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  Abstract—In the past 20 years, improvements in 
night-time light (NTL) remote sensing have spurred a 
resurgence of interest in the mapping of human economic 
activity. Nevertheless, the full potential of NTL data for 
urban research is constrained by a relatively coarse spatial 
resolution and the blooming effect. Downscaling NTL data 
is a potential solution, aiming to obtain fine-resolution 
nocturnal data with high accuracy. Most existing remotely 
sensed image fusion techniques were developed for optical 
remote sensing images taken during the day. When NTL 
images are compared to optical images, they exhibit a 
greater quantity of dark (low value) pixels, higher levels of 
background noise, and a more obvious blooming effect. In 
this paper, we proposed a spatially non-stationary, 
geostatistical-based downscaling technique (random 
forest area-to-point Kriging) to downscale NTL data 
(from 440m for Delhi and 430m for LA to 130m) while 
accounting explicitly for the point spread function, thus, 
dealing with the blooming effect specific to NTL data. We 
compared several image fusion algorithms for downscaling 
while reducing the blooming effect. Numerical experiments 
on two megacities showed that downscaling was improved 
both numerically and visually by taking the PSF into 
consideration. During the RF regression, the R2 increased 
and the RMSE decreased for both study regions, when 
accounting for the PSF. For the ATPK-based residual part, 
considering the PSF led to increased accuracy of prediction. 
The suggested methodology has the potential to increase the 
detail and accuracy of the NTL data available for modeling 
socioeconomic phenomena at the city scale, with wide 
potential for application in future socioeconomic research. 
Index Terms— Downscaling; Point spread function; 
Random forest; area-to-point Kriging; Satellite night-time 
light imagery; Urban remote sensing 

I. INTRODUCTION 
nocturnal light (NTL) remote sensing data are 
acknowledged widely as being human-oriented, 
indicating the distribution and intensity of human 
activities. This contrasts with the more common optical 

remote sensing data, such as from Landsat and Sentinel, which 
focus primarily on the natural environment [1]. NTL remote 
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sensing has gained significant interest due to its ability to bridge 
the gap between socioeconomic activity and the benefits of 
remote sensing data (standardization, repeat measurement, 
complete coverage). It is frequently utilized to derive objective 
and third-party socioeconomic indicators, such as on poverty 
[2], populations [3], urban built-up areas [4], GDP and energy 
consumption[5]. Urban areas, where economic activity tends to 
concentrate, are ideal places to study with the aim of addressing 
human-oriented issues such as sustainable development. 

The Visible Infrared Imaging Radiometer Suite 
(VIIRS) Day/Night Band (DNB) is one of the most utilized 
sources of NTL data [6]. VIIRS offers fine temporal resolution 
(daily, monthly and yearly images), on-board calibration and 
the avoidance of saturated pixels, and it is free to acquire. In 
comparison, alternative NTL satellite products such as Luojia, 
Jinlin and DMSP-OLS, which have the advantages of either a 
finer spatial resolution or they extend further back in time, are 
commonly commercial products and expensive to purchase [7]. 
Notwithstanding the advantages of VIIRS, the utility of the data 
for scientific and practical applications is limited because of 
their ~500 m spatial resolution. Elvidge et al. [8] stated that a 
minimum spatial resolution of ~100 m should be used in urban 
related applications. This has led to issues (such as low 
accuracy and small correlation) when utilizing NTL imagery 
for mapping populations, built-up areas and economic 
indicators [6]. Moreover, night-time imaging has the overglow 
(or blooming) effect, equivalent to a large point spread function 
(PSF). Hence, there is a need for downscaling NTL imagery, 
and for mitigating the blooming effect. 

Downscaling is the term used to describe a reduction 
in the pixel size of remotely sensed images in the context of 
remote sensing [9]. Downscaling has been undertaken using 
many methodologies and strategies, essentially aiming to 
increase the information richness of the downscaled images. 
Area-to-point Kriging (ATPK) is one such method [10]. It has 
the advantage of absolute coherence, which means that when 
the downscaled image is upscaled to the original coarse spatial 
resolution the results are identical. By including a (global) 
regression term, Wang et al. [11] expanded ATPK and called it 
area-to-point regression Kriging (ATPRK). In ATPRK, 
covariates at a finer spatial resolution are employed in a (linear) 
regression model to predict the response variable. Then, the 
regression model's residuals are downscaled using ATPK. More 
recently, alternative regression methods have been used in the 
ATPRK model; nonetheless, the majority of the current 
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algorithms for fusing remote sensing images are designed to 
fuse optical remote sensing images taken during the day. When 
NTL images are compared to optical remote sensing, they 
exhibit a greater quantity of dark pixels (low values) and more 
background noise [12], [13]. Consequently, it is of great interest 
to confirm the efficacy of conventional ATPK-based optical 
remote sensing techniques for VIIRS image downscaling. 

Sufficiently large correlations between NTL and 
biophysical and/or socioeconomic covariates at a finer spatial 
resolution are required for multivariate downscaling. 
Population data, spectral indices and transport network data are 
examples. Regression models are fitted between the NTL data 
and aggregated (coarse resolution) covariates and then used 
with the fine-resolution covariates as inputs to predict NTL at 
the fine pixel size. According to Ye et al. [4] and Liu et al. [14], 
there is often a non-linear relationship between NTL and its 
covariates, which may render global models unsuitable. The 
capacity of machine learning (ML) algorithms to capture non-
linear relations between NTL and fine-resolution covariates has 
been demonstrated recently [4], [12], [14], [15]. With several 
independent factors, deep neural network (DNN) and RF 
algorithms produced accurate predictions among the 
benchmarked techniques. 

The point spread function (PSF) effect is widely seen 
in NTL remote sensing images [16]. It denotes that the signal 
for a certain pixel is the weighted sum of the contribution from 
its surrounding and internal pixels. This leads to a basic 
constraint on the information content of remote sensing images. 
Both the across-track and along-track directions are taken into 
consideration by the two-dimensional PSF function [17]. The 
instrument's optics, the detector, the electronics, atmospheric 
influences, and picture resampling are the primary causes of the 
PSF effect [18]. In places that are homogenous, the PSF effect 
might not be a major concern, but in diverse landscapes where 
mixed pixels predominate, it is essential. To the best of our 
knowledge, the PSF impact in NTL downscaling has not been 
studied yet. Therefore, searching for practical ways to lessen 
the PSF impact in NTL downscaling could provide guidance 
and potentially increase the accuracy for prediction. 

In downscaling, the PSF of interest is not the 
measurement PSF, but rather the transfer function between 
images at the original coarse and target fine spatial resolutions 
[17]. The transfer function is different subtly to the 
measurement PSF. It is equivalent to the difference in 
convolution between the two PSFs used for measurement [17]. 
In the multi-variate scenario, additional data covering the same 
scene at the desired fine spatial resolution are available, despite 
the data being collected using several sensors or at different 
wavelengths. An important source of information for 
calculating the effective transformation PSF is the relationship 
between the coarse and fine resolution data. Research has 
established several approaches for PSF estimation [17]. 
However, the techniques were designed primarily for optical 
remote sensing. Solutions need to be identified that can both 

estimate the PSF for NTL data and work well in scenarios 
involving several fine covariates. 

The major contributions of this paper include: 
1. Random forest area-to-point Kriging (RFATPK) was 

demonstrated for downscaling NTL continua while 
reducing the PSF effect (multivariate case) and 
producing more accurate downscaling NTL 
predictions. 

2. An existing solution was applied to estimate the 
effective transformation PSF for the multi-variate case 
of NTL downscaling. The solution estimates the PSF 
for the NTL band and is also suitable for dealing with 
multiple fine bands.  

3. The proposed solution was applied in two case studies 
with different dominant land uses and different climate 
profiles to provide important guidance for their use in 
future applications. 

The remainder of this paper is divided into four parts as 
follows. The concepts of RFATPK are introduced in Section 2, 
followed by the method of transformation PSF estimation. 
Section 3 presents the findings of the experiments conducted on 
two megacities. The results and associated problems are 
covered in Section 4, along with potential directions for future 
study. Section 5 draws conclusions of the paper. 

II. STUDY AREA AND DATASETS 

A. Study areas 
Case study 1: Delhi, the capital of India, is situated 

along the Aravalli range, with Yamuna in the center and the 
Ganga River on its eastern border. Delhi has a semi-arid 
climate. It is a major international center and a highly populated 
metropolis on the Asian subcontinent, being home to over 16 
million people (~10,400 people per km2). Compared to the 
national average of 31.16%, 93% of the population lives in 
urban areas, indicating the city's fast industrialization and 
urbanization [19], [20]. 

Case study 2: As one of the largest metropolitan 
regions worldwide, the Los Angeles (LA) metropolitan area is 
the second largest in the USA. The U.S. Office of Management 
and Budget defines the Metropolitan Statistical Area (MSA) as 
the combination of Los Angeles and Orange counties, with a 
population of 9,819 million and a land area of 12,562 km² [21]. 
Because single-family detached homes are so common, the LA 
metropolitan region has a high degree of urbanization, a low 
population density, and fragmented retail centers that depend 
on intricate road networks [22]. Based on income, LA is 
classified by the World Bank as a high-income megacity [23]. 
The two study regions are shown in Figure 1. To demonstrate 
the methods more clearly in this paper we used subsets of the 
two megacities as the study regions. 
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Figure 1. The VNP46A3 NTL image for a) Delhi and b) Los Angeles (LA). The darker colors indicate areas with no NTL 
luminosity while the brighter colors indicate areas with higher NTL luminosity. 

B. Datasets 
Multiple sources of data were used in this research. 
1. Black Marbles monthly NTL composites (VNP46A3) 

were obtained from the NASA’s website. The layer 
All_Angle_Composite_Snow_Free, which includes 
data collected during the snow-free time, was utilized 
in this paper. When compared to other composites 
(view zenith angle of 0°–20° and view zenith angle of 
40°–60°), the all-angle composite has the most 
observations [24]. Monthly composite NTL products 
reduce the numbers of outliers and gaps caused by 
clouds, aerosols and poor data quality [25]. 

2. Mean monthly indices and spectral bands were used 
from Landsat 8. Appendix, Table 4 lists the spectral 
indices used in this research. Also, the total area of the 
rasterized building footprint dataset for the United 
States [26]. The data were downloaded using the 
Google Earth Engine (GEE) platform [27]. 

3. The Big Geospatial Data Platform OpenStreetMap 
(OSM) hosted on the Geofabrik website provided the 
road network for the research years ([28], accessed on 
June 10, 2023). 

4. The Global Human Settlement Layers, which included 
the Global Human Settlement built-up surface grid 
(GHS-S), average building height (GHS-H) and 
population (GHS-P) were utilized only for Delhi  
([30], accessed on June 10, 2023). 

5. Annual population count statistics from the website of 
Oak Ridge National Laboratory ([31], accessed on 1 
March 2023). We made the assumption that there were 

no annual changes to the population count. LandScan 
produces demographic statistics that are regarded as 
some of the best available. 

III. METHODOLOGY 
The proposed methodology is shown in Figure 2 as a 

sequence of actions intended to achieve the study goals. For 
downscaling without accounting for the PSF, the target variable 
and covariates were chosen first, and the covariates were 
upscaled to match the spatial resolution of the target variable 
(NTL). The residuals were then extracted as the difference 
between the RF regression model predictions and the 
observations. Third, ATPK was used to downscale the RF 
model residuals. Finally, the NTL raster layer with a spatial 
resolution of 130 m was created by combining the model 
prediction with the downscaled residuals. 

To estimate the PSF (more specifically transfer function) 
of the NTL data the following steps were taken: 

1. All fine spatial resolution covariates were convolved 
with a Gaussian PSF (with scale parameter σi) and 
spatially aggregated using a mean function to the 
coarse spatial resolution of the reference NTL. 

2. For the NTL band, a RF regression model was fitted 
between the multiple aggregated covariates and the 
observed coarse image (e.g., the NTL). The R2 was 
calculated. 

3. Step 2 was conducted for all parameter candidates of 
σ (from 0.3 to 2 standard deviations * the pixel size, 
with step 0.1). For the visited coarse band, the optimal 
σ was estimated as the one leading to the largest R2 in 
step 2. 
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Figure 2. The methodology for applying RFATPK for downscaling NTL imagery. The acronyms CR and FR represent coarse 
resolution and fine resolution, respectively.

A. Preprocessing of spatial data 
All data were re-projected to the EPSG:7760 and 

EPSG:3309 reference systems, for Delhi and LA, respectively. 
We removed tunnels from the provided road network vector 
data as we hypothesized that no light inside a tunnel can be 
detected from the sensor [32]. Moreover, using a brute-force 
approach, we searched all the possible combination of road 
classes and found the optimal one that maximizes the 
correlation with the NTL. Then, we rasterized the data using a 
130 m-by-130 m pixel size raster. 

Because the LuoJia1-01 satellite imagery has a similar 
spectral range to the NPP-VIIRS NTL, it was used to validate 
the downscaled NTL data. The Luojia1-01 imagery was, first, 
georeferenced using 30 carefully selected control points 
throughout each study region. The images were then re-
projected to one of the projection systems, contingent upon the 
study region, and resampled using the spatial average to 130 m 
[33]. The following equation was then used to convert the 
image DN to radiance values, based on laboratory calibration 
data from the satellite data website: 
𝑟𝑟 =  DN3 2⁄ ∙ 10−10 ∙ 𝑤𝑤 (1) 

where w is the bandwidth, measured in Wm-2sr-1, DN is the 
digital number acquired by Luojia1-01, and r is the radiance 
value. Since Luojia1-01's radiometric range is 0.46-0.98 µm, w 
equals 0.52 µm. 

The following data pre-processing procedures were 
applied to the monthly NTL product: (1) cloud removal and (2) 
outlier detection. In line with the cloud quality flag, we filtered 
the NTL radiance to retain only pixels with no cloud or cloud 
shadow detected. Moon illumination fractions were corrected, 
and anomalous pixels were examined using DNB quality flags 
once the clouds were cleared. 

In this research, we used a variable selection approach 
to exclude covariates with low prediction power, even though 
RF can handle uncorrelated covariates with the response 
variable. This was accomplished using the R package VSURF. 

It involves a two-step process where the variables are first 
sorted based on a variable importance measure, and the less 
significant ones are removed. Second, a final subset is obtained 
by adding the sorted variables one after the other to the 
regression model. For further information, interested readers 
may consult Genuer et al. [34]. 

B. RFATPK 
Because global regression models, such as the one 

used in ATPRK, makes the assumption that parameters are 
geographically invariant, it cannot fit relationships locally. 
Furthermore, it is possible that the global regression residual 
does not satisfy stationarity requirements (e.g., second-order 
stationarity), which would complicate the Kriging 
interpolation. The Random Forest (RF) is a non-parametric 
ensemble learning approach with high accuracy and resilience 
to multicollinearity, that was developed from the bagging 
algorithm [35]. Using a nonlinear regression model, the 
RFATPK approach considers both the geographical non-
stationarity of the calculated residual NTL and the nonlinear 
correlation between NTL and the covariates. RFATPK 
formulation consists of a trend component as well as a 
regression residual component. 

In the RFATPK technique, a regression model based 
on RF and independent variables at the coarse resolution is used 
initially to predict the geographic trend of NTL at the fine 
resolution. Next, a fine-scale prediction of the residual NTL is 
obtained by downscaling the coarse residual NTL using ATPK. 
B1. RF to estimate the spatial trend 

Due to its high accuracy and low risk of overfitting, 
RF has been used frequently in regression tasks [36]. A random 
vector generated separately and uniformly for every tree in the 
forest determines the values of each tree in a RF, which is a 
mixture of uncorrelated decision regression tree covariates. The 
RF regression approach was used in this research to increase the 
spatial resolution of NTL from 430 m to 130 m. Based on the 
nonlinear connection between the covariates calculated at 130 
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m spatial resolution from a variety of environmental and 
socioeconomic determinants, the original NTL data were 
downscaled. Following Wang et al. [17] the 130 m spatial trend 
of NTL was predicted using the RF-based regression method 
which is summarized as follows: 
Initially, we applied a Gaussian filter to the covariates and then 
we spatially averaged them to match the NTL resolution. The 
filter's standard deviation ranged from 0.3 to 2 times the size of 
the coarse pixel, with a step of 0.1. 

The RF regression approach, which can be stated using 
the following equation, was used to create the multivariate 
nonlinear regression model between the coarse NTL and the 
aggregated covariates: 
𝑍̂𝑍Regression𝑙𝑙 (𝑥𝑥0) = RF(𝒁𝒁𝐾𝐾1,𝒁𝒁𝐾𝐾2, … ,𝒁𝒁𝐾𝐾𝑙𝑙) +  𝑹𝑹 (2) 

The function RF(·) represents the multivariate nonlinear 
regression algorithm between NTL and the K covariates 
(showed in Table 1, depending on the megacity) constructed 
with the RF regression model and R are the coarse-resolution 
regression residuals. 𝒁𝒁𝐾𝐾𝑙𝑙  is the coarse covariate produced by 
upscaling the corresponding fine resolution covariate (or 
spectral band) k using a PSF: 
𝒁𝒁𝑘𝑘𝑙𝑙 = 𝒁𝒁𝑘𝑘𝑙𝑙 ∗ ℎ𝑘𝑘 (3) 

where ℎ𝑘𝑘 designates the transformation PSF between the fine 
and coarse resolution covariates. The RF algorithm was 
implemented using the R package, ranger [37]. 

Two-thirds of the covariates for each tree in the model 
were chosen as training samples using a bootstrap-based 
sampling technique to build the RF-based function 
approximation model. For each bootstrap-based sampling 
procedure, the remaining one-third of the inputs served as out-
of-bag (OOB) data, meaning they were not used in the training 
process [38]. An important parameter is the number of 
regression trees (ntree) in the forest. As the number of trees 
increases, Oshiro et al. [39] claim that the model's performance 
eventually reaches a breaking point. Thus, the moment the OOB 
error reached its minimum, we stopped adding extra regression 
trees [36]. In addition, the splitting rule played an important 
role in accuracy improvement, and an appropriate 
significance threshold to allow splitting had to be found [40]. 
The RF-based nonlinear regression model in Eq. 2 can receive 
the 130 m independent variables as direct input. Next, it is 
possible to compute the NTL's downscaled spatial trend at a 
resolution of 130 m. 
B2. ATPK for downscaling residuals 

In the next step of RFATPK, the coarse-resolution 
residuals R yielded in the regression model in the initial step 
are sharpened to a fine resolution using the ATPK algorithm: 

𝑍̂𝑍𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 (𝑥𝑥0) = �𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑹𝑹(𝑥𝑥𝑖𝑖),   s. t.   �𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= 1 
 

(4) 

where R (𝑥𝑥𝑖𝑖)is the residual for the ith neighbor. The weights are 
calculated according to the Kriging matrix: 

�𝛄𝛄CC 𝟏𝟏𝑇𝑇
𝟏𝟏 0

� �𝛌𝛌𝜃𝜃� = �𝜸𝜸FC1 � (5) 

where γCC = [γCC(sij), i = 1, ..., N, j = 1, ..., N] is an N × N matrix 
of coarse-to-coarse semivariances between the coarse 
resolution pixels centered at xi and xj (s is the Euclidean distance 
between the centroids of any random two pixels), γFC = 
[γFC(s0i), i = 1, ..., N ]T is an N × 1 vector of fine-to-coarse 

semivariances between the fine and coarse resolution pixels 
centered at x0 and xi, λ = [λi, i = 1, ..., N]T is an N × 1 vector of 
weights for the N coarse resolution neighbors, 1 is a 1 × N 
vector of ones, and θ denotes the Lagrange multiplier (Wang et 
al., 2020). 

Assume that ℎ𝑘𝑘  is the PSF utilized for transforming 
the fine-resolution covariates to the coarse spatial resolution. 
The semivariograms γFC(s) and γCC(s) used in Eq. 5 are 
computed by convolving the fine-to-fine semivariogram 
(represented as γFF(s)) between any two fine resolution pixels. 
The γFF(s), γFC(s) and γCC(s) semivariograms are a function of 
the distance and direction vector s (which is called lag in the 
field of geostatistics), that is, they are influenced specifically by 
separation distance and direction and not by the specific 
locations of the pixels. Also, the semivariogram can be seen as 
a 2-D image centered at (0, 0), which is built from values in all 
directions and at multiple distances. In this sense, γFC(s) and 
γCC(s) are computed as: 
𝛾𝛾FC(𝐬𝐬) = 𝛾𝛾FF(𝒔𝒔) ∗ ℎ𝐶𝐶(𝐬𝐬)

= � 𝛾𝛾FF
𝑥𝑥∈𝑉𝑉(𝐬𝐬)

(𝐱𝐱) ∙ ℎ𝐶𝐶(𝐬𝐬 − 𝐱𝐱)𝑑𝑑𝐱𝐱

= � � 𝛾𝛾FF
𝑠𝑠2+𝑤𝑤2

𝑥𝑥2=𝑠𝑠2−𝑤𝑤2

𝑠𝑠1+𝑤𝑤1

𝑥𝑥1=𝑠𝑠1−𝑤𝑤1
(𝑥𝑥1, 𝑥𝑥2) ∙ ℎ𝐶𝐶(𝑠𝑠1 − 𝑥𝑥1, 𝑠𝑠2

− 𝑥𝑥2) 

 
 

(6) 

𝛾𝛾CC(𝐬𝐬) = 𝛾𝛾FF(𝐬𝐬) ∗ ℎ𝐶𝐶(𝑠𝑠) ∗ ℎ𝐶𝐶(−𝐬𝐬)

= 𝛾𝛾FC(𝐬𝐬) ∗ ℎ𝐶𝐶(−𝐬𝐬) = � 𝛾𝛾FC
𝐱𝐱∈𝑉𝑉(𝐬𝐬)

(𝐱𝐱) ∙ ℎ𝐶𝐶(𝐱𝐱 − 𝐬𝐬)𝑑𝑑𝐱𝐱

= � � 𝛾𝛾FC
𝑠𝑠2+𝑤𝑤2

𝑥𝑥2=𝑠𝑠2−𝑤𝑤2

𝑠𝑠1+𝑤𝑤1

𝑥𝑥1=𝑠𝑠1−𝑤𝑤1
(𝑥𝑥1, 𝑥𝑥2) ∙ ℎ𝐶𝐶(𝑥𝑥1 − 𝑠𝑠1, 𝑥𝑥2

− 𝑠𝑠2) 

(7) 

where * indicates the convolution operator, V(s) is the spatial 
coverage (with an extent of 2w1 + 1 by 2w2 + 1 fine resolution 
pixels) of the PSF centered at point s = (s1, s2), and x = (x1, x2) 
is the center of the fine resolution pixel within coverage V(s) in 
the 2-D semivariogram image: γFF(s) or γFC(s). 

The fine-to-fine semivariogram γFF(s) is unknown and 
it can be approximated by deconvolution of the areal 
semivariogram calculated from the original coarse spatial 
resolution image [41]–[43]. The prime solution is determined 
as the one that, once convolved according to Eq. 7, is the same 
as the known areal semivariogram. It should be noted that here 
the corresponding semivariograms are of the residuals as in 
ATPRK, not of the original variable as in ATPK. Readers 
interested in a more in-depth discussion of the deconvolution 
methodology utilized in this research can be found in Wang et 
al. [11]. 

The benefit of ATPK, namely the perfect coherence 
property, which was illustrated theoretically by Wang et al. 
(2015), is carried over to RFATPK: 
𝐙𝐙�𝐹𝐹𝑙𝑙 ∗ ℎ𝐶𝐶 = 𝐙𝐙𝐶𝐶𝑙𝑙  (8) 

The PSF effect is considered in both regression 
modeling (see Eq. 3) and ATPK-based residual downscaling. 
With respect to the former, different PSFs will result in different 
upscaled images 𝒁𝒁𝐶𝐶𝑘𝑘  and different regression models (i.e., 
different predictions from 𝐙𝐙�Regression𝑙𝑙 ). This means that, 
different residuals, 𝐑𝐑𝐶𝐶

𝑙𝑙 , will be produced from the regression 
model conditional upon the choice of PSF. This will have a 
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direct effect on the prediction of 𝑍̂𝑍Residuals𝑙𝑙 (𝐱𝐱) in ATPK-based 
residual downscaling. 

It is clear from the previously discussed downscaling 
approach utilizing RFATPK that the transformation PSF 
relating images at different resolutions to each other, rather than 
the PSF of the original measurements, plays a crucial role in 
modeling semivariograms at different spatial scales and should 
not be disregarded. It is crucial to ascertain the transformation 
PSF for downscaling in advance because it may not be known 
in real-world situations. Finding methods that approximate the 
appropriate transformation PSF for the multivariate scenario, 
while taking into account the availability of auxiliary data at the 
requisite fine spatial resolution, is a more feasible strategy. 
B3. PSF estimation 

It is known that there always exists a statistical relation 
among different spectral bands covering the same region, and 
largely for spectral bands with similar wavelengths. It is 
hypothesized that the single coarse resolution image 𝒁𝒁𝐾𝐾𝑙𝑙  can be 
defined as a linear combination of the set of bands 𝒁𝒁𝐾𝐾𝑙𝑙(k = 1, 
…, K) created by upscaling the existing fine spatial resolution 
images 𝒁𝒁𝑘𝑘𝑙𝑙  (k = 1, …, K) at other wavelengths: 
𝒁𝒁𝐾𝐾𝑙𝑙 = �𝑎𝑎𝑘𝑘

𝑘𝑘

(𝒁𝒁𝑘𝑘𝑙𝑙 ∗ ℎ𝑘𝑘) + 𝛆𝛆 (9) 

As such, the best scale transformation PSF ℎ𝑘𝑘  for 
image (or spectral band) 𝒁𝒁𝐾𝐾  can be determined as the one 
reducing the fitting error ε: 

ℎ�𝑐𝑐𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑐𝑐𝑙𝑙

𝑓𝑓 �z𝑐𝑐 
𝑙𝑙 −�𝑎𝑎𝑘𝑘(𝒁𝒁𝑘𝑘𝑙𝑙 ∗ ℎ𝑘𝑘)

𝑘𝑘

� 
(10) 

where f is an operator for determining the fitting error and it is 
computed by the fitting regression model (e.g., the classical 
global linear regression model, RF regression, etc.). Each 
coarse band is assigned a distinctive optimal PSF ℎ𝑘𝑘 , which 
varies for the several coarse resolution bands. 

C. Urban socioeconomic applications 
A major application of NTL imagery is its use as a 

proxy measure with which to study socioeconomic disparities. 
Here, we use the sharpened NTL imagery as a proxy for such 
phenomena to illustrate the benefits of our proposed approach 
to downscaling NTL data. 

Previous research has already highlighted the 
superiority of the downscaled NTL compared to coarse scale 
counterparts, to some extent [12]. In this study, to further 
highlight the benefits of the geostatistical model, RFATPRK, 
we conducted experiments using two socioeconomic variables. 
These were (1) the Human Development Index (HDI) and (2) 
income, measured in $1,000. More specifically, a linear 
regression model was fitted using the socioeconomic variables 
and the (downscaled with and without a PSF) NTL data, and 
their coefficients of determination (R2) were compared. 

Yearly data for the two indices for both megacities 
were acquired from the Global Data Lab website ([44], 
accessed September 10, 2023). Then, using the LC data and the 
built-up class as a mask, we removed the non-built-up areas 
from the NTL images. The reason for doing so is that the 
exclusion of non-residential areas can increase the accuracy of 
predicting of socioeconomic variables [45]. 

IV. RESULTS 

A. Significance of the selected variables for the RF regression 
Table 1 shows the variable importance derived from 

RF in two megacities. It is important to note that while this 
importance score provides a relative evaluation of the 
contributions of the input variables, it is not the same as the 
correlation coefficient. Different covariates were used for the 
two megacities, with some similarities.

Table I 
RF regression variable importance scores across all megacities. 

LA IMP MNDWI BRBA BAEI AVG AREA POP   
652.43 405.86 236.47 195.87 148.61 82.00   

Delhi AGBH POP BRBA HFP GNDVI DSM GHS TIRS 
157.97 139.06 138.07 104.78 101.96 81.84 73.11 46.18 

The contribution of built-up environment is greater 
than other variables in both areas, except for MNDWI. This 
implies that the built-up areas can represent NTL intensity well. 
In addition, the socioeconomic covariate (POP), shows a 
significant inconsistency between the two megacities, and the 
same is true for AGBH (average building height) and DSM 
(digital surface model). For LA, POP has the lowest importance 
score (82.00) among the predictors, suggesting that 
socioeconomic factors are less influential in predicting 
nighttime lights compared to physical or environmental 
variables. 

For the megacity of LA, the spatial distribution of NTL 
is highly controlled by the MNDWI and built-up indices, such 
as the BRBA and BAEI but the POP contributes as well. For 
the megacity of Delhi, the AGBH is the dominant covariate, and 
again, the built-up indices showed a significant importance. The 

vegetation-based spectral index (GNDVI) also illustrated 
greater significance for this megacity compared to LA where 
vegetation indices are absent. A wider range of variables 
(including HFP, GNDVI, DSM, GHS, TIRS) are important, 
indicating that multiple factors, including the built-
environment, digital surface models, and natural environment, 
contribute to the variation in nighttime lights in Delhi. Los 
Angeles's nighttime lights are influenced predominantly by 
built-up indices and environmental factors, with less emphasis 
on socioeconomic factors. For both cases, the built 
environment, which is perceived as an indicator of buildings, 
on average, had the higher importance. 

Several inter-correlated variables may serve as 
surrogates, and since these importance scores fluctuate with the 
number of input variables - that is, when input variables are 
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added or removed - they may provide support for the choice of 
input variables with a larger correlation. 

B. Validation of the PSF approximation 
The proposed technique was used to fuse monthly 

NTL monthly composites from 2015 to 2020. The goal of this 
experiment was to fuse the fine resolution 130 m covariates 
with the monthly NTL images to downscale NTL to 130 m. For 
the NTL, the Gaussian PSF was used. 

LA and Delhi served as the research locations for 
validating the suggested geostatistical filter-based image 
enhancement technique. With this design, that is, two 
megacities located in different geographic regions with 
different climates, as well as different numbers of images used 
for creation of the monthly composite, it is possible to explore 
the different effects that these parameters (i.e., climate and 
number of images) have on the capability of the proposed 

method.  The minimum number of clear pixels per monthly 
composite pixel was at least seven. 

The RF regression model was evaluated quantitatively 
using the R2, and the RFATPK-based downscaling strategy was 
evaluated using the root-mean-squared error (RMSE). 

C. RF regression 
Based on Wang et al. [17], the Gaussian filter's ideal σ 

(standard deviation) is the one that produces the largest R2 in 
the (RF) regression. The results for the cities of Delhi and LA 
in 2018 as an example year are listed below. 
Figure 3 illustrates the R2 of the RF model plotted against PSF 
size (i.e., σ) for the megacities of Delhi (plot a) and LA (plot b), 
respectively. RF could explain more than 96% of the variation 
in NTL intensity for Delhi and more than 85% for LA. 
 

Figure 3. Plot of the RF R2 (y-axis) against PSF width (x-axis). The PSF width that yielded the largest R2 is plotted in black. a) 
R2 for Delhi, b) R2 for LA.

The optimal parameter maximizing the R2 was 
selected from the pool composed of 17 values (0.3, 0.4, …, and 
2 coarse pixels). For LA, the largest R2 value in the RF 
regression model was σ = 1.1 while for Delhi it was σ = 1.3. 
The results indicate that after a certain value (1.1 and 1.3 coarse 
pixels) the larger the width of the PSF the smaller the R2. The 
results are comparable to the work of Wang et al.  [17] where 
they downscaled day-time satellite sensor imagery and found 
similar behavior. 

D. RFATPK results 
Luojia NTL data were used to assess the PSF 

parameter estimation. The assessment was carried out using a 

two-step process. The preservation of spatial patterns in the 
downscaled NTL, the validation data (i.e., Luojia's NTL), and 
the original coarse resolution NTL data were first visually 
inspected and compared. After that, the downscaled NTL data 
were subjected to a Gaussian filter (with σ varying from 0.4 to 
2), and the RMSE was computed using the validation data. This 
was done because, despite the validation data being regarded as 
"true" data (i.e., perfect data without errors) the measurement 
PSF effect also has a significant impact on Luojia's images [46]. 
Figures 4 and 5 for Delhi and LA, respectively, demonstrate 
this, where it can be seen that the downscaled NTL images are 
clearly sharper than the Luojia reference images. 
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Figure 4. Downscaling results of the NTL imagery (Delhi) using the selected PSF width (1.3 coarse pixel size). a) is the 
reference NTL image at the coarse spatial scale, b) is the downscaled NTL image, c) is the validation image, Luojia.

 
Figure 5. Downscaling results of the NTL imagery (LA) using the selected PSF width (1.1 coarse pixel size). a) is the reference 
NTL image at the coarse spatial scale, b) is the downscaled NTL image, c) is the validation image, Luojia.

From Figures 4b and 5b, the downscaling results can 
be compared to the reference NTL (a) and the validation NTL 
(c). In both megacities the predicted NTL captures the spatial 
variability of brightness reasonably well, and visually the 
results are more comparable to the validation NTL. Moreover, 
the spatial structure of the study sites (e.g., road network) is well 
defined in the downscaled images and is even more obvious in 
the maps (b), compared to the validation data. 

A highlight are the areas with high light intensity. For 
both megacities these areas represent the airport: for Delhi this 
is located in the south part of the image (Figs. 4 and 6, (a)), 
while for LA the airport is in the west of the image (Figs. 5 and 

7, (a)). The other bright spots in LA are dense road networks. 
In the downscaled images (maps (b) in Figs. 5 and 7) the bright 
spots were maintained, but their difference in brightness 
compared to other land uses is not as obvious as in the Luojia 
images. The results indicate that over complex terrains (i.e., 
different land uses) RF struggles to model the differences in 
brightness. The results are in line with other research 
downscaling land surface temperature data where similar 
behavior was observed [47]. 

Figures 6 and 7 illustrate the differences between the 
downscaled NTL images without accounting for the PSF and 
with the PSF for Delhi (Fig. 6) and LA (Fig. 7), respectively. 
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Figure 6. Downscaling results for the 130 m NTL image for Delhi. (a) 430 m coarse image. (b) RFATPK with PSF. (c) 
RFATPK without PSF.

 
Figure 7. Downscaling results for the 130 m NTL image for LA. (a) 430 m coarse image. (b) RFATPK with PSF. (c) RFATPK 
without PSF.

Predictions made with the PSF considered are visually 
much clearer than those made without it and shows more spatial 
information (such as the road network). Additionally, there is a 
greater contrast between parts that are lit and those that are not, 
indicating that the blooming effect has been lessened by taking 
the PSF into accou nt. 

Moreover, we provided the results without ATPK-
based residual downscaling to further validate the effectiveness 
of RFATPK. The validation was done using Luojia images as 
reference. 

Table II 
Comparison of the RFATPK and RF (without ATPK-based 

residual downscaling) methods using a Luojia image as 
reference. 

Megacity Method Metric Slope 
 R2 RMSE  
Delhi RFATPK 0.94 9.92 1.42 

RF 0.83 15.57 1.38 
LA RFATPK 0.80 42.18 1.87 

RF 0.70 50.26 1.81 
As shown in Table 2, the predictions of both mega-regions are 
more accurate when considering ATPK-based residual 
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downscaling in terms of R2 and RMSE. More specifically, the 
R2 for Delhi and LA was 0.94 and 0.80 for the RFATPK 
method, whereas the RF method was 0.83 and 0.70, 
respectively. For the city of LA, the R2 difference was 0.1, and 
the RFATPK produced more accurate predictions. The same 
trend was observed for the RMSE, low for the RFATPK method 
in both areas. Additionally, the slope values for RFATPK were 
1.42 and 1.87, compared to 1.38 and 1.81 for the RF model in 
Delhi and LA. Such difference demonstrates that the RFATPK 
is more accurate than RF when downscaling NTL. 
E. Quantitative validation 

For quantitative comparison of the downscaled NTL 
with the transformation PSF (denoted as RFTPKU), we used the 
predictions proposed in our method (i.e., the ones presented in 
Figures 4 and 5) and the predictions without accounting for the 
PSF (denoted as RFATPKD). Moreover, we downscaled the 
NTL using ATPRKD and an allocation of pixel values of the 
coarse resolution NTL to a grid of 130m (called Allocation-
based downscaling). Also, recent studies have proposed 
methods for downscaling NTL data, such as Geographically 
Weighted Regression (GWR) [4] and Multiscale 
Geographically Weighted Regression (MGWR) [48]. To 
further highlight the effectiveness of the proposed method, we 
included the above approaches in comparison with RFATPK. 
For the ATPRK, GWATPK and MGWATPK, we removed 
predictors which had a Variance Inflation Factor greater than 
10 since those methods are sensitive to multi-collinearity [49]. 
Luojia’s NTL is used as the validation dataset and the results 
are presented in Table 3. 

Table III 
Quantitative comparison (in terms of R2 and RMSE) of the 

downscaling results for the NTL images for the two 
megacities. In bold are the results with the largest R2 and 

smallest RMSE. 

Megacity Method Index 

  R2 RMSE 
Delhi RFATPKD 0.9281 10.4564 

RFATPKU 0.9355 9.9216 
ATPRKD 0.8955 13.8664 
GWR 0.8981 13.7053 
MGWR 0.9091 11.7018 
Allocation 0.9002 13.5680 

LA RFATPKD 0.7988 42.2587 
RFATPKU 0.7997 42.1826 
ATPRKD 0.7723 44.6239 
GWR 0.7711 44.7264 
MGWR 0.7832 43.6784 
Allocation 0.7744 44.4478 

Based on Table 2, for the megacity of Delhi, it can be 
observed that the highest R2 and lowest RMSE was achieved 
when using the proposed approach (RFATPKU). 0.8109 and 
12.2158 were the values for R2 RMSE, respectively. For LA, 
again, RFATPKU achieved the best results, with 0.6164 and 
43.5349 for the R2 and RMSE. Apart from the quantitative 
comparison a visual one was considered. Moreover, the 
Allocation-based downscaling performed better than ATPRK 
in LA, but RFATPK (with and without the PSF) outperformed 
the other methods in both megaregions. This is because the 
study sites there are multiple land cover/uses (e.g., airports, 
water bodies, vegetation), thus, a global regression model, such 
as the linear regression model in ATPRKD, cannot capture the 
local spatial variability adequately. RF on the other hand, as a 
local model, can model the variations. 

The maps below depict a visual comparison of the 
downscaling approaches for Delhi (Figure 9) and LA (Figure 
10).
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Figure 8. Downscaling results for the various downscaling approaches. a) Observed NTL data, b) Allocation-based downscaling, 
c) ATPRKD, d) RFATPKU, e) RFATPKD, f) validation NTL data. 

 

 
Figure 9. Downscaling results for the various downscaling approaches. a) Observed NTL data, b) Allocation-based downscaling, 
c) ATPRKD, d) RFATPKU, e) RFATPKD, f) validation NTL data.
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Local spatial differences could be noticed for the ATPK-based-
downscaling techniques when compared with the validation 
product, revealed good agreement between the ATPRK and 
RFATPK downscaling results and Luojia for both megacities. 
In contrast, the patterns of validation data were not observed via 
Allocation-based downscaling. Pattern preservation is crucial 
since the validation data are taken as “true”. For both 
megaregions, although the ATPRK and RFATPK (with and 
without the PSF) achieved satisfactory visual results, in the 
disaggregated NTL images using the RFATPK method, the 
spatial pattern appears clearer. ATPRK downscaled nocturnal 
imagery shows some outliers in the image for Delhi, indicating 
areas where the model could not capture well the relationship 
between the data. RFATPKU, shows spatial details (e.g., road 
network) clearer compared to the ATPRKD and RFATPKD. 

F. Urban socioeconomic applications 
The results of linear regression between the 

socioeconomic indices, the coarse resolution NTL the 
downscaled NTL data with and without accounting for the PSF 
are presented in Table 3. For both megacities the R2 between 

the indices and the downscaled NTL is larger than for coarse 
resolution NTL (denoted with the subscript C next to the index). 

More precisely, for the megacity of Delhi, the R2 
between the HDI and the NTL without the PSF (denoted with 
subscript D) was 0.4478 while for the NTL where the blooming 
effect was mitigated (denoted with subscript U) was 0.4383, a 
difference of 0.0095. This suggests that when not accounting 
for the PSF, the estimated human development is slightly higher 
compared to the approach when we proxy the index using the 
RFATPKU but the difference is small. The income values for 
Delhi are very close to each other, indicating that the method of 
downscaling NTL has a minimal, but noticeable, impact on the 
estimated income levels. 

The HDI values for Los Angeles also exhibit a small 
range, with HDIU being the highest. This implies that 
accounting for the PSF leads to a slightly higher estimation of 
human development compared to the other methods. For Los 
Angeles, leads to a higher estimation of income compared to 
the estimation when we use the coarse spatial resolution NTL 
and is almost identical when we use the downscaled NTL with 
the blooming effect being mitigated.

Table IV 
R2 between socioeconomic indices and luminosity (linear regression). In bold are the results with the largest R2. The subscripts 
C, D, U means coarse resolution NTL, downscaled NTL without accounting for the PSF and downscaled NTL with the 

PSF being mitigated, respectively. 

Megacity Index 
 HDIU HDID HDIC IncomeU IncomeD IncomeC 
Delhi 0.4383 0.4478 0.4358 0.2474 0.2471 0.2465 
LA 0.2499 0.2426 0.2240 0.2566 0.2567 0.2455 

V. DISCUSSION 
Very few satellite sensor image enhancing techniques 

take into account how the neighbors physically influence the 
central pixel via the PSF effect. While taking the PSF into 
consideration, the suggested RFATPK method enabled the 
prediction of NTL at a fine spatial resolution (130 m) with 
highly satisfactory results. The downscaled data generated have 
a wide range of potential applications, including those that rely 
on image processing for remote sensing. The ability to discern 
the borders more clearly between land cover and land use 
classes is a significant gain that results from filtering, or 
minimization of the PSF effect. Two techniques of validation 
were used to assess the 130 m downscaled predictions: visual 
and quantitative. 

A. Targeting predictors in RF 
Although RF is applicable in high-dimensional settings due to 
its potential to identify informative predictors automatically, 
our results highlight the need to target a subset of predictors 
before final predictions. This is because the predictive power of 
the covariates is location dependent and different factors 
contribute to the spatial variation of NTL. An initial targeting 
step (i.e., variable selection) has been added to the RF 
algorithm, acting as an important complement to the prediction 
itself. Reducing the number of predictors has two benefits. 
Firstly, as mentioned in [40], RF might fail in situations with 
high dimensionality, thus, reducing the number of predictors 

while keeping the strong ones only, serves as a critical step. 
Secondly, predictors with high prediction power in one city 
might not be good covariates for another city, thus, with the 
variable selection we exclude the independent variables with 
poor predictive power from the subsequent analysis. 

B. Downscaled Results 
The 130 m RFTPK predictions for the two 

experimental regions of Delhi and LA are shown in Figures 5 
and 6, respectively. While there are differences overall between 
the 130 m predictions and the validation data, the bright areas 
and NTL-free areas have a similar spatial structure. Even while 
the regression model in the RFATPK technique captured local 
spatial heterogeneity, it missed certain spatial information, 
particularly in the NTL extremes, that is the bright areas. This 
is because RF cannot model extremes well, especially when the 
distribution is heavily skewed [50]. Predictions in such areas 
with very high brightness are under-predicted, a phenomenon 
known as conditional bias [51]. 

RFATPK has three significant benefits. First, since it 
is nonparametric, incorporates prediction accuracy, and is 
resilient to noise, overfitting, and outliers, it can handle huge 
datasets with associated conditional variables. The built-in 
variable importance evaluation is the second. Each variable 
may be compared to the prediction results and its significance 
assessed by randomly permuting the variables. Theoretically, 
RFATPK should be suitable for downscaling and capable of 
resolving multivariable and nonlinear problems. Lastly, the 
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scale effect of the residuals NTL when downscaling the VIIRS 
NTL was taken into account by the RFATPK. 

As shown in Figures 5 and 6, the road network for LA 
and the land cover for Delhi played a crucial role in 
discriminating NTL luminosity. The results suggest that the 
method can be generalized to other megacities worldwide 
where the spatial structure of the road network can be readily 
obtained either from the fine resolution covariates or the land 
cover. 

C. Fitting model for PSF estimation 
The RF model was chosen for estimating the 

relationship between the coarse and fine bands in Eq. 13. 
Theoretically, other options like local regression or even 
spatially weighted regression can be used to quantify the non-
linear relationship. When the research area is broad and the data 
gathering conditions (e.g., viewing angle) vary locally or 
regionally, these models could be more beneficial since the 
effective PSF becomes location-dependent [17]. In this 
instance, an object- or pixel-based estimation of the PSF is 
possible. However, this spatially adaptive technique could be 
highly costly to compute, particularly if the research region is 
very large. In accordance with user needs, the computational 
burden and PSF estimation accuracy must be suitably balanced. 

D. Comparison of the accuracy of the predictions with other 
methods 

The performance of the RFATPK approach was 
compared with RF, GWATPK, MGWATPK, ATPRK, and 
Allocation of pixel values in two different geographic 
regions. Despite the simplicity of all models, GWATPK and 
MGWATPK require much more computational time 
compared to the rest of the methods, with the Allocation of 
pixel values being the fastest. This is because GWR and 
MGWR fit a separate regression model at each location. 
ATPRK, although computationally is fast, when the data 
exhibit local variations, such as the NTL, the global model 
cannot capture the changes in brightness in the study areas. 
In addition, GWATPK, MGWATPK and ATPRK cannot 
handle multicollinearity [49]. Allocation of pixel values, 
being the simplest form of downscaling, cannot increase the 
information content at fine spatial scale. 

RF (without residuals downscaling) is a non-spatial 
model, and it ignores the geographical locations of the 
measurements. This can limit the prediction accuracy of the 
model. Another disadvantage of the RF approach is that the 
high spatial resolution predictions are not consistent with the 
observed coarse resolution NTL, because there is no 
constraint in the RF regression that ensures that the process 
is ideal (i.e., the model fully explains the NTL variability). 

RFATPK, inherent the advantages of RF (i.e., can deal 
with large datasets, can handle multicollinearity, extreme 
values, and has good predictive power), and the advantages 
of ATPK (treats each observed data as a centroid by taking 
account of the spatially surrounding coarse pixels and size 
of support, holds the key superiority of coherence between 
the observed data and the predicted data, and does not 
require much computational time) [52]. 

E. Describing the NTL blooming effect 
This research presented a geostatistical solution 

(RFATPK) that can be used to address the PSF effect on NTL 
images. There is always a difference in PSF between bands and 
sensors. To ensure the effectiveness of the geostatistical 
solutions, the PSF must be characterized precisely. Since the 
majority of the research currently published claims that the 
Gaussian filter approximates the true PSF well, we assumed this 
filter for PSF estimation [16], [18]. However, in practice, the 
true PSF can be more complicated than the Gaussian filter. The 
general strategy presented in this paper can be applied to other 
scenarios with different PSFs, as the implementation of 
RFATPK is not affected by the particular form of PSF [17]. 

It would be intriguing to examine various PSFs for 
both the along-track and across-track orientations [17]. 
Additionally, hierarchical models may be considered to 
characterize the PSF. The PSF, for example, may consist of a 
combination of several filters, such as the triangular and 
Gaussian filters, or other filters (such as the ideal square wave 
filter). However, it should be noted that when downscaling, 
what matters is not the PSF of the original measurements (that 
is, the path from a point on the ground to a pixel in the image), 
but rather the transformation PSF between the original coarse 
and target fine spatial resolution [17]. This implies that PSF 
characterization and estimation depend on the quality of the 
observed coarse and fine bands as well as the sensor; hence, 
estimation must be done case-by-case. The extent to which 
prospective alternatives, including nested models, may improve 
PSF characterization reliability, and how well they can 
generalize to handle data from other sensors, is unclear. 

A small discrepancy was observed between the 
optimal R2 in the regression among the megacities. This 
difference can be explained by the different atmospheric 
conditions and the number of images involved in the monthly 
composite. As mention by Bu et al. (2019), among the 
contributors to the PSF are atmospheric effects and the 
atmospheric conditions of the particular month (March for 
Delhi, February for LA). In this research, the focus was the 
applicability of the method in general, that is, to mitigate the 
blooming effect during downscaling, and it should be noted that 
daily images (i.e., not a composite) should be used, where 
available, to model the ideal PSF of the NTL imagery. As stated 
in Section 2.2, we did not use the daily NTL product here 
because of the lack of pixels in the study regions due to cloud 
cover or other quality parameters. In future, we will utilize the 
daily NTL product from Black Marble (VNP46A2) to 
investigate the true measurement PSF of a range of NTL 
sensors. 

F. Computational cost 
The PSF effect causes a pixel's signal to be tainted by 

its surrounding pixels. More neighboring pixels are involved 
when taking the PSF effect into account while downscaling, 
than when not accounting for the PSF. This is accomplished for 
ATPK-based solutions using the semivariogram modeling 
procedure. As seen by Eqs. 8 and 9, convolution considers 
additional fine pixels from neighbors within the spatial 
coverage of the PSF, as opposed to standard ATPK, which 
considers only the center coarse pixel (i.e., without the PSF). 
The cost of computing will increase as more pixels are 
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considered. The computing time for the two NTL images is 
displayed in Table 4. 

Table V 
Processing time of RFATPK for the NTL images for the two 

megacities. VS stands for Variable Selection. 

Megacity Method Time (minutes) VS (minutes) 
Delhi ATPKU 6.45 0.36 

ATPKD 6.27  
LA ATPKU 25.45 1.16 

ATPKD 24.46  
The computation time increases from around 28 

seconds for Delhi and 1 minute for LA when the PSF is 
considered. This shows that, to provide more accurate 
downscaling forecasts, computing performance is in fact 
compromised when taking the PSF effect into account; yet the 
overall processing cost (a few seconds) may be considered 
acceptable. Because of the high level of parallelization of the R 
package atakrig [53] and the coarser spatial resolution of NTL 
compared to the satellite sensor images, these findings differ 
from those of Wang et al.  [17]. Here, fewer pixels cover the 
research area(s) compared to the data utilized by Wang et al. 
[17] (10 m pixel size). 

Moreover, the variable selection step, although adds 
more computational cost to the analysis (1 minute and 16 
seconds for LA and 36 seconds for Delhi), it is a valuable step 
when there are a lot of predictors and, potentially, if include 
them all could reduce ability of RF model for prediction due to 
the use of weak predictors. 

G. Ambiguities in spatial downscaling 
Covariates must resemble the brightness in the study 

region in some way (such as similar spatial structure) to be 
useful to aid in downscaling. We purposefully avoided 
additional types of covariates (such as land use data) in this 
study where the relation with NTL could not be hypothesized 
explicitly, even though they may have increased the accuracy 
of downscaling in some cases. We may consider such data in 
the future because other authors have claimed to be able to 
enhance regression prediction accuracy [54]. 

As mentioned previously, RFATPK tends to 
underpredict regions with extremely high values. It was 
observed that downscaled NTL was biased in the highest 
brightness ranges. The difficulty of the RFATPK-based 
downscaling technique to replicate extremely high value light 
intensity is probably due to a lack of training data in these 
brightness ranges, which prevents the RF regression model 
from being properly calibrated. Extreme gradient boosting, or a 
different local model like the spatially weighted random forest, 
or a subset of machine learning known as deep learning (DL), 
might all be potential solutions for this specific problem. To the 
best of our knowledge, Wang et al. [55] is the only example of 

downscaling NTL imaging using DL. Nevertheless, these 
methods are often computationally costly and need many 
training points. Although DL techniques have limitations, they 
are a viable option for modeling non-linear connections and 
should be considered in further research. 

H. Urban socioeconomic applications 
Effective criteria must be established to evaluate the 

differences in socioeconomic development between megacities 
and track advancement towards the global sustainable 
development goals. The potential utilization of fine resolution 
NTL data, which have not been employed widely in related 
studies, is enhanced by our findings and methodology. The 
experiments undertaken here demonstrated that downscaled 
NTL data represent a suitable proxy for measuring 
socioeconomic differences within megacities. The downscaled 
NTL data, which accounted for the PSF, reduced the overglow 
effect inherent in NTL data and increased the ability to 
represent socioeconomic variables relative to not accounting for 
the PSF.  This means that NTL imagery at a fine resolution 
produced through the geostatistical approach for sharpening 
offers a valuable resource for socioeconomic applications, and 
an alternative to classical methods of measuring human 
activities. 

The small correlation between the socioeconomic 
indices and the NTL (both at the coarse and fine spatial scales) 
was due to the fact that few observations (6) were used in the 
linear model. Despite that, the results indicate that the 
disaggregated nocturnal data offer a better proxy than their 
coarse resolution counterparts. 

VI. CONCLUSION 
Due to their accessibility and usefulness as proxies, 

night-time illumination data are utilized frequently in 
socioeconomic research. However, their spatial resolution is too 
coarse for many socioeconomic applications, and they are prone 
to the blooming effect which reduces even further the variation 
in brightness across pixels within cities and, thus, ultimately 
reduces the utility of the NTL data. Methods for downscaling 
remotely sensed images offer a possible solution to the former 
problem, but until now, the overglow effect in NTL data due to 
the PSF has not been addressed when downscaling NTL data. 
To improve downscaling in the multivariate case and account 
for the PSF impact while downscaling NTL, RFATPK, a 
geostatistical-based method, was applied in this research. The 
experimental findings showed that taking the PSF into account 
when downscaling generates more accurate predictions at the 
fine resolution. This benefit was shown to propagate forward to 
when evaluating social and economic phenomena at the urban 
scale using the downscaled NTL images.  

APPENDIX 
Table VI 

Calculated spectral indices for the study areas. 

Index Formula 
The Enhanced Built-up and Bareness Index (EBBI) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 −𝑁𝑁𝑁𝑁𝑁𝑁) (10 ∗⁄ √𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
The Built-up Area Extraction Index (BAEI) (𝑅𝑅𝑅𝑅𝑅𝑅 + 0.3) (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1)⁄  
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The Built-up Index (BUI) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑁𝑁𝑁𝑁𝑁𝑁)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑁𝑁𝑁𝑁𝑁𝑁)

−
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)

 

The New Built-up Index (NBI) (𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1) 𝑁𝑁𝑁𝑁𝑁𝑁⁄  
The Normalized Built-up Area Index (NBAI) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 )

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 )

 

The Band Ratio for Built-up Area (BRBA) 𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1⁄  
The Normalized Difference Built-up Index (NDBI) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑁𝑁𝑁𝑁𝑁𝑁) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑁𝑁𝑁𝑁𝑁𝑁)⁄  
The Modified Built-up Area Index (MBAI) [𝑁𝑁𝑁𝑁𝑁𝑁 + (1.57 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) + (2.4 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1)]

(1 + 𝑁𝑁𝑁𝑁𝑁𝑁)
 

The Dry Built-up Index (DBI) (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

−
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)

 

The Green Normalized Difference Vegetation Index (GNDVI) (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) (𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)⁄  

The Normalized Difference Vegetation Index (NDVI) (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅) (𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)⁄  

The Enhanced Vegetation Index (EVI) 2.5 ∗ ((𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅) (𝑁𝑁𝑁𝑁𝑁𝑁 + 6 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 1))⁄  
Modified Normalized Difference Water Index (MNDWI) (Green – SWIR1) / (Green + SWIR1) 
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