Bluetongue Risk Map for Vaccination and Surveillance Strategies in India

Chanda, Mohammed M. and Purse, Bethan V. and Sedda, Luigi and Benz, David and Prasad, Minakshi and Reddy, Yella N. and Yarabolu, Krishnamohan R. and Byregowda, S. M. and Carpenter, Simon and Prasad, Gaya and Rogers, David J. (2024) Bluetongue Risk Map for Vaccination and Surveillance Strategies in India. Pathogens, 13 (7): 590. ISSN 2076-0817

Full text not available from this repository.

Abstract

Bluetongue virus (BTV, Sedoreoviridae: Orbivirus) causes an economically important disease, namely, bluetongue (BT), in domestic and wild ruminants worldwide. BTV is endemic to South India and has occurred with varying severity every year since the virus was first reported in 1963. BT can cause high morbidity and mortality to sheep flocks in this region, resulting in serious economic losses to subsistence farmers, with impacts on food security. The epidemiology of BTV in South India is complex, characterized by an unusually wide diversity of susceptible ruminant hosts, multiple vector species biting midges (Culicoides spp., Diptera: Ceratopogonidae), which have been implicated in the transmission of BTV and numerous co-circulating virus serotypes and strains. BT presence data (1997–2011) for South India were obtained from multiple sources to develop a presence/absence model for the disease. A non-linear discriminant analysis (NLDA) was carried out using temporal Fourier transformed variables that were remotely sensed as potential predictors of BT distribution. Predictive performance was then characterized using a range of different accuracy statistics (sensitivity, specificity, and Kappa). The top ten variables selected to explain BT distribution were primarily thermal metrics (land surface temperature, i.e., LST, and middle infrared, i.e., MIR) and a measure of plant photosynthetic activity (the Normalized Difference Vegetation Index, i.e., NDVI). A model that used pseudo-absence points, with three presence and absence clusters each, outperformed the model that used only the recorded absence points and showed high correspondence with past BTV outbreaks. The resulting risk maps may be suitable for informing disease managers concerned with vaccination, prevention, and control of BT in high-risk areas and for planning future state-wide vector and virus surveillance activities.

Item Type:
Journal Article
Journal or Publication Title:
Pathogens
Uncontrolled Keywords:
Research Output Funding/no_not_funded
Subjects:
?? culicoidesarbovirusculicoides imicolaremote sensingrisk mappingno - not funded ??
ID Code:
222256
Deposited By:
Deposited On:
17 Jul 2024 11:25
Refereed?:
Yes
Published?:
Published
Last Modified:
24 Jul 2024 06:55