prediction of multimodal urban transport. Yet these joint prediction

studies only discuss a small-scale problem or do not have a suitable spatial object, which is not

practical in large-scale transport operations. Besides, these existing studies all use New York

City as the case study, which ignores the urban transport demand in developing countries. Urban

transport, especially MaaS, should consider the large-scale network with hundreds of stations or
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even thousands of stations. Therefore, a large-scale method for joint demand prediction is

required, which is also the focus of our paper.

2.3. Summary

In short, existing studies of demand prediction for multiple transport modes have research

gaps in three aspects: data missing problems, large-scale network applications, and cross-modal

demand forecasting. This study aims to fill these three research gaps by proposing a transfer

learning approach with a MIMO framework. Transport demand forecasting faces the challenge

of large-scale networks (Lin et al., 2018), and cross-modal demand forecasting makes this

problem even more complicated. Both shared micro-mobility and public transit have hundreds or

even thousands of stations. The demands for these stations need to be predicted and output at the

same time. As a prerequisite for cross-modal demand forecasting, the input-output framework of

MIMO (Hua et al., 2020) needs to be given full attention. But most studies focus on SISO

prediction, and the research related to MIMO forecasting is relatively insufficient. Therefore, the

novel MIMO and cross-modal models need to be established by combining transfer learning and

deep learning.

3. Methodology

In this study, for the cross-modal demand prediction, machine learning and transfer learning are

combined for the forecasting knowledge transfer between bike-share and public transit. A

framework of machine-learning-first transfer-learning-second is adopted for this cross-modal

prediction problem. The process of transferring bike-share knowledge to public transit prediction

is as follows. Firstly, we use machine learning to predict the dynamic demand of public transit;
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Secondly, we apply different transfer learning strategies to transfer the forecasting knowledge of

public transit; Thirdly, we build the machine learning models with transferred knowledge to

predict the large-scale dynamic demand of bike-share. Using a similar process, the knowledge of

bike-share is also transferred to the machine learning prediction of public transit. In what follows,

Section 3.1 describes the transfer learning framework; Section 3.2 presents the proposed deep

learning model; and, finally, Section 3.3 introduces prediction model benchmarks and

performance index.

3.1. Transfer learning framework for joint prediction

For the cross-modal demand prediction of bike-share and public transit, a general

framework has been established among the various cities and scenarios. The architecture of

transfer learning for cross-modal demand prediction is shown in Fig. 1. The detailed stages of

cross-modal prediction are as follows. Firstly, the forecast models without transfer of bike-share

and public transit are established separately. Secondly, transferring public transit knowledge to

bike-share prediction and transferring bike-share knowledge to public transit prediction is to

build forecast models with transfer. Lastly, compare the results of the forecast models without

and with transfer.

There are four transfer strategies: feature extraction (does not change model), fine-tuning

without freezing transferred layers (FT), fine-tuning with freezing transferred layers (FTF), and

split-brain (SB). Because the input/output of the origin and target domains are different, the

feature extraction strategy cannot be applied in the cross-modal demand prediction. Therefore,

three strategies FT, FTF, and SB are applied in this paper.
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Firstly, the details of the FTF strategy are as follows. Because the input and output

amounts of bike-share and public transit are different, the input and output layers of the

prediction model should be tuned and cannot be frozen. The hidden layers are the transferred

layers in transfer learning, which can be tuned or frozen. If the weights of the hidden layers from

the related task are frozen in the target task, it is the transfer learning strategy of fine-tuning with

freezing transferred layers. Secondly, FT is different from the FTF strategy. If the weights of the

hidden layers from the related task are tuned in the target task, it is the transfer learning strategy

of fine-tuning without freezing transferred layers. Thirdly, the SB strategy is a novel transfer

learning type with two sub-tasks. The split-brain strategy splits the prediction task into two

disjoint sub-tasks and predicts the output of one subset with the model of another subset. In the

split-brain prediction study of Zhang et al. (2017) one sub-task predicts depth from images, while

the other predicts images from depth. The structures of these three transfer learning strategies are

shown in Fig. 2.

3.2. Stacked LSTM model for demand forecasting

In this study, the stacked LSTM method is selected as the deep learning prediction model.

LSTM is an elegant type among many RNN models, which has been widely used in transport

prediction (Liu et al., 2019; Ma et al., 2019; Hao et al., 2019; Petersen et al., 2019) . The RNN

method has the feature of network delay recursion, which could grasp the patterns of dynamic

systems. LSTM improves the basic RNN model with internal mechanisms called gates and the

memory cell. The LSTM gates consist of the forget gate, input gate, and output gate. This LSTM

model can solve the problem of vanishing or exploding gradients and better deal with short-term

memory conditions.
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Neural network depth is generally attributed to the success of many challenging

predictions. In particular, stacked Long Short-Term Memory (Stacked LSTM) is defined as an

LSTM model comprised of multiple LSTM layers. Stacked LSTM can increase the depth of

LSTM neural networks and has a better performance of prediction tasks. Multiple LSTM layers

make the model deeper and could capture the high-dimensional non-linear patterns of transport

demand. Meanwhile, various machine learning methods have also been used to compare with the

stacked LSTM model and the corresponding transfer learning strategies, whose details are

introduced in Section 3.3.

The architecture of our stacked LSTM model is shown in Fig. 3. In a stacked LSTM

model, there are three types of layers: input layer, hidden layer, and output layer. In the input

layer, the spatiotemporal flow data (the actual demand amounts in the former intervals of all

stations) are used as the input matrix. As for the hidden layer, several LSTM layers are stacked

and fused into the prediction model, and each LSTM layer has many units. In the output layer

(fully connected, FC), the predicted demand amounts in the future interval of all stations are the

output results.

3.3. Baselines and metrics

Five benchmarks are used to compare the forecasting performance of the proposed

method, and the brief introduction of these baselines is as follows:

(1) One step

It takes the observed value at the former interval as the predicted value at the next

interval.
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(2) Historical average (HA)

The average observed value during the past weeks at the same period in time and the

same station is calculated as the predicted value.

(3) Vector autoregression (VAR)

It uses a vector to generalize the autoregressive model and therefore is suitable for MIMO

prediction. Its advantage is capturing the interdependencies of multiple time series.

(4) Random forest (RF)

It consists of multiple decision trees and outputs the average prediction of these trees. A

decision tree is a tree-like model that learns the decision rules from root to leaf. The root is the

entire sample, the branch is the feature conjunction, and the leaf is the target value.

(5) Graph Convolutional Network (GCN)

It is a type of CNN that can work directly on graphs, which means that filter parameters

are typically shared over all locations in the graph. GCN combines GNN and CNN, which is

good at learning graph representations and has achieved superior performance in many tasks.

Mean Absolute Error (MAE), root mean square error (RMSE), and R-square (R2) are

adopted as the evaluation metrics of the model performance. The calculation of MAE, RMSE,

and R2 are given in Equations (1), (2), and (3).

MAE = 1
�×� �=1

�
�=1
� ��,� − �� �,��� # 1
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RMSE = 1
�×� �=1

�
�=1
� ��,� − �� �,�

2
�� # 2

R2 = 1 − �=1
�

�=1
� ��,� − �� �,�

2��

�=1
�

�=1
� ��,� − ��

2
��

# 3

where N represents the number of stations, T represents the amount of prediction intervals, yi,t

represents the observed flow in the i-th station in the t-th interval, �� represents the mean value of

yi,t, and �� �,� represents the predicted flow in the i-th station in the t-th interval.

4. Results

4.1. Dataset description

The trip data used in this study are from Nanjing City and Chicago City. As shown in

Table 1, these two cities both have large-scale multimodal transport services with more than

1,000 spatial objects. Specifically, a) in the case of Nanjing, China, there are 1.475 stations in

bike-share mode and 160 stations in metro mode; b) in the case of Chicago, US, there are 50

stations in bike-share mode and 511 zones in taxi mode. The two case studies ensure that the

methods and findings in this paper are not exclusive to one specific scenario, but rather more

widely appropriate. For the Nanjing case, trip data in March 2019 of metro and bike-share are

provided by the Nanjing Metro Group and Nanjing Public Bicycle Company separately. For the

Chicago case, trip data in March 2019 of taxi and bike-share are obtained from the open data

website. Among them, in March 2019, metro trips (37.9 million) were about fourteen times bike-

share trips (2.8 million) in Nanjing, and taxi trips (1.5 million) were about ten times bike-share
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trips (165.6 thousand) in Chicago. The fields of all four trip datasets contain departure time and

position, end time, and position.

Considering the difference in spatial attributes of various transport modes, taxi zone

centroids, bike-share stations, and metro stations are selected as the spatial objects in this study.

Fig. 4 shows the spatial distributions and temporal characteristics of Nanjing and Chicago

transport. As for Nanjing, some bike-share stations are near to metro, but others are far from the

metro stations. In Chicago, taxi and bike-share services have a similar spatial distribution. For

taxi analysis, Chicago city is divided into five hundred small zones.

Hourly passenger flows of the typical stations at Nanjing and Chicago are also displayed

in Fig. 4 (c) and (d). In Nanjing, the morning peak is 9 am, and the evening peak is 3 to 7 pm.

The evening peak of bike mode is a little earlier than the evening peak of metro mode. The

reason for this small difference may be that the major users of Nanjing Public Bicycle are elderly

people who would go grocery shopping from 3 to 4 pm. But metro users mainly travel for

commuting, so the metro peak is 7 pm. In Chicago, the morning peak is 9 to 10 am, and the

evening peak is 5 to 6 pm. The bike peak is synchronized with the taxi peak.

The correlation matrix of the station-level demands for metro and bike-share in Nanjing

is shown in Fig. 4 (e), and the correlation matrix of the station-level demands for taxi and bike-

share in Chicago is shown in Fig. 4 (f). In these two subfigures, “b” for bike share, “m” for metro,

and “t” stands for taxi. The correlation results of Nanjing are different from those in Chicago. In

Nanjing, not only are there mostly positive correlations within the same transport mode, but the

passenger flows of metro stations and bike-share stations are also basically positively correlated.

It reflects the cooperative characteristic of metro and bike-share and the collaborative potential
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of MaaS. However, in Chicago, the passenger flows of a taxi centroid and other taxi centroids

are positively correlated. The passenger flows of a bike-share station and other bike-share

stations are also mostly positively correlated. But the passenger flows of some taxi centroids and

some bike-share stations are negatively correlated. It reflects the competitive characteristics of

taxi and bike-share.

4.2. Experiment settings

The models of this study are coded with TensorFlow in Python, and their target is to

predict the inflow values at all stations in the next horizon. Before estimating model results, the

experiment setting needs to be determined, which consists of the spatial object, time interval,

training, and test datasets. Firstly, the spatial object in each case would be reduced. The reason

for spatial object reduction is that some stations have very low passenger flows. For example,

many hourly flow values of these stations are zero. If the average hourly flow is less than 0.1,

this station would be removed from spatial objects. After spatial object reduction, the case

studies still are large-scale networks. The Nanjing case has 1361 bike-share stations & 159 metro

stations, and the Chicago case has 374 bike-share stations & 88 taxi centroids. Secondly, four-

time intervals are chosen by trip data conversion. Trip data processing converts trip data into

passenger flow data and is conducted in SQL Server Management Studio with three processing

steps. a) Bike-share stations, metro stations, and taxi centroids are selected as spatial objects. b)

Four forecast horizons or time intervals are set for the dynamic prediction, including 15 min, 30

min, 45 min, and 60 min. c) Passenger flows at each station in each horizon are calculated and

output. Thirdly, this paper uses the first 70% of the data as the training dataset, the following
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10% of the data as the validation dataset, and the last 20% as the test dataset in all machine

learning prediction models.

Hyperparameters in the proposed models include input horizon amount, hidden layer

amount, layer unit amount, training epoch, and batch size. To achieve a balance between

underfitting and overfitting, hyperparameter tuning is based on the validation dataset. After

hyperparameter tuning, four horizons are selected as the suitable input horizons, as shown in Fig.

5 (a). It means that the model input is the inflow values at all stations in the past four horizons. In

the stacked LSTM model, the objective loss function is MAE, and the optimization algorithm

uses Adam. As shown in Fig. 5 (b), the model performs the best when the value of batch size is

set to 150. Generally, the model performance keeps improving as the training epoch increases.

The model results become stable when the training epoch reaches 200, which is therefore set as

the value of the training epoch. Besides, the hidden layer amount and unit amount of each layer

are two important and related hyperparameters that build the basic architecture of the neural

network. Grid search is used to optimize these two hyperparameters in this deep learning model:

3 stacked LSTM layers and 100 units in each hidden layer provide the best performance.

4.3. Prediction results

Table 2 summarizes the prediction results of different transfer learning strategies for

Nanjing bike-share and metro. Table 3 summarizes the prediction results of different transfer

learning strategies for Chicago bike-share and taxi. It can be found that fine-tuning without

freezing transferred layers (FT) strategy has the best performance among all transfer learning

strategies. Fine-tuning without freezing transferred layers (FTF) strategy performs slightly worse

than FT strategy. This is because changes to the parameters of the transferred layers can further
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improve the prediction model for different tasks. Besides, the results of the split-brain (SB)

strategy are not stable, which basically shows good performance in transferring public transit

knowledge to bike-share prediction and sometimes has bad performance in transferring bike-

share knowledge to public transit prediction. In summary, transfer learning greatly improves the

prediction performance of large-scale transport networks.

The improvement effect of our proposed transfer learning method varies for different

scenarios in cross-modal demand prediction. For all strategies, the prediction error MAE values

of public transit are much bigger than bike-share. The possible reason could be that public transit

has much more trips than bike-share in both Nanjing and Chicago. Meanwhile, the transfer

learning method under the 30-minute forecast horizon does not perform as well as other forecast

horizons. The possible reason is that the marginal distribution or conditional distribution of bike-

share and public transit is more different in the 30-minute time interval.

Transfer learning has been proven to be effective in cross-modal demand prediction of

bike-share and public transit. Bike-share and public transit have relations of causality and

similarity. With regard to causality, the users of bike-share and public transit can transfer

between these two modes of urban transport. With regard to similarity, the spatiotemporal

characteristics of the two modes are similar, such as the same spatial agglomeration in the city

center and the same temporal agglomeration in the morning and evening peaks. In short, the

conditional distribution or marginal distribution of bike-share and public transit are similar, so

the cross-modal prediction by transfer learning is effective. Therefore, these findings in this

study suggest that both public transit and bike-share modes can get prediction benefits from the

transferred knowledge of each other.
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In order to deal with the data missing problem, the transfer learning method for cross-

modal demand prediction has been proposed and tested in this study. There are two transfer

learning solutions for data missing discussed in this paper. The first solution is using longer-term

data of one transport mode to build a more reliable model and then predicting the demand of

another mode. In this study, we also used three-month and six-month passenger flow data to

build the corresponding models. The results of these two models did not improve significantly

compared to the model based on one-month passenger flow data. Therefore, the solution of

longer-period data is not applicable. The second solution is to directly use the SB strategy, with

one mode of transport passenger flow as input and another mode of passenger flow as output. SB

strategy is found to be useful in missing-data prediction. For Nanjing and Chicago bike-share,

the prediction results of the SB strategy are relatively good. It shows that if the data of large-

scale spatial objects (bike-share) are missing, the transport mode with small-scale spatial objects

(public transit: taxi or metro) can be used as a substitute for predicting the transport mode with

large-scale spatial objects. By using one transport mode with sufficient data for prediction

modeling, the data missing problem of another transport mode can be solved.

The proposed LSTM-FT model in this study is compared with other benchmarks for the

two-city cases. Table 4 shows the prediction results of different t different forecasting models for

Nanjing bike-share and metro. Table 5 shows the prediction results of different forecasting

models for Chicago bike-share and taxi. As shown in Tables 4 and 5, the proposed LSTM-FT

model in our study shows pretty good performance in most short-term demand forecasting

scenarios in Nanjing and Chicago. Besides, the LSTM-FT model also performs the best among

all demand prediction models, in the passenger flow forecasting for the bike-share cases. The
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LSTM-FT model is suitable for large-scale dynamic demand prediction with more than one

thousand stations.

At the same time, the RF model is suitable for passenger flow prediction of public transit

(taxi or metro). Meanwhile, one-step and HA perform worse than the other benchmark models,

which indicates the traditional models are not good at predicting the dynamic flows and the

nonlinear spatiotemporal demands. The VAR model performs very poorly in the dynamic

demand prediction of bike-share but shows pretty good performance for the dynamic demand

prediction of public transit. This finding reflects that the autoregressive time series model can

effectively describe the passenger flow patterns of public transit, but it is not suitable for bike-

share services with drastic changes in demand. The performance of the GCN model is not

outstanding, which is not consistent with the existing research. The possible reason is that the

GCN model needs to input more spatial and temporal data, such as land use and weather

conditions, to build a better spatiotemporal GCN model.

5. Discussion and Conclusions

This study focuses on the cross-modal demand prediction for multiple transport modes, which

plays a key part in promoting service cooperation, increasing transfer experience, and improving

operators’ dynamic operation efficiency. Transport demand prediction has a long-standing

problem of data missing or lacking and cannot effectively adapt the demand information from

other transport modes. To deal with these challenges, a combined framework of deep learning

and transfer learning is proposed. Specifically, the stacked long short-term memory model with

fine-tuning strategy is established for cross-modal demand prediction. For estimating the model

performance, real-world case studies are conducted on bike-share and public transit services in
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Nanjing and Chicago. Generally, this work provides insights into how to combine deep learning

and transfer learning for multimodal demand prediction.

The key findings of this study are as follows: a) The cross-modal framework of deep

transfer learning is effective for large-scale demand prediction; b) Valuable transferred

knowledge could be gained through demand information of bike-share and public transit for

predicting the passenger demand of each other; c) Among all transfer learning strategies, fine-

tuning without freezing transferred layers strategy performs the best; d) The split-brain strategy

is effective in handling the missing-data problem; e) The stacked LSTM model can be combined

with a suitable transfer learning strategy for solving the cross-modal demand prediction problem.

Besides, the spatiotemporal distribution and correlation of bike-share and public transit are

discovered by the visualization analysis. It is found that bike-share and metro are mainly in the

cooperation state, while bike-share and taxi have a certain degree of competitive relationship.

This study of cross-modal demand prediction can be applied in several aspects. Firstly,

the transfer learning approach of this study enables demand forecasting when the data of a

transport mode is missing. For example, the MaaS management platform may face data

transmission failures of bike-share, and only the passenger flow data of public transport is

available. In this case, the model of this study can be used to predict the future passenger flow of

bike-share to guide the city-wide MaaS management. Moreover, cross-modal demand

forecasting can guide the dynamic operation of multiple transportation modes. For example, the

increase in metro passenger flow demand can result in dispatching more shared bikes into the

vicinity of metro stations to meet users’ travel and transfer needs. Besides, cross-modal demand

forecasting can be applied to collaborative transportation services. The cross-modal demand
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forecast results can be used to infer the in-vehicle crowded information of public transit and the

supply-demand balance of bike-share. Furthermore, the information can recommend users to

make more reasonable travel choices to better use multimodal transportation services.

The proposed method of cross-modal demand prediction can be further improved or

extended in the following directions. Firstly, many new mobility services of MaaS do not have

fixed stations, which makes the large-scale problem for cross-modal demand prediction even

more challenging. For example, ride- and e-scooter sharing have no physical stations and move

freely around the city. These new mobility services lack a default spatial object such as the bike-

share station in our study, making their demand prediction more difficult. Therefore, a new

concept of the clustering-based virtual station can be applied as the spatial object for MaaS

demand prediction. Secondly, our cross-modal forecasting models need to be compatible with

other mobility service datasets, such as car sharing, station-less bike-share, and shared automated

vehicles. These new mobility services have similarities and differences with bike-share in user

travel patterns. Transferring the cross-modal model of this study to these new mobility services

requires more research efforts. Lastly, the cross-modal forecasting model should consider

incorporating multi-source data, such as land use and weather conditions. It could be helpful to

assess the impact of inputting more information and build a spatiotemporal demand forecasting

model.
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Table 1. Trip data of Chicago and Nanjing cases.

Transport mode in the

city

Nanjing Chicago

Metro Bike-share Taxi Bike-share

Travel amount 37,918,284 2,786,634 1,515,941 165,611

Vehicle amount - 50,963 4,691 4,331

Station amount 160 1,475 511 590

Travel time (min) 29.7 18.4 13.9 16.8

Table 2. Transfer learning results in Nanjing.

a) Nanjing Bike-share

Period

LSTM-Base FT FTF SB

MAE MAE
Improving

rate
MAE

Improving

rate
MAE

Improving

rate

15min 0.502 0.465 7.4% 0.473 5.7% 0.473 5.8%

30min 0.774 0.724 6.5% 0.729 5.8% 0.751 3.0%

45min 1.023 0.935 8.6% 0.932 8.9% 1.001 2.2%

60min 1.275 1.141 10.5% 1.149 9.9% 1.284 -0.7%

b) Nanjing Metro

Period

LSTM-Base FT FTF SB

MAE MAE
Improving

rate
MAE

Improving

rate
MAE

Improving

rate

15min 13.391 12.231 8.7% 12.628 5.7% 17.625 -31.6%

30min 27.998 23.190 17.2% 23.885 14.7% 31.006 -10.7%

45min 51.102 38.636 24.4% 40.186 21.4% 43.509 14.9%

60min 74.500 57.725 22.5% 59.047 20.7% 57.780 22.4%
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Table 3. Transfer learning results in Chicago.

a) Chicago Bike-share

Period

LSTM-Base FT FTF SB

MAE MAE
Improving

rate
MAE

Improving

rate
MAE

Improving

rate

15min 0.206 0.161 21.8% 0.165 20.0% 0.168 18.4%

30min 0.322 0.300 6.9% 0.307 4.8% 0.318 1.2%

45min 0.474 0.431 9.1% 0.437 7.9% 0.459 3.2%

60min 0.613 0.555 9.4% 0.562 8.3% 0.590 3.8%

b) Chicago Taxi

Period

LSTM-Base FT FTF SB

MAE MAE
Improving

rate
MAE

Improving

rate
MAE

Improving

rate

15min 2.497 1.623 35.0% 1.724 31.0% 3.424 -37.1%

30min 2.596 2.379 8.3% 2.460 5.2% 4.896 -88.6%

45min 4.120 3.311 19.6% 3.454 16.2% 6.788 -64.8%

60min 5.835 4.606 21.1% 4.622 20.8% 8.386 -43.7%
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Table 4. Prediction Results of different models in Nanjing.

a) Nanjing Bike-share

Model
15min 30min 45min 60min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

One

Step
0.631 1.324 0.291 1.029 2.137 0.440 1.423 3.003 0.459 1.862 4.071 0.410

HA 0.546 1.086 0.523 0.829 1.582 0.693 1.055 1.988 0.763 1.255 2.358 0.802

VAR 1.067 1.807 -0.322 4.415 11.869 -16.271 1.921 3.220 0.378 1.933 3.248 0.625

RF 0.508 0.949 0.635 0.757 1.389 0.763 0.967 1.775 0.811 1.179 2.191 0.829

GCN 0.527 0.949 0.636 0.808 1.468 0.736 1.004 1.822 0.801 1.236 2.237 0.822

LSTM-

FT
0.465 0.966 0.622 0.724 1.401 0.759 0.935 1.769 0.812 1.141 2.134 0.838

b) Chicago Taxi

Model
15min 30min 45min 60min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

One

Step
15.516 40.269 0.939 40.690 116.483 0.871 76.811 217.980 0.794 120.272 335.085 0.720

HA 12.436 36.429 0.950 21.484 68.806 0.955 30.213 100.331 0.956 38.804 131.110 0.957

VAR 10.856 23.590 0.979 20.560 44.921 0.981 35.945 77.467 0.974 54.780 116.836 0.966

RF 10.836 29.907 0.966 18.809 56.760 0.969 27.904 88.076 0.966 42.049 140.617 0.951

GCN 14.095 30.905 0.964 26.563 61.356 0.964 39.543 93.338 0.962 62.260 145.476 0.947

LSTM-

FT
12.231 33.415 0.958 23.190 68.451 0.955 38.636 108.197 0.949 57.725 154.908 0.940
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Table 5. Prediction Results of different models in Chicago.

a) Chicago Bike-share

Model
15min 30min 45min 60min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

One

Step
0.236 0.648 -0.207 0.409 0.967 0.039 0.561 1.255 0.141 0.722 1.611 0.123

HA 0.197 0.540 0.160 0.337 0.804 0.335 0.454 1.019 0.433 0.558 1.228 0.491

VAR 0.290 0.550 0.128 0.536 0.930 0.111 0.824 1.402 -0.072 1.236 2.086 -0.469

RF 0.211 0.484 0.325 0.350 0.720 0.467 0.467 0.927 0.532 0.571 1.140 0.561

GCN 0.224 0.489 0.311 0.374 0.742 0.434 0.499 0.962 0.496 0.598 1.176 0.533

LSTM-

FT
0.161 0.525 0.206 0.300 0.788 0.362 0.431 1.016 0.438 0.555 1.217 0.500

b) Chicago Taxi

Model
15min 30min 45min 60min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

One

Step
1.259 3.666 0.977 2.208 6.814 0.965 3.347 11.151 0.947 4.871 16.874 0.922

HA 2.296 7.112 0.915 3.169 10.101 0.923 4.039 13.156 0.926 4.872 16.008 0.930

VAR 1.311 3.393 0.981 2.195 5.883 0.974 3.246 9.047 0.965 4.587 13.365 0.951

RF 1.629 4.314 0.969 2.360 6.738 0.966 3.181 9.981 0.957 4.174 14.161 0.945

GCN 1.808 3.531 0.979 2.756 6.377 0.969 3.474 8.237 0.971 4.646 11.753 0.962

LSTM-

FT
1.623 4.098 0.972 2.379 6.681 0.966 3.311 9.697 0.960 4.606 14.086 0.946
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Fig. 1. Transfer learning for cross-modal demand prediction.
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Fig. 2. The structure of different transfer learning strategies.

Fig. 3. The prediction approach of stacked LSTM model.
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(a) Metro & bike-share services in Nanjing (b) Taxi & bike-share services in Chicago

(c) Passenger flow of a metro station and its
nearby bike station in Nanjing

(d) Passenger flow of a taxi centroid and its
nearby bike station in Chicago

(e) Correlation matrix of station-level
demands for metro and bike-share in Nanjing

(f) Correlation matrix of station-level
demands for taxi and bike-share in Chicago

Fig. 4. Public transit and bike-share in Chicago and Nanjing.
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(a) Input horizon amount (b) Batch size and training epoch

Fig. 5. Hyperparameter selection.
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