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Abstract

This thesis is a compilation of three main studies with the common theme: statistical inference

with high-frequency financial data under alternative observation or sampling schemes. The

increasing availability of high-frequency financial data has motivated the development of new

statistical inference tools, such as (i) advanced volatility estimators with better robustness

in the presence of local extreme phenomena in intraday asset prices, and (ii) techniques for

identifying these unusual extreme events, which contribute to a comprehensive understanding

of their impact on financial markets. The investigation on both topics in this thesis adopts

an innovative perspective by exploring potential enhancements from utilizing high-frequency

financial data under alternative observation schemes, which stands in contrast to traditional

methods that rely on equidistantly sampled transaction price records.

In Chapter 2, we introduce a novel nonparametric high-frequency jump test for discretely

observed Itô semimartingales. Based on observations sampled recursively at first exit times from

a symmetric double barrier, our method distinguishes between threshold exceedances caused by

the Brownian component and jumps, which enables the construction of a feasible, noise-robust

statistical test. Simulation results demonstrate superior finite-sample performance of our test

compared to classical methods. An empirical analysis of NYSE-traded stocks provides clear

statistical evidence for jumps, with the results highly robust to spurious detections.

In Chapter 3, we develop a new nonparametric estimator of integrated variance that utilizes

intraday candlestick information, comprised of the high, low, open, and close prices within

short time intervals. The range-return-difference volatility (RRDV) estimator is robust to

short-lived extreme return persistence hardly attributable to the diffusion component, such

as gradual jumps and flash crashes. By modeling such sharp but continuous price movements

following some recent theoretical advances, we demonstrate that RRDV can provide consistent

estimates with variances about four times smaller than those obtained with the differenced-
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return volatility (DV) estimator. Monte Carlo simulations and empirical applications further

validate the practical reliability of our proposed estimator with some finite-sample refinements.

In Chapter 4, we introduce an innovative semiparametric framework for duration-based

volatility estimation. We filter out daily volatility dynamics from intraday price durations by

employing a nonparametrically predicted threshold that dynamically adapts to the volatility

of each day. This enables the application of parametric models to price durations collected

over various days, which greatly enhances the flexibility of model estimation and facilitates the

construction of more accurate volatility estimators. Simulation results demonstrate superior

finite-sample performance of our duration-based estimators for both spot and integrated

volatility compared to some established methods. An empirical application based on intraday

data for the SPDR S&P 500 ETF highlights the improved forecasting accuracy of our integrated

volatility estimator within a standard daily volatility forecasting framework. Furthermore, an

intraday analysis based on our spot volatility estimator reveals an immediate and substantial

impact of FOMC news announcements on market volatility.
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Chapter 1

Introduction

1.1 Overview

The advent of high-frequency intraday data for various financial assets and instruments, starting

in the early 2000s, sparked the development of both theoretical innovations and empirical

insights related to the enhanced measurement, modeling, forecasting, and pricing of time-

varying financial market volatility (Bollerslev, 2022). Based on the idea that the distance

between price observations over fixed time intervals shrinks towards zero, the volatility measures

constructed from high-frequency data rationalize the econometric analyses of volatility within

the continuous-time Itô semimartingale framework, with theoretical statistical properties under

so-called “infill asymptotics”. Since the realized volatility (RV) estimator of Andersen and

Bollerslev (1998), the increasing data availability has motivated significant advancements in the

field of high-frequency financial econometrics over the past two decades (Aït-Sahalia and Jacod,

2014). However, as highlighted by recent empirical findings in the literature, the persistent

occurrence of deviations from the theoretical models in real-world high-frequency data raises new

challenges for traditional techniques to extract relevant economic information for practitioners.

The primary aim of current research in this field is to address the following research questions:

How can the traditional econometric methods for high-frequency financial data be enhanced to

mitigate the impact of both well-known and newly discovered data characteristics? How can the

accuracy of extreme event identification be improved to extract useful economic information?

This thesis revolves around the development of new statistical inference tools with high-

frequency financial data under some alternative observation or sampling schemes. Chapter 2
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develops a novel high-frequency jump test based on intraday price observations recursively

sampled at first exit times. Chapter 3 introduces a new volatility estimator constructed from

high-frequency candlesticks, which are more accessible to general investors than the tick-level

Trade and Quote (TAQ) data. Finally, Chapter 4 proposes an adaptive endogenous sampling

scheme, which decomposes daily volatility dynamics from intraday durations obtained across

multiple days, and thus enhance the flexibility of parametric duration-based volatility estimation.

1.2 Thesis Outline

The three main chapters of this thesis are self-contained research articles that can be read

independently from each other. The outline for the thesis is as follows.

Chapter 2: Testing for Jumps in a Discretely Observed Price Process with En-

dogenous Sampling Times

There exists a consensus in the financial literature that modeling asset price dynamics requires

the specification of different components. In addition to the stochastic volatility component

which accommodates the persisitence of volatility, extreme price shifts or “jumps” serve as an

explanation for abnormal large variations that play an important role in the tail behavior of

return distributions. Over the past two decades, a number of jump tests based on high-frequency

financial data have been developed, while most, if not all, of those tests can sometimes deliver

inconsistent results in practice. Their performance depends crucially on: (i) the choice of

sampling methods and frequencies, and (ii) the assumption about measurement errors or, more

precisely, the market microstructure noise.

In this chapter, we propose a new nonparametric method to test for jumps in a discretely

observed noise-contaminated semimartingale. Different from the common equidistant sampling

scheme, we sample the discrete price observations recursively when a symmetric double barrier

is breached. The sampling times are determined endogenously by the accumulative tick-by-tick

returns, which leads to less information loss compared with an exogenous sampling scheme. To

distinguish the barrier “overshoots” caused by discrete Brownian steps and by jumps, we censor

the increments between consecutive sampling times with a specific threshold. The standardized

test statistic constructed to compare the sample moments of censored and uncensored increments
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delivers reliable results for the existence of jumps. Moreover, we illustrate that our new test

is robust to weakly dependent market microstructure noise with a two-step noise reduction

method inspired by the pre-averging method of Jacod et al. (2009) and the wild bootstrap.

Via both simulation and empirical analyses, we clearly demonstrate the superior performance

of our method, which is fairly robust to market microstructure noise, sparse sampling and

different tuning parameter choices, and also exhibits fewer spurious detections compared to

some commonly used tests constructed from equidistantly sampled observations. Our empirical

study based on NYSE-traded stocks provides clear statistical evidence for the presence of jumps,

but we conclude that jumps are not as frequent as the results of some competing tests indicate.

Chapter 3: Realized Candlestick Wicks

The discussion about intraday periods with short-lived explosive trends exhibited in asset prices

has been thrust into the spotlight since the May 2010 Flash Crash in the U.S. stock market.

The usual tenet that, for a semimartingale, volatility dominates the return dynamics under infill

asymptotics is not necessarily true if the local drift coefficient diverges at a suitable rate, i.e.,

the “Drift Burst Hypothesis” of Christensen et al. (2022). Empirical evidence in recent financial

literature shows that events like mini flash crashes occur more frequently in recent years, which

raises widespread concern about market ineffciency and vulnerability. These market glitches

are also a threat to the standard theoretical framework, as a temporary violation of the Itô

semimartingale and potentially the no-arbitrage principle, and thereby raise new challenges

for the estimation of integrated variance (IV), which serves as the cornerstone of statistical

inference with high-frequency financial data.

In this chapter, we develop a novel nonparametric IV estimator that utilizes intraday

candlestick information, comprised of the high, low, open, and close prices within short intraday

time intervals. Our range-return-difference volatility (RRDV) estimator can exclude excessive

return variation induced by short-lived dominant trends and consistently estimate IV from

the diffusion component. We demonstrate that our RRDV estimator can provide consistent

estimates with variances about four times smaller than those obtained with the differenced-

return volatility (DV) estimator of Andersen et al. (2023a). Monte Carlo simulation results

confirm the reliable finite-sample performance of RRDV across various scenarios. An empirical

illustration on the SPDR S&P 500 ETF Trust (SPY) indicates that the robustness of RRDV in
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the presence of extreme price movements contributes to a substantial reduction in occurrences

of extremely misleading forecasts and, consequently, improves prediction accuracy when it is

integrated within some standard framework of volatility forecasting.

Chapter 4: Decoupling Interday and Intraday Volatility Dynamics with Price

Durations

Since the autoregressive conditional duration (ACD) model of Engle and Russell (1998), some

studies highlight the feasibility of a parametric structure for duration-based volatility estimators,

which enables more flexible inference on intraday volatility. The parametric duration-based

estimators can utilize data beyond the estimation window to improve parameter estimation,

and potentially achieve more accurate volatility estimates (Tse and Yang, 2012). However,

the incorporation of intraday durations beyond a specific day will introduce complexities.

Specifically, the durations between consecutive sampling times (same as Chapter 2) with the

same threshold for different days will encompass different daily volatility dynamics, which leads

to challenges in both model estimation and the analysis of volatility patterns.

In this chapter, we introduce an innovative semiparametric method to (i) nonparametrically

decompose the daily and intraday volatility dynamics inherent in the durations obtained across

multiple days, and (ii) parametrically estimate both the spot and integrated volatility based

on durations. For each day, we adopt a nonparametrically predicted threshold to maintain a

relatively consistent number of durations. As the interday persistence of volatility is subsumed

into the thresholds, the durations from each day preserve only intraday volatility dynamics.

Moreover, we derive a relationship between spot volatility and the conditional density of

durations under some mild conditions, which provides an opportunity to estimate the volatility

with some parametric duration models. Simulation results demonstrate superior finite-sample

performance of our duration-based estimators for both spot and integrated volatility compared

to some selected competitors. An empirical application based on intraday SPY transaction

data highlights the improved forecasting accuracy of the standard HAR model augmented with

our duration-based IV estimator. An intraday analysis based on our spot volatility estimator

reveals an immediate and substantial impact of FOMC news announcements on volatility.



Chapter 2

Testing for Jumps in a Discretely

Observed Price Process with

Endogenous Sampling Times1

2.1 Introduction

There exists a consensus in the financial literature that modeling asset price dynamics requires

the specification of different components. In addition to the stochastic volatility component

which accommodates the persistence of volatility, “jumps” in asset prices serve as an explanation

for abnormal large variations which play an important role in the tail behavior of return

distributions. Jumps are believed to contain predictive information, such that the correct

identification of jumps usually leads to improved price or volatility forecasts and portfolio

outcomes (see, e.g., Yan, 2011, Jiang and Yao, 2013, Cremers et al., 2015, for empirical

applications using daily or monthly financial data, and Andersen et al., 2007a, Corsi et al., 2010,

Nolte and Xu, 2015, Bollerslev et al., 2015, 2020, Pelger, 2020, for those using high-frequency

intraday data). The increased availability of high-frequency financial data has further motivated

the development of methodologies designed to test the model specification based on a discretely

observed semimartingale.

Over the past two decades, a number of nonparametric jump tests have been developed.

1This chapter corresponds to Li et al. (2024a), resubmitted to the Journal of Econometrics.
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Starting from the seminal work of Barndorff-Nielsen and Shephard (2004), most of these tests

are constructed on jump-robust measures of returns or their variations, see, e.g., Huang and

Tauchen (2005), Barndorff-Nielsen and Shephard (2006), Andersen et al. (2007c), Jiang and

Oomen (2008), Lee and Mykland (2008), Aït-Sahalia and Jacod (2009), Corsi et al. (2010),

Podolskij and Ziggel (2010), Andersen et al. (2012), Lee and Mykland (2012), and Aït-Sahalia

et al. (2012), among others. Some recent works focus on modified versions of these tests when

conventional assumptions are violated, see, e.g., Laurent and Shi (2020) and Kolokolov and

Renò (2024), and tests for co-jumps in a collection of assets, see, e.g, Bibinger and Winkelmann

(2015) and Caporin et al. (2017).

Despite the theoretical developments in the literature, these jump tests in practice can

sometimes deliver inconsistent results. Theodosiou and Žikeš (2011), Dumitru and Urga (2012),

and Maneesoonthorn et al. (2020) conduct comparisons of various tests based on Monte Carlo

simulations and real-world high-frequency data. These papers convincingly show that the

performances of various jump tests depend crucially on: (i) the choice of sampling interval, and

(ii) the assumption about market microstructure noise. For the first issue, a large sampling

interval is typically needed for most classical tests to alleviate the impact of noise, but it also

has a detrimental effect on their statistical power. As a result, it is difficult to determine an

appropriate sampling interval for these tests in practice. For the second issue, Dumitru and

Urga (2012) illustrate that ignoring even an independent and identically distributed (i.i.d.)

additive noise can result in significant size distortion for the “star performers” in the literature.

It is obvious that a more intricate noise specification, such as those discussed in Kalnina and

Linton (2008), Bandi and Russell (2008), Aït-Sahalia et al. (2011), Hautsch and Podolskij

(2013), Jacod et al. (2017), Li et al. (2020), Da and Xiu (2021), and Li and Linton (2022), can

further muddle this issue.

In this chapter, we introduce an innovative nonparametric method to test for jumps in

a discretely observed semimartingale. Different from the conventional practice of sampling

observations at equidistant intervals in calendar time, our methodology adopts a path-dependent

approach to sample tick-by-tick observations, inspired by the works of Engle and Russell (1998),

Andersen et al. (2008), Fukasawa and Rosenbaum (2012), Vetter and Zwingmann (2017), and

Hong et al. (2023): Sampling times are recursively determined by the first exit time of price

movements from a symmetric barrier since the previous sampled observation. This endogenous
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sampling scheme is tailored to be sensitive to discontinuities. Specifically, jumps of sizes larger

than the barrier width will immediately trigger the stopping rule and induce large “overshoots”

or threshold exceedances. To distinguish between threshold exceedances caused by discrete

Brownian steps and those by jumps, we censor the returns between consecutive sampling times

with a specific threshold,2 and construct a standardized test statistic to measure the potential

distortion caused by disproportionately large overshoots on the sample moment of returns.

Furthermore, we develop a two-step noise reduction method inspired by the pre-averaging

approach of Jacod et al. (2009) and the wild bootstrap introduced by Wu (1986) to mitigate

the impact of weakly dependent market microstructure noise.

Simulation results reveal that our new high-frequency jump test exhibits reliable finite-

sample size and power performance across various aggregation levels, and its performance

is robust to measurement errors simulated with a realistically calibrated specification. A

comparison with traditional tests constructed from equidistantly sampled observations and

some noise-robust versions based on ultra-high-frequency data is conducted thereafter. We find

that (i) most calendar-time-sampled tests exhibit less consistent performance across different

sampling frequencies and are poorly sized in the presence of noise, which is in line with the

Monte Carlo results of Dumitru and Urga (2012) and Maneesoonthorn et al. (2020), and (ii)

while noise-robust tests maintain reliable sizes, their power performance still lags behind our

test across a wide range of simulation settings. In an empirical application, our test is applied

to transaction data of 10 selected stocks listed on the New York Stock Exchange (NYSE).

Clear statistical evidence of jumps is found for all selected stocks, with jumps occurring on

approximately 10% to 15% of trading days. Furthermore, the test rejections are highly robust

to the correction of spurious detections based on the method of Bajgrowicz et al. (2016).

The remainder of this chapter is structured as follows: Section 2.2 lays out the basic setup

and key assumptions. Section 2.3 discusses the test statistic and its asymptotic theory, along

with the noise reduction technique. Section 2.4 assesses the finite-sample performance of our

new test with Monte Carlo simulations. After discussing the empirical application for selected

NYSE stocks in Section 2.5, we conclude in Section 2.6. All proofs and additional materials

2Related works about the boundary crossing problems for random walks, especially those with Gaussian
steps, include Rogozin (1964), Lorden (1970), Lotov (1996), and Khaniyev and Kucuk (2004). The idea of
censored increments in this chapter was inspired by the truncated realized volatility of Mancini (2009), which is
the first work that utilizes the systematic observation error as an effective way to eliminate the impact of jumps.



8 Testing for Jumps in a Discretely Observed Price Process with Endogenous Sampling Times

can be found in Appendix A.

2.2 Setting and Assumptions

We consider a one-dimensional underlying process X = (Xt)t≥0 for the efficient logarithmic

price of a financial asset. We assume that X follows a possibly discontinuous Itô semimartingale

defined on a filtered probability space (Ω, F , (Ft)t≥0,P):

X = X ′ + X ′′,

X ′
t = X0 +

∫ t

0
µsds +

∫ t

0
σsdWs,

X ′′
t =

∫ t

0

∫
|δ|≥u

δ(s, x)p(ds, dx),

(2.1)

where t stands for time, W is a standard Brownian motion, p(dt, dx) is a Poisson random

measure on R+ × R with a compensator q(dt, dx) = dt ⊗ λ(dx), and λ is a σ-finite measure on

R+. We assume that X satisfies the following regularity conditions:

Assumption 2.1. (i) The process µ is optional and locally bounded;

(ii) The process σ is càdlàg (i.e., right-continuous with left limits), adapted, and strictly positive;

(iii) There exists a sequence (τm)m≥1 of stopping times increasing to ∞, and a sequence (Km)m≥1

of finite constants, such that it holds for each m ≥ 1 that E[|σt∧τm − σs∧τm |2] ≤ Km|t − s| for

all s, t ∈ [0, T ] with some finite T ;

(iv) The function δ(ω, t, x) on Ω × R+ × R is predictable;

(v) There is a localizing sequence (τn)n≥1 of stopping times increasing to ∞, and a sequence

(fn)n≥1 of deterministic nonnegative functions on R, which satisfies |δ(ω, t, x)| ∧ 1 ≤ fn(x) for

all (ω, t, x) with t ≤ τn(ω), and
∫
R |fn|rλ(dx) < ∞ for some r ∈ [0, 1).

Remark 2.1. Assumption 2.1 entails some very mild technical conditions that the coefficients

in Eq. (2.1) should meet. Condition (iii) states that the spot volatility process is locally

1/2-Hölder continuous under the L2-norm. The smoothness condition is satisfied whenever σ

is an Itô semimartingale, or a long memory process driven by a fractional Brownian motion

(Bollerslev et al., 2021). The parameter r in Condition (v) sets a bound on the degree of jump

activity, which can be interpreted as a generalized version of the Blumenthal-Getoor index for a

Lévy process. With some r ∈ [0, 1), we consider jumps of both finite and infinite activities, but
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restrict them to be of finite variation, i.e., they are absolutely summable, such that in Eq. (2.1)

we dispense with the integral with p − q, see Jacod et al. (2019) for more details.

Remark 2.2. For the pure jump process X ′′ in Eq. (2.1), integrating δ(s, x) over the range

(−∞, −u] ∪ [u, ∞) for some u > 0 removes all jumps of sizes smaller than u. For any fixed u,

X ′′ is a finite-activity jump process. As u → 0, X ′′ retains both “big” and “small” jumps, such

that it converges pathwise to a process of infinite-activity jumps with finite variation. As only

discrete observations of the realized sample path X(ω) are available, we shall assume a slightly

higher order in probability for u compared to X ′ as the number of observations increases, which

excludes the very small jumps relative to the increments of X ′. Further clarification will be

provided in Section 2.2.1 after detailing our observation scheme.

The quadratic variation (QV) of X over a finite interval [0, t] is defined as

[X, X]t =
∫ t

0
σ2

sds +
∑

0≤s≤t

(∆Xs)2, with ∆Xt = Xt − Xt−, (2.2)

where the integrated variance (IV),
∫ t

0 σ2
sds, summarizes the variation from X ′.

Testing for jumps is a procedure to answer the fundamental question of whether the realized

sample path X(ω) is continuous or not over a finite time interval, e.g., (0, 1).3 Technically

speaking, we decompose the sample space Ω into two complementary subsets:

Ω′ =
{
ω : X ′′

t (ω) = 0, ∀t ∈ (0, 1)
}

,

Ω′′ =
{
ω : X ′′

t (ω) ̸= 0, ∃t ∈ (0, 1)
}

,
(2.3)

where Ω′ (resp. Ω′′) represents the null hypothesis (resp. alternative hypothesis) for a jump test,

which assesses the plausibility of these two hypotheses based on discrete observations of X(ω).

2.2.1 Observation Scheme

We now describe how observations take place.4 At stage n, we assume that the successive

observations of X(ω) occur at times 0 = tn,0 < tn,1 < . . . for a sequence (tn,i) of discrete times

3We restrict the alternative hypothesis to contain at least one jump on (0, 1) as it is not feasible for a test to
identify jumps occurring right at both end-points of the interval.

4We would like to distinguish the terms “observation scheme” and “sampling scheme” in this chapter. We
allow both tick-level and sampled observations to form discrete-time processes, and the term “sampling” refers
to a subsampling or subset selection procedure for the discrete observations at the highest frequency.
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over a fixed interval (such as a trading day), which is normalized to the unit interval [0, 1]. We

set

Nn
t =

∑
i≥1

1{tn,i≤t} and ∆n,i = tn,i − tn,i−1, (2.4)

where N ≡ Nn
1 stands for the number of observations on (0, 1], and ∆n,i is the i-th inter-

observation lag at stage n. It is easily seen from the empirical tick-level data that the observation

times are far from evenly spaced and usually dependent on X(ω) itself. Our assumption for the

observation scheme over [0, 1] is outlined as follows:

Assumption 2.2. Let ∆n be a positive sequence of real numbers satisfying ∆n → 0 as n → ∞.

We define an intensity process of observations λ = (λt)0≤t≤1 with λt = Kσ2
t for some K > 0.

There exists a localizing sequence (τm)m≥1 of stopping times and positive constants Km,p and

κ such that:

(i) With (Fn
t )t≥0 the smallest filtration containing (Ft)t≥0 and with respect to which all

observation times tn,i are stopping times, for each i = 1, 2, . . . , the variable ∆n,i is,

conditionally on Fn
i−1 ≡ Fn

tn,i−1 , independent of F∞ = ∨
t≥0 Ft.

(ii) With the restriction {ti−1 < τm}, we have for all p ≥ 2,

E[|∆n,iλtn,i−1 − ∆n||Fn
i−1] ≤ Km,1∆2+κ

n ,

E[|∆n,iλtn,i−1 |p|Fn
i−1] ≤ Km,p∆p

n.
(2.5)

A useful consequence of this Assumption is the following convergence in probability:

∆nNn
t

P−→ τ(t) =
∫ t

0
σ2

sds. (2.6)

Remark 2.3. Assumption 2.2 is inspired by Assumption (O) of Jacod et al. (2017) and

Assumption (O-ρ, ρ′) of Jacod et al. (2019). The process λ controls for the “spot” observation

arrival rates, and the unobserved ∆n can be interpreted as an “average mesh size” between

successive observations. Our choice of the intensity λ = Kσ2 implies higher observation

frequencies of X(ω) during periods of high local volatility, which captures the diurnal patterns

of transaction activities and intraday volatility. This is motivated by the empirical evidence

of the E-mini S&P 500 futures contract in Andersen et al. (2018), which illustrates a notable

similarity in the intraday U-shaped patterns of one-minute transaction counts and return
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variation, where the pronounced spikes, typically align with market openings or announcements,

roughly coincide. Note that λ is defined up to scale, which allows K = 1 to be set without loss

of generality (by scaling ∆n correspondingly), see further discussion in Jacod et al. (2017).

Remark 2.4. With the convergence result in Eq. (2.6), Assumption 2.2 implies a time-changed

regular observation scheme under infill asymptotics: As n → ∞, the observation time tn,i

converges to t̆n,i = inf{t ∈ [0, 1] : τ(t) = i∆n}. This limiting observation scheme corresponds to

Example 2.2 in Jacod et al. (2017). In contrast to the calendar time t, the “intrinsic time” τ(t)

evolves endogenously with respect to the variation from X ′. The time change induces a certain

level of endogeneity, and extends the commonly assumed equidistant observation scheme in

high-frequency financial econometrics literature (Li et al., 2014; Dimitriadis and Halbleib, 2022;

Dimitriadis et al., 2023). With the irregular mesh sizes ∆n,i regulated by Condition (ii), the

deviation of (tn,i) from (t̆n,i) vanishes as n → ∞, and has no impact on the limit theorems

derived in the next section. Further discussion on this matter can be found in Remark 2.7 and

Appendix A.1.1.

We now revisit the Itô semimartingale in Eq. (2.1): Under the assumed observation scheme,

we consider a sequence of processes defined on the same probability space (Ω, F , (Ft)t≥0,P):

Xn
t = X ′

t +
∫ t

0

∫
|δ|≥un

δ(s, x)p(ds, dx), (2.7)

and we choose a sequence un of real numbers satisfying

un√
∆n

→ ∞ and un∆β−1/2
n → 0, (2.8)

for any 0 < β ≤ 1/2. The choice of un of a slightly higher order than
√

∆n guarantees that,

as n → ∞, the integral with Poisson measure p in Eq. (2.7) retains both “big” and “small”

jumps but excludes the very small ones of order Op(
√

∆n), i.e., the local alternative in the

literature (see Remark 10.27, Aït-Sahalia and Jacod, 2014). Our test is designed to identify the

existence of both the finite-activity and local-to-infinite-activity jumps which dominate the X ′

increments.
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2.2.2 Price Duration Sampling

Sparse sampling is widely adopted in both the financial econometrics literature and by practi-

tioners to mitigate the impact of market microstructure noise, with some popular choices like

1-minute and 5-minute sampling in calendar time (Aït-Sahalia et al., 2005; Liu et al., 2015).

However, such sparse sampling aggregates a substantial amount of tick-level returns exogenously,

which dilutes the relative size of jumps and inevitably reduces the power of jump tests. This

phenomenon is evident in the Monte Carlo results of Dumitru and Urga (2012) and Maneesoon-

thorn et al. (2020): Nearly all traditional tests constructed from calendar-time-sampled returns

exhibit rapid power loss as sampling becomes much sparser.5

In response to this issue, a path-dependent sampling scheme seems a natural solution. We

consider a stochastic and endogenous sampling scheme for all observations of X(ω) on [0, 1]:

Let (Xi)0≤i≤N collect all observations under Assumption 2.2. With a selected barrier width

c > 0, the price duration sampling (PDS) is defined as the following sampling algorithm:

1. Set Π(c)
0 = 0.

2. For j = 1, 2, . . . , sample Xi for all i = Π(c)
j that are decided recursively by

Π(c)
j = inf

{
Π(c)

j−1 < i ≤ N :
∣∣Xi − XΠ(c)

j−1

∣∣ ≥ c
}
. (2.9)

We therefore obtain a subsequence X(c) = (XΠ(c)
j

)0≤j≤N(c) , where N (c) = maxj≥1{Π(c)
j ≤ N}

counts the total number of sampled observations. Moreover, we define the PDS returns as the

increments of X(c), i.e., r
(c)
j = XΠ(c)

j

− XΠ(c)
j−1

for all j ∈ {1, 2, . . . , N (c)}.

Remark 2.5. The above sampling algorithm is a discrete-time version of PDS in Hong et al.

(2023). The idea of sampling financial observations based on hitting or exit times was initially

proposed by Engle and Russell (1998), and has been further developed since then (Gerhard and

Hautsch, 2002; Andersen et al., 2008; Tse and Yang, 2012; Fukasawa and Rosenbaum, 2012;

Vetter and Zwingmann, 2017; Hong et al., 2023). While previous studies have primarily focused

on volatility estimation based on this alternative sampling scheme, our contribution stands

5Some noise-robust tests constructed from filtered data, such as those proposed by Lee and Mykland (2012)
and Aït-Sahalia et al. (2012), can utilize all available observations without sampling. As alternative methods
that exploit data more sufficiently than classical approaches, we compare their finite-sample performance with
our method through simulations in Section 2.4.
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out as the first to demonstrate that this scheme can be exploited to construct more effective

high-frequency jump tests.

This endogenous sampling scheme is designed to be highly sensitive to the presence of

jumps. Fig. 2.1 demonstrates some examples when X(ω) is continuous and discontinuous,

respectively. When X(ω) is continuous, each sampled return under PDS (“PDS return”, i.e.,

first ladder height with respect to c) consists of the barrier width c and a small threshold

exceedance attributed to the discreteness of price observations. When X(ω) is discontinuous,

any single jump larger than c will always trigger an exit-time event in Eq. (2.9), and induce a

large “overshoot”.

Fig. 2.1 Examples of PDS when X(ω) is continuous and discontinuous, respectively. Jumps will almost surely lead to
the sampling of next available observation, and induce a large overshoot.

The discrepancy between threshold exceedances induced by continuous price increments and

jumps can be exploited to construct more powerful jump tests. We provide some preliminary

evidence for the impact of different sampling schemes on the power of jump tests with a simple

Monte Carlo experiment for an idealized test: We simulate a standard Gaussian random walk

with a fixed number of i.i.d. increments (corresponding to the limiting observation scheme in

Remark 2.4), and a fixed-size jump is randomly inserted into each simulated path. We then

obtain sampled returns with both PDS and equidistant sampling across a wide range of sampling

frequencies. For any (PDS or equidistantly) sampled return, we reject the null hypothesis of

no jump if the absolute return exceeds its theoretical 95% quantile under the null. This test

maintains the correct size by construction for any sampling frequency. When a fixed-size jump

is randomly inserted, the sampling frequency inversely controls the “signal-to-noise” ratio, as
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the jump size gets diluted by the size of aggregated returns over that interval. This allows us

to effectively compare the local power performance of the test under the two sampling schemes.

Fig. 2.2 reports the power curves of the test under both sampling schemes (under the

alternative hypothesis that the tested interval contains a jump). We observe that both curves

decay towards the nominal level of 5% as the sampling becomes more sparse. However, the

test based on PDS returns exhibits uniformly better power than the one based on equidistantly

sampled returns across all common sampling frequencies. Intuitively, this power gain is

attributed to the sensitivity of our sampling algorithm to jumps, which ensures the jump size

information is effectively preserved in the threshold exceedance. By contrast, the equidistant

sampling scheme aggregates returns exogenously, where the jump size is diluted much more

quickly by the decreasing sampling frequency relative to the PDS case. This advantageous

property of PDS contributes to a diminished probability of committing a Type II error, and

thereby serves as the main motivation for the new statistical test proposed in the next section.

50% 20% 10% 5% 2% 1% 0.5% 0.2% 0.1%

5%

20%

40%

60%

80%

100%

Fig. 2.2 Rejection rates under two different sampling schemes. We simulate 2000 random walk paths with 106 standard
normal steps. A jump of fixed size 10 are randomly inserted in each path. Under two different sampling schemes, the
absolute returns containing jumps are compared with the 95% quantiles of absolute sampled returns under the null.

We now formally introduce our asymptotic setting under PDS. We let the barrier width c

shrink proportionally to
√

∆n under infill asymptotics:

c ≡ cn = m
√

∆n, for some constant m > 0. (2.10)
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When X(ω) is continuous, each absolute PDS return |r(c)
i | is a sum of the barrier width c and

a small threshold exceedance caused by the discreteness of observations, which satisfies

1 ≤ |r(c)
i |
c

= Op(1), for all i ∈ {1, 2, . . . , N (c)}. (2.11)

Jumps of a higher asymptotic order than
√

∆n will almost surely trigger the stopping rule in

Eq. (2.9), and induce some disproportionally large PDS returns with

|r(c)
i |
c

a.s.−−−→ ∞. (2.12)

To distinguish between the “small” overshoots induced by continuous price increments

and the “big” overshoots caused by jumps, we censor the (absolute) PDS returns with a

threshold φϵ(c) that shrinks to zero at the same rate
√

∆n as the barrier width c, i.e., for all

i ∈ {1, 2, . . . , N (c)},

|r(c)
i | = |r(c)

i | ∧ φϵ(c), where φϵ(c) = c (1 + ϵ) for some constant ϵ > 0. (2.13)

Remark 2.6. The idea of censored returns originates from the truncated realized volatility

(TRV) estimator of Mancini (2009), while the fixed choice of ϵ in Eq. (2.13) is unconventional in

the literature. Different from the standard truncation threshold of a slightly higher order than
√

∆n, our selected threshold φϵ(c) ≍
√

∆n affects both the increments from X ′ and X ′′ under

infill asymptotics. This overcomes the “perfect correlation” issue of TRV and RV (Podolskij

and Ziggel, 2010), and enables the construction of feasible test statistics that do not necessarily

require consistent IV estimation.6

6With the standard truncation threshold, the realized moments of truncated and untruncated increments
have the same asymptotic distribution if X(ω) is continuous, such that it is impossible to derive the distribution
theory for either the linear or ratio test based on the standard TRV and RV estimators. In this chapter, as our
method does not require consistent IV estimation, we can also adopt the truncation technique of Mancini (2009)
and discard all absolute PDS returns that are larger than φϵ(c). However, the censoring approach does not
change the total number of PDS returns and is therefore more convenient for both our theoretical derivation and
empirical implementation.
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2.3 Main Results

In this section, we introduce and analyze our new test statistic, which is constructed from the

PDS returns between sampled observations collected by X(c). Then we augment the test with

an effective noise reduction method to mitigate the impact of market microstructure noise.

2.3.1 Test Statistic

To prepare for the construction of our test statistic, we first introduce the notation for the

moments of PDS returns from a standard Gaussian random walk (Zi)i=0,1,... with a barrier

width m, which is denoted as Z
(m)
1 :

(i) Absolute moment of Z
(m)
1 : µγ(m) = E[|Z(m)

1 |γ ],

(ii) Absolute moment of censored Z
(m)
1 : µγ,ϵ(m) = E[|Z(m)

1 |γ ] = E[(|Z(m)
1 | ∧ φϵ(m))γ ],

(iii) Absolute cross moment of censored and uncensored Z
(m)
1 : ργ,ϵ(m) = E[|Z(m)

1 |γ |Z(m)
1 |γ ],

and two first-order differentiable and invertible functions:

hγ(m) = µγ(m)
mγ

and hγ,ϵ(m) =
µγ,ϵ(m)

mγ
, (2.14)

with the first-order derivatives h′
γ(m) and h

′
γ,ϵ(m), and the inverse functions h−1

γ (x) and h
−1
γ,ϵ(x).

We will now proceed to define the testing procedures. For all observations (Xi)0≤i≤N under

Assumption 2.2, we obtained the sampled observations in X(c) with the barrier width c that

satisfies Eq. (2.10). To assess the distortion resulting from “large” overshoots, we compare the

sample moments of uncensored and censored PDS returns normalized by the barrier width c,

i.e.,

S2 = 1
N (c)

N(c)∑
i=1

( |r(c)
i |
c

)2
and S2,ϵ = 1

N (c)

N(c)∑
i=1

( |r(c)
i |
c

)2
, (2.15)

with the functions defined in Eq. (2.14):

Mc = h−1
2 (S2) and M c,ϵ = h

−1
2,ϵ

(
S2,ϵ

)
. (2.16)

Theorem 2.1 (Consistency). With Assumption 2.2 satisfied and c = m
√

∆n, it holds that as
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n → ∞,
(M c,ϵ, Mc)′ P−→ (m, m)′, if ω ∈ Ω′,

(M c,ϵ, Mc)′ P−→ (m, m∗)′, if ω ∈ Ω′′,
(2.17)

where m∗ = h−1
2 (κ · h2(m)) with κ the ratio between QV and IV over [0, 1].

Remark 2.7. The estimators (M c,ϵ, Mc)′, constructed from the PDS returns from (i) the

observations (Xi)0≤i≤N on (tn,i) with irregular ∆n,i under Assumption 2.2, and (ii) the Gaussian

random walk formed by observations under the limiting observation scheme (t̆n,i) in Remark 2.4,

are shown to have the same limit theorems. These include the law of large numbers (LLN) and

the central limit theorem (CLT), both supported by some strong approximation results similarly

used in Chernozhukov et al. (2013, 2019), see Appendix A.1.1 for further details. The consistency

and asymptotic distribution in Theorem 2.1 and the subsequent Theorem 2.2, respectively, are

therefore derived from the random sum LLN and CLT introduced by Anscombe (1952) for

randomly indexed random walks (Rényi, 1957; Gut, 2009, 2012). Under the alternative, jumps

have no impact on M c,ϵ since φϵ(c) shrinks to zero at the same speed as
√

∆n, while Mc will

converge to a different level due to the distortion arising from large overshoots.

Remark 2.8. Whether X(ω) is continuous or not, once the barrier width c is chosen, a

consistent IV estimator should be proportional to the number of sampled observations N (c).

Specifically, with a fully observable sample path X(ω) over [0, 1], the nonparametric duration-

based volatility (NPDV) estimator of Hong et al. (2023), i.e., V̂ = c2N (c), is shown to be

consistent since all absolute PDS returns are exactly c. In a more realistic setting with an

infinite number of discrete observations of X(ω) over [0, 1], we define V̂ ∗ = c̃2N (c), where

c̃2 = c2h2(M c,ϵ) is corrected for “small” overshoots from discrete Brownian steps with a

consistent estimator of m. Even though the estimation of IV is not the primary focus of this

work, it contributes to a more accurate duration-based estimator with the discretization error

corrected.

Furthermore, both M c,ϵ and Mc are jointly asymptotically normal under the null with a

known variance-covariance matrix, which naturally leads to a well-defined ratio test.

Theorem 2.2 (Asymptotic normality). Under the same conditions as in Theorem 2.1, the
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estimators M c,ϵ and Mc are jointly normally distributed when ω ∈ Ω′:

√
N

M c,ϵ − m

Mc − m

 L−→ N


0

0

 ,

ϕ11 •

ϕ21 ϕ22


 , (2.18)

where

ϕ11 =
µ2(m)(µ4,ϵ(m) − µ2

2,ϵ(m))
m4(h′

2,ϵ(m))2
, (2.19)

ϕ22 = µ2(m)(µ4(m) − µ2
2(m))

m4(h′
2(m))2 , (2.20)

ϕ21 =
µ2(m)(ρ2,ϵ(m) − µ2(m)µ2,ϵ(m))

m4(h′
2(m)h′

2,ϵ(m))2
. (2.21)

Corollary 2.1. Under the same conditions, the standardized ratio test statistic Tc,ϵ satisfies

Tc,ϵ = M c,ϵ/Mc − 1√
V̂ϵ(M c,ϵ)


L−→ N (0, 1) if ω ∈ Ω′,

P−→ ∞ if ω ∈ Ω′′,

(2.22)

where the denominator is the estimated standard deviation of M c,ϵ/Mc with

V̂ϵ(m) = 1
m2N

(ϕ11 + ϕ22 − 2ϕ21). (2.23)

When X ′′(ω) ≡ 0 on the interval (0, 1), the test statistic Tc,ϵ converges in distribution to a

standard normal random variable, which is implied by Theorem 2.2. When X ′′(ω) ̸= 0 for some

t ∈ (0, 1), the numerator of Tc,ϵ converges to a finite non-zero level determined by κ, whereas its

denominator shrinks to zero as n → ∞. Consequently, the standardized test statistic diverges

in the limit, thereby implying the consistency of the test under the alternative hypothesis.

2.3.2 Noise Mitigation

As discussed in Remark 2.7, our asymptotic results derived in Section 2.3.1 are based on the

conclusion that our estimators constructed from the sampled returns of (i) the observations on

(tn,i) under Assumption 2.2, and (ii) the observations on (t̆n,i) in Remark 2.4, have the same

limit theorems. Since the observations on (t̆n,i) form a random walk with all i.i.d. Gaussian steps,
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the sampled observations under PDS constitute a stopped random walk (Gut, 2009), which is

essential for the applicability of the random sum LLN and CLT of Anscombe (1952). However,

this rationale becomes untenable when the observations are contaminated by measurement

errors such as market microstructure noise. In this section, we propose an empirically plausible

approach to mitigate the noise. With a two-step noise reduction method, we transform the

noise-contaminated observations into a sequence of pseudo-observations, which behaves locally

like a Gaussian random walk in the limit. Since each sampled return is only determined by

finitely many tick-level returns within a local horizon, our test statistic that relies solely on the

sample moments of normalized PDS returns remains valid.

To this end, we assume an additive noise term with a weak dependence structure, before

which we recall the definition of α-mixing (Fan and Yao, 2003): The α-mixing coefficient of a

stationary sequence (Xi)i∈Z of variables indexed by i ∈ Z is defined as

α(h) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ Fi, B ∈ F i+h}, (2.24)

where the pre- and post-σ-fields are defined as Fj = σ({Xi : i ≤ j}) and F j = σ({Xi : i ≥ j}).

The process (Xi) is said to be α-mixing if α(h) → 0 as h → ∞.

Assumption 2.3. Let ε = (εi)0≤i≤N be a stationary sequence with E[εi] = 0 and E[|εi|2+δ] < ∞

for some δ > 0, where εi are identically distributed with the variance σ2
ε and the autocovariance

function Γh = E[εiεi+h]. The process ε is α-mixing with ∑∞
h=1 α(h)δ/2(2+δ) < ∞, and exogenous

to X. The sequence Y = (Yi)0≤i≤N collects all observations contaminated by noise Yi = Xi + εi,

with the log-returns ri = Yi − Yi−1 for all 1 ≤ i ≤ N .

Remark 2.9. The autocovariance function Γh satisfies Γ0 = σ2
ε and Γ−h = Γh. For Γh, the

standard absolute summability condition, i.e., ∑h∈Z |Γh| < ∞, is well-known to be sufficient

for ergodicity and necessary for α-mixing under stationarity (Ibragimov and Linnik, 1971).

Furthermore, the assumed conditions on the (2 + δ)-th moment and the α-mixing coefficient

α(h) are sufficient for a CLT for the centered, stationary and α-mixing ε (Ibragimov, 1962;

Theorem 8.3.7, Durrett, 2019).

Remark 2.10. The additive noise term εi summarizes a diverse array of market frictions. An

i.i.d. additive noise with non-zero variance, firstly introduced by Zhou (1996), is commonly

assumed in earlier literature of high-frequency volatility estimation, see, e.g., Aït-Sahalia et al.
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(2005) and Zhang et al. (2005). However, some previous studies including Hansen and Lunde

(2006), Ubukata and Oya (2009), and Aït-Sahalia et al. (2011) find empirical evidence of

self-dependent noise in financial markets. Recent work by Jacod et al. (2017) summarizes

the common statistical properties of market microstructure noise and offers estimators for its

autocovariances and autocorrelations, which further confirms this point. Assumption 2.3 allows

for a weak dependence structure of the noise. This standard Itô semimartingale plus locally

dependent noise framework has been employed by a number of recent studies, see, e.g., Jacod

et al. (2017, 2019), Varneskov (2017), Christensen et al. (2022), and Li and Linton (2022).

However, it is worth noting that Assumption 2.3 is in fact more stringent than needed,

given that Proposition 2.1 below only necessitates the convergence of the pre-averaged returns

defined in Eq. (2.25) to an α-mixing and stationary Gaussian process. This convergence result

requires an appropriate limit theorem to hold for a weighted-average of the tick-level returns

ri = ∆N
i Y = ∆N

i X + ∆N
i ε, which is satisfied when the assumed α-mixing and stationary ε is

exogenous to X. However, the same result holds when (ri) itself satisfies such conditions for an

appropriate limit theorem, which permits certain dependence structure between X and ε. For

brevity, we will stick with the exogenous noise assumption in the analysis henceforward, and

examine its potential impact with a more general specification of ε via extensive simulations in

Section 2.4.

With the additive noise under Assumption 2.3, the noisy observations clearly do not resemble

a Gaussian random walk in the limit. There are two main problems:

(i) The noise term dominates the variance of tick-level returns (ri) and does not shrink as

n → ∞;

(ii) The tick-level returns are no longer independent due to the self-dependence of ε.

We now introduce a two-step noise reduction method which facilitates the construction of a

sequence of pseudo-observations with desirable properties:

Step 1: Pre-averaging. We implement the pre-averaging approach of Jacod et al. (2009):

We choose a sequence of positive integers kn satisfying kn

√
∆n = θ for some θ > 0. We calculate

log-returns on (Yi)0≤i≤N that are pre-averaged in a local neighborhood of kn observations:

r∗
i = 1

kn

kn∑
j=kn/2+1

Yi+j − 1
kn

kn/2∑
j=1

Yi+j =
kn−1∑
j=1

g
( j

kn

)
ri+j , (2.25)



2.3 Main Results 21

where g(s) = s ∧ (1 − s), for all i ∈ {1, . . . , N ′} with N ′ = N − 2kn/2 + 2.

Step 2: Random Sign Flip & Permutation. We compute the “wild-bootstrapped”

returns based on the pre-averaged returns (r∗
i )1≤i≤N ′ obtained from Step 1:

r̃i = r∗
π(i)δπ(i), (2.26)

where (δi)1≤i≤N ′ is a sequence of i.i.d. Rademacher random variables,7 and π : {1, . . . , N ′}

7→ {1, . . . , N ′} is a uniform random permutation of the index set {1, . . . , N ′}.

Under the null, we show that the sequence of “wild-bootstrapped” returns (r̃i)1≤i≤N ′ behaves

locally like a sequence of i.i.d. Gaussian random variables:

Proposition 2.1. Let ε, Y follow Assumption 2.3. Under the null hypothesis and as n → ∞,

the sequence (r̃i)1≤i≤N ′ converges in distribution to a sequence of locally independent8 and

identically distributed Gaussian random variables with variances of order
√

∆n.

Remark 2.11. We first discuss why this two-step method can mitigate the impact of noise

under the null hypothesis. In Step 1, the standard choice of pre-averaging window balances the

orders of X increments and ε, such that the pre-averaged returns (r∗
i )1≤i≤N ′ converges to a

centered, stationary and self-dependent Gaussian process as n → ∞. The dependence structure

of (r∗
i ) arises from both the assumed self-dependent ε and overlapping pre-averaging windows.

Therefore, we proceed to Step 2 to remove the local dependence, which is inspired by the wild

bootstrap introduced by Wu (1986). The random sign flip eliminates serial correlations in

(r∗
i ). The uniform random permutation assigns equal probability to each of the N ′! possible

permutations, which ensures that any two variables in (r̃i)1≤i≤N ′ are independent when their

indices are not sufficiently far apart from each other in {1, . . . , N ′} under infill asymptotics.

Proposition 2.1 inspires the construction of our test in the presence of noise as follows: We

generate a sequence of pseudo-observations (Ỹi)0≤i≤N ′ as partial sums of (r̃i), where Ỹ0 = Y0

and Ỹi = ∑i
j=1 r̃j . Next, we choose a sequence of barrier widths c = m∆1/4

n and obtain the

sampled observations (Ỹ (c)
i ). Finally, we follow Section 2.3.1 to construct the standardized test

statistic T̃c,ϵ from (Ỹ (c)
i ) in place of (X(c)

i ). Formal establishment of its asymptotic properties

requires further assumptions about the noise, and is left for future research. We discuss some

7A random variable δ ∈ {−1, 1} has a Rademacher distribution if P(δ = −1) = P(δ = 1) = 1/2.
8A formal definition of local independence is given in Eq. (A.62)
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plausible properties of T̃c,ϵ in the two Remarks below, which are verified through comprehensive

simulations with a realistically calibrated noise specification in the next section.

Remark 2.12. The choice of c = m∆1/4
n ensures that the normalized increments r̃i/c are

invariant to ∆n, which is analogous to the case without noise. Assuming that (r̃i)1≤i≤N ′ is a

sequence of i.i.d. centered Gaussian random variables, (Ỹi)0≤i≤N ′ forms a genuine Gaussian

random walk, and thus the same CLT in Theorem 2.2 would hold for T̃c,ϵ under the null.

Our simulation results reveal that this CLT still holds for T̃c,ϵ constructed from (Ỹi). This is

because each sampled return is only determined by finitely many increments of (Ỹi) within

a local horizon, which are indeed asymptotically i.i.d.. Importantly, the convergence rate of

T̃c,ϵ remains
√

N , which apparently contradicts to the optimal N1/4 rate of noise-robust IV

estimators (Gloter and Jacod, 2001; Xiu, 2010; Reiß, 2011) that also appear in some noise-robust

jump tests (Aït-Sahalia et al., 2012). This discrepancy arises because our test statistic does not

rely on a noise-robust IV estimator, but rather on a consistent estimator of the scale-invariant

barrier width m, which is identified through the variance of r̃i. As r̃i has the same order as

the pre-averaged noise, a consistent estimator of m has the same
√

N rate as that of a noise

variance estimator. Consequently, the estimator of m cannot be translated into a consistent IV

estimator in the spirit of Remark 2.8 when noise exists. Nevertheless, this finding also reveals

that a noise-robust IV estimator is not a pre-requisite for noise-robust jump tests.

Remark 2.13. When X is discontinuous on (0, 1), we conjecture that our test remains consistent

under the alternative hypothesis of local-to-infinite-activity jumps, although it may require

a more stringent assumption on un in Eq. (2.7). For example, the order of the pre-averaged

returns r̃i becomes ∆1/4
n , such that un needs to satisfy un∆−1/4

n → ∞ and un∆β−1/2
n → 0 for

any β ∈ (1/4, 1/2] as n → ∞ to exclude all jumps that shrink either faster than or equal to the

pre-averaged returns from the alternative hypothesis.

2.4 Monte Carlo Simulations

2.4.1 Simulation Design

We simulate an empirically realistic discretized diffusion model for asset prices, which incorpo-

rates both time varying tick-variances and transaction activities. Firstly, we simulate a Heston
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model for the efficient price process X and obtain its tick-level observations, to which we add

jumps with different sizes:

dXt =
(
µ − σ2

t

2
)
dt + σtdWt + dX ′′

t , t ∈ [0, 1]

dσ2
t = α(ϑ − σ2

t )dt + ησtdBt,

(2.27)

where W = (Wt) and B = (Bt) are standard Brownian motions with Corr(Wt, Bt) = ρ, and

X ′′ is a compound Poisson process, i.e.,

X ′′
t =

Nt∑
i=1

Ji, (2.28)

where N = (Nt) is a Poisson process with rate λ, and jump sizes Ji follow a double exponential

distribution (Laplace distribution) with the location parameter 0 and the scale parameter b.

To generate all tick-level observations, we discretize X equidistantly on t = i/n for n = 23, 400.

Then we modify the observation times 0 ≤ tn,1 < tn,2 < · · · ≤ 1 following an inhomogeneous

Poisson process with the rate

α(t) = 1 − 1
2 cos 2πt, (2.29)

where t ∈ [0, 1]. The inverted U-shaped rate function α(t) is employed to mimic the empirical

feature of more transactions that occur in the early morning and late afternoon than in the

middle of the trading day (Jacod et al., 2017). We draw 10,000 simulated price paths for each

experiment.

For the additive noise,9 we denote

εi = 2

√
σ2

tn,i

n

(
ωA

i + ωB
i

√
ν − 2

ν

)
, (2.30)

where ωA
i are autocorrelated Gaussian random variables defined as

ωA
i = ϕi +

Λ∑
j=1

βjϕi−j , with ϕi ∼ i.i.d. N (0, 1), and βj = d(1 + d) · · · (j − 1 + d)
j! , (2.31)

9The simulation design of additive noise mainly follows Aït-Sahalia et al. (2012). In addition, we consider its
serial correlation using the method of Jacod et al. (2019).
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for d ∈ (−0.5, 0.5) and a large cutoff value Λ, which form a moving-average series that

approximates a fractionally differenced process (Jacod et al., 2019), and ωB
i are i.i.d. draws

from a Student’s t distribution with the degree of freedom ν.

The instantaneous standard deviation of the Gaussian-t mixture noise is about four times

as much as that of diffusive increments, i.e.,
√

σ2
tn,i

/n, so that the diffusive increments are

clearly dominated by the additive noise.10 This specification of εi captures some important

features of market microstructure noise in financial markets, e.g., temporal heteroscedasticity,

slowly-decaying serial correlation, intraday seasonality, and dependence on the latent prices.

The t-distributed noise ωB
i is introduced to capture the large bouncebacks commonly observed

in high-frequency transaction data (Aït-Sahalia et al., 2012). Besides the additive noise, we

also consider the rounding errors on the price level, i.e., let the observed prices eYi = eXi+εi be

further rounded to cents. The observed logarithmic prices are given as

Yi = log
([eXi+εi

0.01
]

× 0.01
)

, (2.32)

where the function [x] rounds a number x to the nearest integer.11

The annualized parameters for the Heston model are fixed at (µ, α, ϑ, η, ρ) = (0.05, 5, 0.16,

0.5, −0.5), where the volatility parameters satisfy the Feller’s condition 2αθ ≥ η2 which ensures

the positivity of σ. The parameter choices follow both Aït-Sahalia and Jacod (2009) and Aït-

Sahalia et al. (2012), which are calibrated according to the empirical estimates in Aït-Sahalia

and Kimmel (2007). For the jump components, we let λ = 1, and b = 0.2
√

θ and 0.4
√

θ

corresponding to moderate and relatively large jump sizes. The moderate (resp. large) jumps

contribute about 7% (resp. 25%) of the daily QV on average when noise is absent. For the

additive noise term, we let (d, Λ, ν) = (0.3, 100, 2.5) following Aït-Sahalia et al. (2012) and

Jacod et al. (2019).

Fig. 2.3 depicts the intraday variation of some market activity variables of a simulated path

in the absence of noise, which include the return, number of trades, and annualized RV in

10In the simulations, we follow Aït-Sahalia et al. (2012) to truncate the t-distributed ωB
i at ±50

√
ν/(ν − 2) to

avoid large returns in the absence of jumps, which could lead to very misleading results. Hence, the instantaneous
standard deviation of the t-distributed noise 2ωB

i

√
σ2

tn,i
/n
√

(ν − 2)/ν is slightly lower than 2
√

σ2
tn,i

/n.
11We also consider alternative specifications for the additive heteroscedastic noise, see the results in Appendix

A.2.2.
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each one-minute interval. Both transaction intensity and return variation exhibit a U-shaped

pattern over the trading hours, which is in line with some prior empirical findings (Harris,

1986; Wood et al., 1985; Andersen and Bollerslev, 1997; Andersen et al., 2018, 2019, 2023b).

Fig. 2.4 compares the simulated tick-level latent prices and the rounded, noise-contaminated

price observations over an intraday episode.
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Fig. 2.3 Some market activity variables of simulated price observations. The tick-level observations are simulated with
the Heston model in Eq. (2.27), and we assign randomized observation times with an inverted U-shape rate function in
Eq. (2.29) to all observations. The returns, numbers of transactions, and annualized RVs are computed at a granularity
of one minute.
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Fig. 2.4 Comparison of the simulated tick-level latent prices and the rounded, noise-contaminated price observations.

2.4.2 Test Performance in the Absence of Market Microstructure Noise

Table 2.1 reports the finite-sample size and size-adjusted power (at 5% nominal level) of the

standardized test statistic Tc,ϵ when noise is absent. Tick-level observations are sampled with

different PDS barrier widths c = Kσ(ri), i.e., K times the standard deviation of tick-by-tick

returns, where K ranges from 3 to 10. Different censoring thresholds with ϵ ∈ {0.05, 0.07, 0.1}

are also considered. In Table 2.1, the rejection rates under the null (Panel A) are all closely

align with the nominal level. For the finite-sample power under the alternative (Panels B
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and C), we find that the rejection rates are fairly robust across different sampling frequencies.

Fig. 2.5 compares the finite-sample distributions of our test statistic with the limiting standard

normal distribution. Under the null, the finite-sample distribution (solid line) closely resembles

the standard normal (shaded area), while the distribution deviates significantly from N (0, 1)

when there exist jumps of either moderate or large sizes.

Table 2.1 Finite-sample size and power (%)

Nominal size: 5% Panel A Panel B Panel C
No Jump Moderate Price Jumps Large Price Jumps

ϵ ϵ ϵ

c/σ(ri) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10
3 1786 5.26 5.31 5.48 1697 58.21 61.68 65.22 1564 76.29 78.47 80.37
4 1100 5.51 5.58 5.89 1043 61.24 64.54 67.46 959 77.95 80.18 81.99
5 744 5.39 5.56 5.77 705 63.01 66.29 69.55 647 79.10 81.00 82.83
6 536 4.99 5.20 5.61 508 63.77 67.13 70.30 466 80.16 82.01 83.92
7 405 5.28 5.56 5.71 383 65.19 68.47 71.07 351 80.59 82.23 84.01
8 316 5.20 5.61 5.93 299 65.86 68.90 72.07 274 80.76 82.51 84.36
9 254 5.28 5.46 6.01 240 66.33 68.88 71.47 220 81.36 82.78 84.42

10 208 5.07 5.29 5.49 197 66.66 69.33 72.16 181 81.20 83.18 84.85
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ϵ at
5% nominal level in the absence of market microstructure noise. Tick-level observations are sampled with different PDS
barrier widths c = Kσ(ri), i.e., K times the standard deviation of tick-by-tick returns, where K ranges from 3 to 10.
Different censoring thresholds with ϵ ∈ {0.05, 0.07, 0.1} are considered. N(c) stands for the average sampling frequencies.
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Fig. 2.5 Finite-sample distributions of the standardized test statistic Tc,ϵ. We plot the finite-sample distribution under
the null (solid line) and compare it with the simulated standard normal (shaded area). Jumps are simulated with a
compounded Poisson process with the intensity λ, and their sizes follow a double exponential distribution with the
location parameter 0 and the scale parameter b. We consider different parameter choices: (i) λ = 1, b = 0.2

√
θ (dash), (ii)

λ = 2, b = 0.2
√

θ (dash-dot), (iii) λ = 1, b = 0.4
√

θ (dash-circle), and (iv) λ = 2, b = 0.4
√

θ (dash-square). In all cases,
the PDS barrier width c = 5σ(ri), and the censoring parameter ϵ = 0.05.
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2.4.3 Test Performance in the Presence of Market Microstructure Noise

Panel A in Table 2.2 summarizes the finite-sample size (at 5% nominal level) of the standardized

test statistic Tc,ϵ constructed from the rounded noise-contaminated observations. We employ the

two-step noise reduction method in Section 2.3.2 to construct the sequence of pseudo-observations

with three different pre-averaging windows, i.e., kn = ⌈θ
√

N⌉ with θ ∈ {0.3, 0.4, 0.5}. The

choices of θ follow the rule of thumb in Hautsch and Podolskij (2013). Similar to the results in

the absence of noise, the rejection rates under the null are close to the nominal level across

almost all choices of bandwidth c and censoring parameter ϵ. Panels B and C in Table 2.2 report

the size-adjusted power under the alternative with moderate and large jumps, respectively.

Compared with the simulation results in Table 2.1, the finite-sample power experiences a

marginal reduction but remains above 40% for most of the parameter choices. Fig. 2.6 compares

the finite-sample distributions of Tc,ϵ with N (0, 1). It is observed that Tc,ϵ is almost a standard

normal under the null, but it has a notably larger magnitude than N (0, 1) under the alternative.

Compared this with Fig. 2.5, we observe that the right tails of the test statistic become smaller

with the same jump specifications. This explains the slightly reduced power of our test in the

presence of noise.
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Fig. 2.6 Finite-sample distributions of the standardized test statistic Tc,ϵ in the presence of noise. We plot the finite-
sample distribution under the null (solid line) and compare it with the simulated standard normal (shaded area). Jumps
are simulated with a compounded Poisson process with the intensity λ, and their sizes follow a double exponential
distribution with the location parameter 0 and the scale parameter b. We consider different parameter choices: (i) λ = 1,
b = 0.2

√
θ (dash), (ii) λ = 2, b = 0.2

√
θ (dash-dot), (iii) λ = 1, b = 0.4

√
θ (dash-circle), and (iv) λ = 2, b = 0.4

√
θ

(dash-square). In all cases, we select the pre-averaging window kn = ⌈θ
√

N⌉ = 46 with θ = 0.3, the PDS barrier width
c = 5σ(r̃i), and the censoring parameter ϵ = 0.05.

We then compare the empirical rejection rates of our test with those of 9 classical high-

frequency jump tests constructed from equidistantly calendar-time-sampled observations (Ta-

ble 2.3). These tests include BNS (Barndorff-Nielsen and Shephard, 2006), ABD (Andersen
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Table 2.2 Finite-sample size and power (%)

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5
ϵ ϵ ϵ

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A
No Jump

3 1784 4.90 5.15 5.20 1784 4.80 5.35 5.71 1783 5.06 5.07 5.70
4 1099 4.84 4.95 5.42 1098 5.29 5.10 5.51 1098 5.14 5.08 5.79
5 743 4.94 5.01 5.20 743 5.19 5.02 5.57 742 4.81 5.02 5.70
6 536 4.74 4.89 5.57 536 4.78 5.11 5.58 535 4.96 5.11 5.47
7 404 4.99 5.11 5.29 404 4.86 5.05 5.76 404 4.86 5.17 5.46
8 316 5.15 5.37 5.54 316 4.82 5.08 5.43 315 4.81 5.30 5.82
9 253 5.04 5.41 5.13 254 4.84 5.10 5.63 253 4.96 5.28 5.73

10 208 5.18 5.10 5.60 208 4.84 5.34 5.54 208 5.04 5.08 5.66

Panel B
Moderate Jump

3 1716 46.00 49.28 51.77 1717 44.98 46.84 49.27 1718 43.08 45.18 47.52
4 1058 45.89 48.56 50.92 1059 43.31 46.76 48.56 1061 41.35 44.77 46.22
5 717 44.95 47.45 50.42 719 42.99 45.50 47.53 720 40.81 43.12 44.93
6 519 44.60 46.65 48.86 519 42.82 43.97 47.01 520 40.25 42.06 45.01
7 392 43.79 45.31 48.98 393 41.00 43.15 46.29 394 40.08 41.95 45.04
8 307 42.45 45.21 48.64 308 40.97 42.47 46.81 308 39.98 41.03 43.83
9 247 41.38 43.95 48.57 248 40.54 42.58 45.62 248 38.45 41.21 43.67

10 203 41.08 44.57 47.51 204 40.04 41.30 45.45 204 38.12 40.03 43.86

Panel C
Large Jump

3 1594 68.85 70.38 72.44 1596 68.06 69.14 70.54 1599 66.37 68.54 69.68
4 983 68.79 70.51 72.17 986 66.37 68.97 70.42 990 65.60 67.26 68.97
5 668 67.26 69.92 71.80 671 66.37 68.22 69.52 673 65.11 66.50 68.19
6 484 67.69 69.41 70.48 486 65.92 67.13 69.67 489 64.38 66.05 68.07
7 367 66.78 68.71 70.81 369 65.14 66.46 68.54 371 63.68 65.35 67.61
8 288 65.84 68.11 70.24 290 64.22 66.40 68.42 292 62.93 64.89 66.90
9 233 65.83 67.44 70.32 234 64.08 66.29 68.38 236 62.29 64.68 66.67

10 192 65.00 66.96 69.70 193 63.44 65.54 68.23 194 61.91 64.12 66.69
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ϵ at 5%
nominal level. All simulated prices are contaminated by the additive Gaussian-t mixture noise and rounding errors. We
utilize the two-step noise reduction method in Section 2.3.2 to construct the sequence of pseudo-observations with three
different pre-averaging windows, i.e., kn = ⌈θ

√
N⌉ with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different

PDS barrier widths c = Kσ(r̃i), where K ranges from 3 to 10. Different censoring thresholds with ϵ ∈ {0.05, 0.07, 0.1}
are considered. N(c) stands for the average sampling frequencies.

et al., 2007c), JO (Jiang and Oomen, 2008), LM (Lee and Mykland, 2008), ASJ (Aït-Sahalia and

Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV

(Andersen et al., 2012). The parameter choices for all these tests are determined in accordance

with the recommendations from their original literature.12 Our analysis, in line with the Monte

Carlo results of Dumitru and Urga (2012) and Maneesoonthorn et al. (2020), demonstrates

that nearly all the tests constructed from equidistantly sampled observations suffer from size

distortion and their results become highly unstable under the assumed additive Gaussian-t

mixture noise and rounding errors. This noise significantly distorts their finite-sample null

distributions, particularly at higher sampling frequencies. It might be interesting to see that

12Some parameter choices are reported in Appendix A.2.1.
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the size of the JO test is close to the nominal level. However, a closer examination reveals that

this is caused by two cancelling distortions due to the mixture of Gaussian and t-distributed

noise specification, see Appendix A.2.2 for details. While sparse sampling can alleviate size

distortion, it also substantially weakens the power of these tests.

Table 2.3 Finite-sample size and power (%) of other tests

Nominal size: 5%
Int. (sec) Nspl BNS ABD JO LM ASJ CPR PZ MinRV MedRV

Panel A
No Jump

5 4680 0.33 98.53 6.19 98.40 99.98 33.39 89.61 0.00 0.00
15 1560 0.42 71.96 5.23 71.12 99.42 18.20 52.91 0.00 0.12
30 780 3.30 45.63 5.25 46.82 76.71 13.02 30.25 0.99 2.53
60 390 5.16 28.49 5.75 30.82 29.50 8.47 19.57 3.35 5.30

120 195 6.46 21.02 8.08 17.73 10.60 7.86 16.76 4.78 6.91
180 130 6.90 18.61 8.95 15.10 7.52 8.05 15.96 5.29 8.16
300 78 7.65 15.93 10.87 12.12 4.84 8.97 15.58 5.34 8.98

Panel B
Moderate Jump

5 4680 30.08 99.58 31.95 15.80 97.25 10.93 12.40 16.91 26.45
15 1560 36.42 88.73 36.33 24.78 94.76 21.13 20.59 32.89 36.17
30 780 33.20 74.27 33.89 32.00 77.29 28.64 28.39 28.95 33.25
60 390 28.25 61.69 28.25 36.63 45.44 29.58 37.36 24.96 28.61

120 195 21.64 48.76 20.90 32.73 24.43 24.18 30.47 20.07 23.51
180 130 17.40 42.22 17.16 28.97 16.57 19.34 25.51 16.34 19.42
300 78 13.83 33.48 11.33 20.56 11.44 15.93 19.09 13.32 14.74

Panel C
Large Jump

5 4680 56.35 99.81 59.11 43.00 95.12 32.58 36.63 42.72 53.55
15 1560 60.94 93.98 61.18 52.39 95.31 47.32 47.58 58.68 60.84
30 780 59.06 86.29 59.05 58.46 83.73 54.54 55.57 54.79 58.43
60 390 54.36 78.40 54.57 62.78 59.83 56.25 62.88 50.60 54.90

120 195 46.78 70.17 46.16 58.81 36.76 50.12 56.74 44.11 49.20
180 130 41.21 64.64 40.86 54.93 26.94 44.83 51.91 39.32 44.13
300 78 34.07 55.92 33.19 45.73 16.14 38.76 43.76 33.66 37.49

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 9 classical tests at 5%
nominal level: BNS (Barndorff-Nielsen and Shephard, 2006), ABD (Andersen et al., 2007c), JO (Jiang and Oomen, 2008),
LM (Lee and Mykland, 2008), ASJ (Aït-Sahalia and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel,
2010), MinRV and MedRV (Andersen et al., 2012). All these tests are constructed on observations equidistantly sampled
with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300 seconds, and “Nspl” stands for the sampling
frequencies.

For more appropriate benchmarks when the noise is present, we also consider some noise-

robust versions of classical tests (Table 2.4) constructed from ultra-high-frequency data: the

noise-adjusted PZ (Podolskij and Ziggel, 2010), LM12 (Lee and Mykland, 2012), and ASJL (Aït-

Sahalia et al., 2012). Similar to our test, all these noise-robust tests rely on the pre-averaging

approach of Jacod et al. (2009) to “pre-filter” the noise-contaminated observations.13 The

“optimal” tuning parameters for those tests are selected by minimizing the absolute distance

13With a simplified i.i.d. noise specification, Andersen et al. (2007c) introduce an “event time” correction of
ABD, and Jiang and Oomen (2008) propose an analytically modified form of JO. However, both of them cannot
achieve comparable performance under the simulated Gaussian-t mixture noise.
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between the nominal size and the empirical size with the simulated tick-level noise-contaminated

observations.14

Table 2.4 Finite-sample size and power (%) of other noise-robust tests

Nominal size: 5%
Int. (sec) Nspl PZ* LM12 ASJL

No Jump
tick 23400 5.29 5.03 5.12

5 4680 4.96 8.83 8.79

Moderate Jump
tick 23400 38.57 22.70 38.22

5 4680 30.38 18.79 17.66

Large Jump
tick 23400 64.78 40.76 63.50

5 7680 56.49 31.38 41.96
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations
of 3 noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010),
LM12 (Lee and Mykland, 2012), and ASJL (Aït-Sahalia et al., 2012). All these tests are
constructed on tick-level and 5-second-sampled observations. The tuning parameters for
those tests are selected by minimizing the absolute distance between the nominal size and
the empirical size with the simulated tick-level noise-contaminated observations.

As illustrated in Table 2.2, our PDS-based test demonstrates robustness across various

parameter choices: (i) barrier width c, (ii) censoring parameter ϵ, and (iii) pre-averaging window

kn = ⌈θ
√

N⌉, even when we consider such a complicated and realistic noise specification.

Furthermore, our test remains competitive and, often superior, to those noise-robust tests with

optimal parameter choices. While we refrain from providing optimal parameter choices, we

offer recommended ranges for practitioners:

(i) Choose c as a multiple of the standard deviation of r̃i, i.e., c = Kσ(r̃i), with 3 ≤ K ≤ 10.

(ii) Choose ϵ in [0.03, 0.15].

(iii) Choose the pre-averaging window kn = ⌈θ
√

N⌉ with θ ∈ [0.2, 0.8].

Through extensive simulation studies with different specifications of market frictions, we believe

that the recommended parameter choices work reasonably well in finite samples when the

number of intraday tick-level observations is no less than 10,000. Additional simulation results

can be found in Appendix A.2.2.

14Note that the optimal tuning parameters are not empirically feasible in practice. Therefore, the results
presented should be interpreted as theoretical upper bounds for these benchmark tests.
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2.5 Empirical Analysis

In this section, we employ our new jump test on the high-frequency transaction data of 10

stocks listed on the New York Stock Exchange (NYSE): American Express (AXP), Boeing (BA),

Disney (DIS), IBM, Johnson & Johnson (JNJ), JP Morgan (JPM), Merck (MRK), McDonald’s

(MCD), Procter & Gamble (PG), and Walmart (WMT). Our Trade and Quote (TAQ) dataset

includes all transactions from 9:30 am to 4:00 pm on each trading day in 2020. As is standard

in empirical research involving high-frequency financial data, we apply filters, as outlined in

Barndorff-Nielsen et al. (2009), to eliminate clear data errors, remove all transactions in the

original record that are later corrected, cancelled or otherwise invalidated, and keep transactions

on NYSE only. Table 2.5 reports descriptive statistics of trades on these selected NYSE stocks,

which include the number of trades, observed transaction prices in dollar terms, and intraday

log-returns in basis points. Our PDS-based test utilizes the same tuning parameters as those

in Section 2.4: the PDS barrier width c = Kσ(r̃i) with K ranging from 4 to 6, the censoring

parameter ϵ = 0.05, and three pre-averaging windows kn = ⌈θ
√

N⌉ with θ ∈ {0.3, 0.4, 0.5}.

Table 2.6 reports the proportions of trading days with rejections in 2020, as determined by

our PDS-based test. For the selected stocks, the proportions of trading days with identified

jumps are no more than 20%, with only AXP and MCD identified to exhibit over 15% of

trading days containing jumps. There is little variation of the rejection rates across different

stocks, and the results are relatively stable with different parameter choices. For each stock,

there is a slight decrease in the percentage of identified jumps when we employ a larger barrier

width c for PDS, i.e., sample less frequently. To visualize the testing results for the selected

stocks in 2020, we aggregate all stock-day outcomes, which yields a total of 2530 stock-day

pairs. Fig. 2.7 illustrates the empirical distributions of the standardized test statistic (solid

line) and compares it with the standard normal distribution N (0, 1). Relative to the limiting

distribution under the null hypothesis of no jump (shaded area), the empirical distribution of

our test statistic deviates slightly towards the right side, but maintainss a bell shape centered

around 0.5.

To eliminate spurious detections due to the multiple testing issue, Bajgrowicz et al. (2016)

propose a formal treatment of the over-identification bias with double asymptotics when the

jump tests are applied over a sample of many days. We apply their thresholding methods
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Table 2.5 Descriptive statistics of daily trades on selected NYSE stocks

Stock AXP BA DIS IBM JNJ

Number of trades

Min 3171 10556 9785 5047 6383
Max 59273 245802 125550 49178 71733

Mean 19351 55314 37962 17818 22966
Std Dev 9205 38352 20390 8265 11561

Trasaction prices

Min 67.03 89.00 79.07 90.56 109.16
Max 138.16 349.45 183.40 158.78 157.66

Mean 100.88 181.46 121.78 123.16 143.33
Std Dev 14.72 51.15 20.12 11.57 8.53

Intraday log-returns

(1 × 10−4)

Min −123.24 −163.29 −100.49 −143.49 −110.04
Max 97.48 129.22 75.30 143.49 200.25

Mean 0.00 0.00 0.00 0.00 0.00
Std Dev 1.78 1.85 1.17 1.44 1.23

Stock JPM MRK MCD PG WMT

Number of trades

Min 12593 5787 3968 7516 9845
Max 156987 71570 55024 76337 90546

Mean 44738 22833 16096 23224 26148
Std Dev 25335 11058 7838 10422 13032

Trasaction prices

Min 76.92 65.26 124.23 94.31 102.00
Max 141.10 92.14 231.91 146.92 153.60

Mean 103.17 79.86 195.17 125.19 128.55
Std Dev 14.28 4.55 21.74 11.63 12.04

Intraday log-returns

(1 × 10−4)

Min −103.80 −177.00 −154.39 −132.25 −305.08
Max 103.80 117.50 142.80 207.58 190.19

Mean 0.00 0.00 0.00 0.00 0.00
Std Dev 1.06 1.26 1.74 1.33 1.13

This table contains summary statistics for the number of trades, observed transaction prices in dollars, and intraday
log-returns in basis points for 10 selected NYSE stocks in 2020. Data are collected from the TAQ database which includes
all transactions from 9:30 am to 4:00 pm in each trading day. We apply filters, as outlined in Barndorff-Nielsen et al.
(2009), to eliminate clear data errors, remove all transactions in the original record that are later corrected, cancelled or
otherwise invalidated, and keep transactions on NYSE only.

Table 2.6 Empirical rejection rates (%) for selected NYSE stocks

kn c/σ(r̃i) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

θ = 0.3
4 17.00 10.67 9.88 13.04 13.83 10.67 10.67 16.60 13.44 11.07
5 15.81 10.67 9.49 12.25 11.86 10.67 10.28 16.21 11.86 10.67
6 14.23 9.88 9.09 12.25 11.46 10.28 9.88 15.02 11.86 11.07

θ = 0.4
4 16.21 9.88 10.28 13.44 12.65 10.67 9.88 15.81 12.65 12.25
5 15.02 9.88 9.49 12.25 12.25 10.67 9.49 15.42 11.86 11.07
6 14.23 9.49 9.49 11.46 11.07 9.88 9.49 14.23 11.46 10.28

θ = 0.5
4 15.81 10.28 10.28 12.25 13.04 10.28 10.28 15.81 12.25 11.46
5 14.23 9.09 9.88 12.25 11.46 9.49 9.09 15.02 11.86 10.67
6 13.44 8.70 9.09 11.46 11.07 9.88 9.09 14.62 11.07 10.67

This table reports the proportions of days with jumps identified by the PDS-based test for 10 NYSE stocks in 2020. We
use three pre-averaging windows kn = ⌈θ

√
N⌉ with θ ∈ {0.3, 0.4, 0.5}, different PDS barrier widths c = Kσ(r̃i), i.e.,

the integer multiple of the standard deviation of pre-averaged returns, with K ranging from 4 to 6, and the censoring
parameter ϵ = 0.05. The total number of trading days is 253.

to our results: (i) the universal threshold
√

2 ln 253, and (ii) the threshold based on the false
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Fig. 2.7 Testing results for selected NYSE stocks in 2020. We plot the empirical distribution of the standardized test
statistic for all 2530 stock-day pairs and, for comparison, the simulated standard normal distribution (shaded area). We
use the PDS barrier width c = 4σ(r̃i), the censoring parameter ϵ = 0.05, and the pre-averaging window kn = ⌈θ

√
N⌉ with

θ = 0.3, which corresponds to the first row in Table 2.6.

discovery rate (FDR).15 The adjusted results of our test for all selected stocks are reported in

Table 2.7.16 It is noteworthy that our testing results are fairly robust to the control of spurious

detections, which underscores the empirical reliability of our PDS-based test.

2.6 Conclusions

This chapter introduces a novel nonparametric high-frequency jump test for a discretely observed

Itô semimartingale. Our approach utilizes a path-dependent sampling strategy for the tick-level

price observations. The key intuition behind the construction of our test relies on the fact

that, different from a continuous price increase or decrease over a certain time interval, a

discontinuous shift with a larger magnitude will always trigger an exit-time event and induce a

disproportionately large threshold exceedance under infill asymptotics. Additionally, a two-step

noise reduction technique is designed to alleviate the impact of weakly dependent market

microstructure noise. Through extensive simulations, we validate the reliable finite-sample

15For the vector of one-side test statistics (S1, S2, . . . , SN )′ which converge to i.i.d. standard normal random
variables under the null, the universal threshold is

√
2 ln N (Bajgrowicz et al., 2016). The data-adaptive FDR

threshold is determined from the observed p-value distribution by the Benjamini–Hochberg procedure.
16See empirical results without and with the control of spurious detections for other calendar-time-sampling-

based and noise-robust tests in Appendix A.2.3. Our test demonstrates somewhat similar performance to some
noise-robust tests, but it stands out as the most robust to spurious detections, which further proves its reliability.
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Table 2.7 Adjusted empirical rejection rates (%) for selected NYSE stocks

kn c/σ(r̃i) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

Panel A
Universal threshold

θ = 0.3
4 15.02 9.49 9.09 12.25 12.25 7.91 9.49 14.62 11.07 9.49
5 13.83 9.88 8.70 11.07 10.28 8.30 9.09 14.62 9.88 8.70
6 12.65 8.70 8.30 11.07 10.28 7.91 8.70 13.44 9.88 9.09

θ = 0.4
4 14.23 8.70 9.49 12.25 11.07 8.30 8.70 14.23 10.28 9.88
5 13.44 8.70 8.70 11.46 11.07 8.30 8.30 13.83 9.88 9.09
6 13.04 8.70 8.70 10.67 9.88 7.91 8.30 12.65 9.49 8.70

θ = 0.5
4 13.83 9.09 9.09 11.46 11.86 8.30 9.09 13.83 10.28 9.49
5 12.65 8.30 9.09 11.07 10.28 7.51 7.91 13.44 9.88 8.70
6 11.86 7.91 8.30 10.67 9.88 7.51 8.30 13.04 9.49 9.09

Panel B
FDR threshold

θ = 0.3
4 13.44 9.09 8.70 11.86 11.07 7.11 9.09 13.44 9.88 8.70
5 12.65 9.49 8.70 11.07 9.88 7.51 8.70 13.44 9.09 8.30
6 11.86 8.30 8.30 10.67 9.88 7.51 8.30 12.65 9.09 8.30

θ = 0.4
4 13.04 8.70 9.09 11.86 10.28 7.51 8.30 13.04 9.88 9.09
5 12.25 8.30 8.30 11.07 10.67 7.51 8.30 12.65 9.09 8.70
6 12.25 8.70 8.30 9.88 9.49 7.51 7.91 11.86 9.09 8.30

θ = 0.5
4 12.65 9.09 8.30 11.07 11.07 7.51 9.09 12.25 9.09 9.09
5 11.46 7.91 8.70 10.67 9.49 7.11 7.91 12.25 9.09 7.91
6 11.07 7.91 8.30 10.28 9.49 6.72 7.91 12.25 9.09 8.30

This table reports the proportions of days with jumps identified by the PDS-based test for 10 NYSE stocks in 2020, with
the control of spurious detections using (i) the universal threshold and (ii) the FDR threshold of Bajgrowicz et al. (2016).
We use three pre-averaging windows kn = ⌈θ

√
N⌉ with θ ∈ {0.3, 0.4, 0.5}, different PDS barrier widths c = Kσ(r̃i), i.e.,

the integer multiple of the standard deviation of pre-averaged returns, with K ranging from 4 to 6, and the censoring
parameter ϵ = 0.05. The total number of trading days is 253.

performance of our test under empirically realistic specifications for price observations, which

is convincingly superior to a comprehensive collection of “classical” methods. The Monte

Carlo results demonstrate that the performance of our test is robust to various aggregation

levels and tuning parameter choices. An empirical analysis of NYSE-traded stocks provides

strong statistical evidence for jumps across all selected stocks, and the results are robust to

the correction of spurious detections. This methodology stands as the first exploration of the

duration-based approach to test for jumps, which offers a robust and easy-to-implement tool

for researchers and practitioners.



Chapter 3

Realized Candlestick Wicks1

3.1 Introduction

The discussion about intraday periods with extreme high-frequency return persistence was

brought back to the fore by the May 2010 “flash crash” in the U.S. stock market (Kirilenko et al.,

2017; Menkveld and Yueshen, 2019). The crash originated in E-mini S&P 500 future contracts,

and led to an extraordinarily rapid decline by 5-6% and a V-shaped recovery of U.S. equity

indices in 30 minutes. It swiftly spread to almost 8,000 individual stocks and exchange traded

funds (ETFs), and echoed internationally (CFTC and SEC, 2010). Prices with short-lived

locally explosive trends and returns with highly positive autocorrelations exhibit compelling

short-horizon predictability.2 “Gradual jumps” identified by Barndorff-Nielsen et al. (2009)

also have similar characteristics. These sharp but “continuous” price movements explain to a

large extent the reason for spurious detection of jumps with sparsely sampled data (Christensen

et al., 2014; Bajgrowicz et al., 2016), although they have attracted limited attention. Empirical

evidence shows such extreme events like mini flash crashes occur more frequently in recent

years, which raises widespread concern about market inefficiency and vulnerability (Golub et al.,

1This chapter corresponds to Li et al. (2024c), in revision for the Journal of Econometrics. This chapter
was previously circulated under the title “Nonparametric Range-Based Estimation of Integrated Variance with
Episodic Extreme Return Persistence”.

2Return predictability induced by temporary deviations from the random walk of log-prices has been
intensively discussed in low frequencies (Welch and Goyal, 2008; Rapach and Zhou, 2013; Farmer et al., 2023).
Laurent and Shi (2022) develop a real-time Dickey-Fuller detection technique for such deviations with high-
frequency intraday data, and find evidence for explosiveness and mean reversion of intraday stock prices. Andersen
et al. (2022) empirically illustrate that there often exist locally significant and persistent autocorrelations in
high-frequency returns.
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2012; Laly and Petitjean, 2020; Flora and Renò, 2022). These market glitches are also a threat

to the standard theoretical framework, as a temporary violation of the Itô semimartingale

assumption and potentially the no-arbitrage principle (Andersen et al., 2023c). Two recent

influential studies, Christensen et al. (2022) and Andersen et al. (2023a), attempt to incorporate

the mechanism behind these short-term directional and persistent price movements into the

standard Itô semimartingale framework. Christensen et al. (2022) attribute the short-lived

explosive trend to a locally unbounded drift, which prevails over volatility and dominates

log-returns in the vicinity of explosion points.3 Andersen et al. (2023a) consider these unusual

patterns as outcomes of the temporary disequilibrium after ambiguous information arrivals, i.e.,

the market price over- or under-reacts to information in an inefficient financial market, and

deviates temporarily from the true value.4

The existence of such events poses new challenges for the estimation of integrated variance

(IV), which serves as the cornerstone of statistical inference with high-frequency financial data

(Aït-Sahalia and Jacod, 2014). Since the realized volatility (RV) estimator of Andersen and

Bollerslev (1998), the increased data availability motivates the development of nonparametric

estimation techniques to mitigate the impact of distinctive data characteristics, either in isolation

or in combination. A stream of literature focuses on robust IV estimation when the price

process has jumps. There are basically two methods to overcome this problem: the bipower

and multipower estimators (Barndorff-Nielsen and Shephard, 2004, 2006; Huang and Tauchen,

2005) and truncated estimators (Mancini, 2009), with some combinations thereof (Vetter, 2010;

Corsi et al., 2010). Theoretical innovations on this issue continue to emerge afterwards, see,

e.g., Andersen et al. (2012) and Jacod and Todorov (2014, 2018). All the aforementioned

tools spotlight merely extreme price movements characterized by a discontinuous component,

while the distortion of IV measurement by non-trivial periods with sharp but continuous price

movements has long been ignored. Laurent and Shi (2020) visualize the bias of (original

and modified) RV and realized bipower variation (RBPV) in the presence of a nonzero drift

coefficient. The differenced-return volatility (DV) estimator of Andersen et al. (2023a) is the

3See also Flora and Renò (2022), Laurent et al. (2022), Christensen and Kolokolov (2023), Kolokolov (2023),
Mancini (2023), and Bellia et al. (2024), for some recent theoretical and empirical studies on drift burst.

4The economic interpretation of Andersen et al. (2023a) for such short-lived deviations is based on market
participants’ sticky expectations, which have been highlighted by literature in both macroeconomics and finance
(Coibion and Gorodnichenko, 2015; Bouchaud et al., 2019; Farmer et al., 2023).
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first IV estimator robust to this type of episodic Itô semimartingale violation.

This chapter develops an alternative nonparametric estimator which can exclude excessive

return variation induced by short-lived dominant trends and consistently estimate IV from the

diffusion component. Motivated by the drift-independent variance estimator of Yang and Zhang

(2000), we propose the range-return-difference volatility (RRDV) estimator based on intraday

“candlestick” information, specifically the high, low, open, and close prices (HLOCs) within short

time intervals. The RRDV estimator is constructed from pairwise differences between high-low

ranges and absolute open-close returns. This construction based on range-return differences

is designed to remove the contribution to total variation from a locally persistent component,

which dominates both ranges and returns in the intervals within such non-trivial episodes.

Fig. 3.1 illustrates some simulated examples of intraday candlestick charts. The candlesticks

have long “real bodies” but small or nearly no “wicks”, i.e., marubozu candlesticks, when the

price movements are locally dominated by either discontinuities or short-lived explosive trends.

The pairwise offset between ranges and returns offers the wick-based RRDV estimator a built-in

robustness to such extreme events.

Fig. 3.1 Examples of one-minute intraday candlestick charts for the simulated second-by-second log-prices from different
DGPs: continuous (left), discontinuous with a jump (middle), continuous with a V-shaped flash crash (right). White
candlesticks indicate upward movements, and black ones denote downward movements.

Different from the DV estimator that is constructed from the first-order differenced returns

to offset the excessive return drift in consecutive intervals, RRDV utilizes the candlestick

information and implements a similar offset independently within each interval. We derive
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the consistency and asymptotic normality of the RRDV estimator under infill asymptotics,

which reveals its ability to provide consistent IV estimates with variances approximately four

times smaller than those obtained with DV. Importantly, we demonstrate that the presence

of jumps with both finite and infinite activities, as well as the episodes of extreme return

persistence as modeled by Christensen et al. (2022) and Andersen et al. (2023a), has no impact

on the consistency and asymptotic distribution. Simulation results confirm that our new

estimator outperforms selected competitors in scenarios with various specifications of extreme

directional price movements, with an effective correction for the finite-sample biases. Our

empirical application focuses on the prediction of out-of-sample IV estimates of the SPDR S&P

500 ETF Trust (SPY) with the heterogeneous autoregressive (HAR) model of Corsi (2009).

We find that the HAR model based on RRDV estimates can achieve smaller forecast errors for

both robust and non-robust IV measures than all selected benchmark models, especially on

days with continuous or discontinuous extreme events.

From a technical point of view, our estimator is more closely related to the literature on

range-based volatility estimation. Since the classical works of Parkinson (1980) and Garman

and Klass (1980), a number of studies in this field show the strength of range-based volatility

estimators to improve estimation accuracy by extracting more information from realized price

paths than return-based measures, see, e.g., Beckers (1983), Ball and Torous (1984), Rogers

and Satchell (1991), Kunitomo (1992), Yang and Zhang (2000), Alizadeh et al. (2002), and

Brandt and Diebold (2006). The realized range-based volatility (RRV) estimator introduced

by Christensen and Podolskij (2007) is the first nonparametric IV measure constructed from

high-frequency intraday ranges, which is then extended by Martens and van Dijk (2007),

Christensen et al. (2009), and Christensen and Podolskij (2012). More recently, Li et al. (2022)

and Bollerslev et al. (2024) introduce the optimal candlestick-based spot volatility estimators

with the linear and nonlinear functional forms, respectively, which benefit from the broad

availability of intraday candlestick charts. As a fundamental tool in technical analysis that

predates the rise of high-frequency data, easy access to intraday candlesticks is now widely

available in most online trading applications. This accessibility facilitates the straightforward

implementation of candlestick-based inference techniques, rendering them a convenient option

for general investors.

The remainder of this chapter is structured as follows: Section 3.2 lays out the basic setup
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and introduces the new candlestick-based IV estimator. Section 3.3 discusses its asymptotic

behavior under two different specifications of episodic extreme return persistence. Section 3.4

contains finite-sample refinements of our estimator and instructions in practice. Section 3.5

includes an extensive Monte Carlo study that verifies its asymptotic unbiasedness and illustrates

the finite-sample performance. After an empirical application of volatility forecasting in

Section 3.6, we conclude in Section 3.7. All proofs and additional materials are relegated to

Appendix B.

3.2 Volatility Estimation Based on Range-Return Differences

3.2.1 Range-Return-Difference Volatility (RRDV) Estimator

For a finite time interval [0, t], e.g., a trading day, we apply an equidistant partition at

0 < ∆n < 2∆n < · · · < n∆n ≤ t to divide it into n = ⌊t/∆n⌋ short time intervals. We denote

the i-th interval by In,i = [(i − 1)∆n, i∆n]. The HLOC over the i-th interval can be expressed

respectively as

Hi = sup
t∈In,i

Xt, Li = inf
t∈In,i

Xt, Oi = X(i−1)∆n
, Ci = Xi∆n . (3.1)

The high-low range and open-close return are then denoted by

wi = Hi − Li, ri = Ci − Oi. (3.2)

The range-return-difference volatility (RRDV) estimator based on the differences between

ranges and absolute returns is defined as

V̂t,n = 1
Λ2

n∑
i=1

(wi − |ri|)2 , (3.3)

with

Λp = E
[(

sup
t,s∈[0,1]

Wt − Ws − |W1|
)p]

, (3.4)

where W = (Wt)t≥0 is a standard Brownian motion, and Λ2 = 4 ln 2 − 2 ≈ 0.7726, specifically.
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3.2.2 Limit Theorems for Continuous Itô Semimartingales

We consider a continuous Itô semimartingale in a filtered probability space (Ω, F , (Ft)t≥0,P):

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs, (3.5)

where t stands for time, X0 is F0-measurable, µ = (µt)t≥0 is a locally bounded and predictable

process of drift, σ = (σt)t≥0 is an adapted, càdlàg and strictly positive (almost surely) process

of spot volatility, and W = (Wt)t≥0 is a standard Brownian motion.

Theorem 3.1 (Consistency). Assume that the efficient price X evolves according to Eq. (3.5)

with all traditional conditions satisfied. Then it holds that as ∆n → 0,

V̂t,n
u.c.p.−−−→

∫ t

0
σ2

sds, (3.6)

where u.c.p.−−−→ stands for the uniform convergence in probability, i.e., for any processes Zn, Z we

have Zn u.c.p.−−−→ Z if and only if sups≤t |Zn
s − Zs| P−→ 0 for all t finite.

Theorem 3.1 indicates that RRDV is a consistent estimator under infill asymptotics when

the efficient prices follow a continuous Itô semimartingale. The result is straightforward to prove

with the law of large numbers (LLN) for path-dependent functionals of Itô semimartingales, as

summarized in Duembgen and Podolskij (2015). To derive an associated central limit theorem

(CLT), we need to impose some regularity conditions on σ:

Assumption 3.1. σ does not vanish and follows a continuous Itô semimartingale of the form

σt = σ0 +
∫ t

0
µ̃sds +

∫ t

0
σ̃sdWs +

∫ t

0
ṽsdBs, (3.7)

where µ̃ = (µ̃t)t≥0, σ̃ = (σ̃t)t≥0, and ṽ = (ṽt)t≥0 are adapted, càdlàg processes, and B = (Bt)t≥0

is another Brownian motion independent of W .

Remark 3.1. This assumption rules out possible discontinuities in σ, which is at odds with

some empirical evidence, see, e.g., Eraker et al. (2003), Jacod and Todorov (2010), Todorov and

Tauchen (2011), and Bandi and Renò (2016). It can be harmlessly relaxed without altering the

limit in the next theorem, but needs substantial extra calibration in the proofs. Some relevant

discussions can be found in Christensen et al. (2009) and Christensen and Podolskij (2012).
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Theorem 3.2 (Asymptotic normality). Assume that the efficient price X follows a continuous

Itô semimartingale in Eq. (3.5) with Assumption 3.1 satisfied. Then as ∆n → 0, we have

1√
∆n

(
V̂t,n −

∫ t

0
σ2

sds

)
L−s−−→ MN

(
0, Θ

∫ t

0
σ4

sds

)
, (3.8)

with the variance factor Θ = (Λ4 − Λ2
2)/Λ2

2 ≈ 0.7245, and Λ4 = 24 ln 2 − 12 − 3ζ(3) ≈ 1.0294,

where ζ(3) = ∑∞
n=1 n−3 ≈ 1.2021 is the Riemann’s zeta function. We denote by L−s−−→ the

stable convergence in law, and by MN a mixed normal distribution, i.e., a normal distribution

conditional on the realization of its F-conditional variance, which is a random variable.

Remark 3.2. Compared with the DV estimator of Andersen et al. (2023a) which features a

variance factor of 3, the asymptotic variance of our candlestick-based RRDV estimator is about

four times smaller under infill asymptotics. This result might seem surprising initially, given that

Kolokolov et al. (2023) demonstrate that DV attains the variance lower bound of drift-robust

IV estimator based on returns from two adjacent blocks. In essence, the improvement of RRDV

over DV originates from the additional information contained in high-frequency intraday ranges,

which induces a different limiting statistical experiment. This additional information also leads

to the diminished variance of the RRV estimator of Christensen and Podolskij (2007) over

RV, which is the return-based minimum-variance unbiased estimator (MVUE). Finally, if the

robustness to locally explosive trends is not pursued, then one can construct a variance optimal

candlestick-based IV estimator in the spirit of Garman and Klass (1980), Li et al. (2022), and

Bollerslev et al. (2024). As this is not the main focus of this chapter, we shall leave it for further

research.

Remark 3.3. Similar to the limiting distribution of RRV in Christensen and Podolskij (2007),

the variance factor Θ in Theorem 3.2 is an infill-asymptotic result based on the presumption

that the true HLOCs in all short episodes are observed. In practice, the efficiency of range-based

estimators depends on the number of observations used to calculate the high-low range within

each interval. See a detailed discussion in Section 3.4.1 about the RRDV estimator constructed

from candlesticks formed by a finite number of observations.

For feasible implementation of the asymptotic distribution in Theorem 3.2, we can estimate

the integrated quarticity (IQ) with the following range-return difference quarticity (RRDQ)
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estimator constructed analogously to RRDV:

Q̂t,n = n

Λ4

n∑
i=1

(wi − |ri|)4 . (3.9)

With techniques similar to Theorem 3.1, we can establish the consistency result for RRDQ:

Corollary 3.1 (Feasible inference). Under the same conditions as in Theorem 3.1, it holds

that

Q̂t,n
u.c.p.−−−→

∫ t

0
σ4

sds. (3.10)

The stable convergence in Theorem 3.2 implies that

√
n

ΘQ̂t,n

(
V̂t,n −

∫ t

0
σ2

sds

)
L−→ N (0, 1). (3.11)

Remark 3.4. Similar to RRDV, the fourth-moment estimator Q̂t,n is robust to both disconti-

nuities (in Section 3.2.3) and short-lived locally explosive trends (in Section 3.3). The proofs

are analogous and thus omitted here.

3.2.3 Jumps

We examine the behavior of our RRDV estimator constructed on a discontinuous Itô semi-

martingale defined on (Ω, F , (Ft)t≥0,P), e.g., with the Grigelionis (1980) representation:

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs +

(
δ1{|δ|≤1}

)
⋆
(
p − q

)
t
+
(
δ1{|δ|>1}

)
⋆ p

t
, (3.12)

where p = p(dt, dx) is a Poisson random measure on R+ ×R with a compensator q = q(dt, dx) =

dt⊗λ(dx), λ is a σ-finite measure on R, and the function δ(ω, t, x) on Ω×R+ ×R is predictable;

see Aït-Sahalia and Jacod (2014) for details regarding the last two integrals.

Assumption 3.2. There exists a sequence (τn)n≥1 of stopping times increasing to ∞, and a

sequence of deterministic nonnegative functions fn on R for each n, which satisfies |δ(ω, t, x)| ∧

1 ≤ fn for all (ω, t, x) with t ≤ τn(ω), and
∫
R |fn|rλ(dx) < ∞ for some r ∈ [0, 1).

Remark 3.5. The parameter r sets a bound on the degree of jump activity. With some

r ∈ [0, 1), we consider jumps of both finite and infinite activities, but restrict them to be of
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finite variation, i.e., they are absolutely summable, such that in Eq. (3.12) we can dispense

with the integral with p − q, see Jacod et al. (2019) for more details.

Jumps of order of magnitude ∆ϖ
n for some ϖ ∈ [0, 1/2) prevail over the diffusion component

and induce non-negligible shifts in X(ω) under infill asymptotics. We denote by ∆Xt = Xt−Xt−

the size of discontinuous shift at time t. The robustness of RRDV in the presence of jumps is

shown in the next proposition.

Proposition 3.1 (Jump robustness). Assume that the efficient price X follows a discontinuous

Itô semimartingale in Eq. (3.12) with Assumption 3.2 satisfied. Then as ∆n → 0,

V̂t,n −
∫ t

0
σ2

sds = Op

(√
∆n

)
, (3.13)

where the bias induced by jumps is asymptotically negligible and has no impact on the

asymptotic distribution in Theorem 3.2.

Proposition 3.1 indicates the robustness of RRDV to both finite-activity and infinite-activity

but finite-variation jumps in the efficient price. In each of the intervals with a nonzero ∆Xt,

the discontinuous component in Eq. (3.12) has a higher asymptotic order than the continuous

component, and thus dominates both the range and absolute return under infill asymptotics.

Consequently, the jumps are mechanically cancelled in the range-return differences. As a result,

the contribution from intervals that contain jumps in RRDV is asymptotically negligible and

does not affect the consistency and asymptotic normality in Theorems 3.1 and 3.2, respectively.

In contrast, the differencing of returns removes the contribution from similar realizations

of a locally persistent term in consecutive intervals, but it retains the unexpected increments

from the distinctly less persistent jump component. Therefore, the DV estimator relies on an

additional truncation method introduced by Mancini (2009) to discard all unexpectedly large

differenced returns that may possibly contain jumps.

As pointed out by Andersen et al. (2023a), market participants may imperfectly react to the

shifts in economic fundamentals, and sometimes induce an short-lived deviation between the

efficient and observed prices. This phenomenon, referred to as the “gradual jumps” identified

by Barndorff-Nielsen et al. (2009) and Hoffmann et al. (2018), will be discussed in the next

section as a typical manifestation of short-lived extreme return persistence.
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3.3 Extreme Return Persistence

3.3.1 Drift Burst Model

As assumed in Section 3.2.2, the drift µ = (µt)t≥0 is locally bounded, so that we can estimate

IV consistently under infill asymptotics, because the drift becomes invisible since ∆n ≪
√

∆n

in the limit, i.e., for a fixed time point τ , we have

∫ τ+∆n

τ
µsds = Op (∆n) and

∫ τ+∆n

τ
σsdWs = Op

(√
∆n

)
, as ∆n → 0. (3.14)

Christensen et al. (2022) point us in a new direction to understand some highly directional

price movements over short episodes, in which the unbounded drift prevails over volatility and

locally dominates log-returns in the limit, which is summarized in the following assumption.

Assumption 3.3 (Drift burst model). The efficient price X is defined on a filtered probability

space (Ω, F , (Ft)t≥0,P) and assumed to be a continuous semimartingale described by

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs + Ht, (3.15)

with

Ht =
∫ t

0
µb

sds =
∫ t

0

c−
s 1{s<τ} + c+

s 1{s>τ}
|s − τ |α

ds, (3.16)

where τ ≥ 0, and 1/2 < α < 1. The coefficients c−
t and c+

t are continuous and twice differentiable

deterministic functions. All usual conditions for µ and σ are satisfied.

It is assumed that the bursting drift term µb
t has a singularity at the “burst time" τ , and

thus explode in the vicinity of τ . The order of magnitude of Ht is given by

∫ τ

τ−∆n

c−
s

(τ − s)α
ds ≍

∫ τ+∆n

τ

c+
s

(s − τ)α
ds = Op

(
∆1−α

n

)
. (3.17)

We allow for different drift explosion coefficients c−
t and c+

t before and after τ , and use the same

rate of explosion α on both sides for ease of exposition. We restrict α < 1 for the continuity of

sample paths. When α > 1/2, the volatility is completely swamped by the drift in the vicinity

of τ , which induces a short-lived return persistence, and biases the nonparametric volatility
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estimators constructed from high-frequency intraday returns.5

When 1/2 < α < 1 and c−
τ c+

τ < 0, the trajectory shows a “V-shape” (or “Λ-shape”) in

the neighborhood of τ , thanks to a discontinuity in the sign of Ht which locally dominates

log-returns (Flora and Renò, 2022). Different drift explosion coefficients c−
t and c+

t can be

harmlessly employed to mimic patterns akin to V-shaped flash crashes (c−
τ < 0, c+

τ > 0) or

gradual jumps (c+
τ = 0). It will not affect main intuitions.

Proposition 3.2. Assume that the efficient price X follows a continuous semimartingale in

Eq. (3.15) and Assumption 3.3 holds with 1/2 < α < 1. For the RRDV estimator, it holds that

V̂t,n −
∫ t

0
σ2

sds = Op

(
∆

1
2α
n

∨√
∆n

)
= Op

(√
∆n

)
, ∀α ∈

(1
2 , 1

)
, (3.18)

where the bias induced by the drift burst is asymptotically negligible and has no impact on the

asymptotic distribution in Theorem 3.2.

Under Assumption 3.3, the drift burst component H = (Ht)t≥0 dominates the price

movement in the vicinity of τ , i.e., the “explosion effect zone”, while its impact diminishes as t

moves away from τ . Both the range and absolute return in an interval within the effect zone

near τ are dominated by a common excessive component, that is, the H increment of a higher

asymptotic order than
√

∆n. The pairwise offset between ranges and returns naturally nullifies

the impact of H. As a result, the presence of drift burst can only induce an estimation bias

of order Op(∆1/2α
n ) for the RRDV estimator, which is asymptotically negligible and does not

affect the CLT result in Theorem 3.2 for all possible α ∈ (1/2, 1). Over the region not in the

vicinity of τ , the invisible H retains the continuous Itô semimartingale assumption with a bias

of order Op(
√

∆n).

The bias result of RRDV in Proposition 3.2 has a similar form as that of DV in Andersen

et al. (2023a). We find that the asymptotic order of the RRDV bias under Assumption 3.3 aligns

with the bias order Op(
√

∆n) under the continuous Itô semimartingale assumption, and its

upper bound
√

∆n does not exceed that of the DV bias. Furthermore, the bias result of RRDV

remains unaffected by the rate of drift explosion α and does not depend on any parameter

5We follow Andersen et al. (2023a) to consider such episodic Itô semimartingale violations with only an
exploding drift. It does not necessarily allow local arbitrage opportunities in the specification of Christensen
et al. (2022), which accommodates simultaneous drift and volatility bursts with different rates of explosion.
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choices, while the DV bias is independent of α only when some conditions for the truncation

threshold are satisfied. The result can be extended to the case with stochastically distributed

explosion times over [0, t], as illustrated next in Section 3.3.2.

3.3.2 Persistent Noise Model

Andersen et al. (2023a) introduce an alternative specification for the episodic emergence of

extreme directional price movements. They consider these complex price patterns as outcomes

of market uncertainty caused by imperfect information and irrational market participants.

Assumption 3.4 (Persistent noise model). The observed price X is a combination of the

efficient price, modeled as a possibly discontinuous Itô semimartingale in Eq. (3.12), and a

component H that accommodates persistent price movements over irregularly spaced episodes:

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs +

∑
0≤s≤t

∆Xs + Ht. (3.19)

We denote by τi the first occurrence of the i-th “persistent noise” episode, so that τ1, τ2, . . . , τN ∈

[0, t) form an increasing sequence of stopping times, with N finite almost surely. The persistent

noise component is given by

Ht =
∑

i:τi≤t

H
(i)
t 1{ϵ

(i)
t ≥0}, (3.20)

with H
(i)
t defined as

H
(i)
t = f (i)(∆Xτi , ητi)g(i)(t), (3.21)

where ∆Xτi = Xτi − Xτ−
i

is the efficient price jump at τi, ητi is an Fτi-measurable random

variable, f (i) is a continuous and bounded function, and g(i) has one of the functional forms as

follows:

g
(i)
gj (t) =

[
1 −

(
t − τi

τ i − τi

)β
]
1{t∈[τi,τ i]}, (3.22)

where 0 < β < 1/2, and τ i > τi is an Fτi-measurable random variable, or

g
(i)
fc (t) = c−

t

[
1 −

(
τ̆i − t

τ̆i − τi

)β−]
1{t∈[τi,τ̆i]} + c+

t

[
1 −

(
t − τ̆i

τ i − τ̆i

)β+]
1{t∈[τ̆i,τ i]}, (3.23)

where 0 < β−, β+ < 1/2, the coefficients c−
t and c+

t are continuous and twice differentiable
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deterministic function, and τi < τ̆i < τ i are all Fτi-measurable random variables. Moreover,

ϵ
(i)
t =

∑
s∈[τi,t]

∆ϵs (3.24)

is a finite-activity pure jump process with negative jumps.

Remark 3.6. Each of the episodes is activated and terminated by the realizations of τi and τ i,

or randomly ended by ϵ
(i)
t in the middle. The function f (i) captures the initial market reaction

to events with ambiguous information that trigger persistent noise episodes, the random variable

ητi allows for a random response to such events, and the function g(i) describes the price pattern

over a temporary disequilibrium after ambiguous information arrives. Assumption 3.4 allows

for two basic forms of H(i) to model market uncertainty in two different scenarios:

I. Market participants underreact (or slowly react) to a shift in fundamentals. In this

scenario, there exists ∆Xτi ̸= 0, the function g(i) takes the form g
(i)
gj in Eq. (3.22), and

f (i)(∆Xτi , ητi) = −ητi∆Xτi with ητi = 1 or ητi ∈ (0, 1), which partially offsets the efficient

price jump at τi.

II. Market participants worry about a potential shift in fundamentals. In this scenario,

∆Xτi = 0, and the function g(i) takes the form g
(i)
fc in Eq. (3.23). The deviation from

efficient price is (fully or partially) recovered shortly after due to reverse trades by

arbitrageurs, which leads to a V-shaped trajectory with a turning point at a random time

τ̆i.

The scenario I and II correspond to two phenomena observed in financial markets, i.e., gradual

jumps and flash crashes, respectively. H(i) in scenario II can be viewed as a stochastic extension

of the drift burst model in Assumption 3.3, with stochastically distributed explosion times over

[0, t].

We next state an analogous result to Proposition 3.2 when the observed prices persistently

deviate from the fundamental values due to short-lived market inefficiency.

Proposition 3.3. Assume that the market price X follows a contaminated Itô semimartingale

in Eq. (3.19) with finite-activity jumps, i.e., r = 0 in Assumption 3.2, and there exists a

persistent noise episode [τ, τ ] ⊂ [0, t]. The function g(1) in the noise component H
(1)
t takes



48 Realized Candlestick Wicks

either of the two forms in Eqs. (3.22) and (3.23). For the RRDV estimator, it holds that

V̂t,n−
∫ t

0
σ2

sds =


Op

(
∆

1
2(1−β)
n

∨√
∆n

)
= Op

(√
∆n

)
, ∀β ∈ (0, 1/2), when g(1) = g

(1)
gj ,

Op

(
∆

1
2(1−β−∧β+)
n

∨√
∆n

)
= Op

(√
∆n

)
, ∀β± ∈ (0, 1/2), when g(1) = g

(1)
fc ,

(3.25)

where the bias induced by the persistent noise is asymptotically negligible and has no impact

on the asymptotic distribution in Theorem 3.2.

In Proposition 3.3, our discussion is confined to a simplified scenario featuring a single

persistent noise episode within the interval [0, t]. Similar to the result in Proposition 3.2 with a

drift burst, the estimation bias is of order Op(∆
1

2(1−β)
n ) with a gradual jump and Op(∆

1
2(1−β−∧β+)
n )

with a V-shaped flash crash, respectively, over the “explosion effect zone” where the role of H

is no smaller than the diffusion component. The results obtained in the simplified scenario can

be straightforwardly extended to more general cases involving a finite number of such episodes

with non-overlapping effect zones. Simulation results in Section 3.5 shows that the RRDV

estimator remains unbiased in the presence of a gradual jump with an intermittent small flash

crash.

Over each short interval in the vicinity of τ̆ , the persistent noise H adds the same amount

to both range and absolute return. The only exception is the so-called “V” interval in a flash

crash, i.e., the interval which accommodates the reversal point τ̆ . The range-return difference

in the “V” interval is an Op(∆β−∧β+
n ) variable, while its impact is negligible when n approaches

infinity. However, a steep “V-shape” could deteriorate the finite-sample performance of RRDV

when the interval length is far away from infinitesimal in practice, which shall be discussed in

Section 3.4.2.

3.4 Finite-Sample Refinements

3.4.1 Finite-Sample Bias I: Discretization Errors

Variance estimators constructed from high-low ranges often exhibit a systematic downward bias

in practice. This issue was initially identified by Garman and Klass (1980), Beckers (1983),

and Rogers and Satchell (1991) in the context of daily variance estimation. Range-based IV

estimation with intraday observations faces a similar challenge. The source of this downward
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bias is the difference between the discretized range calculated from the discrete observations

available in practice and the true range originating from a continuous-time process, which is

referred to as discretization error. More specifically, since the discretized minimum (maximum)

is obtained from a smaller set, it will be greater (smaller) than the continuous minimum

(maximum). Consequently, the discretized range includes a negative discretization error. In

other words, the scaling factor Λ2 derived from a standard Brownian motion leads to an

over-scaling of the sum of squared discretized range-return differences. Therefore, it is advisable

to replace it with a discretized scaling factor based on discretely observed Brownian motion.

To formalize this idea, we introduce some additional notation: We denote by N the number

of observations in each interval ((i − 1)∆n, i∆n], and assume there are totally Nn+1 equidistant

price observations available over [0, t]. We denote the discretized high-low range over the i-th

interval by

wi,N = Hi,N − Li,N = sup
j∈{0,1,...,N}

X(i−1)∆n+j∆n/N − inf
j∈{0,1,...,N}

X(i−1)∆n+j∆n/N , (3.26)

and then define the discretized RRDV estimator as

V̂t,n,N = 1
Λ2,N

n∑
i=1

(wi,N − |ri|)2 , (3.27)

where Λp,N is the counterpart to Λp in Eq. (3.4) when the standard Brownian motion is

discretely observed at t = i/N for i = 0, 1, . . . , N over a unit interval:

Λp,N = E
[(

sup
i,j∈{0,1,...,N}

Wi/N − Wj/N − |W1|
)p]

. (3.28)

To investigate how the discretization error Λp,N − Λp evolves across different N , we present

the asymptotic expansions for Λ2,N and Λ4,N as follows:

Proposition 3.4. Assume WN = (Wt,N )t∈[0,1] = (Wi/N )i∈{0,1,...,N} is an embedded random

walk equidistantly spaced at N + 1 points over [0, 1]. The following results hold for Λp,N in

Eq. (3.28):

Λ2,N = Λ2 + 4
π

ζ

(1
2

) 1√
N

+ o

( 1√
N

)
, (3.29)

Λ4,N = Λ4 +
(48

π
− 4π

)
ζ

(1
2

) 1√
N

+ o

( 1√
N

)
, (3.30)
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as N → ∞, where ζ(1/2) ≈ −1.4604.

Remark 3.7. The asymptotic expansions in Proposition 3.4 are based on the results in

Asmussen et al. (1995), who derive the asymptotic results for Euler discretization errors of one-

dimensional reflected Brownian motions, with details summarized in Lemma B.4 in Appendix

B.2.7.

Proposition 3.4 indicates that both Λ2,N and Λ4,N , as well as the variance factor ΘN =

(Λ4,N − Λ2
2,N )/Λ2

2,N , can be approximated when N is sufficiently large. This fact inspires us to

provide practitioners with polynomial approximations for all factors when a finite N is applied

in practice. Fig. 3.2 compares the approximated and simulated values of Λ2,N and ΘN with

11 ≤ N ≤ 2000, which confirms the precision of polynomial approximations. Further details on

the approximations and practical guidance can be found in Appendix B.3.2.
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Fig. 3.2 Comparison of approximated and simulated values of Λ2,N and ΘN with 11 ≤ N ≤ 2000.

The consistency and asymptotic normality of the discretized RRDV estimator in Eq. (3.27)

are summarized in the next corollary. Similar to the discretized RRV in Christensen and

Podolskij (2007), the CLT result holds for arbitrary N converging to some integer larger than 1.

Corollary 3.2. Under the same conditions as in Theorem 3.1, it holds that as ∆n → 0,

V̂t,n,N
u.c.p.−−−→

∫ t

0
σ2

sds. (3.31)
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Moreover, if Assumption 3.1 holds and N → c ∈ N>1, it holds that

1√
∆n

(
V̂t,n,N −

∫ t

0
σ2

sds

)
L−s−−→ MN

(
0, Θc

∫ t

0
σ4

sds

)
, (3.32)

where Θc = (Λ4,c − Λ2
2,c)/Λ2

2,c. Finally, the stable convergence implies that

√
n

ΘN Q̂t,n,N

(
V̂t,n,N −

∫ t

0
σ2

sds

)
L−→ N (0, 1), (3.33)

where the discretized RRDQ estimator Q̂t,n,N is given by

Q̂t,n,N = n

Λ4,N

n∑
i=1

(wi,N − |ri|)4 u.c.p.−−−→
∫ t

0
σ4

sds. (3.34)

The discretized RRDV is undefined when N → 1 because Λ2,1 = 0, unlike RRV that

reduces to the standard RV when there are only open and close prices available for all intervals.

Furthermore, compared with the DV estimator, the asymptotic variance of the discretized

RRDV becomes smaller even when only five observations (including open and close) are available

in each interval. Simulation results in Section 3.5.3 demonstrate that the discretized RRDV

based on half-a-minute observations (with 1, 2, 3, 5-minute candlestick intervals) can still

produce reliable IV estimates, with only a mild increase in finite-sample variance.

The effective correction for discretization errors ensures the reliability of RRDV constructed

from discretized candlestick information, i.e., the HLOCs obtained from sparsely or “not-too-

finely" sampled price observations within each candlestick interval. The fact that the market

microstructure noise becomes more pronounced with higher sampling frequencies has inspired

the widespread use of volatility estimators based on sparsely sampled data (Aït-Sahalia et al.,

2005). The utilization of discretized HLOCs provides our estimator with a similar robustness to

market microstructure noise, without introducing additional complexity for implementation.6

However, a comprehensive investigation of the asymptotic and finite-sample behavior of range-

based estimators constructed from ultra high-frequency or “finely” sampled data with noise

contamination requires a more explicit assumption for the noise structure, where the literature

is still far from reaching a consensus (Bollerslev et al., 2024). The extension of RRDV in this

6Some simulation results are reported in Appendix B.3.5.
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direction is left for future research.

3.4.2 Finite-Sample Bias II: V-Shapes

Both models in Section 3.3 can be employed to mimic flash crashes. As commented after

Proposition 3.3, the reversal point τ̆i (or the explosion time τ in the drift burst model) has

no impact on RRDV in the limit, but could deteriorate its finite-sample performance when

the interval size is not sufficiently small. An example in Fig. 3.3 illustrates the candlestick

patterns around a V-shaped flash crash. In this example, the candlestick in the 5-minute “V”

interval has a long lower wick, i.e., the so-called hammer pattern, which potentially introduces a

positive bias in the RRDV estimate. This bias becomes particularly pronounced in cases where

the V-shape is steep. To mitigate the V-shape bias in finite samples, we augment the RRDV

estimator with a truncation threshold for the range-return differences. This augmentation has

no impact on the asymptotic results in Sections 3.2 and 3.3, but improves the finite-sample

robustness of RRDV to different interval lengths.

Fig. 3.3 5-minute candlesticks around a simulated V-shaped flash crash.

We employ the classical truncation threshold φ = ζ∆ϖ
n with ϖ ∈ (0, 1/2), initially introduced

by Mancini (2009), and set the threshold parameters by using a data-adaptive method. Andersen

et al. (2023a) use the truncation threshold for both absolute returns in the truncated realized

volatility (TRV) and absolute differenced returns in DV, with

ζ = Cζ

√
MedRVt,n, (3.35)
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where MedRVt,n is the median RV estimator of Andersen et al. (2012), i.e.,

MedRVt,n = π

6 − 4
√

3 + π

(
n

n − 2

) n−1∑
i=2

median (|ri−1|, |ri|, |ri+1|)2 , (3.36)

and CDV
ζ =

√
2CTRV

ζ = 3
√

2, motivated by the ratio
√

2 between standard deviations of

(absolute) differenced and undifferenced i.i.d. Brownian returns. For the RRDV estimator, we

truncate the range-return differences with the threshold of the same form, i.e.,

V̂t,n,N = 1
Λ2,N

n∑
i=1

(wi,N − |ri|)2
1{wi,N −|ri|≤ζRRDV∆ϖ

n }, (3.37)

where the parameter ζRRDV is given by Eq. (3.35) with CRRDV
ζ = 2, which is approximately

the same quantile (99.7%) of range-return differences from a standard Brownian motion.

3.5 Monte Carlo Simulations

This section contains a Monte Carlo study to examine both the asymptotic unbiasedness and the

finite-sample performance of the RRDV estimator, which corresponds to the results developed

in Sections 3.2 and 3.3.

3.5.1 Simulation Design

We simulate a Heston model for the efficient price process X (Heston, 1993):

dXt = µdt + σtdW1,t + dJt, t ∈ [0, 1],

dσ2
t = κ

(
θ − σ2

t

)
dt + ησtdW2,t,

(3.38)

where W1 and W2 are standard Brownian motions with Corr(W1,t, W2,t) = ρ, and J is a

compound Poisson process, i.e.,

Jt =
Nt∑
i=1

Zi, (3.39)
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where N is a Poisson process with rate λ, and Zi follows a normal distribution N (0, ς2). We

start with the initial price X0 = ln 1200, and take the Heston parameters as follows:

µ = 0.05/252, κ = 5/252, θ = 0.0225/252, η = 0.4/252,

ρ = −
√

0.5, λ = 1/5, ς = 0.9%.
(3.40)

The volatility parameters satisfy the Feller’s condition 2κθ ≥ η2 which ensures the positivity of

σ. The process J simulated with λ = 1/5 corresponds to one jump per week, and generates

around 6.5% of the daily quadratic variation on average.

In this section, we firstly examine the unbiasedness of RRDV in “continuous time”: We

simulate half-millisecond (0.0005-second) price observations for 2000 days, and construct

RRDV on candlestick information in 1, 5, 10, 30-second and 1, 2, 3, 5-minute intervals,

respectively. Then we evaluate its finite-sample performance: We simulate one-second and

30-second observations for 10000 days, and construct the candlesticks on 1, 2, 3, and 5-minute

intervals, respectively. All simulated observations are equidistantly distributed in [0, 1] which

consists of 6.5 hours of trading.

We follow the persistent noise model of Andersen et al. (2023a) to simulate three different

patterns of episodic extreme return persistence:7

• Gradual Jump: We insert a shift in fundamentals ∆Xτ = 2.5% at τ = 0.5 for all days.

For the persistent noise component in Eq. (3.21), we let i ∈ {1}, τ1 = τ , f (1)(∆Xτ , ητ ) =

−ητ ∆Xτ with ητ = 1, g(1) take the form g
(1)
gj in Eq. (3.22), and (τ, τ) = (0.5, 0.59).

• Flash Crash: We let i ∈ {1}, τ1 = τ , f (1)(∆Xτ , ητ ) = −ητ with ητ = 2%, g(1) take the

form g
(1)
fc in Eq. (3.23), (τ, τ̆ , τ) = (0.41, 0.49, 0.57), and c± = 1.8

• Gradual Jump + Flash Crash: We consider two overlapped persistent noise episodes:

i ∈ {1, 2}. We insert a shift in fundamentals ∆Xτ1 = 2.5% at τ1 = 0.5. We let

f (1)(∆Xτ1 , ητ1) = −ητ1∆Xτ with ητ1 = 1, g(1) take the form g
(1)
gj in Eq. (3.22), and

(τ1, τ1) = (0.5, 0.65). For the intermittent (small) flash crash, we assume f (2)(∆Xτ2 , ητ2) =

7As shown in Eqs. (56) and (57) in Andersen et al. (2023a), there exists an asymptotic correspondence
between the two models of episodic extreme return persistence in Section 3.3, and they are equivalent with
identical asymptotic analyses when β = 1 − α. The simulation results with the drift burst model in Eq. (3.15)
indicate the same qualitative conclusions.

8For flash crashes simulated with g(i) = g
(i)
fc , we stale the observation on τ̆i to avoid an unnecessary “jump”

on τ̆i. For example, when (τ, τ̆ , τ) = (0.41, 0.49, 0.57) = (9594, 11466, 13338) seconds, we truncate the tick-by-tick
H increments between 11465 and 11467 seconds.
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−ητ2 with ητ2 = 0.75%, g(2) takes the form g
(2)
fc in Eq. (3.23), and c± = 1. We assume

that the waiting time between τ1 and τ2 follows an exponential distribution with rate

parameter λExp = 15, and (τ̆2, τ2) = (τ2 + 0.04, τ2 + 0.08).

For each scenario, we consider three different choices of parameter β = β± ∈ {0.45, 0.35, 0.25},

which controls the steepness of short-lived directional price movement. For example, a smaller

β in ggj leads to a steeper gradual jump in observed prices, which is closer to the discontinuous

shift in efficient prices, and corresponds to a less sticky expectation of market participants.

Fig. 3.4 shows examples of simulated price paths eX , efficient (in blue) and observed (in black),

for all three scenarios with β = β± = 0.45.
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Fig. 3.4 Simulated price paths eX , efficient (in blue) and observed (in black), with (i) a gradual jump (left), (ii) a flash
crash (middle), and (iii) a gradual jump with an intermittent small flash crash (right), respectively. The efficient price X

is simulated with the Heston model in Eq. (3.38). The deviation between efficient and observed prices is simulated with
the persistent noise model in Assumption 3.4, with all parameters listed above (β = β± = 0.45).

3.5.2 Asymptotic Unbiasedness

Table 3.1 reports the relative biases (%) of RRDV in “continuous time” with the simulated

half-millisecond observations for 2000 days. In Panel A, we find that the biases have fairly small

size when there exists no episodic extreme return persistence. The bias results with H = 0

confirm the consistency of our estimator (Section 3.2.2) and its robustness to discontinuities

(Section 3.2.3). The existence of gradual jumps leads to only small biases of RRDV constructed

from candlesticks with all selected interval lengths, and the biases shrink sufficiently when

the number of intervals (resp. the length of intervals) becomes larger (resp. smaller). The

V-shaped flash crashes also lead to only negligible biases with small intervals. These bias results

in “continuous time” show compelling evidence for the asymptotic unbiasedness of RRDV in
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the presence of short-lived explosive trends, as shown in Proposition 3.2 and Proposition 3.3.9

Fig. 3.5 collects the histograms and QQ plots of estimation errors in some of the Monte Carlo

trials, which indicates the close-to-normality of the estimation errors of RRDV in all scenarios.

Table 3.1 Monte Carlo bias results (%)

Panel A: No “V” Bias Correction
Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash
Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.01 -0.15 -0.15 -0.16 -0.19 -0.23 -0.26 -0.15 -0.16 -0.20
5 0.01 -0.47 -0.40 -0.38 -0.72 -0.73 -0.62 -0.61 -0.53 -0.37
10 -0.02 -0.75 -0.77 -0.63 -0.61 0.25 1.72 -0.81 -0.69 -0.49
30 -0.04 -1.89 -1.52 -1.24 -1.38 0.27 2.90 -1.36 -1.06 -0.42
60 0.11 -2.75 -2.25 -1.69 -2.76 -0.91 2.18 -2.27 -0.11 1.23
120 0.12 -3.73 -3.06 -2.44 10.74 22.69 36.21 -0.73 1.11 4.11
180 0.14 -4.58 -3.94 -3.17 10.90 23.50 37.34 -0.70 1.54 5.10
300 0.13 -5.62 -4.88 -3.45 14.38 28.38 43.38 2.45 5.22 5.01

Panel B: With “V” Bias Correction
Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash
Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.80 -0.92 -0.87 -0.80 -0.98 -0.93 -0.90 -0.91 -0.90 -0.87
5 -0.92 -1.18 -1.05 -0.94 -1.34 -1.19 -1.03 -1.22 -1.24 -1.07
10 -0.93 -1.44 -1.27 -1.04 -1.70 -1.60 1.44 -1.48 -1.55 -2.18
30 -0.98 -2.12 -1.86 -1.51 -2.86 -2.54 2.10 -2.03 -2.35 -2.22
60 -0.99 -2.95 -2.52 -2.17 -3.19 -3.34 -3.00 -2.52 -2.65 -2.86
120 -1.26 -3.93 -3.10 -2.59 -6.32 -5.49 -4.34 -3.55 -4.27 -3.92
180 -1.35 -4.53 -3.89 -2.95 -7.60 -6.33 -5.19 -2.99 -4.48 -4.87
300 -1.66 -5.61 -5.07 -4.14 -7.41 -7.84 -6.65 -1.96 -2.81 -3.86

Relative biases (%) of RRDV constructed from 1, 5, 10, 30, 60, 120, 180, and 300-second candlesticks for 2000 days. Panel
B reports the relative biases of RRDV with a truncation threshold applied for the range-return differences in all intervals,
i.e., 2

√
∆nMedRVt,n, see details in Section 3.4.2. The discretization errors are corrected following the steps in Section 3.4.1.

The DGP is the Heston model in Eq. (3.38), and we follow the persistent noise model of Andersen et al. (2023a) to simulate
the three different patterns of episodic extreme return persistence.

We notice that the reversal point of the V-shaped flash crash contributes to a positive

bias when the intervals are relatively large, and the bias has a larger size when the V-shape

is steeper, i.e., with a smaller β. For instance, the relative bias of 5-minute RRDV is 43.38%

in the presence of a V-shaped flash crash with β = 0.25. Panel B of Table 3.1 reports the

relative biases of RRDV with a truncation threshold applied for the range-return differences

in all intervals, i.e., 2
√

∆nMedRVt,n, as elaborated in Section 3.4.2.10 Estimating IV with the

range-return differences truncated by some right-tail extreme quantile slightly worsen the bias

9The bias results of some other IV estimators are presented in Appendix B.3.3.
10Theoretically, the truncation threshold should have a higher order than

√
∆n, i.e., ϖ < 1/2, while setting

ϖ = 1/2 for a fixed interval length makes no difference in practice.
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Fig. 3.5 Histograms and QQ plots of studentized estimation errors of one-second RRDV. The estimation errors of RRDV
are studentized by the estimates of asymptotic variance in Theorem 3.2, which involves the RRQV estimator in Eq. (3.9).
The discretization errors are corrected following the steps in Section 3.4.1. The sample size for QQ plots is 300.

results in “continuous time”, but it avoids the significant V-shape bias in finite samples.

3.5.3 Finite-Sample Performance

To evaluate the finite-sample performance of RRDV, we limit the number of observations

available in each interval to construct intraday candlesticks: We simulate both second-by-second

and half-minute observations, and collect HLOCs in each of the 1, 2, 3, and 5-minute intervals.

The RRDV estimators based on HLOCs obtained from 1-second and 30-second data are labeled

as “RRDV” and “RRDV*”, respectively, in the table of results, where the later corresponds

to sparsely or “not-too-finely” sampled data. For the comparative analysis, we consider the

truncated realized volatility (TRV) estimator of Mancini (2009):

TRVt,n =
n∑

i=1
r2

i 1{|ri|≤ζTRV∆ϖ
n }, (3.41)

and the general family of DV estimators in Andersen et al. (2023a):

DV1−m,t,n =
DV(1)

t,n + DV(2)
t,n + · · · + DV(m)

t,n

m
, (3.42)

where

DV(m)
t,n = 1

2

n∑
i=m+1

(ri − ri−m)2
1{|ri−ri−m|≤ζDV∆ϖ

n }. (3.43)
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The choice of truncation parameters for TRV, DV and RRDV follows the instructions in Sec-

tion 3.4.2, with (CTRV
ζ , CDV

ζ , CRRDV
ζ , ϖ) = (3, 3

√
2, 2, 1/2).11 Their finite-sample performances

are assessed and compared via the root-mean-square error (RMSE), i.e.,

RMSE =

√√√√ 1
M

M∑
i=1

(
V̂1,n −

∫ 1

0
σ2

t dt

)2
, with M = 10000. (3.44)

In Panel A of Table 3.2, we present the RMSEs of all selected IV estimators in the absence

of short-lived extreme return persistence. The small RMSEs (< 2 × 105) indicate the robustness

of all estimators to discontinuities. Compared with other estimators, RRDV has the smallest

RMSE results with all selected sampling frequencies, which is consistent with the smallest

variance in asymptotic theory. RRDV* based on HLOCs obtained from half-minute data has

the largest RMSE with one-minute intervals, while it starts to achieve smaller RMSEs than DV

when the length of intervals is extended to two minutes, i.e., there are at lease five observations

(open and close included) available in each interval, which is in line with our numerical results in

Section 3.4.1. Panel B, C and D in Table 3.2 report the RMSE results in the presence of gradual

jumps or/and flash crashes. When there exist local explosive trends, the TRV estimator has

larger RMSEs than RRDV and two DV estimators in all scenarios, and the difference becomes

more pronounced for “stickier” (less steep) deviations between observed prices and efficient

prices, i.e., with larger β’s, and for lower sampling frequencies. For the candlestick-based

estimators, RRDV* can achieve smaller RMSEs than DV in all cases when the interval length is

three minutes or longer, and RRDV based on HLOCs taken from second-by-second observations

outperforms all other IV measures across all relevant scenarios.

3.6 Empirical Analysis

In this section, we use the RRDV estimator as the basis for volatility forecasting under the

popular heterogeneous autoregressive (HAR) framework for the SPDR S&P 500 ETF Trust

(SPY), which is the best-recognized and oldest U.S. listed ETF and by far the most widely

11We also consider alternative parameter choices (CTRV
ζ , CDV

ζ ) = (4, 4
√

2) used for comparison in Andersen
et al. (2023a). We find that the less aggressive threshold choices will not change the qualitative results and even
worsen the finite-sample performance of both estimators when there exists excessive return drift, see Table B.8
in Appendix B.3.4, which is consistent with the Monte Carlo results in Andersen et al. (2023a).
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traded S&P 500 ETF.

3.6.1 Data

We obtain all high-frequency transaction records of SPY from the daily Trade and Quote (TAQ)

dataset, with the sample period ranging from January 2, 2014 to December 31, 2021. The

tick-by-tick transactions are timestamped in milliseconds until mid-2015 and in microseconds

since then.12 As is standard in empirical research with TAQ data, we use the filters as in

Barndorff-Nielsen et al. (2009) to eliminate clear data errors, remove all transactions in the

original record that are later corrected, cancelled or otherwise invalidated. In addition, we

remove all trading days with an early market closure, and restrict our sample to transactions

between 9:41:00 – 16:00:00 Eastern Time (ET) for all individual stocks. The final sample

comprises of 1998 days.

3.6.2 Heterogeneous Autoregressive (HAR) Model

The HAR model of Corsi (2009) is designed to parsimoniously capture the dependence structures

of return volatility across different horizons, and therefore aims to approximate its long memory

that has been extensively confirmed by empirical literature. Renowned for its consistent and

remarkable predictive performance, the HAR model serves as the predominant benchmark in

volatility forecasting research. In this section, we denote some selected IV measure at day t by

V̂t, and introduce the following moving averages of daily volatility measures as:

V̂w,t = 1
5

5∑
i=1

V̂t−i+1 and V̂m,t = 1
22

22∑
i=1

V̂t−i+1, (3.45)

where V̂w,t represents the one-week average and V̂m,t denotes the one-month average of daily IV

estimates, respectively. The standard one-day-ahead HAR model has the following structure:

V̂t = ω + βdV̂t−1 + βwV̂w,t−1 + βmV̂m,t−1 + εt, (3.46)

12We use the SAS code from Holden and Jacobsen (2014) to extract all tick-by-tick transaction records
matched with relevant ask/bid quotes from the daily TAQ dataset of WRDS.
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which can be easily estimated via ordinary least squares (OLS). As demonstrated by numerous

empirical applications in the literature, the implementation of a more refined volatility measure

on the right-hand side (RHS) can better exploit the information, and has the potential to

significantly improve the predictive accuracy of the HAR model for the left-hand side (LHS)

target variable.

In addition to the implementation of better volatility measures in the standard HAR model,

a constructive modification of the HAR model structure can also contribute to improved

forecasting outcomes. In this section, we consider two important extensions of the original

HAR-RV model for the comparative study. One is the HARQ model of Bollerslev et al. (2016).

With the motivation that the persistence of RV is affected by the temporal variation in its

measurement errors, the HARQ model allows for a time-varying coefficient for the previous

day’s RV on the RHS, and the coefficient depends on the heteroskedasticity in the error, which

is captured by the realized quarticity (RQ):13

V̂t = ω +
(
βd + βq

√
RQt−1

)
RVt−1 + βwRVw,t−1 + βmRVm,t−1 + εt, (3.47)

where

RQt = n

3

n∑
i=1

r4
i,t. (3.48)

Inspired by the realized semivariance (RS) introduced by Barndorff-Nielsen et al. (2010), the

semivariance HAR (SHAR) model of Patton and Sheppard (2015) stands out as another

important HAR-RV modification:

V̂t = ω + β−
d RS−

t−1 + β+
d RS+

t−1 + βwRVw,t−1 + βmRVm,t−1 + εt, (3.49)

where the RS measures are given by

RS−
t =

n∑
i=1

r2
i,t1{ri,t<0} and RS+

t =
n∑

i=1
r2

i,t1{ri,t>0}. (3.50)

13Following Bollerslev et al. (2016), the “insanity filter” of Swanson and White (1997) is applied: For each
rolling or expanding window, the minimum, maximum, and average of in-sample estimates are re-calculated. All
one-step-ahead out-of-sample forecasts that are greater (smaller) than the maximum (minimum) in-sample value
will be replaced by the in-sample mean.
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The intuition that “good” and “bad” volatilities are not created equal motivates the decompo-

sition of the original RV into separate up and downside RS measures. The empirical results

in Patton and Sheppard (2015) demonstrate that this decomposition leads to more accurate

volatility forecasts, with the “bad” volatility predominantly driving the short-run changes in

the future.14

3.6.3 Empirical Results

In this section, we estimate the standard HAR model in Eq. (3.46) with various IV measures

on the RHS, namely RV, RBPV, TRV, DV, and our RRDV estimator, with an initial in-sample

period of the first 1000 days, and forecast one-day-ahead out-of-sample RV, DV, and RRDV.

Moreover, we estimate both the HARQ model in Eq. (3.47) and the SHAR model in Eq. (3.49)

for the comparison of forecasts. We repeat this procedure of in-sample estimation and out-of-

sample forecasting in both a rolling-window (RW) and an expanding-window (EW) fashion,

respectively.

All return-based IV measures are constructed from log-returns over 5-minute intervals. For

the construction of RRDV based on 5-minute candlesticks, we obtain the corresponding HLOCs

from the transaction data, either at the tick level or under previous-tick equidistant sampling.

In particular, for the discretized RRDV based on HLOCs from equistantly sampled data, we

correct the discretization errors following the steps in Section 3.4.1.

We evaluate the out-of-sample forecasting performance via two widely used loss functions,

i.e., the mean squared error (MSE) and the quasi-likelihood (QLIKE) function:

MSE(θ, h) = (θ − h)2 and QLIKE(θ, h) = θ

h
− ln

(
θ

h

)
− 1, (3.51)

where θ and h represent the actual value and the forecast of the target variable, respectively.

Table 3.3 reports the MSE and QLIKE results for one-day-ahead out-of-sample forecasts

of three different target volatility measures. Among the standard and modified HAR-RV

models, both the HARQ and SHAR models can achieve smaller MSE and QLIKE results

than the original HAR-RV model, which demonstrates that the consideration of either the

14See Bollerslev (2022) for a comprehensive review of recent financial econometrics research related to “good”
and “bad” volatilities constructed from high-frequency intraday data.
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Table 3.3 Daily out-of-sample 5-minute HAR volatility forecasts

RV DV RRDV: tick data
MSE QLIKE MSE QLIKE MSE QLIKE

Panel A: HAR RW Forecasts
HAR-RV 2.39 0.41 1.57 0.47 1.19 0.30
HARQ 2.35 0.36 1.46 0.40 1.48 0.37
SHAR 2.29 0.39 1.51 0.45 1.04 0.30
HAR-RBPV 2.36 0.41 1.57 0.45 1.20 0.30
HAR-TRV 2.30 0.39 1.51 0.44 1.15 0.28
HAR-DV 2.55 0.40 1.68 0.45 1.32 0.29
HAR-DV1−3 2.45 0.39 1.62 0.44 1.24 0.28
HAR-RRDV: tick data 2.17 0.37 1.42 0.42 1.05 0.27
HAR-RRDV: 1-second data 2.16 0.37 1.41 0.42 1.06 0.27
HAR-RRDV: 30-second data 2.09 0.37 1.36 0.42 0.96 0.27
HAR-RRDV: 1-minute data 2.03 0.36 1.31 0.41 0.89 0.27
Panel B: HAR EW Forecasts
HAR-RV 2.29 0.37 1.51 0.42 1.15 0.29
HARQ 2.27 0.33 1.43 0.38 1.12 0.32
SHAR 2.18 0.35 1.45 0.42 1.02 0.30
HAR-RBPV 2.27 0.36 1.51 0.42 1.16 0.28
HAR-TRV 2.22 0.34 1.45 0.39 1.11 0.26
HAR-DV 2.45 0.35 1.62 0.39 1.27 0.26
HAR-DV1−3 2.35 0.34 1.55 0.39 1.19 0.26
HAR-RRDV: tick data 2.10 0.33 1.38 0.38 1.03 0.26
HAR-RRDV: 1-second data 2.09 0.33 1.37 0.37 1.03 0.25
HAR-RRDV: 30-second data 2.03 0.33 1.31 0.37 0.94 0.25
HAR-RRDV: 1-minute data 1.96 0.32 1.26 0.36 0.88 0.25

MSE (×108) and QLIKE of daily out-of-sample volatility forecasts for the SPDR S&P 500 ETF Trust (SPY). The HAR
model is re-estimated via OLS in rolling windows and expanding windows, respectively. The fixed (resp. initial) in-sample
period for RW (resp. EW) estimation is the first 1000 days. All return-based IV measures are constructed from 5-minute
intervals. RRDVs are also constructed from 5-minute candlesticks, in which the HLOCs are obtained from the transaction
data either at the tick level or under previous-tick equidistant sampling. The choice of truncation parameters for TRV,
DV and RRDV follows the instructions in Section 3.4.2, with (CTRV

ζ , CDV
ζ , CRRDV

ζ , ϖ) = (3, 3
√

2, 2, 1/2). For RRDVs
based on equidistantly sampled observations, the discretization errors are corrected following the steps in Section 3.4.1.

measurement errors in RV or the volatility asymmetry helps to exploit concealed information

due to aggregation, and results in more accurate forecasts. Compared with the HAR models

augmented with other volatility estimators, the HAR-RRDV model tends to obtain substantially

diminished values of both loss functions, and the number of observations available in each

candlestick interval seems relatively irrelevant to its predictive capability. Furthermore, the

symmetric MSE function penalizes outliers heavily, and is therefore sensitive to excessively

misinformative forecasts. The MSE results in Table 3.3 suggest that the HAR-RRDV model

can effectively reduce the occurrence of extremely inaccurate forecasts in both left and right

tails.

To further explore the reason for the reduced forecast errors of HAR-RRDV, we partition
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the entire out-of-sample period into complimentary subsets of days based on two criteria,

respectively: (i) days with and without jumps, as well as (ii) days exhibiting episodes of extreme

return persistence or not. The presence of discontinuities and persistent noise is identified using

the nonparametric tests of Aït-Sahalia et al. (2012) and Andersen et al. (2023a), respectively.15

Table 3.4 MSEs on days with/without discontinuities and episodic extreme return persistence

RV DV RRDV: tick data
Jumps Per. Noise Jumps Per. Noise Jumps Per. Noise

Yes No Yes No Yes No Yes No Yes No Yes No
Panel A: HAR RW Forecasts
HAR-RV 7.24 0.24 11.01 1.52 4.61 0.23 6.51 1.08 3.24 0.28 2.93 1.01
HARQ 7.05 0.27 10.73 1.51 4.16 0.26 6.34 0.97 4.13 0.31 2.86 1.34
SHAR 6.90 0.25 10.12 1.50 4.40 0.23 5.73 1.09 3.06 0.16 2.50 0.90
HAR-RBPV 7.17 0.23 10.92 1.50 4.61 0.22 6.45 1.07 3.36 0.24 2.89 1.03
HAR-TRV 6.93 0.25 10.81 1.45 4.39 0.24 6.38 1.02 3.10 0.28 2.84 0.98
HAR-DV 7.76 0.24 10.80 1.72 4.96 0.23 6.37 1.21 3.70 0.26 2.82 1.17
HAR-DV1−3 7.42 0.25 10.76 1.61 4.75 0.24 6.34 1.14 3.45 0.26 2.84 1.08
HAR-RRDV: tick data 6.46 0.27 9.93 1.39 4.07 0.25 5.81 0.98 2.73 0.31 2.49 0.91
HAR-RRDV: 1-second data 6.45 0.26 9.77 1.39 4.06 0.24 5.70 0.98 2.68 0.33 2.43 0.92
HAR-RRDV: 30-second data 6.21 0.28 9.63 1.33 3.86 0.25 5.60 0.93 2.42 0.32 2.37 0.82
HAR-RRDV: 1-minute data 6.07 0.23 9.72 1.25 3.75 0.23 5.65 0.87 2.25 0.29 2.40 0.74
Panel B: HAR EW Forecasts
HAR-RV 6.98 0.22 11.35 1.38 4.45 0.20 6.73 0.98 3.12 0.27 3.03 0.96
HARQ 6.83 0.25 10.99 1.39 4.15 0.23 6.49 0.93 2.99 0.29 2.91 0.94
SHAR 6.08 0.23 10.39 1.36 4.25 0.21 5.95 1.00 2.96 0.16 2.60 0.86
HAR-RBPV 6.94 0.21 11.22 1.38 4.47 0.20 6.65 0.99 3.24 0.24 2.97 0.97
HAR-TRV 6.72 0.23 11.12 1.32 4.27 0.21 6.58 0.94 3.00 0.27 2.93 0.93
HAR-DV 7.50 0.23 11.11 1.59 4.81 0.21 6.58 1.12 3.56 0.26 2.91 1.11
HAR-DV1−3 7.16 0.25 11.12 1.47 4.59 0.21 6.57 1.05 3.31 0.26 2.94 1.02
HAR-RRDV: tick data 6.28 0.25 10.16 1.29 3.97 0.23 5.96 0.92 2.65 0.31 2.55 0.87
HAR-RRDV: 1-second data 6.25 0.25 10.00 1.30 3.94 0.23 5.86 0.91 2.60 0.33 2.49 0.88
HAR-RRDV: 30-second data 6.03 0.26 9.83 1.24 3.76 0.23 5.75 0.87 2.35 0.31 2.43 0.79
HAR-RRDV: 1-minute data 5.90 0.22 10.08 1.15 3.65 0.21 5.90 0.80 2.21 0.29 2.50 0.71

This table reports the MSE (×108) results of daily out-of-sample volatility forecasts for the SPDR S&P 500 ETF Trust
(SPY) on the days with or without jumps and persistent noise. Jumps and persistent noise are identified with the
nonparametric tests of Aït-Sahalia et al. (2012) and Andersen et al. (2023a), respectively. The HAR model is re-estimated
via OLS in rolling windows and expanding windows, respectively. The fixed (resp. initial) in-sample period for RW
(resp. EW) estimation is the first 1000 days. All return-based IV measures are constructed from 5-minute intervals.
RRDVs are also constructed from 5-minute candlesticks, in which the HLOCs are obtained from the transaction data
either at the tick level or under previous-tick equidistant sampling. The choice of truncation parameters for TRV, DV
and RRDV follows the instructions in Section 3.4.2, with (CTRV

ζ , CDV
ζ , CRRDV

ζ , ϖ) = (3, 3
√

2, 2, 1/2). For RRDVs based
on equidistantly sampled observations, the discretization errors are corrected following the steps in Section 3.4.1.

In Table 3.4, the MSE results for all selected HAR models are presented within these

15For the test statistic of Aït-Sahalia et al. (2012), we select the pre-averaging window kn = ⌊
√

n⌋ and the
truncation level C = 5. To identify the presence of persistent noise, we construct the test statistic T n

t (2) of
Andersen et al. (2023a) from one-minute pre-averaged and winsorized returns. The selected critical values for
those two tests are -1.645 and 1.645, respectively.
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classifications. There is a notable reduction in MSEs across all selected models on days without

discontinuities or excessive return drift. This observation indicates that the presence of extreme

events potentially distorts the estimation of dependence structures in volatility and consequently

leads to uniformly worsened forecasts. Among the three target IV measures on the LHS, we find

that the one-day-ahead forecasts of RRDV exhibit superior accuracy when there exist either

“discontinuous” or “continuous” extreme events, with all chosen RHS variables. Meanwhile, the

RV predictions are more vulnerable to both discontinuities and short-lived explosive trends,

resulting in substantially larger forecast errors. For each of the target variables on the LHS,

the HAR-RRDV model demonstrates the least vulnerability to extreme events and generates

the most accurate one-day-ahead forecasts. These collective observations suggest that the

robustness of our RRDV estimator in the presence of extreme price movements contributes to

the predictive capability when it is integrated within some standard framework of volatility

forecasting.

3.7 Conclusions

Motivated by both the statistical superiority of range-based estimation and the broader avail-

ability of intraday candlesticks for general investors, we introduce a novel nonparametric

candlestick-based estimator for integrated variance (IV) in this chapter, namely the range-

return-difference volatility (RRDV) estimator. The RRDV estimator is designed to mitigate

the impact of short-lived explosive trends that locally dominate price movements, such as

gradual jumps and flash crashes. By modeling these “continuous” extreme events from two

perspectives: (i) a locally unbounded drift component (Christensen et al., 2022), and (ii) sticky

expectations of market participants (Andersen et al., 2023a), we demonstrate that RRDV can

consistently estimate IV with variances about four times smaller than those obtained with

the differenced-return volatility (DV) estimator introduced by Andersen et al. (2023a). Our

simulation results underscore the reliable finite-sample performance of RRDV across various

relevant scenarios. An empirical illustration of volatility forecasting shows that the HAR-RRDV

model can effectively reduce the occurrence of extremely misleading forecasts and improve

forecasting accuracy according to standard out-of-sample loss functions.





Chapter 4

Decoupling Interday and Intraday

Volatility Dynamics with Price

Durations1

4.1 Introduction

Volatility is an important topic in financial econometrics and a crucial input for any asset pricing,

portfolio allocation and risk management framework (Taylor, 2005). It is usually considered as

a latent process that describes the return variability over a local horizon, and thus requires

estimation from price observations. The increased availability of high-frequency financial data

has motivated a shift of volatility estimation techniques from monthly or daily frequencies, such

as the GARCH models (Engle, 1982; Bollerslev, 1986) and stochastic volatility models (Taylor,

1982, 1986, 1994), to various high-frequency volatility measures (Aït-Sahalia and Jacod, 2014).

As the most representative and widely applied high-frequency volatility estimator, the realized

volatility (RV) introduced by Andersen and Bollerslev (1998) is constructed by summing up all

squared intraday log-returns, and is well-known to be a consistent and efficient estimator of

the integrated variance (IV) of a univariate Itô semimartingale over fixed time intervals. The

return-based RV estimator has well-established statistical properties and can be modified to

accommodate more accurate volatility measures that are robust to various market frictions,

1This chapter corresponds to Li et al. (2024b), submitted to the Journal of Time Series Analysis.
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e.g., Barndorff-Nielsen and Shephard (2004), Jacod et al. (2009), and Mancini (2009).

The seminal work of Engle and Russell (1998) provides a compelling approach to volatility

estimation as an alternative to the return-based methods. Unlike the RV-type estimators that

measure the magnitude of price changes over a given time interval, this alternative method

measures the time it takes for the price to change by a certain size, i.e., a selected threshold.

Since the autoregressive conditional duration (ACD) model of Engle and Russell (1998), the

duration-based volatility estimation has been further developed, e.g., Gerhard and Hautsch

(2002), Andersen et al. (2008), Tse and Yang (2012), Fukasawa and Rosenbaum (2012), Vetter

and Zwingmann (2017), Li et al. (2019, 2021), Hong et al. (2023), and Pelletier and Wei (2023).

Specifically, some studies highlight the feasibility of a parametric structure for duration-based

volatility estimators, which enables more flexible intraday inference on local volatility. While

the nonparametric nature of RV-type estimators provides convenience in construction, it also

limits their applicability in situations with limited data availability, e.g., for spot volatility

estimation. As summarized by Tse and Yang (2012), the parametric duration-based estimators

can benefit from the data beyond the estimation window to enhance parameter estimates, and

potentially achieve more accurate volatility estimates. Furthermore, the parametric structure

facilitates the inclusion of other covariates such as seasonality, which can not only improve the

quality of volatility estimation, but also provide a framework to further explore the relation

between volatility and other covariates at a high-frequency level.

The existence of market frictions requires the utilization of “not-too-finely” sampled data,

which further restricts the data availability for both return- and duration-based methods in

practice (Aït-Sahalia et al., 2005; Liu et al., 2015). For example, both Andersen et al. (2008)

and Hong et al. (2023) recommend a moderate to large threshold to ensure a small number of

durations relative to the available price observations on each day. Although the parametric

structure offers the flexibility to estimate the duration models, e.g., the ACD model of Engle

and Russell (1998), with the data beyond a specific day, the incorporation of intraday durations

across multiple days introduces complexities. Specifically, the durations obtained with the same

threshold from different days will encompass different daily volatility dynamics, which leads to

challenges in both model estimation and the analysis of volatility patterns. Although there has

been extensive investigations on either daily or intraday volatility dynamics in the literature, a

joint analysis of both is nearly infeasible due to their fundamentally different characteristics.



4.1 Introduction 69

In this chapter, we introduce an innovative semiparametric method to (i) nonparametrically

disentangle the daily and intraday volatility dynamics inherent in the durations obtained across

multiple days, and (ii) parametrically estimate both the spot and integrated volatility based

on durations. For each day, we adopt a nonparametrically predicted threshold to maintain

a relatively consistent number of durations. We utilize the fact that, with a fixed number

of durations, each daily IV should be proportional to the corresponding squared threshold

(Hong et al., 2023), and therefore employ some standard predictive models for one-day-ahead

IV measures to determine the “daily” thresholds. Since the interday persistence of volatility

is subsumed into the daily thresholds, the durations from each day preserve only intraday

volatility dynamics. This decomposition homogenizes the durations from different days, and

alleviates the long-run persistence in the duration series. Furthermore, we derive a relationship

between spot volatility and the conditional density of durations under some mild conditions,

which provides an opportunity to estimate the volatility with some parametric duration models.

Simulation results reveal that our new duration-based method exhibits reliable finite-sample

performance for both the spot volatility and IV estimation. We compare our duration-based

estimators with both the localized return-based estimator of Foster and Nelson (1996) and

some innovative candlestick-based estimators of Li et al. (2022) for spot volatility estimation,

as well as with several RV-type estimators for IV estimation. We find that our duration-based

estimators can achieve smaller finite-sample biases and exhibit greater robustness to extreme

price movements, such as price jumps, when compared to the selected competitors. In our first

empirical application, we focus on the prediction of out-of-sample IV estimates of the SPDR

S&P 500 ETF Trust (SPY) with the heterogeneous autoregressive (HAR) model of Corsi (2009).

We find that the HAR model based on our duration-based IV estimator outperforms most of

the selected benchmark models with smaller forecast errors, which is further validated by a

Diebold-Mariano test. Furthermore, we conduct an intraday analysis to assess the short-term

impact of regular press releases made by the Federal Reserve, i.e., the Federal Open Market

Committee (FOMC) news announcements, based on our spot volatility estimator. Our results

reveal that the FOMC announcements have an instant and substantial impact on spot volatility,

evidenced by a significant volatility spike around 14:00 on FOMC days.

The remainder of this chapter is structured as follows: Section 4.2 introduces our semi-

parametric estimation procedure, which includes both the nonparametric threshold prediction
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and the parametric volatility estimation. Section 4.3 presents an extensive Monte Carlo study

to illustrate the finite-sample performance of both our duration-based spot and integrated

volatility estimation techniques. After some empirical applications for both daily and intraday

volatility of SPY in Section 4.4, we conclude in Section 4.5. All proofs can be found in the

Appendix C.

4.2 Econometric Framework

We consider a one-dimensional underlying process X = (Xt)t≥0 for the efficient logarithmic

price of a financial asset. We assume that X follows a semimartingale defined on a filtered

probability space (Ω, F , (Ft)t≥0,P):

Xt = X0 +
∫ t

0
σsdWs + Jt, (4.1)

where t stands for time, W = (Wt)t≥0 is a standard Brownian motion, σ = (σt)t≥0 is a càdlàg

Ft-adapted process assumed to be locally bounded and bounded away from zero. We assume

that X is observed on [0, T )∪ [T, 2T )∪ . . .∪ [(d − 1)T, dT )∪ . . ., where the interval [(d − 1)T, dT )

represents the d-th trading day of length T > 0. Price movements during market closures are

modeled as jumps occurring at dT , i.e., ∆Xd = XdT −XdT −, and are cumulatively incorporated

into the discontinuous component Jt = ∑⌊t/T ⌋
d=1 ∆Xd. We assume T ≡ 1 for ease of notation in

subsequent discussions.

Remark 4.1. We do not consider the price jumps during the regular trading sessions due

to the natural robustness of duration-based methods to finite-activity jumps. Some relevant

discussions can be found in Andersen et al. (2008), Tse and Yang (2012), Hong et al. (2023),

Pelletier and Wei (2023), as well as in Chapter 2.

We are interested in the estimation of the spot variance σ2
t for some t as well as the integrated

variance (IV) over some interval [s, t]:

V (s, t) =
∫ t

s
σ2

udu. (4.2)

When the interval [s, t] = [d − 1, d] is one trading day, we write Vd ≡ V (d − 1, d) as the IV for

day d and V (t) ≡ V (0, t) to denote the IV process up to time t. To construct an estimator for
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V (t), we extend the duration-based methods of Tse and Yang (2012) and Hong et al. (2023).

In contrast to those return-based estimators that fix a time interval ∆ and measure the change

in X, the duration-based estimators fix a threshold δ > 0 and measure the durations when

X increases or decreases by δ. Specifically, we generalize the price duration sampling (PDS)

method of Hong et al. (2023) by incorporating a time-varying sampling threshold. We choose

a sequence of “daily” thresholds (δd)d=1,2,..., where each δd is positive and adapted to the

information Fd−1 available up to time d − 1. We then sample price observations within each

trading day based on the following stopping rule:

τd,0 = d − 1, τd,i = inf
τd,i−1<t≤d

{∣∣∣Xt − Xτd,i−1

∣∣∣ ≥ δd

}
, (4.3)

with the convention that inf{∅} = ∞. Consequently, for each day d, we obtain a sequence

of sampling times (τd,i)0≤i≤Nd
, where τd,i denotes the i-th price event, xd,i = τd,i − τd,i−1 the

i-th inter-event price duration, and Nd = ∑
i≥0 1{τd,i∈(d−1,d]} counts the number of price events

within the d-th day.

In essence, when the realized sample path X(ω) is fully observable, the absolute return

between each pair of consecutive sampled price observations equals δd, i.e., |Xτd,i
− Xτd,i−1 | = δd

for all 1 ≤ i ≤ Nd. Consequently, Nd can be interpreted as the “frequency” of price path changes

by δd, which is proportional to the nonparametric duration-based IV estimator proposed by

Hong et al. (2023). This argument is formalized by Theorem 1 of Hong et al. (2023), which

implies that

Nd = Vd

δ2
d

+ Md + op(1), (4.4)

where (Md)d=1,2,... is a Gaussian martingale difference sequence, and op(1) vanishes as δd → 0.

By taking conditional expectations on both sides of Eq. (4.4), the Fd−1-adaptedness of δd

further implies:

E[Nd|Fd−1] = E[Vd|Fd−1]
δ2

d

+ o(1). (4.5)

Therefore, for a fixed δd ≡ δ, E[Nd|Fd−1] ∝ E[Vd|Fd−1], implying that the daily price event

counts effectively capture the volatility dynamics on a daily horizon. This can be further

modeled parametrically based on the durations or intensities of point processes (Engle and

Russell, 1998; Tse and Yang, 2012; Hong et al., 2023).



72 Decoupling Interday and Intraday Volatility Dynamics with Price Durations

As an important innovation of this chapter, we notice that one does not need to choose a

fixed δ. Specifically, an adaptive choice of δ̂2
d = K−1E[Vd|Fd−1] for some constant K ensures an

expectation of K price events on day d, i.e., E[Nd|Fd−1] = K + o(1).

The adaptive choice of δ̂d has two advantages over a constant δ. Firstly, it offers a natural

control for the daily sampling frequencies. In practice, the full trajectory of X(ω) is not

available, and can only be observed on a grid of discrete times with the contamination of market

microstructure noise. Previous studies on duration-based estimators recommend selecting a

moderate to large δ such that the sampling frequency will be small enough relative to the total

number of observations (Andersen et al., 2008; Li et al., 2021; Hong et al., 2023). However,

achieving such “not-too-finely” sampling is only possible on an average sense with a fixed δ.

As shown in Eq. (4.5), the expected daily sampling frequency depends on the daily IV, which

could vary substantially across multiple days. With an appropriate choice of K, the adaptive

threshold δ̂d enables direct control of the expected sampling frequency for each day, which

provides uniform protection against market imperfections on a daily basis.

Secondly, the construction of δ̂d suggests that Kδ̂2
d could be interpreted as the mean squared

error (MSE) optimal forecast of Vd. The persistence of volatility dynamics at the daily level

has been extensively studied in the literature (Corsi, 2009; Gatheral et al., 2018), and these

benchmark models provide empirically reliable methods to construct δ̂d that fully reflects the

daily volatility dynamics. For example, since the squared threshold is essentially a scaled

version of RV, some predictive models for one-day-ahead RV, such as the HAR model of Corsi

(2009), can be easily applied. As a result, the sampling times (τd,i)0≤i≤Nd
within each day only

preserve intraday volatility dynamics, as the interday persistence in the IV process is subsumed

into the adaptive thresholds (δ̂d)d=1,2,.... This decomposition allows us to model interday and

intraday volatility separately, which greatly increases the flexibility of the point-process-based

parametric volatility models of Hong et al. (2023) and Pelletier and Wei (2023). It also

considerably simplifies the econometric analysis, offering a more straightforward understanding

of the volatility dynamics over an extended period spanning multiple days.

4.2.1 Spot and Integrated Volatility Estimation with Price Durations

We proceed to explain how we estimate both spot and integrated variances from the observed

price durations (xd,i)1≤i≤Nd
based on some Fd−1-adapted threshold. We denote Fd,i as the
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filtration generated by X up to the sampling time τd,i. We shall show that the Fd,i−1-conditional

density of xd,i is linked mechanically to the spot variance σ2 of the continuous martingale X.

To this end, we introduce some additional notation: Let Vd,i = V (d − 1, d − 1 + τd,i) denote

the IV accumulated up to the i-th price event on day d, and thus ∆d,iV = Vd,i −Vd,i−1 represents

the i-th duration in the IV clock. The sequence of IV increments (∆d,iV )1≤i≤Nd
possesses the

following important property:

Proposition 4.1. Assume (∆d,iV )1≤i≤Nd
is generated from the price model in Eq. (4.1) with

the Fd−1-adapted threshold δd. Then it holds that

∆d,iV = δ2
dZi, (4.6)

where (Zi)1≤i≤Nd
is a sequence of independent and identically distributed (i.i.d.) positive

random variables such that for all i, Zi
L= inft>0{|Bt| ≥ 1} for some standard Brownian motion

B with Zi independent of Fd,i−1.

Remark 4.2. Proposition 4.1 stems from the well-known Dambis-Dubins-Schwarz theorem

that all continuous martingales are time-changed Brownian motions under the IV clock, or

the business time (Barndorff-Nielsen and Shiryaev, 2015). As the price events commute with

time changes, (∆d,iV )1≤i≤Nd
is, up to a constant scaling, identical in distribution to (Zi)1≤i≤Nd

.

The i.i.d.-ness thus follows from the strong Markov property and the time homogeneity of

the Brownian motion. The density of Zi is well-known in the literature with the following

probability density function (PDF) and cumulative distribution function (CDF):

fZ(z) =
∞∑

k=−∞

2(1 + 4k)√
2πz3/2 e− (1+4k)2

2z , (4.7)

FZ(z) = 2 − 2
∞∑

k=−∞
erf 1 + 4k√

2z
, (4.8)

where erf x = (2/
√

π)
∫ x

0 e−t2
dt is the error function (Andersen et al., 2008). In particular, we

have E[Zi] = E[Zi|Fd,i−1] = 1, which implies that the expected IV increment between two price

events is precisely δ2
d for all continuous martingales, i.e., E[∆d,iV |Fd,i−1] = δ2

d.

A key observation from Proposition 4.1 is that the IV-based time change converts xd,i

into ∆d,iV for each i, where the latter is, conditioning on Fd,i−1, an i.i.d. duration in the IV
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clock. Therefore, one naturally expects that the Fd,i−1-conditional distribution of xd,i contains

information about IV. To formalize this link, we define a counting process Nd(t) = ∑
i≥1 1{τd,i≤t}

which counts the number of price events on day d up to time t ∈ [d, d + 1], and a piecewise

constant price process Xt ≡ Xτd,Nd(t) , which is constant on each inter-event interval [τd,i, τd,i+1).

Let F t ⊂ Ft denote the natural filtration generated by Xt, and similarly denote Fd,i ≡ Fτd,i
.

We have the following result:

Proposition 4.2. Under the same conditions as in Proposition 4.1, we assume that V (t) is

adapted to F t. Let ∆d,iV (h) = V (τd,i−1, τd,i−1 + h) denote the IV increment over the interval

[τd,i−1, τd,i−1 + h]. Let f(h|Fd,i−1) and F (h|Fd,i−1) denote the Fd,i−1-conditional PDF and

CDF of xd,i, respectively. For all d, i, it holds for all h ∈ (0, xd,i] that:

∆d,iV (h) = δ2
dGd,i(h), (4.9)

where Gd,i(h) = F −1
Z (F (h|Fd,i−1)) and F −1

Z (·) is the inverse function of the CDF in Eq. (4.8).

Furthermore, for almost all h ∈ (0, xd,i], we have:

σ2
τd,i−1+h = δ2

df(h|Fd,i−1)
fZ(Gd,i(h)) . (4.10)

Remark 4.3. The use of the restricted filtration F t instead of Ft as well as the F t-adaptedness

of V (t) require some elaboration. First, to reflect the PDS procedure on X, it is natural to

consider the filtration generated only by sampled observations. This restriction is implicit in

the existing work (Tse and Yang, 2012; Hong et al., 2023), which is intended to avoid using

the full (potentially noisy) price paths in Ft. The adaptedness of V (t) to F t also ensures the

validity of Proposition 4.1.2 More importantly, it ensures that V (t) for τd,i−1 ≤ t ≤ τd,i is

Fd,i−1-predictable. This allows us to construct an observation-driven model for a continuous-

time stochastic process, which can be easily estimated based on standard econometric tools.

We show via simulations that one can still make valid inference about V (t) conditioning on F t

even when V (t) is a fully stochastic volatility process that violates this restriction.

Proposition 4.2 leads to the following representation of IV over any finite interval [s, t] in

2Note that Proposition 4.1 does not hold under Ft in the sense that Zi is not i.i.d. when one conditions on
Ft for t ∈ (τd,i−1, τd,i), as knowing the value of Xt after τd,i−1 immediately changes the conditional density of
Zi. This is not a problem for F t, since it does not contain the value of Xt between price events.
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day d:

V (s, t) = δ2
d

 Nd(t)∑
i=Nd(s)

Gd,i(xd,i) − Gd,Nd(s)(s − τd,Nd(s)) + Gd,Nd(t)+1(t − τd,Nd(t))

 , (4.11)

where the last two terms correct for the (left and right) edge effects due to a mismatch between

the interval [s, t] and [τd,Nd(s), τd,Nd(t)]. Taking [s, t] = [d − 1, d] gives the IV for day d, where

the left correction is no longer needed. The right correction, termed the “end-of-day” correction

in Hong et al. (2023), typically exhibits a smaller magnitude compared to the leading term and

is often ignored in practical applications.

However, Proposition 4.2 only identifies the spot variance σ2
t for almost all t up to a Lebesgue

null set. Intuitively, this is due to the fact that the spot variance process is identified through

IV, whose value does not change by altering σ2
t on a Lebesgue null set. This also indicates that

the point-wise result in Proposition 4.2 may not be very informative about the spot volatility

at finitely many t. Instead, we propose to approximate σt by the localized IV over the interval

[t, t + h] for some small h > 0:

σ̄t =
√

1
h

V (t, t + h), (4.12)

where V (s, t) is given in Eq. (4.11). This smooths out any potential point-wise divergence from

Eq. (4.10), which is adopted in our simulation and empirical analyses.

As an interesting special case of Proposition 4.2, we derive a condition for σ2 to be almost

everywhere piecewise constant:

Corollary 4.1. Suppose there exists a sequence of positive random variables (γd,i) with

γd,i ∈ Fd,i. If xd,i satisfies γd,i−1xd,i = δ2
dZi for all d and i, then it holds for almost all

h ∈ (0, xd,i] that:

σ2
τd,i−1+h = γd,i−1. (4.13)

Corollary 4.1 suggests that σ2 is almost everywhere piecewise constant on [τd,i−1, τd,i] if

xd,i is proportional to Zi conditioning on Fd,i−1. This is at odds with some of the existing

point-process-based volatility estimators in the literature, to which we shall turn. The existing

methods, e.g., Hautsch (2011), Tse and Yang (2012), and Hong et al. (2023), typically adhere

to two equivalent methodologies: the duration-based method of Engle and Russell (1998), and

the intensity-based method of Gerhard and Hautsch (2002). Both methods employ a heuristic
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argument that each price event contributes δ2
d to Vd, and thus decompose the spot variance

multiplicatively as the product of the squared threshold δ2
d and the intensity or hazard rate of

price events, i.e.,

σ̃2
τd,i−1+h = δ2

d h(h|Fd,i−1), h ∈ (0, xd,i], (4.14)

where h(h|Fd,i−1) is the Fd,i−1-conditional hazard function of the price events at time τd,i−1 +h,

as defined in Daley and Vere-Jones (2003):

h(h|Fd,i−1) = f(h|Fd,i−1)
1 − F (h|Fd,i−1)

. (4.15)

This model offers a convenient formulation for the spot variance in a multiplicative structure.

Despite this relatively simpler specification of σ̃2
t , this decomposition cannot hold for the

continuous martingale in Eq. (4.1). With the spot variance in Eq. (4.14), the IV increment

between τd,i−1 and τd,i is given by

∆d,iṼ =
∫ τd,i

τd,i−1
σ̃2

sds = δ2
d

∫ xd,i

0
h(h|Fd,i−1)dh = −δ2

d ln(1 − F (xd,i|Fd,i−1))). (4.16)

In this case, with a copula transformation argument, ∆d,iṼ follows an exponential distribution

with the intensity parameter δ2
d, which clearly contradicts Corollary 4.1. Specifically, this would

imply that the likelihood of a Brownian motion to exit a symmetric barrier [−δd, δd] is time

invariant, which is clearly impossible by the continuity of the Brownian motion. Therefore, σ̃2

cannot coincide with the spot variance process of a continuous martingale.

Taking a different approach, Pelletier and Wei (2023) adopt the local volatility approximation

of Andersen et al. (2008) and assume that σ is piecewise constant on all intervals of the form

[τd,i−1, τd,i). Jointly with Proposition 4.1, it implies that, for each 1 ≤ i ≤ Nd,

xd,i
L= δ2

d

σ2
τd,i−1

Zi. (4.17)

The difference between the above result and our Corollary 4.1 is two-fold. On the one hand,

Pelletier and Wei (2023) allow σ2
τd,i−1 to depend on concurrent information up to time τd,i

through an additional stochastic component, while our Corollary 4.1 requires σ2
τd,i−1 to be

adapted to Fd,i−1. This can be considered as a stochastic extension of our approach, which can

potentially provide more flexibility to model the volatility dynamics. However, the resulting
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model becomes fully parameter-driven, which requires computationally intensive estimation

techniques and considerably complicates its empirical implementation (Koopman et al., 2016).

On the other hand, Proposition 4.2 demonstrates that the piecewise constant assumption can

be relaxed to a piecewise adaptedness condition, which allows for a more flexible specification

for σ even within our observation-driven framework. We will thus focus on Proposition 4.2 in

developing volatility models and leave the generalization to a fully parameter-driven model for

future research.

4.2.2 A Semiparametric Model for Daily and Intraday Volatility Dynamics

In this section, we describe our econometric model for both the “daily” thresholds (δd)1≤d≤D

and the intraday price durations xd,i, where D denotes the total number of trading days in the

in-sample period. We start with a model for (δd)1≤d≤D: Let K ∈ Z+ denote a predetermined

“target” sampling frequency. The realized K-adaptive threshold on the d-th day is defined as

δd = sup
δ>0

argmin
δ

|K − Nd| , (4.18)

where the supremum is taken to ensure the uniqueness of δ̂d. Intuitively, δd is the largest

threshold that generates a sampling frequency Nd closest to K, which can be easily constructed

with the price observations on day d in practice. Note that Kδ2
d actually serves as a daily IV

estimator and can be treated as a proxy for Vd. Based on a burn-in sample of (δd)−h≤d≤0, we

estimate the HAR model of Corsi (2009):

δ2
d = ω0 + ω1δ2

d−1 + ω2

5∑
i=1

δ2
d−i + ω3

22∑
i=1

δ2
d−i + ϵd, (4.19)

which can be easily estimated via ordinary least squares (OLS). The HAR model is designed to

parsimoniously capture the dependence structure of IV across different horizons, and therefore

aims to approximate its long memory which has been extensively confirmed by empirical

literature. Renowned for its consistent and remarkable predictive performance, the HAR model

serves as the predominant benchmark in modeling and forecasting daily IV dynamics. With the

parameter estimates ω̂ = (ω̂0, ω̂1, ω̂2, ω̂3), we set δ̂2
1 as the one-step-ahead forecast of δ2

1 with
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the optimal MSE:

δ̂2
1 = E[δ2

1 |F0] = ω̂0 + ω̂1δ2
0 + ω̂2

5∑
i=1

δ2
1−i + ω̂3

22∑
i=1

δ2
1−i, (4.20)

and the values of (δ̂d)2≤d≤D can be obtained with recursive model estimation and prediction in a

rolling-window fashion. The construction of δ̂d ensures that δ̂2
d = E[δ2

d|Fd−1] ≈ K−1E[Vd|Fd−1],

which is the desired threshold adaptive to daily volatility dynamics.

With the sequence of thresholds (δ̂d)1≤d≤D, we obtain all durations across all D days, which

can be modeled parametrically with standard duration-based point process models (Hautsch,

2011). Among many possible choices, we consider the simple log-ACD-GARCH model as

follows:

ln xd,i = Ψd,i + sd,i + εd,i, εd,i =
√

hd,iud,i,

Ψd,i =
p∑

j=1
ϕjΨd,i−j +

q∑
j=1

θjεd,i−j ,

hd,i = s̃d,i +
p∗∑

j=1
αjε2

d,i−j +
q∗∑

j=1
βjhd,i−j ,

(4.21)

where (ud,i) is a sequence of i.i.d. random variables with zero mean and unit variance, with a

parametric PDF fu(x; γ) governed by the parameter vector γ. The processes (Ψd,i) and (hd,i)

are standard conditional mean and variance specifications used in ACD- and GARCH-type

models, which are both Fd,i−1-predictable. The variables sd,i and s̃d,i are also Fd,i−1-predictable

components that capture the seasonality in the mean and variance of log-durations, respectively,

and are specified in flexible Fourier forms following Andersen and Bollerslev (1997). For example,

a Q-th-order flexible-Fourier-form specification for sd,i is given by

sd,i = ν0 + ν1τ̄d,i−1 +
Q∑

j=1
(νc,j cos(2πj · τ̄d,i−1) + νs,j sin(2πj · τ̄d,i−1)), (4.22)

where the parameters {ν0, ν1, νc,1, ..., νc,Q, νs,1, ..., νs,Q} for sd,i, and similarly {ν̃0, ν̃1, ν̃c,1, ..., ν̃c,Q,

ν̃s,1, ..., ν̃s,Q} for s̃d,i, are jointly estimated with other model parameters. We follow Hautsch

(2011) to reset the autoregressive structure of ln xd,i and hd,i in Eq. (4.21) at the beginning of

each trading day, as we do not expect the end-of-day duration to impact the first duration of
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the subsequent day.

Given that the log-ACD-GARCH model in Eq. (4.21) is in essence a variant of the celebrated

GARCH model of Engle (1982) and Bollerslev (1986), its related estimation techniques and

asymptotic properties are well-understood in the literature. Specifically, since the Fd,i−1-

conditional density of xd,i is determined by fu(x; γ), all model parameters can be jointly

estimated with standard maximum likelihood estimation (MLE). Under the correct model

specification and standard regularity conditions (see, e.g., Amemiya, 1985), the MLE estimator

is consistent and asymptotically normal as the number of days D → ∞.

Furthermore, the volatility dynamics implied by the log-ACD-GARCH model in Eq. (4.21)

need some discussions. The Fd,i−1-predictability of Ψd,i, sd,i, and hd,i indicates that

E[xd,i|Fd,i−1] = eΨd,i+sd,iE[e
√

hd,iud,i |Fd,i−1]. (4.23)

The term eΨd,i+sd,i multiplicatively captures the autoregressive structure and seasonality of

intraday price durations. The GARCH-type conditional variance hd,i further allows non-

multiplicative autoregressive structure and seasonality to be modeled through the conditional

moment generating function of ud,i. As an important special case, we let ud,i ∼ ln Zi − E[ln Zi],

where Zi is defined in Proposition 4.1, and hd,i = 1, then by Eq. (4.17) we have

xd,i = eΨd,i+sd,iZi and σ2
τd,i−1 = δ2

de−Ψd,i−sd,i , (4.24)

where ln Zi can be subsumed into the seasonality factor sd,i. This implies that σ is piecewise

constant on [τd,i−1, τd,i), and can be viewed as a càdlàg (i.e., right-continuous with left limits)

process in continuous time that is only updated when the sampling occurs. The changed value

of σ on τd,i depends on both the self-dependence structure e−Ψd,i and the seasonal pattern e−sd,i .

Furthermore, by adopting different density assumptions of ud,i with the further inclusion of the

conditional variance component hd,i, our model allows the spot volatility to be time-varying,

which further enriches the intraday volatility dynamics implied by duration-based models.
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4.3 Simulation Results

This section contains a Monte Carlo study to examine the finite-sample performance of the

semiparametric volatility model, which corresponds to the results developed in Sections 4.2.1

and 4.2.2.

4.3.1 Simulation Design

We simulate a Heston model for the efficient price process X (Heston, 1993):

dXt = µdt + σ̆tdW1,t + dJt, σ̆t = σtσu,t,

dσ2
t = α

(
θd − σ2

t

)
dt + ησtdW2,t,

(4.25)

where W1 and W2 are standard Brownian motions with Corr(W1,t, W2,t) = ρ, and J is a

compound Poisson process, i.e.,

Jt =
Nt∑
i=1

Di, (4.26)

where N is a Poisson process with rate λ, and Di follows a normal distribution N (0, ς2). For the

spot volatility σ̆t = σtσu,t, we follow Hasbrouck (1999), Andersen et al. (2012), and Christensen

et al. (2018) to model the diurnal pattern of intraday volatility in σu,t with a sum of two

exponentials:

σu,t = C + Ae−a1t + Be−a2(1−t). (4.27)

We set A = 0.75, B = 0.25, C = 0.88929188, and a1 = a2 = 10. This realistically calibrated

specification produces a pronounced, asymmetric reverse J-shape in σu,t, with variance at t = 0

(resp. t = 1) more than three times (resp. about 1.5 times) the midday variance (t = 1/2).

The annualized parameters for Eq. (4.25) are fixed at (µ, α, θ0, η, ρ) = (0.05, 5, 0.16, 0.5, −0.5),

where the volatility parameters satisfy the Feller’s condition 2αθ0 ≥ η2 which ensures the

positivity of σ. The parameter choices follow both Aït-Sahalia and Jacod (2009) and Aït-

Sahalia et al. (2012), which are calibrated according to the empirical estimates in Aït-Sahalia

and Kimmel (2007). Specifically, for the annualized daily variance parameter θd, we assume a

HAR structure as follows:

θd = ω0 + ω1θd−1 + ω2

5∑
i=1

θd−i + ω3

22∑
i=1

θd−i + ϵθ
d, with ϵθ

d ∼ i.i.d. N (0, κ2), (4.28)
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where (ω0, ω1, ω2, ω3, κ) = (0.03, 0.2, 0.4/5, 0.2/22, 0.03). Additionally, the process J simulated

with λ = 1/5 and ς = 2% implies an average of one jump per week, and the jump variation is

about 20% of the daily IV on average, which is consistent with Andersen et al. (2023a). Fig. 4.1

illustrates the intraday variation of returns and annualized RVs of a simulated path in each

one-minute interval. The return variation exhibits an asymmetric U-shaped or reverse J-shaped

pattern over the trading hours, which is in line with some prior empirical findings (Harris, 1986;

Wood et al., 1985; Andersen and Bollerslev, 1997; Christensen et al., 2018; Andersen et al.,

2018, 2019, 2023b).
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Fig. 4.1 Intraday variation of returns and annualized RVs of a simulated Heston process. The tick-level observations
are simulated with the Heston model in Eq. (4.25), with a pronounced, asymmetric reverse J-shape exhibited in spot
volatility. The returns and annualized RVs are computed at a granularity of one minute.

We simulate second-by-second observations for 500 consecutive days. The realized K-

adaptive thresholds over the first 200 days, i.e., the burn-in sample {−h, . . . , 0}, are used to

estimate the HAR model in Eq. (4.19) and predict the threshold δ̂1 for the 201-st day. In this

section, we focus on both the spot volatility and IV estimation for the last 300 days.

4.3.2 Model Estimation

For the K-adaptive thresholds, we consider three different values of K, i.e., K = 78, 39, and

26, for the burn-in sample, which correspond to similar levels of sparsity of 5, 10 and 15-minute

calendar-time sampling, respectively. The durations observed in the last 300 days are obtained

with the predicted thresholds from the HAR model in Eq. (4.19) estimated in a rolling-window

fashion. As mentioned in Section 4.2, by controlling the daily K-adaptive thresholds, we remove

the interday volatility dynamics from the sequence of durations across all 300 days. To obtain

the conditional CDF of durations, we estimate the log-ACD-GARCH model in Eq. (4.21) with
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MLE (with ud,i assumed as a standard Gaussian white noise). Table 4.1 reports the mean and

standard deviation of the estimated parameters for the log-ACD-GARCH model, where we select

the lags (1, 1) for both the ACD and GARCH parts, with second-order flexible-Fourier-form

specifications for both seasonality terms s and s̃.3

Table 4.1 Parameter estimates of the log-ACD-GARCH model

Parameters K = 78 K = 39 K = 26 Parameters K = 78 K = 39 K = 26
ϕ1 0.8776 0.7291 0.7283 α1 0.0012 0.0029 0.0017

(0.0134) (0.0292) (0.0314) (0.0044) (0.0059) (0.0081)
θ1 -0.8018 -0.6315 -0.6357 β1 0.8418 0.8739 0.8009

(0.0185) (0.0311) (0.0345) (0.2040) (0.1270) (0.0692)
ν0 2.1313 3.6763 4.1018 ν̃0 -0.0403 0.1693 -0.8568

(0.1346) (0.2959) (0.8327) (0.1339) (0.1897) (0.4269)
ν1 -2.0959 -3.4849 -3.7677 ν̃1 0.0195 -0.1225 0.9965

(0.1488) (0.2944) (0.8411) (0.1419) (0.2011) (0.4285)
νc,1 0.1749 0.2815 0.3137 ν̃c,1 -0.0052 0.0124 -0.1045

(0.0119) (0.0304) (0.0892) (0.0138) (0.0216) (0.0454)
νc,2 0.0194 0.0679 0.1277 ν̃c,2 -0.0075 0.0192 0.0492

(0.0095) (0.0109) (0.0145) (0.0098) (0.0132) (0.0150)
νs,1 0.0307 0.0475 0.0440 ν̃s,1 0.0006 0.0132 -0.0258

(0.0043) (0.0102) (0.0273) (0.0052) (0.0076) (0.0156)
νs,2 0.0099 0.0345 0.0676 ν̃s,2 -0.0008 0.0091 0.0523

(0.0045) (0.0080) (0.0115) (0.0039) (0.0126) (0.0130)
Total No. of durations 23218 11327 7292

log-likelihood -28526 -14145 -9297
This table reports the parameter estimates (standard errors in parentheses) for the log-ACD-GARCH model in Eq. (4.21).
The white noise ud,i is assumed to follow a standard normal distribution. We select the lags (1, 1) for both the ACD and
GARCH components, and utilize the second-order flexible-Fourier-form specifications in Eq. (4.22) with Q = 2 for both
seasonality terms s and s̃.

4.3.3 Spot Volatility Estimation

In this section, we utilize the results in Section 4.2.1 to estimate the intraday spot volatility.

For some intraday interval [s, s + ∆], we estimate the average spot volatility with a local IV

estimator: ̂̄σ(s, s + ∆) =
√

1
∆ V̂ (s, s + ∆), (4.29)

where V (s, s + ∆) is defined in Eq. (4.11), and can be estimated with the conditional CDFs of

price durations with both the left and right correction. Fig. 4.2 illustrates an example of spot

volatility estimation for each equidistant intervals with ∆ = 5 minutes, 30 minutes, and one

3Additional simulation results, including those with different distributions of ud,i, various choices of ACD
and GARCH lags, and different values of Q ≥ 1 for the seasonality terms, which do not alter the qualitative
results throughout this section, are available upon request.
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hour. The solid line represents a simulated path of the spot volatility process σ̆ from the Heston

model in Eq. (4.25). All annualized spot volatility estimates are calculated from Eq. (4.29),

with all durations obtained with the daily K-adaptive thresholds for K = 78.
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Fig. 4.2 Annualized spot volatility estimates for each equidistant intervals with ∆ = 5 minutes, 30 minutes, and one
hour. The durations are obtained with the K-adaptive threshold with K = 78.

To evaluate the finite-sample performance of our spot volatility estimator, we compare it

with some conventional and recently developed innovative estimators. The first benchmark

we consider is the classical spot volatility estimator introduced by Foster and Nelson (1996),

which is a localized version of RV (Barndorff-Nielsen and Shephard, 2002; Andersen et al.,

2003a). Suppose there are kn price observations with the lag ∆n over the block [s, s + ∆], i.e.,

∆ = kn∆n. The localized RV estimator is defined as

̂̄σ(s, s + ∆) =

√√√√ 1
∆

kn∑
i=1

r2
i , (4.30)

where ri = Xs+i∆n − Xs+(i−1)∆n
is the i-th return between consecutive observations. Another

easy-to-implement benchmark is the optimal candlestick (OK) estimator of Li et al. (2022).
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Based on a single candlestick over the block [s, s + ∆], we have

̂̄σ(s, s + ∆) = 1√
∆

(0.811w(s, s + ∆) − 0.369|r(s, s + ∆)|) , (4.31)

where w(s, t) and r(s, t) represent the range and return over [s, t], respectively:

w(s, t) = sup
s≤τ,τ ′≤t

|Xτ − Xτ ′ | and r(s, t) = Xt − Xs. (4.32)

We also consider a local average version by aggregating k candlesticks over multiple small

intervals, which demonstrates superior finite-sample performance than the one based on a single

candlestick:

̂̄σ(s, s + ∆) = 1
k

k∑
i=1

1√
h

(0.811w(s + (i − 1)h, s + ih) − 0.369|r(s + (i − 1)h, s + ih)|), (4.33)

where h = ∆/k denotes the length of all k subintervals. Their finite-sample performances are

assessed and compared via the relative absolute bias and the root-mean-square error (RMSE),

i.e., for each spot volatility estimate ̂̄σi over the i-th interval,

Relative absolute bias = 1
N

N∑
i=1

|̂̄σi − σ̄i|
σ̄i

and RMSE =

√√√√ 1
N

N∑
i=1

(̂̄σi − σ̄i)2, (4.34)

where N = number of intervals every day × 300 days, and the “true value” σ̄i is the local

average of all annualized spot volatilities (tick-level) over each interval.4

Table 4.2 reports the relative absolute biases (%) and RMSE results of our duration-

based estimator with three different levels of K (78, 39, and 26), the classical local-RV-based

estimator (with all second-by-second observations), and the OK estimators based on both a

single candlestick and multiple one-minute candlesticks. Compared with the other estimators,

the relative absolute biases of our duration-based estimator are similar to those of the localized

RV and multiple-candlestick-based OK estimator. However, our estimator consistently exhibits

the smallest RMSE across all choices of estimation windows. Furthermore, the RMSE function

penalizes outliers heavily, and is therefore sensitive to excessively misinformative estimates.

4We can also use the “true” σt sampled at the mid-point of each interval, which has nearly no impact on the
results in Table 4.2, and does not alter our conclusions.
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To further investigate the sensitivity of different spot volatility estimators to price jumps, we

conduct a simple Monte Carlo experiment: We insert a jump of a fixed size 2% (one standard

deviation ς of the jump size variable Di) at 13:00 on the same day illustrated in Fig. 4.2. As

shown in Fig. 4.3, such a discontinuous shift in the price process has nearly no impact on

our duration-based estimator, but can severely bias the localized RV and candlestick-based

estimates over the block in which the jump occurs. We conclude that the natural robustness of

duration-based methods to jumps enhances our estimator’s ability to capture spot volatility

dynamics.

Table 4.2 Monte Carlo results for spot volatility estimation

Panel A: Relative Absolute Bias (%)
Interval (minutes) σ̂K=78 σ̂K=39 σ̂K=26 local RV OK (single) OK (multiple)

5 8.96 10.12 11.15 10.45 21.11 13.82
10 8.68 9.92 10.94 9.90 21.02 12.43
15 8.49 9.65 10.88 9.78 20.99 12.07
30 8.11 9.17 10.24 9.82 20.09 11.77
60 7.80 8.85 9.70 9.93 20.02 11.74

Panel B: RMSE (×102)
Interval (minutes) σ̂K=78 σ̂K=39 σ̂K=26 local RV OK (single) OK (multiple)

5 4.57 5.23 5.61 12.38 11.25 6.67
10 4.32 5.14 5.53 11.86 11.11 5.64
15 4.17 4.76 5.24 11.51 10.99 5.26
30 3.93 4.31 4.92 10.83 10.84 4.86
60 3.77 4.17 4.65 9.61 10.57 4.74

This table reports the relative absolute biases (%) and RMSE results of the duration-based estimators with three different
levels of K (78, 39, and 26), the classical local-RV-based estimator (with all second-by-second observations), and the OK
estimators based on both a single candlestick and multiple consecutive one-minute candlesticks. The relative absolute
biases and RMSE results are calculated based on the annualized spot volatility estimate and the local average of all
tick-level spot volatilities (as true value) over each interval.

4.3.4 Integrated Variance Estimation

Similar to the localized IV estimator used in Section 4.3.3, the theoretical results in Section 4.2.1

can also be employed to estimate the daily IV:

Vd ≡ V (d − 1, d) = δ2
d

Nd∑
i=1

Gd,i(xd,i) + Gd,Nd+1(d − τd,Nd
)

 , (4.35)

where the second term in the summand represents the “end-of-day” correction between the

last price event and the market closing time. We compute all durations between price events

across the 300-day period with the predicted K-adaptive thresholds for K = 78, 39, and 26,
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Fig. 4.3 Comparisons of 5-minute spot volatility estimates when there exist jumps. A jump of a 2% fixed size(one
standard deviation ς of the jump size variable Di) is inserted at 13:00 (highlighted by the red dash-dot line) on the
same day illustrated in Fig. 4.2. The durations are obtained with the K-adaptive threshold with K = 78. The local
RV estimator in (b) are constructed from all available second-by-second observations. The OK estimator in (c) uses five
consecutive one-minute candlesticks to compute each 5-minute volatility estimate.

and then estimate the daily IV based on the conditional CDFs of each duration. For the

comparative analysis, we consider the daily RV, the realized bipower variation (RBPV) of

Barndorff-Nielsen and Shephard (2004), and the truncated realized volatility (TRV) of Mancini

(2009) as benchmarks:

RVd =
n∑

i=1
r2

d,i, (4.36)

RBPVd = π

2

(
n

n − 1

) n∑
i=2

|rd,i||rd,i−1|, (4.37)

TRVd =
n∑

i=1
r2

d,i1{|rd,i|≤φ}, (4.38)

where ∆n stands for the length of sampling intervals, and n = (d − (d − 1))/∆n = ∆−1
n is

the number of sampled returns over the day d. We construct all three calendar-time-based

IV estimators from 5, 10, and 15-minute sampled returns, which correspond to the selected

sampling frequencies of the adaptive PDS. For the TRV estimator, we employ the classical

truncation threshold φ = ζ∆ϖ
n with ϖ ∈ (0, 1/2), and set the threshold parameters with a

data-adaptive method:

ζ = C
√

MedRVd, (4.39)
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where we choose C = 3, and MedRV is the median RV estimator of Andersen et al. (2012):

MedRVd = π

6 − 4
√

3 + π

(
n

n − 2

) n−1∑
i=2

median(|rd,i−1|, |rd,i|, |rd,i+1|)2. (4.40)

Table 4.3 reports the relative absolute bias (%) and RMSE results for the annualized IV

estimates. Our duration-based estimator achieves both the smallest relative absolute bias

and RMSE across all selected sampling frequencies. While the jump-robust RBPV and TRV

estimators have better finite-sample performance than the traditional RV estimator, their bias

and RMSE results are still slightly larger than those of our duration-based estimator. This

highlights the robustness and effectiveness of the duration-based method as an alternative to

the return-based approaches in high-frequency volatility estimation.

Table 4.3 Monte Carlo results for IV estimation

Panel A: Relative Absolute Bias (%)
Sampling Frequency V̂d RV RBPV TRV

78 13.11 24.38 15.61 14.75
39 15.06 29.21 22.17 20.81
26 16.09 32.28 25.96 24.00

Panel B: RMSE (×102)
Sampling Frequency V̂d RV RBPV TRV

78 2.57 7.70 3.08 2.79
39 2.73 8.35 4.22 3.99
26 2.85 8.84 4.99 4.52

This table reports the relative absolute biases (%) and RMSE results of the duration-based
IV estimator, RV, RBPV, and TRV. The bias and RMSE results are calculated based on the
annualized IV estimates for 300 days.

4.4 Empirical Analysis

In this section, we first utilize our duration-based IV estimator as the basis for daily volatility

forecasting under the HAR framework for the SPDR S&P 500 ETF Trust (SPY), which is the

best-recognized and oldest U.S. listed ETF and by far the most widely traded S&P 500 ETF.

Subsequently, we employ our duration-based spot volatility estimator to assess how intraday

volatility responds to some specific macroeconomic events, such as FOMC news announcements.
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4.4.1 Overview

We obtain all high-frequency transaction records of SPY from the daily Trade and Quote (TAQ)

dataset, with the sample period ranging from January 2, 2014 to December 30, 2022. The

tick-by-tick transactions are timestamped in milliseconds until mid-2015 and in microseconds

since then.5 As is standard in empirical research with TAQ data, we use the filters as in

Barndorff-Nielsen et al. (2009) to eliminate data errors, remove all transactions in the original

record that are later corrected, cancelled or otherwise invalidated. In addition, we remove all

trading days with an early market closure, and restrict our sample to transactions between

9:31:00 – 16:00:00 Eastern Time (ET) for all individual stocks.

To obtain the durations with the adaptive PDS, we utilize all trading days from January

2014 to December 2016 as the burn-in period, which allows us to predict the first K-adaptive

daily threshold in 2017. Fig. 4.4 compares the autocorrelations of log-durations (from 2017

to 2022, 1499 days in total) obtained with the predicted daily thresholds (with K = 78)

to those obtained with a fixed threshold for all days. It is notable that the utilization of

daily adaptive thresholds effectively alleviates the long memory observed in log-durations over

extended multi-day periods.
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Fig. 4.4 Correlograms of log-durations obtained with (a) a fixed threshold and (b) the predicted daily thresholds with
K = 78. We choose the fixed threshold as the mean value of ex post K-adaptive thresholds in Eq. (4.18) for all days.

5We use the SAS code from Holden and Jacobsen (2014) to extract all tick-by-tick transaction records
matched with relevant ask/bid quotes from the daily TAQ dataset available on the Wharton Research Data
Services (WRDS).
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As a representative, we estimate the log-ACD-GARCH model in Eq. (4.21) via MLE with

all log-durations from 2017 to 2022. In line with Section 4.3, we select the lags (1, 1) for both

the ACD and GARCH parts, with second-order flexible-Fourier-form specifications for both

seasonality terms s and s̃. The parameter estimates (with standard errors) are reported in

Table 4.4.6 All parameters in both ACD and GARCH components are statistically significant.

Both the conditional means and variances demonstrate strong positive autocorrelation. For the

intraday seasonality terms s and s̃, most of the estimated parameters in the first sine-cosine

summand (νc,1, νs,1, ν̃c,1) are significant. Fig. 4.5 illustrates the intraday seasonality for the

conditional mean and variance of durations (with K = 78), respectively.

Table 4.4 Parameter estimates of the log-ACD-GARCH model

Parameters K = 78 K = 39 K = 26 Parameters K = 78 K = 39 K = 26
ϕ1 0.9775 0.9230 0.9158 α1 0.0719 0.0897 0.0453

(0.0008) (0.0024) (0.0031) (0.0024) (0.0046) (0.0083)
θ1 -0.7635 -0.6623 -0.6346 β1 0.7943 0.6010 0.8773

(0.0028) (0.0055) (0.0070) (0.0087) (0.0219) (0.0369)
ν0 1.4627 2.5488 2.9599 ν̃0 -0.9218 -0.9035 -0.8982

(0.0562) (0.2976) (0.1069) (0.1082) (0.0420) (0.0188)
ν1 -1.5425 -2.5510 -2.8900 ν̃1 0.9999 0.9994 0.9999

(0.0565) (0.3017) (0.0349) (0.1086) (0.0345) (0.0685)
νc,1 0.1305 0.1988 0.2236 ν̃c,1 -0.1109 -0.1548 -0.1004

(0.0059) (0.0311) (0.0077) (0.0112) (0.0078) (0.0034)
νc,2 -0.0005 0.0456 0.0877 ν̃c,2 0.0249 0.0171 0.0411

(0.0023) (0.0053) (0.0499) (0.0032) (0.0090) (0.0246)
νs,1 0.0329 0.0585 0.0670 ν̃s,1 -0.0097 0.0052 -0.0141

(0.0022) (0.0099) (0.0167) (0.0037) (0.0059) (0.0083)
νs,2 -0.0035 0.0192 0.0291 ν̃s,2 0.0239 0.0605 0.0238

(0.0018) (0.0042) (0.0188) (0.0027) (0.0070) (0.0062)
Total No. of durations 111715 52017 34078

log-likelihood -169462 -79914 -53267
This table reports the parameter estimates (standard errors in parentheses) for the log-ACD-GARCH model in Eq. (4.21).
The white noise ud,i is assumed to follow a standard normal distribution. We select the lags (1, 1) for both the ACD and
GARCH components, and utilize the second-order flexible-Fourier-form specifications in Eq. (4.22) with Q = 2 for both
seasonality terms s and s̃.

6Additional results with various choices of ACD and GARCH lags, and Q ≥ 1 for the seasonality terms,
which do not alter the qualitative results throughout this section, are available upon request.
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Fig. 4.5 Intraday seasonality exp(sd,i) and exp(s̃d,i) for the conditional mean and variance of durations (with K = 78).
The parameter estimates are reported in Table 4.4.

4.4.2 Daily Volatility Forecasting

We denote some selected IV measure at day d by V̂d, and define the multi-day moving averages

of daily volatility measures as follows:

V̂
(w)

d = 1
5

5∑
d=1

V̂d−i+1 and V̂
(m)

d = 1
22

22∑
d=1

V̂d−i+1, (4.41)

where V̂
(w)

d represents the one-week average and V̂
(m)

d denotes the one-month average of daily

IV estimates, respectively. The standard one-day-ahead HAR model has the following structure:

V̂d = ω + β(d)V̂d−1 + β(w)V̂
(w)

d−1 + β(m)V̂
(m)

d−1 + εd. (4.42)

As demonstrated by numerous empirical applications in the literature, the implementation of a

more refined volatility measure on the right-hand side (RHS) can better exploit the information,

and has the potential to significantly improve the predictive accuracy of the HAR model for

the left-hand side (LHS) target variable. In this section, we compare the predictability of HAR

models augmented with different IV measures, including our duration-based IV estimator.

To construct our duration-based IV estimator based on the adaptive PDS, we utilize all

trading days from January 2014 to December 2016 as the burn-in period, which allows us to

forecast the first K-adaptive daily threshold in 2017. The initial in-sample period includes

1000 days from January 3, 2017. We estimate the log-ACD-GARCH model in Eq. (4.21) (with

the same lag choices as in Section 4.4.1) to obtain all IV estimates in the initial in-sample
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period, and then forecast the first out-of-sample IV (on the 1001-th day) with the HAR model

in Eq. (4.42). This procedure of in-sample estimation and out-of-sample forecasting is repeated

in both rolling-window (RW) and expanding-window (EW) fashion. For the actual values of

out-of-sample IV estimates on subsequent days, we repeatedly re-estimate the log-ACD-GARCH

model with all durations in the corresponding “in-sample plus one day” period.

Similar to Section 4.3, we consider three different values of K (78, 39, and 26), which

correspond to similar levels of sparsity of 5, 10 and 15-minute sampling for return-based IV

estimators. In addition to the standard HAR model augmented with our duration-based

estimator and some return-based measures, we also consider two important extensions of the

original HAR-RV model of Corsi (2009): One is the HARQ model of Bollerslev et al. (2016). It

allows for a time-varying coefficient for the daily RV on the RHS, which also depends on the

heteroskedasticity in the error, captured by the realized quarticity (RQ) estimator:7

V̂d = ω +
(
β(d) + β(q)

√
RQd−1

)
RVd−1 + β(w)RV(w)

d−1 + β(m)RV(m)
d−1 + εd, (4.43)

where RQd = 3−1n
∑n

i=1 r4
d,i. Inspired by the intuition that “good” and “bad” volatilities have

different effects, the semivariance HAR (SHAR) model of Patton and Sheppard (2015) stands

out as another important HAR-RV modification:

V̂d = ω + β
(d)
− RS−

d−1 + β
(d)
+ RS+

d−1 + β(w)RV(w)
d−1 + β(m)RV(m)

d−1 + εd, (4.44)

where the realized semivariances (RS) are introduced by Barndorff-Nielsen et al. (2010):

RS−
d =

n∑
i=1

r2
d,i1{rd,i<0}, (4.45)

RS+
d =

n∑
i=1

r2
d,i1{rd,i>0}. (4.46)

We evaluate the out-of-sample forecasting performance via two widely used loss functions, i.e.,

7Following Bollerslev et al. (2016), the “insanity filter” of Swanson and White (1997) is applied: For each
rolling or expanding window, the minimum, maximum, and average of in-sample estimates are re-calculated. All
one-step-ahead out-of-sample forecasts that are greater (smaller) than the maximum (minimum) in-sample value
will be replaced by the in-sample mean.
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the mean squared error (MSE) and the quasi-likelihood (QLIKE) function:

MSE(θ, h) = (θ − h)2, (4.47)

QLIKE(θ, h) = θ

h
− ln

(
θ

h

)
− 1, (4.48)

where θ and h represent the actual value and the forecast of the target variable, respectively.

Table 4.5 reports the MSE and QLIKE results for one-day-ahead out-of-sample forecasts

of two different target IV measures: RV and our duration-based IV estimator. For 5-minute

and 10-minute RV forecasts, both the HARQ and SHAR models produce lower QLIKE results

compared to the original HAR-RV model, while the HARQ model tends to obtain more

misinformative forecasts in the tails, as indicated by its higher MSE results. However, this

advantage of both HAR-RV modifications disappears when we forecast the 15-minute RV

and our duration-based IV estimator across all considered sampling frequencies. Compared

with the HAR models augmented with other volatility estimators, the HAR model based on

our duration-based IV estimator (“duration-based HAR”) consistently obtains substantially

diminished MSE and relatively lower QLIKE results. The HAR-TRV model performs the best

among all alternatives, which achieves the second smallest MSE results in all cases. As the

MSE function penalizes outliers heavily and is sensitive to excessively inaccurate forecasts, the

MSE results in Table 4.5 suggest that the duration-based HAR model can effectively reduce

the occurrence of extremely misinformative forecasts in both left and right tails.

Table 4.6 presents the p-values of the modified Diebold-Mariano test (with Newey-West HAC

standard errors) based on MSE for the null hypothesis that the accuracy of duration-based HAR

forecasts is inferior to the forecasts from an alternative HAR model. For the duration-based

forecasts with K = 78, the Diebold-Mariano test indicates rejection at the 1% significance level

for all return-based HAR alternatives, except for HAR-TRV, where rejection occurs at the 10%

level. For the duration-based forecasts with K = 39 and 26, most of the entries in Panels B

and C of Table 4.6 are well below 50%, which indicates a preference for the duration-based

HAR forecasts, although with less robust statistical significance compared to the K = 78 case.
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Table 4.5 Daily out-of-sample HAR volatility forecasts

RV Duration-based V̂d

RW EW RW EW
MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

HAR-RV-5 min 3.85 0.37 3.86 0.35 2.12 0.17 2.11 0.17
HARQ-5 min 4.10 0.32 4.07 0.31 2.42 0.18 2.32 0.17
SHAR-5 min 3.85 0.36 3.85 0.34 2.12 0.17 2.11 0.16
HAR-RBPV-5 min 3.89 0.38 3.90 0.36 2.14 0.18 2.12 0.17
HAR-TRV-5 min 3.72 0.35 3.73 0.33 1.96 0.15 1.96 0.15
HAR-Duration (K = 78) 3.43 0.35 3.44 0.33 1.74 0.16 1.74 0.15
HAR-RV-10 min 3.64 0.39 3.64 0.37 1.60 0.12 1.59 0.12
HARQ-10 min 3.95 0.35 3.91 0.34 1.85 0.12 1.74 0.12
SHAR-10 min 3.59 0.37 3.58 0.35 1.73 0.12 1.64 0.12
HAR-RBPV-10 min 3.83 0.36 3.82 0.35 1.90 0.14 1.85 0.14
HAR-TRV-10 min 3.73 0.36 3.73 0.34 1.64 0.11 1.62 0.11
HAR-Duration (K = 39) 3.37 0.36 3.37 0.35 1.44 0.12 1.43 0.11
HAR-RV-15 min 4.32 0.42 4.32 0.40 2.00 0.10 1.98 0.10
HARQ-15 min 4.16 0.45 4.18 0.42 1.82 0.12 1.82 0.11
SHAR-15 min 4.51 0.44 4.41 0.42 2.20 0.11 2.09 0.10
HAR-RBPV-15 min 4.15 0.41 4.14 0.40 1.90 0.11 1.88 0.11
HAR-TRV-15 min 3.86 0.44 3.87 0.41 1.62 0.10 1.62 0.10
HAR-Duration (K = 26) 3.79 0.42 3.79 0.39 1.51 0.10 1.51 0.10

This table reports the MSE (×104) and QLIKE results of daily out-of-sample volatility forecasts for the SPDR S&P 500
ETF Trust (SPY). The HAR model is re-estimated via OLS in rolling windows and expanding windows, respectively.
The fixed (resp. initial) in-sample period for RW (resp. EW) estimation is the first 1000 days. For the actual values
of out-of-sample duration-based IV estimates on subsequent days, we re-estimate the log-ACD-GARCH model with all
durations in each corresponding “in-sample plus one day” period.

4.4.3 Intraday Volatility Dynamics Around FOMC Announcements

The short-term impact of macroeconomic news announcements on high-frequency intraday price,

volume and volatility dynamics has received a lot of attention from the financial economics and

econometrics literature (Andersen et al., 2003b, 2007b; Lee and Mykland, 2008, 2012; Bollerslev

et al., 2018, 2021). Some recent macroeconomics literature also identifies monetary shocks

based on the assumption that the market volatility tends to spike during specific public news

announcements such as those associated with FOMC meetings (Nakamura and Steinsson, 2018).

Here we apply our duration-based spot volatility estimator to examine the short-term impact

of FOMC news announcements on intraday volatility dynamics.

We split our sample period from 2017 to 2022 (with the burn-in period excluded) into two

subsets: 98 days with pre-scheduled FOMC announcements (“FOMC days”), and those without

FOMC announcements (“non-FOMC days”). Fig. 4.6 demonstrates the average annualized spot

volatility estimates for each 5-minute intervals on FOMC and non-FOMC days, respectively.

We clearly observe an instant and substantial volatility spike around 14:00 ET on FOMC days,
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Table 4.6 Diebold-Mariano p-values for duration-based volatility forecasts

RV Duration-based V̂d

RW EW RW EW
Panel A: HAR-Duration (K = 78):
HAR-RV-5 min 0.0013 0.0014 0.0034 0.0038
HARQ-5 min 0.0004 0.0004 0.0004 0.0005
SHAR-5 min 0.0017 0.0039 0.0046 0.0068
HAR-RBRV-5 min 0.0005 0.0006 0.0012 0.0014
HAR-TRV-5 min 0.0256 0.0251 0.0873 0.0863
Panel B: HAR-Duration (K = 39):
HAR-RV-10 min 0.0977 0.0963 0.2222 0.2276
HARQ-10 min 0.0076 0.0098 0.0212 0.0459
SHAR-10 min 0.1742 0.2234 0.1074 0.1565
HAR-RBRV-10 min 0.0276 0.0307 0.0201 0.0236
HAR-TRV-10 min 0.0855 0.0855 0.1971 0.2113
Panel C: HAR-Duration (K = 26):
HAR-RV-15 min 0.0372 0.0366 0.0499 0.0514
HARQ-15 min 0.1197 0.0989 0.1256 0.1083
SHAR-15 min 0.0116 0.0194 0.0137 0.0227
HAR-RBRV-15 min 0.0600 0.0633 0.0130 0.0151
HAR-TRV-15 min 0.7462 0.6955 0.4750 0.4561

This table reports the p-values of the modified Diebold-Mariano test (with Newey-West HAC standard
errors) based on MSE. The null hypothesis is that the accuracy of duration-based HAR forecasts is
inferior to the forecasts from an alternative HAR model.

but it is absent on non-FOMC days, which is in line with the findings in Bollerslev et al. (2021).

Moreover, the volatility after the FOMC announcements remains significantly higher compared

to non-FOMC days.

Additionally, the estimated spot volatilities in all 5-minute blocks display a clear asymmetric

U-shaped or reverse J-shaped pattern over the trading hours, which is consistent with both our

simulation specifications in Section 4.3 and empirical evidence in the literature, e.g., Christensen

et al. (2018), and Andersen et al. (2018, 2019, 2023b).

4.5 Conclusions

This chapter introduces a novel semiparametric framework for duration-based volatility esti-

mation. We employ daily adaptive thresholds to separate daily volatility dynamics from the

intraday durations over an extended period spanning multiple days. Both spot and integrated

volatility estimators are formulated based on a classical parametric duration model. This

methodology to disentangle daily and intraday volatility dynamics greatly enhances the data

availability for model estimation, which overcomes the limitations of sparse sampling widely
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Fig. 4.6 Annualized spot volatility estimates for each equidistant intervals with ∆ = 5 minutes. The durations are
obtained with the K-adaptive threshold with K = 78.

adopted in both the financial econometrics literature and by practitioners, and potentially

leads to more accurate volatility estimates. The simulation results demonstrate the superior

finite-sample performance of our duration-based volatility estimators compared to selected

competitors. In an empirical illustration of daily volatility forecasting, we observe that the HAR

model augmented with our duration-based IV estimator can effectively reduce the occurrence

of extremely misleading forecasts, and improves forecasting accuracy according to standard

out-of-sample loss functions. Furthermore, based on our spot volatility estimator, we identify

an immediate and substantial short-term impact of FOMC news announcements on intraday

volatility.
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Appendix A

Appendix to Chapter 2

A.1 Proofs

A.1.1 Proof of Theorems 2.1 and 2.2

Proof. Firstly, we demonstrate that the difference between the limiting behavior of functionals

of squared normalized PDS returns |r(c)
i /c|2 (i) under Assumption 2.2 and (ii) under the time-

changed regular observation scheme in Remark 2.4 becomes negligible under infill asymptotics.

In all the sequel, the positive constants K and K ′ varies from line to line, but never depends

on n, N , and N (c), and the various indices i, j. Unless specifically stated, we assume X(ω) is

continuous, i.e., ω ∈ Ω′.

Similar to the Assumption (S-HON) of Jacod et al. (2019), we impose the following stronger

assumption without loss of generality by a classical localization procedure:

Assumption A.1. We have Assumptions 2.1 and 2.2 with τ1 = ∞. Moreover, the function δ

and the processes µ, σ, λ, X are bounded, and we have N ≤ K∆−1
n and E[∆p

n,i] ≤ K ′∆p
n.

A.1.1.1 Intrinsic time

With an absolutely continuous time change from the calendar time t to intrinsic time τ(t):

t 7→ τ(t) =
∫ t

0
σ2

sds, (A.1)
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the intrinsic-time counterpart of X adapted to (Ft)t≥0 is

X̃τ(t) = X̃0 +
∫ τ(t)

0
µ̃sds + W̃τ(t), (A.2)

where µ̃ is time-changed processes corresponding to µ in Eq. (2.1), and W̃ = (W̃τ )τ≥0 is a

Brownian motion evolving in intrinsic time. The relation X̃τ(t) = Xt holds for all t, and the

τ -time process X̃ = (X̃τ(t))t≥0 is adapted to (F̃τ(t))t≥0 with the τ -time σ-algebra satisfying

F̃τ(t) = Ft (Lemma 1.2, Barndorff-Nielsen and Shiryaev, 2015). Particularly, when X is

a calendar-time local martingale, X̃ is an intrinsic-time Brownian motion (with an initial

condition), which is implied by the Dambis-Dubins-Schwarz theorem. To simplify our discussions

and avoid unnecessary complications, we assume the drift coefficient µ = 0, which does not

affect our asymptotic results.

A.1.1.2 Observation schemes

We start with two sequences of observations of X(ω):

(I) Under Assumption 2.2: Xti , for all i = 0, 1, 2, . . . , N ,

(II) Equidistant observations in intrinsic time: X̃i∆n , for all i = 0, 1, 2, . . . , N .

For the ease of notation, we denote ti ≡ tn,i under Assumption 2.2, and t̆i ≡ τ−1(i∆n). The

increments between successive observations are denoted by

ri = Xti − Xti−1 and r̆i = Xt̆i
− Xt̆i−1

, (A.3)

for all i ∈ {1, 2, . . . , N}. Lemma A.1 of Jacod et al. (2017) indicates the sequence (I) is an

(Fn
t )-martingale with Gaussian increments. Different from the independent but not identically

distributed increments ri, the increments r̆i are i.i.d. normal with zero mean and variance ∆n,

which make the sequence (II) a homogenous Gaussian random walk.

Remark A.1. We assume both sequences have the same number N ≡ Nn
1 of observations.

Assumption A.1 and Eq. (2.6) indicate that T = τ−1(N∆n) is bounded and T
P−→ 1 as n → ∞.

Moreover, by the triangle inequality and law of iterated expectations, Assumption 2.2 further

implies E[|N∆n − τ(1)|] ≤ K∆n, hence |T − 1| = Op(∆n). That being said, the probability

of jump occurrence in the “differenced part” of observation interval is negligible, see more
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discussions in Section 2.3 of Aït-Sahalia and Jacod (2009). To fix ideas, let δ → 0, then P(X ′′
t ̸=

0 for some t ∈ [0, T ] △ [0, 1]) ≤ P(|T − 1| > δ) + P(X ′′
t ≠ 0 for some t ∈ [1 − δ, 1 + δ]) = o(1),

since we only assume potential jumps in (0, 1).

For each sequence of observations, we conduct the PDS with the barrier width c = m
√

∆n.

We denote the squared PDS returns from each sequence of sampled observations by

Ri = (r(c)
i )2, i ∈ {1, 2, ..., N (c)},

R̆i = (r̆(c)
i )2, i ∈ {1, 2, ..., N̆ (c)}.

(A.4)

Note that the PDS returns r̆
(c)
i are i.i.d., as implied by the strong Markov property of the

Gaussian random walk (II) and the symmetric feature of the stopping rule in Eq. (2.9).

A.1.1.3 Some lemmas

We define two supremum processes (Yj)1≤j≤N and (Y̆j)1≤j≤N as

Yj = sup
1≤i≤j

|Xti | and Y̆j = sup
1≤i≤j

|Xt̆i
|. (A.5)

Lemma A.1. For any fixed 1 ≤ j ≤ N , it holds for the supremum processes that

|Yj − Y̆j | = Op(j2∆1+κ/2
n

√
Ln), (A.6)

where for the ease of notation, Ln ≡ log N ≍ log(∆−1
n ).

Proof. Let Dn ≡ σ(∆n,1, ∆n,2, . . .) denote the σ-algebra generated by observation times. Note

that by the triangle inequality of ℓ∞-norm

|Yj − Y̆j | =
∣∣∣max
1≤i≤j

|Xti | − max
1≤i≤j

|Xt̆i
|
∣∣∣

≤ max
1≤i≤j

|Xti − Xt̆i
|.

(A.7)
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Note that by definition, we have with probability approaching 1,

Xti − Xt̆i
=

i∑
ℓ=1

(∫ tℓ

tℓ−1
σsdWs −

∫ t̆ℓ

t̆ℓ−1
σsdWs

)

=
i∑

ℓ=1

(
σtℓ−1(Wtℓ

− Wtℓ−1) − σt̆ℓ−1
(Wt̆ℓ

− Wt̆ℓ−1
)
)

+
i∑

ℓ=1

(∫ tℓ

tℓ−1
(σs − σtℓ−1)dWs −

∫ t̆ℓ

t̆ℓ−1
(σs − σt̆ℓ−1

)dWs

)
≡ A

(1)
n,i + A

(2)
n,i .

(A.8)

For the first term, by the maximal inequality of Gaussian variables, we have

E
[

max
1≤i≤j

|A(1)
n,i |
∣∣∣Dn

]
≤ K

√√√√Ln max
1≤i≤j

∣∣∣∣ i∑
ℓ=1

(∆n,ℓλtℓ−1 − ∆n)
∣∣∣∣. (A.9)

For the right hand side, note that by the triangle inequality and Assumption 2.2 (ii),

max
1≤i≤j

∣∣∣∣ i∑
ℓ=1

E
[
|∆n,ℓλtℓ−1 − ∆n|

∣∣Fn
ℓ−1
]∣∣∣∣ ≤ Kj∆2+κ

n . (A.10)

Combining Eq. (A.9) and Eq. (A.10), it follows the law of iterated expectation that

max
1≤i≤j

|A(1)
n,i | = Op(j∆1+κ/2

n

√
Ln). (A.11)

For the second term in Eq. (A.8), by the maximal inequality, we have

E
[

max
1≤i≤j

|A(2)
n,i |
]

≤ Kj max
1≤i≤j

E[|A(2)
n,i |] ≤ Kj2∆3/2+κ/2

n , (A.12)

where the last step is by the Burkholder-Davis-Gundy inequality and smoothness of σ regulated

by Assumption 2.1 (iii). The proof of required statement is completed by the triangle inequality

and Eqs. (A.7), (A.8), (A.11) and (A.12).

We define the first sampled observations for both sequences:

X
(c)
1 = XΠ(c)

1
and X̆

(c)
1 = X

τ−1(Π̆(c)
1 ∆n), (A.13)
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which means that the Π(c)
1 -th and the Π̆(c)

1 -th observations in (I) and (II), respectively, are the

first to breach the symmetric double barrier. Lemma A.2 indicates that the first exit times of

both sequences coincide with probability approaching 1 under infill asymptotics.

Lemma A.2. For c = m
√

∆n, let N
(c) ≡ N (c) ∧ N̆ (c).

(i) For all integer p ≥ 1, E[(Π̆(c)
1 )p] < ∞.

(ii) The first exit times for both sequences (I) and (II) satisfy

P
(

max
1≤i≤N

(c)
|Π(c)

i − Π̆(c)
i | ≥ 1

)
≤ K∆κ/2

n

√
Ln. (A.14)

Proof. (i) Note that Π̆(c)
1 has the same distribution as the number of steps for a standard

Gaussian random walk (Zi)i=1,2,... to exit the double barrier (−m, m). Let h = inf{τ : W̃τ /∈

(−m, m)} denote the first exit time of the time-changed Brownian motion W̃ from (−m, m), then

it is clear that Π̆(c)
1 − 1 ≤ h by the continuity of Brownian motion, thus E[(Π̆(c)

1 − 1)p] ≤ E[hp]

for all p > 0. The Laplace transform of h is well-known in the literature, see, e.g., Eq. (3.0.1) in

Borodin and Salminen (2002): E[e−λh] = cosh−1 √
2λm, and its Maclaurin series implies that

E[hp] < ∞ for all integer p ≥ 1. This completes the proof.

(ii) We start from the first term. By definition, we have

P(Π(c)
1 ≥ k) = P(Yk ≤ c) and P(Π̆(c)

1 ≥ k) = P(Y̆k ≤ c). (A.15)

Let ϵ > 0 be a positive number that can be arbitrarily small but not depend on N , it follows

Lemma A.1 and the Markov inequality that

P(Π(c)
1 − Π̆(c)

1 ≥ 1) =
N∑

k=1
P(Π̆(c)

1 = k)P(Π(c)
1 > k|Π̆(c)

1 = k)

≤
N∑

k=1
P(Π̆(c)

1 = k)P(Y̆k − Yk > ϵ)

≤ K∆1+κ/2
n

√
Ln

[ N∑
k=1

k2P(Π̆(c)
1 = k)

]
≤ K∆1+κ/2

n

√
Ln,

(A.16)

where the last line uses ∑N
k=1 k2P(Π̆(c)

1 = k) ≤ E[(Π̆(c)
1 )2] ≤ K by Lemma A.2 (i). Similarly, we
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can also show

P(Π̆(c)
1 − Π(c)

1 ≥ 1) ≤ K∆1+κ/2
n

√
Ln. (A.17)

Combining above results, we have

P(|Π(c)
1 − Π̆(c)

1 | ≥ 1) ≤ K∆1+κ/2
n

√
Ln. (A.18)

Now, note that for any 2 ≤ q ≤ N
(c), we have

P
(

max
1≤i≤q

|Π(c)
i − Π̆(c)

i | ≥ 1
)

≤ P
(

max
1≤i≤q−1

|Π(c)
i − Π̆(c)

i | ≥ 1
)

+ P
(
|Π(c)

q − Π̆(c)
q | ≥ 1

∣∣Π(c)
i = Π̆(c)

i for all 1 ≤ i ≤ q − 1
)
.

(A.19)

By the renewal property, we have Π(c)
q − Π̆(c)

q
L= Π(c)

1 − Π̆(c)
1 conditional on Π(c)

i = Π̆(c)
i for all 1 ≤

i ≤ q − 1. Therefore, using a same argument as in driving Eq. (A.18), we can show the second

term is bounded by K∆1+κ/2
n

√
Ln. Applying the above argument recursively, we have

P
(

max
1≤i≤N

(c)
|Π(c)

i − Π̆(c)
i | ≥ 1

)
≤ KN

(c)∆1+κ/2
n

√
Ln

≤ K∆κ/2
n

√
Ln,

(A.20)

for which we use N
(c) ≍ ∆−1

n . The proof is then completed.

Lemma A.3. Strong approximation for sampled return, it holds that

P
(

max
1≤i≤N

(c)
|r(c)

i − r̆
(c)
i | > K∆1+κ/8

n

)
≤ K ′∆κ/8

n

√
Ln. (A.21)

Proof. It follows the maximal inequality of Gaussian variables that

E
[

max
1≤i≤N

|ri − r̆i|
∣∣∣Dn

]
≤ K

√
Ln max

1≤i≤N

√∣∣E[∆n,iλti−1 |Fn
i−1] − ∆n

∣∣ ≤ K∆1+κ/2
n

√
Ln. (A.22)

Let En ≡ {Π(c)
i = Π̆(c)

i for all 1 ≤ i ≤ N (c) = N̆ (c)}, we have P(E∁
n) ≤ K∆κ/2

n
√

Ln by

Lemma A.2 (ii). Note that by the maximal inequality, we have for any p > 1,

E
[

max
1≤i≤N̆(c)

|Π̆(c)
i − Π̆(c)

i−1|p
]

≤ N̆ (c) max
1≤i≤N̆(c)

E[|Π̆(c)
i − Π̆(c)

i−1|p] ≤ Kp∆−1
n , (A.23)



A.1 Proofs 117

where the last step is by Lemma A.2 (i). Taking p > 4/κ gives

E
[

max
1≤i≤N̆(c)

|Π̆(c)
i − Π̆(c)

i−1|2
]

≤ K∆−κ/2
n . (A.24)

Moreover, by Cauchy-Schwarz inequality, we obtain

E
[

max
1≤i≤N̆(c)

|r(c)
i − r̆

(c)
i |
∣∣∣En

]
≤
√
E
[

max
1≤i≤N̆(c)

|Π̆(c)
i − Π̆(c)

i−1|2
]
E
[

max
1≤ℓ≤n

|rℓ − r̆ℓ|2
]

≤ K∆1+κ/4
n

√
Ln.

(A.25)

Therefore, we have

P
(

max
1≤i≤N

(c)
|r(c)

i − r̆
(c)
i | > K∆1+κ/8

n

)
≤ P

(
max

1≤i≤N̆(c)
|r(c)

i − r̆
(c)
i | > K∆1+κ/8

n

∣∣∣En

)
+ P(E∁

n)

≤ K ′(∆κ/8
n

√
Ln + ∆κ/2

n

√
Ln).

(A.26)

This completes the proof.

Lemma A.3 shows the statistics constructed from sampled returns under observation schemes

(I) and (II) are equivalent up to a ∆−1−κ/8
n normalization, which is sufficient for the c−1 ≍ ∆−1/2

n√
N̆ (c) ≍ ∆−1/2

n order in conventional CLT. The requirement is only κ > 0.

The above type of strong approximation results are similarly used in, e.g., the proof of

Theorem 5.1 in Chernozhukov et al. (2013) and the proof of Theorem 4.3 in Chernozhukov et al.

(2019). It allows us to focus on the limiting behavior of functionals of R̆i/c2, the result can

be sufficiently extended to those of Ri/c2. To fix ideas, consider a possibly multi-dimensional

Lipschitz function f(·). Suppose that

1
N̆ (c)

N̆(c)∑
i=1

f
(R̆i

c2

) P−→ µf , and 1√
N̆ (c)

N̆(c)∑
i=1

(
f
(R̆i

c2

)
− µf

)
L−→ N (0, Σf ). (A.27)

Let E′
n ≡ {Π(c)

i = Π̆(c)
i for all 1 ≤ i ≤ N̆ (c)} ∩ {max1≤i≤N̆(c) |Ri − R̆i|/c2 > K∆1/2+κ/16

n }. Note

that a2 − b2 = (a − b)2 + 2b(a − b), it follows triangle inequality that

max
1≤i≤N̆(c)

|Ri − R̆i| ≤
(

max
1≤i≤N̆(c)

|r(c)
i − r̆

(c)
i |
)2

+ 2
(

max
1≤i≤N̆(c)

|r̆(c)
i |
)(

max
1≤i≤N̆(c)

|r(c)
i − r̆

(c)
i |
)
. (A.28)
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Note that max1≤i≤N̆(c) |r̆(c)
i | = Op(∆1/2

n
√

Ln) = op(∆1/2−κ/16
n ) by the maximal inequality of

sub-Gaussian variables. Then it follows Lemma A.2 (ii), Lemma A.3, and Eq. (A.28) that

P(E′
n) ≥ 1 − K∆κ/8

n
√

Ln. Therefore, for each ε > 0,

P
(∥∥∥∥ 1

N (c)

N(c)∑
i=1

f
(Ri

c2

)
− µf

∥∥∥∥> ε

)

≤ P
(∥∥∥∥ 1

N̆ (c)

N̆(c)∑
i=1

f
(R̆i

c2

)
− µf

∥∥∥∥> ε

2

)
+ P

(∥∥∥∥ 1
N (c)

N(c)∑
i=1

f
(Ri

c2

)
− 1

N̆ (c)

N̆(c)∑
i=1

f
(R̆i

c2

)∥∥∥∥> ε

2

)

≤ P
(∥∥∥∥ 1

N̆ (c)

N̆(c)∑
i=1

f
(R̆i

c2

)
− µf

∥∥∥∥> ε

2

)
+ P

(
K max

1≤i≤N̆(c)

|Ri − R̆i|
c2 >

ε

2
∣∣∣E′

n

)
+ P(E′∁

n )

= P
(∥∥∥∥ 1

N̆ (c)

N̆(c)∑
i=1

f
(R̆i

c2

)
− µf

∥∥∥∥> ε

2

)
+ K∆κ/8

n

√
Ln.

(A.29)

Let Z ∼ N (0, Σf ). For each A ⊂ Rdim(f) and ε > 0, let Aε ≡ {x ∈ Rdim(f) : infy∈A ∥x−y∥ ≤ ε}

denote the ε-enlargement of A, then we have

P
( 1√

N (c)

N(c)∑
i=1

(
f
(Ri

c2

)
− µf

)
∈ A

)

≤ P
( 1√

N̆ (c)

N̆(c)∑
i=1

(
f
(R̆i

c2

)
− µf

)
∈ Aε

)
+ P

(∥∥∥∥ 1√
N (c)

N(c)∑
i=1

f
(Ri

c2

)
− 1√

N̆ (c)

N̆(c)∑
i=1

f
(R̆i

c2

)∥∥∥∥ > ε

)

≤ P
( 1√

N̆ (c)

N̆(c)∑
i=1

(
f
(R̆i

c2

)
− µf

)
∈ Aε

)
+ P

(
K

√
N̆ (c) max

1≤i≤N̆(c)

|Ri − R̆i|
c2 > ε

∣∣∣E′
n

)
+ P(E′∁

n )

= P(Z ∈ A) + P(Z ∈ Aε \ A) + K∆κ/8
n

√
Ln.

(A.30)

Taking ε → 0, the right-hand side becomes P(Z ∈ A) + o(1). Similarly, one can show

P
( 1√

N (c)

N(c)∑
i=1

(
f
(Ri

c2

)
− µf

)
∈ A

)
≥ P(Z ∈ A) − o(1). (A.31)

This shows the same CLT holds. Therefore, our attention is restricted to the limit theorems of

the test statistics constructed from (r̆(c)
i )1≤i≤N̆(c) . For ease of notation, we shall drop the breve

mark (̆ ) in the subsequent proofs.
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A.1.1.4 Proof of Theorem 2.1

Under the null. As randomly indexed partial sums of i.i.d. random variables, the PDS returns

r
(c)
i for all 1 ≤ i ≤ N (c) form a stopped random walk. To consider the departure from ordinary

limit theorems that hold for processes with fixed indices, some previous studies extend the

standard results to accommodate randomly indexed random walks, see, e.g., Anscombe (1952),

Rényi (1957), and Gut (2009, 2012).

Note that the condition specified in Anscombe’s theorem (Theorem 1, Rényi, 1957; Theorem

2.2 and 2.3, Gut, 2012) is satisfied by the strong law for renewal processes, i.e., as n → ∞,

N (c)

N
a.s.−−−→ E[Π(c)

1 ] = 1
µ2(m) , (A.32)

such that the random sum LLN implies, jointly with the continuous mapping theorem, that

∑N(c)
i=1 Ri

c2N (c)
P−→ h2(m) and

∑N(c)
i=1 Ri

c2N (c)
P−→ h2,ϵ(m). (A.33)

The consistency of both M c,ϵ and Mc in Eq. (2.17) is a direct result of the continuous mapping

theorem from Eq. (A.33).

Under the Alternative. We denote by (Λn
t ) the counting process of all jumps in (Xn

t ) in

Eq. (2.7), then Λn
t is bounded for each n, and for all n, we have

∑
0≤s≤t

|∆Xn
t |r < ∞, (A.34)

which implies for large enough n (such that un → 0),

ur
nΛn

t ≤
∑

0≤s≤t

|∆Xn
t |r < ∞, (A.35)

from which one can deduce that Λn
t = Op(∆−r/2

n ) for all fixed t.

When X(ω) is discontinuous within (0, 1), we denote by {s1, s2 . . . , sΛ} the sequence of all

jump times in chronological order, where Λ ≡ Λn
1 (ω) counts the number of all discontinuities

on (0, 1]. We define

k−(s) = inf
0≤i≤n

{ti ≥ s : |ti − s|} and k+(s) = inf
0≤i≤n

{ti < s : |ti − s|} (A.36)



120 Appendix to Chapter 2

as the index of the first observations no earlier than and strictly before s, respectively. We split

the sequence of observations (Xti)0≤i≤N into Λ + 1 segments with i = k+(sj) for all 1 ≤ j ≤ Λ

as cutoff points. As N → ∞, we have k+(sj) − k+(sj−1) → ∞ (also, k+(s1) → ∞), since any

intervals of length of order ∆n mostly contain a single jump of size larger than un, see Section

2.3 of Aït-Sahalia and Jacod (2009).

For each segment (Xti)k+(sj−1)≤i≤k+(sj), we obtain the PDS returns (r(c)
i )

N
(c)
j−1+1≤i≤N

(c)
j

with the barrier width c = m
√

∆n. For each i ∈ An = {N
(c)
1 , N

(c)
2 , . . . , N

(c)
Λ }, the PDS return

|r(c)
i | ≥ u ≫ c contains jumps and will be censored by φϵ(c). For all i /∈ An, the PDS return

r
(c)
i contains only aggregated Brownian increments. For the censored PDS returns, we have

∑N(c)
i=1 Ri

c2N (c) =
∑

i/∈An
Ri

c2N (c) +
∑

i∈An
Ri

c2N (c) . (A.37)

For the first term above, since the cardinality of An is Λ = Op(∆−r/2
n ) ≪ ∆−1

n ≍ N (c), we have

∑
i/∈An

Ri

c2N (c) = N (c) − Λ

N (c)

∑
i/∈An

Ri

c2(N (c) − Λ)
, where N (c) − Λ

N (c)
a.s.−−−→ 1, (A.38)

such that it coincides with the limit theorems under the null. For the second term, it holds that

∑
i∈An

Ri

c2N (c) ≤ K
Λ

N (c) ≤ K ′∆1−r/2
n , (A.39)

which has no impact on the LLN result. It still vanishes after multiplying by
√

N (c) ≍ ∆−1/2
n

for any r ∈ [0, 1), and thus does not affect the CLT.

For uncensored PDS returns, it holds that as n → ∞,

∑N(c)
i=1 Ri

c2N (c)
P−→ h2(m)[X, X]1

τ(1) , where τ(1) =
∫ 1

0
σ2

sds, (A.40)

because ∑N(c)
i=1 Ri

P−→ [X, X]1 and c2N (c) P−→ τ(1)/h2(m). This completes the proof.

A.1.1.5 Proof of Theorem 2.2

As mentioned in Appendix A.1.1.4, the condition in Anscombe’s theorem is satisfied. The

random index version of Lindeberg-Lévy CLT (Theorem 2.3, Gut, 2012) can be applied to

verify the asymptotic normality of (M c,ϵ, Mc)′. We start with an i.i.d. two-dimensional random
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vector

Xi =
(Ri

c2 ,
Ri

c2

)′
, (A.41)

with the mean vector

E[Xi] P−→ µ = (h2,ϵ(m), h2(m))′, (A.42)

and a 2 × 2 variance-covariance matrix (among the components of the vector):

Var(Xi) P−→ Σ, (A.43)

where

Σ = m−4

 µ4,ϵ(m) − µ2
2,ϵ(m) ρ2,ϵ(m) − µ2(m)µ2,ϵ(m)

ρ2,ϵ(m) − µ2(m)µ2,ϵ(m) µ4(m) − µ2
2(m)

 . (A.44)

The functions in Σ, i.e., µ, µ, and ρ, are defined in Section 2.3.1.

For the sample mean vector

X = 1
N (c)

N(c)∑
i=1

Xi =
( 1

N (c)

N(c)∑
i=1

Ri

c2 ,
1

N (c)

N(c)∑
i=1

Ri

c2

)′
= (S2,ϵ, S2)′, (A.45)

where the summation of these vectors is being done component-wise. The random sum

Lindeberg-Lévy CLT implies that as n → ∞,

√
N (c)(X − µ) L−→ N (0, Σ), (A.46)

and
√

N(X − µ) L−→ N (0, µ2(m)Σ). (A.47)

Therefore, for the random vector f(X) = (M c,ϵ, Mc)′ with the vector function

f


x

y


 =

h
−1
2,ϵ (x)

h−1
2 (y)

 , (A.48)

it holds that
√

N(f(X) − m) L−→ N (0, µ2(m)▽f(µ)′Σ▽f(µ)), (A.49)
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by the multivariate delta method, where

▽f(µ) = ((h′
2,ϵ(h

−1
2,ϵ (h2,ϵ(m))))−1, (h′

2(h−1
2 (h−1

2 (m))))−1) = ((h′
2,ϵ(m))−1, (h′

2(m))−1). (A.50)

This completes the proof.

A.1.2 Proof of Proposition 2.1

Proof. We first prove that the sequence of pre-averaged returns (r∗
i )1≤i≤N ′ converges in law to

a centered stationary Gaussian process with desired variance under infill asymptotics for each i.

We assume kn = 2k for simplicity, and expand r∗
i in terms of ∆N

j X = Xj − Xj−1 and εj :

r∗
i = 1

kn

k∑
j=1

(Xi+k+j − Xi+j) + 1
kn

k∑
j=1

(εi+k+j − εi+j)

=
kn∑

j=1
g
( j

2k

)
∆N

i+jX

︸ ︷︷ ︸
Ai

+ 1
kn

k∑
j=1

(εi+k+j − εi+j)
︸ ︷︷ ︸

Bi

,
(A.51)

where g(s) = s ∧ (1 − s) is the triangular kernel weighting function. Under Assumption 2.2 and

by the strong approximation result in Eq. (A.22), we deduce that Ai converges in probability

to ∑kn
j=1 g

( j
2k

)
r̆i+j , which is a linear combination of i.i.d. centered Gaussian random variables.

The α-mixing ε with the conditions in Assumption 2.3 indidates a CLT under weak dependence

(Ibragimov, 1962; Theorem 8.3.7, Durrett, 2019), which implies the asymptotic Gaussianity of

Bi. The independence between X and ε implies that r∗
i converges in distribution to a centered

Gaussian random variable for all i.

We now identify the limiting law of (r∗
i ) by calculating its variance kernel explicitly, which

also establishes the stationarity of the limiting Gaussian process. With Corr(Xj , εj′) = 0 for

any 0 ≤ j, j′ ≤ N , we have Var(r∗
i ) = Var(Ai) + Var(Bi) with

Var(Ai) =
kn∑

j=1
g2
( j

kn

)
(∆n + o(∆n)) = kn∆n

12 + o(
√

∆n). (A.52)
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For the additive noise term, we define the partial sum of ε as

Sn,h =
h∑

i=1
εn+i, (A.53)

and start with the following results for some λ ≥ h:

Var(Sn,h) =
h−1∑

m=1−h

(h − |m|)Γm = h
h−1∑

m=1−h

(
1 −

∣∣∣∣mh
∣∣∣∣)Γm, (A.54)

Cov(Sn,h, Sn+λ,h) = E[Sn,hSn+λ,h] =
h−1∑
i=0

h−1∑
j=0

Cov(εn+i, εn+λ+i+j)

=
h−1∑

m=1−h

(h − |m|)Γm+λ = h
h−1∑

m=1−h

(
1 −

∣∣∣∣mh
∣∣∣∣)Γm+λ,

(A.55)

where the weight 1 − |m/h| is the Bartlett kernel. Therefore, we have

Var(Bi) = 1
4k2 Var(Si+k,k − Si,k)

= 1
4k2 Var(Si+k,k) + 1

4k2 Var(Si,k) − 2Cov(Si+k,k, Si,k)

= 1
2k

k−1∑
m=1−k

(
1 −

∣∣∣∣mk
∣∣∣∣)Γm − 1

2k

k−1∑
m=1−k

(
1 −

∣∣∣∣mk
∣∣∣∣)Γm+k

(A.56)

of the order
√

∆n by the absolute summability of Γm, which is implied by the α-mixing property

of ε under Assumption 2.3 (Ibragimov and Linnik, 1971). Since kn ≍
√

N , both Var(Ai) and

Var(Bi) are of the order
√

∆n, such that we can ignore all terms with order smaller than
√

∆n,

which yields Var(r∗
i ) = Var(Ai) + Var(Bi) ≍

√
∆n.

With the time-invariant first moment and finite second moment of r∗
i for all time, in order to

prove the weak stationarity of (r∗
i ), we need to make sure that the autocovariance Cov(r∗

i , r∗
i+λ)

does not vary with i. Here we firstly deal with the autocovariance of Ai. It suffices to examine

the autocovariance for non-negative integer-valued lags λ, as the autocovariance function is

always symmetric.

Cov(Ai, Ai+λ) = E[AiAi+λ] = E

 kn∑
j=1

g
( j

kn

)
∆N

i+jX
kn∑

η=1
g
( η

kn

)
∆N

i+λ+ηX

 . (A.57)



124 Appendix to Chapter 2

When λ ≥ kn, Cov(Ai, Ai+λ) = 0. When 1 ≤ λ ≤ kn − 1, we have

Cov(Ai, Ai+λ) = E

kn−λ∑
j=1

g
( j

kn

)
g
(j + λ

kn

)
(∆N

i+λ+jX)2


=

kn−λ∑
j=1

g
( j

kn

)
g
(j + λ

kn

)
E[(∆N

i+λ+jX)2] = O(
√

∆n).

(A.58)

For the noise term, we have the lag-λ autocovariance

Cov(Bi, Bi+λ) = 1
4k2E[(Si+k,k − Si,k)(Si+k+λ,k − Si+λ,k)]

= 1
4k2 (E[Si+k,kSi+k+λ,k] + E[Si,kSi+λ,k] − E[Si+k,kSi+λ,k] − E[Si,kSi+k+λ,k])

= 1
2k

k−1∑
m=1−k

(
1 −

∣∣∣∣mk
∣∣∣∣)Γm+λ − 1

4k

k−1∑
m=1−k

(
1 −

∣∣∣∣mk
∣∣∣∣)Γm+λ−k − 1

4k

k−1∑
m=1−k

(
1 −

∣∣∣∣mk
∣∣∣∣)Γm+λ+k

= O(
√

∆n),
(A.59)

by the absolute summability of Γm. In the limit, both the covariances are finite and time-

invariant (not depend on i) for all possible λ ∈ N, which implies the weak stationarity of (r∗
i )

in the limit, as desired.

For Step 2, we first demonstrate how the random sign flip eliminates serial correlations in

(r∗
i ). Let F (x) = P(r∗

i ≤ x) denote the CDF of r∗
i . It is obvious that the product δir

∗
i is a

Gaussian random variable with the same distribution:

P(δir
∗
i ≤ x) = P(δi = 1)P(δir

∗
i ≤ x|δi = 1) + P(δi = −1)P(δir

∗
i ≤ x|δi = −1)

= 1
2P(r∗

i ≤ x) + 1
2P(r∗

i ≥ −x) = F (x),
(A.60)

and the autocovariance function for any i ∈ {1, . . . , N ′ − λ} satisfies

Cov(δir
∗
i , δi+λr∗

i+λ) = E[δiδi+λr∗
i r∗

i+λ] = E[δi]E[δi+λ]Cov(r∗
i , r∗

i+λ) = 0. (A.61)

Next, we establish that, following the uniform random permutation π : {1, . . . , N ′} 7→

{1, . . . , N ′}, any two variables in (r̃i)1≤i≤N ′ are independent when their indices are not suffi-

ciently distant from each other each other in {1, . . . , N ′} under infill asymptotics. We start

with a formal definition of the local independence for a discrete-time stochastic process: The
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process X = (Xi)1≤i≤n is said to be locally independent if

lim
n→∞

sup
1≤i,j≤n

1≤|i−j|≤Λn

P(Xi and Xj are dependent) = 0,

or lim
n→∞

sup
1≤i,j≤n

1≤|i−j|≤Λn

{|P(A ∩ B) − P(A)P(B)| : A ∈ σ(Xi), B ∈ σ(Xj)} = 0,
(A.62)

where Λn ≍ nϖ for some ϖ ∈ (0, 1), such that Xi is independent to other variables in X whose

indices fall within the interval [i − Λn, i + Λn]. In our case, we need to verify

lim
n→∞

sup
1≤i,j≤N ′

1≤|i−j|≤Λn

P(r̃i and r̃j are dependent) = 0. (A.63)

The fact that (εi)0≤i≤N is α-mixing implies that

α(Λn) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ σ(εi), B ∈ σ(εi+Λn)} → 0, (A.64)

as n → ∞, thus εi and εj are asymptotically independent if |i − j| ≥ Λn.

With the uniform random permutation, we denote

r̃i = r∗
π(i)δπ(i) and r̃j = r∗

π(j)δπ(j) (A.65)

where π(i), π(j) are the corresponding indices of the products before permutation. Therefore,

for all 1 ≤ i, j ≤ N ′ and 1 ≤ |i − j| ≤ Λn, r̃i and r̃j are independent if the corresponding indices

π(i) and π(j) are sufficiently far apart from one another:

P(r̃i and r̃j are dependent) = P(r∗
π(i) and r∗

π(j) are dependent)

= P(σ({επ(i)+ℓ : 0 ≤ ℓ ≤ kn}) and σ({επ(j)+ℓ : 0 ≤ ℓ ≤ kn}) are dependent)

≤ 2P(π(i) + 1 ≤ π(j) ≤ π(i) + kn + Λn)

= 2(kn + Λn)
N ′ − 1 = O(∆γ

n), where γ = 1 − max
{1

2 , ϖ
}

.

(A.66)

For a sequence of N ′ variables, the uniform random permutation ensures that each of the N ′!

possible permutations are equally likely and that each “ball” r∗
π(i)δπ(i) has an equal chance of



126 Appendix to Chapter 2

being placed into any “box” i, which has become a question of classical probability. As n → ∞,

r̃i and r̃j with 1 ≤ |i − j| ≤ Λn are asymptotically independent. This completes the proof.

A.2 Supplementary Results

A.2.1 Parameter Choices for Other Tests

For other tests constructed in Sections 2.4 and 2.5, we clarify some specific parameter choices:

LM: For the local realized bipower variation, we consider the window size K =
√

252N , where

N is the number of sampled observations.

ASJ: For the multipower variations constructed on two different sampling intervals δ and kδ,

we select p = 4 and k = 2, which satisfies the requirement.

CPR: For the auxiliary local variance estimator, we employ the nonparametric filter of length

2L+1 with L = 25 and a Gaussian kernel, which follows the recommendation in Appendix

B of Corsi et al. (2010).

PZ: We employ the truncated realised power variation with p = 4 and the truncation threshold

cN−ϖ, where c and ϖ follow the recommendation in Section 5 of Podolskij and Ziggel

(2010). For the noise-adjusted version, we select the pre-averaging window kn = 0.5⌊
√

N⌋.

LM12: We select the pre-averaging window kn = 0.4⌊
√

N⌋, which minimizes the absolute

distance between the nominal size and the empirical size with the simulated tick-level

noise-contaminated observations.

ASJL: We select the pre-averaging window kn = 0.9⌊
√

N⌋ based on the simulated noise-

contaminated data, and the truncation level C = 5.

A.2.2 Simulation Results with Other Noise Specifications

In addition to the simulation results in Section 2.4, we consider three other specifications for

the additive noise that follows Aït-Sahalia et al. (2012) as robustness checks:

(i) Gaussian noise:

εi = 2Zi

√
σ2

tn,i

n
, (A.67)

where Zi are i.i.d. draws from a standard normal distribution, see Tables A.1 to A.3.
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(ii) Autocorrelated Gaussian noise:

εi = 2ωA
i

√
σ2

tn,i

n
, (A.68)

where ωA
i is an autocorrelated Gaussian defined in Eq. (2.31), see Tables A.4 to A.6.

(iii) t-distributed noise:

εi = 2ωB
i

√
ν − 2

ν

√
σ2

tn,i

n
, (A.69)

where ωB
i are i.i.d. draws from a Student’s t distribution with the degree of freedom ν, see

Tables A.7 to A.9.

Table A.1 Finite-sample size and power (%) under Gaussian noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5
ϵ ϵ ϵ

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A
No Jump

3 1785 4.90 5.21 5.35 1783 5.07 5.05 5.76 1783 5.01 5.07 5.70
4 1099 5.33 5.03 5.49 1098 4.93 5.14 5.81 1098 5.24 5.21 5.62
5 743 4.71 5.14 5.33 743 5.18 5.28 5.43 742 5.10 5.70 5.27
6 535 5.26 5.01 5.49 535 4.63 4.89 5.53 535 4.82 5.47 5.13
7 404 4.71 4.99 5.19 404 4.61 5.55 5.62 404 5.17 5.18 5.08
8 316 4.83 4.79 5.59 315 4.83 5.23 5.73 315 5.08 5.12 5.30
9 254 5.44 4.80 5.30 253 5.22 5.00 5.38 253 5.20 5.20 5.73

10 208 4.93 5.31 5.71 208 4.98 5.41 5.68 208 5.18 5.28 5.75

Panel B
Moderate Jump

3 1715 47.74 49.52 50.82 1716 44.73 47.04 49.52 1718 42.85 45.35 47.45
4 1058 46.68 48.74 50.80 1059 43.38 46.51 48.46 1061 41.71 44.74 46.93
5 717 45.27 47.51 50.26 718 43.27 45.29 48.09 720 41.23 43.10 45.95
6 518 44.45 47.15 49.63 519 43.24 44.57 46.91 520 41.10 42.06 45.13
7 392 44.91 46.79 49.45 393 42.51 43.70 46.51 394 40.31 41.96 44.21
8 307 42.82 46.95 49.09 308 41.76 43.10 45.84 308 39.45 40.95 44.10
9 247 42.13 45.59 48.45 248 40.81 42.65 46.06 248 38.43 40.97 43.46

10 203 41.42 44.81 48.32 204 40.32 41.82 46.46 204 38.26 40.44 43.70

Panel C
Large Jump

3 1587 69.98 71.41 73.31 1589 68.18 69.74 71.08 1594 67.26 68.39 69.95
4 979 68.91 71.10 72.74 982 67.81 69.39 70.89 985 65.92 67.49 69.41
5 665 68.80 70.14 72.20 668 66.75 69.09 70.32 670 65.28 66.87 69.25
6 482 67.64 69.69 71.54 485 66.71 68.34 69.77 487 64.99 66.15 68.20
7 365 67.61 69.10 71.27 368 65.47 66.78 69.89 370 63.94 65.80 67.99
8 287 67.37 68.95 71.00 289 65.11 66.62 68.93 291 64.21 65.45 66.91
9 232 65.90 69.22 70.84 234 64.78 66.60 68.88 235 63.87 64.83 67.73

10 191 65.47 68.02 70.71 193 64.23 65.74 68.45 194 63.14 64.76 67.56
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ϵ at 5%
nominal level. All simulated prices are contaminated by the additive Gaussian noise and rounding errors. We utilize the
two-step noise reduction method in Section 2.3.2 to construct the sequence of pseudo-observations with three different
pre-averaging windows, i.e., kn = ⌈θ

√
N⌉ with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different PDS barrier

widths c = Kσ(r̃i), where K ranges from 3 to 10. Different censoring thresholds with ϵ ∈ {0.05, 0.07, 0.1} are considered.
N(c) stands for the average sampling frequencies.
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Table A.2 Finite-sample size and power (%) of other tests under Gaussian noise

Nominal size: 5%
Int. (sec) Nspl BNS ABD JO LM ASJ CPR PZ MinRV MedRV

Panel A
No Jump

5 4680 0.23 20.28 1.06 14.02 100.00 0.37 5.59 0.00 0.00
15 1560 4.93 26.64 3.70 22.26 93.73 5.43 9.91 0.91 2.89
30 780 7.88 26.93 5.02 29.32 38.68 8.42 12.55 4.04 6.35
60 390 7.69 23.90 6.23 27.86 13.10 8.26 14.47 5.37 7.14

120 195 7.49 20.82 8.07 17.76 7.10 8.02 16.23 5.71 7.93
180 130 7.91 18.97 9.05 15.11 5.36 8.70 16.12 5.78 8.78
300 78 7.74 15.54 10.98 11.96 4.22 8.70 14.91 5.67 9.12

Panel B
Moderate Jump

5 4680 44.28 76.55 51.82 69.09 99.76 47.13 66.49 40.11 45.46
15 1560 40.43 73.96 44.90 60.35 92.97 43.88 61.13 37.19 41.85
30 780 36.17 68.73 38.30 51.11 65.25 39.14 52.79 33.48 36.97
60 390 29.52 60.12 30.92 42.23 37.60 32.97 43.63 27.36 31.32

120 195 21.55 50.01 22.20 36.06 22.08 24.92 32.72 21.00 24.32
180 130 17.48 42.85 17.40 30.52 14.55 20.17 26.98 17.02 20.84
300 78 15.27 34.45 11.91 21.62 11.67 17.54 19.96 14.36 16.51

Panel C
Large Jump

5 4680 68.50 87.98 74.10 84.55 99.83 70.65 82.69 64.96 68.91
15 1560 65.66 86.64 69.37 79.03 95.72 68.29 79.36 62.52 66.47
30 780 61.28 83.55 64.47 73.60 78.16 64.28 74.79 58.50 62.36
60 390 55.16 79.09 57.63 67.45 57.04 58.50 68.70 52.97 57.53

120 195 46.02 71.16 48.22 61.94 36.07 50.16 59.34 44.72 49.98
180 130 41.61 65.42 42.27 56.76 26.63 45.35 53.82 40.37 44.59
300 78 35.12 57.46 33.77 46.86 17.83 39.24 45.27 34.30 38.21

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 9 classical tests at 5%
nominal level: BNS (Barndorff-Nielsen and Shephard, 2006), ABD (Andersen et al., 2007c), JO (Jiang and Oomen, 2008),
LM (Lee and Mykland, 2008), ASJ (Aït-Sahalia and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel,
2010), MinRV and MedRV (Andersen et al., 2012). All these tests are constructed on observations equidistantly sampled
with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300 seconds, and “Nspl” stands for the sampling
frequencies.

Table A.3 Finite-sample size and power (%) of other noise-robust tests under Gaussian noise

Nominal size: 5%
Int. (sec) Nspl PZ* LM12 ASJL

No Jump
tick 23400 5.10 3.27 5.12

5 4680 4.93 8.59 8.79

Moderate Jump
tick 23400 39.34 24.12 38.06

5 4680 29.96 18.97 16.88

Large Jump
tick 23400 64.18 39.18 62.90

5 7680 56.03 32.23 41.41
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 3
noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010), LM12
(Lee and Mykland, 2012), and ASJL (Aït-Sahalia et al., 2012). All these tests are constructed on
tick-level and 5-second-sampled observations. The tuning parameters for those tests are selected
by minimizing the absolute distance between the nominal size and the empirical size with the
simulated tick-level noise-contaminated observations.
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Table A.4 Finite-sample size and power (%) under autocorrelated Gaussian noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5
ϵ ϵ ϵ

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A
No Jump

3 1785 4.85 5.28 5.39 1784 5.14 5.34 5.69 1783 5.38 5.70 5.84
4 1099 5.02 5.36 5.34 1099 5.05 4.94 5.32 1097 5.23 5.62 5.69
5 743 4.84 5.45 4.96 743 4.82 5.58 5.37 743 5.41 5.64 6.07
6 536 4.71 5.14 5.30 536 4.87 5.32 5.23 535 4.73 5.33 5.63
7 404 5.21 5.36 5.44 404 5.11 4.91 5.60 404 5.20 5.02 5.45
8 316 4.74 5.21 5.50 316 4.91 4.79 5.74 316 4.75 5.17 5.41
9 253 4.56 5.05 5.37 254 4.92 5.16 5.35 253 4.86 5.36 5.32

10 208 4.87 5.45 5.33 208 5.01 5.48 5.77 208 5.36 5.42 5.75

Panel B
Moderate Jump

3 1715 47.02 49.41 52.39 1717 45.14 47.22 49.69 1719 43.27 45.53 48.29
4 1058 46.22 48.63 51.34 1059 43.97 46.88 48.80 1061 42.70 44.28 47.16
5 717 45.80 47.83 51.35 719 43.38 45.64 48.35 720 40.70 43.64 45.82
6 518 45.25 46.85 49.59 519 41.62 45.13 47.71 520 40.83 42.25 45.93
7 392 43.53 46.57 48.48 393 41.06 44.33 46.80 394 39.47 42.48 45.30
8 307 43.39 45.85 49.41 308 41.95 43.80 46.44 309 39.25 41.64 44.64
9 247 43.28 45.83 48.46 248 40.78 43.20 46.57 248 39.04 40.64 45.10

10 203 42.70 44.97 48.27 204 40.26 41.86 45.96 204 38.51 40.48 43.28

Panel C
Large Jump

3 1587 69.39 70.70 72.91 1590 67.87 69.33 71.27 1594 66.82 68.17 70.24
4 979 68.87 70.46 72.68 983 66.80 69.17 70.63 985 65.84 67.74 69.17
5 665 67.98 70.11 72.16 668 66.93 68.16 70.27 671 65.21 66.26 68.55
6 482 68.20 69.38 71.78 485 65.87 67.95 69.81 487 64.66 66.04 67.63
7 366 66.57 68.81 71.08 368 65.20 67.12 68.95 370 64.53 66.31 67.93
8 287 67.04 69.14 71.08 289 64.39 66.85 69.28 291 63.97 65.09 67.34
9 232 66.01 68.47 70.40 234 64.17 66.33 69.04 235 63.15 64.93 67.69

10 191 66.15 67.95 70.27 193 63.67 65.80 68.23 194 62.39 64.69 67.11
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ϵ at 5%
nominal level. All simulated prices are contaminated by the additive autocorrelated Gaussian noise and rounding errors.
We utilize the two-step noise reduction method in Section 2.3.2 to construct the sequence of pseudo-observations with three
different pre-averaging windows, i.e., kn = ⌈θ

√
N⌉ with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different

PDS barrier widths c = Kσ(r̃i), where K ranges from 3 to 10. Different censoring thresholds with ϵ ∈ {0.05, 0.07, 0.1}
are considered. N(c) stands for the average sampling frequencies.
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Table A.5 Finite-sample size and power (%) of other tests under autocorrelated Gaussian noise

Nominal size: 5%
Int. (sec) Nspl BNS ABD JO LM ASJ CPR PZ MinRV MedRV

Panel A
No Jump

5 4680 0.00 15.38 0.72 10.46 100.00 0.00 5.19 0.00 0.00
15 1560 2.48 22.98 2.79 19.26 97.34 2.84 8.11 0.40 1.59
30 780 5.59 24.77 4.27 26.71 47.36 6.32 11.46 2.93 4.99
60 390 6.84 23.25 5.87 26.53 14.89 7.32 13.67 4.93 6.60

120 195 7.08 20.54 7.43 17.00 8.51 7.64 15.53 5.55 7.50
180 130 7.33 17.86 8.53 14.31 5.60 8.09 15.63 5.56 7.98
300 78 7.92 15.88 10.90 12.15 4.35 9.20 15.09 5.73 9.55

Panel B
Moderate Jump

5 4680 42.34 73.62 49.60 68.05 99.81 45.64 64.41 37.27 42.66
15 1560 39.11 71.47 43.61 59.86 93.84 42.79 60.18 36.30 40.82
30 780 36.35 66.97 37.43 50.10 66.10 40.00 52.66 32.51 37.08
60 390 28.49 59.32 29.46 41.52 39.38 32.06 43.30 26.18 30.62

120 195 22.16 48.88 21.09 34.90 21.09 25.48 32.18 20.48 23.39
180 130 17.80 41.66 16.58 29.83 15.66 20.78 25.61 17.18 19.83
300 78 13.36 32.57 11.19 19.64 10.68 14.91 18.07 12.98 14.99

Panel C
Large Jump

5 4680 66.02 86.02 71.75 83.05 99.73 68.49 80.74 61.79 66.31
15 1560 63.75 85.06 67.48 78.59 95.40 66.49 78.52 61.00 64.90
30 780 60.36 82.44 62.07 72.40 78.66 63.52 73.58 57.06 61.05
60 390 53.77 76.70 55.08 65.78 56.45 57.05 67.04 51.59 55.26

120 195 46.55 68.90 46.82 60.23 35.58 49.80 57.96 44.44 48.75
180 130 40.73 64.47 41.31 55.31 24.87 44.99 51.75 39.56 44.64
300 78 33.58 56.01 32.74 44.99 16.57 37.28 42.89 32.71 36.46

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 9 classical tests at 5%
nominal level: BNS (Barndorff-Nielsen and Shephard, 2006), ABD (Andersen et al., 2007c), JO (Jiang and Oomen, 2008),
LM (Lee and Mykland, 2008), ASJ (Aït-Sahalia and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel,
2010), MinRV and MedRV (Andersen et al., 2012). All these tests are constructed on observations equidistantly sampled
with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300 seconds, and “Nspl” stands for the sampling
frequencies.

Table A.6 Finite-sample size and power (%) of other noise-robust tests under autocorrelated
Gaussian noise

Nominal size: 5%
Int. (sec) Nspl PZ* LM12 ASJL

No Jump
tick 23400 5.06 2.91 5.19

5 4680 4.98 8.10 8.92

Moderate Jump
tick 23400 38.51 21.87 37.46

5 4680 29.10 18.91 17.09

Large Jump
tick 23400 65.58 39.64 63.69

5 7680 55.98 32.62 41.88
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 3
noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010), LM12
(Lee and Mykland, 2012), and ASJL (Aït-Sahalia et al., 2012). All these tests are constructed on
tick-level and 5-second-sampled observations. The tuning parameters for those tests are selected
by minimizing the absolute distance between the nominal size and the empirical size with the
simulated tick-level noise-contaminated observations.
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Table A.7 Finite-sample size and power (%) under t-distributed noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5
ϵ ϵ ϵ

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A
No Jump

3 1785 4.74 5.28 5.54 1784 5.25 5.01 5.79 1783 5.04 5.38 5.73
4 1100 5.01 5.04 5.40 1098 5.05 5.00 5.78 1098 5.05 5.10 5.61
5 743 4.62 4.85 5.29 743 4.77 5.04 5.51 743 4.60 5.31 5.82
6 536 4.93 5.01 5.35 535 4.67 5.01 5.42 535 4.81 5.44 5.81
7 404 4.83 5.08 5.22 404 4.81 5.04 5.48 403 5.24 5.58 5.67
8 316 4.86 5.34 5.27 316 4.91 5.22 5.67 316 4.88 5.15 5.70
9 254 4.77 5.42 5.24 253 5.13 5.41 5.39 253 4.83 5.01 5.72

10 208 5.12 5.37 5.64 208 5.27 5.56 5.77 208 4.93 5.62 5.84

Panel B
Moderate Jump

3 1716 46.47 48.75 50.70 1718 44.29 46.93 48.39 1718 42.42 45.03 46.94
4 1058 45.56 48.39 50.84 1060 43.27 45.47 47.73 1061 41.57 43.20 45.28
5 717 45.09 47.07 50.32 719 42.73 45.48 47.82 720 40.67 42.31 45.21
6 519 44.78 46.46 48.26 519 41.76 44.18 46.61 521 40.50 42.15 44.40
7 392 44.00 45.75 48.66 393 40.80 43.60 46.14 394 39.99 41.48 43.88
8 307 42.56 44.26 48.15 308 40.08 42.59 45.58 308 39.08 41.55 43.25
9 247 42.79 44.68 48.11 248 39.44 41.88 45.47 248 38.55 41.12 42.51

10 203 41.21 44.19 46.88 204 39.69 41.62 44.87 204 37.62 39.87 42.92

Panel C
Large Jump

3 1585 70.44 71.21 73.23 1589 68.58 70.69 72.01 1592 66.90 68.86 70.80
4 978 69.91 71.37 73.07 981 68.25 69.64 71.07 985 66.59 68.75 69.66
5 664 69.36 71.15 72.79 668 67.65 69.30 71.08 670 66.09 67.79 69.56
6 481 68.75 70.43 72.67 484 66.82 68.64 70.50 487 65.24 66.70 68.72
7 365 68.08 69.77 71.74 368 65.70 67.87 69.97 370 64.57 66.43 68.83
8 287 67.67 68.95 70.93 289 65.10 68.12 69.69 291 63.77 66.09 67.83
9 232 66.89 68.86 71.66 234 64.52 66.96 69.63 235 63.39 66.10 67.81

10 191 66.21 68.25 70.90 192 64.24 66.28 69.49 194 62.52 64.96 67.43
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ϵ at
5% nominal level. All simulated prices are contaminated by the additive t-distributed noise and rounding errors. We
utilize the two-step noise reduction method in Section 2.3.2 to construct the sequence of pseudo-observations with three
different pre-averaging windows, i.e., kn = ⌈θ

√
N⌉ with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different

PDS barrier widths c = Kσ(r̃i), where K ranges from 3 to 10. Different censoring thresholds with ϵ ∈ {0.05, 0.07, 0.1}
are considered. N(c) stands for the average sampling frequencies.
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Table A.8 Finite-sample size and power (%) of other tests under t-distributed noise

Int. (sec) Nspl BNS ABD JO LM ASJ CPR PZ MinRV MedRV

Panel A
No Jump

5 4680 58.90 100.00 15.85 100.00 99.92 99.87 99.70 0.12 0.02
15 1560 12.76 90.37 10.10 89.87 92.05 56.23 72.27 0.71 2.19
30 780 8.89 59.49 7.81 62.42 44.91 24.70 40.96 3.06 5.18
60 390 7.25 35.24 7.38 38.66 16.35 11.91 24.07 4.49 7.09

120 195 7.23 23.72 8.22 20.16 7.68 8.87 18.31 5.11 7.38
180 130 7.37 19.82 8.99 16.35 5.38 8.42 17.48 5.30 8.46
300 78 7.34 15.19 10.83 11.47 4.33 8.64 14.86 5.22 8.55

Panel B
Moderate Jump

5 4680 37.49 100.00 37.05 17.64 99.97 11.25 13.71 39.54 41.12
15 1560 40.61 96.71 38.20 25.74 97.85 21.65 20.95 34.45 37.18
30 780 36.25 82.85 35.77 31.96 70.97 30.82 27.51 31.47 35.67
60 390 30.11 65.91 29.45 36.41 40.48 30.72 35.36 27.12 31.05

120 195 22.54 50.98 21.73 34.11 21.92 24.58 30.89 20.59 23.94
180 130 17.55 43.33 17.67 29.39 14.43 20.16 25.77 16.98 20.66
300 78 14.49 34.14 12.22 22.25 10.45 16.11 20.07 13.74 17.01

Panel C
Large Jump

5 4680 62.75 100.00 63.82 45.20 99.98 31.59 38.22 63.94 65.60
15 1560 65.71 98.39 64.24 53.45 98.79 47.84 47.73 59.14 61.94
30 780 61.92 91.00 62.02 59.38 81.94 56.98 54.91 56.36 60.86
60 390 55.55 82.02 55.88 63.00 57.74 56.36 62.26 52.38 56.60

120 195 47.62 71.89 47.85 60.48 37.89 51.29 57.77 45.42 50.37
180 130 41.65 65.87 43.02 55.53 25.61 45.02 52.02 40.67 45.06
300 78 35.10 57.50 34.13 47.57 16.34 39.19 45.37 34.32 39.24

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 9 classical tests at 5%
nominal level: BNS (Barndorff-Nielsen and Shephard, 2006), ABD (Andersen et al., 2007c), JO (Jiang and Oomen, 2008),
LM (Lee and Mykland, 2008), ASJ (Aït-Sahalia and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel,
2010), MinRV and MedRV (Andersen et al., 2012). All these tests are constructed on observations equidistantly sampled
with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300 seconds, and “Nspl” stands for the sampling
frequencies.

Table A.9 Finite-sample size and power (%) of other noise-robust tests under t-distributed noise

Nominal size: 5%
Int. (sec) Nspl PZ* LM12 ASJL

No Jump
tick 23400 5.07 5.46 6.18

5 4680 4.64 9.24 8.74

Moderate Jump
tick 23400 39.40 25.31 37.68

5 4680 29.26 18.76 17.19

Large Jump
tick 23400 65.11 41.81 62.48

5 7680 55.60 31.85 41.42
This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 3
noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010), LM12
(Lee and Mykland, 2012), and ASJL (Aït-Sahalia et al., 2012). All these tests are constructed on
tick-level and 5-second-sampled observations. The tuning parameters for those tests are selected
by minimizing the absolute distance between the nominal size and the empirical size with the
simulated tick-level noise-contaminated observations.
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A.2.3 Supplementary Empirical Results

Table A.10 reports the empirical results for 7 other tests. Based on the simulation results in

Tables 2.3 and 2.4, we select four calendar-time-sampling-based tests: BNS, CPR, MinRV and

MedRV, with different sampling intervals: 30, 60, 120, and 300 seconds, and we also construct

the noise-robust tests PZ*, LM12 and ASJL from tick-by-tick and 5-second data. For most

of the selected stocks, the noise-robust ASJL constructed from tick-level observations obtains

comparable results to our PDS-based test.

Table A.10 Empirical rejection rates (%) of other tests for selected NYSE stocks

Test Int. (sec) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

BNS

30 32.02 20.55 20.95 28.46 36.36 32.81 49.80 25.69 43.08 32.41
60 20.16 11.07 19.37 25.69 28.06 24.51 37.55 26.09 31.23 26.88

120 17.00 16.21 16.21 22.53 27.67 25.30 25.69 23.32 27.27 27.67
300 18.58 18.58 15.42 19.76 20.16 17.00 23.32 22.13 22.13 22.13

CPR

30 38.34 32.02 35.57 39.13 47.83 38.34 59.29 33.20 52.57 41.11
60 28.46 16.60 26.88 33.99 40.32 32.41 45.85 29.25 40.32 35.57

120 25.30 20.16 21.74 30.83 34.78 32.02 33.99 28.85 32.81 33.60
300 23.32 23.72 21.34 27.67 29.64 22.13 32.81 28.46 30.43 30.83

MinRV

30 22.53 17.39 15.42 18.18 22.92 21.74 27.67 19.76 26.48 21.34
60 14.23 9.88 15.42 19.76 21.74 16.21 22.92 20.95 22.13 22.13

120 14.23 12.65 12.65 18.58 18.18 17.79 18.58 19.76 19.76 21.74
300 13.04 14.62 13.83 17.39 13.04 11.07 15.81 15.42 16.21 14.23

MedRV

30 30.83 23.72 28.46 31.62 37.15 29.64 40.71 29.64 37.94 32.02
60 20.55 15.81 22.92 28.46 37.15 27.67 33.60 28.85 32.81 30.04

120 20.55 18.58 18.58 26.48 29.64 26.48 27.27 26.88 28.85 34.78
300 18.97 17.00 16.60 24.11 21.74 20.55 23.72 24.90 28.06 25.30

PZ*
tick 7.51 6.32 6.32 5.93 6.32 6.72 7.51 5.14 7.51 4.74

5 31.23 22.92 19.76 26.09 22.13 23.32 23.72 24.90 30.04 31.62

LM12
tick 12.65 4.35 7.51 9.49 12.65 11.46 12.65 9.49 18.58 11.86

5 32.02 21.34 30.04 37.55 29.25 27.27 38.74 27.67 40.32 35.18

ASJL
tick 15.81 20.16 13.04 13.83 13.83 13.44 15.02 20.55 13.83 15.02

5 32.02 20.95 29.25 21.34 26.48 21.74 22.92 26.09 30.04 32.41
This table reports the proportions of days with jumps for 10 NYSE stocks in 2020, as identified by the following procedures:
BNS (Barndorff-Nielsen and Shephard, 2006), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and
MedRV (Andersen et al., 2012), PZ* (Podolskij and Ziggel, 2010), LM12 (Lee and Mykland, 2012), and ASJL (Aït-
Sahalia et al., 2012). The first 4 tests are constructed from observations equidistantly sampled in calendar time (with
the last tick interpolation): 30, 60, 120 and 300 seconds. The noise-adjusted PZ*, LM12, and ASJL are constructed from
tick-by-tick and 5-second-sampled data. The total number of trading days is 253.

Table A.11 reports the empirical results for other tests constructed from calendar-time-

sampled data, with the control of spurious detections using the thresholding methods in

Bajgrowicz et al. (2016): (i) the universal threshold
√

2 ln 253, and (ii) the FDR threshold.

We only consider one-sided tests whose limiting distribution is N (0, 1) under the null, which

includes the upper-tailed BNS, CPR, MinRV, MedRV, PZ*, and the lower-tailed ASJL, but
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excludes the Gumbel-distributed LM12.

Table A.11 Adjusted empirical rejection rate (%) of other tests for selected NYSE stocks

Test Int. (sec) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

Panel A
Universal threshold

BNS

30 24.11 18.18 17.79 23.32 27.67 25.69 33.99 20.95 30.83 22.92
60 15.81 9.09 15.42 19.37 18.58 18.97 29.25 20.55 24.11 20.16

120 13.44 13.83 15.02 20.55 22.92 22.13 21.74 17.79 19.37 20.55
300 15.02 16.21 13.04 15.42 16.21 14.62 19.76 17.79 17.00 20.55

CPR

30 27.67 27.27 29.64 27.67 31.23 26.88 36.76 23.32 33.99 26.48
60 22.92 13.83 20.55 25.69 27.67 22.92 31.23 20.95 27.67 24.11

120 21.34 17.00 19.76 24.90 24.11 27.27 25.69 23.32 23.72 24.51
300 18.18 20.55 16.60 22.53 23.72 18.18 25.69 22.13 21.74 26.09

MinRV

30 17.79 16.21 13.44 16.21 19.37 18.18 23.32 16.60 20.55 16.60
60 11.86 8.30 14.23 15.81 17.79 14.62 20.55 18.97 20.16 18.97

120 12.25 12.25 12.25 18.18 17.39 17.39 15.02 17.79 16.21 18.97
300 12.25 13.44 13.44 16.21 12.25 11.07 15.42 13.44 15.02 13.83

MedRV

30 24.51 21.74 26.09 25.30 26.09 21.74 30.04 22.92 28.46 26.09
60 17.00 14.23 19.76 23.32 29.64 21.34 24.90 25.69 24.11 22.53

120 17.39 16.21 17.39 21.34 24.11 24.11 22.53 22.13 22.13 29.64
300 16.21 15.42 15.02 20.55 18.97 18.97 18.18 20.95 24.51 22.13

PZ*
tick 5.53 5.53 6.32 3.56 3.56 5.93 5.93 3.95 5.14 3.16

5 2.77 4.35 1.58 3.95 3.16 2.77 2.77 3.16 3.56 4.74

ASJL
tick 14.23 18.58 13.04 13.04 13.44 12.25 12.25 19.37 13.44 14.62

5 26.09 17.39 26.09 18.18 21.34 17.00 18.58 22.53 25.30 24.11

Panel B
FDR threshold

BNS

30 14.23 15.02 16.21 14.23 12.25 15.02 9.09 14.62 11.46 11.07
60 13.04 7.11 12.25 12.65 10.28 14.23 15.02 13.04 14.23 9.09

120 9.88 13.44 14.62 14.62 13.83 17.39 12.25 15.02 13.83 10.28
300 13.04 13.04 9.88 12.25 13.83 11.46 12.65 13.44 9.09 16.21

CPR

30 9.09 15.42 19.37 13.04 11.86 9.09 7.51 12.25 8.30 10.28
60 14.62 10.67 15.02 15.02 13.04 15.02 12.25 11.46 11.07 9.88

120 13.83 16.21 16.21 13.04 14.62 16.21 13.04 13.44 13.04 10.67
300 13.04 16.21 11.46 17.00 13.04 10.28 17.79 15.02 13.44 15.42

MinRV

30 15.81 14.23 12.65 16.21 12.65 17.39 11.07 14.23 15.02 13.83
60 10.67 7.51 11.07 12.65 12.65 11.86 13.44 18.58 13.44 14.62

120 10.67 12.25 12.65 18.18 13.83 16.21 14.23 16.21 14.62 16.21
300 12.65 11.86 13.44 15.81 12.25 11.07 13.04 13.44 15.02 13.83

MedRV

30 15.02 19.37 19.76 10.28 16.60 16.60 10.67 16.21 17.39 13.44
60 13.04 13.04 13.44 11.86 19.76 13.04 13.83 18.18 16.60 11.07

120 15.42 15.02 13.83 15.42 18.58 21.74 16.21 18.97 12.25 18.58
300 11.07 13.83 9.49 16.60 13.83 16.60 13.04 13.04 16.60 18.97

PZ*
tick 5.53 5.53 6.32 3.56 3.56 5.93 5.93 3.95 5.14 3.16

5 2.77 4.35 1.58 3.95 3.16 2.77 2.77 3.16 3.56 4.74

ASJL
tick 13.04 16.21 13.04 10.28 13.44 12.25 11.07 17.39 13.44 14.62

5 15.02 13.44 18.58 15.42 15.42 14.23 12.65 18.58 17.39 14.62
This table reports the proportions of days with jumps for 10 NYSE stocks in 2020, as identified by the following procedures:
BNS (Barndorff-Nielsen and Shephard, 2006), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and
MedRV (Andersen et al., 2012), PZ* (Podolskij and Ziggel, 2010), and ASJL (Aït-Sahalia et al., 2012), with the control
of spurious detections using the thresholding methods in Bajgrowicz et al. (2016). The first 4 tests are constructed from
observations equidistantly sampled in calendar time (with the last tick interpolation): 30, 60, 120 and 300 seconds. The
noise-adjusted PZ* and ASJL are constructed from tick-by-tick and 5-second-sampled data. The total number of trading
days is 253.
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Appendix to Chapter 3

B.1 Normalized High, Low, and Close

For the standard Brownian motion starting at zero, i.e., W = (Wt)t≥0, in a filtered probability

space (Ω, F , (Ft)t≥0,P), we denote the normalized high, low, and close as, respectively,

u = sup
0≤t≤1

Wt, d = inf
0≤t≤1

Wt, c = W1. (B.1)

For the range of a standard Brownian motion, i.e., ω = u − d, its probability distribution

was firstly proposed by Feller (1951) and its moment generating function was then derived by

Parkinson (1980), i.e., for the r-th moment:

E[ωr] = 4√
π

(
1 − 4

2r

)
2

r
2 Γ
(

r + 1
2

)
ζ(r − 1), (B.2)

where Γ(x) and ζ(x) are the Gamma and Riemann’s zeta functions, respectively. In particular,

we have

E[ω] = 2
√

2
π

≈ 1.5958, E[ω2] = 4 ln 2 ≈ 2.7726,

E[ω3] = 2
3

√
2π3 ≈ 5.2499, E[ω4] = 9ζ(3) ≈ 10.8185.

(B.3)
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Also, Garman and Klass (1980) reveals the following fourth moments of the normalized high,

low, close via the generating functions E[updqcr]:1

E[u4] = E[d4] = E[c4] = 3, E[u2c2] = E[d2c2] = 2, (B.4)

E[u3c] = E[d3c] = 2.25, E[uc3] = E[dc3] = 1.5, (B.5)

E[u2dc] = E[ud2c] = 9
4 − 2 ln 2 − 7

8ζ(3) ≈ −0.1881, (B.6)

E[u2d2] = 3 − 4 ln 2 ≈ 0.2274, (B.7)

E[udc2] = 2 − 2 ln 2 − 7
8ζ(3) ≈ −0.4381, (B.8)

E[ud3] = E[u3d] = 3 − 3 ln 2 − 9
8ζ(3) ≈ −0.4318, (B.9)

where ζ(3) = ∑∞
n=1 n−3 ≈ 1.2021. It is straightforward that

E[ω2c2] = E[(u − d)2c2] = E[u2c2] + E[d2c2] − 2E[udc2] = 4 ln 2 + 7
4ζ(3) ≈ 4.8762. (B.10)

When we substitute the normalized close c in above moments with its absolute value |c|,

it is obvious that the values in Eqs. (B.5) and (B.6) do not follow from Garman and Klass

(1980). Different from the Garman-Klass triple (u, d, c), Meilijson (2011) considers (ũ, d̃, |c|)

where (ũ, d̃) = (u, d) if c ≥ 0 while (ũ, d̃) = −(d, u) if c < 0, and derives the second and fourth

moments as follows:

E[ũ2] = 7
4 , E[d̃2] = 1

4 , E[ũ|c|] = 5
4 , E[d̃|c|] = −1

4 , E[ũd̃] = 1 − 2 ln 2 ≈ −0.3863,

(B.11)

E[ũ4] = 93
16 , E[d̃4] = 3

16 , E[ũ2|c|2] = 31
8 , E[d̃2|c|2] = 1

8 , (B.12)

E[ũ3|c|] = 147
32 , E[d̃3|c|] = − 3

32 , E[ũ|c|3] = 27
8 , E[d̃|c|3] = −3

8 , (B.13)

E[ũ2d̃2] = E[u2d2] = 3 − 4 ln 2 ≈ 0.2274, (B.14)

E[ũd̃|c|2] = E[udc2] = 2 − 2 ln 2 − 7
8ζ(3) ≈ −0.4381, (B.15)

E[ũ3d̃] + E[ũd̃3] = E[ud(u2 + d2)] = 6 − 6 ln 2 − 9
4ζ(3) ≈ −0.8635, (B.16)

1See Appendix C in Garman and Klass (1980).
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E[ũ2d̃|c|] + E[ũd̃2|c|] = E[udc(u + d)] = 9
2 − 4 ln 2 − 7

4ζ(3) ≈ −0.3762, (B.17)

E[ũd̃2|c|] = 1
16ζ(3) − 2 ln 2 + 47

32 ≈ 0.1576. (B.18)

We can use the above results to obtain the following second and fourth moments of (ω, |c|):

E[ω|c|] = E[(ũ − d̃)|c|] = E[ũ|c|] − E[d̃|c|] = 3
2 , (B.19)

E[ω|c|3] = E[(ũ − d̃)|c|3] = E[ũ|c|3] − E[d̃|c|3] = 15
4 , (B.20)

E[ω3|c|] = E[(ũ − d̃)3|c|]

= E[(ũ3 − d̃3 − 3ũ2d̃ + 3ũd̃2)|c|]

= E[ũ3|c|] − E[d̃3|c|] − 3E[ũ2d̃|c|] + 3E[ũd̃2|c|]

= 147
32 + 3

32 − 3
(9

2 − 4 ln 2 − 7
4ζ(3)

)
+ 6

( 1
16ζ(3) − 2 ln 2 + 47

32

)
= 45

8 ζ(3) ≈ 6.7616.

(B.21)

To calculate the third moments of (ω, |c|), we derive the analytical expressions for E[ũ2|c|],

E[d̃2|c|], E[ũ|c|2], E[d̃|c|2], and E[ũd̃|c|], which are not available in the literature. For the first

four quantities, we obtain the results by integrating the joint densities in Meilijson (2011), i.e.,

fũ,|c|(a, x) = 4(2a − x)ϕ(2a − x), 0 < x < a, (B.22)

fd̃,|c|(b, x) = 4(x − 2b)ϕ(x − 2b), b < 0 < x, (B.23)

where ϕ(z) = (2π)−1/2e−z2/2 is the probability density function (PDF) of N (0, 1):

E[ũ2|c|] = 17
3
√

2π
≈ 2.2607, E[d̃2|c|] = 1

3
√

2π
≈ 0.1330, (B.24)

E[ũ|c|2] = 7
3

√
2
π

≈ 1.8617, E[d̃|c|2] = −1
3

√
2
π

≈ −0.2660. (B.25)

There is one more moment needed, i.e., E[ũd̃|c|]. We start with the infinitesimal event A =

{W1 ∈ (x, x + dx), Wt ∈ (b, a), ∀t ∈ [0, 1]}, where b < min{x, 0} ≤ 0 ≤ max{x, 0} < a, and its
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probability P(A) = Q(a, b, x)dx, where

Q(a, b, x) =
∞∑

j=−∞
{ϕ(x − 2j(a − b)) − ϕ(x − 2b − 2j(a − b))} . (B.26)

The joint density of (ũ, d̃, |c|) is then given by fũ,d̃,|c|(a, b, x) = −2∂2Q(a, b, x)/∂a∂b, restricted

to b < 0 < x < a, which is also an infinite series.2 The summand with j = 0 takes value 0

because both two ϕ functions are independent of at least one of a and b, as similar to the second

term in the summand with j = 1. The required moment can be obtained by solving the triple

integral:

E[ũd̃|c|] = −2
∫ ∞

0

∫ a

0

∫ 0

−∞
abx

∂2Q(a, b, x)
∂a∂b

dbdxda

= −2
∑

j∈∁Z{0}

∫ ∞

0
ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

[
∂

∂b
ϕ(x − 2j(a − b))

− ∂

∂b
ϕ(x − 2b − 2j(a − b))1{j ̸=1}

]
db

(B.27)

We integrate each summand in three univariate steps. The first step will integrate over

b ∈ (−∞, 0) the product of b and mixed second derivative ∂2ϕ(x + Ma + Kb)/∂a∂b:

∫ 0

−∞

∂

∂a
b

∂

∂b
ϕ(x + Ma + Kb)db = ∂

∂a

∫ 0

−∞
b

∂

∂b
ϕ(x + Ma + Kb)db

= ∂

∂a

∫ 0

−∞
bdϕ(x + Ma + Kb)

= ∂

∂a
[bϕ(x + Ma + Kb)]0−∞ − ∂

∂a

∫ 0

−∞
ϕ(x + Ma + Kb)db

= −
∫ 0

−∞

∂

∂a
ϕ(x + Ma + Kb)db

= −M

∫ 0

−∞
ϕ′(x + Ma + Kb)db

= −M

K
[ϕ(x + Ma + Kb)]0−∞

= −M

K
ϕ(x + Ma).

(B.28)

2See more details in the Appendix of Meilijson (2011).
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Then we multiply the above result by x and integrate it over x ∈ (0, a):

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

∂

∂b
ϕ(x + Ma + Kb)db

= − M

K

∫ a

0
xϕ(x + Ma)dx

= − M

K

∫ (M+1)a

Ma
yϕ(y)dy + M2a

K

∫ (M+1)a

Ma
ϕ(y)dy

= M

K

∫ (M+1)a

Ma
ϕ′(y)dy + M2a

K

∫ (M+1)a

Ma
ϕ(y)dy because ϕ′(z) = −zϕ(z)

= M

K
[ϕ((M + 1)a) − ϕ(Ma)] + M2a

K
[Φ((M + 1)a) − Φ(Ma)]

or = M

K
[ϕ((M + 1)a) − ϕ(Ma)] − M2a

K
[Φ∗((M + 1)a) − Φ∗(Ma)] ,

(B.29)

where Φ(z) =
∫ z

−∞ ϕ(t)dt = 0.5(1 + erf z/
√

2) is the cumulative distribution function (CDF)

of N (0, 1), and Φ∗(z) = 1 − Φ(z) = 0.5(1 − erf z/
√

2) is the survival function. Finally, this

expression is multiplied by a and integrated over a ∈ (0, ∞). We use the results

∫ ∞

0
aϕ(aA)da =

∫ ∞

0
aϕ(−aA)da = 1√

2πA2 , (B.30)

∫ ∞

0
a2Φ(−aA)da =

∫ ∞

0
a2Φ∗(aA)da = 1

3A3

√
2
π

, with A > 0, (B.31)

to calculate the triple integral of abx∂2ϕ(x + Ma + Kb)/∂a∂b. When M ∈ Z>0, we have

∫ ∞

0
ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

∂

∂b
ϕ(x + Ma + Kb)db

= M

K

∫ ∞

0
aϕ((M + 1)a)da − M

K

∫ ∞

0
aϕ(Ma)da

+ M2

K

∫ ∞

0
a2Φ((M + 1)a)da − M2

K

∫ ∞

0
a2Φ(Ma)da

= 1√
2π

M

K

[ 1
(M + 1)2 − 1

M2

]
− 1

3

√
2
π

M2

K

[ 1
(M + 1)3 − 1

M3

]
= G(M, K).

(B.32)
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When M ∈ Z<−1, we have

∫ ∞

0
ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

∂

∂b
ϕ(x + Ma + Kb)db

= M

K

∫ ∞

0
aϕ((M + 1)a)da − M

K

∫ ∞

0
aϕ(Ma)da

− M2

K

∫ ∞

0
a2Φ∗((M + 1)a)da + M2

K

∫ ∞

0
a2Φ∗(Ma)da

= 1√
2π

M

K

[ 1
(M + 1)2 − 1

M2

]
− 1

3

√
2
π

M2

K

[ 1
(M + 1)3 − 1

M3

]
= G(M, K).

(B.33)

We now transfer each summand into a rational function of j, by letting M take −2j, and K

take 2j or 2(j − 1). For summands with j ∈ ∁Z{0, 1}, we have

∫ ∞

0
ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

[
∂

∂b
ϕ(x − 2j(a − b)) − ∂

∂b
ϕ(x − 2b − 2j(a − b))

]
db

= G(−2j, 2j) − G(−2j, 2(j − 1))

= − 1√
2π

(
1 − j

j − 1

)[ 1
(1 − 2j)2 − 1

(2j)2

]
− 1

3

(
2j − 2j2

j − 1

)√
2
π

[ 1
(1 − 2j)3 + 1

(2j)3

]

= 1√
2π

1
j − 1

[ 1
(1 − 2j)2 − 1

(2j)2

]
+ 2

3
j

j − 1

√
2
π

[ 1
(1 − 2j)3 + 1

(2j)3

]
,

(B.34)

and the infinite series

∑
j∈∁Z{0,1}

∫ ∞

0
ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

[
∂

∂b
ϕ(x − 2j(a − b))

− ∂

∂b
ϕ(x − 2b − 2j(a − b))

]
db = 14π2 − 138

72
√

2π
.

(B.35)

For summand with j = 1, we have

∫ ∞

0
ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

∂

∂b
ϕ(x − 2a + 2b)db = G(−2, 2) = 5

12
√

2π
. (B.36)

Therefore, the joint moment is calculated by Eq. (B.27):

E[ũd̃|c|] = −2
(

5
12

√
2π

+ 14π2 − 138
72

√
2π

)
= 54 − 7π2

18
√

2π
≈ −0.3344. (B.37)

Now we can use the results in Eqs. (B.24), (B.25) and (B.37) to calculate the third moments of
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(ω, |c|):

E[ω2|c|] = E[ũ2|c|] + E[d̃2|c|] − 2E[ũd̃|c|]

= 17
3
√

2π
+ 1

3
√

2π
− 2 × 54 − 7π2

18
√

2π

= 7
9

√
π3

2 ≈ 3.0624,

(B.38)

E[ω|c|2] = E[ũ|c|2] − E[d̃|c|2] = 8
3

√
2
π

≈ 2.1277. (B.39)

Moreover, direct calculation of

E[|c|r] = 2
∫ ∞

0

xr

√
2π

e− x2
2 dx (B.40)

shows the following moments:

E[|c|] =
√

2
π

≈ 0.7979, E[|c|2] = 1, E[|c|3] = 2
√

2
π

≈ 1.5958, E[|c|4] = 3. (B.41)

For the convenience of further discussion, we denote the moments of (ω, |c|) by

λp,r = E[ωp|c|r]. (B.42)

All λp,r that will be used in Appendix B.2 have been calculated in this section, and are

summarized in Table B.1.

B.2 Proofs

B.2.1 Proof of Theorem 3.1

Proof. It is straightforward to prove Theorem 3.1 with the LLN for path-dependent functionals

of continuous Itô semimartingales, as summarized in Duembgen and Podolskij (2015). Here we

start with some notation. We denote by C([0, 1]) the space of continuous real valued functions

on the interval [0, 1], and by ∥·∥∞ the supremum norm on C([0, 1]). A function f : C([0, 1]) → R

is said to have polynomial growth if |f(x)| ≤ C(1 + ∥x∥p
∞) for some C, p > 0.

Definition B.1 (Local uniform continuity). The function f : C([0, 1]) → R is locally uniformly
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Table B.1 Analytical values of λp,r = E[ωp|c|r]

PPPPPPPPPPp

r 0 1 2 3 4

0 1
√

2
π 1 2

√
2
π 3

1 2
√

2
π

3
2

8
3

√
2
π

15
4 –

2 4 ln 2 7
9

√
π3

2 4 ln 2 + 7
4ζ(3) – –

3 2
3
√

2π3 45
8 ζ(3) – – –

4 9ζ(3) – – – –
This table reports the analytical values of joint moments of (ω, |c|), i.e., λp,r = E[ωp|c|r] with p, r ∈ N and
0 ≤ p + r ≤ 4, where ω (resp. c) is defined as the high-low range (resp. open-close return) of a standard
Brownian motion within an unit interval.

continuous if for all x ∈ C([0, 1]), there exists a closed ball of radius K > 0 centered at 0,

i.e., B≤K(0)={x ∈ C([0, 1]); ∥x∥∞ ≤ K},3 such that for every ϵ > 0, there exists δ > 0, for

x, y ∈ B≤K(0), ∥x − y∥∞ ≤ δ, we have |f(x) − f(y)| ≤ ϵ. This locally uniform continuity

assumption is satisfied whenever |f(x) − f(y)| ≤ C∥x − y∥p
∞ for all x, y ∈ C([0, 1]) and some

C, p > 0.

Lemma B.1 (Theorem 2.1, Duembgen and Podolskij, 2015). Assume that the efficient price

X follows a continuous Itô semimartingale in Eq. (3.5) with all traditional conditions satisfied.

Given a function g : C([0, 1]) → R and a vanishing sequence ∆n, for the sequence of processes

V̂t,n(g) = ∆n

n∑
i=1

g

(
dn

i (X)√
∆n

)
, (B.43)

where dn
i (X) = {X(i−1+s)∆n

− X(i−1)∆n
; s ∈ [0, 1]}, if g is locally uniformly continuous and has

polynomial growth, it holds that

V̂t,n(g) u.c.p.−−−→ Vt(g) =
∫ t

0
ρστ (g)dτ, (B.44)

as n → ∞, where ρz(g) = E [g({zWs; s ∈ [0, 1]})] whenever it is finite.

It is obvious that the new HLOC estimator V̂t,n in Eq. (3.3) can be written in the form of

3The notion of locally uniform continuity is slightly different from the usual one that requires uniform
continuity on neighbourhoods or compact sets, see more details in Remark 2.1 in Duembgen and Podolskij
(2015).
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Eq. (B.43) with a specific path-dependent function g : C([0, 1]) → R of the scaled incremental

process:

g

(
dn

i (X)√
∆n

)
= 1

4 ln 2 − 2

 sup
0≤s≤1

dn
i (X)√

∆n
− inf

0≤s≤1

dn
i (X)√

∆n
−

∣∣∣Xi∆n − X(i−1)∆n

∣∣∣
√

∆n


2

= 1
4 ln 2 − 2

{
f1

(
dn

i (X)√
∆n

)
− f2

(
dn

i (X)√
∆n

)}2
,

(B.45)

where

f1(x) = sup
0≤s≤1

x(s) − inf
0≤s≤1

x(s) and f2(x) = |x(1) − x(0)|. (B.46)

The function g(x) is therefore a linear combination of polynomials of the range f1(x) and a

finite power variation f2(x), as well as the cross term f1(x)f2(x). This path-dependent function

has polynomial growth, and is thus locally uniformly continuous. Then the LLN in Lemma B.1

readily applies with

∫ t

0
ρστ (g)dτ =

∫ t

0
E [g({στ Ws; s ∈ [0, 1]})] dτ

= 1
4 ln 2 − 2

∫ t

0
E
[
(f1({στ Ws; s ∈ [0, 1]}) − f2({στ Ws; s ∈ [0, 1]}))2

]
dτ

= 1
4 ln 2 − 2

∫ t

0
E

( sup
0≤s≤1

στ Ws − inf
0≤s≤1

στ Ws − στ |W1 − W0|
)2
 dτ

= 1
4 ln 2 − 2

∫ t

0
E
[(

sup
0≤s≤1

στ Ws − inf
0≤s≤1

στ Ws

)2

+ σ2
τ W 2

1

− 2
(

sup
0≤s≤1

στ Ws − inf
0≤s≤1

στ Ws

)
στ |W1|

]
dτ

= 1
4 ln 2 − 2

∫ t

0
σ2

τ E
[
ω2 + c2 − 2ω|c|

]
dτ

= 1
4 ln 2 − 2

∫ t

0
σ2

τ (λ2,0 + λ0,2 − 2λ1,1) dτ

= 1
4 ln 2 − 2

∫ t

0
σ2

τ

(
4 ln 2 + 1 − 2 × 3

2

)
dτ

=
∫ t

0
σ2

τ dτ,

(B.47)

where ω, c, and λp,r = E[ωp|c|r] are defined in Appendix B.1. This completes the proof.
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B.2.2 Proof of Theorem 3.2

Proof. We denote by f ′
y(x) the Gâteaux derivative of f at point x in the direction of y, i.e.,

f ′
y(x) = lim

h→0

f(x + hy) − f(x)
h

. (B.48)

Lemma B.2 (Theorem 2.2, Duembgen and Podolskij, 2015). Assume that the conditions of

Lemma B.1 hold and Assumption 3.1 is satisfied. If g′
y(x) for some ∥y∥∞ ≤ 1 is (i) locally

uniformly continuous, and (ii) has polynomial growth, it follows that as n → ∞,

1√
∆n

(
V̂t,n(g) − Vt(g)

) L−s−−→ Ut(g), (B.49)

where Ut(g) =
∫ t

0 u
(1)
τ dτ +

∫ t
0 u

(2)
τ dWτ +

∫ t
0 u

(3)
τ dW ′

τ with

u(1)
τ = µτ ρ(2)

στ
(g′) + 1

2 σ̃τ ρ(3)
στ

(g′) − 1
2 σ̃τ ρ(2)

στ
(g′),

u(2)
τ = ρ(1)

στ
(g),

u(3)
τ =

√
ρστ (g2) − ρ2

στ
(g) − (ρ(1)

στ (g))2,

(B.50)

and, for z ∈ R and G(x, y) = g′
y(x),

ρ(1)
z (g) = E[g({zWs; s ∈ [0, 1]})W1],

ρ(2)
z (g′) = E[G({zWs; s ∈ [0, 1]}, {s; s ∈ [0, 1]})],

ρ(3)
z (g′) = E[G({zWs; s ∈ [0, 1]}, {W 2

s ; s ∈ [0, 1]})].

(B.51)

The process W ′ = (W ′
t)t≥0 is a Brownian motion defined on an extension of (Ω, F , (Ft)t≥0,P),

which is independent of F . This is especially the case when g is an even function, i.e.,

g(x) = g(−x) for all x ∈ C([0, 1]), where it holds that

ρ(1)
z (g) = ρ(2)

z (g′) = ρ(3)
z (g′) = 0, (B.52)

for all z ∈ R, since W
L= −W and expectations of odd functionals of W are 0, and hence we

have

Ut(g) =
∫ t

0

√
ρστ (g2) − ρ2

στ
(g) dW ′

τ . (B.53)
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which is an F-conditional Gaussian martingale with mean 0.

As mentioned in Appendix B.2.1, the path-dependent function g : C([0, 1]) → R in Eq. (B.45)

is a linear combination of f2
1 , f2

2 , and f1f2. Even though the stable CLT for f2
2 (dn

i (X)/
√

∆n)

is easily deduced from Lemma B.2 (cf. Example 1 in Section 3, Duembgen and Podolskij,

2015), the result of g cannot be obtained straightforwardly because the range is not Gâteaux

differentiable in general.

However, we may replace the Gâteaux derivative by an alternative form for functions which

are not Gâteaux differentiable. We consider a range-based functional ξ(x) = f(f1(x)) as an

example, where f : R → R is a continuously differentiable function, such that both f and

f ′ have polynomial growth (cf. Example 3 in Section 3, Duembgen and Podolskij, 2015), by

applying the following lemma from Christensen and Podolskij (2007):

Lemma B.3. Given two continuous functions x, y ∈ C([0, 1]), assume t∗ is the only point in

[0, 1] where the maximum of x is achieved, i.e., t∗ = argmax0≤s≤1 x(s). Then it holds that

lim
h→0

sup0≤s≤1(x(s) + hy(s)) − sup0≤s≤1 x(s)
h

= y(t∗). (B.54)

In the proofs x(t) plays the role of the Brownian motion, which attains its maximum (resp. min-

imum) at a unique point almost surely. Let t = argmax0≤s≤1 Ws and t = argmin0≤s≤1 Ws.

Then Lemma B.2 remains valid when σ is everywhere invertible (Christensen and Podolskij,

2012) with

ρ(1)
z (ξ) = E

[
f

(
z

(
sup

0≤s≤1
Ws − inf

0≤s≤1
Ws

))
W1

]
,

ρ(2)
z (ξ′) = E

[
f ′
(

z

(
sup

0≤s≤1
Ws − inf

0≤s≤1
Ws

))
(t − t)

]
,

ρ(3)
z (ξ′) = E

[
f ′
(

z

(
sup

0≤s≤1
Ws − inf

0≤s≤1
Ws

))(
W 2

t − W 2
t

)]
,

(B.55)

which extends the asymptotic theory in Lemma B.2 to general functions of the range.

Moreover, the derivative of the cross term f1f2 is a linear combination of two separate

components which include f ′
1 and f ′

2 respectively. It means that for the path-dependent function

g : C([0, 1]) → R in Eq. (B.45) we can obtain the closed-form ρ
(1)
z (g), ρ

(2)
z (g′), and ρ

(3)
z (g′) for

all z ∈ R, and Eq. (B.52) holds when g is an even function. Therefore, the stable CLT in
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Lemma B.2 holds with the limiting process Ut(g) in Eq. (B.53), where the squared integrand is

given by

ρστ (g2) − ρ2
στ

(g) = E
[
g2({στ Ws; s ∈ [0, 1]})

]
− (E [g({στ Ws; s ∈ [0, 1]})])2

= 1
(4 ln 2 − 2)2

{
E
[
(f1({στ Ws; s ∈ [0, 1]}) − f2({στ Ws; s ∈ [0, 1]}))4

]
−
(
E
[
(f1({στ Ws; s ∈ [0, 1]}) − f2({στ Ws; s ∈ [0, 1]}))2

])2
}

= 1
(4 ln 2 − 2)2

{
E

( sup
0≤s≤1

στ Ws − inf
0≤s≤1

στ Ws − στ |W1|
)4


−

E
( sup

0≤s≤1
στ Ws − inf

0≤s≤1
στ Ws − στ |W1|

)2
2}

= σ4
τ

(4 ln 2 − 2)2

{
E
[
(ω − |c|)4

]
−
(
E
[
(ω − |c|)2

])2
}

= σ4
τ

(4 ln 2 − 2)2

{
E
[
ω4 − 4ω3|c| + 2ω2c2 − 4ω|c|3 + c4

]
−
(
E
[
ω2 + c2 − 2ω|c|

])2
}

= σ4
τ

(4 ln 2 − 2)2

{
λ4,0 − 4λ3,1 + 6λ2,2 − 4λ1,3 + λ0,4 − (λ2,0 + λ0,2 − 2λ1,1)2

}
= 40 ln 2 − 16(ln 2)2 − 3ζ(3) − 16

(4 ln 2 − 2)2 σ4
τ ≈ 0.7245σ4

τ .

(B.56)

This completes the proof.

B.2.3 Proof of Corollary 3.1

Proof. The proof is analogous to that of Theorem 3.1. The RRDQ estimator Q̂t,n in Eq. (3.9)

can be written in the form of Eq. (B.43) with a locally uniformly continuous function g2 :

C([0, 1]) → R of the scaled incremental process:

g2
(

dn
i (X)√

∆n

)
= 1

Λ4

{
f1

(
dn

i (X)√
∆n

)
− f2

(
dn

i (X)√
∆n

)}4
. (B.57)
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Then the LLN in Lemma B.1 readily applies with

∫ t

0
ρστ (g2)dτ =

∫ t

0
E
[
g2({στ Ws; s ∈ [0, 1]})

]
dτ

= 1
Λ4

∫ t

0
E
[
(f1({στ Ws; s ∈ [0, 1]}) − f2({στ Ws; s ∈ [0, 1]}))4

]
dτ

= 1
Λ4

∫ t

0
E

( sup
0≤s≤1

στ Ws − inf
0≤s≤1

στ Ws − στ |W1|
)4
 dτ

= 1
Λ4

∫ t

0
σ4

τ E
[
ω4 − 4ω3|c| + 2ω2c2 − 4ω|c|3 + c4

]
dτ

= 1
Λ4

∫ t

0
σ4

τ (λ4,0 − 4λ3,1 + 6λ2,2 − 4λ1,3 + λ0,4) dτ

= 1
Λ4

∫ t

0
σ4

τ

(
9ζ(3) − 4 × 45

8 ζ(3) + 6
(

4 ln 2 + 7
4ζ(3)

)
− 4 × 15

4 + 3
)

dτ

= 1
Λ4

∫ t

0
σ4

τ (24 ln 2 − 12 − 3ζ(3)) dτ

=
∫ t

0
σ4

τ dτ.

(B.58)

This completes the proof.

B.2.4 Proof of Proposition 3.1

Proof. We define the set

Γn = {1 ≤ i ≤ n : X is discontinuous in In,i}, with kn = |Γn|, (B.59)

where |A| stands for the cardinality of set A. The absolute summability of ∆Xs = Xs − Xs− for

all s ∈ [0, t] implies that the number of “visible” realizations of the discontinuous component,

i.e., ∆Xs of a larger order of magnitude than
√

∆n, is an Op(∆γ
n) random variable, where

γ = − sup
0≤s≤t

{
0 ≤ ϖ <

1
2 : ∆Xs ≍ ∆ϖ

n

}
, (B.60)

which corresponds to the smallest order of non-negligible jumps on [0, t]. It is obvious that kn

is bounded by the number of non-negligible jumps over [0, t], such that we have kn = Op(∆γ
n).

We decompose the RRDV over [0, t] into two complementary parts:

V̂t,n = 1
Λ2

∑
i∈Γn

(wi − |ri|)2 + 1
Λ2

∑
i∈Γ′

n

(wi − |ri|)2 = V̂
(1)

t,kn
+ V̂

(2)
t,n−kn

. (B.61)
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For V̂
(1)

t,kn
, we have

wi = sup
τ,τ ′∈In,i

∣∣∣∣∣∣
∫ τ ′

τ
σsdWs +

∑
s∈In,i

∆Xs

∣∣∣∣∣∣ ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+
∣∣∣∣∣∣
∑

s∈In,i

∆Xs

∣∣∣∣∣∣ , (B.62)

|ri| =

∣∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs +
∑

s∈In,i

∆Xs

∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
∑

s∈In,i

∆Xs

∣∣∣∣∣∣−
∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣ , (B.63)

and thus

wi − |ri| ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+
∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣
= σ(i−1)∆n

√
∆n

(
sup

τ,τ ′∈[0,1]
|Wτ − Wτ ′ | + |W1|

)
+ op

(√
∆n

)
(Euler discretization)

= Op

(√
∆n

)
.

(B.64)

By adding up the squares of range-return differences in all kn intervals, we have

V̂
(1)

t,kn
= Op (kn∆n) = Op

(
∆γ+1

n

)
. (B.65)

For the sum of IV over all kn intervals, we also have

∑
i∈Γn

∫ i∆n

(i−1)∆n

σ2
sds = Op (kn∆n) = Op

(
∆γ+1

n

)
. (B.66)

With the triangle inequality, the absolute bias satisfies

∣∣∣∣∣∣V̂ (1)
t,kn

−
∑

i∈Γn

∫ i∆n

(i−1)∆n

σ2
sds

∣∣∣∣∣∣ ≤ V̂
(1)

t,kn
+
∑

i∈Γn

∫ i∆n

(i−1)∆n

σ2
sds = Op

(
∆γ+1

n

)
. (B.67)

For V̂
(2)

t,n−kn
, it holds naturally that

V̂
(2)

t,n−kn
−
∑

i∈Γ′
n

∫ i∆n

(i−1)∆n

σ2
sds = Op

(√
∆n

)
. (B.68)

The results for V̂
(1)

t,kn
and V̂

(2)
t,n−kn

in Eqs. (B.67) and (B.68) imply the result in the theorem.
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B.2.5 Proof of Proposition 3.2

Proof. We follow Andersen et al. (2023a) to assume τ = 0 for simplicity:

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs + Ht, where Ht =

∫ t

0

c+
s

sα
ds,

1
2 < α < 1. (B.69)

The increment of Ht over the i-th interval is given by

Hi∆n − H(i−1)∆n
=
∫ i∆n

(i−1)∆n

c+
s

sα
ds = Ci∆1−α

n f(i; α), (B.70)

for some constant Ci, where f(x; θ) = x1−θ − (x − 1)1−θ is a monotonically decreasing function

over [1, ∞) with f(1; θ) = 1 and limx→∞ f(x; θ) = 0 for all 0 < θ < 1. There exists an unique

integer Kn defined as

Kn = max
i

{
i ∈ Z+, 1 ≤ i ≤ n : f(i; α) ≍ ∆α− 1

2
n

}
. (B.71)

The mean value theorem indicates

f(Kn; α) = K1−α
n − (Kn − 1)1−α = (1 − α)(Kn − ε)−α, (B.72)

for some ε ∈ (0, 1). It is therefore satisfied that

Kn ≍ ∆
1

2α
−1

n . (B.73)

The role of H is no smaller than the diffusion component over the first Kn intervals, while

it starts to be swamped by volatility from the (Kn + 1)-th interval because its contribution

vanishes in the limit. Depending on the asymptotic order of H, we decompose the RRDV over

[0, t] into two complementary parts:

V̂t,n = 1
Λ2

Kn∑
i=1

(wi − |ri|)2 + 1
Λ2

n∑
i=Kn+1

(wi − |ri|)2 = V̂[0,Kn∆n] + V̂[Kn∆n,t]. (B.74)
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For all 1 ≤ i ≤ Kn, we have

wi = sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs + Hτ ′ − Hτ

∣∣∣∣∣ ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+ ∣∣∣Hi∆n − H(i−1)∆n

∣∣∣ , (B.75)

|ri| =
∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs + Hi∆n − H(i−1)∆n

∣∣∣∣∣ ≥
∣∣∣Hi∆n − H(i−1)∆n

∣∣∣− ∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣ , (B.76)

and thus

wi − |ri| ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+
∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣ = Op

(√
∆n

)
. (B.77)

By adding up all squared range-return differences in the first Kn intervals, we have

V̂[0,Kn∆n] = Op (Kn∆n) = Op

(
∆

1
2α
n

)
. (B.78)

For the IV over the period which accommodates the first Kn intervals, it holds that

∫ Kn∆n

0
σ2

sds = Op (Kn∆n) = Op

(
∆

1
2α
n

)
. (B.79)

With the triangle inequality, the absolute bias satisfies
∣∣∣∣∣V̂[0,Kn∆n] −

∫ Kn∆n

0
σ2

sds

∣∣∣∣∣ ≤ V̂[0,Kn∆n] +
∫ Kn∆n

0
σ2

sds = Op

(
∆

1
2α
n

)
. (B.80)

For V̂[Kn∆n,t], it holds naturally that

V̂[Kn∆n,t] −
∫ t

Kn∆n

σ2
sds = Op

(√
∆n

)
. (B.81)

Since Kn∆n → 0 under infill asymptotics, the RRDV over [0, t] is equivalent to V̂[Kn∆n,t].

The bias results in Eqs. (B.80) and (B.81) show that the bias of RRDV due to drift burst is

asymptotically negligible and has no impact on the asymtotic distribution in Theorem 3.2. This

completes the proof.
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B.2.6 Proof of Proposition 3.3

Proof. As an analogous result to Proposition 3.2, the bias of RRDV in the presence of persistent

noise can be proved following the same steps with similar simplifying assumptions: There

exists one persistent noise episode [0, 1], which is triggered by some ambiguous information

arriving at time 0, and the funtion g(1) takes the form g
(1)
gj in Eq. (3.22). The process ϵ

(1)
t in Ht

only introduces extra randomness to the duration of persistent noise episode, which shall be

harmlessly ignored.

As shown in Eqs. (56) and (57) in Andersen et al. (2023a), there exists an asymptotic

correspondence between the two models of episodic extreme return persistence, and they are

equivalent with identical asymptotic analyses if we let β = 1 − α. The increment of Ht on the

i-th interval is

Hi∆n − H(i−1)∆n
= f (1)(∆X0, η)

[
(i − 1)β − iβ

]
∆β

n = η∆X0
[
iβ − (i − 1)β

]
∆β

n, (B.82)

where f (1)(∆X0, η) = −η∆X0 with η ∈ (0, 1]. With β = 1 − α ∈ (0, 1/2), the above persistent

noise increment is equivalent to the drift burst increment in Eq. (B.70). Jumps with r = 0

induce the bias of order Op(∆γ+1
n ) = Op(∆n) with γ = 0, which has no impact on the bias

result of RRDV. The proof from here can proceed following the same steps as the proof of

Theorem 5. When the function g(1) = g
(1)
fc , the asymptotic effect of H depends on the smaller

of the two parameters β− and β+.

B.2.7 Proof of Proposition 3.4

Proof. We obtain the asymptotic expansions of Λ2,N and Λ4,N by specializing the general

results in Asmussen et al. (1995) and Dieker and Lagos (2017). Lemma B.4 demonstrates the

asymptotic distribution of the Euler discretization error of one-dimensional reflected Brownian

motion.

Lemma B.4. We denote a reflected Brownian motion by W = ΓW with the reflection mapping

ΓXt = Xt −
(

inf
0≤s≤t

Xs ∧ 0
)

, (B.83)
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where W is a standard Brownian motion that starts from 0. Let W t,N be the embedded

reflected Brownian motion observed at N discrete points, i.e., at ti = it/N for i = 1, 2, . . . , N .

The Euler discretization error of W 1, i.e., ε1,N = W 1 − W 1,N , has a weak convergence to a

nonzero limit:
√

Nε1,N
L−→ Υ, with Υ = min

k∈Z
RU+k, (B.84)

as N → ∞, where R = (Rt)t≥0 is a two-sided Bessel process of order 3, U is a uniformly

distributed random variable on (0, 1) which is independent of R. The scaled discretization

error
√

Nε1,N is asymptotically independent of W , with the R × C([0, 1])-valued random pair

(
√

Nε1,N , W ) L−→ (Υ, W ), where Υ is independent of W .

Lemma B.5. The Euler discretization error of W satisfies

ε1,N = inf
i∈{0,1,...,N}

Wi/N − inf
0≤t≤1

Wt. (B.85)

Given a function g : R → R whose first derivative g′ exists at inf0≤t≤1 Wt and is non-zero

valued, the delta method implies that as N → ∞,

√
N

(
g

(
inf

i∈{0,1,...,N}
Wi/N

)
− g

(
inf

0≤t≤1
Wt

))
L−→ g′

(
inf

0≤t≤1
Wt

)
Υ. (B.86)

Therefore, the expected functional values of discretized infimum can be approximated with the

polynomial expansion as follows:

E
[
g

(
inf

i∈{0,1,...,N}
Wi/N

)]
= E

[
g

(
inf

0≤t≤1
Wt

)]
+ E

[
g′
(

inf
0≤t≤1

Wt

)]
E[Υ] 1√

N
+ o

( 1√
N

)
,

(B.87)

where

E[Υ] = −ζ(1/2)√
2π

≈ 0.5826. (B.88)

The results above enable us to derive asymptotic expansions of the moments of (ω, |c|),

i.e., λp,r = E[ωp|c|r], whose analytical values are summarized in Table B.1, with p, r ∈ N and

0 ≤ p + r ≤ 4.

Corollary B.1. For the moments of (ω, |c|) derived in Appendix B.1, i.e., λp,r = E[ωp|c|r], we
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have the following asymptotic result:

λp,r,N = λp,r + Mp,r
ζ(1/2)√

2π

1√
N

+ o

( 1√
N

)
, with Mp,r = 2pλp−1,r. (B.89)

Proof. It is intuitively clear that the random variable ε1,N in Lemma B.4, for N large, is solely

determined by the behavior of W in a neighborhood of its minimizer t, i.e., the almost surely

unique random time t ∈ [0, 1] at which W attains its minimum value inf0≤t≤1 Wt over the unit

interval.

The results in Lemma B.5 are also convenient to switch from infima to suprema, with

ε1,N = sup
0≤t≤1

Wt − sup
i∈{0,1,...,N}

Wi/N , (B.90)

which is a direct result from sign reversion.

Because the Brownian motion is space-homogeneous and symmetric, it holds that

ωN − ω =
(

sup
i∈{0,1,...,N}

Wi/N − inf
i∈{0,1,...,N}

Wi/N

)
−
(

sup
0≤t≤1

Wt − inf
0≤t≤1

Wt

)

=
(

sup
i∈{0,1,...,N}

Wi/N − sup
0≤t≤1

Wt

)
−
(

inf
i∈{0,1,...,N}

Wi/N − inf
0≤t≤1

Wt

)
L= −2ε1,N ,

(B.91)

and therefore
√

N (ωp
N − ωp) L−→ −2pωp−1Υ, as N → ∞, (B.92)

by the delta method. The equivalence in distribution “L=” in Eq. (B.91) holds because

sup0≤t≤1 Wt − supi∈{0,1,...,N} Wi/N and infi∈{0,1,...,N} Wi/N − inf0≤t≤1 Wt are asymptotically

i.i.d..

For the Euler discretization error of the moment λp,r, we have

λp,r,N − λp,r = E[(ωp
N − ωp)|c|r]

= −2pE[ωp−1|c|r]E[Υ] 1√
N

+ o

( 1√
N

)
= 2pλp−1,r

ζ(1/2)√
2π

1√
N

+ o

( 1√
N

)
.

(B.93)

This completes the proof of Corollary B.1.
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Table B.2 lists the values of “bias factor” Mp,r for all 1 ≤ p ≤ 4 and 0 ≤ r ≤ 3.

Table B.2 Bias factor Mp,r for discrete moment λp,r,N

PPPPPPPPPPp

r 0 1 2 3

1 2 2
√

2
π 2 4

√
2
π

2 8
√

2
π 6 32

3

√
2
π –

3 24 ln 2 14
3

√
π3

2 – –

4 16
3

√
2π3 – – –

This table lists the “bias factor” Mp,r used in asymptotic expansions of λp,r,N with 1 ≤
p ≤ 4 and 0 ≤ r ≤ 3. In the polynomial expansion for λp,r,N , the coefficient for N−1/2 is
Mp,rζ(1/2)/

√
2π.

It is now straightforward to obtain the asymptotic expansions of Λ2,N and Λ4,N in Proposi-

tion 3.4:

Λ2,N = λ2,0,N + λ0,2 − 2λ1,1,N

= Λ2 + (M2,0 − 2M1,1)ζ(1/2)√
2π

1√
N

+ o

( 1√
N

)
= Λ2 + 4

√
2
π

ζ(1/2)√
2π

1√
N

+ o

( 1√
N

)
= Λ2 + 4

π
ζ

(1
2

) 1√
N

+ o

( 1√
N

)
,

(B.94)

Λ4,N = λ4,0,N − 4λ3,1,N + 6λ2,2,N − 4λ1,3,N + λ0,4

= Λ4 + (M4,0 − 4M3,1 + 6M2,2 − 4M1,3)ζ(1/2)√
2π

1√
N

+ o

( 1√
N

)

= Λ4 +

16
3

√
2π3 − 56

3

√
π3

2 + 48
√

2
π

 ζ(1/2)√
2π

1√
N

+ o

( 1√
N

)

= Λ4 +
(48

π
− 4π

)
ζ

(1
2

) 1√
N

+ o

( 1√
N

)
.

(B.95)

This completes the proof.
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B.2.8 Proof of Corollary 3.2

Proof. It follows the same steps as the proofs of Theorem 3.1, 3.2, and Corollary 3.1.

B.3 Supplementary Materials

B.3.1 Simulation Scheme

The numerical results for (Λ2,N , Λ4,N , ΘN )′ with different N are calculated from a large number

of simulated paths of the standard Brownian motion. Each replication generates a sequence of

N + 1 equidistant observations at ti = i/N for i = 0, 1, . . . , N . As N is allowed to span any

natural number except 0 and 1, we adopt the following simulation scheme to efficiently utilize

our computational resources:

i. For N ∈ {2, 3, 4, . . . , 10}, we simulate 109 replications of Wi/N for i = 0, 1, . . . , N .

ii. For N ∈ {11, 12, 13, . . . , 200}, we simulate 108 replications of Wi/N for i = 0, 1, . . . , N .

iii. For N ∈
{
201, 202, 203, . . . , 2000, 2005, 2010, . . . , 5000, 5010, 5020, . . . , 104, 105, 106, 107},

we simulate 107 replications of Wi/N for i = 0, 1, . . . , N .

B.3.2 Discretized Factors

Table B.3 reports the estimation results for the polynomial equation

YN =
k∑

i=0
βiN

−i/2 + ϵN , (B.96)

where YN = (Λ2,N , Λ4,N , ΘN )′ collects the simulated values for all three factors with N ranging

from 11 to 108. The intercepts β0 = (Λ2, Λ4, Θ)′ and the first two coefficients in the vector β1

are obtained from the analytical results in Proposition 3.4. We find that a cubic (resp. quartic)

approximation works very well across all N ≥ 11 for Λ2,N (resp. Λ4,N or ΘN ), as indicated by

the root-mean-square error (RMSE) and R2.
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Table B.3 Polynomial regression results for discrete factors

Coefficients Λ2,N Λ4,N ΘN

β0 Λ2 Λ4 Θ
β1 4ζ(1/2)/π (48/π − 4π)ζ(1/2) 1.6618
β2 1.7429 6.8076 1.7371
β3 -0.6999 -6.3635 1.0395
β4 – 2.8711 5.4477

RMSE (×104) 0.6088 1.6358 1.3555
R2 0.9998 0.9999 1.0000

Estimated coefficients for the polynomial regression model YN =
∑k

i=0 βiN
−i/2 + ϵN with

weighted least squares. YN = (Λ2,N , Λ4,N , ΘN )′ collects the simulated values for all three factors
with N ranging from 11 to 108. The intercepts β0 and the first two coefficients in the vector β1

are from the analytical results in Proposition 3.4.

We next provide a practical instruction on the selection for all factors with different N ∈ N>1:

• Use the simulated values in Table B.4 for N ∈ {2, 3, . . . , 10}.

• Use the polynomial approximation with coefficients listed in Table B.3 for all N ≥ 11.

Table B.4 shows the simulated values for (Λ2,N , Λ4,N , ΘN )′ with N ranging from 2 to 10,

which achieve the highest level of precision within our simulation schemes in Appendix B.3.1.

Table B.4 Simulated values for discrete factors

N Λ2,N Λ4,N ΘN

2 0.0908 0.0567 5.8696
3 0.1486 0.0945 3.2809
4 0.1926 0.1304 2.5170
5 0.2277 0.1631 2.1457
6 0.2567 0.1926 1.9224
7 0.2812 0.2192 1.7712
8 0.3023 0.2432 1.6616
9 0.3206 0.2650 1.5777
10 0.3368 0.2849 1.5110

Simulated values for Λ2,N , Λ4,N , and ΘN with N ranging from 2 to 10. For
the detailed simulation scheme, see Appendix B.3.1.
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B.3.3 Monte Carlo Bias Results of Other Estimators

In addition to the Monte Carlo bias results in Section 3.5.2, Tables B.5 to B.7 report the

relative bias (%) in “continuous time” of the TRV estimator of Mancini (2009) and the two DV

estimators of Andersen et al. (2023a), respectively. The choices of truncation parameters for

TRV and DV are in line with Section 3.5.3.

Table B.5 Monte Carlo bias results (%): Truncated realized volatility (TRV)

Panel A: CTRV
ζ = 4

Gradual Jump with an
Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25
1 -0.14 0.51 0.56 0.56 0.85 0.89 0.94 0.58 0.72 0.83
5 -0.18 2.12 2.02 1.80 3.46 3.19 2.88 2.55 2.72 2.60
10 -0.16 3.66 3.36 2.83 6.05 5.39 4.74 4.56 4.58 4.23
30 -0.19 8.83 7.63 5.92 15.07 12.58 9.90 9.96 10.08 9.36
60 -0.27 15.09 12.55 9.14 24.87 19.93 15.29 17.21 15.29 15.83
120 -0.35 27.92 22.02 16.02 42.97 35.15 25.04 34.72 29.33 21.38
180 -0.28 32.40 25.29 16.85 61.86 49.50 35.73 30.59 29.20 21.88
300 -0.39 43.35 31.71 19.63 96.99 78.29 56.19 42.98 31.45 28.53

Panel B: CTRV
ζ = 3

Gradual Jump with an
Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25
1 -3.06 -2.45 -2.35 -2.25 -2.19 -2.15 -2.05 -2.44 -2.27 -2.10
5 -3.09 -1.02 -1.05 -1.08 0.05 0.03 0.07 -0.73 -0.55 -0.59
10 -3.08 0.29 0.16 -0.17 2.30 1.69 1.27 0.93 0.95 0.75
30 -3.12 4.43 3.56 2.19 9.24 7.24 5.54 5.56 5.27 4.60
60 -3.20 9.36 7.02 4.32 17.76 14.74 11.22 11.10 9.64 8.89
120 -3.29 17.76 13.51 9.09 29.81 22.18 14.27 21.30 19.47 13.72
180 -3.37 22.29 16.48 10.47 44.94 34.00 23.32 23.20 19.37 16.88
300 -3.68 32.41 23.52 14.47 72.39 54.66 37.25 26.24 23.27 24.39

Relative bias (%) of the truncated realized volatility (TRV) estimator of Mancini (2009) constructed from 1, 5, 10, 30, 60, 120,
180, and 300-second intervals for 2000 days. The truncation threshold for returns in all intervals is CTRV

ζ

√
∆nMedRVt,n,

with CTRV
ζ = 4 or 3. The DGP is the Heston model in Eq. (3.38), and we follow the persistent noise model of Andersen et al.

(2023a) to simulate the three different patterns of episodic extreme return persistence.

B.3.4 Monte Carlo RMSE Results of Other Estimators

In addition to the comparison of finite-sample performances among RRDV and the main

competitors TRV and DV, we also consider two traditional IV estimators, i.e., RV and RBPV,

and also TRV and DV with less aggressive choices of truncation threshold. The RMSE results

are shown in Table B.8.
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Table B.6 Monte Carlo bias results (%): Differenced-return volatility (DV)

Panel A: CDV
ζ = 4

√
2

Gradual Jump with an
Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25
1 -0.15 -0.10 -0.09 -0.08 -0.04 -0.09 -0.04 -0.15 -0.11 -0.01
5 -0.22 -0.08 -0.14 -0.01 -0.01 0.09 0.15 0.12 0.16 0.11
10 -0.18 -0.24 -0.23 -0.09 0.53 0.35 0.67 0.46 0.16 0.13
30 -0.24 0.08 -0.23 -0.04 0.37 0.58 1.26 1.65 1.03 0.87
60 -0.39 1.30 -0.41 -0.59 1.59 2.89 4.62 4.60 1.55 1.86
120 -0.50 6.58 6.34 0.76 9.70 9.81 8.61 15.33 12.94 2.99
180 -0.47 8.80 1.21 -1.02 14.43 11.35 9.74 16.16 11.74 2.16
300 -1.02 23.35 8.80 -0.33 30.23 23.24 19.18 40.15 17.62 8.58

Panel B: CDV
ζ = 3

√
2

Gradual Jump with an
Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25
1 -3.05 -2.88 -2.81 -2.65 -2.86 -2.83 -2.67 -2.95 -2.90 -2.64
5 -3.12 -2.63 -2.48 -2.22 -2.37 -2.10 -1.75 -2.62 -2.45 -2.21
10 -3.10 -2.47 -2.28 -2.07 -1.76 -1.77 -1.52 -2.14 -1.97 -2.02
30 -3.14 -1.88 -1.69 -1.59 -0.82 -0.70 -0.27 -1.11 -1.26 -1.33
60 -3.32 -1.17 -1.11 -1.45 0.83 1.58 2.17 -0.08 -0.80 -0.72
120 -3.53 1.68 1.79 -0.24 5.51 5.10 3.92 5.21 4.33 1.07
180 -3.56 0.81 -1.65 -2.28 4.49 2.85 2.19 5.49 3.10 0.41
300 -4.15 6.29 -0.81 -2.87 7.30 5.31 4.77 14.24 8.92 3.81

Relative bias (%) of the differenced-return volatility (DV) estimator of Andersen et al. (2023a) constructed from 1, 5, 10,
30, 60, 120, 180, and 300-second intervals for 2000 days. The truncation threshold for all first-order differenced returns is
CDV

ζ

√
∆nMedRVt,n, with CDV

ζ = 4
√

2 or 3
√

2. The DGP is the Heston model in Eq. (3.38), and we follow the persistent
noise model of Andersen et al. (2023a) to simulate the three different patterns of episodic extreme return persistence.
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Table B.7 Monte Carlo bias results (%): Generalized differenced-return volatility (DV1−3)

Panel A: CDV
ζ = 4

√
2

Gradual Jump with an
Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25
1 -0.15 -0.07 -0.08 -0.06 -0.01 -0.03 0.03 -0.07 -0.05 0.02
5 -0.23 -0.02 -0.03 0.09 0.09 0.12 0.25 0.29 0.37 0.32
10 -0.23 0.12 -0.11 0.23 0.54 0.52 0.76 0.65 0.72 0.81
30 -0.39 0.68 0.71 0.90 1.40 1.42 1.93 2.58 2.63 2.81
60 -0.67 2.21 1.34 1.16 4.32 5.35 6.48 6.65 4.03 5.95
120 -1.18 14.01 9.98 5.26 12.02 10.99 9.50 17.83 19.46 8.14
180 -1.44 12.72 4.62 1.89 24.31 21.09 17.93 26.73 16.28 7.08
300 -2.27 31.54 11.95 3.89 57.17 48.30 38.20 52.08 30.39 14.81

Panel B: CDV
ζ = 3

√
2

Gradual Jump with an
Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25
1 -3.06 -2.89 -2.80 -2.64 -2.84 -2.80 -2.66 -2.90 -2.82 -2.64
5 -3.13 -2.60 -2.48 -2.22 -2.33 -2.12 -1.74 -2.48 -2.25 -2.17
10 -3.14 -2.39 -2.15 -1.98 -1.77 -1.79 -1.60 -2.03 -1.88 -1.74
30 -3.31 -1.51 -1.33 -1.30 -0.67 -0.53 -0.21 -0.39 -0.29 -0.31
60 -3.62 -0.46 -0.61 -0.94 1.45 1.75 1.74 1.88 1.32 1.81
120 -4.14 5.46 3.46 1.92 5.53 4.83 3.53 9.79 10.25 4.78
180 -4.45 3.92 1.89 -0.04 9.35 7.50 6.52 12.95 9.92 4.50
300 -5.53 11.92 4.57 0.87 24.49 20.74 17.37 27.81 10.57 10.49

Relative bias (%) of the generalized DV1−3 estimator of Andersen et al. (2023a) constructed from 1, 5, 10, 30, 60, 120, 180,
and 300-second intervals for 2000 days. The truncation threshold for all first-, second-, and third-order differenced returns is
CDV

ζ

√
∆nMedRVt,n, with CDV

ζ = 4
√

2 or 3
√

2. The DGP is the Heston model in Eq. (3.38), and we follow the persistent
noise model of Andersen et al. (2023a) to simulate the three different patterns of episodic extreme return persistence.
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B.3.5 Monte Carlo RMSE Results with Market Microstructure Noise

In order to examine the impact of market microstructure noise on the finite-sample performance

of RRDV, we augment the Heston model in Eq. (3.38) with an additive heterogeneous Gaussian

noise term, which is in line with the Monte Carlo simulation in Christensen et al. (2022):

Yi = Xi + ϵi, ϵi ∼ i.i.d. N (0, σ̃2
i ), where σ̃i = γ

√
σ2

ti

n
. (B.97)

We set the noise-to-volatility ratio γ = 0.5, which corresponds to a medium contamination level

(Christensen et al., 2014).4

Besides the additive noise, we consider the rounding errors on the price level, i.e., let the

observed prices eYi = eXi+ϵi be further rounded to cents. The observed logarithmic prices are

given as

Yi = ln
([

eXi+ϵi

0.01

]
× 0.01

)
, (B.98)

where the function [x] rounds a number x to the nearest integer.

Table B.9 reports the RMSEs of all selected IV estimators when there exists the heterogeneous

Gaussian noise in Eq. (B.97). For RRDV based on candlestick information obtained from

one-second data, it exhibits noticeably elevated RMSEs compared to the noise-free case when

the candlestick window is small (1 minute), and performs worse than its competitors. This

observation confirms that the range-based estimators are comparatively more susceptible to

noise contamination. However, RRDV regains its superiority as the interval extends slightly

to 2 minutes. For the “sparse” RRDV* based on HLOCs from half-minute data, the RMSE

results do not show significant differences between the noise-free and noisy cases. As discussed

in Section 3.4.1, the implementation of effective discretization error correction facilitates the

construction of RRDV on sparsely sampled observations, and thus enhance its robustness to

market microstructure noise.

4A larger noise-to-volatility ratio, e.g., γ = 1, will not change the qualitative results.
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Appendix C

Appendix to Chapter 4

C.1 Proofs

C.1.1 Proof of Proposition 4.1

Proof. As the claimed result holds for every d = 1, 2, . . ., it suffices to prove the result for d = 1

on the interval [0, 1] with X0 = 0 and some threshold δ adapted to F0, and we shall suppress

the notation of d in this proof for brevity. We start from the celebrated Dambis-Dubins-Schwarz

theorem, which states that all continuous martingales are time-changed Brownian motions under

the IV clock (Barndorff-Nielsen and Shiryaev, 2015), i.e., Xt =
∫ t

0 σsdWs ≡ W̃Vt is a standard

Brownian motion under the V -time Vt =
∫ t

0 σ2
sds. Consider the price durations (xi)1≤i≤Nd

generated by Eq. (4.3), its V -time counterpart can be generated by the same algorithm under

a time change:

∆iV = inf
s>0

{∣∣∣W̃Vi−1+s − W̃Vi−1

∣∣∣ ≥ δ
}

, Vi =
i∑

j=1
∆jV, (C.1)

since the stopping rule commutes with a time change, i.e., |W̃Vi − W̃Vi−1 | = |Xτi − Xτi−1 | = δ.

By the Brownian scaling law:

Zi = ∆iV

δ2 = inf
s>0

{∣∣∣∣W̃ ∗
Ṽi−1+s

− W̃ ∗
Ṽi−1

∣∣∣∣ ≥ 1
}

, (C.2)

where W̃ ∗
Ṽt

= δ−2W̃Vt/δ2 is again a Brownian motion that normalizes the stopping threshold to 1.

By the strong Markov property of the Brownian motion, Zi is independent of Fi−1 and δ ∈ F0.
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The time homogeneity of Brownian motion implies that Zi must have the same distribution

of the first exit time of a Brownian motion B with respect to a symmetric unit interval, i.e.,

inft>0{|Bt| ≥ 1}, and hence (Zi) is a sequence of i.i.d. random variables. This completes the

proof.

C.1.2 Proof of Proposition 4.2

Proof. Similar to the proof of Proposition 4.1, we shall assume d = 1, X0 = 0, and suppress

the notation of d for brevity. We start with an analysis on the sub-σ-field F t. We clearly have

F0 = F0, which implies that δ ∈ F0. Moreover, N(t) is adapted to F t by construction. Since

by assumption V (t) is adapted to F t, the counting process under the IV clock, Ñ(V (t)), is also

adapted to F t. Specifically, both N(t) and Ñ(V (t)) are F t-submartingales, which implies the

following Doob-Meyer decompositions:

N(t) = M(t) + Λ(t), Ñ(V (t)) = M̃(V (t)) + Λ̃(V (t)), (C.3)

where M(t) ≡ M̃(V (t)) are F t-martingales, and Λ(t) ≡ Λ̃(V (t)) are the compensators for

N(t) and Ñ(V (t)), which are F t-predictable strictly increasing processes with the following

representations:

Λ(t) =
∫ t

0
λsds, Λ̃(V (t)) =

∫ V (t)

0
λ̃V (s)dV (s), (C.4)

where λt and λ̃V (t) are F t-adapted, positive-valued, and càglàd processes known as the F t-

conditional intensity processes of N(t) and Ñ(V (t)), respectively (Hautsch, 2011). Since the

two integrals above are identical for all t, we have for any h:

∫ t+h

t
λsds =

∫ V (t+h)

V (t)
λ̃V (s)dV (s). (C.5)
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With the definition of conditional intensity (Definition 4.1, Hautsch, 2011), we have for almost

all t ≥ 0:

λt = lim
h↓0

1
h

∫ t+h

t
λsds = lim

h↓0

1
h

∫ V (t+h)

V (t)
λ̃V (s)dV (s)

= lim
h↓0

V (t + h) − V (t)
h

lim
h↓0

1
V (t + h) − V (t)

∫ V (t+h)

V (t)
λ̃V (s)dV (s)

= σ2
t λ̃V (t),

(C.6)

where we utilize the fact that σ2
t is a càdlàg process to deduce the first limit above, and

one should verify that both sides of the above equation is adapted to F t by assumption. In

particular, the equality λt = σ2
t λ̃V (t) holds for almost all t ∈ [0, 1] except a set with Lebesgue

measure zero, which is enough to ensure the equality of the corresponding integrals.

To connect the conditional intensity process with the conditional density of the durations,

we use the relationship between the conditional hazard function and the conditional intensity,

see, e.g., Eq. (4.1) in Hautsch (2011). In detail, we can write λt and λ̃V (t) in terms of the

F t-conditional hazard function of xi and ∆iV , i.e., for all h ∈ (0, xd,i]:

λτi−1+h = f(h|F i−1)
1 − F (h|F i−1)

, λ̃V (τi−1+h) = f̃(∆iV (h)|F i−1)
1 − F̃ (∆iV (h)|F i−1)

, (C.7)

where f̃(·|F i−1) and F̃ (·|F i−1) are the F i−1-conditional PDF and CDF of ∆iV , respectively.

Integrating the conditional intensities over [τi−1, τi−1 + h], we find that:

− ln(1 − F (h|F i−1)) =
∫ h

0

f(s|F i−1)
1 − F (s|F i−1)

ds

=
∫ ∆iV (h)

0

f̃(s|F i−1)
1 − F̃ (s|F i−1)

ds = − ln(1 − F̃ (∆iV (h)|F i−1)),
(C.8)

from which we deduce that F (h|F i−1) = F̃ (∆iV (h)|F i−1) for all i and h ∈ (0, xd,i]. Finally,

it suffices to notice that, conditioning on F i−1 ⊂ Fi−1, it holds that ∆iV
L= δ2Zi where Zi is

independent of F i−1. Therefore, it implies that

F (h|F i−1) = F̃ (∆iV (h)|F i−1) = FZ

(∆iV

δ2

)
, (C.9)

which proves Eq. (4.9) with the inverse function of FZ(·).
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For Eq. (4.10), we utilize the fact that λt = σ2
t λ̃V (t) holds for almost all t (see Eq. (C.6)).

Substituting Eq. (C.7) into this, with the Jacobian transformation δ−2fZ(δ−2∆iV (h)) =

f̃(∆iV (h)|F i−1), we find that, for almost all h ∈ (0, xd,i]:

στi−1+h =
λτi−1+h

λ̃V (τi−1+h)
= f(h|F i−1)

f̃(∆iV (h)|F i−1)
= δ2f(h|F i−1)

fZ(δ−2∆iV (h)) . (C.10)

Substituting ∆iV (h) = δ2F −1
Z (F (h|F i−1)) into the above yields the desired result. This

completes the proof.

C.1.3 Proof of Corollary 4.1

Proof. Similar to the proof of Proposition 4.1, we shall assume d = 1, X0 = 0, and suppress

the notation of d for brevity. The relation xi = γ−1
i−1δ2Zi implies the following relations of the

conditional PDF and CDF of xi and Zi:

F (h|F i−1) = FZ

(
hγi−1

δ2

)
, f(h|F i−1) = γi−1

δ2 fZ

(
hγi−1

δ2

)
. (C.11)

We substitute the above F (h|F i−1) and f(h|F i−1) into Eq. (4.10):

στi−1+h = δ2f(h|F i−1)
fZ(Gi(h)) =

γi−1fZ

(
hγi−1

δ2

)
fZ

(
F −1

Z

(
FZ

(
hγi−1

δ2

))) = γi−1. (C.12)

This completes the proof.
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