
Self-Adaptive Systems Challenges
in Delivering Object-Based Media

Barry Porter, Paul Dean, Nicholas Race
School of Computing and Communications

Lancaster University, UK
Email: {b.f.porter,p.dean1,n.race}@lancaster.ac.uk

Mark Lomas, Rajiv Ramdhany
BBC R&D

UK
Email: {Mark.Lomas01, Rajiv.Ramdhany}@bbc.co.uk

Abstract—Multi-agent, decentralised, and collective self-
adaptive systems have been studied in a range of domains
from smart-cities to the social dynamics of organisations. We
present a novel application for research in this area, with the
emerging distributed systems field of object-based media. Unlike
traditional media, which is delivered over the Internet as pre-
encoded compressed video segments, object-based media divides
a media experience into its constituent parts, such as presenters,
actors, backgrounds, and information overlays. These elements
are then rendered and composited on-demand for each user,
to support highly customisable experiences. We analyse the
distributed systems challenges of delivering object-based media in
terms of self-adaptive systems, and present work on the prototype
technology we are using to explore potential solutions.

I. INTRODUCTION

Multi-agent, decentralised, and collective self-adaptive sys-
tems have been studied in a range of domains, for example in
autonomous drone coordination [1], resource sharing [2], vehi-
cle traffic routing [3], or social dynamics of organisations [4].
We present a novel distributed systems challenge of object-
based media delivery as an application domain for these
research fields. This kind of system requires both collective
and multi-level decision making at large scales.

Traditional media experiences are delivered as single-video
streams via HTTP-carried segments (e.g. using MPEG DASH
or HLS). Clients request a given video and it is delivered from
server-side storage, either from disk or from a memory cache,
in fixed-size segments. While DASH has a degree of adap-
tation (changing bitrate/quality depending on bandwidth and
latency between the server and client), this works essentially
in a point-to-point client/server model where decision-making
is trivially negotiated between those two single points and is
typically based on network metrics alone.

In contrast to the above, object-based media is a novel
media production and delivery approach being explored across
the media industry [5]. In this approach, each element of a
media experience is captured and stored as an independent
object. In a weather forecast, for example, the presenter will
be captured and stored separately, as will the weather map,
subtitles, overlays like meteorological data, and alternative
presenters such as signers for hearing-impaired viewers. These
different media objects are then rendered into frames in
real-time for each user depending on how they configure
the experience. An example object-based weather forecast is

shown below, with some of its individual media objects and
one of the composed render permutations. This example is
formed from one video stream (presenter), two dynamically-
drawn animation streams (map and time-of-day), and subtitles.

Producing, storing, and delivering media in this way sup-
ports an unprecedented level of user-customisation of a media
experience. Extending our weather example, we might imagine
small configuration changes like turning sign-language pre-
senters or subtitles on and off, or more dramatic changes
such as swapping the presenter to a children’s TV character,
changing the map and meteorological data to a more child-
friendly representation, or using real-time rendered digital hu-
man presenters [6]. We could also consider blending a weather
presentation with augmented reality, allowing a user to point
their smartphone camera outside to see how it will look in
the weather for the week ahead alongside the general weather
presentation. Considering other kinds of media experience, we
might imagine drama productions with branching narratives,
virtual-reality blended experiences placing viewers and their
friends into scenes, or highly configurable sports programming
with custom overlays and interpolated camera positions.

While this approach to media production and delivery offers
a broad range of new media experience possibilities, it also



Appears at ACSOS 2024 Author review draft version, July 2024

requires a fundamentally different approach to the network and
compute needed to realise it. Because each media frame in a
highly-customisable experience requires real-time rendering,
for example, in a simple implementation client devices must
be powerful enough to render and present media frames from
their constituent parts – potentially including complex 3D
rendering. In cases where clients do not have this capability,
compute must be offloaded to cloud or edge devices. Offload-
ing is expensive for the media provider, however, and must
be made cost-effective and sustainable by sharing rendered
outputs across clients where possible. This must be achieved
at scales of millions of users watching a wide range of media
experiences (and their permutations) at the same time.

We are exploring this challenge in collaboration with the
BBC, which operates the iPlayer platform providing between
100,000 and 800,000 simultaneous media streams over any
given 5-minute window, depending on the time of day. These
streams are delivered to a wide range of end-user devices with
highly varying hardware capabilities, including mobile phones,
traditional computers, games consoles, and smart TVs.

In this paper we introduce this domain as a novel challenge
in self-adaptive systems, particularly for collective decision
making and multi-level decision making at large scales and
with potentially high system dynamics. The contributions are:

1) To provide a definition of the problem domain, and how
this definition might suggest initial solution directions

2) To present our prototype platform, which supports con-
tinuous adaptation of the placement of compute, and
multiple locales of decision-making control

3) To present a research roadmap towards real-time collab-
orative decision-making at scale in this domain

In the remainder of this paper we present a problem defi-
nition, our current prototype with its decision control points,
and our future work plan.

II. NETWORK DELIVERY OF OBM

In this section we define the compute and network delivery
challenge of object-based media (OBM), in the context of
self-adaptive systems. We begin with a general introduction
to OBM, then present our system model, and lastly define the
problem space in the context of this model.

A. Object-Based Media and Customisation

We assume media is captured as a set of distinct media
objects. These objects could, for example, be a presenter, sub-
titles, animated map, a camera angle, a 3D mesh with lighting
information, or a narrative branch. These media objects may
be stored across a range of different media servers, and may
include meta-data about how to compose them with other
kinds of media objects in a natural-looking way.

Drawing on this set of media objects, there are two broad
dimensions of media customisation: temporal and spatial.
Temporal customisation includes actions such as the dynamic
editing of a programme to a given duration, such as reducing
a documentary to half of its total length while retaining the
narrative essence, or could include dynamic ordering of a show

Content
Distribution
Servers

Compute
Offload Servers

User
Devices

Fig. 1. Compute resources and their interactions. Content distribution servers
stream individual media objects to where they are needed (either clients or
resource-offload sites). Resource offload sites host rendering tasks for clients.

such as focusing on particular parts of a sports highlights
presentation. Spatial customisation occurs when changing the
composition of a scene, for example to change the presenter,
enable information overlays, change the camera angle to either
a physical or interpolated one, or otherwise change objects in
the scene that are visible. Both kinds of customisation require
a degree of dynamic rendering of each frame of a media
experience to match the viewer’s preferences.

B. System model

We next present our system model, from the physical re-
source landscape to user behaviour and degrees of uncertainty.

1) Network and compute infrastructure: We assume we
have a number of (i) media source servers, (ii) compute
resource servers, and (iii) client devices. Media sources simply
allow individual media objects to be streamed by time index,
and would typically be realised as a content distribution
network; compute resource servers allow rendering compute
tasks to be migrated onto/off of them; and client devices are
where a media experience is actually shown to a viewer.

The computation power of each resource server and client
device may be highly variable, and may include CPU-only or
CPU+GPU rendering support, varying amounts of memory,
and varying levels of network bandwidth and latency. The
geographical distribution of compute resource servers may not
be harmonious with the set of client devices, such that network
latencies between a subset of clients and available compute
resources may be prohibitive to allow their use. The network
characteristics of individual client devices may vary widely,
from mobile devices on 4G connections to high-performance
desktop computers with fibre-optic broadband.

We assume that users will only allow any client-device-
resident computation to be used for their own media viewing,
avoiding sharing their own device’s compute with other view-
ers. This resource architecture is illustrated in Fig. 1.

2) User behaviour: Although OBM is not yet in wide
distribution, we can approximate user behaviour models from
how the traditional media-consuming population behaves.

The BBC’s iPlayer streaming platform has an average of
3,200 programmes (36,000 episodes) available to choose from,
with an average run-length of 81.96 minutes (ranging from
5 to 239 minutes). Overall, in any given 5-minute window,

2



Appears at ACSOS 2024 Author review draft version, July 2024

between 2.5TB and 155TB of data is being streamed from
BBC content distribution servers, at low and peak times
respectively, with a total of between 152,000 and 840,000
streams being active. Most of the content is delivered via
DASH-based adaptive bit rate (ABR) streaming, where each
client climbs up/down the ABR ladder to suit their bandwidth
constraints. On average, bitrates to individual clients vary
between 1.3 Mbps and 5.7 Mbps. The infrastructure to support
this delivery involves multiple different CDNs with a wide
range of locations throughout the UK.

Traditional media delivery is almost entirely network-
bound, rather than the additional compute-bound nature of
OBM, but we can draw at least some inferences from this data
around the volume of content access and potential compute
load for OBM. Beyond the above statistics, the additional
OBM factors are (1) the compute power of each user/client
device is relevant to how much infrastructure support each
user needs to access a given experience; and (2) users will
have a set of different personalisation preferences for each
media experience, which specialise each programme per-view
in a large number of different ways.

3) Types of Compute: The types of compute task involved
in rendering a media experience are highly variable, from
lightweight tasks to far more resource-intensive ones.

Lightweight tasks include compositing partial frame ele-
ments into a full frame (where each element is an RGBA
texture), or showing simple overlays such as sports statistics.

More intensive tasks include rendering a synthetic human
presenter, dynamically relighting an object to appear natural in
a scene, or depth-mapping a user’s current physical environ-
ment for augmented reality experiences. These compute types
may be able to render outputs at multiple different quality
levels, where lower-quality renders are cheaper to produce and
may also be faster to transport to a requesting user.

4) Degrees of Uncertainty: The use of a self-adaptive
solution implies that an application domain has one or more
degrees of uncertainty. Those present in media delivery are:

• The user set viewing the same experience (set UE).
• How many of those users have selected the same cus-

tomisation options (set UEC)?
• How many of those users are watching the same time

index of the media experience, within a threshold of +/-
t seconds (set UECt)?

• How many of those users have insufficient local com-
pute power to render some aspect of an experience
(UECt.offload)?

• The current network latency & bandwidth between each
user and each theoretically viable compute-offload site in
the set OSv of offload sites which could be latency-viable
for that user in the absence of any network contention/

• What is the likely cache-hit-ratio for cached rendered out-
puts at each of OSv relative to a given client within UEC
(i.e., which sites have cache frames that are relevant to a
given client’s intended playback)?

• What is the current compute resource availability at each
of OSv to render the desired aspect of the experience?

The membership of set UECt.offload is dynamic over
the course of a day for each media experience, while the
membership of set OSv and their likely cache hit ratios is
dynamic per-experience and per-user as a factor of both a
single user’s behaviour and that of all other users of the same
streaming system (where users with the same requirements
may be able to re-use rendered outputs via caching).

C. Problem Definition

Drawing on the above system model elements, we can
derive an abstract problem description as follows.

1) User Perspective: User devices, based on a user’s spe-
cific customisation of a media experience, may decide whether
or not to attempt to offload associated compute per-experience-
element to available offload sites. The rendering of a given
media experience is composed of various compute types, some
of which may gain a higher offload benefit to others (reducing
cost to the user’s own device to a greater or lesser extent).

Some kinds of offload may present trade-offs where the
pressure on one hardware aspect of a user’s device is decreased
at the cost of increasing pressure on another aspect of that
device; for example rendering a 3D mesh on the user’s device
will use relatively little network to deliver the vertices of the
mesh but will require significant compute to render and light
the mesh; rendering a 3D mesh into on another device into a
pixel stream, by comparison, uses very little local compute but
requires far more network transport to encode and deliver the
rendered artefact as a set of pixels. Balancing these resource
consumption trade-offs is a key challenge.

2) Infrastructure Perspective: The infrastructure provider
has a set of users who want to watch a set of experiences. The
provider has a set of potential offload locations that they can
pay for, but only a subset of these will be active at any time.
Because network latency is a factor in quality of experience,
it may be that only end-user devices are able to make quality
measurements and so may need agency over which offload
site(s) they actually use from a set of potential options.

For those users who have a preference to offload compute,
the provider will wish to co-locate as many such users as
possible on the same offload sites to reduce overall operating
cost. To make this viable, the provider will want to be able to
share compute results between those users as much as possible.
For example, if 100 users are watching a weather presentation
with the same synthetic presenter, each sequential rendered
frame of that presenter may be the same for each user. It would
then be beneficial to have the presenter-rendering task for all
of those users placed on the same offload site; this gives a 1:99
render:re-use ratio and uses the smallest amount of compute.
This only works, however, if that offload site is in the viable
set for all users in terms of latency and bandwidth. It also only
works if those users are watching a similar-enough time index
of the stream (otherwise cached frames will likely have been
evicted/replaced by other more-recent cached elements).

The delivery provider’s task is therefore to matchmake users
and offload sites, while network characteristics are changing,
the user cardinality per media experience is changing, and the

3



Appears at ACSOS 2024 Author review draft version, July 2024

local decisions made on each user device may be changing in
terms of which render tasks are worth offloading.

3) Centralised to decentralised solutions: A wide range of
solutions can be envisaged to tackle the compute-placement
problem at scale, on a spectrum ranging from entirely cen-
tralised to hierarchical and entirely decentralised.

With perfect knowledge and infinite decision-making time,
for example, a single centralised agent could solve the above
matchmaking problem. Each time a new media request arrives
from a user, the centralised agent would consider all in-
progress streams, re-compute the ideal distribution of offloaded
compute across available resources, considering latency be-
tween clients and each offload site, and apply the new ideal
compute landscape across the set of available resources. Such
a centralised agent has two problems in practice: knowledge of
the system will be partial, and takes time to collect / refresh;
and decision-making time must be low to keep users engaged
(i.e., on the order of seconds rather than minutes).

A decentralised solution may involve the infrastructure
provider offering a set of possible offload sites to each user,
and allowing client devices to decide independently which
offload site(s) to use at which times. This allows clients to
use their own measurements of experience quality, and allows
fast decision-making by each individual client considering
its own requirements. Such an entirely decentralised solution
invites hysteresis and oscillation, however, as each client tries
offloading different aspects of rendering to different possible
locations, without knowledge of how other clients’ similar
tests may be impacting the observed effects.

Hybrid solutions, meanwhile, such as hierarchical organisa-
tions, may offer a desirable mixture of both of these extremes.

III. PROTOTYPE

We have built a prototype OBM delivery platform using
the Dana component-oriented language [7] which allows us
to hot-swap components seamlessly at runtime. Many of the
components of our delivery platform wrap low-level hardware-
accelerated rendering libraries developed by BBC R&D.

In this section we describe the core architecture of our proto-
type, including how adaptation for compute offload is realised,
and also discuss the points at which decision-controllers can
be introduced, from centralised to decentralised.

A. Core architecture

Our system is divided into its application logic and distribu-
tion / adaptation logic. The application element is written as an
entirely local system without any knowledge of networking or
offload sites. Using component-based adaptation, a meta-level
composer system then governs the wiring of this application-
level system, dynamically injecting network proxies into the
application to offload compute. The composer also interacts
with wider distributed infrastructure to gain data on available
resources and participate in offload decision-making.

A simplified view of our application architecture is shown
in Fig. 2. Within the shaded box this contains a media
player, which includes a render loop and a GUI, and a set

App

MediaPlayer

MediaTrack:map

Track

MediaTrack:time

Net.Proxy

MediaTrack:presenter

Track

App

Composer MediaServer

OffloadSite

OffloadSite

OffloadSite

Load & manage

Track

Fig. 2. Our system under the control of a composer, which communicates
with remote MediaServer and OffloadSite instances, and determines when to
inject network proxies to local media tracks to move their rendering to a
remote server. Dashed lines delineate different host machines over a network,
and dashed arrows indicate network communication.

of media track implementations such as map and presenter.
Each track implementation uses a common MediaTrack
interface which different track types can implement to render
their associated element of a media experience. The presenter
track is realised as a DASH video stream, while the map is
composed in real-time from a set of individual map tiles which
are stitched together and zoomed or panned throughout the
presentation according to an animation instruction file, and are
overlaid with weather icons at appropriate timings. The time-
of-day image is also drawn dynamically as a timed animation
using appropriate image assets.

Our media player instantiates a set of media tracks, the
details of which are configured by an experience definition
file, and uses a rendering loop which iterates through each
track. The render loop runs at a fixed framerate (e.g. 60fps),
and simply requests the current frame to render from each
media track for the current playback time. A media track
returns a render command list, which contains primitive render
instructions, such as draw text at a given X/Y position, or
draw an image at an X/Y position with suitable transforms.
This approach is sufficiently flexible that we can seamlessly
substitute a track that delivers mesh-style rendering commands
with one that delivers pre-rendered frames of pixels.

Outside our core application business logic, our platform
uses a set of management and distributed systems components
to support compute offloading, shown outside the shaded
area in Fig. 2. A composer program wraps the media player
application, loading and wiring its components, and can dy-
namically inject network-proxy versions of each media track.

For network proxying we have an implementation of the
MediaTrack interface which makes network calls to a
remote server, acquiring rendered frames remotely rather than
generating them on the local device. These remote frames
can either be delivered as primitive render commands (so the
offload site is only computing positioning information), or
can be delivered as rendered pixels which are encapsulated as
render commands. We use our component-based platform to
then seamlessly swap a local-host media track implementation,
which renders locally using the playback device’s hardware,

4



Appears at ACSOS 2024 Author review draft version, July 2024

for an offloaded remote instance of that media track.
We use these building blocks to layer an abstraction of

switchable software compositions, similar to the emergent
software systems concept [8], [9]. In this abstraction, the fully-
local version of the media player is one possible software
composition. If we have one available offload site, we then
generate a proxy for each track with that site as its remote
endpoint; each permutation of local and remote proxies then
forms another distinct composition of the media player. We
can then select one of these labelled options, and the client-
side composer will perform the set of adaptations needed to
reach that option (including communicating with offload sites
to set up appropriate instances and data streams). Each time
a new offload site becomes available, or becomes unavailable,
this permutation set grows or shrinks accordingly.

When a user wants to watch a given program, the client
program requests a new stream from the media server. The
media server replies to the client with the experience definition
file (indicating which track implementations to instantiate and
layer, in which order), and content distribution locations for
the case where the client is rendering locally. The composer
program separately contacts the media server to acquire a set
of offload sites that the client is permitted to use. The composer
may occasionally poll the media server during the stream to
update its list of available offload sites.

B. Decision control points

Our platform offers a range of decision control logic ar-
chitectures to decide where to place render-compute logic for
each track of each client, from centralised to decentralised.

To implement an entirely centralised approach, the media
server would maintain a global view of all active clients and
all available offload sites. For a newly-connecting client, the
media server would perform a calculation to determine the
ideal (or a good enough) placement of every track instance
of every client including the new one, akin to a bin-packing
algorithm. The media server would then inform both the new
and existing clients of changes to available offload sites (where
each client is given exactly one offload site for each track, or
potentially no offload sites for some tracks). Clients may either
still choose to use or not use the single available offload site
for each track, or may be actively required to use the available
offload site for each track, depending on the policy.

To implement an almost entirely decentralised approach, the
media server would maintain only a list of resource offload
sites, potentially with an estimate of the compute load of each
one. When a new client connects, the media server would
offer that client a list of (e.g.) 3-5 possible offload sites for
each media track, potentially based on a simple calculation of
geographic network proximity by IP address. The client would
then be responsible for trialling the offload of each media
track’s rendering at each provided offload site to determine
what works best for that client.

Hybrid approaches may use a mixture of the above decision
control points, potentially sharing different granularities of
monitoring data between clients, offload sites, and controllers.

In future work we intend to examine a wide range of differ-
ent control alternatives, at various scales, to understand which
approaches offer the best solutions towards objectives such as
operational cost minimisation for infrastructure providers or
user experience maximisation for audiences.

IV. RELATED WORK

We have presented a novel application domain in which to
explore adaptive decision-making, from centralised to decen-
tralised, and have examined two initial points in this spectrum.
To our knowledge there are three main sub-fields of the self-
adaptive systems research community which may apply to this
domain: multi-agent systems; collective adaptive systems; and
decentralised or hierarchical control theory.

In multi-agent systems, such as the multi-agent reinforce-
ment learning approach [10], researchers examine how co-
operative behaviours can be realised via a set of individual
algorithm instances operating on each agent. There are both
formal methods branches of this research, in which aspects
such as convergence time on an objective are proven under
certain assumptions, and applied methods which may use
fewer assumptions and show probabilistic or best-effort results.
Examples in this space include P-MARL [11], which uses
prediction of environment trajectories to limit the impact of
non-stationary environments on learning rate; and the DPOP
algorithm [12] which uses a dynamic programming approach
to solve the distributed constraint optimisation problem [13].

In collective adaptive systems, or collective learning [14],
decentralised decision logic is designed as an emergent prop-
erty of interactions between humans and software agents.
These approaches are designed to scale well to many partici-
pants, and to yield a global policy that is fair to its participants
while presenting meaningful individual choices over time to
each agent [15]. The objective of balancing a global trait of
fairness while offering individual choices may be mappable to
our application domain, for example where fairness may be
the fair use of available resources, and individual per-agent
choices may be potential offload locations or quality of a
stream (e.g. measured in bitrate).

In decentralised or hierarchical self-adaptation theory, of
which there is a recent survey by Quin et al. [16], agents
attempt to optimise towards an objective function by sharing
selected information using a range of communication overlays
which align with the direction of information travel. This
can involve decentralizing the monitoring, planning, and/or
executing controllers of the system (common design patterns
are captured in [17]), and includes a range of approaches to
knowledge- and control-sharing such as multi-scale feedback
systems [18] and collective management [19].

The above works suggest potential directions to explore,
and while there is a good existing coverage of the higher-
level design space, specific algorithms for our application
domain appear more challenging to identify. In contrast to
many of the above works, the particular features of our
domain are that (i) the quality of an experience is ultimately
measurable only at the client device, though some inference

5



Appears at ACSOS 2024 Author review draft version, July 2024

of likely experience may be possible in the cloud; (ii) we have
high scalability requirements, at around a million concurrent
users; (iii) decision-time for initial placement decisions should
be low (on the order of seconds). In addition to this, our
application domain is required to operate over the real-world
Internet in which delivering messages (such as measurements
or control signals) takes unpredictable amounts of time, the
network is lossy, and the overall deployment environment is
non-stationary. In future work we aim to explore how some of
the above approaches may fit into this problem domain, and
how they compare with our initial results.

V. SUMMARY AND FUTURE WORK

We have introduced object-based media as a novel applica-
tion domain and set of challenges for distributed self-adaptive
systems. We have also presented our prototype technology to
deliver object-based media, which supports dynamic offload-
ing of pluggable track render implementations.

In future work we intend to examine the applicability of
existing theory from the self-* community to solve some of
the challenges we have identified, as well as developing novel
theory for those areas which present new problems.

We will particularly focus on the distributed multi-agent
adaptation problem, in which rapid ‘good enough’ solutions
are found to compute placement, considering large numbers
of geographically dispersed users who are watching related
or partially-related media experiences lending themselves to
compute re-use for resource reduction. This challenge is com-
pounded by the fact that experience quality is measurable only
at the viewing client device, and that we may have compet-
ing objective functions, from resource minimisation in cloud
hosting to experience-quality maximisation for audiences.

The server-side approach to this problem faces issues of
rapid yet high-quality decision-making at scale, and non-
observability of actual client quality-of-experience. The client-
side approach, meanwhile, is open to oscillation effects as
many clients trial the same offload site, causing interference
with each others’ measurements of those sites’ performance.

Placement decision-making is also affected by cache avail-
ability, particularly as producing cached frames comes at
varying cost levels depending on the type of compute needed
– from rendering simple 2D animation frames, to rendering
suitable lit 3D synthetic presenters. This creates a further
constraint set, such that placing client compute at offload
sites that have usable cached frames may offer significant
performance gains, even if those sites have less desirable
network latency. We aim to examine cache-aware placement as
a further step once the core placement challenge is addressed.

We will also examine how research in this domain may
apply to related areas, particularly to other large-scale decision
making challenges in distributed systems with uncertainty
(especially those with temporally-connected streaming data).

ACKNOWLEDGMENTS

This work was supported by UKRI EPSRC and BBC Prosper-
ity Partnership AI4ME: Future Personalised Object-Based Me-
dia Experiences Delivered at Scale Anywhere, EP/V038087.

Our current implementation of OBM delivery relies on
rendering libraries developed by BBC R&D, particularly in
contributions by Mark Lomas, Rajiv Ramdhany, James Shep-
hard, Sebastian Ward, Tim Pearce, and Michael Sparks.

REFERENCES

[1] J. Boubin, C. Burley, P. Han, B. Li, B. Porter, and C. Stewart, “Marble:
Multi-agent reinforcement learning at the edge for digital agriculture,”
in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), 2022,
pp. 68–81.

[2] E. Pournaras, S. Jung, S. Yadhunathan, H. Zhang, and X. Fang, “Socio-
technical smart grid optimization via decentralized charge control of
electric vehicles,” Applied Soft Computing, vol. 82, p. 105573, 2019.

[3] I. Gerostathopoulos and E. Pournaras, “Trapped in traffic? a self-adaptive
framework for decentralized traffic optimization,” in 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2019, pp. 32–38.

[4] C. M. Barnes, A. Ekart, and P. R. Lewis, “Social action in so-
cially situated agents,” in 2019 IEEE 13th International Conference on
Self-Adaptive and Self-Organizing Systems (SASO). Los Alamitos,
CA, USA: IEEE Computer Society, jun 2019, pp. 97–106.

[5] J. Carter, R. Ramdhany, M. Lomas, T. Pearce, J. Shephard, and
M. Sparks, “Universal access for object-based media experiences,” in
Proceedings of the 11th ACM Multimedia Systems Conference, ser.
MMSys ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 382–385.

[6] H. O. Demirel and V. G. Duffy, “Applications of digital human modeling
in industry,” in Digital Human Modeling, V. G. Duffy, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 824–832.

[7] B. Porter and R. R. Filho, “A programming language for sound self-
adaptive systems,” in 2021 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), 2021, pp. 145–150.

[8] R. Rodrigues Filho and B. Porter, “Defining emergent software using
continuous self-assembly, perception, and learning,” Transactions on
Autonomous and Adaptive Systems, vol. 12, no. 3, pp. 1–25, September
2017.

[9] B. Porter and R. Rodrigues Filho, “Distributed emergent software:
Assembling, perceiving and learning systems at scale,” in 2019 IEEE
13th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), 2019, pp. 127–136.

[10] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
MIT Press, 1998.

[11] A. Marinescu, I. Dusparic, and S. Clarke, “Prediction-based multi-agent
reinforcement learning in inherently non-stationary environments,” ACM
Trans. Auton. Adapt. Syst., vol. 12, no. 2, may 2017.

[12] A. Petcu and B. Faltings, “A scalable method for multiagent constraint
optimization,” ser. IJCAI’05. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005, p. 266–271.

[13] F. Fioretto and W. Yeoh, “Distributed constraint optimization problems
and applications: A survey,” Journal of Artificial Intelligence Research,
vol. 61, 02 2016.

[14] T. N. Garavan and R. Carbery, Collective Learning. Boston, MA:
Springer US, 2012, pp. 646–649.

[15] E. Pournaras, P. Pilgerstorfer, and T. Asikis, “Decentralized collective
learning for self-managed sharing economies,” ACM Trans. Auton.
Adapt. Syst., vol. 13, no. 2, nov 2018.

[16] F. Quin, D. Weyns, and O. Gheibi, “Decentralized self-adaptive systems:
A mapping study,” in 2021 IEEE International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2021,
pp. 18–29.

[17] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka, On Patterns for
Decentralized Control in Self-Adaptive Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 76–107.

[18] P. Mellodge, A. Diaconescu, and L. J. Di Felice, “Timing configu-
rations affect the macro-properties of multi-scale feedback systems,”
in 2021 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems (ACSOS), 2021, pp. 100–109.

[19] T. J. Glazier, D. Garlan, and B. Schmerl, “Case study of an auto-
mated approach to managing collections of autonomic systems,” in
Proceedings of the 2020 IEEE Conference on Autonomic Computing
and Self-organizing Systems (ACSOS), Washington, D.C., 19-23 August
2020.

6


