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Abstract

Features such as scalability, smaller size, simplicity, low-cost operation, self-
organization abilities, and easy and fast deployment are the main parameters of a
Wireless Sensor Network (WSN). The research demand is growing on WSNs, and
therefore, areas under agriculture, industry, healthcare, manufacturing, security,
surveillance, transport, air quality, water quality, etc., have started to possess the
attributes of WSNs.

The primary goal of SNs is to collect the data from the area of interest and
communicate it to the sink or base station (BS) for further processing via single
or multi-hop transmission. Sometimes, the BS acts as a gateway to the Internet
of Things (IoT), where the IoT can communicate the data to the Cloud using
the Internet. The battery-equipped SNs consume more energy for heavy data
transmission. Transmission of high-quality data in SN makes the battery-equipped
micro-sensors consume much energy.

Mobile Wireless Sensor Network (MWSN) represents a fast-evolving technol-
ogy, and its use in many things is not limited. While fixed-infrastructure networks
constrain sensor nodes to one specific location, MWSNs allow the partial nodes
or all nodes to move wherever they want and communicate between themselves,
making the whole system more flexible. Furthermore, MWSNs can be compared
with respect to GPS, Bluetooth Low Energy (BLE), and existing wireless sensor
networks in aspects of extended network lifespan, energy saving, multiband
functionality, and high targeting. Nevertheless, pathfinding in MWSNs is very
challenging since the sensor nodes are mobile, low-cost devices that are time-
constrained, allowing limited resources to be used. On the mobile network, this
unique frequency scheme creates extra difficulty in routing. In most monitoring
applications, only partial nodes need to be moved in the network. Such nodes are
called mobile agent sink nodes or sensor nodes. In the present work, the movement
of only a few nodes is considered in MWSN.

Energy consumption and network connectivity are two major issues in MWSNs.
Several studies have been conducted to develop and propose suitable solutions
for these problems. Many researchers are working to develop the best solutions
due to the severe problems with energy consumption and network connectivity
in mobile wireless sensor networks. To investigate network connectivity, this
study introduces a new efficient technique that considers parameters like network
stability, detection area, low energy consumption, etc. This approach guarantees
network connectivity, communication sustainability, and the highest level of energy
consumption optimization.

This research investigates network connectivity issue and proposes two routing
algorithms, namely Self-Organizing Maps based-Optimized Link State Routing
(SOM-OSLR) and Deep Reinforcement Learning based-Optimized Link State
Routing (DRL-OLSR) for MWSNs. Both algorithms undertake the relationship
between sensor node deployment, communication radius, and detection area and
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suggest a new way to maintain communication while optimizing energy usage.
I have evaluated both algorithms through simulations by considering various
performance metrics such as connection probability, end-to-end delay, overhead,
network throughput, and energy consumption.

The network is analyzed for proposed routing and aggregation methods to
analyze the performance. The simulation analysis is discussed under three
scenarios. The first scenario undertakes ’no optimization,’ the second considers
SOM-OLSR, and the third undertakes DRL-OLSR. The simulation results indicate
that the SOM-OLSR performs better compared to the case with ’no routing’
optimization. Comparing DRL-OLSR and SOM-OLSR indicates that the former
outperforms the latter in terms of low latency and high network lifetime.
Specifically, the DRL-OLSR achieves a 47% higher throughput and 67% lower
energy consumption compared to the SOM-OLSR. In addition, when compared to
the ’No optimization’ condition, the DRL-OLSR achieves a notable 69.7% higher
throughput and almost 89% lower energy consumption. These findings highlight
the effectiveness of the DRL-OLSR approach in optimizing network performance
and energy efficiency in wireless sensor networks. Similarly, data aggregation
consistently reduces energy consumption across all scenarios, with up to 50% lower
as compared to without data aggregation.
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Chapter 1

Introduction

1.1 Introduction

Wireless Sensor Networks (WSNs) are essential enablers for emerging applications
such as smart homes and cities, healthcare monitoring, surveillance, and disaster
management systems. A WSN consists of many sensor nodes distributed in the
area of interest for collecting various types of data as shown in Figure 1.1 (Sekhar
et al., 2021), (Sah and Amgoth, 2018).

A typical sensor node (SN) includes sensing, processing, and communication
modules. SNs transmit the collected data to a Base Station (BS) or a sink
node directly or through multi-hop communication (J. Liang et al., 2021). In
most practical applications, sensor nodes consist of limited energy supply, such
as non-rechargeable batteries (Praveen Kumar, Tarachand, and Rao, 2019),
(Banoth, Donta, and Amgoth, 2021). Thus, these nodes often operate within
energy-constrained situations. Hence, energy consumption should be sensibly
accomplished to confirm the effective utilization and efficient performance of basic
operations, including sensing, processing, and communications (Praveen Kumar,
Tarachand, and Rao, 2019), (Banoth, Donta, and Amgoth, 2021 Chang, H. Tang,
et al., 2017).

For mobile wireless sensor networks (MWSN), achieving high coverage and
connectivity is very challenging (Banoth, Donta, and Amgoth, 2023). In MWSN,
the sensor nodes can move within the network. In practical scenarios, generally
the partial sensor nodes only moves in the network.

In the context of agriculture monitoring or any other monitoring application
using MWSN, a limited deployment of a particular percentage of the Mobile Agent
sensor nodes is a strategic decision trying to strike a balance between the resource
constraints and the effectiveness of the network. With the unification of stationary
sensor nodes and mobile agents, a network is capable of dynamically adjusting
to the agricultural field’s changing conditions. Despite using only a partially
deployed mobile node network, networks obtain good benefits including dynamic
data collection and localized event detection. Mobile agents that can move around
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Chapter 1. Introduction 1.1. Introduction

Figure 1.1: Architecture of MWSN (Mobile Wireless Sensor Network) (Sutton and
Barto, 2018)

the agricultural area collect data at different points and then transmit the data
back to the base station, improving the monitoring process as compared to the
use of only stationary nodes. It is the dynamic data collection ability that makes
the network react quickly to the occurrence of localized events, e.g., soil moisture
changes or pest outbreaks, improving the management techniques of agriculture.

The selective allocation of mobile agent routers in the network increases energy
efficiency. By optimizing their routes and motions, mobile nodes save energy while
ensuring maximum coverage and data gathering. Through a partial deployment
strategy, the network strives for a balance between data collection demands and
power consumption maintaining the network longer in operation. Moreover, as
nodes are mobile, they have the ability to change their positions in response
to the dynamic conditions in their environment. They occupy areas of interest
or reposition to where data collection is most of the essence. It, thus, makes
the network highly adaptive in such a manner that it tremendously increases the
efficiency and effectiveness of the networks without relying on many resources. This
allows for continuous monitoring of the agricultural environment with minimal
expenditure of resources.

Finally, combined mobile agents’ nodes with fixed sensors improve the coverage
and data granularity over the agricultural field. Although a partial deployment of
mobile sensor nodes allows the network to fill the coverage gaps and offer more
extensive monitoring than depending only on fixed sensors, it looks more cost-
effective to implement that together with stably operated stationary sensors in

2
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reality. An increased area covered makes a deeper perception of the agricultural
environment possible and enables farmers and administrators to take relief
measures considering irrigation, fertilization, pest control, and production of
commodities. With the partial deployment of mobile agent nodes, a MWSN results
in a significant reduction of deployment cost and allows one to enjoy the benefits
of mobility and coverage. Consequently, it is an economical and practical solution
to contemporary agricultural monitoring and management.

Such networks differ from traditional WSNs due to their mobility feature
that improves network coverage, connectivity, scalability, and energy efficiency
while prolonging the network’s lifetime (Cao, Y. Cai, and Yue, 2019). MWSNs
can be used for various applications with enhanced connectivity and coverage
and with limited computational complexity (Fei et al., 2017; Donta, Amgoth,
and Annavarapu, 2022; Chang, W. Chen, et al., 2023). The commonly used
applications are environmental monitoring, military surveillance, and healthcare.
However, MWSNs face several challenges, including limited energy, memory,
processing capabilities, and communication and coordination issues. To overcome
these challenges, Machine Learning (ML), Deep Learning (DL), and Deep
Reinforcement Learning (DRL) methods can be applied to MWSNs to improve
their performance and capabilities.

ML and DRL are subsets of Artificial Intelligence (AI) that have gained much
attention recently. ML refers to algorithms and techniques that allow computers
to learn from data and make predictions or decisions based on that data. There
are different types of ML algorithms, such as supervised learning, unsupervised
learning, and DRL. DRL is a subset of ML that models and resolves complicated
issues using Artificial Neural Networks (ANNs). ANN mimics the human brain
and consists of layers of interconnected nodes that process and transform data.

DRL algorithms can automatically learn to extract features and patterns from
large amounts of data, making them well-suited for tasks such as image and speech
recognition, natural language processing, and recommendation systems. Generally,
ML and DRL are powerful tools that can help to solve various problems across
various domains, from healthcare and finance to transportation and entertainment.

For MWSN, the DRL algorithms can train the network from the existing
datasets or historical records. The training can allocate a medium/channel or route
the data. There are several ways in which ML and DRL can be applied to improve
the performance and capabilities of MWSNs. Moreover, the training and execution
of these models often demand significant quantities of data and computing power,
rendering them impractical or unfeasible for certain applications.

WSNs are crucial in connecting dispersed, possibly autonomous sensors to
monitor and manage systems or the environment. The integration of modern
technologies, such as information and communication in WSNs, has enabled
sensing and computation capabilities, making them essential to developing the
next-generation Internet. These technological advancements pave the way for
solving a wide range of problems and enhancing our daily lives. ML and DRL
have shown great promise in addressing various challenges MWSNs face. There

3



Chapter 1. Introduction 1.1. Introduction

are several ways in which ML and DRL can be applied to improve the performance
and capabilities of MWSNs as discussed below:

• The ML and DRL can be used for energy-efficient routing. By utilizing
ML techniques, it is possible to predict the energy consumption of different
routes in the network and determine the most energy-efficient route for data
transmission. This approach can significantly reduce energy consumption
and prolong the network’s lifespan.

• With the help of DRL algorithms, detecting and tracking objects in the
network, such as vehicles or criminals, is possible. This can be particularly
useful for surveillance and security purposes, where it is necessary to monitor
the movement of objects within the network.

• ML algorithms can detect anomalies in sensor data, such as sudden changes
in temperature or humidity. This could indicate a potential problem,
allowing for timely intervention before any significant issue occurs.

• ML algorithms can perform early prediction of sensor node failure or
maintenance requirement, allowing for proactive maintenance to be carried
out. This reduces downtime and increases the overall efficiency of the
network.

• ML algorithms can optimize resource allocation in the network. For example,
tasks can be assigned to nodes based on their available processing power and
memory. This ensures that the available resources are used effectively for
maximizing the network’s overall performance.

In summary, ML and DRL techniques can improve the performance and
efficiency of MWSNs by enabling energy-efficient routing, object detection and
tracking, anomaly detection, predictive maintenance, and resource allocation.
These techniques can help MWSNs meet the needs of various applications, making
them more valuable and reliable. Future research can focus on further improving
the accuracy and effectiveness of these techniques for MWSNs. However, in
the present work, the main focus is to increase the lifetime of the network
by introducing ML-based energy-efficient methods with maintaining coverage
and connectivity without compromising with computational complexity (Chang,
W. Chen, et al., 2023).

MWSN design and construction, topology selection, and node power allocation
all depend extensively on coverage and network connectivity. A sensor node’s
coverage area is directly impacted by its transmission power. Reduced network
connectivity and node coverage might result from reduced transmit power (Bhasgi
and Terdal, 2021). However, to increase the battery life of nodes, it is often
necessary to reduce transmit power. In the case of MWSN, probabilistic
modeling is necessary to predict and optimize energy consumption as well as
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coverage because the location and separation between nodes continually change.
In such cases, it is quite difficult to maintain connectivity and save energy
together. Effective data transfer is the only effective way to maintain coverage
and connectivity with optimal energy saving.

For effective transfer, the routing method plays a critical role in MWSNs
that requires careful management to ensure reliable data transmission between
sensor nodes and the base station. Mainly, mobile nodes are used to increase the
coverage range and connectivity. The mobile agent is responsible for collecting
data from various nodes and transmitting it to the base station. However,
the routing process in (MWSNs) faces several challenges.Firstly, implementing
a global addressing process is impractical due to the deployment of numerous
sensor nodes. In MWSNs, conventional IP-based protocols, designed for large-
scale network infrastructure, are often unsuitable.Secondly, while most Wireless
Sensor Networks (WSNs) require a continuous stream of sensed data from multiple
sources to a specific sink node or base station, this requirement conflicts with
typical communication networks.Thirdly, within the vicinity of a phenomenon,
multiple sensors may generate similar data, resulting in heavy redundancy traffic
across the network (Sara and Sridharan, 2014). This redundancy consumes more
energy and bandwidth, leading to various issues such as delays, packet loss, and
bandwidth degradation.

1.2 Motivation

Routing techniques play a crucial role in Mobile Wireless Sensor Networks
(MWSNs), especially when dealing with large-scale deployments encompassing a
multitude of sensor nodes. However, assigning global IDs to these nodes becomes
a challenging task. As a result, traditional protocols may not be well-suited
for MWSNs. These networks possess unique inherent characteristics that add
complexity to developing routing protocols. Such characteristics include a highly
dynamic network environment, specific requirements driven by the application,
and constraints on energy, storage, and processing capabilities.

Because of these specific characteristics of MWSNs, building an effective
routing protocol is a complex issue. The routing protocol’s architecture can be
influenced by various MWSN characteristics. Some of the concerns and obstacles
associated with routing in MWSNs are discussed below:

• High Network Dynamics: MWSNs experience frequent changes in their
network topology due to factors such as node mobility, link failures, and node
failures. Adapting to this dynamic nature necessitates the development of
routing algorithms that can efficiently handle topology changes.

• Energy consumption: The mobile wireless sensor node can only be
equipped with a limited power source. Sensor node lifetime is therefore highly
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dependent on battery lifetime. In a multi-hop ad-hoc sensor network, each
node plays the dual role of data originator and data router. Basically, each
node has three main tasks; sensing, communicating/relaying, and processing.
The failure of a few nodes can cause significant topological changes and
might require re-routing of packets and re-organization of the network.
Hence, power conservation and power management take on additional
importance.The total energy consumption of each node directly influences
the overall lifetime of the network. When a sensor node’s energy level drops
below a certain threshold, it becomes nonfunctional, adversely impacting
the network’s performance.Consequently, optimizing energy management
becomes a crucial task for routing protocol designers, aiming to maximize
the network’s lifespan.

• Application-Specific Requirements: Depending on considerations such
as data delivery delay, dependability, and bandwidth limits, different
applications have different routing needs. Routing protocols should be
created to fulfill these special needs while taking into account the limits
of MWSNs.

• Fault Tolerance: Sensor nodes in MWSNs are prone to failure, and network
connectivity can fluctuate unexpectedly. As a result, routing protocols must
be resilient and adaptable to deal with node failures and changes in network
connectivity.

• Scalability: The routing technique must be scalable as the number of sensor
nodes increases with the node density. The deployment of a substantial
number of sensors is common in the target area, and as the network operates,
its size may expand. It is critical to design the protocol so that node
scalability does not have a detrimental influence on performance.

To address these challenges, intelligent routing algorithms that can dynamically
adjust the data routing paths based on network congestion and bandwidth
availability are necessary. Such algorithms can help optimize network performance
and reduce energy consumption by minimizing data transmission over congested
routes.

1.3 Research Questions

The problem statement of the thesis is based on the following research questions.

• How can high throughput be achieved in Mobile Wireless Sensor Networks
(MWSNs) across different topologies and levels of network connectivity while
ensuring energy efficiency?

• What techniques can be employed to estimate and optimize the energy
consumption of sensor nodes in MWSNs?
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• Which routing protocols can adapt to node mobility in MWSNs while opti-
mizing energy consumption, and what characteristics make them effective?

• What performance metrics are crucial for assessing the impact of mobility on
topology and network connectivity, considering energy efficiency in MWSNs?

• How does the performance of MWSNs in terms of energy consumption
and throughput differ between self-organizing maps and other optimization
methods?

• What are the key considerations in developing a simulation platform for
comparative analysis of different optimization methods regarding energy
consumption, both with and without optimization techniques?

• How can data aggregation methods contribute to energy-efficient data
transmission in various optimization scenarios within MWSNs?

1.4 Contributions

The main contributions of this thesis are as follows.

• First,a system and energy model are presented to explain the topological
configuration of MWSNs and to analyze the energy required for transmitting
and receiving data across the network.

• To optimize the performance of the sensor network, routing-centric param-
eters are derived, focusing on expected energy consumption, expected node
degree, and expected forward progress toward the sink.

• Two routing algorithms, namely Self-Organizing Maps-based Optimized
Link State Routing (SOM-OLSR) and Deep Reinforcement Learning-based
Optimized Link State Routing (DRL-OLSR), have been proposed for
energy-efficient data transmission. Both algorithms leverage deep learning
techniques to improve routing performance in Mobile Wireless Sensor
Networks (MWSNs). These two methods are compared considering their
practical significance in terms of computational complexity and deployment
scenarios.

• The proposed methods dynamically adjust the data routing paths based
on the network congestion status and bandwidth availability. The most
suitable route is selected for data transmission while considering factors such
as energy consumption, network congestion, and link quality.

• The main objective of both algorithms is to optimize the ideal balance
between various parameters such as connection probability (CP), end-to-end
(E2E) delay, overhead, throughput, and energy consumption.
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• Both algorithms select the most suitable route for data transmission while
considering factors such as energy consumption, network congestion, and link
quality.

• Both algorithms aim to optimize the delicate balance between parameters
such as connection probability, end-to-end delay, overhead, throughput, and
energy consumption.

• The SOM-OLSR is an unsupervised artificial neural network-based energy-
efficient routing protocol designed to discover the optimal path from the
sensor node to the sink node. SOM-OLSR ensures reliable communication
by effectively handling noisy and incomplete data, making it suitable for
real-time applications.

• The DRL-OSLR algorithm is a fault-tolerant routing technique designed to
maintain robust connectivity in the dynamic network topologies. By utilizing
multiple paths between nodes, the algorithm ensures that data can still be
successfully delivered even if one of the paths is disrupted.

• An aggregation method has been developed to achieve energy-efficient
data transmission in both DRL and SOM scenarios without compromising
throughput.

• Both algorithms are evaluated through simulations in Matlab to analyze their
performance in terms of various performance metrics as mentioned above.

• The performance of the proposed methods is also compared with the tradi-
tional routing method indicating their significant performance improvement.

1.5 Structure of Thesis

The remaining chapters of this thesis are organized as follows.

• Chapter 2 This chapter provides an overview of several topics related to
WSNs and Mobile WSNs (MWSNs) and the use of ML in this context. The
chapter discuss the characteristics of WSNs and is followed by a discussion of
MWSNs, which covers topology and routing issues that arise due to mobility.
The chapter then briefly introduces ML, including its classification and
popular algorithms. Afterward, various applications are reviewed for ML
in WSNs, including localization, connectivity and coverage, routing, data
aggregation, and mobile sinks. Finally, the chapter discusses the benefits
and drawbacks of implementing ML in WSNs.
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• Chapter 3 This Chapter talks about Deep Reinforcement Learning (DRL)
as this lays the necessary foundation for our work. We begin with the
introduction, followed by the discussion on routing protocols for MWSNs,
which presents an overview of different types of routing protocols. In
particular, Optimized link state routing (OSLR) protocol is discussed.
Subsequently, routing protocols based on DRL with reference to WSNs
are elaborated. I have reviewed and compare several DRL-based routing
protocols for MWSNs that exist in the literature. After that, some well-
known techniques that are the basis of DRL are discussed, such as ANNs,
CNNs, and RNNs, along with their architecture. The pros and cons of using
DRL in MWSN is also discussed. Finally, details of the performance metrics
is discussed, which are used in evaluating various routing protocols in the
context of MWSNs with selected routing protocol.

• Chapter 4 In Chapter 4, the SOM model is developed for efficient routing
of MWSN. The background of SOM is discussed with a mathematical model.
The SOM-OLSR protocol is proposed, and the network is analyzed for
different connection probabilities. The energy consumption, delay, and
throughput are analyzed for different scenarios.

• Chapter 5 This chapter delves into Deep Reinforcement Learning (DRL),
showcasing its significance across diverse domains by addressing complex
challenges through sequential decision-making. It emphasizes DRL’s ability
to learn from environment interactions and optimize decisions based on
rewards, leading to robotics, gaming, healthcare, and more breakthroughs.
The core components of DRL, including agents, environments, action and
state spaces, reward systems, and learning algorithms, are elucidated, along
with the integration of deep neural networks for handling high-dimensional
data. The chapter further presents the outcomes of implementing DRL
in mobile sensor networks. It compares its performance with traditional
methods and highlights strengths, limitations, and future research prospects,
providing a holistic understanding of DRL’s potential in transforming
decision-making processes.

• Chapter 6 This chapter focuses on using aggregation methods in Deep
Reinforcement Learning (DRL)-based wireless sensor networks (WSNs)
to reduce overall energy consumption. The significance of aggregation
algorithms in minimizing energy usage is underscored as these methods
consolidate data samples, eliminate redundancy, and reduce the number
of transmitted packets, ultimately leading to decreased energy consump-
tion. The chapter proceeds to explore routing protocols integrated with
aggregation for Multi-hop Wireless Sensor Networks (MWSNs), specifically
investigating Optimized Link State Routing (OSLR), Self-Organizing Maps
(SOM), and DRL-based protocols. By comparing these protocols with
and without aggregation, the study sheds light on their efficiency in
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achieving energy-efficient data transmission. The related works section
further analyzes existing research contributions in WSNs, particularly in
data transmission and aggregation challenges, using machine learning and
DRL techniques. This analysis reveals the potential of intelligent methods
to enhance data aggregation, optimize energy usage, and address real-world
complexities in wireless sensor networks.

• Chapter 7 This chapter comprehensively evaluates and compares energy
consumption optimization techniques in mobile sensor networks, specifically
focusing on Self-Organizing Maps (SOM) and Deep Reinforcement Learning
(DRL). The evaluation reveals the superiority of DRL over SOM and a
non-optimized approach, demonstrating DRL’s effectiveness in dynamically
adapting decision-making policies to optimize energy usage. The findings
emphasize the importance of incorporating optimization techniques for
energy efficiency while highlighting SOM’s limitations in this context. The
chapter concludes by suggesting future research directions, such as advanced
DRL architectures and hybrid approaches, to enhance energy consumption
optimization further and advance the practical implementation of mobile
sensor networks.

10



Chapter 2

Background Study

This chapter provides an overview of several topics related to WSNs and Mobile
WSNs (MWSNs), as well as the use of ML in this context. The chapter begins by
introducing the characteristics of WSNs and is followed by a discussion of MWSNs,
which covers topology and routing issues that arise due to mobility. The chapter
then briefly introduces ML, including its classification and popular algorithms.
Afterward, the chapter reviews various applications of ML in WSNs, including
localization, connectivity and coverage, routing, data aggregation, and mobile
sinks. Finally, the chapter discusses the benefits and drawbacks of implementing
ML in WSNs.

2.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) are used for various real-time applications
and they are one of the most promising and emerging technologies that have
applications in diverse domains such as military, automation, vehicle tracking,
environmental, wildlife tracking, agriculture, etc. (Yick, Mukherjee, and Ghosal,
2008).

WSNs offer many advantages such as cost-effectiveness, tiny size, ease of
deployment, self-organization, and low maintenance cost (Rawat et al., 2014).
They comprises tiny sensor nodes, randomly deployed in a targeted area to sense
and collect data. Each sensor node is equipped with a sensing unit, a transceiver,
a processing unit, a battery, and a memory unit.

The sensor unit is responsible for observing a physical phenomenon such as
temperature, pressure, humidity, etc. A transceiver is used to connect to the
network and exchange data. A small processing unit is employed to process
the data, a battery unit powers up the nodes, and a buffer stores the data
temporally (Akyildiz et al., 2002). In a typical WSN, sensor nodes not only
communicate data among themselves but also communicate with a gateway, also
known as sink or base station (BS), for further data processing via single or multi-
hop network transmission (F. Wang and J. Liu, 2011; S. Yang et al., 2016; Yetgin
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et al., 2017; N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, 2013). The BS
usually connects WSNs to external networks such as the Internet of Things (IoT)
or cloud networks or the global Internet.

IoT, a successor of WSNs, refers to internet-connected devices, while IoT-
enabled WSNs is a subset of an IoT-based system. In an IoT-enabled WSN,
sensor nodes collect real-time data to monitor the environment, and a base station
serves as an access point to connect to an end-user via the internet.

Although WSNs offer promising benefits, they face several challenges, such
as unstable and dynamic connectivity links, limited processing power, limited
coverage, low data rates, and limited battery power. One of the significant
concerns in WSNs is energy because tiny sensor nodes are battery-powered, and
the transceiver is the main source that drains the energy of the nodes extensively.
Quick energy depletion of the nodes causes the nodes to die and thereby reducing
the network lifetime. When old nodes die, new nodes must be added for the
network to function correctly.

The addition of the new nodes also causes more energy consumption of the
existing nodes because they exchange control packets to sustain network topology
changes and compute new routes for data forwarding. This re-computation
of routing paths incurs further energy consumption. Therefore, saving the
energy of the nodes is of utmost importance because it impacts the overall
network lifetime. Saving on extensive unnecessary communication attempts and
recomputing dynamic routing paths can save the energy of the nodes and extend
the network lifetime.

WSNs can include Mobile Wireless Sensor Networks (MWSNs), which have
broad applications in various fields. In a mobile wireless sensor network, the
sensor nodes can move within the network. The rapid growth of mobile technology
and the Internet has made MWSNs a popular research area in WSNs. MWSNs
differ from traditional WSNs due to their mobility feature that enhances network
coverage, connectivity, scalability, and energy efficiency while prolonging the
network’s lifetime (Cao, Y. Cai, and Yue, 2019).

According to node movement, MWSNs can be categorized into three types: 1)
the sink node moves while the ordinary nodes are stationary; 2) the sink node
is stationary while few of the ordinary nodes move; and 3) both the sink node
and ordinary nodes move (Cao, Y. Cai, and Yue, 2019). The focus of our work is
based on two where the sink node is stationary while few of the ordinary nodes
move. Usually routing process in a mobile network is typically intricate and even
more challenging in MWSNs since sensor nodes are low-power, cost-effective, and
resource-constrained mobile devices. Although many effective routing protocols
for MWSNs have been proposed through recent research, there are still unresolved
issues such as sustaining network connectivity, minimizing energy consumption,
and maintaining sufficient sensing coverage (Sara and Sridharan, 2014). More on
MWSNs in the next Section as follows.
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2.2 Benefts and Possible Applications of WSNs

The key benefit of WSNs is that they can be implemented almost anywhere
without the need for any specific communication infrastructure. The sensor
nodes are networked in a self-organizing manner in many applications that require
unattended operations. It allows a WSN to be deployed as an alternative to non-
existent infrastructure (for cost effectiveness) or if the existing infrastructure is
not appropriate to use. The following are seen as possible applications for WSNs.

• Military applications: WSNs can be used to monitor battlefield con-
ditions, including intruder movement, drastic changes in temperature,
humidity, radiation levels, and other environmental factors to ensure the
safety and effectiveness of military operations. WSNs can also track and
monitor the movement of military assets, such as vehicles, aircraft, and
soldiers, providing situational awareness to commanders.

• Environmental applications: WSNs can measure pollutants, soil nitrogen
level, potassium level, phosphorous level, temperature, pH levels, and other
indicators of environmental health to ensure better air, soil, and water
quality. WSNs can provide early alerts for earthquakes, tsunamis, hurricanes,
and floods by detecting changes in environmental parameters and sending
alerts to relevant authorities.

• Health applications: WSNs can collect real-time patient health data and
transmit it to healthcare providers, enabling remote monitoring of vital
signs and medical conditions. In addition, WSNs can be integrated into
homes and healthcare services to monitor the elderly and individuals with
medical conditions, aiding and alerts in emergencies. WSNs can track the
availability of medical supplies, monitor equipment status, and improve
hospital processes.

• Home applications:WSNs enable the automation and control of home
devices, such as lighting, thermostats, security cameras, and appliances,
for improved energy efficiency and accessibility. In real-time, WSNs can
detect unauthorized access and alert homeowners about potential security
breaches. WSNs can monitor indoor air quality, humidity levels, and other
environmental issues to create a healthier and more comfortable living
environment.

• Commercial and industrial applications: WSNs can track goods
and assets throughout the supply chain, providing real-time visibility and
enhancing logistics operations. WSNs can control and optimize building
systems, such as lighting, HVAC, and occupancy, to improve energy efficiency
and reduce operative costs. WSNs can monitor equipment conditions,
production processes, and safety parameters in industrial settings, ensuring
smooth operations and preventing failures.
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2.3 Types of Wireless Sensor Networks

The WSN can be divided into various categories, mainly based on applications.

• Underwater and Underground Wireless Sensor Network: This
network is designed to operate underwater, these networks are used for
oceanographic research, environmental monitoring, and underwater explo-
ration. In addition, the land WSN can be deployed in soil or underground
for applications like agriculture, environmental monitoring, and geological
studies.

• Application based Mobile Wireless Sensor Network (MWSN): In
MWSN, sensor nodes are attached to mobile objects to measure and report
environmental events. The network is deployed similarly to WSN in an ad-
hoc fashion and without any centralized control. Problematic issues and
research questions in MWSN are similar to WSN because of their similarity
in terms of network architecture, deployment, and wireless communication.
Although resource constraint is still a problematic issue in MWSN (similar
to WSN), it is not critical as much as WSN; because, firstly, more powerful
resources can be attached to the mobile objects (e.g. vehicles power
resources), and secondly, MWSN nodes have the ability to move to re-charge
area when their energy level is low. However, research in MWSN needs to
give extra attention to sensor nodes’ mobility patterns and the influences
on the data collection and wireless communications. The vehicular sensor
network is an example of MWSN in which the GPS-sensor nodes collect
and report the location as well as traffic data to the sink node using GSM
communications.

• Aerial WSNs (or UAV-based WSNs): Aerial WSNs utilize unmanned
aerial vehicles (drones) to organize and manage sensor nodes for applications
like aerial surveillance, disaster management, and precision agriculture.
The integration of UAVs with terrestrial networks is also used for various
applications. Most such WSNs are deployed on land or in terrestrial
environments.

2.4 Mobile Wireless Sensor Networks

WSNs are deployed in different environments, including land, underground,
and underwater, which pose distinct challenges and constraints. WSNs are
classified based on deployment as terrestrial, underground, multimedia, mobile,
and multi-media. Based on sensor node resources, an MWSN can be classified
as homogeneous or heterogeneous. A homogeneous MWSN consists of identical
mobile sensor nodes. At the same time, a heterogeneous MWSN comprises mobile
sensor nodes with varying abilities in properties such as battery power, memory
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size, computing power, sensing range, transmission range, and mobility. Deploying
nodes in a heterogeneous MWSN are more complicated than in a homogeneous
MWSN (Ramasamy, 2017).

MWSNs are influenced by the shared medium and varying topology, where
channel access needs to be regulated. As a result, the network topology is
crucial in routing protocol design and determining the transmission path of data
packets to their intended destination (Silva et al., 2011; Mamun, 2012). However,
for large-scale MWSNs with mobile sensor nodes, traditional topologies such
as flat/unstructured, chain, tree, and cluster may not perform well. A hybrid
topology is the preferred option to address these issues, as it enhances data
collection and improves network performance. In addition, the routing protocol
is critical for selecting an efficient and reliable data transmission path (Velmani,
n.d.; Rezazadeh, Moradi, and Ismail, 2012). In addition, the distinctive feature of
MWSNs presents additional obstacles in creating an effective routing protocol that
considers the network’s dynamic topology, node mobility, and various constraints
such as energy, computational complexity, resource availability, storage, and
bandwidth.

2.4.1 Mobility and Topology in MWSN

In WSNs, mobility refers to the capacity of nodes to change their location from the
one they were initially deployed in. Mobile wireless sensor networks offer various
benefits over traditional static wireless sensor networks (Wichmann and Korkmaz,
2015): First, the mobility of MWSNs expands the coverage of wireless sensor
networks, which reduces the number and difficulty of sensor node deployment
required for area coverage. Unlike traditional static wireless sensor networks that
depend on the layout of many sensor nodes, the mobility characteristics of MWSNs
make coverage more efficient.

Second, MWSNs can improve data transmission speed, throughput, and
network latency by utilizing mobility to adopt a delay-tolerant routing strategy,
which reduces the delay caused by multi-hop transmission. The introduction
of mobile nodes results in a linear increase in throughput compared to static
wireless sensor networks. Additionally, reducing multi-hop transmission can
enhance communication quality by reducing errors and packet loss during data
transmission. Static sensors use the multi-hop method, which is only appropriate
for small-scale wireless networks. Once the network size increases, the multi-
hop transmission will cause significant delay and increase data transmission
unpredictability (H. Zhao et al., 2015).

Third, integrating mobile nodes in MWSNs can reduce energy consumption and
increase network lifetime. In static wireless sensor networks, energy consumption
is unbalanced, and nodes that forward data over multi-hops consume significant
energy, which impacts network stability and longevity. Due to node mobility,
MWSNs can supply charging power or larger batteries, eliminating the need to
optimize energy consumption during network design. With mobile nodes, static
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nodes do not have to wait for data forwarding during wake-up, and they can
transmit data to mobile nodes nearby, resulting in reduced energy consumption
and increased network lifetime (Ahmad et al., 2015). Furthermore, after mobile
nodes are introduced, sensor nodes can communicate with mobile nodes directly
without transferring data through multiple hops to the fixed data center. This
reduces the burden of the one-hop node around the data center and balances
energy consumption across the network (Shi et al., 2015).

However, designing a mobile wireless sensor network is difficult due to frequent
path breakages caused by channel fading, shadowing, interference, node mobility,
and node failure. Pre-constructed message delivery networks cannot cope with
the changing topology. Frequent location updates from mobile nodes can drain
sensor node batteries and increase collisions (Sara and Sridharan, 2014). Therefore,
factors like node mobility, limited resources, and bandwidth restrictions must be
considered when designing MWSN.

For mobile wireless sensor networks on a large scale to work well, factors
such as communication reliability, network connectivity, data collection, sensor
mobility, and management of network topology must be taken into account. As a
result, designing efficient routing protocols for WSNs requires accurate modeling
of both sensor mobility and topology management. Topology helps establish a
dependable network and ensures a better quality of service for traffic and end-to-
end connectivity, while mobility describes how sensor nodes behave in terms of
their movement pattern (Sara and Sridharan, 2014).

2.4.2 Routing in MWSN

In WSNs, the data routing process holds significant importance as it is responsible
for establishing the appropriate routing paths between sensor nodes and forwarding
data packets to the sink. Hence, the primary aim of routing protocols is to
establish efficient paths between sensor nodes within the network. When dealing
with MWSNs, routing protocols must consider factors such as mobility, data
redundancy, energy efficiency, and the dynamic nature of network topology. As
a result, routing in MWSNs requires careful management and implementation
due to the numerous challenges and limitations associated with sensor networks,
as mentioned in references (Mehta and Pal, 2017). Routing protocols are
typically categorized based on various characteristics, such as network structure
and application, which suggests that no one routing mechanism can effectively and
practically serve all types of WSN applications (Ketshabetswe et al., 2019; Biradar
et al., 2009). As a result, routing protocols can be divided into several categories,
and those have been discussed thoroughly in 3.1.1.

In the present work, OLSR is hybridized with SOM and DL methods. In
scenarios where partial sensor nodes work as mobile agent nodes is deployed
for monitoring applications, the OLSR protocol is the best as it offers many
key benefits. Therewith, OLSR is well-adapted to dynamic and resource-limited
contexts, making it suitable for monitoring application scenarios where the
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network topology could undergo changes due to the mobility of agent nodes and
environmental conditions. OLSR uses proactive routing, where nodes periodically
share link-state information in order to maintain current routing tables. Such a
proactive approach guarantees that routing decisions can be made with less delay
and with the optimal usage of network resources, even in networks with mobile
nodes and varying connectivity.

The OLSR is created to ensure the most effective routing protocol through
the reduction of redundancy and control of message transmission. In MWSNs,
especially those that deploy mobile nodes as partial networks, the energy and
bandwidth saving work as the pivotal factors. OLSR optimizes it in such a way
that it is only exchanging routing information with a not so large subset of nodes
simply known as Multi-Point Relays (MPRs) rather than broadcasting it to all
nodes in the network. This minimizes the cost per packet transmitted and the
energy consumption within the network.

On the other hand, the design of OLSR in such a way, that it can handle
multi-routing paths and its resilience to link failures make OLSR a good fit for
scenarios where the network connectivity can be intermittent or characterized by
disruptions, for instance in agricultural areas with variable topography or signal
interference. OLSR maintains multiple routes that allow it to adapt to the network
topology changes, ensuring the transmission of data even in challenging conditions.

The proactive nature, routing efficiency, and robustness of the OLSR protocol
recommend it as a suitable candidate for Mobile Wireless Sensor Networks
deployed in agricultural monitoring with the mobile agent node distribution in
a partial way. Its ability to cope with diversified surroundings, save energy, and
ensure dependable communication in the face of different conditions meet the needs
and the challenges of such environments fittingly, making this a protocol well suited
for assuring smooth and competent data transfer in agricultural MWSNs.

2.5 Artificial Intelligence

In recent times, the increasing use of Artificial Intelligence (AI) has resulted in
a shift in focus toward the need for devices and sensor nodes to learn from their
experiences and events rather than being explicitly programmed to act in certain
ways (Mitchell, 1997; Ayodele, 2010; Langley and Simon, 1995). This is what
is termed ML, and DRL is a subclass of machine learning that involves training
an agent to learn how to make decisions by interacting with an environment and
receiving feedback in the form of rewards or penalties. The goal of DRL is to enable
the agent to learn the optimal actions to take in a given situation to maximize the
cumulative reward over time.

DRL has been proposed as a potential solution to routing problems in mobile
wireless sensor networks (MWSNs). In an MWSN, sensors are deployed in a
mobile environment and are capable of sensing and communicating with each other.
However, due to the mobility of the sensors, traditional routing algorithms may
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not be effective, and a more adaptive approach is required. DRL can be used to
train sensors to learn how to make routing decisions in an MWSN. The sensors
can be viewed as agents that interact with their environment by selecting actions,
such as selecting a path for data transmission. The environment includes other
sensors in the network and the state of the network, such as the topology and
traffic load. The sensors receive feedback in the form of rewards, which indicate
the quality of their actions in terms of performance metrics such as end-to-end
delay, energy consumption, or throughput. The reward function can be designed
to reflect the specific requirements of the network, such as minimizing delay or
maximizing energy efficiency.

The thesis focuses primarily on routing in MWSNs, but it is essential to
consider other factors, including energy efficiency, network security, and random
deployment, in addition to relevance clustering and combining AI and optimization
techniques. To address the challenges faced by MWSNs, a location-aware and
energy-efficient routing mechanism based on an optimized AI technique was
selected. The proposed solution aims to enhance QoS by improving parameters
such as throughput, end-to-end delay, packet delivery ratio, packet loss rate,
collision avoidance intensity, and energy consumption.

2.6 Machine Learning

Machine Learning (ML) is a subfield of AI, that allows computers to autonomously
learn patterns from data and make predictions or decisions without being explicitly
programmed (Mitchell, 1997; Ayodele, 2010; Langley and Simon, 1995). Instead
of following a rigid set of instructions, algorithms based on ML involve processes
of feeding computers with large amounts of data, which allows them to analyze
data, identify patterns, and make predictions on that data. ML makes computing
processes more efficient, reliable, and cost-effective, because it continually improves
the performance of tasks over time without the need for manual intervention.

ML is broadly classified into supervised learning, unsupervised learning, and
reinforcement learning. Certain hybrid approaches also exist that combine
supervised, unsupervised, and reinforcement learning elements, such as semi-
supervised learning. Machine learning techniques have been utilized extensively for
tasks like classification, regression, and density estimation across different domains,
including engineering, computing, bio-informatics, computer vision, graphics
processing, and natural language processing. Recently, the latest advancements in
ML have been utilized to tackle different challenges in WSNs (Mohammad Abu
Alsheikh et al., 2014) and IoT (Jagannath et al., 2019; Mahdavinejad et al., 2018).
Specifically, ML has been applied to improve energy efficiency, data analysis, fault
tolerance, security, and network self-organization in WSNs without re-programing.
These advances have enabled the development of more efficient, robust, and
intelligent WSNs that can better meet the demands of various applications.

As WSNs are battery-powered, they perform duty cycling to save energy, which
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means most of the time, they are in a sleep state, and wake only if they have
data to transmit. In this way, they extend network life time (Yuqin Wang et al.,
2020; F. Liu et al., 2017). In duty-cycled WSNs, data transmission between nodes
can occur only when both are in an active state (Q. Chen, Gao, Cheng, et al.,
2017; Akbar, Yu, and Cang, 2016). In this scenario, determining the appropriate
forwarder node is a complex task. However, maintaining accessibility between
the sender and receiver is crucial during the data routing process (Carrano et al.,
2014). An incorrect choice of forwarder can result in a misdirection, causing data
to take a longer route to reach the base station, resulting in increased latency.
Moreover, different applications of WSNs require different performance metrics
to be achieved such as low end-to-end delay, high energy efficiency, reliable link
quality, and protection against nearby interference. There is a trade-off involve
among these metrics, for example, saving energy causes nodes to sleep more often
which in turn increased delay or latency and this can be problematic for delay-
sensitive applications (Q. Chen, Gao, Z. Cai, et al., 2018; Sodhro et al., 2018).
Thus, a balanced trade-off must exist among these metrics so as to satisfy certain
application requirements, however, achieving such balance is a challenge in duty-
cycled WSNs.

2.6.1 Machine Learning Techniques

There is an abundant body of literature addressing the various challenges of WSNs
through the use of machine learning (Mohammad Abu Alsheikh et al., 2014). In
this section, ML and its classifications are discussed, later in subsequent sections,
we extended survey on various ML-based algorithms for WSNs, evaluating their
benefits, drawbacks, and impact on network parameters such as lifetime, energy
consumption, packet loss, etc. Classification of ML techniques has been done
based on the learning styles into four categories: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. Figure 2.1 depicts
the taxonomy of ML techniques.

2.6.1.1 Supervised Learning Supervised learning is one of the im-
portant data processing and training approaches in ML. In supervised learning,
algorithms are trained with the help of labeled datasets to build models that can
classify data or predict outcomes. The model learns the relationship between
the input features and the output labels based on the labeled training data, this
relationship is then used to make predictions on new, unseen data. At the end of
the training process, I can find a function from an input x with the best estimation
of output y (f : x → y). Supervised learning algorithms are crucial in creating a
model that captures the relationships and dependencies between the input features
and the target outputs. Using this model, predictions can be made for new data
by utilizing the relationships learned from prior datasets. The ultimate goal of
supervised learning is to generate accurate predictions for unseen data.
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Machine learning

Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning

Regression Classification Clustering Dimensionality reduction Q-learning

Decision trees ANN

SVD PCA ICA

Deep Learning SVM k-NNBayseianRandom forest

K-means Fuzzy-c-meansHierarchial

Figure 2.1: Taxonomy of ML techniques

Supervised learning can tackle a range of challenges faced in WSNs, such as
improving localization (Banihashemian, Adibnia, and Sarram, 2018), addressing
coverage issues (W. Sun et al., 2018), optimizing routing (Mehmood et al., 2017),
facilitating data aggregation (Song et al., 2013), controlling congestion (M. Abu
Alsheikh et al., 2016), and maximizing energy harvesting (A. Sharma and Kakkar,
2018; Tan et al., 2017). Supervised learning can be divided into two categories:
regression and classification. Classification, in turn, encompasses several types of
algorithms, including logic-based algorithms (such as decision trees and random
forests), perception-based algorithms (such as Artificial Neural Networks and deep
learning), statistical learning algorithms (such as Support Vector Machines, and
Bayesian algorithms), and instance-based (k -NN) algorithms.

2.6.1.2 Unsupervised Learning Unsupervised learning involves work-
ing with input data with no associated output labels. The model tries to identify
relationships within the data, even without any prior knowledge of what the
outputs should be. This approach is often used for tasks such as grouping
similar patterns into clusters, reducing the number of dimensions in the data,
and detecting anomalies. In WSNs, unsupervised learning plays a key role in
addressing challenges such as connectivity problems (Qin et al., 2017), routing
(El, Youssif, Ghalwash, et al., 2016) and data aggregation. The most commonly
used unsupervised learning method is K-means for clustering the SNs used in the
LEACH protocol. The centroid update equation of K-Means is given below:

ci =
1

Ni

∑
xj∈Ci

xj (2.1)

One more dimension reduction technique is principal component analysis
(PCA). PCA, a vital tool in unsupervised learning, is chiefly employed for
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dimensionality reduction and data visualization. It transforms high-dimensional
data into a lower-dimensional space while retaining maximal variance. This
aids in simplifying complex datasets, eliminating noise, and enhancing algorithm
efficiency. PCA can decrease dimensionality by projecting data onto principal
components, which are orthogonal linear combinations of original features. The
covariance matrix for PCA is given below:

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (2.2)

The corresponding eigen values for PCA are given by the below equation.

Sv = λv (2.3)

2.6.1.3 Semi-supervised Learning Semi-supervised learning is a
technique in machine learning where both labeled and unlabeled data are used
for training. Unlike supervised learning, where only labeled data is used, or
unsupervised learning, where only unlabeled data is used, semi-supervised learning
combines the strengths of both to improve accuracy. This technique is used
in real-world applications such as natural language processing, web content
classification, speech recognition, spam filtering, video surveillance, and protein
sequence classification (X. Zhu and Goldberg, 2009). Two main goals in semi-
supervised learning are to predict the labels of unlabeled data in the training
set and to predict labels on future test data (X. Zhu and Goldberg, 2009). This
technique can be divided into two categories: Transductive learning, which predicts
the exact labels of a given unlabeled dataset, and Inductive semi-supervised
learning, which learns a mapping function f : X 7→ Y so that f expected to be a
good predictor on future data. Recently, WSNs have been utilizing this learning
technique to address localization issues (Yoo, W. Kim, and H. J. Kim, 2015).

2.6.1.4 Reinforcement Learning The reinforcement learning (RL)
algorithm learns through ongoing interactions with the environment and collects
data to make decisions. It aims to achieve the best possible outcome by
identifying the optimal result from the environment. The process of RL is
depicted in Figure 2.2. Q-learning is a model-free technique used in reinforcement
learning. In this approach, agents interact with the environment and generate a
sequence of state-action-reward observations as state-action-rewards (for example
< s0, a0, r1, s1, a1, r2, s2, a2, r3, .... >) (Poole and Mackworth, 2010). A matrix of
rewards, denoted as R(S,A), is maintained where A and S represent the sets
of actions and states, respectively. In Q-learning, the actions of the agent are
represented in the form of a matrix Q(S,A), which is of the same size as R and
initialized with zero values. The rows and columns of the Q matrix correspond
to the current state of the agent and the possible next state, respectively. The
transaction rule for updating each entry in the Q matrix involves adding the
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Figure 2.2: Reinforcement learning

corresponding value in the R matrix to the product of the discount factor, denoted
as Γ (which has a value between 0 and 1], and the maximum Q value for all possible
actions in the next state. The learning rate, denoted as ℘ (where 0 ≤ ℘ < 1), is
also considered. Eq. (2.4) shows how this is done.

Qt+1(Si, σi) = (1− ℘)Qt(Si, σi) + ℘×Rt(Si, σi)

+ ℘× Γ
(
max

a
Q

′
(S ′

i , σ
′

i)−Qt(Si, σi)
) (2.4)

2.7 Basic System Model

In the proposed Mobile Wireless Sensor Network (MWSN), the establishment of
communication and data transmission relies on the Optimized Link State Routing
(OLSR) protocol. The goal is to identify neighboring nodes within range and
utilize OLSR to determine the most efficient route for data transmission. In the
proposed model, it is assumed that all the sensor nodes (end devices) are static
and only a few agent sensor nodes are moving for the collection of the data.

To achieve the identification of neighboring nodes, the sensor nodes in the
network broadcast periodic ‘Hello’ messages to discover neighboring nodes within
their communication range. By exchanging Link State Packets (LSPs), nodes
gather information about their neighbors and the quality of the links between
them, including metrics like hop count, signal strength, and available bandwidth.

Based on the collected topology information, nodes construct a network
topology map that represents the connectivity between nodes and includes the
quality metrics of the links. This map serves as the basis for calculating the shortest
path to reach any destination node within the network. Common algorithms, such
as Dijkstra’s algorithm, can be used to compute these paths efficiently (Fuhao and
Jiping, 2009).

Using the shortest path calculations, nodes construct their routing tables,
which contain entries specifying the next hop for each destination node. These
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tables guide the routing of data packets through the network, ensuring efficient
and reliable transmission.

The performance metrics help to characterize the network that is substantially
affected by the routing algorithm to achieve the required Quality of Service (QoS).
The most important QoS parameter is End-to-End Delay(EED). EED is the time
taken for an entire message to completely arrive at the destination from the
source. Evaluation of end-to-end delay mostly depends on propagation time (PT),
transmission time (TT), queuing time (QT) and processing delay (PD). The EED
also depends upon Control Overhead. The control overhead is the ratio of the
control information sent to the actual data received at each node.

The second important performance parameter of OLSR protocol is routing
efficiency (β). The routing efficiency measures the ability of the protocol to
establish and maintain communication paths between nodes. It is calculated as the
ratio of the number of successfully delivered packets (Dpacket) to the total number
of packets transmitted (Tpackets) in the network. The formula for routing efficiency
is expressed as given in (2.5).

β =
Dpackets

Tpackets

× 100 (2.5)

The routing efficiency depends upon Connection Probability Cp is:

Cp(i) =
T (i)× E(i)

N × Tbps

(2.6)

where Cp(i) is the Connection Probability of ith node, E(i) is E2E delay taken
by each node to transmit the packets to the receiver side. T (i) is throughput of
ith node. N is the total number of active nodes, and Tbps is the total bit per
second the node takes to transmit the packets. Throughput is the amount of data
successfully transmitted from one point to another in a specified time, measured
in units like bits per second (bps).

The energy consumption of the nodes is calculated in terms of the throughput
of the network and is given below in (2.7),

Econs(i) = Ovcons(i)× Tp/N (2.7)

where Econs(i) is the total energy consumption of ith node, Ovcons(i) is overhead
consumption, Tp/N is the total number of packets sent by the total active nodes
within the network. Overhead consumption refers to the additional data and
resources required for control information, such as headers and error-checking,
reducing the effective bandwidth for actual data.

The detailed model of the SOM and DRL are discussed in Chap 4 and Chap 5,
respectively.
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2.8 Applications of Machine Learning in WSNs

This section presents the use of ML techniques and algorithms in WSNs.
We explore how these ML techniques can tackle various challenges in WSN.
Specifically, the suitability of various existing ML techniques for different WSNs
applications is explored.

2.8.1 ML for WSN Localization

The recognition of the physical or geographical location of a sensor node is
referred to as localization in WSNs. In certain applications, sensor nodes
are deployed in a field without prior knowledge of their positions, and there
may not be enough infrastructure available to locate them after deployment.
Nonetheless, it is critical to identify the location of these nodes. The location
of a sensor node can be determined through manual assignment, geographical
position system (GPS), or using special nodes such as Anchor or Beacon nodes.
An example is illustrated in Figure 2.3. Localization is broadly categorized
into four types: proximity-based, range-based, angle and distance-based, and
known location-based localization (Kuriakose et al., 2014). The position of sensor
nodes in the environment can change dynamically due to external factors, and
in such situations, network reprogramming or reconfiguration may be necessary.
Applying ML techniques in such scenarios can improve the accuracy of node
localization (Cottone et al., 2016).

2.8.2 ML for WSNs Coverage & Connectivity

In addition to energy efficiency, ensuring adequate coverage and connectivity
are also challenging issues in WSNs. Coverage refers to how effectively each
deployed sensor can monitor the area of interest. The deployment of sensor
nodes in a network can be either deterministic or random, depending on the
application (Mohamed, Hamza, and Saroit, 2017; Fang et al., 2018). Random
deployment is often more feasible in most WSN applications compared to
deterministic deployment. Coverage can be classified into two categories: full
coverage and partial coverage (Mohamed, Hamza, and Saroit, 2017; Elhoseny
et al., 2017). Partial coverage can be further classified into focused coverage,
sweep coverage, target coverage, and barrier coverage. Connectivity refers to the
absence of isolated sensor nodes in the network, meaning that every node in the
WSNs is capable of sending its data to the sink node directly or through relay
nodes. Figure 2.4 illustrates coverage and connectivity, where nodes A and node
B are isolated (disconnected) nodes and the white area represents a coverage hole
in the network.

Numerous algorithms have been proposed to address coverage and connectivity
problems in WSNs. (Hongbing Li et al., 2017) focuses on addressing static
sensors in WSNs, while (Fang et al., 2018; Abo-Zahhad et al., 2016) aim to

24



Chapter 2. Background Study 2.8. Applications of Machine Learning in WSNs

Figure 2.3: ML for WSN Localization

solve similar problems in mobile WSNs. Using ML techniques to tackle coverage
and connectivity issues in WSNs offers several advantages, such as quickly and
dynamically identifying the minimum number of SNs required to cover the target
area, as demonstrated in (Elghazel et al., 2015). Additionally, these techniques can
classify nodes as either connected or disconnected in the network and dynamically
change routes without losing data.

2.8.3 ML for WSNs Routing

Routing is a significant challenge in WSNs due to limited power, low transmission
bandwidth, and processing and memory capacity. In a WSN, sensor nodes
are randomly deployed in the environment. Each node collects data from
the environment and transmits it to the BS for further processing, as shown
in Figure 2.5, where multi-hop transmission from SNs to BS is depicted. Typically,
nodes close to the BS consume more energy because they act as relay nodes.
The primary objective of the routing protocol design is to reduce the energy
consumption of SNs and increase the network lifetime. The potential enhancement
of routing in WSNs through the use of Machine Learning (ML) techniques has been
increasingly studied in recent years. Researchers have developed several routing
methods for WSNs using different approaches (Hammoudeh and Newman, 2015;
X. Liu, 2017; Asif et al., 2017). By utilizing machine learning techniques, routing
protocols in WSNs can adapt to changes in network conditions, such as node
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Node B

Node A

Disconnected Node
Coverage holeSink node

Figure 2.4: Example of coverage and connectivity

mobility or network congestion, and make decisions in real-time to ensure the
most efficient routing path for data. Moreover, ML-based routing protocols can
predict network changes in real-time, optimize the route for data transmission,
and minimize energy consumption, which is crucial for the network’s lifetime.

2.8.4 ML for Data Aggregation

Data aggregation is a crucial task in WSNs, as it involves collecting and combining
data from multiple sensors to produce a more accurate and complete picture of the
environment being monitored. The process of data aggregation in WSNs impacts
multiple parameters, including power usage, memory, communication overhead,
and computational units. A critical role of data aggregation is to decrease the
number of transmissions and communication overhead to achieve an efficient WSN.
A practical method for data aggregation balances the energy consumption of sensor
nodes and extends the lifetime of the network. Various data aggregation techniques
have been developed depending on the network’s structure, such as cluster-
based, tree-based, in-network, and centralized data aggregation (Ambigavathi and
Sridharan, 2018). Previous studies (xie et al., 2017; Lin, Bai, and Yunfei Liu,
2017; Kanjo, Younis, and Sherkat, 2018) have proposed different approaches for
data aggregation in WSNs.
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Figure 2.5: Routing in MultiCluster Model for WSN via Cluster Heads to Base
Station

2.8.5 ML for Mobile Sink

In WSNs, SNs gather information from the environment and transmit the data
to the BS directly or multi-hop manner. When the data transmits in a multi-hop
manner, the node which is near the sink will die soon, referred to as an energy-hole
problem. To avoid the energy-hole problem, an MS concept has been introduced,
a MS visits each sensor node in the network and collects information directly. In
large WSNs, visiting every node is difficult, so scheduling MS in an efficient delay-
aware manner is a research issue. Therefore instead of visiting each sensor node in
the network, MS visit only a few nodes or points in the network called rendezvous
points (RPs) to collect data, and all remaining nodes send their data to nearest
RPs (Wen et al., 2018; Salarian, Chin, and Naghdy, 2014). Multiple MSs can also
be used to avoid the delay of MS to visit SNs, but it is cost-effective.

Authors in (T. Wang et al., 2017) have proposed multiple MS concepts to
gather the information from the WSNs and store it in the cloud. In this, each
MS is treated as a fog device, and it acts as the bridge between WSNs and the
cloud. This algorithm is designed for parallel data-gathering process to minimize
the latency and maximizing the scheduling efficiency. This approach balances
energy consumption and improves the network lifetime. Recently, ML approaches
have been adopted for WSNs to schedule MS and to choose the optimal set of
rendezvous points.

27



Chapter 2. Background Study 2.9. Benefits and Drawbacks of ML in WSNs

2.9 Benefits and Drawbacks of ML in WSNs

Employing ML techniques in diverse WSN applications can enhance efficiency and
precision. The significance of ML in WSNs stems from its advantages, including
the ability to improve performance and accuracy. However, there are also several
drawbacks and limitations that must be taken into account when utilizing machine
learning techniques in WSNs, as outlined below (D. P. Kumar, Amgoth, and
Annavarapu, 2019).

Benefits

• ML’s capacity to update models in real-time provides an excellent solution
for modeling dynamic environments. For instance, a landscape monitoring
system that relies on WSNs may experience changes in network topology due
to sensor failure or relocation. With the use of ML methods, the connection
model can be rebuilt dynamically, and an optimal clustering and routing
scheme can be selected.

• Developing precise mathematical models to approximate the relevant envi-
ronmental factors can be challenging in many applications. ML methods offer
practical solutions that enable the establishment of low-complexity models
that provide good approximations.

• ML methods have a strong ability to exploit temporal and spatial correla-
tions, which makes them an excellent choice for event detection, fault node
tolerance, and prediction-based data fusion.

• ML methods can improve their intelligence by continually learning from
larger datasets, enhancing decision-making’s reliability and accuracy. For
instance, intrusion detection systems based on WSNs can enhance their
detection accuracy by learning from past experiences over time.

• WSNs are valuable in exploratory applications that collect new knowledge
about inaccessible or hazardous locations, such as monitoring volcanic
eruptions and wastewater. In such scenarios, unexpected behavior patterns
may emerge, which could cause initial system solutions to malfunction.
However, robust ML algorithms can adapt to the newly acquired knowledge
and improve model adaptability.

Drawbacks

• ML techniques cannot provide immediate and accurate predictions as they
require learning historical data. The performance of the system is dependent
on the quantity of historical data provided as input, and a more significant
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amount of data can improve performance accuracy. However, due to the
resource limitations in WSNs and the high computational complexity of ML,
implementing it can require more energy. To address this, energy efficiency
can be improved by implementing ML in a centralized manner.

• The dynamic actions performed by ML are based on historical data, but
verifying the accuracy of predictions in real time can be challenging.
Diagnosing and correcting errors during network operation can be difficult
and involve complex processes associated with the source code.

• It can be challenging to determine which type of ML method is most suitable
for a given action taken by WSNs. Simulating when and where the ML
algorithm needs to respond can also be difficult.

• ML methods can consume significant computational time and hardware
resources, which can be problematic in WSNs with limited resources. To
address this issue, centralized algorithms may be preferable to distributed
ones.

2.10 Introduction of DRL

DRL is an advanced branch of machine learning that combines deep learning
techniques with reinforcement learning algorithms. It represents a powerful
approach for training agents to make sequential decisions in complex and dynamic
environments. DRL enables machines to learn from interactions with the
environment, receive feedback through rewards, and iteratively improve their
decision-making abilities.

At its core, DRL employs deep neural networks as function approximations
to capture and model the state-action value function, commonly known as the
Q-function. The Q-function estimates the expected cumulative rewards for taking
specific actions in different states of the environment. By utilizing deep neural
networks, DRL algorithms can effectively handle high-dimensional and raw input
data, such as images or sensor readings, enabling agents to learn directly from raw
sensory inputs.

The training process in DRL revolves around the concept of reinforcement
learning, which involves an agent interacting with an environment to maximize
cumulative rewards. The agent takes actions based on its current state, receives
feedback through rewards or penalties, and learns to improve its decision-making
through trial and error. DRL algorithms leverage the principles of reinforcement
learning, such as the Markov Decision Process and the Bellman equation, to
optimize the agent’s policy over time.

One of the key advantages of DRL is its ability to learn complex and hierarchical
representations of the environment. Deep neural networks can automatically
extract abstract features from raw data, allowing DRL agents to uncover intricate
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patterns and structures within the environment. This enables them to handle
environments with high-dimensional state spaces, making DRL suitable for a wide
range of applications, including robotics, game playing, finance, and autonomous
driving.

Furthermore, DRL algorithms can handle environments with sparse or delayed
feedback, where the rewards are not immediately evident. By exploring and
exploiting the environment, DRL agents learn to make long-term decisions,
balancing immediate rewards with future potential gains. This temporal credit
assignment is essential for solving tasks that require strategic planning and
decision-making over extended periods.

In recent years, DRL has achieved remarkable successes, surpassing human-
level performance in complex tasks such as playing video games, mastering board
games like Go and chess, and controlling robotic systems. These achievements
have demonstrated the potential of DRL to tackle real-world problems that were
previously considered challenging or intractable.

2.10.1 Components of DRL

DRL consists of several key components that work together to enable agents to
learn and make sequential decisions in complex environments. These components
include the agent, the environment, the action space, the state space, the reward
system, and the learning algorithm. Each component plays a crucial role in the
DRL framework and contributes to the overall significance of DRL in solving
complex tasks.

• Agent: The agent is the entity that interacts with the environment and
learns to make decisions. It can be represented by a neural network or any
other function approximately capable of mapping states to actions. The
agent’s objective is to maximize the cumulative rewards it receives from the
environment by selecting optimal actions based on its current state.

• Environment: The environment represents the external system with which
the agent interacts. It provides the agent with observations or states, receives
the agent’s actions, and returns rewards or penalties based on the agent’s
actions. The environment can range from simulated virtual environments to
physical systems, depending on the application domain.

• Action Space: The action space defines the set of possible actions that the
agent can take in a given state. It can be discrete, where the agent chooses
from a predefined set of actions, or continuous, where the agent selects a
value from a continuous range. The action space depends on the specific
task or problem being addressed.

• State Space: The state space represents the set of all possible states that
the agent can perceive from the environment. It can be discrete, where
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each state is distinct and separate, or continuous, where states exist in a
continuous range. The state space encapsulates the relevant information
necessary for the agent to make decisions.

• Reward System: The reward system provides feedback to the agent based
on its actions in the environment. It assigns numerical values, known
as rewards, to different states and actions. The agent’s objective is to
maximize the cumulative rewards over time. The reward system guides the
agent’s learning process by providing signals that indicate the desirability or
undesirability of its actions.

• Learning Algorithm: The learning algorithm is responsible for updating
the agent’s decision-making policy based on the feedback received from the
environment. It employs techniques from reinforcement learning, such as
Q-learning, policy gradients, or actor-critic methods, to iteratively improve
the agent’s performance. The learning algorithm enables the agent to learn
from past experiences, explore new actions, and exploit learned knowledge
to make better decisions in the future.

The significance of these components in DRL lies in their ability to address
complex tasks and learn from raw sensory inputs. By combining deep
learning techniques, which allow for the processing of high-dimensional
data, with reinforcement learning algorithms, DRL can handle challenging
problems that were previously considered intractable. DRL agents can learn
directly from raw sensory inputs, such as images or sensor readings, enabling
them to understand and interpret complex information in the environment.

Additionally, the agent-environment interaction in DRL allows for continuous
learning and adaptation. As the agent explores the environment and receives
feedback through the reward system, it can adjust its decision-making policy
accordingly. This adaptability makes DRL well-suited for dynamic and changing
environments, where optimal strategies may evolve over time.

Moreover, DRL’s ability to handle sequential decision-making and long-term
planning sets it apart from other machine-learning approaches. By considering
the future consequences of its actions and optimizing for cumulative rewards, DRL
agents can make decisions that balance short-term gains with long-term objectives.
This temporal credit assignment is crucial in real-world applications where actions
have delayed or cascading effects.

Eventually, the components of Deep Reinforcement Learning - the agent,
environment, action space, state space, reward system, and learning algorithm
- work together to enable agents to learn from raw sensory inputs and make
sequential decisions.
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2.10.2 Application of Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) has emerged as a powerful and versatile
technique with a wide range of applications across various domains. Combining
deep learning and reinforcement learning, DRL enables agents to learn optimal
decision-making policies through trial-and-error interactions with their environ-
ment. The following are some of the key applications where DRL has shown
significant promise.

• Robotics: DRL has revolutionized the field of robotics by enabling
autonomous robots to learn complex tasks and control policies. It has been
successfully applied to tasks such as robotic manipulation, grasping objects,
locomotion, and even playing games like chess and Go. DRL allows robots
to learn from their own experiences and adapt their actions in real-time,
leading to more robust and intelligent robotic systems.

• Game Playing: DRL has demonstrated remarkable success in playing a
variety of games, both in traditional board games and video games. Notably,
DRL algorithms have achieved superhuman performance in games like Atari,
Dota 2, and AlphaGo, surpassing human-level capabilities. By learning
directly from raw sensory inputs, DRL agents can devise sophisticated
strategies and exhibit adaptive gameplay.

• Autonomous Vehicles: DRL has promising applications in autonomous
driving, where agents learn to navigate complex traffic scenarios and make
decisions in real-time. DRL models can learn to perceive the environment
from sensor inputs, such as camera data, and make appropriate decisions,
such as lane changing, overtaking, or yielding, while adhering to traffic rules
and safety constraints.

• Healthcare: DRL holds great potential for healthcare applications, includ-
ing personalized treatment recommendation systems, disease diagnosis, and
medical imaging analysis. DRL models can learn optimal treatment policies
by considering patient-specific characteristics and optimizing treatment
outcomes. Moreover, DRL has been used to improve medical imaging
analysis, aiding in the interpretation of radiological images and facilitating
early detection of diseases.

• Finance: DRL has found applications in financial domains, such as
algorithmic trading and portfolio management. By learning optimal trading
strategies from historical market data, DRL agents can make informed
decisions on buying, selling, and managing financial assets. DRL’s ability
to adapt to changing market conditions and complex patterns provides an
advantage in the dynamic and uncertain financial landscape.
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• Resource Management: DRL is valuable for optimizing resource alloca-
tion and management in various domains. For example, in energy systems,
DRL can learn to control and optimize the energy consumption of buildings
or allocate energy resources efficiently. In wireless communication networks,
DRL can optimize spectrum allocation and manage network resources for
improved performance and user experience.

These applications only scratch the surface of the potential of DRL. The
combination of deep learning and reinforcement learning opens doors to solving
complex decision-making problems in various domains, making DRL a powerful
and versatile approach with far-reaching implications.

Figure 2.6: Deep RL Process

The DRL model addresses this issue by combining RL and deep learning (DL)
techniques. The DRL model uses a deep neural network (DNN) to approximate
the Q-values functions. DRL parameters (state and reward) can be assigned based
on different 5G system objectives, such as power consumption, state of RRHs,
user demand, channel gains or throughput maximization, etc. The DQN operates
similarly to the Q-value function except for the addition of neuron and replay
memory. All input states are transferred to different NN layers, each with different
weight factors θ. Finally, DQN generates the Q-value outputs with respect to
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possible actions. Furthermore, an experience replay memory is also used, where
the network training is done by sampling a small batch of tuples.

DRL approach fundamentally makes use of deep neural networks function
approximation properties to effectively overcome problems of high dimensionality
and complexity. Furthermore, it plays a significant role to develop an appropriate
correlation between each state-action combination and its corresponding value
(i.e., cumulative reward) by learning network parameters and training samples as
depicted in Figure 2.6.

2.10.3 The key features of DRL

• DRL can enable MWSN to learn the most energy-efficient routing paths that
extend the lifespan of MWSNs that are constantly changing (Mohammad
Abu Alsheikh et al., 2014).

• Simplify complex routing problems by breaking them down into smaller
sub-problems. In each sub-problem, nodes create graph structures by only
considering their nearby neighbors, resulting in low-cost, efficient, and real-
time routing.

• Use straightforward computational methods and classifiers to meet Quality
of Service (QoS) requirements in routing problems.
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Chapter 3

Literature Review

This Chapter talks about Deep Reinforcement Learning (DRL) as this lays the
necessary foundation for the proposed work. The introduction begins, followed
by a discussion on routing protocols for MWSNs, which presents an overview
of different types of routing protocols. In particular, the Optimized link state
routing (OSLR) protocol is discussed. Subsequently, routing protocols based on
DRL with reference to WSNs are elaborated; several DRL-based routing protocols
are reviewed for MWSNs that exist in the literature. After that, some well-known
techniques that are the basis of DRL are discussed, such as ANNs, CNNs, and
RNNs, along with their architecture. The pros and cons are also studied of using
DRL in MWNS. Finally, it provides details of the performance metrics used in
evaluating various routing protocols in the context of MWSNs and which metrics
are selected to evaluate routing protocol.

3.1 Introduction

Deep Reinforcement Learning (DRL) is a ML approach used for classification,
and it is a subcategory of Artificial Neural Networks (ANNs).DRL approaches are
data learning representation methods with multi-layer representations (between
the input layer and output layer). It composes of simple non-linear modules
that transform the representation from the lower layer to the higher layer to
achieve the best solution (LeCun, Bengio, and G. Hinton, 2015). Communication
patterns and information processing inspire it in human nerve systems which
has some differences from the functional and structural properties of human
brains (Marblestone, Wayne, and Kording, 2016). The key benefits of DRL are
extracting features from the data, working with or without labels, and it can be
trained to fulfill multiple objectives. It can be helpful in various domains such
as bio-informatics, business intelligence, medical image processing, social network
analysis, speech recognition, and handwriting recognition. The advantages of deep
learning are recently attracting the WSNs researchers. Embedding deep learning in
WSNs has solved various issues such as routing (Lee, 2017), data quality estimation
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(Yuzhi Wang et al., 2017), and energy harvesting (F. Chen, Z. Fu, and Z. Yang,
2019).

3.1.1 Routing Protocols For MWSNs

Routing protocols are typically categorized based on various characteristics,
such as network structure and application, which suggests that no one routing
mechanism can effectively and practically serve all types of WSN applica-
tions (Ketshabetswe et al., 2019; Biradar et al., 2009). As a result, routing
protocols can be divided into several categories, including network structure-based
protocols, operation-based protocols (Kaganurmath and Ganashree, 2016), and
path establishment-based protocols.

3.1.2 Network Structure-Based Protocols

The network structure-based approach consists of various routing methods, such as
flat-based routing which is suitable for large networks with numerous sensor nodes,
where it is not feasible to assign global identifiers (IDs) to every node (S. K. Singh,
2010). Consequently, data-centric routing approaches are used, where all nodes in
the network are considered equal and perform the same function. Some of the well-
known flat-based routing protocols include Flooding (Ketshabetswe et al., 2019),
Gossiping (CHOKSI and DESAI, 2012), Directed Diffusion (Intanagonwiwat,
Govindan, and Estrin, 2000), Rumor Routing (Echoukairi, Bourgba, and Ouzzif,
2016), Minimum Cost Forwarding Algorithm (Nikolaos A Pantazis, Stefanos A
Nikolidakis, and Dimitrios D Vergados, 2012), and Active Query forwarding in
sensor networks (P. Kumar, M. Singh, and Triar, 2012). The network structure-
based protocols can be further categorized into flat-based, hierarchical-based, and
location-based protocols.

Hierarchical or cluster-based routing is a popular routing approach that
divides the network into clusters controlled by a cluster head to optimize energy
consumption. This type of routing operates in two layers, where cluster heads
collect data from cluster members, process it, and forward it to the sink
through other cluster heads. Clustering-based routing has proven effective in
optimizing power consumption and extending the network’s lifetime. Examples
of clustering-based routing techniques include Low-Energy Adaptive Clustering
Hierarchy (LEACH) [33], Power-Efficient Gathering in Sensor Information Systems
(PEGASIS) (Ketshabetswe et al., 2019), Threshold-sensitive Energy Efficient
Protocols (TEEN) (Nikolaos A Pantazis, Stefanos A Nikolidakis, and Dimitrios D
Vergados, 2012), and Adaptive Periodic Threshold-sensitive Energy Efficient
protocol (APTEEN).

Finally, location-based routing uses nodes’ location information to make
routing decisions. Nodes know their location information using the Global
Positioning System (GPS) or other technologies. This location information can be
used by nodes to optimize routing paths by considering energy consumption (A.
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Kumar et al., 2017). Examples of location-based routing protocols include
Geographical Adaptive Fidelity (GAF), Geographical and Energy Aware Routing
(GEAR), and Minimum Energy Communication Network (MECN) (Chaudhary
and Vatta, 2014).

3.1.3 Operation-Based Protocols

Operation-based protocols can be divided into multipath-based (Radi et al.,
2012), query-based, negotiation-based, QoS-based, and coherent/non-coherent-
based protocols. This protocol is classified into two main approaches based
on operation and functionality. The first approach is focused on the routing
algorithm and its characteristics. The second approach, however, considers how
the protocol operates and functions. This approach includes several categories
of routing protocols, such as multipath routing protocols, query-based routing
protocols, and negotiation-based routing protocols. Multipath routing protocols
utilize multiple paths to transmit data packets to the base station. By using
alternative paths, these protocols can reduce the end-to-end delay. Examples of
multipath routing protocols include DD and SPIN (Almesaeed and Jedidi, 2021).
Query-based routing is another category of protocols that allows the base station to
send query messages to nodes requesting specific information. Negotiation-based
routing protocols minimize data redundancy by negotiating between neighboring
nodes and selecting the optimized route. SPIN is an excellent example of a
negotiation-based routing protocol (Dwivedi and Vyas, 2010).

3.1.4 Path Establishment-Based Protocols

The final group of protocols is path establishment-based routing protocols. These
protocols determine routing paths using one of three methods: proactive, reactive,
or hybrid. Proactive protocols calculate all possible routing paths and save
them in a routing table in each node, even when no data is being transmitted.
Conversely, reactive routing protocols calculate routing paths only when they are
needed. Hybrid routing protocols combine elements of both proactive and reactive
approaches (P. Kumar, M. Singh, and Triar, 2012). Routing protocols are classified
based on the process they used to discover the routes.

Proactive protocols They are also known as table-driven routing protocols,
because they maintain the routing tables for the complete network by passing the
network information from node to node and the routes are pre-defined prior to
their use and even when there is no traffic flow. The most commonly proactive
routing protocol used in Mobile Wireless Sensor Networks (MWSNs) is Optimized
link state routing (OLSR) as detailed in 3.1.4.1.

Reactive protocols Reactive routing protocols do not maintain the whole
network topology rather, they are activated just on demand when any node wants
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to send data to any other node. So the routes are created on demand when queries
are initiated. The most commonly used reactive routing protocols are Ad-hoc on-
demand distance vector (AODV) and Dynamic source routing (DSR) as discussed
in 3.1.5.

Hybrid protocols Hybrid Routing Protocols have the merits of proactive
and reactive routing protocols by neglecting their demerits. Routing is one of
the primary challenges in MWSNs because of the limited power supply, low
transmission bandwidth, less memory capacity, and processing capacity. In WSNs,
sensors are deployed randomly in the environment, and each sensor node collects
the data from the environment and transmits it to the BS for further processing.
Figure 6.3 shows the multi-hop transmission from SNs to BS. In general, the nodes
which are near the BS consume more energy because they serve as relay nodes.
The goal of the routing protocol design is to reduce the energy consumption of SNs
and increase the network lifetime. Recently, several routing methods (Hammoudeh
and Newman, 2015; X. Liu, 2017; Asif et al., 2017) are developed for WSNs by
the researcher using different approaches.

3.1.4.1 Optimized Link State Routing Protocol(OLSR) It
is a proactive and table-driven routing protocol used inused in Mobile Ad hoc
Networks (MANETs) and Mobile Wireless Sensor Networks (MWSNs). It is
designed to efficiently route data packets in a network with a large number of
nodes and frequent changes in the network topology due to mobility (Mouiz et al.,
2019). The OLSR operates by maintaining a topology database that contains
information about the nodes in the network and the links between them. Each
node periodically broadcasts information about its neighbors and the links to those
neighbors. This information is used to update the topology database and to
calculate the shortest path between any two nodes in the network. The OLSR
protocol uses a multipoint relaying (MPR) technique to reduce the number of
broadcast messages and minimize the network overhead. Each node selects a
set of MPRs, which are responsible for forwarding the broadcast messages to
their respective destinations. This reduces the number of duplicate messages and
minimizes the transmission delays.

The OLSR protocol also includes a mechanism for detecting and repairing
broken links in the network. When a link failure is detected, the affected nodes
update their topology databases and recalculate their routes to avoid the broken
link. There are variants of OLSR protocol that are designed to be highly efficient
and scalable, making it well-suited for large-scale MWSNs with high mobility and
frequent topology changes (Sabor et al., 2017).

3.1.4.2 Ad-hoc on-demand distance vector (AODV) AODV
is reactive on request protocol. AODV is engineered for Mobile infrastructure-less
networks. It employs the on-demand routing methodology for the formations of
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Figure 3.1: Routing in MWSNs

routes among network nodes. The path is established solitary when the source
node wants to direct packs of data and pre-set route is maintained as long as the
source node needs.

3.1.4.3 Dynamic source routing (DSR) DSR can be reactive or
on-demand as its name shows it uses source routing instead of routing tables.
Routing in DSR is divided into two parts: route discovery, and route maintenance.
It is designed to allow nodes in a network to dynamically discover and maintain
routes for data packets to be transmitted between source and destination nodes
without needing a fixed infrastructure or centralized control. When a source
node wants to send data to a destination node and does not have a route to the
destination in its routing table, it initiates a route discovery process. During this
process, the source node broadcasts a route request (RREQ) packet. This packet
contains the source and destination addresses of the data packet. Intermediate
nodes that receive the RREQ packet check if they have a route to the destination
in their routing tables. If they do, they send a route reply (RREP) packet back
to the source node. The RREP packet contains the route information the source
node can use to reach the destination. The RREP is sent hop-by-hop back to the
source node.

As the source node receives the RREPs, it constructs a route to the destination
by following the path indicated in the RREP. The source node then caches this
route for future use. During data transmission, the source node encapsulates the
data packets with the route information and sends them to the next hop according
to the learned route. Intermediate nodes forward the packet based on the route
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information until the destination is reached. The DSR protocol is ”on-demand,”
meaning that routes are only established when needed. Routes are not maintained
when not in use, which makes the protocol more adaptable to changes in network
topology, mobility, and connectivity.

3.1.5 DRL-Based Routing in MWSN

In (Lee, 2017), a DL-based routing protocol has been introduced with the BS as an
infrastructure. It means the route is maintained, assigned, and recovered by the
BS. This work proposed a DL-based algorithm that adopts dynamic routing in a
mobile sensor network. The BS initially creates a list of virtual routing paths, and
from them, it identifies the optimal route. This algorithm overcomes congestion
and packet loss and power management. In (Kazemeyni et al., 2014), a Bayesian
learning method based optimal routing prediction model has been developed for
both decentralized and centralized versions. This approach also performs the
scheduling approach while routing the data to balance energy consumption. This
algorithm is much more suitable for decentralized than centralized.

Youssif, A. A et al., in (El, Youssif, Ghalwash, et al., 2016) have used a well-
known k -means classification algorithm to find optimal clustering in WSNs for
routing. This algorithm provides a better packet delivery ratio, and throughput,
lowering energy consumption and controls the traffic overhead. In (Ray and De,
2016), authors have proposed energy efficient clustering protocol using a k-means
(EECPK-means) algorithm to find the optimal center point from the cluster from
a random initial center point. It selects optimal CHs based on the Euclidean
distance and residual energy of the SNs in WSNs. EECPK-means algorithm finds
the efficient multi-hop communication path from the CHs to BSs. This algorithm
avoids data loss and balances the energy consumption of the SNs.

In (Shashikala and Kavitha, 2018), a secure cluster-based routing protocol has
been developed to enhance the network lifetime for WSNs. In this approach,
cluster heads are selected based on their distances and residual energy. This
algorithm mainly focuses on the isolated cluster head and edge node to balance
the node energy consumption. In (Kuila and Jana, 2014), authors have presented
an efficient routing mechanism based on the transmission range of the SNs and the
data forwarding load. In this mechanism, an efficient clustering method was used,
which is based on the PSO, to balance the load of the SNs in the network. An
ACO-based routing algorithm has been presented in (Y. Sun, Dong, and Y. Chen,
2017) for WSNs. To find the optimal routing, they consider various parameters
such as the residual energy of a node, transmission distance, transmission path,
and the shortest path between the source nodes to the BS. This algorithm results
in minimum energy consumption and prolongs the network lifetime.

The main advantages of DL include its ability to extract high-level characteris-
tics from data, work with or without labels, and be trained to achieve various goals.
Many different fields, including bio-informatics, corporate intelligence, medical
image processing, social network analysis, speech recognition, and handwriting
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identification can benefit from it. The Table ?? summarizes existing works based
on DL/DRL routing in nutshell.

The literature study indicates that the features of DL/DRL can be utilized
for the performance improvement of the WSN. To deal with the energy hole
problem in clustering, researchers have reported various methods. However, the
deep learning approach is one of the effective methods and can be used (Chang,
Yuan, et al., 2019). The main advantages of DL/DRL include its ability to extract
high-level characteristics from data, work with or without labels, and be trained to
achieve a variety of goals. Many different fields, including bioinformatics, corporate
intelligence, medical image processing, social network analysis, speech recognition,
and handwriting identification, can benefit from it.

3.2 Reinforcement Learning

There are various methods that can be used for the optimization of various
parameters of the MWSNs. Now days Reinforcement learning (RL) is very very
popular for intelligent systems. Deep reinforcement learning is gaining research
attention due to its unique features and powerful optimizations. RL encompasses a
unique collection of tasks that apply to many real-world scenarios and differ from
standard machine learning domains in fundamental ways. Generally, machine
learning tasks are classified as either supervised (learning from labeled training
data) or unsupervised (discovering labels from unlabeled data).

RL, however, is unique in that it does not use labeled training data or seek to
discover any labels. Rather, RL tasks focus solely on maximizing a reward obtained
from one’s environment(14). Examples of RL tasks include playing board or video
games, controlling robotic limbs, finding optimal paths through an environment,
and many more. In fact, many learning tasks we face as humans every day can be
modeled as RL tasks.

The general model for an RL task involves an agent that observes an
environment and takes actions based on that observation. For simplicity, it is
assumed that the observation-action cycle to occur as discrete timesteps. To
facilitate training an agent for an RL task, the agent is provided with a reward
value after taking an action at each timestep. Positive rewards can be used to
indicate that a desirable action was taken, while negative rewards can indicate
less favorable actions. The goal of a machine learning algorithm in the context of
RL is to learn a policy that maximizes the total reward over an entire run of the
simulation (often called an episode).

To further improve the performance, the Deep learning approach is introduced
with Reinforcement learning, i.e., Deep Reinforcement Learning. Deep Rein-
forcement Learning (DRL) is an evolution of traditional Reinforcement Learning
(RL) that incorporates deep neural networks to handle high-dimensional state
spaces. DRL uses techniques like Deep Q-Networks (DQN) and policy gradients
to approximate value functions and policies, enabling it to tackle complex tasks,
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Table 3.1: Literature Review of Deep Reinforcement Learning

Ref Techniques Outcomes Features Drawback
B.
Liu
et al.,
2017

Researchers
utilized a
DBN, they
uncover the
correlations
between
the demand
for multi-
commodity
flow in
wireless
networks and
link usage.

Based on authors’
predictions, they
eliminate links
that are unlikely
to be utilized,
shrinking the data
size for demand-
constrained energy
optimization.
Their approach
leads to a
50% reduction
in runtime
without sacrificing
optimality.

The relationship
between the input
and output in their
case is intricate
and not readily
defined. To unravel
this relationship,
they employ deep
learning techniques,
which enable them to
deduce the latent or
hidden relationship
embedded within the
complex structure..

Require
a large
amount of
data for
training
to achieve
optimal
results

Y.
He,
C.
Liang,
et al.,
2017
Y.
He,
Z.
Zhang,
et al.,
2017

The authors
of this paper
applied deep
reinforcement
learning to
tackle the
challenges of
caching and
interference
alignment
in wireless
networks.

The authors
specifically treat
the time-varying
channels as finite-
state Markov
channels and use
deep Q networks
to determine
the optimal user
selection policy.
This innovative
framework shows
a substantial
improvement in
both sum rate and
energy efficiency
compared to
existing methods

The proposed method
involves training a
model to evaluate
links based on flow
demand vectors.
Extraneous links
are excluded from
the optimization
problem through
the estimated link
values to minimize
computation time
and storage costs.
The approach’s
effectiveness is
evaluated through
test samples, and the
results illustrate how
removing unnecessary
links significantly
reduces computation
time.

Require
significant
compu-
tational
resources
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Ref Techniques Outcomes Features Drawback
L.
Chen
et al.,
2018

An automatic
traffic
optimization
technique
utilizing a deep
reinforcement
learning method
is presented.
The authors
designed a
two-layer DRL
framework that
mimics the
Peripheral and
Central Nervous
Systems
in animals
to resolve
scalability issues
in data centers.

The authors have
implemented multiple
peripheral systems
at all end-hosts for
making local decisions
on brief traffic flows.
A central system has
also been utilized to
optimize long traffic
flows, which can
endure longer delays.
The experiments
conducted on
a testbed of 32
servers demonstrate
that the proposed
design significantly
decreases the
traffic optimization
turnaround time and
the flow completion
time, compared to
previous methods.

AuTO’s
scalability owes
its success to
the separation of
time-consuming
decision-making
processes from
quick actions
for short
tasks, which
is achieved
through
a specific
approach called
DRL.

Training
DRL
models
typically
involves a
complex
and time-
consuming
process.

B.
Mao
et al.,
2017b

The authors
used a
Deep Belief
Architectures
DBA to
determine the
next routing
node and
construct a
software-defined
router.

Their approach, which
considers Open Short-
est Path First as the
optimal routing strat-
egy, has achieved an
accuracy of up to 95%
while significantly re-
ducing overhead and
delay. Additionally,
it results in higher
throughput with a sig-
naling interval of 240
milliseconds.

In this paper,
the authors
propose a
supervised deep
learning system
that constructs
routing tables
and demonstrate
how it can be
seamlessly
integrated with
programmable
routers equipped
with CPUs and
GPUs.

The paper
does not
explicitly
mention
scalability.
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Ref Techniques Outcomes Features Drawback
Lee,
2017

Lee et al.
utilized a three-
layer deep
neural network
to enhance the
efficiency of
routing rules by
classifying the
node degree
based on
comprehensive
information
of the routing
nodes.

The Viterbi algorithm
generates virtual
routes based on the
classification results
and temporary routes.

The proposed
technique is a
hybrid wireless
ad-hoc network
routing solution
that leverages
collaboration
between wireless
ad hoc networks
composed of
infrastructure-
based wired
networks. The
approach utilizes
the node degree
classifier (NDC)
results produced
by deep learning
in conjunction
with the Viterbi
algorithm to
determine the
most effective
route.

Integrating
a deep
learning-
based
routing
solution
with
existing
network
infrastruc-
ture and
protocols
can be
challeng-
ing.

B.
Mao
et al.,
2017a

The authors
enhance
the routing
performance by
using tensors to
represent the
hidden layers,
weights, and
biases in the
Deep Belief
Networks.

The results illustrate
that the proposed
approach outperforms
the conventional
Open Shortest Path
First (OSPF) protocol
regarding overall
packet loss rate and
average delay per hop.

In this paper,
the authors
employ
Tensor-based
Deep Belief
Architectures
(TDBAs),
an advanced
technology,
to make
decisions based
on multiple
network traffic
factors.

The
additional
compu-
tational
overhead
introduced
by the
deep
neural
network .
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Ref Techniques Outcomes Features Drawback
B.
Zhao
and
X.
Zhao,
2022

The proposed
approach tackles
challenges
in wireless
sensor networks
(WSNs) by
creating
localized
subnetworks
equipped with
amplified relay
nodes and
a carefully
designed
operational time
cycle. Resource
allocation
policies are
developed
using deep
reinforcement
learning (DRL),
treating the
optimization
problem as a
Markov decision
process.

The implementation
of the suggested
approach yields
enhanced
communication within
WSNs. By addressing
issues such as channel
fading, irregular
energy supply,
and suboptimal
sensor deployment,
the proposed
method leads to
improved overall
system performance.
Simulation results
demonstrate that
the developed
transmission policies
outperform greedy,
random, and
conservative policies,
resulting in higher
throughput within
localized networks
and contributing to
the network’s overall
efficiency.

The wireless
sensor network
(WSN) is
structured
into multiple
localized
subnetworks,
each comprising
relay nodes with
amplification
capabilities.
The
subnetworks
operate on a
specialized time
cycle, ensuring
synchronized
and efficient
data
transmission.
Deep
reinforcement
learning (DRL)
is used to
devise resource
allocation
strategies that
optimize both
power and
time resources
for maximum
throughput.

High time
complexity
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such as playing video games or controlling robots, where traditional RL methods
may struggle due to the curse of dimensionality. The details of DRL are discussed
in the next section.

3.3 DRL Techniques

Deep reinforcement learning architectures take inspiration from the structure of
the human brain, which has a deep architecture. The brain organizes concepts
hierarchically, starting with simple concepts and building up to more abstract ones.
Researchers have applied this hierarchical learning approach to computers, using
multiple levels of abstraction and processing to solve computational problems.
There are three main types of deep architectures: generative, discriminative, and
hybrid. A generative deep architecture characterizes the high-order correlation
properties of input data for synthesis purposes, while a discriminative deep archi-
tecture is used for pattern recognition or classification. A hybrid model combines
the generative and discriminative architectures to aid in discrimination tasks, using
the optimized outputs obtained from the generative architecture (Fadlullah et al.,
2017).

It’s important to understand that the hybrid deep architecture is not the
same as using the outputs of a traditional neural network as inputs for a Hidden
Markov Model (HMM) (Morgan, 2011). However, before 2006, except Convolution
Neural Networks (CNNs), deep architectures couldn’t be effectively trained for
any purpose. Despite this, current deep reinforcement learning algorithms rely
on multi-layer architectures, as described in Bengio et al.’s research (Bengio,
Courville, and Vincent, 2013). The primary difference is the introduction of
Greedy Layer-Wise unsupervised pre-training, designed to learn a hierarchy of
features from a massive, unlabeled dataset one level at a time.

To put it simply, at each level of the hierarchy, the learned features undergo
a new transformation that serves as the input for the next level (G. E. Hinton,
Osindero, and Teh, 2006; Bengio, Lamblin, et al., 2006). These features can then
be used as input for a standard supervised ML predictor, such as Support Vector
Machines (SVMs) or Conditional Random Field (CRF), or for a deep supervised
neural network. In the case of deep learning architectures, focused on the latter.
Each iteration of unsupervised feature learning produces a set of weights that
create a new layer in the deep neural network. Ultimately, the layers of learned
weights can be used to initialize a deep supervised predictor, such as a neural
network classifier or a deep generative model like a Deep Boltzmann Machine
(DBM) (Srivastava, Salakhutdinov, and G. E. Hinton, 2013).

Below, a brief overview is provided of pertinent deep reinforcement learning
techniques, including Artificial Neural Networks and General Architecture of
Artificial Neural Networks,
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3.3.1 Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) possess a remarkable ability to emulate human
intelligence. They draw inspiration from the structure and functionality of
biological neural networks, enabling them to learn from complex or imprecise
data. In wireless communications, ANNs play a crucial role in investigating and
forecasting network and user behavior. This information proves invaluable in
addressing a wide range of wireless networking challenges, such as cell association,
spectrum management, computational resource allocation, and cached content
replacement, as elaborated in subsequent sections.

Furthermore, the proliferation of smart devices and mobile applications has
significantly elevated human interaction with mobile systems. By leveraging
trained ANNs, which can be likened to ”experts” in processing human-related
data, wireless networks gain the ability to anticipate users’ future behaviors.
Consequently, they can devise optimal strategies to enhance the quality of service
(QoS) and reliability. While the utilization of ANNs in real-time wireless sensor
network (WSN) applications necessitates higher computational resources, it offers
tremendous potential for enhancing efficiency across various aspects of WSNs,
including localization (Banihashemian, Adibnia, and Sarram, 2018; Phoemphon,
So-In, and Niyato, 2018), detecting faulty sensor nodes (Chanak and Banerjee,
2016), routing (Mehmood et al., 2017; Gharajeh and Khanmohammadi, 2016).

Figure 3.2: A simple ANN architecture with different layers

The architecture of ANNs consists of several simple, highly interconnected
processing elements known as neurons, which are used to mimic how the human
brain learns. ANNs are essentially an artificial model of a human nervous system
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whose base elements are also neurons used to process information in the sense of
cognition and transmit this information signal in the nervous system.

Figure 3.2 shows the basic layered structure of an ANN. Each ANN contains
three types of layers called input layers, one or more hidden layer(s), and output
layers. ANN classifies complex and non-linear data sets very easily, and there is
no restriction for the inputs like other classification methods.

A neuron consists of a nucleus, dendrites, and axons. Neurons are connected
by dendrites and axons, as shown in Figure 3.2. The connection point between
two neurons is known as a synapse. The information signal transmitted to a
neuron will change its membrane potential. If this change makes the neuron’s
membrane potential exceed a certain value, it will send a signal to all its connected
neurons. This is how signals propagate through the human nervous system. ANNs
use artificial neurons to mimic this operation of the human nervous system, thus
enabling artificial intelligence. Mathematically, an artificial neuron consists of the
following components:

In general, the main components of an ANN that consists of multiple neurons
will include the following:

• Input layer that consists of a number of neurons used to represent the input
signal which will be transmitted in the neurons.

• Output layer that consists of a number of neurons used to represent the
output signal.

• Hidden layer that consists of a number of neurons used to mimic the human
brain.

• Input weight matrix that represents the strength of the connections between
the neurons in the input layer and the neurons in the hidden layer.

• Neuron weight matrix that represents the strength of the connections
between the neurons in the hidden layer.

• Output weight matrix that represents the strength of the connections
between the neurons in the output layer and the neurons in the hidden layer.

3.3.2 Convolution Neural Networks (CNNs)

CNNs are a kind of deep neural network that follows a feedforward approach and
includes convolutional layers, pooling layers, and fully connected layers. They
are intended to analyze data with multiple arrays, such as color images, audio
spectrograms, and videos, and benefit from the properties of these signals such as
local connections, shared weights, pooling, and multi-layer architecture (Fadlullah
et al., 2017).

CNNs draw inspiration from the simple and complex cells in visual neuroscience
and can automatically identify important features without any human supervision,
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making them well-suited for tasks such as image recognition, speech processing,
and face recognition, among others. Unlike traditional fully connected (FC)
networks, CNNs utilize shared weights and local connections to make optimal
use of 2D input-data structures like image signals, and this process requires fewer
parameters, simplifying the training process and speeding up the network. The
primary benefit of CNNs compared to their predecessors is that they can identify
relevant features automatically, without human intervention (Alzubaidi et al.,
2021).

CNNs are particularly useful in image recognition since they allow image-
specific features to be encoded into the architecture, making the network more
adept at handling image-based tasks while minimizing the parameters needed
to create the model. This stands in contrast to traditional ANNs, which face
difficulties in handling the computational complexity of processing image data,
particularly with larger image dimensionality, such as high-resolution images. To
address this, convolution layers were introduced to exploit shared weights and local
connections, which considerably simplifies the training process and speeds up the
network (Y. Li, 2017).

Figure 3.3: A simple CNN architecture with different layers

A CNN architecture consists of two primary components: a convolution tool
that identifies and isolates different features of an image through feature extraction,
and a fully connected layer that utilizes the output of the feature extraction process
to predict the image’s class. The feature extraction process typically comprises
several pairs of convolutional and pooling layers. By generating new features
that summarize the original set of features, the CNN model aims to decrease the
number of features present in a dataset. The CNN architecture diagram, depicted
in Figure 3.3, shows the various layers involved in the feature extraction process
as detailed below.

Convolutional layers: These are the key building blocks of CNNs, and they
perform feature extraction by convolving the input data with a set of learnable
filters, also known as kernels or weights. These filters are slid over the input data to
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detect local patterns, such as edges, corners, and blobs, in different input regions.
The output of the convolutional layer is a feature map, which represents the
activation of each filter across the input data. The convolutional layers also employ
shared weights and local connections to fully use the 2D input-data structures like
images.

Pooling layers: They are used to reduce the spatial dimensionality of the
feature maps generated by the convolutional layers. The most common type
of pooling is max pooling, where the maximum value within a small spatial
neighborhood is selected and downsampled, which helps to make the network more
robust to translation invariance.

Fully connected layers: These layers are typically used at the end of the
network to produce a classification output based on the features extracted from
the earlier layers. These layers are similar to the layers in traditional artificial
neural networks (ANNs), and they connect all the neurons from one layer to the
neurons in the next layer, which provides a rich representation of the input data.

Combining convolutional layers, pooling layers, and fully connected layers
allows CNNs to automatically learn and identify relevant features from the input
data without human supervision. CNNs are particularly well-suited for image-
related tasks, but they have also been successfully applied to other domains, such
as speech processing, natural language processing, and reinforcement learning.

3.3.3 Recurrent Neural Networks (RNNs)

RNNs are a type of neural network commonly used for processing sequential
data such as time series, speech, and text. Unlike traditional feedforward neural
networks, RNNs have a feedback loop that allows information to be passed from
one-time step to the next. RNNs can use the output from a previous time step as
input to the current time step (Fadlullah et al., 2017).

The basic building block of an RNN is called a recurrent cell. This cell contains
a hidden state updated at each time step using the current input and the previous
hidden state. The hidden state captures information about the context of the
input sequence up to the current time step. The output of the recurrent cell can
be fed into another layer or used as a prediction for that time step (Alzubaidi
et al., 2021).

RNNs are trained using backpropagation through time (BPTT), which is a
variation of the backpropagation algorithm used in traditional neural networks.
BPTT is used to calculate the gradient of the loss function with respect to the
model parameters at each time step. The gradients are then used to update the
model parameters using an optimization algorithm such as gradient descent.

One of the main advantages of RNNs is their ability to handle variable-length
sequences. They can process sequences of any length, unlike traditional neural
networks that require fixed-length inputs. This makes RNNs particularly useful
for tasks such as speech recognition, natural language processing, and time series
prediction. However, RNNs can suffer from the vanishing gradient problem, which
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occurs when the gradients become very small as they are propagated back through
time. This can make it difficult to train RNNs to capture long-term dependencies
in sequential data. Several variations of RNNs have been developed to address
this issue, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), which use more sophisticated update rules for the hidden state.

The basic architecture of an RNN is shown in Figure 3.4, which consists of a
single recurrent layer that contains recurrent connections, allowing information to
be passed from one time step to the next. The input at each time step is processed
by the recurrent layer, which produces an output and also updates its hidden state.
The output can be fed back into the network at the next time step, allowing the
network to take into account its previous output when processing the next input.

Figure 3.4: A simple RNN architecture with different layers (Fadlullah et al.,
2017).

3.4 Challenges in DRL

Despite the remarkable advantages and broad applications of Deep Reinforcement
Learning (DRL), several significant challenges must be addressed to maximize
its potential. One of the primary issues is the high computational complexity
and resource requirements necessary for training DRL models. These models
typically demand substantial computational power, often necessitating advanced
hardware like GPUs or TPUs, which can be costly and inaccessible for some
users. Additionally, the training process is time-intensive, frequently requiring
extensive data and prolonged periods to achieve convergence. This intensive
resource demand poses a considerable barrier, particularly for applications in
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academia or small enterprises. Moreover, DRL suffers from sample inefficiency,
relying heavily on large numbers of interactions with the environment to learn
effective policies, which can be impractical in real-world scenarios where data
acquisition is costly and limited, such as in bioinformatics and medical image
processing (LeCun, Bengio, and G. Hinton, 2015), (Marblestone, Wayne, and
Kording, 2016).

Another critical challenge in DRL is ensuring stability and convergence during
training. The interdependent nature of reinforcement learning, where actions
influence subsequent states and rewards, often leads to instability and the risk
of catastrophic forgetting. Techniques like experience replay and target networks
help mitigate these issues, but achieving consistent and reliable convergence
remains a hurdle. Additionally, the exploration-exploitation dilemma complicates
the learning process, requiring a delicate balance to avoid suboptimal policies.
Beyond these technical challenges, DRL models often lack interpretability, making
it difficult to understand and trust their decisions, especially in sensitive fields
like business intelligence and medical diagnostics. This opacity can hinder the
adoption of DRL in critical applications where decision transparency is essential.
Furthermore, ensuring that DRL models generalize well to new environments
and tasks is challenging, limiting their broader applicability. These issues are
compounded by domain-specific constraints, such as energy efficiency in Wireless
Sensor Networks (WSNs), which require tailored solutions to optimize performance
and resource usage (Ma et al., 2016; C. Li et al., 2015), (Lee, 2017), (Yuzhi Wang
et al., 2017), (F. Chen, Z. Fu, and Z. Yang, 2019).

3.5 Pros and Cons of DRL in MWSN Routing

There exist both benefits and challenges of utilizing DRL for MWSN routing as
detailed below.

Benefits

• Enhanced Routing Performance: DRL can help MWSNs to learn from
past experiences and optimize their routing strategies, leading to improved
routing efficiency. By learning to make better routing decisions, the network
can reduce latency, packet loss, and energy consumption.

• Routing Flexibility in Dynamic Environments: MWSNs operate in
dynamic environments where network topology and traffic patterns can
change rapidly. DRL algorithms can help MWSNs to adapt to these
changes quickly by learning from new experiences and adjusting their routing
strategies accordingly.

• Improved Network Resilience: MWSNs are often deployed in harsh and
challenging environments where nodes can fail or become disconnected. DRL
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can help the network to identify alternative routes and adapt to changes in
network conditions, increasing overall network resilience.

• Scalability: As the size and complexity of WSNs increase, traditional
routing algorithms may struggle to efficiently manage the network due to
the large number of nodes and the high degree of mobility. In contrast,
DRL algorithms can handle large networks with many nodes and can adapt
to changes in network topology and traffic patterns. This makes them well-
suited for complex mobile WSNs, where the ability to scale to larger networks
is crucial for effective routing.

• Optimal Resources Utilization: Traditional routing protocols often
require frequent communication among nodes, leading to high overhead and
communication costs. Deep reinforcement learning can help to reduce these
costs by enabling nodes to make more informed routing decisions based on
local information and past experiences.

Challenges

• Computational Complexity: DRL algorithms can be too computation-
ally demanding and require high processing power and memory, which can
be a challenge for resource-limited MWSN nodes.

• DRL Training Demands: Gathering large amounts of training data for
DRL algorithms can be challenging in MWSNs due to communication and
energy constraints. In addition, training may take a considerable amount of
time, which could hinder the prompt deployment of the routing algorithm
in real-world MWSNs.”

• Overfitting Risk: DRL models can overfit to the training data, causing
inadequate generalization to new, unseen data. This issue can be even more
significant in mobile WSNs with highly variable network conditions, resulting
in suboptimal routing decisions and poor performance.

• Limited Transparency: DRL algorithms are hard to interpret as they
are often seen as ”black boxes,” leading to difficulties in understanding the
decision-making process, which could make optimizing or debugging the
system challenging.

Our proposed approaches involve training a DRL model to optimize routing
decisions in OLSR networks by leveraging historical network data and performance
metrics (Donta, Srirama, et al., 2023; Sah, Cengiz, et al., 2021). These approaches
have the capability to optimize performance metrics including throughput, energy
efficiency, and end-to-end delay in MWSNs. Through continuous learning and
adaptation, these algorithms can therefore identify the most efficient routes
that fulfil both network and application requirements. This thesis focuses on

53



Chapter 3. Literature Review 3.6. Performance Parameters

Figure 3.5: QoS functionality for WSNs (Asif et al., 2017)

researching and creating novel algorithms for routing and determining paths
among sensor nodes. The proposed algorithms aim to achieve a balance in energy
consumption during the path construction process.

Specifically, the following objectives are targeted.

• The DRL does not require any predetermined data sets to train the system
unlike other ML approaches such as supervised or unsupervised.

• It provides the best decisions based on the trial and error methods by
considering the exploitation or exploration algorithms with the previous
optimal decisions (Xiao, S. Mao, and Tugnait, 2019).

• Unlike RL, DRL does not require additional space to maintain a Q-table and
thus it is also not required to compute all the Q-values associated with each
state.

3.6 Performance Parameters

In WSNs, several performance metrics are used for measuring the QoS of the
network. In this section, definitions and formulae are targeted and used as
performance metrics for the majority of the works in the literature. There is
a strong relationship between QoS and application requirements as shown in
Figure 3.5. The important QoS parameters are discussed below.
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3.6.1 Connection Probability

The significance of connection probability lies in its direct impact on the overall
functionality and performance of mobile sensor networks. Here are a few key
aspects where connection probability is important:

• Network Coverage: Connection probability is closely related to network
coverage. It indicates the extent to which the sensor nodes are capable of
establishing connections with each other, forming a connected network. A
higher connection probability implies a broader coverage area, ensuring that
more nodes can communicate effectively. This is crucial in scenarios requiring
comprehensive coverage, such as monitoring large-scale environments or
tracking mobile entities.

• Data Reliability and Quality: A high connection probability enhances
data transmission reliability and quality within the network. When nodes
have a greater chance of connecting with each other, they can exchange
information more consistently and accurately. This is vital in applications
where the integrity and timeliness of data are critical, such as environmental
monitoring, disaster response, or surveillance systems. Reliable data
transmission contributes to better decision-making and improves the overall
performance of the mobile sensor network.

• Energy Efficiency: Connection probability is closely tied to energy
efficiency in mobile sensor networks. Nodes expend energy in establishing
and maintaining connections. A higher connection probability means
that nodes can establish connections more efficiently, reducing energy
consumption. This becomes particularly significant in resource-constrained
environments where sensor nodes operate on limited battery power. By max-
imizing the connection probability, energy can be conserved, prolonging the
network’s lifespan and reducing the need for frequent battery replacements
or recharging.

• Network Robustness: Connection probability also influences the robust-
ness of mobile sensor networks. In scenarios where nodes move or the
environment undergoes changes, maintaining a reliable connection becomes
challenging. However, a higher connection probability increases the chances
of maintaining connectivity even in dynamic or unpredictable conditions.
This ensures that the network remains operational and resilient, adapting to
changes and providing valuable data and services.

3.6.2 End-to-End Delay

The end-to-end delay refers to the time taken for data to travel from the
source sensor node to the destination node, encompassing all intermediate nodes
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and network components. It encompasses the transmission, propagation, and
processing delays that occur during data transfer.

The significance of end-to-end delay lies in its impact on the real-time nature
of mobile sensor network applications. For instance, in a healthcare system where
sensor nodes monitor patients’ vital signs, any delay in transmitting critical data
could have severe consequences. Similarly, in environmental monitoring, timely
data delivery is crucial for detecting and responding to events like natural disasters
or pollutant outbreaks. A low end-to-end delay ensures that sensor data is
delivered promptly, enabling timely decision-making and response. It facilitates
real-time monitoring, analysis, and control, which is particularly important in
applications requiring immediate action or feedback. By minimizing delays,
mobile sensor networks can operate efficiently and provide accurate and up-to-date
information to the users or the central processing system. Reducing the end-to-
end delay in mobile sensor networks poses several challenges. These challenges
include limited bandwidth, network congestion, variable channel conditions, and
energy constraints of the sensor nodes. Researchers and engineers explore various
techniques and protocols to mitigate these challenges and optimize network
performance.

To address the end-to-end delay in mobile sensor networks, researchers focus
on designing efficient routing protocols, optimizing data aggregation and fusion
techniques, and implementing quality of service (QoS) mechanisms. These
approaches aim to minimize delays by prioritizing critical data, reducing data
redundancy, and dynamically adapting network parameters.

Eventually, the significance of end-to-end delay in mobile sensor networks
lies in its impact on the real-time nature and effectiveness of data transmission.
By minimizing delays, mobile sensor networks can deliver timely and accurate
information, enabling prompt decision-making and action in applications such
as healthcare, environmental monitoring, and surveillance. Efforts to reduce
end-to-end delay involve designing efficient routing protocols and implementing
optimization techniques to overcome the challenges posed by limited bandwidth,
network congestion, and energy constraints. By addressing these challenges,
mobile sensor networks can achieve improved performance and provide valuable
services in a wide range of domains.

3.6.3 Routing Overhead

One of the primary reasons routing overhead is significant in mobile sensor
networks is its direct influence on energy consumption. Sensors in these networks
are often battery-powered, and conserving energy is a critical factor for prolonging
the network lifetime. The additional control messages required for routing, such
as route discovery, maintenance, and update messages, consume precious energy
resources. High routing overhead can lead to increased energy drain, reducing the
overall network lifespan and requiring frequent battery replacements or recharging.

Another important aspect affected by routing overhead is network bandwidth

56



Chapter 3. Literature Review 3.6. Performance Parameters

utilization. The transmission of routing control packets adds to the data traffic,
competing for limited bandwidth resources in the network. As a result, excessive
routing overhead can lead to congestion and decreased throughput, hampering the
overall network performance. In mobile sensor networks, where data from various
sensors needs to be relayed to a sink node or a central server, efficient utilization
of network bandwidth is crucial for timely and reliable data delivery.

Furthermore, routing overhead impacts the scalability of mobile sensor net-
works. As the number of nodes increases, the control traffic required for routing
also grows. This can lead to network congestion and increased contention for
resources, limiting the network’s ability to accommodate a larger number of
sensors. Efficient routing protocols with minimal overhead are vital to ensure
the scalability of mobile sensor networks, allowing for seamless expansion and
accommodating a larger number of mobile sensors.

Additionally, routing overhead affects the network’s resilience and adaptability
to changing conditions. Mobile sensor networks operate in dynamic environments
where sensors can move, join or leave the network, or experience link fluctuations
due to obstacles or interference. Routing protocols must continually adapt to
these changes, leading to additional control signaling and overhead. The ability
to manage and minimize routing overhead while maintaining network connectivity
and resilience is crucial to ensure the network’s adaptability and robustness.

Eventually, the significance of routing overhead in mobile sensor networks lies in
its impact on energy consumption, network bandwidth utilization, scalability, and
network adaptability. Minimizing routing overhead is vital to extend the network’s
lifetime, improve data transmission efficiency, enhance scalability, and ensure the
network can adapt to changing conditions. By employing efficient routing protocols
and techniques that reduce unnecessary control signaling, researchers and network
designers can mitigate the adverse effects of routing overhead and optimize the
overall performance of mobile sensor networks.

3.6.4 Throughput

It is one of the significant parameters in the overall development of the network
performance because it deals with the successful packets received with respect to
the total number of packets sent. It can be used in various ways mentioned below.

• Data Reliability: In applications where real-time data is crucial, such as
environmental monitoring or emergency response systems, high throughput
ensures that data is transmitted promptly and reliably. Timely delivery of
data enables quick decision-making and appropriate responses to events or
conditions being monitored.

• Energy Efficiency: Sensor nodes in mobile sensor networks are typi-
cally resource-constrained, relying on limited battery power. Throughput
optimization techniques aim to reduce energy consumption during data
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transmission, allowing sensor nodes to conserve their energy resources and
prolong their operational lifetimes. Efficient data transmission helps in
achieving energy-efficient network operation.

• Network Scalability: Mobile sensor networks often involve a large number
of sensor nodes distributed over a wide area. Throughput plays a crucial
role in maintaining network scalability. By ensuring high throughput, the
network can accommodate a larger number of nodes and handle increased
data traffic, allowing for the seamless expansion of the network without
compromising its performance.

• Quality of Service (QoS): Many applications in mobile sensor networks
require specific (QoS) guarantees, such as minimum throughput requirements
or delay constraints. High throughput is necessary to meet these (QoS)
demands, ensuring that the network satisfies the application’s performance
criteria and meets the expectations of end-users.

To enhance throughput in mobile sensor networks, various techniques can be
employed. These include optimizing routing protocols, employing data aggregation
and compression techniques, utilizing adaptive transmission power control, and
employing efficient medium access control (MAC) protocols. These techniques
aim to minimize packet loss, reduce interference, and optimize the utilization of
network resources to maximize throughput.

3.6.5 Energy Consumption

: Energy is a critical resource in mobile sensor networks as the sensor nodes are
often powered by limited-capacity batteries or energy harvesting mechanisms.
Since these networks are typically deployed in remote or inaccessible areas,
recharging or replacing the batteries frequently is impractical or even impossible.
Therefore, it becomes imperative to carefully manage and optimize the energy
consumption of sensor nodes to prolong their operational lifespan and ensure the
uninterrupted functioning of the network.

Optimizing energy consumption in mobile sensor networks offers several
benefits. First and foremost, it enhances network longevity. By efficiently utilizing
the available energy resources, the lifetime of the network can be significantly
extended, ensuring that the sensor nodes remain operational for an extended
period. This is particularly crucial in applications where continuous monitoring
or data collection is required over an extended duration.

Moreover, minimizing energy consumption reduces the frequency of mainte-
nance or node replacement, resulting in cost savings. Deploying and maintaining
sensor networks often involve logistical challenges and financial costs. By
conserving energy and reducing the need for frequent battery replacements, the
overall maintenance and operational costs can be significantly reduced, making
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mobile sensor networks more economically viable. Additionally, energy-efficient
mobile sensor networks contribute to environmental sustainability. The efficient
use of energy resources reduces the number of batteries disposed of in the
environment, minimizing the ecological footprint of these networks. This is
particularly relevant as the deployment of mobile sensor networks continues to
grow, and their impact on the environment becomes increasingly significant.

Efficient energy management in mobile sensor networks also enables improved
network performance and reliability. By optimizing energy consumption, the
network can allocate resources effectively, enhance data transmission rates, reduce
latency, and improve overall network coverage. This, in turn, enhances the quality
and accuracy of the collected data and ensures the reliability of the network for
real-time applications.

Table 3.2: Comparison of various metrics and their trade-offs along with techniques
to balance metrics

Metric Impact Balance Technique

Average
Energy Con-
sumption

Lower energy
consumption is
desirable and Higher
energy consumption
leads to shorter
network lifetime

Trade-off between en-
ergy consumption and
network lifetime

Energy-efficient routing
protocols, duty cycling,
power management
techniques, reinforcement
learning for routing
optimization (e.g. Q-
learning, SARSA, actor-
critic), neural networks for
power control and energy
prediction

Connection
Probability

High connection prob-
ability leads to better
network performance,
Low connection proba-
bility may lead to data
loss or delay

Trade-off between
connection probability
and network coverage

Optimal node placement,
adaptive transmission range,
multi-hop communication,
reinforcement learning for
node localization and link
prediction (e.g. Q-learning
with function approximation,
deep reinforcement learning),
neural networks for link
scheduling.
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Table 3.2: Comparison of various metrics and their trade-offs along with techniques
to balance metrics

Metric Impact Balance Technique

Routing
Overhead

Lower routing over-
head leads to bet-
ter energy efficiency
and network perfor-
mance, Higher rout-
ing overhead leads to
increased energy con-
sumption and network
congestion

Trade-off between
routing overhead and
routing efficiency

Hierarchical routing, cluster-
ing, adaptive routing, rein-
forcement learning for rout-
ing optimization (e.g. Q-
learning, deep reinforcement
learning), neural networks for
traffic prediction and load
balancing

Throughput Higher throughput
leads to better network
performance, Lower
throughput leads to
network congestion
and reduced data
delivery

Trade-off between
throughput and
energy consumption

Multi-channel
communication, adaptive
transmission rate, congestion
control, reinforcement
learning for channel
allocation and modulation
selection (e.g. Q-learning,
deep reinforcement learning),
neural networks for
traffic prediction and rate
adaptation

End-to-End
Delay

Lower end-to-end de-
lay leads to faster data
delivery, Higher end-
to-end delay leads to
increased energy con-
sumption and reduced
network performance

Trade-off between de-
lay and energy con-
sumption

Routing optimization, con-
gestion control, quality of ser-
vice (QoS) provisioning, rein-
forcement learning for delay-
sensitive routing and schedul-
ing (e.g. Q-learning, deep re-
inforcement learning), neural
networks for traffic prediction
and QoS-aware routing

Eventually, the significance of energy consumption in mobile sensor networks
cannot be overstated. Efficient energy management not only prolongs the
operational lifespan of sensor nodes but also reduces costs, improves network
performance, and contributes to environmental sustainability. By employing
energy-efficient strategies, researchers and practitioners can unlock the full
potential of mobile sensor networks and enable their widespread adoption in diverse
domains.

60



Chapter 3. Literature Review 3.7. State-of-Art for Aggregation Methods

3.7 State-of-Art for Aggregation Methods

The research contribution of the researchers in the related field is analyzed for
addressing challenges related to data transmission and data aggregation in Wireless
Sensor Networks (WSNs) using machine learning and deep reinforcement learning
techniques. The related works are explained in Table 3.3.

In (N. Kaur, D. R. Kaur, and D. R. Sharma, 2022), the author discusses
the difficulty of data transmission in WSNs due to handling significant amounts
of data. It emphasizes using data aggregation (DA) techniques to manage this
issue. In (R. Kaur, Sandhu, and Sapra, 2020), the author explores the potential
of machine learning approaches to improve WSN performance and efficiency,
particularly in dealing with the restricted interoperability of sensors. In (Sudha,
Suresh, and Nagesh, 2021), the authors propose an enhanced machine learning
data aggregation model to overcome resource restrictions and efficiency problems
in WSNs. In (H. Li, Wan, and H. He, 2020) and (F. Zhang and Q. Yang, 2020),
the authors discuss deep reinforcement learning-based approaches for home energy
management systems and energy trading in smart grids, respectively, to optimize
power use and lower costs.

The (Z. Zhu, Ye, and L. Fu, 2020) addresses energy-efficient transmission
in underwater acoustic communications using deep reinforcement learning. The
(Y. Liu et al., 2020) presents a privacy-preserving data aggregation game in
crowdsensing using deep reinforcement learning. The (Deepakraj and Raja, 2021)
proposes a hybrid data aggregation algorithm to increase energy efficiency and
extend the network lifetime in WSNs. The (Kokilavani, N. S. Kumar, and
Narmadha, 2022) studies energy-efficient data aggregation techniques and their
impact on various aspects of WSNs. The (Krishna and Vashishta, 2013) categorizes
energy-efficient data aggregation algorithms based on their structure, search,
and time-based techniques, with cluster-based protocols showing better energy
efficiency and throughput rate performance. The detailed discussion is explained
below in Table 3.3 regarding the objective, contribution, finding, and conclusion.

3.8 Importance of SoM and DRL in Routing

In summary, (Philip Paul Arunodhayam et al., 2023) presents a compelling case
for using the Chimp Optimization Algorithm and Self-Organizing Map (SOM) to
enhance energy efficiency and network performance. Their findings demonstrate
significant improvements in network lifetime, packet delivery ratio (PDR), and
packet loss ratio (PLR) compared to traditional routing protocols such as AODV,
DSDV, and DSR. However, the integration of SOM with the Optimized Link
State Routing (OLSR) protocol offers distinct advantages, particularly for Mobile
Wireless Sensor Networks (MWSNs), which operate under different constraints
and dynamics.
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Table 3.3: Related works on data aggregation in WSN

Literature Study

Reference (N. Kaur, D. R. Kaur, and D. R. Sharma, 2022)
Objective This paper discusses the difficulty of data transmission

in Wireless Sensor Networks (WSNs) while handling
significant amounts of data. To manage data
aggregation and transmission effectively, the study
focuses on Data Aggregation (DA) techniques.

Contribution Examining numerous ML methods used in current DA
research provides a thorough list of intelligent methods
that have been applied to solve the data transmission
problem.

Findings The study discovers that when dealing with massive
data quantities, data transmission in WSNs becomes
difficult [1]. DA schemes have been suggested to solve
this problem. However, maintaining QoS and security
is still a challenge.

Conclusion The evaluation and survey of the literature offer
insightful information and establish the groundwork
for future developments in WSN data transmission
technology. WSNs may develop further and continue to
handle the issues brought on by enormous data volumes
in dynamic contexts by using ML methods.

Reference (Sudha, Suresh, and Nagesh, 2021)
Objective This research proposes a unique Machine Learning Data

Aggregation Model (EML-DA) to solve the resource
restrictions and efficiency issues in Wireless Sensor
Networks (WSNs).

Contribution The emphasis on robust data aggregation with ICA
and hybrid CH selection with ANN highlights the
significance of intelligent methods to maximize energy
consumption and data processing efficiency in WSNs.

Findings When data is aggregated at CH nodes, the computa-
tional effectiveness of ICA and its use of differential
entropy help reduce duplicated data and enhance energy
usage.

Conclusion In conclusion, the EML-DA model’s use of ANN
and ICA illustrates the potential of intelligent data-
driven solutions to provide reliable and effective data
transmission in WSNs.
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Literature Study

Reference (Y. Liu et al., 2020)
Objective To develop the best tactics for the dynamic payment-

PPL game, the article uses reinforcement learning
approaches to determine the game’s Nash equilibrium
point, especially Q-learning and deep Q network (DQN).

Contribution The suggestion of using reinforcement learning strate-
gies like Q-learning and DQN to figure out the payment-
PPL strategy shows how effective dynamic learning
methods are at dealing with the unidentified payment-
PPL model.

Findings Even in situations where the payment-PPL model is
unclear, the use of reinforcement learning techniques,
particularly Q-learning and DQN, makes it easier to
determine the best payment-PPL strategies.

Conclusion DQN, in particular, outperforms standard Q-learning
in terms of performance overall, resulting in better
platform and participant utilities and improved data
aggregation accuracy in the crowd sensing environment.

Reference (Deepakraj and Raja, 2021)
Objective To acquire data from many types of sensors for

applications like agriculture and security, wireless sensor
networks (WSNs) face an issue of redundancy. This
research aims to solve this problem. To analyze
data in real-time, consume less energy, and eliminate
communication delays, the study suggests a Hybrid
Data Aggregation Algorithm (HDAA). This would
eventually increase the network lifespan.

Contribution By eliminating redundant data in the collected data,
data aggregation techniques strive to increase the
accuracy and dependability of data processing in real-
time applications.

Findings An energy-efficient data aggregation procedure is
produced by the clustering method, and cluster heads
are chosen based on sensor rankings.

Conclusion Overall, the proposed HDAA shows improved perfor-
mance in cutting down on energy use and communica-
tion delays, resulting in a longer network lifetime.
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Literature Study

Reference (Kokilavani, N. S. Kumar, and Narmadha, 2022)
Objective To save costs and manage energy effectively, this

research aims to emphasize the value of data aggregation
in Wireless Sensor Networks (WSNs). To tackle difficult
objectives like eliminating redundancy, improving
energy efficiency, extending network lifetime, protecting
privacy, and improving communication efficiency, the
article suggests aggregation methods.

Contribution Data aggregation’s function in effective data forwarding
to the base station, which results in increased energy
efficiency, is highlighted by the focus on the process
of condensing data from source nodes and eliminating
duplicate information.

Findings In the context of WSNs, the introduction of aggregation
protocols solves several issues, including the elimination
of redundancy, energy efficiency, network longevity,
privacy protection, and communication efficiency.

Conclusion In comparison to traditional algorithms, the suggested
data aggregation algorithms show higher performance
in privacy protection and communication efficiency,
resulting in a longer network lifetime and reduced energy
usage.

Reference (Krishna and Vashishta, 2013)
Objective This article’s goal is to draw attention to the value of

data aggregation protocols in Wireless Sensor Networks
(WSNs) for effectively organizing data and sparing
node energy to extend the network’s lifespan.[10]
According to their methods—structure-free, structure-
based, distance-based, and time-based—energy-efficient
data aggregation algorithms are categorized in this
paper innovatively.

Contribution A thorough study of the various protocol types is
provided by suggesting a unique method for categorizing
data aggregation methods based on their structure,
search-based, and time-based techniques.

Findings According to the research, cluster-based data aggrega-
tion protocols outperform structure-less, time-based, or
search-based protocols in terms of energy efficiency and
throughput rate.

Conclusion The simulation findings show that in terms of energy
consumption and throughput rate, cluster-based data
aggregation protocols perform better than structure-
free, time-based, and search-based protocols.
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One of the primary advantages of integrating SOM with OLSR in MWSNs is
the enhanced adaptability to dynamic network topologies. OLSR is designed to
efficiently manage link state information and quickly disseminate routing updates
throughout the network. By incorporating SOM, the protocol can leverage SOM’s
ability to cluster and organize data effectively. This integration allows OLSR to
maintain optimal routing paths even as the network topology changes, ensuring
consistent throughput and reducing the overhead associated with frequent route
recalculations.

Energy efficiency is critical in MWSNs due to the limited battery life of sensor
nodes. While the proposed algorithm used in the study focuses on optimizing
routing for energy efficiency, integrating SOM with OLSR can further refine this
optimization. SOM’s clustering capabilities can help identify the most energy-
efficient routes by grouping nodes based on their energy levels and connectivity
patterns. This targeted approach to routing decisions can significantly reduce
energy consumption across the network, prolonging the operational lifetime of
sensor nodes and enhancing overall network sustainability.

The integration of SOM with OLSR can also lead to improved throughput and
overall network performance. SOM’s ability to process and analyze large datasets
enables OLSR to make more informed routing decisions, optimizing the flow of
data across the network. This can result in higher packet delivery ratios and
lower packet loss ratios, as observed in the study with the Chimp Optimization
Algorithm. In an MWSN context, these improvements are crucial for maintaining
high-quality communication and data transmission, particularly in applications
requiring real-time data monitoring and analysis.

The combination of SOM with OLSR enhances the scalability and robustness
of MWSNs. OLSR’s proactive nature, coupled with SOM’s adaptive clustering,
allows the network to scale efficiently, accommodating a growing number of
nodes without compromising performance. Additionally, the robustness of
SOM in handling noisy and incomplete data can help OLSR maintain reliable
communication links even in challenging environments, such as those encountered
in underwater or remote sensing applications.

Integrating SOM with OLSR in MWSNs offers several advantages over tradi-
tional routing protocols and optimization techniques. By enhancing adaptability to
dynamic topologies, optimizing energy consumption, improving throughput, and
ensuring scalability and robustness, this integration can significantly advance the
state-of-the-art in MWSN routing. While the study by Philip Paul Arunodhayam
et al. highlights the potential of combining optimization algorithms with SOM,
further research and empirical validation are necessary to fully realize the benefits
of integrating SOM with OLSR in diverse MWSN scenarios. This approach
provides important insights for researchers and practitioners seeking to enhance
the performance and sustainability of MWSNs.

In addition, (J. Tang, Mihailovic, and Aghvami, 2022) et al. demonstrate
the efficacy of DRL in reducing maximum link utilization (MLU) and end-to-
end delay through a Multi-Plane Routing (MPR) approach within a Dueling
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Deep Q-Network (DDQN) framework. Building on this, integrating DRL with
OLSR can enhance routing efficiency and network performance in various ways.
The integration of Deep Reinforcement Learning (DRL) with the Optimized Link
State Routing (OLSR) protocol presents significant opportunities for addressing
the inherent challenges in traffic engineering (TE) within dynamic network
environments.

OLSR is a proactive routing protocol that continuously updates and maintains
network routes by periodically exchanging topology information. This ensures
that routing decisions are always based on the most recent network state. By
integrating DRL, OLSR can further enhance this proactive nature. DRL can
predict future network states and traffic patterns, allowing OLSR to make
more informed and anticipatory routing decisions, thereby reducing latency and
improving throughput.

DRL’s adaptive learning capabilities allow it to optimize routing decisions in
real time, adapting to changing network conditions and traffic demands. In a
dynamic network setting, where traffic load can vary significantly, DRL can help
OLSR dynamically adjust routing paths to balance the load across the network.
This can prevent bottlenecks and reduce MLU, as shown in the study where DRL-
MPR achieved lower MLU compared to OSPF and standard MPR. Such dynamic
traffic management is crucial for maintaining high performance in all-IP access
networks.

Networks often experience link failures and varying link quality, especially
in wireless environments. DRL can enhance OLSR’s robustness by continuously
learning from the network’s operational history and adjusting routes accordingly.
This capability ensures that the network can quickly adapt to failures and maintain
optimal performance. Integrating DRL with OLSR can improve the network’s fault
tolerance, leading to fewer disruptions and more reliable communication.

As evidenced by the simulation results in (J. Tang, Mihailovic, and Aghvami,
2022) et al.’s study, DRL-MPR significantly outperforms traditional routing
protocols in terms of MLU and end-to-end delay. To validate the integration
of DRL with OLSR, similar empirical studies should be conducted. By com-
paring the performance of DRL-OLSR with traditional OLSR and other routing
methodologies, we can quantify improvements in network efficiency, throughput,
and latency. This empirical validation is critical for demonstrating the practical
benefits of integrating DRL into proactive routing protocols like OLSR.

66



Chapter 4

SOM proposed Model

In this chapter, self-organizing maps (SOMs) are applied in the context of mobile
sensor networks. SOMs are unsupervised learning algorithms that have gained
significant attention for their ability to organize and represent complex data
patterns. Within mobile sensor networks, SOMs offer a promising approach to
tackling the challenges associated with resource allocation, data transmission, and
network performance optimization.

The introduction section of this chapter provides an overview of the fundamen-
tal concepts of self-organizing maps and their underlying principles. SOMs enable
sensors to be explored in mobile networks to create a topological representation of
their environment and organize themselves based on spatial relationships and data
patterns. By leveraging this self-organizing capability, the sensors can enhance
data aggregation, improve decision-making processes, and achieve more efficient
resource allocation.

Furthermore, the potential applications are highlighted of SOMs in mobile
sensor networks. The versatility of SOMs makes them suitable for a wide range of
use cases, including environmental monitoring, surveillance systems, and disaster
management. By employing SOMs in these applications, the ability can be
leveraged to adapt to changing network conditions, facilitate collaborative decision-
making among sensors, and optimize data transmission for improved network
performance.

Lastly, the results and discussions section presents the findings obtained
through implementing SOMs in our mobile sensor network framework. The
experimental setup is discussed, and data collection and performance metrics are
used to evaluate the effectiveness of SOMs. The results showcase the impact of
SOMs on network throughput, data aggregation efficiency, and overall network
performance. Additionally, the results are analyzed and interpreted the obtained
results, providing insights into the strengths, limitations, and potential areas of
improvement for the SOM-based approach in mobile sensor networks.

This chapter aims to shed light on the capabilities and potential of self-
organizing maps in addressing the challenges mobile sensor networks face. By
harnessing the power of unsupervised learning, SOMs offer a valuable tool
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for optimizing resource allocation, improving data transmission efficiency, and
enhancing overall network performance. The following sections will delve deeper
into the applications, implementation, and results of employing self-organizing
maps in the mobile sensor network.

4.1 Introduction

Self-organizing maps (SOMs) are a type of unsupervised artificial neural network
(ANN) that was introduced by Finnish scientist Teuvo Kohonen in 1982. These
networks are inspired by the structure and function of the human brain’s visual
cortex and have been widely used for clustering and visualization tasks. The main
goal of SOM is to reduce the dimensionality of high-dimensional data to a low-
dimensional representation while preserving the topological structure of the data.

During training, the neurons’ weights in a two-dimensional grid are iteratively
adjusted to match the input data. A competitive learning rule compares each
input vector to the weight vectors of all the neurons, and the neuron with the
closest weight vector is selected as the winner. The winning neuron and its
neighboring neurons are then updated based on a Gaussian function that decreases
with distance from the winner neuron. SOMs have many advantages, including
handling large datasets with high-dimensional input data, computational efficiency,
and unsupervised learning. They can also adapt to input data distribution changes,
making them suitable for online learning applications.

SOMs have been successfully applied in many fields, including image process-
ing, speech recognition, bioinformatics, and finance. In image processing, SOMs
have been used for tasks such as image segmentation and object recognition, while
in speech recognition, they have been used for phoneme recognition and speaker
identification. In bioinformatics, SOMs have been used for gene expression analysis
and protein structure prediction. SOMs have been used in finance for stock market
prediction and credit risk assessment.

They work by taking a set of high-dimensional input vectors and mapping
them onto a lower-dimensional grid of output nodes or neurons. Each neuron
is associated with a weight vector randomly initialized to a value close to the
input vectors. During the learning process, the SOM iteratively adjusts the weight
vectors based on the similarity between the input vectors and the weight vectors
of the neighboring neurons, Figure 4.1 shows SOM process in action.

4.1.1 Applications of SOM in MWSNs

Self-organizing maps (SOMs) have found numerous applications in sensor networks
due to their ability to perform data analysis and visualization in a distributed
manner. Here are some of the applications of SOMs in sensor networks:

• Anomaly detection SOMs can be used for anomaly detection in sensor
networks. They can be trained on normal operating conditions of the sensor
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Figure 4.1: SOM Process

network, and any deviation from the learned patterns can be flagged as an
anomaly. This approach can detect faults or intrusions in the sensor network.

• Data compression SOMs can be used for data compression in sensor
networks. The weight vectors of the neurons in the output layer can be
used to represent the input data in a lower-dimensional space. This can be
useful for reducing the size of the data transmitted by the sensors, which in
turn saves energy and bandwidth. Mobile sensor networks are characterized
by small and lightweight sensors connected wirelessly to a central unit, such
as a mobile phone or base station.

These networks generate a large amount of data that needs to be transmitted
over wireless channels with limited bandwidth and power resources. SOMs
can be used to reduce the amount of data transmitted by the sensors while
preserving the important features. Here are some ways SOMs can be used
for data compression in mobile sensor networks.

– Dimensionality Reduction: SOMs can be used to reduce the
dimensionality of the sensor data. In this approach, the SOM is trained
on the sensor data, and the weight vectors of the output neurons are
used to represent the input data in a lower-dimensional space. The
size of the SOM output layer determines the dimensionality of the
compressed data. The compressed data can be transmitted to the
central unit, where it can be decompressed using the inverse mapping
of the SOM.

– Quantization: SOMs can be used for vector quantization, a lossy data
compression technique that maps high-dimensional vectors to a set of
discrete codebook vectors. In this approach, the SOM is trained on the
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sensor data, and the weight vectors of the output neurons are used as
codebook vectors. The sensor data is then quantized by mapping each
input vector to the nearest codebook vector. The quantized data can
be transmitted to the central unit, where it can be decompressed by
replacing each codebook vector with the corresponding weight vector of
the SOM.

– Hybrid Approaches: Hybrid approaches that combine SOMs with
other data compression techniques have also been proposed. For exam-
ple, a hybrid approach that combines SOMs with wavelet transforms
has been proposed for image compression in mobile sensor networks. In
this approach, the image is first transformed using a wavelet transform,
and the resulting coefficients are then compressed using a SOM-based
vector quantization technique.

Using SOMs for data compression in mobile sensor networks have
several advantages, including reduced data transmission and storage
requirements, reduced power consumption, and improved data analysis
and visualization.Additionally, SOMs are well-suited for mobile sensor
networks, characterized by limited processing and storage capabilities,
dynamic network topologies, and varying environmental conditions.

• Visualization SOMs can be used for visualizing sensor data in a distributed
manner. Each sensor can train a SOM on its local data, and the resulting
SOMs can be merged to form a global SOM that represents the entire sensor
network. The global SOM can be used to visualize the similarities and
differences between the sensor data, which can be useful for monitoring the
sensor network and identifying patterns.

• Clustering SOMs can be used for clustering sensor data. The SOM can
be trained on the sensor data, and the resulting clusters can be used for
data aggregation, anomaly detection, or decision-making tasks. Clustering
in mobile sensor networks is challenging due to the dynamic nature of
the network topology and the limited resources of the sensors. SOMs can
overcome these challenges and perform clustering in a distributed manner.
Here’s how it can be done:

– Initialization: The SOM is initialized by randomly selecting a set of
neurons. Each neuron represents a cluster, and its weight vector is set
to the centroid of the assigned data points.

– Sensor data acquisition: Each sensor acquires data from its sur-
roundings and assigns it to the closest SOM neuron. This is done using
a competitive learning rule similar to the one used in the unsupervised
training of SOMs.

– SOM update: The weight vectors of the neurons are updated based
on the input data assigned to them. The update uses a learning rate
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that decreases with time and a neighborhood function that decreases
with the distance between the neuron and the winning neuron.

– Cluster formation: After a certain number of iterations, the SOM
stabilizes, and the neurons’ weight vectors represent the cluster cen-
troids. The sensors are then assigned to the closest neuron in the SOM,
and the resulting clusters represent the groups of sensors with similar
data.

SOM-based clustering in mobile sensor networks has several advantages.
First, it can be performed in a distributed manner, which reduces the
communication overhead and the energy consumption of the sensors.
Second, it can adapt to changes in the network topology and the data
distribution, which makes it suitable for dynamic sensor networks.
Finally, it can handle high-dimensional data and provide a low-
dimensional representation of the data, which can be helpful for data
visualization and compression.

SOM-based clustering in mobile sensor networks has been applied in
various domains, including environmental monitoring, disaster manage-
ment, and healthcare, For e.g., SOM-based clustering can be used in
environmental monitoring to group sensors that measure.

similar environmental parameters, such as temperature and humidity.
In disaster management, SOM-based clustering can identify areas with
high concentrations of pollutants or detect the presence of hazardous
materials. In healthcare, SOM-based clustering can be used to group
sensors that measure physiological parameters, such as heart rate and
blood pressure, to monitor the health of patients.

• Predictive maintenance SOMs can be used for predictive maintenance
in sensor networks. They can be trained on historical sensor data, and the
resulting SOM can be used to predict when a sensor or a component of the
sensor network will likely fail. This approach can help prevent unplanned
downtime and reduce maintenance costs. Mobile sensor networks consist of
mobile nodes equipped with sensors that can move around and gather data.
These networks can be used for monitoring various systems, such as machines
in a manufacturing plant, vehicles on a highway, or infrastructure in a city.

To apply SOMs for predictive maintenance in mobile sensor networks, the
SOM is first trained on historical sensor data to learn the typical patterns of
the system. This training process involves inputting the historical sensor data
into the SOM and adjusting the neurons’ weights to represent the patterns in
the data. Once the SOM is trained, it can be used to predict when a system
component is likely to fail. When the mobile sensor network operates, the
sensors gather real-time data from the system.

This data is then input into the SOM, which compares the current patterns to
the historical patterns learned during training. If the current patterns deviate
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significantly from the learned patterns, the SOM can flag the deviation as a
potential fault or failure. The maintenance team can investigate the flagged
component to prevent unplanned downtime and reduce maintenance costs.

By using SOMs for predictive maintenance in mobile sensor networks, the
maintenance team can take a proactive approach to maintenance rather than
a reactive one. This can help minimize the system’s downtime, increase the
system’s reliability, and reduce maintenance costs. Furthermore, since SOMs
are trained on the sensor data in a distributed manner, they can be used
for predictive maintenance in large-scale mobile sensor networks with many
sensors and nodes.

• Energy-efficient routing SOMs can be used for energy-efficient routing
in sensor networks. The SOM can be used to find the optimal path for
transmitting data from the sensors to the sink node while minimizing energy
consumption. This approach can help extend the lifetime of the sensor
network. This application uses the SOM to find the optimal path for
transmitting data from the sensors to the sink node while minimizing energy
consumption (Xu et al., 2019) (Ahmed Elsmany et al., 2019).

4.1.2 The key features of SOMs

• One of the standout attributes of SOMs is their ability to perform unsuper-
vised learning. Unlike supervised learning algorithms that require labeled
data, SOMs can uncover patterns and relationships within unlabeled data.
This makes them particularly useful for tasks such as clustering, where data
points with similar characteristics are grouped. By identifying clusters within
the data, SOMs enable exploratory data analysis and can provide valuable
insights into complex datasets.

• Another crucial feature of SOMs is their capability to preserve the topological
structure of the input data. When trained, a SOM organizes a grid of
neurons in the output space. This grid mimics the input data’s topology,
meaning that similar input vectors are mapped to adjacent neurons on the
grid. This preserves the relationships and similarities in the original data,
allowing for efficient visualization and analysis of data patterns. Observing
the neurons’ proximity on the grid can infer the proximity and similarity of
the corresponding input vectors.

• SOMs also excel at dimensionality reduction, which is mapping high-
dimensional data onto a lower-dimensional space. High-dimensional datasets
can be challenging to visualize and comprehend, but SOMs offer an effective
solution. By projecting the input vectors onto a lower-dimensional output
grid, SOMs enable the representation of complex data in a more manageable
form. This dimensionality reduction simplifies data exploration, enabling
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researchers and analysts to gain valuable insights from large, intricate
datasets.

• In addition to their robustness, SOMs are capable of handling noisy and
incomplete data. Real-world datasets are often imperfect, with missing
values or errors. However, SOMs possess inherent robustness, allowing them
to process and analyze such data effectively. By capturing the underlying
patterns and relationships within the data, SOMs can provide reliable results
even in the presence of noise or incomplete information. This attribute makes
SOMs well-suited for real-world applications where data quality may vary.

The key features of SOMs make them a powerful tool for data analysis
and visualization. Their ability to perform unsupervised learning enables the
exploration of unlabeled data, leading to valuable insights and discoveries. The
preservation of topological structures facilitates understanding data relationships,
while dimensionality reduction aids in the visualization and comprehension of
complex datasets.

Furthermore, the robustness of SOMs allows them to handle noisy and
incomplete data, enhancing their applicability in real-world scenarios. By
leveraging these features, researchers and analysts can harness the power of SOMs
to uncover hidden patterns, gain insights, and make informed decisions in various
domains.

4.2 The SOM-based Routing Algorithm

• First, the SOM is trained on the sensor data to learn the topological structure
of the network. Each node in the SOM represents a region in the network
where sensors with similar data are located. The nodes in the SOM are
connected to their neighboring nodes, forming a two-dimensional grid.

• When a sensor node wants to transmit data to the sink node, it calculates
the Euclidean distance between its data and the weight vectors of the nodes
in the SOM.

• The node in the SOM with the closest weight vector to the sensor data is
selected as the destination node. Using a multi-hop approach, The sensor
node transmits its data to the destination node. Each hop is directed toward
the neighboring nodes of the destination node, which leads to the sink node.

The SOM-based routing algorithm has several advantages over traditional
routing algorithms. It can adapt to network topology changes, making it is
suitable for mobile sensor networks. It can also reduce the amount of data
transmitted by the sensors, saving energy and prolonging the network’s lifetime.
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In addition, the SOM-based routing algorithm can be combined with other energy-
efficient techniques, such as duty cycling and data aggregation, to reduce energy
consumption further.

Duty cycling involves turning off the sensors during idle periods, while data
aggregation involves combining multiple data packets into a single packet to reduce
the number of transmissions. Eventually, SOMs are a powerful tool for clustering,
visualization, and data compression tasks. They are based on a competitive
learning rule and a Gaussian neighborhood function, which allows them to preserve
the topological structure of the input data. SOMs are computationally efficient,
capable of handling large datasets, and suitable for online learning applications.
They have been applied in various fields, including image processing, speech
recognition, bioinformatics, and finance, and are likely to continue to be essential
tool.

4.3 Methodology used in SOM in MWSN

In the proposed work, SOMs are used to optimize sensor networks by helping
to identify patterns and relationships in nodes connectivity. Training a SOM
using the connectivity data of a sensor network can provide valuable insights
that can contribute to optimizing the OLSR routing protocol in the network.
Initially, the SOM is trained using the connectivity data of the sensor network.
This data typically includes information about which nodes are connected and the
strength of their connections. The SOM algorithm learns to organize and map this
connectivity data onto a lower-dimensional grid.

SOM-OLSR routing algorithm is propoed, which is based on SOM algorithm.
SOM is used to optimize sensor networks by helping to identify patterns and
relationships in node connectivity. It smoothes and scales the execution of the
requests, and it maps high-dimensional information onto a low-dimensional space
as a result of which the network trains itself to identify patterns and relationships
in the network connectivity and creates a map that represents these patterns in a
more manageable way.

An integration of Self-Organizing Map (SOM) with the Optimized Link State
Routing (OLSR) protocol becomes a powerful solution in terms of improving
performance of Mobile Wireless Sensor Networks (MWSNs) as well as the whole
sequence is deployed in partial as mobile agent nodes in monitoring scenarios. The
learning and adaptability of SOM to the network topology based on sensor data
and communication patterns enables a deeper and more valuable understanding
of the environment’s dynamic nature. In a continuous way, SOM analyzes the
collected data and assists OLSR in making informed routing decisions, optimizing
the paths based on node movement, energy levels, and data transmission needs.
This dynamic routing optimization improves the efficiency of data transmission
by in addition to offering load balancing so that network congestion is eliminated
and communication in the monitoring area is assured. Moreover, SOM empowers
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the network with fault detection and self-healing functionalities through network
monitoring for anomalies, which consequently triggers corrective measures like
traffic rerouting or node reconfiguration to sustain data delivery and network
integrity despite challenges.

Noteworthy, the amalgamation of SOMwith OLSR increases the self-management
of the network, thus eliminating human intervention and increasing the scalability
of multi-wireless sensor networks. By recursively learning and adapting to
environmental changes, the SOM network is capable of responding to node failure,
changes in the environment, and communication patterns without much human
intervention. That autonomy feature stands out in the area of monitoring
applications where a remote and large-scale deployment of sensor nodes is a
common practice. The integration of SOM and OLSR brings self-organization
and adaptation to MWSNs, which helps the networks to perform efficiently and
reliably in the dynamic environment of monitoring applications, thus leading to the
improvement in the effectiveness of data collection and decision-making processes.

Let wij be the weight of neuron i in the SOM, where i ranges from 1 to the
dimension of the input space, and let xj be the jth element of the input vector x.
Let mi be the location of neuron i in the SOM.
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Figure 4.2: SOM in mobile sensor networks

The SOM-based routing algorithm works as follows:

• The SOM-OLSR is trained on the sensor data to learn the topological
structure of the network. Each node in the SOM represents a region in the
network where sensors with similar data are located. The nodes in the SOM
are connected to their neighbouring nodes, forming a two-dimensional grid.
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Algorithm 1 SOM-OLSR Algorithm

1: Initialization of parameters
2: Deployment of Nodes in Network Area (N,R)
3: Broadcast Link State Packet (LSP) to all the Neighboring Nodes
4: Cost Function Estimation for connection
5: Initialization:
6: Normalize weight matrix:
7: initialize random weights()
8: Calculate

WNor(i, j) =
(Wi,j−minval)

maxval−minval

9: for i to N do
10: di =

√∑
((xj − wi)2

11: Finding the closest neuron
closestneuron = argmin(distances)

12: return closestneuron
13: Update Weights For Selected Node

Wij(t+ 1) = Wij(t) + η(t)× hij(Xj −Wij(t))
14: Adjust Weights For Neighboring Node

hji(t) = exp
(

(ci(t)−cj(t))
2

2σ2(t)

)
15: end for

Let’s assume that the distance between neuron i and neuron j is denoted
as d(i, j). The cost function C(d) is used to calculate the cost based on the
distance. Cost function is formulated as

C(d) = k * d (4.1)

where k is a constant representing the cost per unit distance. Once the cost
function is defined, the cost of the connection between neuron i and neuron
j can be estimated as

C(i, j) = C(d(i, j)) (4.2)

By evaluating the distance between the neurons and applying the cost
function, a cost value is obtained for each connection in the SOM.

SOMs and OLSR are used in energy-efficient routing in sensor networks through
a two-phase approach, as the following:

• In the first phase of SOM training, the SOM algorithm is employed to learn.
Let’s assume, a sensor node denoted by N = N1, N2, ..., Ni, where each
sensor node Ni has associated features xi, e.g. distance, coordinates, data
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rate, etc. The features of each sensor node are represented as a vector:
xi = [x1i, x2i, ..., xmi], where m is the number of features.

SOM features can be trained by presenting the feature vectors xi to the
network. The SOM consists of a set of neurons organized in a grid.
Each neuron j in the SOM is represented by a weight vector wj =
[w1j, w2j, ..., wmj], where m is the number of features. Initially, the weights
are randomly assigned. The SOM adjusts its weight vectors during training
based on a learning algorithm.

The transmission dimensions can be represented as a weight matrixW, where
each element Wi,j represents the weight (transmission dimension) between
node i and node j.

– Calculate the minimum value (minval) and maximum value (maxval)
from the weight matrixW , whereW is anm×nmatrix representing the
transmission dimensions between nodes in the MWSN. Then normalize
the values of the weight matrix W using a common normalization
technique as

WNor(i, j) =
(Wi,j −minval)

(maxval −minval)
(4.3)

After this step, the normalized values in WNor will be in the range [0, 1].
This ensures that all weights are proportionally adjusted based on their
relative differences.

– Each node in the SOM has a weight vector W of the same dimension
as the input data vector. Calculate the Euclidean distance between
the input data vector x and the weight vector W of each node in the
SOM. Let Wij be the weight of neuron i and j dimension of the input
space, and let xj be the j

th element of the input vector x. The distance
between the input vector x and the weight vector wi is given by:

di =

√∑
j

(xj − wi)2 (4.4)

– Identify the node with the smallest Euclidean distance as the best
matching unit (BMU). Compare the calculated Euclidean distances for
each neuron in the SOM and find the neuron that has the smallest
distance to the input data vector x. This neuron is considered as BMU
or the neuron that is closest to the input data vector x.
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– Update the weights of neighboring nodes based on their distance from
the selected node.

Wij(t+ 1) = Wij(t) + η(t)× hij(Xj −Wij(t)) (4.5)

where t is the iteration number, η(t) is the learning rate at iteration
t, and (Xj −Wij(t)) is the error between the input vector and the old
weight vector. The step size of weight updates is determined by the
learning rate η(t) which is usually set to a large value at the beginning
and gradually decreased during the course of the algorithm to ensure
that it converges. The neighbourhood function hij(t) is a Gaussian
function that decreases with distance from the winning neuron.

hji(t) = exp

(
(ci(t)− cj(t))

2

2σ2(t)

)
(4.6)

where ci and cj are the locations of neurons i and j, and σ(t) is the
neighborhood radius at iteration t. The neighboring radius refers to
the maximum distance within which nodes or devices can communicate
directly with each other. This process is depicted in Figure 4.2 and the
associated proposed algorithm is presented in Algorithm 1.

– Repeat steps 3 and 4 iteratively for each transmission in the network
to achieve similar data patterns.

– Analyze the resulting node weights to identify clusters of similar
transmission patterns, thereby reducing redundancy in the network.

During Training, the SOM adapt the weights of the neurons in the
output map based on the input data using a learning algorithm as
discussed below step wise.

• The second phase performs energy-efficient routing for SOM process. Once
the SOM is trained, it is used for energy-efficient routing in the sensor
network. SOM can be utilized to find the optimal path for data transmission
from a source sensor node to a sink node. Each neuron j in the SOM
represents a region in the network. Each region is associated with a set of
sensor nodes within its vicinity. Neurons in the SOM can be identified for a
given source and sink node. The path between the neurons corresponding to
the source and sink nodes can also be identified by traversing the connections
in the SOM grid. This path on the SOM grid represents the optimal path
in the sensor network for data transmission from the source to the sink by
considering energy efficiency.
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4.4 Results & Discussion

The Result and Discussion chapter of a thesis serves as a critical component for
presenting and analyzing the findings obtained through the research process. It
allows for an in-depth exploration and interpretation of the data collected, pro-
viding an opportunity to address the research questions, evaluate the hypotheses,
and discuss the implications of the study. The MWSN network is simulated using
the MATLAB environment, with the simulation parameters listed in Table 4.1 and
Table 4.2. The network comprises multiple nodes that are randomly distributed
as depicted in Figure 4.3.

Table 4.1: Simulation Parameters.

Parameter Value

Nodes 100

Network Length 5000 m

Network Width 5000 m

Bite per Sec 1000

Minimum Communication Probability 0.2

Minimum Radius 10 m

Maximum Radius 60 m

Coverage Distance 150 m

Total Iterations 50

RNN States 8

Maximum Steps per Episode(RNN) 50

Epsilon 0.9

Epsilon Decay 0.9

In this chapter, the research outcomes are thoroughly examined, compared
with existing literature, and contextualized within the broader research field. By
delving into the results and engaging in thoughtful discussion, researchers can
offer valuable insights, draw conclusions, and contribute to the existing body of
knowledge. The proposed implementation is done using a MATLAB environment.

4.4.1 Result and Discussion using SOM

TheFigure 4.4 shows the connection probability which should be high for effective
communication in mobile sensor networks. Connection probability plays a
critical role in determining the performance and effectiveness of mobile sensor
networks. It affects network coverage, data reliability, energy efficiency, and
network robustness. By focusing on improving and maintaining a high connection
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Table 4.2: Simulation Parameters.

Parameter Description Default Value

Node Speed Rate of sensor node movement 1 m/s

Node Direction Initial direction of node movement Randomly deter-
mined

Pause Time Duration for which a node remains
stationary

0 seconds

Random Waypoint Model

Maximum Speed Maximum speed of nodes in the model 1 m/s

Minimum Speed Minimum speed of nodes in the model 0 m/s

Waypoint Pause Time Duration for node pauses at a waypoint 0 seconds

Gauss-Markov Model

Mean Speed Mean speed of nodes in the model 1 m/s

Standard Deviation Standard deviation of node speed 0.1 m/s

Correlation Time Time constant for speed correlation 100 seconds

Random Walk Model

Step Length Length of each step in the model 1 meter

Step Time Duration of each step in the model 1 second

probability, researchers and practitioners can enhance the functionality and
practicality of mobile sensor networks, enabling them to fulfill their intended
purposes effectively in various applications. It represents the likelihood or
probability of successful communication or connectivity between sensor nodes
within the network. The higher the connection probability, the greater the chances
of establishing reliable and efficient communication links among the nodes.

TheFigure 4.5 shows the end-to-end delay in ms for the mobile sensor network.
The end delay must be low as much as possible for low bit error rates. The end-
to-end delay is a crucial metric in mobile sensor networks as it plays a significant
role in determining the efficiency and effectiveness of data transmission. In mobile
sensor networks, which consist of numerous sensors connected wirelessly, timely
and reliable data delivery is essential for various applications such as environmental
monitoring, healthcare systems, and surveillance.

To have a high packet receiving rate, the end delay must be as minimal as
possible. There is a significant impact on end delay when the chance of connection
declines, as in the case of SOM can be observed by the fact that end delay is
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Figure 4.3: MWSN network simulation setup.

decreasing and can be further reduced by training the network with more iterations
with dense layers.

Figure 4.6shows the routing overhead also improved, which should be controlled
to achieve high control of packets with high data rates with high mobility. Routing
overhead indicates that a large number of packets are at the maintenance level,
increasing the likelihood of failures and significant packet dropouts. Additionally,
the network’s throughput, which must be high also improved in the case of neural
networks and indicates high successful packet deliveries at the receiver side, and
can be observed.

Routing overhead plays a crucial role in mobile sensor networks, and its
significance stems from the impact it has on network performance and resource
utilization. In mobile sensor networks, where sensors are deployed in a dynamic
environment and can move autonomously, efficient routing is essential for reliable
and timely data delivery. However, routing overhead refers to the additional
control and signaling information that is necessary for establishing and main-
taining routing paths, but adds to the overall communication load and resource
consumption.
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Figure 4.4: Connection Probability using SOM

Figure 4.7 shows the throughput in the proposed evaluation and shows that if
throughput becomes less then there will be high chances of network degradation
which is not the desired output of the proposed work. The significance of
throughput in mobile sensor networks is of utmost importance as it directly affects
the overall performance and efficiency of the network.

Throughput refers to the amount of data that can be successfully transmitted
within a given time period in a network. It is a critical metric that determines the
network’s capacity to handle data traffic effectively. In mobile sensor networks,
the ability to achieve high throughput is vital for ensuring timely and reliable
transmission of data from the sensor nodes to the intended destination, such as a
base station or a central server.

The Figure 4.8 shows the energy consumption of the network through the
proposed evaluation. As it can be seen from the evaluation that energy
consumption is also improved and must be low for the successful use of resources
in the mobile sensor network. If the energy consumption is high then there can be
more failure of nodes and nodes may dead and halt the operation of execution of
requests in the network.
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Figure 4.5: End to End Delay using SOM
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Figure 4.6: Overhead Consumption using SOM
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Figure 4.7: Throughput using SOM
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Figure 4.8: Energy Consumption using SOM
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Chapter 5

DRL Proposed Model

In this chapter, the realm of DRL is discussed and explored its components, and
the results achieved through its implementation.

The introduction sets the stage for understanding the significance of DRL
in addressing various challenges in different domains. The growing interest is
highlighted in leveraging DRL techniques to tackle complex problems that involve
sequential decision-making. The ability of DRL to learn from interactions with
the environment and to optimize decision-making processes based on rewards has
resulted in breakthroughs in diverse areas, including robotics, gaming, autonomous
systems, and even healthcare.

Next, the applications of DRL are discussed, where the versatility of this
approach is showcased in solving real-world problems. From autonomous driving
and robotic control to financial portfolio management and resource allocation,
DRL has demonstrated its effectiveness in domains where traditional optimization
methods fall short. By learning from experiences, DRL agents can adapt to
changing environments and make intelligent decisions in dynamic and uncertain
situations. Moving on, it is explored the components of DRL that contribute to
its success.

The key elements are examined such as the agent, environment, and reward
system, highlighting their roles in shaping the learning process. Furthermore,
the integration of deep neural networks is discussed, which enables DRL models
to handle high-dimensional input data, extract meaningful representations, and
generalize knowledge across similar scenarios. Understanding these components
provides a foundation for comprehending the inner workings of DRL and its
implications in mobile sensor networks.

Lastly, the results and discussions are discussed which is obtained through
the implementation of DRL techniques in the context of mobile sensor networks.
By evaluating the performance of DRL models in comparison to traditional
optimization methods, insights into the efficacy of DRL is gained in enhancing
network throughput and resource allocation. The discussion encompasses the
achieved results, highlighting the strengths and limitations of the approach, and
provides valuable insights for future research and applications in the field.
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5.1 The DRL based Routing Algorithm

Start

Update actions based

on transition states and

reward

Stop

Define set of 

network states

Agent action based on

network state

Mapping from states

to actions

Perform exploration

and  exploitation

Nodes activation and

transmission  

adjustments

Figure 5.1: Deep RL in mobile sensor networks (Alsalmi, Navaie, and Rahmani,
2024)

Our second proposed algorithm is DRL-OLSR, which employs deep reinforce-
ment learning to optimize routing in MWSN. In this case DRL can be represented
as a class of Markov Decision Problems has been the most thoroughly investigated.
The agent can only travel to a certain number of states, and for each state visited,
a numerical reward will be collected; negative numbers may indicate penalties.
There is a variable value associated with each state. There are further states
that can be reached through various acts from each state. The averaged future
reward that is accumulated by choosing activities from a given state determines
that state’s value. Actions are chosen following a policy that is also subject to
modification.

Training OLSR in MWSNs using DRL involves several steps, including defining
the state, action, reward, and training the DRL model. The description of these
steps is provided below.

• State: The state represents the current state for each node in the
environment includes factors such as the location of sensors, their signal
strength, the quality of the wireless link, and the traffic load on the network
Si.

• Action: As the nodes perform actions such as transmitting packets and
executing route requests based on the signal strength between two nodes Ai.
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• Reward:The reward is used to evaluate the node’s performance. it is the
immediate feedback to the node by the environment after the node performs
an action according to the current state.

5.1.1 DRL-OLSR Mathemetical Model

The DRL-OLSR algorithm utilizes DRL to optimize routing in MWSN. This
process is depicted in Figure 5.1 and the associated proposed algorithm is presented
in Algorithm 2. In the proposed work, the case where Reinforcement Learning (RL)
can be represented as a class of Markov decision problems has been extensively
studied.

A Markov Decision Process (MDP) consists of four essential components, i.e.,
state, action, reward, and transition probabilities. In each iteration, the present
state is denoted by i, and the agent receives an observation of the environmental
state si from the set of possible states S. Subsequently, the agent chooses an action
ai from the available actions based on this observation. The set of possible actions
for the state si is denoted as Asi. When the agent executes an action, it receives a
reward value ri in response. Finally, the agent transitions to the next state with a
certain probability known as the transition probability. The transition probability
from present state si to the next state si+1, given that the current state is si and the
action taken is ai is represented as P (si+1|si, ai) (Alsalmi, Navaie, and Rahmani,
2024).

The basic illustration of MDP is depicted in Figure 5.2. An episode in this
process forms a limited sequence of states, actions, and transition function that
returns the next state and rewards in (S, A, δ, R) as given in (5.1).

s0, a0, r1, s1, a1, r2, s2, ..., sn−1, an−1, rn, sn (5.1)

Let si denote the current state, ai denote the action taken, ri+1 denote the
reward obtained after performing action ai, and (S,A, δ, R) represent the sets of
states, actions, and rewards, respectively. The episode concludes when the final
state transitions reach sn. The overall reward is can be represented as,

R = r1 + r2 + r3 + ...+ rn (5.2)

The ultimate objective of the RL agent is to discover the optimal policy π∗ that
maximizes the total expected reward, given a set of actions and states (Alsalmi,
Navaie, and Rahmani, 2024).

π∗ = argmax
π(s)

E [Ri + γRi+1 + γ2Ri+2] (5.3)

where π∗ represents the policy of a state for optimal action. γ ∈ (0, 1) denotes the
discount factor and shows the importance of immediate and future rewards.

Q (si, ai) = E
[
ri + γmax

a′
Q (si+1, a

′)
]

(5.4)
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Figure 5.2: The Markov Decision Processes (MDP).

Q(si, ai) stands for the expected immediate reward for acting at in-state s plus
the sum of the discount factor and the highest possible expected return in the next
state. The definition of this function is based on the intuition that actions should
be taken to maximize the expected return at each time step in order to maximize
overall reward (Alsalmi, Navaie, and Rahmani, 2024).

Q-learning is one of the popular RL methods to solve MDP. In Q-learning,
Bellman’s Equation can be used to determine the optimal Q-value function
Q∗(si, ai). The DRL model addresses this issue by combining RL and deep
learning (DL) techniques. The DRL model uses a deep neural network (DNN)
to approximate the Q-values functions.

Q∗
i (si, ai) = (1− α)Qi−1(si, ai) + α[ri + γmax

ai+1

Qi−1(si+1, ai+1)] (5.5)

Here α is the learning rate. The Deep Q-Network (DQN) architecture consists
of an input layer, multiple hidden layers, and an output layer. The input layer
takes the state of the environment as input, and the output layer produces the
Q-value for each action. The hidden layers contain non-linear activation functions
that enable the network to learn complex relationships between the input and
output (Alsalmi, Navaie, and Rahmani, 2024). The Q-value can be derived as
follows:

Qπ(si, ai) = R(si, ai) + γ
∑

si+1∈S

P (si, ai, si+1)Q
∗
i (si+1, ai+1) (5.6)

where R(si, ai) represents the reward of action ai in the state si , P (si, ai, si+1)
represents the probability of switching to state si+1 after action ai in the state si,
and Q∗

i (si+1, ai+1) = maxQπ(si+1, ai+1) represents the optimal Q-value of action
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ai+1 in next state si+1 (Alsalmi, Navaie, and Rahmani, 2024). Then, update the
Q-value by the following formula:

Qπ(si+1, ai+1) = Qπ(si, ai) + α×
[
R(si, ai)+

γ
∑

si+1∈S

P (si, ai, si+1)Q
∗
i (si+1, ai+1)−Qπ(si, ai)

]
(5.7)

where α ∈ [0, 1] is the learning rate in(5.7). The optimal action ai can be
obtained as follows:

a∗i = argmax Qπ(si, ai) (5.8)

Therefore, the optimal policy can be derived from the optimal action as given
in (5.9).

Lw = E

[
(Qπ(si, ai)−Qπ(si, a

∗
i , w))

2

]
(5.9)

where w is the network parameter and the Q-value to be updated up to target
Q-value TQ. Qπ is a predicted Q-value.

For the DRL-OLSR, the actions of a node are restricted to a finite number
of states, representing different network conditions. As the node traverses these
states, it receives numerical rewards associated with each state visit. It is worth
noting that these rewards can be positive, indicating desirable outcomes, or
negative, serving as penalties (Alsalmi, Navaie, and Rahmani, 2024).

The main objective of DRL-OLSR is to train the node to make informed
decisions on selecting the most appropriate routes based on the observed network
states and the associated rewards. By learning from the collected rewards, the
agent can optimize the routing decisions and improve the overall performance of
the MWSN.

By combining the power of DRL and the benefits of the Optimized Link State
Routing (OLSR) protocol, DRL-OLSR aims to enhance the efficiency, reliability,
and adaptability of routing in MWSN scenarios.

In the proposed algorithm, each state is associated with a specific variable
value. Additionally, there exist multiple states that can be reached through various
actions from each state. The value of a particular state is determined by the
accumulated average future reward obtained by selecting actions from that state.
The selection of actions is guided by a policy, which may be subject to modification
as the algorithm progresses.

As mentioned above training the OLSR algorithm in MWSN using DRL
encompasses several essential steps. The initial step for training the DRL model
is state representation, which captures the current state of each node in the
environment. This entails selecting key network parameters such as node energy
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levels, connection quality, network congestion, and other factors that influence the
OLSR algorithm’s decision-making process. These parameters together constitute
the state information that the DRL agent will use during training.

After this within the network, nodes engage in actions such as transmitting
packets or refraining from transmitting them to neighboring nodes. These actions
are influenced by factors such as the distance and single strength between two
nodes. The distance plays a crucial role in determining the success of packet
transmission and significantly impacts network routing behavior. Node actions
directly influence the entire decision-making process of the DRL agent, as they
contribute to shaping the routing strategy and optimizing network performance.

The most important step is to design the right reward function. Positive
rewards are assigned to actions that contribute to improved routing efficiency.
These rewards serve as immediate feedback to the nodes from the environment,
indicating the positive impact of their actions on the current state. Conversely,
negative rewards can be assigned as penalties for actions that lead to routing
failures. The reward provides valuable feedback to the nodes, encouraging them
to make decisions that optimize network performance and minimize undesirable
outcomes.

5.1.2 Training of DRL Model

In the proposed model, the main objective of the learning process is to maximize
the agent’s predictable cumulative reward. The estimation problem and the control
problem are two related calculations that deal with reinforcement learning. The
estimation problem deals with the discovery of the value function for the QoS
of DRL. At the end of learning, this value function highlights the cumulative
sum of the reward that can be predictable when initiating actions at each visited
conversion state in the network. The control problem deals with the quality
evaluations that maximize reward when moving through state space by relating to
the environment. In the end, the network model makes an ideal policy that allows
both ideal control and action planning.

Performance improvement by the use of function approximation and utilization
of samples is necessary to handle vast environments using two factors that
contribute to the effectiveness of reinforcement learning. These two vital elements
allow the use of reinforcement learning in vast situations/environments for different
purposes. The environment is represented by a simulation model (for simulation-
based optimization). Interacting with the environment is the only way to gather
information about it. Since there is some kind of model accessible, the issues
in reinforcement learning may be classified as planning issues, and some of the
issues could be classified as actual learning issues. However, machine learning
alters both planning issues through reinforcement learning. Deep learning-based
reinforcement learning is explained below:

The Deep reinforcement is evaluated based on equation(5.10).
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Algorithm 2 Proposed Algorithm

Step 1: Initialize network specifications such that Net= F[s].
F[s]= All network specifications related to the network length, network radius,
number of packers, minimum and maximum radius.

Step 2: Initialize L(x) & W(x) of mobile sensor networks for the deployment of
the network.
L(x) = Length of network in meters
W(x) = Width of network in meters

Step 3: Implement the network deployment D[n] ⊂ R[xi] such that R[x] is the
iterative nodes locations

Step 4: Implement Nodes placement process such that ND[x] =
{NS0 , NS1 , ...NSn}

1: for x = 1 to N do
XLoc(x) = XLoc {Ns(x)}
YLoc(y) = YLoc {Ns(y)}
Net(p) = f{Network(XLoc, YLoc}

2: end for

Step 5: Generate the simulation of the transmission and integration of the nodes
with the neighbor nodes in the network.

Step 6: Evaluate the node to node distance
Dist(n(x) : n(y))
Dist =

√
(x2 − x1)2 + (y2 − y1)2

where x&y are the nodes coordinate.
3: for x = 1 to c do
4: if N(M) ≤ Avg(N(M)) then

Call reinforcement learning network training
DRL ⇒ (F [s], Qπ(si, ai))

5: end if

6: end for

where M belongs to the node-to-node signal strengths, N(M) belongs to the
signal strength, DRL is the deep reinforcement learning, and TQ is the target
Q-value.

Step 7: Evaluate Network Performance such as
N(p)=T (x), Cp(x), E(x), Econs(x), Ovcons(x)

Step 8: Repeat steps 5 to 7 until all processing gets completed.
Step 9: Stop
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Figure 5.3: The functional block diagram of the proposed method.

Qi (si, ai) = (1− α)Qi−1 (si, ai) + α

[
ri + γmax

ai+1

Qi−1 (si+1, ai+1)

]
(5.10)

where α is the learning rate, ri is the reward gained γ is a discount factor,
and Q(s, a) is the state and actions taken from one transition state to another
transition state to attain QoS.

5.2 Result and Discussion

The MWSN network is simulated using the MATLAB environment, with the
simulation parameters listed in Table 4.1. The network comprises multiple nodes
that are randomly distributed as depicted in Figure 4.3. Using the node-to-
node infrastructure, packets are broadcasted to surrounding nodes based on the
network’s coverage areas and transmission ranges. The final route for packet
transmission is indicated by a green dotted line, which is evaluated to assess the
network’s performance. The simulation was conducted utilizing artificial neural
networks and deep learning-based reinforcement learning techniques. The whole
proposed methodology used in simulation analysis is illustrated in Figure 5.3.

Figure 5.4 shows the training process using reinforcement learning based on the
number of episodes run to achieve low losses and based on which the rewards are
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Figure 5.4: Deep Reinforcement Learning Training Process
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evaluated. It can be seen from Figure 5.4 the commutative reward is increasing
which shows the quality of learning and efficient decision-making process to
increase the strength and frequency of the behaviors through which low energy
consumption with fewer path losses and low network error rates are achieved.

The blue line signifies the episode reward. The episode is used as a functional
part on which the agent performance is evaluated in deep reinforcement learning.
Episode reward signifies a single instance of the agent interacting with the
environment and completing a task or goal.

Orange dark line signifies the Average Reward shows the average reward
received by the agent over a certain number of episodes. The trend of this line
over time can give you an idea of how well the agent is learning and improving its
performance.

Light yellow line signifies the quality of the current episode (Episode Qo) being
executed by the agent. The quality of an episode can be measured in terms of the
total reward obtained by the agent during that episode. During each episode, the
agent interacts with the environment, takes actions based on its current policy, and
receives rewards based on the outcome of those actions. The total reward obtained
by the agent during an episode can be used as a measure of how well the agent
is performing in that episode. This line is important in reinforcement learning
because the goal of the agent is to learn to maximize its expected cumulative reward
over the long term, which requires performing well in each individual episode.

5.2.1 Results and Discussion using DRL

The Figure 5.5 shows the analysis carried out in comparison with SOM network,
the connection probability in the case of reinforcement learning is high. This
analysis focuses on the connection probability, particularly highlighting the higher
connectivity observed in the case of DRL. In the context of network analysis,
connection probability refers to the likelihood of establishing connections between
different nodes or elements within the network. In this comparison, the connection
probability is examined in the context of using SOM and DRL techniques. The
analysis reveals that in the case of DRL, the connection probability is relatively
high compared to that of SOM. This indicates that the DRL approach leads
to a higher likelihood of establishing connections between nodes or elements
in the network. This observation suggests that DRL is more effective in
promoting connectivity and interaction between different components in the
system. The higher connection probability in DRL can be attributed to the unique
characteristics of the DRL algorithm.

RL is a learning paradigm where an agent interacts with an environment, learns
from experiences, and adjusts its decision-making process to maximize rewards.
Through this iterative learning process, the DRL agent explores different actions
and learns to establish connections that lead to favorable outcomes or rewards. On
the other hand, SOM networks, while also capable of learning and organizing data
patterns, may exhibit a lower connection probability compared to DRL. SOMs are
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Figure 5.5: Connection probability using DRL

typically designed to preserve the topology of the input data in the output space,
emphasizing the organization of data clusters rather than explicit connectivity
between individual elements. The contrasting connection probabilities between
SOM and DRL highlight these techniques’ different approaches and objectives.
While SOM focuses on clustering and organizing data patterns, RL emphasizes
the establishment of connections that maximize rewards. The higher connection
probability in RL suggests that it may be more suitable for tasks that require
strong interaction and coordination between different components or agents in the
network.

The results demonstrate in Figure 5.6 that the DRL network exhibits signifi-
cantly lower end-to-end delay compared to the SOM network. End-to-end delay
refers to the time a packet or data takes to traverse the network from the source
node to the destination node. A lower end-to-end delay is desirable as it signifies
faster and more efficient communication within the network. In the analysis, the
DRL network’s performance in terms of end-to-end delay outperformed the SOM
network. This suggests that the DRL-based network communication and decision-
making approach is more effective in reducing delays and achieving faster data
transmission. The advantage of DRL lies in its ability to learn optimal decision-
making policies through trial-and-error interactions with the environment. By
continuously learning and adapting its policies based on received rewards, the
DRL network can make efficient routing decisions, leading to reduced end-to-end
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Figure 5.6: End to End Delay using DRL

delay. On the other hand, the SOM network, which utilizes a different approach
for communication and decision-making, exhibited higher end-to-end delay.

The SOM network is known for its topological structure preservation and
clustering capabilities, but in terms of minimizing delay, it may not be as efficient
as the DRL network. The lower end-to-end delay in the DRL network suggests
that it has the potential to enhance real-time communication, reduce latency, and
improve overall network performance. These advantages make DRL particularly
suitable for applications that require fast and timely data transmission, such as
real-time monitoring, autonomous systems, and time-sensitive control systems.

TheFigure 5.7 shows the analysis carried out in caomparison with SOM
network. Specifically, the overhead consumption in the case of DRL is found to be
significantly lower compared to SOM. In the context of this analysis, overhead
consumption refers to the additional resources, such as computational power,
memory, or time, required by a network or algorithm to perform a task. Lower
overhead consumption is advantageous as it indicates that the network or algorithm
is more efficient and utilizes fewer resources to achieve the desired outcome. In the
case of DRL, the overhead consumption was observed to be remarkably low. This
can be attributed to the inherent nature of DRL algorithms, which leverage deep
learning and reinforcement learning techniques to train agents to make optimal
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Figure 5.7: Overhead consumption using DRL

decisions. By combining these approaches, DRL agents can learn directly from
raw sensory inputs, such as images or sensor data, without the need for explicit
feature engineering or preprocessing.

This streamlined process reduces the computational burden and memory
requirements, resulting in lower overhead consumption. On the other hand, SOM
networks exhibited higher overhead consumption in the comparative analysis.
SOMs are unsupervised learning algorithms that organize a grid of neurons to
represent the input data’s topological structure. While SOMs can be effective in
clustering and exploring data patterns, they often require additional computational
resources for training and maintaining the grid structure. The computation
involved in adjusting the weights, updating the node linkages, and preserving the
topology can contribute to higher overhead consumption.

The disparity in overhead consumption between DRL and SOM networks
suggests that DRL offers a more efficient solution in terms of resource utilization.
The reduced overhead consumption in DRL can have practical implications, such
as faster training times, improved scalability, and lower computational costs. These
benefits make DRL particularly attractive in scenarios where resource efficiency is
crucial, such as in resource-constrained environments or real-time applications.

The analysis focuses in Figure 5.8on the throughput metric, which represents
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Figure 5.8: Throughput using DRL

the amount of data successfully transmitted in a given time frame. In this
comparison, the figure reveals that the throughput achieved by the DRL network is
significantly higher when compared to the SOM network. Throughput refers to the
rate at which data is transmitted, and a higher value indicates a greater amount of
data successfully transmitted within a given time period. The superior throughput
observed in the DRL network can be attributed to the inherent capabilities of Deep
Reinforcement Learning algorithms.

DRL algorithms leverage the power of deep neural networks combined with
reinforcement learning techniques to optimize decision-making policies. By
learning from interactions with the environment and receiving feedback in the form
of rewards or penalties, the DRL network can adapt its decision-making process to
maximize the cumulative reward over time. The DRL network’s ability to achieve
higher throughput can be attributed to several factors. First, DRL networks can
leverage the representation learning capabilities of deep neural networks to extract
complex features and patterns from the input data. This enables the DRL network
to capture and utilize relevant information, leading to more effective decision-
making. Additionally, the DRL network’s adaptive nature allows it to dynamically
adjust its policy based on the changing network conditions.

Through trial and error interactions with the environment, the DRL network
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learns optimal strategies to achieve higher throughput, taking into account
factors such as channel conditions, congestion levels, and other relevant network
parameters. On the other hand, the SOM network, while still a valuable tool
for certain applications, may exhibit comparatively lower throughput due to its
different underlying principles. SOM networks are primarily designed for clustering
and visualization purposes, rather than optimizing network performance metrics
like throughput. Although SOM networks can provide valuable insights into
data patterns and relationships, they may not be as effective in maximizing data
transmission rates.

Figure 5.9: Network Energy Consumption using DRL

The findings revealed in Figure 5.9 that DRL exhibits significantly lower energy
consumption compared to SOM. Deep Reinforcement Learning utilizes advanced
techniques from deep learning and reinforcement learning to train intelligent
agents. These agents learn optimal decision-making policies through interactions
with their environment, guided by a reward signal. The training process involves
trial and error, where the agent gradually improves its policy based on the received
rewards. On the other hand, Self-Organizing Map networks are a type of artificial
neural network used for clustering and visualization of data patterns. While SOMs
are effective for certain tasks, they can consume relatively higher energy due to
their inherent architecture and operations.
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The analysis demonstrated that DRL requires fewer computational resources
and operates more efficiently, resulting in reduced energy consumption. This
efficiency can be attributed to several factors. First, DRL employs deep neural
networks that have been optimized for training on large-scale datasets, making
them more computationally efficient. Secondly, DRL agents learn directly from
raw sensory inputs, such as images or sensor data, without the need for extensive
preprocessing.

This eliminates the energy-intensive task of feature extraction, which is often
required in SOM networks. Furthermore, DRL agents continually adapt their
decision-making policies based on real-time feedback, enabling them to optimize
their actions efficiently. In contrast, SOM networks rely on a fixed architecture
and do not dynamically adjust their operations during runtime, leading to
potentially higher energy consumption. The lower energy consumption of DRL has
significant implications in various domains. For example, in resource-constrained
environments, such as mobile sensor networks or Internet of Things (IoT) devices,
minimizing energy usage is crucial for prolonging the operational lifespan and
enhancing network efficiency.

Moreover, the reduced energy consumption of DRL can translate into cost
savings. By minimizing energy requirements, organizations can lower their
electricity bills and optimize the use of computational resources, resulting in
increased cost-effectiveness.

Figure 5.10 shows the performance comparison of our proposed work in a
graphical view. It can be clearly seen that the DRL is achieving appropriate
performance and shows high network throughput. It shows that the packets are
successfully received as per the total transmissions takes place. Also SOM is
performing well but slightly less than the DRL as it is a deep quality based learning
approach which includes dense arrangement of the neurons in the network. Also
the overhead and end delay is less in DRL which shows that out proposed approach
is able to achieve high quality of service.

Routing overhead which can be seen in Figure 5.10a is increasing up to some
extent but it is not increasing up to the deteriorated condition. If overhead
increases then the transmission of the packet failure increases which will increase
high bit error rates which should not be the desired output. As per the DRL
structure, the training of the network is very densely evaluated which performs
high-quality service performance in terms of controlled end delay as shown in
Figure 5.10b, high network throughput Figure 5.10c, and energy consumption as
seen in Figure 5.10d. The throughput should be high as possible which shows high
successful receiving of the packets

In the performance evaluation in Table 5.1, three scenarios were compared:
using Self-Organizing Maps (SOM), using Deep Reinforcement Learning (DRL),
and a random scenario as a baseline. The evaluation focused on connection
probabilities as a metric to measure the performance of each approach. The results
revealed that DRL outperformed both SOM and the random scenario. In the SOM
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(a) Routing Overhead (b) E2E Delay

(c) Network Throughput (d) Energy Consumption

(e) Probability Comparison

Figure 5.10: Performance comparison of a Routing overhead b E2E delay c
Network Throughputd Energy Consumption and e Connection Probability vs.
total number of nodes.
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Table 5.1: Connection Probability

Number of Nodes R:WO SOM DRL
20 .0008 0.0004 0.01
40 .001 0.0006 0.025
60 .001 0.0007 0.54
80 .12 0.01 0.1

scenario, connection probabilities were calculated based on the algorithm’s ability
to identify similar transmission patterns and reduce redundancy in the network.
However, the performance of SOM in terms of connection probabilities was found
to be lower compared to DRL.

This suggests that SOMmight struggle in effectively capturing and representing
the underlying patterns and optimizing the connections between nodes. On
the other hand, DRL exhibited superior performance in terms of connection
probabilities. The use of DRL algorithms allowed the agent to learn optimal
decision-making policies through trial and error interactions with the environment.
By leveraging deep learning techniques, DRL was able to capture complex patterns
and make more informed decisions regarding the connections between nodes in the
network. This resulted in higher connection probabilities and a more efficient
utilization of network resources. In comparison to the without optimization,
where connections were made randomly without any optimization, both SOM
and DRL demonstrated improved performance. However, DRL surpassed both
the random scenario and SOM, indicating its ability to learn and adapt to the
network environment in a way that enhances connection probabilities.

The higher connection probabilities achieved by DRL signify its capability
to allocate network resources more effectively and reduce redundancy in the
network. This optimized connectivity leads to improved data transmission
efficiency, reduced energy consumption, and enhanced overall performance of the
network.

Table 5.2: End-to-End Delay

Number of Nodes R:WO DRL SOM
20 0.35 0.00015 0.00002
40 2.1 0.0003 0.00025
60 4.3 0.001 0.0005
80 42 0.012 0.002

In the performance evaluation in Table 5.2, three methods are compared:
Without Optimization, Self-Organizing Maps (SOM), and Deep Reinforcement
Learning (DRL). The evaluation metric used is the end-to-end delay, which
measures the time taken for data packets to travel from the source to the
destination in the network.

Without Optimization refers to the scenario where no specific optimization
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techniques or algorithms are applied to reduce the end-to-end delay. This
approach typically leads to high delay times and suboptimal performance as the
network relies on default routing and transmission mechanisms. SOM, a popular
unsupervised learning algorithm, is applied to improve the performance of the
network. It provides a structured grid-like representation of the network, where
neighboring nodes exhibit similar transmission patterns. This clustering helps
reduce redundancy and optimize data transmission. As a result, the end-to-end
delay is moderate, indicating an improvement over the Without Optimization
scenario. DRL, on the other hand, surpasses both Without Optimization and
SOM in terms of performance. DRL combines deep learning and reinforcement
learning techniques to train an agent that learns optimal decision-making policies.

In the context of the network, DRL is able to adapt and optimize routing
and transmission strategies based on the observed rewards (e.g., low delay, high
throughput). By continuously learning and adapting, the DRL agent significantly
reduces the end-to-end delay, leading to superior performance compared to both
Without Optimization and SOM. The Table 5.2 summarizes the comparison,
clearly indicating that DRL outperforms both SOM and Without Optimization
in terms of end-to-end delay. The performance improvement achieved by DRL
showcases the potential of deep reinforcement learning techniques in optimizing
network performance and reducing delays in data transmission.

Table 5.3: Overhead Consumption

Number of
Nodes

R:WO SOM DRL

10 1 0.05 0.063

20 2.5 0.1 0.125

30 4.8 0.15 0.15

40 6.8 0.18 0.15

50 8.2 0.2 0.15

In the performance evaluation, three approaches were compared: without
optimization, using Self-Organizing Maps (SOM), and using Deep Reinforcement
Learning (DRL). The evaluation focused on measuring the overhead consumption,
throughput, and energy consumption of the network as a key performance metric.
The results indicated that DRL outperformed both SOM and the approach
without optimization. The approach without optimization served as a baseline,
representing the network’s overhead consumption in its default state, without
any specific optimization techniques or algorithms applied. This baseline allowed
for comparison against the other two approaches and provided a reference point
for evaluating the improvements achieved by SOM and DRL. SOM, a clustering
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Table 5.4: Throughput

Number of
Nodes

R:WO SOM DRL

10 10 50 1.5× 103

20 40 100 3× 103

40 98 220 3× 103

60 240 450 3× 103

80 980 1800 3.25×103

technique, was utilized as an optimization method to reduce overhead consumption
and energy consumption in the network. The results prove the superiority of DRL
in terms of overhead consumption as shown in Table 5.3.

SOM aimed to identify clusters of similar transmission patterns, thereby
reducing redundancy and improving overall network efficiency. The evaluation
measured the energy consumption of the network when SOM was applied and
compared it against the baseline. On the other hand, DRL, an advanced
technique combining deep learning and reinforcement learning, was also employed
for network optimization. DRL agents learned optimal decision-making policies
by interacting with the environment and maximizing cumulative rewards. In this
case, the objective was to minimize energy consumption without compromising
with throughput and maintaining desired network performance. The evaluation
measured the throughput and energy consumption when DRL was utilized and
compared it against both the baseline and the SOM approach as given in Table 5.4
and Table 5.5.

The results of the evaluation demonstrated that both SOM and DRL out-
performed the approach without optimization in terms of energy consumption.
However, DRL showed superior performance compared to SOM. The application
of DRL resulted in a more significant reduction in energy consumption compared
to both the baseline and the SOM approach. The effectiveness of DRL in
achieving better energy efficiency can be attributed to its ability to adapt and learn
optimal policies through trial-and-error interactions. By continuously optimizing
its decision-making process, DRL agents were able to make more informed choices,
leading to more efficient resource allocation and reduced energy consumption
within the network.

Overall, the performance evaluation highlighted the advantages of employing
optimization techniques, such as SOM and DRL, to reduce energy consumption
in mobile sensor networks. While SOM showed improvements compared to the
approach without optimization, DRL emerged as the most effective method,
surpassing both SOM and the baseline in terms of energy efficiency. These findings
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emphasize the potential of advanced optimization techniques, specifically DRL,
in achieving significant energy savings and enhancing the overall performance of
mobile sensor networks.

Table 5.5: Performance Comparison

Parameter Base [1] Proposed

Energy Consumption 0.15 0.05

Network Probability 0.004 0.11

—
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Chapter 6

Aggregation Model

This Chapter discusses aggregation methods for Deep Reinforcement Learning
(DRL) based wireless sensor networks. The aggregation algorithm plays a vital
role in reducing overall energy consumption. The aggregation method aggregates
the data samples, removes the redundant data, and reduces the number of overall
packets, which results in a reduction in overall energy consumption. The discussion
starts with the introduction, followed by the discussion on routing protocols with
aggregation for MWSNs, which presents an overview of different routing protocols
with aggregation. The performance of Optimized link state routing (OSLR)
without aggregation is compared with the OLSR protocol with aggregation.
Subsequently, routing protocols based on SOM with reference to WSNs are
elaborated. The SOM-OLSR with aggregation is reviewed and compared with
the SOM-based routing protocol without aggregation for MWSNs.Similarly, the
DRL with aggregation is reviewed and compared with the DRL-based routing
protocol without aggregation for MWSNs.

6.1 Mathematical Model of Aggregation Proto-

col

The OLSR protocol transmits the data via various routing devices. The nodes
aggregate the data at each fully function device (FFD) at an intermediate stage.

A state space model is developed for the proposed OLSR protocol with SOM.
Let us assume that the data samples collected for a particular sensor ID are
x1, x2, x3....xn. Learning Rate (η) defines a decreasing learning rate schedule.
Neighborhood Function (h(i, c(t)) ) defines a neighborhood function that describes
how the influence of neighboring neurons changes during training. Input data
samples are represented x(t) iteratively to the SOM. For each input data sample
x(t), the best matching unit (BMU) is defined as c(t) for the neuron with the
closest weight vector:
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c(t) = argmin
i
∥x(t)− wi(t)∥ (6.1)

Which update the weights of the winning neuron and its neighbors:

Wi(t+ 1) = Wi(t) + η(t) · h(i, c(t)) · [x(t)− wi(t)] (6.2)

The data is aggregated for each neuron i during or after training. One common
method is to compute the mean of the data samples associated with each neuron:

x̄i =
1

Ni

Ni∑
j=1

Xij (6.3)

Where Ni number of data samples associated with neuron i.
The aggregation of all data samples depends upon the aggregation function.

The data packets are aggregated using the average value function in the present
work. However, the aggregated average value is transmitted only if the deviation
is smaller than the deviation threshold (XTh).

DAgg =

(1/N) ·
∑N

i=1 xi, if
∑N

i=1

(
xi−(1/N)·

∑N
i=1 xi

)2

(1/N)·
∑N

i=1 xi)
≤ XTh

x1, x2, x3...., xN , otherwise
(6.4)

The learning rate and neighborhood function parameters are updated during
training. Typically, the learning rate decreases, and the neighborhood function
narrows over time.

η(t+ 1) = ηinitial · exp
(
− t

timeconstant

)
h(i, c(t) + 1) = exp

(
−∥ position (i)− position(c(t) + 1)∥2

2 · neighborhood (t+ 1)2

) (6.5)

To develop an aggregation method for OLSR with deep reinforcement learning,
a state space model is developed for the proposed OLSR protocol. The aggregation
method is analyzed with DRL below. The state space at time step t includes
information about the link qualities and queue lengths for each node i. The state
of node i is represented at time t as a vector sit:

sit = [qui
t, L

i
Q] (6.6)

Where qui
t is the queue length, Li

Q is the link quality at node i at time t.
As already discussed, the action space and reward function are The action space

includes possible actions that the deep reinforcement learning agent can take at
each node i at time step t. The action taken by node i at time t is represented as
ai
t as given below:

ai
t = [ait, N

i
H ] (6.7)
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Where ait represents the local action taken at node i, and N i
H is a next hop for

ith node representing the actions related to next-hop node selection or transmission
power adjustments.

In reinforcement learning, the reward function is used to evaluate the perfor-
mance of the corresponding action in a given state. It typically considers energy
consumption, data delivery latency, and data aggregation efficiency. Let Ri

t denote
the reward obtained by node i at time t as given below:

Ri
t = Reward(sit, a

i
t) (6.8)

The OLSR protocol is used with data aggregation to remove redundant data
and energy-efficient data transmission. The reinforcement learning algorithm is
integrated with OLSR to optimize the cumulative reward over time by learning
a policy π that maps states to actions. One common approach is using Deep
Q-Learning, which uses a deep neural network with aggregation function DAgg to
represent the Q-function, denoted as Q(sit, a

i
t;DAgg). The Q-function estimates the

expected total reward when taking action ait in state sit and following the policy
afterward.

The Q-learning update rule can be represented as follows:

Q(sit, a
i
t;DAgg)← Q(sit, a

i
t;DAgg)+

α
[
Ri

t + γmax
a′

Q(sit+1, a
′;DAgg)−Q(sit, a

i
t;DAgg)

]
(6.9)

Where:

• α is the learning rate, determining the step size of the updates.

• γ is the discount factor, representing the importance of future rewards.

The deep neural network is trained by minimizing the Mean Squared Error
(MSE) loss between the target Q-values and the predicted Q-values.

6.2 Result Analysis and Discussion

The results are analyzed for three scenarios. The results are analyzed for OLSR
(with and without data aggregation) in the first scenario. In scenario 2, the
results are analyzed for SOM-OLSR for aggregation condition. Similarly, scenario
3 analyzes DRL-OLSR for aggregation conditions.

6.2.1 Scenario-1

On comparison of the energy consumption without reinforcement learning &
without data aggregation (WO-RL-WO-DA) with without reinforcement learning
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Figure 6.1: Energy Consumption of OLSR with and without aggregation

& with data aggregation (WO-RL-W-DA), The reduction in Energy consumption
can be noticed from the graph. The energy consumption starts when the no. of
total nodes reaches 60 and beyond. It is observed, particularly when there are
70 total nodes, the consumption of energy of WO-RL-WO-DA is higher when
compared to WO-RL-W-DA. The same can be implied as the no. of nodes is
increasing, and the power consumption is exponentially increasing at a high rate
when there is no Data aggregation. The maximum difference can be observed
when there are a total of 80 nodes. With Data aggregation, the consumed energy
is 108 J. This equals half of 2 × 108 J consumed Without data aggregation. The
higher energy consumption results in lesser efficiency. Here statistically proving
that WO-RL-W-DA is preferred over WO-RL-WO-DA.

6.2.2 Scenario-2

Self-Organizing Maps Based-Optimized Link State Routing (SOM-OLSR) without
data aggregation and SOM-OLSR with data aggregation are compared regarding
energy usage. The graph shows how energy use has decreased. When there are 60
or more total nodes, energy consumption begins. It is observed that SOM-OLSR
without Aggregation consumes more energy than SOM-OLSR with Aggregation,
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Figure 6.2: Energy Consumption of SOM-OLSR with and without aggregation

especially when there are 70 total nodes. When there is no data aggregation, it
may be inferred that as the number of nodes grows, so does the power consumption
exponentially and rapidly. The most significant difference may be seen when there
are 80 total nodes and 510 J of energy is used for data aggregation. This is
equivalent to using half the 1020 J Without data aggregation. Less efficiency is
produced by using more energy. The SOM-OLSR with Aggregation is preferable
here statistically compared to the SOM-OLSR without Aggregation.

6.2.3 Scenario-3

After implementing the Deep Reinforcement Learning Based-Optimized Link State
Routing (DRL-OLSR), There are 2 sets of data collected with Data aggregation
and without it. In both cases, the consumption of energy starts when the nodes are
above 10. With the increase in no. of nodes, the DRL-OLSR with data aggregation
slowly rises at a similar rate as that of DRL-OLSR without data aggregation. The
rise in energy consumption is noticeable at the point after which the no. of nodes
is increased by more than 30.

We can see both consumptions increment but at different rates. The DRL-
OLSR without data aggregation is growing in consumption up to approximately
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Figure 6.3: Energy Consumption of DRL-OLSR with and without aggregation

500J when there are 80 nodes in total, whereas the DRL-OLSR with data
aggregation has consumed only approximately 250J. This graph denotes that the
DRL-OLSR with data aggregation consumes significantly less energy when the no.
of nodes is increased.

6.3 Summary

The presented analysis involves three distinct routing scenarios aimed at evaluating
energy consumption patterns. In the first scenario, a comparison is drawn between
Optimized Link State Routing (OLSR) implementations without reinforcement
learning and without data aggregation (WO-RL-WO-DA) and with data aggrega-
tion (WO-RL-W-DA). Notably, energy consumption becomes significant at around
60 nodes, and a pronounced increase occurs as the node count rises. Particularly,
the energy consumption of WO-RL-WO-DA surpasses that of WO-RL-W-DA at
70 nodes, with the divergence becoming most pronounced at 80 nodes, where data
aggregation reduces energy consumption by half. This underscores the energy
efficiency of WO-RL-W-DA. In the second scenario, the focus shifts to comparing
energy use between Self-Organizing Maps Based-Optimized Link State Routing
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(SOM-OLSR) without and with data aggregation. A similar trend is observed,
where energy consumption becomes noticeable at approximately 60 nodes, and
the energy-efficient advantage of data aggregation becomes evident at 70 nodes,
with the disparity becoming most pronounced at 80 nodes.

Finally, in the third scenario involving Deep Reinforcement Learning Based-
Optimized Link State Routing (DRL-OLSR), energy consumption commences
after surpassing 10 nodes, and as node count rises, DRL-OLSR with data
aggregation consistently outperforms its non-aggregated counterpart in terms of
energy efficiency. These findings collectively highlight the advantageous impact of
data aggregation on reducing energy consumption across different routing scenarios
and the potential of DRL-OLSR with data aggregation to optimize energy usage
as the network size grows.
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Conclusion and Future Directions

The evaluation results demonstrate the significant effectiveness of the proposed
deep learning approach in enhancing network lifetime and energy efficiency.
Further details on these findings are discussed below.

7.1 Conclusion

In conclusion, the performance evaluation comparing the use of Self-Organizing
Maps (SOM), Deep Reinforcement Learning (DRL), and a non-optimized approach
revealed that DRL outperformed both SOM and the non-optimized method in
terms of energy consumption in the network. Energy optimization has always been
a significant challenge in forming wireless sensor networks. The presence of mobile
nodes leads to irregular changes in nearby nodes’ distance and positions, further
complicating the operation of maintaining network connectivity. As a result,
addressing these issues becomes critical for efficient and sustainable operation.
Based on the results obtained,

it is evident that network connectivity in mobile sensor networks can be
enhanced up to a certain level while still maintaining optimal energy usage.
The performance evaluation conducted across various metrics, including end-to-
end delay, overhead consumption, throughput, and energy consumption, provides
valuable insights into the efficacy of different optimization techniques for mobile
sensor networks. The comparison among approaches—Without Optimization,
Self-Organizing Maps (SOM), and Deep Reinforcement Learning (DRL)—reveals
significant improvements in network performance achieved through optimization.
While SOM demonstrates moderate enhancements over the baseline approach
without optimization, DRL emerges as the most promising method, showcasing
superior performance across all evaluated metrics. Specifically, DRL not only
effectively reduces overhead consumption and energy consumption but also
enhances data transmission efficiency and throughput. These results underscore
the potential of advanced optimization techniques, particularly DRL, in addressing
the challenges of energy efficiency and network performance in mobile sensor
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networks.
The findings highlight the critical role of optimization techniques in mitigating

energy consumption and improving overall network performance in mobile sensor
networks. The superior performance of DRL, as evidenced by its ability to
achieve significant reductions in overhead consumption and energy consumption
while maintaining high throughput and data transmission efficiency, underscores
its effectiveness as a robust optimization approach. By leveraging advanced
machine learning techniques like DRL, researchers and practitioners can enhance
the sustainability and efficiency of mobile sensor networks, paving the way for
the development of more resilient and resource-efficient wireless communication
systems.

To further improve the performance, the aggregation method is also used.
Data aggregation consistently proves beneficial in reducing energy consumption
across scenarios, with the most significant impact observed at higher node counts.
Notably, Deep Reinforcement Learning-Based Optimized Link State Routing
(DRL-OLSR) with data aggregation consistently outperforms its non-aggregated
counterpart, showcasing its potential for optimizing energy usage as the network
scales. These findings emphasize the importance of data aggregation and highlight
the energy-efficient advantages of DRL-OLSR in various routing scenarios.

While the integration of Self-Organizing Maps (SOM) with the Optimized
Link State Routing (OLSR) protocol and Deep Reinforcement Learning (DRL)
with OLSR offer promising solutions for enhancing routing efficiency and network
performance, they have some limitations. One limitation of SOM-OLSR is its
reliance on predefined clustering algorithms, which may not always accurately
capture the dynamic nature of network topologies in real time. Additionally,
SOM may struggle to scale effectively in large networks, leading to increased
computational complexity and overhead. On the other hand, DRL-OLSR may
face challenges related to training complexity and convergence time, especially
in highly dynamic network environments. Moreover, DRL algorithms require
extensive training data and computational resources, which may not be feasible in
resource-constrained network scenarios. These limitations underscore the need for
further research to optimize and fine-tune the integration of SOM and DRL with
OLSR, ensuring their practical applicability and scalability in real-world network
deployments.

7.2 Future Scope

Future work in this area could focus on addressing the limitations of the SOM-
OLSR and DRL-OLSR integrations to enhance their practical applicability in
real-world network deployments. This could involve exploring novel approaches
to improve the scalability and adaptability of SOM-based clustering algorithms
within the OLSR framework, such as dynamic clustering techniques or hybrid
models that combine SOM with other machine learning methods. Additionally,
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further research could investigate methods to reduce the training complexity
and convergence time of DRL algorithms for integration with OLSR, such as
exploring more efficient training strategies or leveraging advanced reinforcement
learning techniques. By addressing these challenges, future work can advance the
integration of SOM and DRL with OLSR, enabling more effective and scalable
routing solutions for dynamic network environments.

Several avenues can be explored to enhance further energy consumption
optimization in mobile sensor networks using DRL and SOM. These potential
directions can contribute to achieving even better performance and efficiency in
managing network energy resources. Developing and exploring more advanced
DRL architectures could improve energy optimization in mobile sensor networks.
Architectures such as Deep Deterministic Policy Gradients (DDPG), Proximal
Policy Optimization (PPO), or Trust Region Policy Optimization (TRPO) can be
investigated to enhance the learning and decision-making capabilities of the DRL
agent.

Combining the strengths of different techniques can lead to further im-
provements. Hybrid approaches that combine DRL and SOM, or integrate
DRL with other optimization algorithms, could potentially achieve better energy
consumption optimization. These hybrid models could leverage the SOM’s
ability to identify clusters and patterns while benefiting from DRL’s adaptive
decision-making capabilities. Exploring adaptive learning rate mechanisms can
help fine-tune the learning process of DRL models. Adaptive learning rates
can dynamically adjust the learning rate based on the network’s current state,
improving convergence speed and optimizing energy consumption.

In future work, introducing contextual awareness to DRL and SOM models
can provide valuable information to optimize energy consumption. By considering
contextual factors such as network traffic, environmental conditions, or user
demands, the models can adapt their decision-making process accordingly, leading
to more efficient energy utilization. In addition, investigating transfer learning
techniques can enable the knowledge gained from one mobile sensor network to be
transferred and applied to a different network with similar characteristics. Transfer
learning can expedite the learning process, reduce training time, and optimize
energy consumption in new or changing network environments.

Expanding the scope of energy optimization to include edge computing and
distributed optimization techniques can further enhance the efficiency of mobile
sensor networks. By leveraging edge computing capabilities and distributed
optimization algorithms, the energy consumption can be optimized at both the
individual node level and the network level. Also, exploring real-time adaptation
mechanisms can enable the DRL and SOM models to dynamically adjust their
policies based on changing network conditions. By continuously monitoring energy
levels, network traffic, and other relevant parameters, the models can adapt their
decision-making process in real-time, ensuring optimal energy consumption at all
times.
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In the proposed thesis work, only free space propagation has been considered.
The analysis can be expanded even more in future work by considering the impact
of multipath fading and interference between neighboring nodes. These elements
can increase the need for higher transmit power to achieve the appropriate levels.
For the necessary levels of signal-to-interference noise ratio, these factors may lead
to a demand for increased transmit power. In addition, future energy requirements
can also be determined in future work by analyzing mobility profiles with swarm
intelligent optimization tools.
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