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Abstract. For any Lévy process on the quantum group SUq(N), where 0 < q < 1 and N ∈ N,
a Lévy�Khintchine-type decomposition of its generating functional is given, together with an
analogue of Hunt's formula. The non-gaussian component is shown to further decompose into
generating functionals that live on the quantum subgroups SUq(n), for n 6 N . Corresponding
results are also given for the quantum groups Uq(N).

1. Introduction

Up to stochastic equivalence, a Lévy process with values in a locally compact Lie group G
is determined by its generating functional. This is a (densely de�ned) linear functional γ on
C0(G), the C∗-algebra of continuous complex-valued functions on G which vanish at in�nity,
whose domain may be thought of as consisting of those functions that have a second order Taylor
expansion around the identity element of the group. Hunt's formula ([11]) is a generalization
and extension of the Lévy-Khintchine formula ([1], [18]). It is equivalent to the assertion that

γ = γD + γG + γL where γL = L ◦ P and L(f) =

∫
G\{e}

f(s) Π(ds) (1.1)

for the identity element e of G, in which P is a hermitian projection that kills the linear terms,
the drift γD and P -invariant gaussian part γG are linear combinations of �rst and second order
derivatives evaluated at e respectively, and Π is the so-called Lévy measure. The Lévy functional
L is de�ned on the space of functions that, together with their �rst derivatives, vanish at e. The
integral may be viewed as a mixture of point evaluations, moreover functionals of the form
f 7→ f(s) − f(e), for �xed s 6= e, generate jump processes. The functional γL is also referred
to as the jump part; in the case where G = R and Π is �nite, it generates a compound Poisson
process. The decomposition depends on the non-canonical projection P chosen; its role is to
deal with any singularity of the measure Π at e.
If G is compact, Tannaka-Krein duality ([10, Section VII.30]) asserts that the representative

algebra R(G), generated by matrix coe�cients of �nite-dimensional representations of G, is
a norm-dense ∗-subalgebra of the unital C∗-algebra C(G). In fact, R(G) is a commutative
Hopf ∗-algebra from which the topological group G may be fully recovered ([16]). A compact
quantum group in the sense of Woronowicz ([29]) is a unital C∗-algebra-with-coproduct which
enjoys density relations corresponding to the group cancellation law and contains a dense Hopf ∗-
algebra, the CQG algebra of the quantum group, whose role corresponds to that played by R(G)
for a compact group G ([4]). Schürmann's theory of quantum Lévy processes on ∗-bialgebras
([20]) thereby applies. As with their classical counterparts, but now up to quantum stochastic
equivalence, Lévy processes on ∗-bialgebras are classi�ed by their generating functional, now
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a hermitian linear functional on the CQG algebra which is conditionally positive and vanishes
at the identity element. The problem of �nding a decomposition of generating functionals
corresponding to (1.1) is expressible in cohomological terms. Of course meaning has to be given
to drift, gaussian and jump parts in the quantum generalisation. Our Hunt formula includes an
explicit description of the drifts and gaussian generating functionals and the speci�cation of an
approximation property that justi�es calling the remainder a jump part (Proposition 2.8).
For some compact quantum groups every generating functional has such a decomposition

but for others that is not so ([8], [2]). A Hunt formula for Woronowicz's SUq(2) ([26], [27])
was obtained in [23], [21]. This led to a short proof of the classical Hunt formula for compact
Lie groups ([24]). Here we tackle the case of SUq(N), obtaining a unique decomposition γ =
γD + γG + γNG where γNG = γ2 ◦ P + · · · + γN ◦ P, in which P is a hermitian projection
analogous to that of (1.1), γD is a drift, γG is a P -invariant gaussian generating functional and,
for 2 6 n 6 N , γn is an extension to SUq(N) of a completely non-gaussian generating functional
on SUq(n) which enjoys an irreducibility property. We also display the essentially classical
structure of γD and γG, and show γNG to be the limit of functionals of the form ωξ(t) ◦ π ◦ P for
a representation π and net of vector functionals (ωξ(t)) (Theorem 4.15). The case of general N
turns out to be more involved than the case N = 2, and some results concerning SUq(2) fail for
N > 3. For instance, for N > 3 the cohomological problem is not always solvable in the gaussian
case (Corollary 2.13). Also, for N = 2 the completely non-gaussian generating functionals may
be parametrized by the vectors in its associated representation Hilbert space, whereas for N > 3
the situation is more subtle (Section 5).
The paper is organized as follows. Terminology and notations concerning the CQG algebra

of a compact quantum group are set out below. Section 2 contains the basic de�nitions and
preliminary results. The CQG algebras of the compact quantum groups SUq(N) and Uq(N)
are here respectively denoted SU q(N) and Uq(N); the former is algebraically generated by a
matrix of elements [ujk]

N
j,k=1 (see Relations (2.6), et seq.). In Section 3 we deal with our choice

of projection P , with respect to which we show that the gaussian generating functionals on
SU q(N) are classi�ed by a real (N − 1)-vector and positive-de�nite real (N − 1) × (N − 1)
matrix representing the drift and P -invariant di�usion-type second order term (Theorem 3.6).
Unlike in lower dimensions, for N > 3 there are cocycles of gaussian representations which have
no associated generating functionals (Theorem 3.3). Every gaussian generating functional is
induced from a gaussian generating functional that lives on the classical undeformed subgroup
TN−1 of SUq(N), in the sense of De�nition 2.21 (see Remark 3.7). In Section 4 we show that
every representation π of SU q(N) has a unique full (representation) decomposition π1⊕· · ·⊕πN ,
where π1 is its so-called gaussian part and, for 2 6 n 6 N , πn lives on SU q(n) and πn(1−unn) is
injective. Completely non-gaussian cocycles η are approximated by coboundaries and determined
by their values η(unn) (2 6 n 6 N). From this we deduce a full (generating functional)
decomposition γ = γ1+· · ·+γN for generating functionals, uniquely determined by the projection
P , and conclude with our Hunt formula (Theorem 4.15). In Section 5 we show that, unlike in
the case N = 2, if N > 2 then the values of η(uNN) for cocycles η of representations π for
which π(1 − uNN) is injective, may not exhaust the representation space. We then indicate a
completion process which yields a quasi-innerness property, and thereby full parameterisation,
for completely non-gaussian cocycles. In Section 6 we brie�y treat the quantum groups Uq(N).
Our work suggests the investigation of Hunt formulae for other q-deformed compact Lie groups

([16]).
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Compact quantum groups and CQG algebras. A CQG algebra ([4]), or algebraic compact
quantum group, is a Hopf ∗-algebra G that is linearly spanned by the coe�cients of its �nite-
dimensional unitary corepresentations or, equivalently, has a faithful Haar state. Thus a CQG
algebra is a unital ∗-algebra G, with unital ∗-algebra morphisms ∆ : G → G ⊗ G and ε : G → C,
linear map κ : G → G and unital linear functional h : G → C, called respectively the coproduct,
counit, coinverse or antipode, and Haar state, enjoying the coassociativity, counital, coinverse,
invariance and positivity relations

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆; (ε⊗ id) ◦∆ = id = (id⊗ε) ◦∆;

µ ◦ (id⊗κ) ◦∆ = ι ◦ ε = µ ◦ (κ⊗ id) ◦∆; (id⊗h) ◦∆ = ι ◦ h = (h⊗ id) ◦∆;

and h(a∗a) > 0 for a 6= 0. Here µ : G ⊗ G → G denotes the linearisation of the algebra
product, and ι the unital linear map C → G. The coinverse κ is uniquely determined by the
bialgebra structure and any ∗-bialgebra morphism between CQG algebras respects coinverses and
so is a CQG algebra morphism ([3, Remarks 4.2.3 and 4.2.5]); the Haar state h is also unique
([4, Proposition 3.2]). Compact quantum groups may also be viewed from the equivalent C∗-
algebraic perspective, as was originally done by Woronowicz ([29]). The canonical (universal and
reduced) Woronowicz algebras of a compact quantum group G are commonly denoted Cu(G)
and Cr(G), and its CQG algebra is here denoted by R(G) in a further nod to their classical
counterparts. The quantum space G itself is only manifested through one of its realisations. For
more on this, we recommend [16], [12, Section 11.3], and [25, Section 5.4]. For the purposes of
this work, it su�ces to operate exclusively within CQG algebras. In fact, in our analysis we
need explicit recourse to none of the coproduct, coinverse or Haar state.

Convention. In Schürmann's theory representations are by possibly-unbounded adjointable
operators on pre-Hilbert spaces because he works in the more general setting of ∗-bialgebras-
with-character. By contrast, representations of a CQG algebra G are all by bounded operators,
and so may be extended to the Hilbert space completions. Accordingly, by a representation of

G we always mean a unital ∗-algebra morphism π : G → B(h), for some Hilbert space h = hπ.

Note. MS wishes to emphasise that revisions for this �nal version of the paper were done by
the other authors, and that the original version is available on the arXiv ([9]).

2. Preliminaries

Generating functionals of quantum Lévy processes and Schürmann triples. Let G
be a CQG algebra. A Lévy process on G is a family of ∗-algebra morphisms from G to a
noncommutative probability space enjoying certain properties which encode the stationarity
and independence of increments (see [20], [5] and [15, Chapter VII], or the survey [6]).

Definition 2.1. A generating functional for a quantum Lévy process on G is a linear functional
γ on G which is hermitian: γ = γ† : a 7→ γ(a∗), normalised : γ(1) = 0, and conditionally positive:
γ(c∗c) > 0 for all c ∈ ker ε.

Quantum Lévy processes are determined up to quantum stochastic equivalence by their gen-
erating functionals, and may be reconstructed from their generating functional using quantum
stochastic calculus on a symmetric Fock space ([20, Theorem 2.3.5], [14, Theorem 7.1]), or using
Trotter products and Arveson (product) systems ([22]).
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Definition 2.2 ([20]). A Schürmann triple on G is an ordered triple (π, η, γ) consisting of a
representation π of G, a π-ε-cocycle, or π-ε-derivation, that is, a linear mapping η : G → hπ

satisfying
η(ab) = π(a)η(b) + η(a)ε(b) (a, b ∈ G), (2.1)

and a linear functional γ on G satisfying

γ† = γ, γ(1) = 0 and γ(c∗c) = ‖η(c)‖2 (c ∈ ker ε), (2.2)

equivalently, γ† = γ and 〈η(a), η(b)〉 = γ(a∗b)− γ(a)ε(b)− ε(a)γ(b) for a, b ∈ G.
A linear functional γ on G completes a π-ε-cocycle η if (π, η, γ) is a Schürmann triple; we then

say that η, or (π, η), is completable.

A Schürmann triple (π, η, γ) or cocycle η, is called cyclic if η(G) = hπ.

The third component of a Schürmann triple is a generating functional. Conversely, for any
generating functional γ, there is a cyclic Schürmann triple with γ as its third component. If
(π, η, γ) is a cyclic Schürmann triple then, for any linear isometry V from hπ into a Hilbert
space, (V π(·)V ∗, V η(·), γ) is a Schürmann triple (cyclic if and only if V is unitary), and every
Schürmann triple having γ as its third component is of this form. Thus all cyclic Schürmann
triples having γ as their third component are unitarily equivalent � we refer to any one of these
as γ's (associated) Schürmann triple ([20, Section 2.3]).
For K := ker ε, set

Kn := span{c1 · · · cn : c1, · · · , cn ∈ K} for n > 1, and K∞ :=
⋂

n>1
Kn.

Thus (Kn) is a sequence of ∗-ideals of G decreasing to K∞. Also set

P2(G) := {P ∈ L(G) : P is a hermitian projection, ranP = K2 and 1 ∈ kerP},
where hermitian means P = P † : a 7→ (Pa∗)∗ for a ∈ G.

Definition 2.3. Let γ be a generating functional on G. Then γ is a drift if γ|K2 = 0, equiva-
lently, in terms of its associated Schürmann triple (π, η, γ), if hπ = {0}.
For P ∈ P2(G), we denote the drift γ − γ ◦ P by γPD, and call γ P -invariant if γ ◦ P = γ.

Remarks 2.4. The drifts form a real subspace of the linear dual of G. Any P ∈ P2(G) determines
a unique resolution for generating functionals γ into a drift component plus a P -invariant one:
γ = γPD + γ ◦P�in this sense P -invariance may usefully be thought of as a P -driftless property
(i.e. having zero drift component with respect to P ). If a cocycle η is completable then, for any
particular generating functional γ which completes η, the set of all generating functionals which
do so equals {γ + γ′ : γ′ is a drift} and the unique P -invariant one is γ ◦ P = γ − γPD.
The P -invariant generating functionals on G are the maps of the form ψ ◦ P for a linear

functional ψ on K2 which is nonnegative: ψ(c∗c) > 0 for all c ∈ K (and thus also hermitian).
There is no canonical choice of projection from P2(G). By contrast, since C1 and K are

complementary subspaces of G, there is a unique projection in L(G) with range K and 1 in its
kernel�namely (id− ι ◦ ε : a 7→ a − ε(a)1), moreover it is hermitian and compatible with the
projections in P2(G).

Definition 2.5. Let U be a subspace of a complex vector space V . A linearly independent
subset E of V \U is a basis extension from U to V if its linear span is a complementary subspace
of U . In case V is involutive, a basis extension is hermitian if it consists of selfadjoint elements.



HUNT'S FORMULA FOR SUq(N) AND Uq(N) 5

For any hermitian basis extension E from K2 to K, the functionals (ε′d)d∈E on G given by

ε′d
(
λ1 + k2 +

∑
e∈E

λee
)

= λd, for λ ∈ C, k2 ∈ K2 and {λe : e ∈ E} ⊂ C, (2.3)

form a basis for the real space of drifts on G, and

PE := id− ι ◦ ε−
∑

d∈E
d ε′d(·) ∈ P2(G) (2.4)

equals the projection onto K2 along span({1} ∪ E) = C1⊕ spanE. The resulting map E 7→ PE

is surjective and PE1 = PE2 if and only if spanE1 = spanE2.

Procedure 2.6. For obtaining all generating functionals on G, one needs to identify:

(1) the representations π of G;
(2) for each representation π, the π-ε-cocycles η;
(3) for each such cocycle η, the generating functionals γ which complete it.

In the cases of the quantum groups SUq(N) and Uq(N) the representation theory is known
([13]). Step (2) is a cohomological problem, as π-ε-cocycles form the �rst Hochschild cohomology
group H1(G, πhε) for h = hπ, and this may usually be computed in a straightforward way. The
main problem lies in Step (3). The basic constraint on a given cocycle η, for it to be completable,
is that ‖η(c)‖ must equal ‖η(d)‖ whenever c, d ∈ K satisfy c∗c = d∗d; the task then amounts to
solving ψ(c∗c) = ‖η(c)‖2 (c ∈ K) for a linear functional ψ on K2 since then, for any P ∈ P2(G),
the prescription a 7→ ψ(Pa) de�nes a (P -invariant) generating functional which completes η.

Approximately inner cocycles. As just described, the problem of classifying generating
functionals on G lies in the fact that there might be none which completes a given cocycle. In
this section we identify a situation where such a completion does exist.

Definition 2.7. A π-ε-cocycle is a coboundary, or inner derivation, if it is of the form

ηπ,ξ : = (π − ι ◦ ε)(·)ξ : a 7→ π(a)ξ − ξ ε(a)

for some vector ξ in hπ, and is approximately inner if it is a pointwise limit of coboundaries
(ηπ,ξ(λ)) for some net (ξ(λ)) in hπ.

For a vector ξ of a Hilbert space h, ωξ denotes the vector functional T 7→ 〈ξ, T ξ〉 on B(h).
The following result is heavily used in Section 4.

Proposition 2.8. Approximately inner cocycles are completable. Speci�cally, let P ∈ P2(G),
let π be a representation of G, and let (ξ(λ)) be a net in hπ such that (ηλ := ηπ,ξ(λ)) converges

pointwise to a map η. Then η is a π-ε-cocycle and the net (γλ := ωξ(λ) ◦ π ◦ P ) converges

pointwise to a P -invariant generating functional γ which completes η.

Proof. For each λ, the P -invariant linear functional γλ is hermitian and (π, ηλ, γλ) is easily seen
to satisfy (2.1) and (2.2). Therefore, since η is evidently a π-ε-cocycle and K2 is both the range
of P and the linear span of the set {c∗c : c ∈ K}, the proposition follows from the fact that
γλ(c

∗c) = ‖π(c)ξ(λ)‖2 = ‖ηπ,ξ(λ)(c)‖2 → ‖η(c)‖2 for each c ∈ K. �

In the classical setting of (1.1) we see that the generating functional γL is expressible as the
limit of the functionals ω 1G\U ◦ π ◦ P , as the neighbourhoods U of e shrink to {e}, π being the

multiplication representation of R(G) on L2(G,Π) and 1 here denoting indicator function.
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Gaussian generating functionals, cocycles and representations.

Definition 2.9. A generating functional γ, cocycle η, or representation π is called gaussian if
it vanishes respectively on K3, K2, or K.

For components of a Schürmann triple, these are equivalent ([20, Proposition 5.1.1]). A
representation π is gaussian if and only if π = ιhπ ◦ ε, where ιhπ denotes the unital linear map
from C to B(hπ).

Proposition 2.10. Let E be a hermitian basis extension from K2 to K. Then, for any Hilbert

space h, the h-valued gaussian cocycles on G are precisely the maps of the form
∑

d∈E ξd ε
′
d(·) for

a family of vectors (ξd)d∈E in h, where the functionals ε′d are as in (2.3).

Proof. Since gaussian cocycles vanish on 1 and on K2, this follows from the fact that elements
a of G are uniquely expressible as ε(a)1 + k2(a) +

∑
d∈E ε

′
d(a)d for some k2(a) ∈ K2. �

It would be desirable to have a similarly concise description of gaussian generating function-
als. For now we note that in general not all gaussian cocycles η admit a gaussian generating
functional.

Definition 2.11. A cocycle η on G is hermitian if it satis�es ‖η(c)‖ = ‖η(c∗)‖ for all c ∈ K.

A gaussian cocycle of the form η =
∑

d∈E ξd ε
′
d is hermitian if and only if the Gram matrix[

〈ξd, ξd′〉
]
is real (and therefore symmetric). Proposition 2.10 has the following consequence.

Corollary 2.12. G has non-hermitian gaussian cocycles if and only if dimK/K2 > 2.

For a gaussian cocycle η to be completable it is su�cient that it be hermitian ([20, Proposition
5.1.11]) but not necessary. It becomes necessary too under the additional assumption given in
the next corollary, which applies to both SUq(N) (by Lemma 3.2 and part (d) of Lemma 3.1),
and Uq(N).

Corollary 2.13. Suppose that c∗c − cc∗ ∈ K3 for all c ∈ K. Then a gaussian cocycle is

completable if and only if it is hermitian.

Proof. It is necessity that is to be proved, so assume that γ is a generating functional completing
a gaussian cocycle η. Then ‖η(c)‖2 − ‖η(c∗)‖2 = γ(c∗c− cc∗) = 0 for all c ∈ K, as required. �

Complete non-gaussianness and Lévy-Khintchine decomposition. We next collect basic
facts about when a generating functional can have a Lévy-Khintchine decomposition.

Lemma 2.14. Let π1 ⊕ π2 be a decomposition of a representation π of G, let Vi denote the

inclusion map hπi → hπ for i = 1, 2, and let η be a π-ε-cocycle. Then the following hold

(a) ηi := V ∗i η(·) is a πi-ε-cocycle for i = 1, 2.
(b) If two of the three cocylces η, η1 and η2 are completable then so is the third.

It is quite possible that η is completable, but η1 and η2 are not.

Definition 2.15. For a representation π of G, set

hπG :=
⋂

c∈K
kerπ(c) and hπR := (hπG)⊥.

Then π is completely non-gaussian if hπG = {0}, equivalently, if hπR = hπ.
We also call a π-ε-cocycle η completely non-gaussian if π is, and a generating functional γ

completely non-gaussian if the representation component of its Schürmann triple is.
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The above de�nition and its notations are amply justi�ed by the following straightforward
proposition.

Proposition 2.16 ([20]). Let π be a representation of G. Then hπG and hπR are invariant

subspaces and, denoting the resulting decomposition of π as πG ⊕ πR, πG is gaussian and πR is

completely non-gaussian. Moreover, h(πR)G = {0} = h(πG)R.
If η = ηG⊕ ηR is the corresponding decomposition of a π-ε-cocycle η then ηG is gaussian, and

if η is cyclic then ηG and ηR are cyclic too.

Generating functionals of the form ωξ ◦ π ◦ P , and their limits as in Proposition 2.8, are
completely non-gaussian.

Definition 2.17. A Lévy-Khintchine decomposition for a generating functional γ with Schür-
mann triple (π, η, γ) is a decomposition γ = γ1 + γ2 for which (πG, ηG, γ1) and (πR, ηR, γ2) are
Schürmann triples (equivalently, by Lemma 2.14, one of them is).

Remark 2.18. With respect to a �xed projection P ∈ P2(G), if γ has such a Lévy-Khintchine
decomposition then it has a unique one in which γ1 = γPD + γG, γ2 = γR, and the generating
functionals γG and γR are P -invariant.

Definition 2.19. A CQG algebra, or its associated quantum group, is said to have property

· (AC) if each cocycle η is completable.
· (GC) if each gaussian cocycle η is completable.
· (NC) if each completely non-gaussian cocycle η is completable.
· (NAI) if each completely non-gaussian cocycle η is approximately inner.
· (LK) if every generating functional admits a Lévy-Khintchine decomposition.

Evidently (AC) implies both (GC) and (NC), and either of these implies (LK); none of the
reverse implications hold ([8]). The following is an immediate consequence of Proposition 2.8.

Proposition 2.20. (NAI) implies (NC), and thus (LK).

Schürmann triples on quantum subgroups. In the course of proving our results for SUq(N),
we will decompose representations into components that live on its quantum subgroups SUq(n)
in the sense given below. One way of extending our results to Uq(N) is by exploiting the quantum
subgroup relations TN 6 Uq(N) 6 SUq(N + 1); this is done in Section 6.

Definition 2.21. A compact quantum group H is a quantum subgroup of a compact quantum
group G, written H 6 G, if there is a CQG algebra epimorphism (equivalently, a ∗-bialgebra
epimorphism) s : G → H; we also say that (H, s) is a quantum subgroup of G.
Given such a subgroup relation, we say that a linear map T from G to a vector space V lives on

(H, s) if kerT ⊃ ker s, equivalently, if T factors (evidently uniquely) through the epimorphism
s:

T = T̃ ◦ s for some map T̃ : H → V.

For the remainder of this subsection we �x a quantum subgroup (H, s) of G and use tildes
for induced maps having domain H. Since s respects counits, the functional ε̃ on H satisfying
ε̃ ◦ s = ε is its counit, and s(Kn) = K̃n for all n. Also, a representation of G lives on the trivial
CQG algebra C if and only if it is gaussian. The properties listed next are easily veri�ed.

Lemma 2.22. Suppose that π = π̃ ◦ s, η = η̃ ◦ s and γ = γ̃ ◦ s, for maps π, · · · , γ̃, then
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(1) π is a representation of G if and only if π̃ is a representation of H.
(2) If (1) holds then η is a π-ε-cocycle if and only if η̃ is a π̃-ε̃-cocycle.
(3) γ is a generating functional on G if and only if γ̃ is a generating functional on H.
(4) (π, η, γ) is a Schürmann triple on G if and only if (π̃, η̃, γ̃) is a Schürmann triple on H.

Moreover, for any representation π of G living on (H, s) and vector ξ in hπ,

hπ̃G = hπG , ηπ,ξ lives on H and η̃π,ξ = ηπ̃,ξ. (2.5)

This has the following useful corollary.

Proposition 2.23. The property (NAI) is hereditary.

We now show that an approximately inner cocycle lives on a subgroup if its approximating
inner cocycles do.

Proposition 2.24. Let π be a representation of G living on (H, s), let (ξ(λ)) be a net in hπ

such that (ηπ,ξ(λ)) converges pointwise to η, and let P ′ ∈ P2(H). Then the following hold.

(a)
(
ηπ̃,ξ(λ)

)
, (ωξ(λ) ◦ π ◦ P ) and (ωξ(λ) ◦ π̃ ◦ P ′) have pointwise limits η̃, γ and γ′, such that

η = η̃ ◦ s, and γ and γ′ are generating functionals completing η and η̃ respectively.

(b) γ = γ′ ◦ s ◦ P .

Proof. (a) It follows from Identity (2.5) that ηπ̃,ξ(λ) ◦ s = ηπ,ξ(λ) for each λ, and so (a) follows
from the surjectivity of s and Proposition 2.8.
(b) This follows since s(K2) = K̃2 = ranP ′ so P ′ ◦ s ◦ P = s ◦ P and thus, for each λ,

(ωξ(λ) ◦ π̃ ◦ P ′) ◦ (s ◦ P ) = ωξ(λ) ◦ π̃ ◦ s ◦ P = ωξ(λ) ◦ π ◦ P . �

The projections P ∈ P2(G) and P ′ ∈ P2(H) may be chosen to be compatible. This follows
from the following straightforward lemma.

Lemma 2.25. Let P = PE and P ′ = PE′ for hermitian basis extensions E from K2 to K and E ′

from K̃2 to K̃, according to (2.4). Then P ′ ◦ s = s ◦ P if and only if s(E) ⊂ spanE ′, in which

case span s(E) = spanE ′ and so the generating functional γ from Proposition 2.24 lives on H.

The quantum groups SUq(N) and Uq(N). Let 0 < q < 1. We next collect the facts about
SUq(N) and Uq(N) for N > 2 that are required. For convenience, we extend our de�nitions to
the case N = 1: SUq(1) = SU(1) := {e}, the trivial group, and Uq(1) := U(1) = T, the torus.
For an element σ of the permutation group SN , let i(σ) denote the number of inversions of σ:
#{(j, k) : j < k, σ(j) > σ(k)}.
As a unital algebra, the CQG algebra Uq(N) of the compact quantum group Uq(N), is gener-

ated by indeterminates ujk (j, k = 1, · · · , N) and D−1, subject to the following relations ([13,
Section 2]):

uijukj = qukjuij if i < k, (2.6a)

uijuil = quiluij if j < l, (2.6b)

uijukl = ukluij if i < k, j > l, (2.6c)

uijukl = ukluij − (q−1 − q)uilukj if i < k, j < l, (2.6d)

and

D−1Dq = 1 = DqD
−1,
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for the q-determinant of the matrix U =
[
ujk
]n
j,k=1

,

Dq = Dq(U) :=
∑

σ∈SN

(−q)i(σ)u1,σ(1) · · ·uN,σ(N).

The jk-th q-minor is de�ned as the q-determinant of the (N − 1) × (N − 1)-matrix obtained
from U by removing the j-th row and the k-th column,

Djk
q = Djk

q (U) :=
∑

σ∈S jk
N−1

(−q)i(σ)u1,σ(1) · · ·uj−1,σ(j−1)uj+1,σ(j+1) · · ·uN,σ(N),

where S jk
N−1 denotes the set of bijections σ from {1, · · · , j − 1, j + 1 · · · , N} to {1, · · · , k −

1, k + 1, · · · , N}. The involution, counit and coproduct of Uq(N) are then determined by the
requirements

u∗jk = (−q)k−jDjk
q D

−1, (D−1)∗ = Dq, ε(ujk) = δjk and ∆ujk =
∑

l
ujl ⊗ ulk.

The matrix of elements U satis�es the unitarity relations (2.7) below.
As unital ∗-algebra, SU q(N) is generated by indeterminates ujk (j, k = 1, · · · , N), subject to

the unitarity relations ([28]):∑N

s=1
ujsu

∗
ks = δjk 1 =

∑N

s=1
u∗sjusk (j, k ∈ {1, 2, · · · , N}), (2.7)

and the twisted determinant conditions∑
σ∈SN

(−q)i(σ)uσ(1),τ(1)uσ(2),τ(2) · · ·uσ(N),τ(N) = (−q)i(τ) 1 (τ ∈ SN).

The counit and coproduct are given by the same formulae as for Uq(N).

Remark 2.26. We also use an alternative characterisation of SU q(N), namely as the quotient
of Uq(N) by the extra relation Dq = 1; the involution then simpli�es to

u∗jk := (−q)k−jDjk
q ,

showing that, as an algebra, SU q(N) is generated by the ujk's. This means that, when checking
well-de�nedness of representations and cocycles, one only has to manage the relations of the
generators ujk (namely (2.6) and Dq([ujk]) = 1) and not those involving their adjoints.

The following commutation relations among the generators ujk of Uq(N) and their adjoints,
and therefore also those of SU q(N), are easily veri�ed: for i, j, k, l ∈ {1, · · · , N},

uiju
∗
kl = u∗kluij if i 6= k and j 6= l, (2.8a)

uiju
∗
kj = qu∗kjuij − (1− q2)

∑
m<j

uimu
∗
km if i 6= k, (2.8b)

uiju
∗
il = q−1u∗iluij + (q−1 − q)

∑
n>i

u∗nlunj if j 6= l, (2.8c)

uiju
∗
ij = u∗ijuij + (1− q2)

∑
n>i

u∗njunj − (1− q2)
∑

m<j
uimu

∗
im. (2.8d)

We use the further consequences: for 1 6 j, k < N ,

uNju
∗
Nk = q−1u∗NkuNj if j 6= k, (2.9a)

ujNu
∗
kN = q−1u∗kNujN if j 6= k, (2.9b)

u∗NNuNN = q2uNNu
∗
NN + (1− q2) 1, (2.9c)
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Identity (2.9a) follows from (2.8c). Identity (2.8b) with the unitarity condition (2.7) together
imply that, for j 6= k,

ujNu
∗
kN = qu∗kNujN − (1− q2)

∑
m<N

ujmu
∗
km = qu∗kNujN + (1− q2)ujNu∗kN ,

from which (2.9b) follows, and Identity (2.9c) follows from (2.8d):

uNNu
∗
NN = u∗NNuNN − (1− q2)

∑
m<N

uNmu
∗
Nm = u∗NNuNN − (1− q2)(1− uNNu∗NN).

We next describe the relevant quantum subgroup relations. By de�nition, SUq(N) is a quan-
tum subgroup of Uq(N) via the CQG epimorphism determined by its action on generators as
follows

rN : ujk 7−→ ujk and D−1 7−→ 1.

Also Uq(N) is a quantum subgroup of SU q(N + 1) via the epimorphism determined by

tN :


u11 · · · u1N u1,N+1
...

. . .
...

...
uN1 · · · uNN uN,N+1

uN+1,1 · · · uN+1,N uN+1,N+1

 7−→

u11 · · · u1N 0
...

. . .
...

...
uN1 · · · uNN 0

0 · · · 0 D−1


where, as in the de�nition of rN , the ujk on the left-hand side are the generators of SU q(N + 1)
while those on the right-hand side are the generators of Uq(N)); like rN , tN respects coproduct,
counit and involution, and thus also coinverse. Composition gives the chain

SUq(1) 6 Uq(1) 6 SUq(2) 6 Uq(2) 6 · · · 6 SUq(N) 6 Uq(N) 6 · · ·
Of particular interest for us is the epimorphism sN := rN−1 ◦ tN−1 : SU q(N) → SU q(N − 1),
which is determined by

sN :


u11 · · · u1,N−1 u1N
...

. . .
...

...
uN−1,1 · · · uN−1,N−1 uN−1,N
uN1 · · · uN,N−1 uNN

 7−→


u11 · · · u1,N−1 0
...

. . .
...

...
uN−1,1 · · · uN−1,N−1 0

0 · · · 0 1

 , (2.10)

and its iterates

sn,N := sn+1 ◦ · · · ◦ sN : SU q(N)→ SU q(n) (n < N). (2.11)

Proposition 2.27. Let 1 ≤ n < N . The kernel of sn,N equals the ideal I generated by the set

Sn,N :=
{
ukj − δkj1 : 1 6 j, k 6 N,max{j, k} > n

}
.

Proof. For m ∈ {n,N} let us abbreviate SU q(m) to Am and denote its algebra generators by
umjk (1 6 j, k 6 m). We also write K for the ideal ker sn,N of AN .
For σ ∈ SN and n < p 6 N , uNp,σ(p) − δp,σ(p)1 ∈ Sn,N ⊂ I so

1 = Dq

(
[uNjk]

)
∈
∑

σ∈SN s.t. σ(p)=p for n<p6N
(−q)i(σ)uN1,σ(1) · · ·uNn,σ(n) + I

=
∑

τ∈Sn

(−q)i(τ)uN1,τ(1) · · ·uNn,τ(n) + I = Dq

(
[uNjk]16j,k6n

)
+ I.

It follows that the relation Dq

(
[unjk]

)
= 1 in An is preserved by the mapping from the set of

generators of An into the quotient algebra AN/I given by unjk 7→ uNjk + I (1 6 j, k 6 n). Since
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this clearly also preserves the (remaining de�ning) relations (2.6), the mapping uniquely extends
to an algebra morphism φ : An → AN/I.
Now the prescription a+I 7→ a+K de�nes an algebra epimorphism ψ : AN/I → AN/K (since
I ⊂ K) and, letting s̃n,N denote the canonically induced algebra isomorphism AN/K → An,

(φ ◦ s̃n,N ◦ ψ)(uNjk + I) = (φ ◦ s̃n,N)(uNjk) =

{
uNjk + I if 1 6 j, k 6 n

δjk1 + I if max{j, k} > n.

Thus, since uNjk − δjk1 ∈ Sn,N ⊂ I if max{j, k} > n, (φ ◦ s̃n,N ◦ ψ)(uNjk + I) = uNjk + I for all j
and k so φ ◦ s̃n,N ◦ ψ = idAN/I . It follows that the algebra epimorphism ψ is injective and thus
an isomorphism. Since I ⊂ K, this implies that I = K. �

We next establish relations between the values taken on generators, for a given cocycle on
SU q(N).

Lemma 2.28. Let π be a representation of SU q(N) and let η be a π-ε-cocycle. For i < l 6 N
and j, k < N ,

η(uil) = −(I − qπ(ull)))
−1π(uil)η(ull), (2.12a)

η(uli) = −(I − qπ(ull)))
−1π(uli)η(ull), (2.12b)

π(uNN − 1)η(ujk) =
(
π(ujk − δjk 1)− (q−1 − q)π(1− q2uNN)−1π(uiluli)

)
η(uNN). (2.12c)

In particular, by Remark 2.26, η is determined by its value η(uNN) when π(1−uNN) is injective.

Proof. If a = uil or a = uli where i < l 6 N , then a ∈ ker ε and, by Identities (2.6a) and (2.6b),
a ull = qull a. Hence, by the cocycle property, π(a)η(ull) + η(a) = qπ(ull)η(a). Since π(ull) is a
contraction, this is equivalent to the identity η(a) = −(I − qπ(ull))

−1π(a)η(ull).
By the cocycle property applied to Identity (2.6d), if j, k < N then

π(ujk)η(uNN) + η(ujk) = η(ujkuNN) = η(uNNujk)− (q−1 − q)η(ujNuNk)

= π(uNN)η(ujk) + η(uNN)ε(ujk)− (q−1 − q)π(ujN)η(uNk),

so,

π(uNN − 1)η(ujk) = π(ujk − δjk 1)η(uNN) + (q−1 − q)π(ujN)η(uNk)

=
(
π(ujk − δjk 1)− (q−1 − q)π(ujN)

(
I − qπ(uNN))−1π(uNk)

)
η(uNN)

=
(
π(ujk − δjk 1)− (q−1 − q)

(
I − q2π(uNN))−1π(ujNuNk)

)
η(uNN). �

We end this section by characterising those representations and cocycles on SU q(N) that live
on SU q(n), for n < N .

Proposition 2.29. Let π be a representation of SU q(N), let η be a π-ε-cocycle and let n < N .

(a) The following are equivalent.

(i) π lives on SU q(n).
(ii) π(ukj) = δkjI if max{j, k} > n.
(iii) π(ujj) = I for n < j ≤ N .

(b) Suppose that π lives on SU q(n). Then the following are equivalent.

(i) η lives on SU q(n).
(ii) η(ukj) = 0 if max{j, k} > n.
(iii) η(ujj) = 0 for n < j ≤ N .
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Proof. For both parts, the equivalence of (i) and (ii) follows from Proposition 2.27 because (ii)
says π, respectively η, vanishes on the set Sn,N (in the latter case, since cocycles kill the identity
element), moreover (ii) obviously implies (iii).
(a) For all j = 1, · · · , N , the unitarity relations (2.7) imply the identities

π(ujj)
∗π(ujj) +

∑
k 6=j

π(ukj)
∗π(ukj) = I = π(ujj)π(ujj)

∗ +
∑

k 6=j
π(ujk)π(ujk)

∗

so if π(ujj) = I then π(ukj) = 0 for k 6= j. Thus (iii) implies (ii).
(b) By Identities (2.12a) and (2.12b), if η(ull) = 0 then η(uil) = 0 = η(uli) for i < l and so

(iii) implies (ii). �

3. Classification of gaussian generating functionals

In this Section we investigate the gaussian generating functionals on SU q(N) and their Schür-
mann triples. We follow Procedure 2.6 for gaussian representations, that is representations of
the form ιh ◦ ε : a 7→ ε(a)Ih. Since gaussian cocycles vanish on K2, we seek a hermitian basis
extension E from K2 to K (see Section 2).

Lemma 3.1. Set vj := (ujj − 1) ∈ K and dj := (2i)−1(ujj −u∗jj) = (2i)−1(vj − v∗j ) ∈ K. Then

the following hold.

(a) ujk ∈ K2 for j 6= k.
(b) vj + v∗j ∈ K2.

(c) d1 + · · ·+ dN ∈ K2.

(d) djdk − dkdj ∈ K3.

Proof. (a) Let j 6= k. Combining Relations (2.6a) and (2.6b), one has ujkull = qullujk for j 6= k
and l := max(j, k). Therefore, since ull − 1, ujk ∈ K,

ujk = (1− q)−1q(ull − 1)ujk − ujk(ull − 1) ∈ K2.

(b) By the unitarity relation (2.7) we see that 1− ujju∗jj =
∑

m6=j ujmu
∗
jm ∈ K2, so

vj + v∗j = (ujj − 1) + (ujj − 1)∗ = −(1− ujju∗jj)− (ujj − 1)(ujj − 1)∗ ∈ K2.

(c) Observe that

u11 · · ·uNN = (v1 + 1) · · · (vN + 1) = 1 + (v1 + · · ·+ vN) + terms in K2.

Therefore, v1 + · · ·+ vN + (1− u11 · · ·uNN) ∈ K2. Since Dq = 1, we have

1− u11 · · ·uNN =
∑

σ∈SN ,σ 6=id
(−q)i(σ)u1,σ(1) · · ·uN,σ(N). (3.1)

Now, for σ 6= id there is at least one j such that j 6= σ(j), so, from part (a), the right-hand side
of (3.1) is in K2. Thus v1 + · · ·+ vN ∈ K2, hence,

d1 + · · ·+ dN = (2i)−1
(
(v1 + · · ·+ vN)− (v1 + · · ·+ vN)∗

)
∈ K2.

(d) This follows from part (a), in view of the relations (2.6d) and (2.8a). �

Now consider the family of characters determined by

εθ2,··· ,θN (ukl) := eiθkδk,l (k, l ∈ {1, · · · , N}),
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for θ2, · · · , θN ∈ R and θ1 given implicitly by
∑N

k=1 θk = 0. The pointwise de�ned linear
functionals

ε′j :=
∂

∂θj

∣∣∣
θ2=···=θN=0

εθ2,··· ,θN (j = 2, · · · , N) (3.2)

are drifts because they kill 1 (since each εθ1,··· ,θd is a character), vanish on K2 (by Leibniz' rule,
since ε0,··· ,0 = ε) and are hermitian (since d∗k = dk and ε

′
j(dk) = δjk).

Lemma 3.2. Set E := {d2, · · · , dN}. Then the following hold.

(a) E is a hermitian basis extension from K2 to K.

(b) {ε′j : j = 2, · · · , N} is a basis for the real space of drifts on SU q(N).

Proof. The set E is hermitian and it follows from parts (a), (b) and (c) of Lemma 3.1 that
E ∪K2 spans K. For j, k = 2, · · · , N , ε′j(dk) = δjk so E is linearly independent, and ε′j kills K2

so E and K2 are disjoint. Thus (a) holds, and so does (b) since drifts vanish on {1} ∪K2. �

In view of part (d) of Lemma 3.1 and Corollaries 2.13 and 2.12, we deduce the following.

Theorem 3.3. SUq(N) does not have property (GC) unless N 6 2.

This is also proved in [2]. SUq(N) has Property (AC) if N = 2 ([23], [21]).
From now on, we �x the hermitian basis extension EN := {d2, · · · , dN} from K2 to K, and

thereby also the projection in P2(SU q(N)) as in (2.4), which we denote PN . The resulting family
of projections is compatible with the subgroup relations SUq(N) > SUq(n).

Proposition 3.4. Pn ◦ sn,N = sn,N ◦ PN for n < N .

Proof. The epimorphism sN (see (2.10)) sends dN to 0 and, for 2 6 n 6 N − 1, sends the dn
of SU q(N) to the dn of SU q(N − 1), so sN(EN) = EN−1 ∪ {0}. Therefore, by Lemma 2.25,
PN−1 ◦ sN = sN ◦ PN . By Identity (2.11) this iterates to yield the proposition. �

Note that the ε′j obtained in (3.2) coincide with the functionals ε′d (d = dj) de�ned in (2.3)
from the basis extension EN . Thus Proposition 2.10 yields the following characterization.

Proposition 3.5. The gaussian cocycles on SU q(N) are precisely the maps of the form

η =
∑N

j=2
ξj ε

′
j(·) (3.3)

for a family of vectors (ξj)
N
j=2 in a Hilbert space h.

We next describe the gaussian generating functionals on SU q(N). Consider the pointwise
de�ned functionals

ε′′jk :=
∂2

∂θj ∂θk

∣∣∣
θ2=···=θN=0

εθ2,··· ,θN (j, k = 2, · · · , N).

Theorem 3.6. Letting Mn(R)+ denote the set of real nonnegative-de�nite n × n matrices, the

prescription

(r, R) 7→
∑N

j=2
rjε
′
j +

1

2

∑N

j,k=2
rjkε

′′
jk

de�nes a bijection from RN−1 ×MN−1(R)+ to the set of gaussian generating functionals γ on

SU q(N) in which the second sum is the PN -invariant component γ ◦ PN .
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Proof. In view of Lemma 3.2, it su�ces to verify that the prescription [rjk] 7→ 1
2

∑N
j,k=2 rjkε

′′
jk de-

�nes a bijection fromMN−1(R)+ to the set of PN -driftless (i.e. PN -invariant) gaussian generating
functionals γ.
First note that by Leibniz' rule,

ε′′jk(ab) = ε′′jk(a)ε(b) + ε′j(a)ε′k(b) + ε′k(a)ε′j(b) + ε(a)ε′′jk(b) (a, b ∈ SU q(N)).

It follows that ε′′jk vanishes on K3 and, by direct computation, ε′′jk(dl) = 0 and ε′′jk(dldm) =
δjlδkm + δjmδkl for j, k, l,m = 2, · · · , N . In particular, ε′′jk ◦ PN = ε′′jk and, for all c ∈ K and

λ ∈ CN−1,
∑
λjε
′′
jk(c

∗c)λk = 2
∣∣∑λkε

′
k(c)

∣∣2 > 0 so, since nonnegative-de�niteness is preserved

under the Schur product, for any matrix R = [rjk] ∈ MN−1(R)+ the functional 1
2

∑
rjkε

′′
jk is

conditionally positive and therefore a PN -invariant gaussian generating functional.
Conversely, if γ is a gaussian generating functional, its associated cocycle η is of the form (3.3)

and so, by Corollary 2.13 and part (d) of Lemma 3.1, η is hermitian and hence the Gram matrix[
〈ξj, ξk〉

]
is real and thus in MN−1(R)+. �

Remarks 3.7. The CQG algebra TN−1 of the torus TN−1 is generated, as unital ∗-algebra, by
a family of commuting unitaries {uj : j = 1, · · · , N} subject to the relation u1 · · ·uN = 1. The
prescription ujk 7→ δjkuj determines a CQG epimorphism τN : SU q(N) → TN−1 with respect
to which the characters εθ2,··· ,θN of SU q(N) live on TN−1. Therefore the gaussian generating
functionals of SU q(N) live on TN−1. It also follows that, for any compact quantum group G
satisfying SUq(N) > G > TN−1, the projection P ∈ P2(G) may be chosen to be compatible with
those for SU q(N) and TN−1, and the gaussian generating functionals of G correspond to those of
TN−1. Application of results on classical compact Lie groups in [24] to TN−1 gives an alternative
proof of Theorem 3.6. The original preprint version of our paper has motivated generalisation
of the theorem to all q-deformations of simply connected semisimple compact Lie groups ([7,
Theorem 6.1]).

4. Decomposition

This is the central section of the paper. We decompose an arbitrary representation π of
SU q(N) uniquely into a direct sum π1⊕· · ·⊕πN , in which π1 = πG, as de�ned in Proposition 2.16
and, for 2 6 n 6 N , πn lives on SU q(n) and πn(1 − unn) is injective. We then show that in
the corresponding decomposition η1 ⊕ · · · ⊕ ηN of a π-ε-cocycle η, for 2 6 n 6 N each cocycle
ηn is approximately inner and determined by the vector η(unn). This implies that SUq(N) has
Property (NAI) and so also (LK). We deduce a Hunt formula for SUq(N) incorporating full

decomposition for generating functionals.
The following elementary lemma plays a key role in the approximation of cocycles (part (a) is

well-known, for example in ergodic theory). For bounded operators T , we write ranT for ranT .

Lemma 4.1 (Contraction operator lemma). For any contraction operator C on a Hilbert space,

(a) ker(I − C∗) = ker(I − C), so also ran(I − C) = ker(I − C)⊥ = ran(I − C∗), and
(b) P (t) := (1− t)(I − tC)−1

SOT−−→ P and P⊥(t) := (I − tC)−1(I − C)
SOT−−→ P⊥ as t→ 1−,

where P := Pker(I−C). In particular, the following four conditions are equivalent.

(i) I − C is injective; (i)′ I − C has dense range;

(ii) (I − tC)−1(I − C)
SOT−−→ I as t→ 1−; (ii)′ (1− t)(I − tC)−1

SOT−−→ 0 as t→ 1−.



HUNT'S FORMULA FOR SUq(N) AND Uq(N) 15

Proof. (a) Let ξ ∈ ker(I −C) = ran(I −C∗)⊥ = ran(C∗− I)⊥. By symmetry it su�ces to prove
that ξ ∈ ker(I − C∗). This follows by Pythagoras: ‖ξ‖2 + ‖(C∗ − I)ξ‖2 = ‖C∗ξ‖2 6 ‖ξ‖2.
(b) For 0 < t < 1, (1) I −P (t) = tP⊥(t), (2) ‖P (t)‖ 6 1, and (3) P (t)(I −C) = (1− t)P⊥(t);

thus (4) ‖P (t)(I − C)‖ 6 2(1 − t)/t. By (1), P (t) → I on kerP⊥(t) = ker(I − C) and, by (4)

and (2), P (t)→ 0 on ran(I −C). Hence P (t)
SOT−−→ P by (a), and so P⊥(t)

SOT−−→ P⊥ by (1). �

Decomposition of representations and cocycles. We start by separating out the maximal
subspace on which the operator π(1− uNN) acts injectively, for a given representation π.

Lemma 4.2. Let π be a representation of SU q(N). Then π has a unique decomposition πN ⊕πN
for which πN lives on SU q(N − 1), equivalently πN(1−uNN) = 0, and πN(1−uNN) is injective.

Moreover, hπ
N

= kerπ(1− uNN).

Proof. The equivalence is contained in Proposition 2.29. We �rst show that k := ker π(1−uNN)
is an invariant subspace for π. Since the ujk generate SU q(N) as an algebra (Remark 2.26),
to see this it su�ces to �x ξ ∈ k and j, k ∈ {1, · · · , N}, and to verify that πjkξ ∈ k (in the
convenient abbreviation πjk := π(ujk)). For j = k = N this is obvious. For k < N , applying π
to Identity (2.7) then the vector functional ωξ, we see that π

∗
Nsξ = 0 = πsNξ for s < N so, by

Identity (2.8d),

π∗NkπNkξ = πNkπ
∗
Nkξ + (1− q2)

∑
m<k

πNmπ
∗
Nmξ = 0,

thus πNkξ = 0. Lastly, for j, k < N , πjkπNNξ = πNNπjkξ− (q−1− q)πjNπNkξ by Identity (2.6d),
so πjkπNNξ = πNNπjkξ, in other words πjkξ ∈ k, as required.
In the resulting decomposition π = πN ⊕ πN , πN(1− uNN) = 0 and πN(1− uNN) is injective.

It remains to prove uniqueness. Thus let ρ ⊕ σ be another such decomposition of π; we must
show that hρ = k. This follows from Lemma 4.1:

hρ = ker ρ(1− uNN) ⊂ k = ranπ(1− uNN)⊥ ⊂ ranσ(1− uNN)⊥ = (hσ)⊥ = hρ. �

Definition 4.3. A decomposition π1 ⊕ · · · ⊕ πN of a representation of SU q(N) is full if

(1) for 1 6 n < N , there is a representation π̃n of SU q(n) such that πn = π̃n ◦ sn,N and,
(2) for n > 2, πn(1− unn) is injective.

For n = 1, (1) says that πn is gaussian, and for n > 2, πn(1− unn) = π̃n(1− unnn) where unnn
denotes unn in SU q(n); (2) is equivalent to π(1− unn) having dense range for n > 2.
This superscript convention, indicating which quantum subgroup is being referred to, contin-

ues below.

Theorem 4.4. Every representation of SU q(N) has a unique full decomposition.

Proof. We prove this by induction on N . For N = 1 there is nothing to prove. Suppose therefore
that the proposition holds for N = K − 1 for some K > 2, and let π be a representation of
SU q(K).
Existence. By Lemma 4.2, π = πK ⊕ πK where πK(1− uKK) is injective and πK = π̃ ◦ sK for

a representation π̃ of SU q(K − 1). By the induction hypothesis, π̃ = ρ1 ⊕ · · · ⊕ ρK−1 where ρ1
is gaussian and, for k = 2, · · · , K − 1, ρk(1 − uK−1kk ) is injective and ρk = ρ̃k ◦ sk,K−1, for some
representation ρ̃k of SU q(k). Set πk := ρk ◦ sK for k = 1, · · · , K − 1. Then π = π1 ⊕ · · · ⊕ πK ,
where π1 is gaussian, πK(1 − uKK) is injective and, for k = 2, · · · , K − 1, πk(1 − ukk) equals
ρk(1− uK−1kk ) and so is injective, and πk = ρ̃k ◦ sk,K−1 ◦ sK = ρ̃k ◦ sk,K , so πk lives on SU q(k).
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Uniqueness. Suppose that π = ρ1 ⊕ · · · ⊕ ρK is another such decomposition. Then, by the
uniqueness part of Lemma 4.2, ρK = πK and ρ1 ⊕ · · · ⊕ ρK−1 = π1 ⊕ · · · ⊕ πK−1. Now, for
k = 1, · · · , K− 1, πk = π̃k ◦ sK and ρk = ρ̃k ◦ sK for representations π̃1, · · · , ρ̃K−1 of SU q(K− 1)
and, by the surjectivity of sK , π̃1 ⊕ · · · ⊕ π̃K−1 = ρ̃1 ⊕ · · · ⊕ ρ̃K−1. Since π̃1 and ρ̃1 are gaussian
and, for k = 2, · · · , K − 1, π̃k and ρ̃k live on SU q(k) and π̃k(1 − uK−1kk ) and ρ̃k(1 − uK−1kk ) are
injective, it follows from the induction hypothesis that π̃k = ρ̃k for k = 1, · · · , K − 1. Therefore
πk = ρk for k = 1, · · · , K, as required. �

Theorem 4.5. Let π1⊕ · · ·⊕πN be the full decomposition of a representation π of SU q(N) and
let η1 ⊕ · · · ⊕ ηN be the induced decomposition of a π-ε-cocycle η. Then η1 is gaussian and, for

n > 2, ηn lives on SU q(n).

Proof. For n = 1, the cocycle ηn is gaussian since the representation πn is. For m > n > 2, by
part (a) of Proposition 2.29 applied to Identity (2.6d),

πn(unn)ηn(umm) + ηn(unn) = πn(umm)ηn(unn) + ηn(umm)− (q−1 − q)πn(unm)ηn(umn)

= ηn(unn) + ηn(umm),

so ηn(umm) ∈ kerπn(1−unn) = {0} thus, by part (b) of Proposition 2.29, ηn lives on SU q(n). �

Approximation of cocycles and (NAI) for SUq(N). We now show that each of the cocycles
ηn (n > 2) in Theorem 4.5 is approximately inner.

Proposition 4.6. Let η be a cocycle of a representation π of SU q(N) such that π(1− uNN) is

injective. Then

η = pw-limt→1− ηπ,ζ(t) where ζ(t) := −π(1− tuNN)−1η(uNN).

Proof. In view of the cocycle relations and Remark 2.26, it su�ces to prove that, for each of the
algebra generators a = ujk, η(a) is the pointwise limit as t→ 1− of the following expression

− π(a− ε(a)1)π(1− tuNN)−1η(uNN). (4.1)

We prove this using Lemma 4.1 (the contraction operator lemma) and Lemma 2.28.
Case a = uNN . Lemma 4.1 implies that π(1− tuNN)−1π(1− uNN)η(uNN)→ η(uNN).
Case a = ukN or a = uNk (k < N). Then a ∈ ker ε so π(a) = π(a − ε(a)1). Thus, using

Relations (2.12a)-(2.12b), Lemma 4.1 implies that η(a) equals

−π(1− quNN)−1π(a)η(uNN) = − lim
t→1−

π(1− quNN)−1π(a)π(1− tuNN)−1π(1− uNN)η(uNN)

= − lim
t→1−

π(a− ε(a))π(1− tuNN)−1η(uNN).

Case a = ujk (j, k < N). We must show that −π(ujk − δjk1)π(1− tuNN)−1η(uNN)→ η(ujk).
By the contraction operator lemma −π(1 − tuNN)−1π(uNN − 1)η(ujk) → η(ujk). It therefore
su�ces to show that

−π(1− tuNN)−1π(uNN − 1)η(ujk) + π(ujk − δjk1)π(1− tuNN)−1η(uNN)→ 0.

By Identity (2.12c) the �rst term equals

−π(1− tuNN)−1
(
π(ujk − δjk1)− (q−1 − q)π(1− q2uNN)−1π(ujNuNk)η(uNN)
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and so, since the operators π(1 − q2uNN)−1 and π(1 − tuNN)−1 commute, after cancellation of
the δjk terms and multiplication through by the invertible operator π(1 − q2uNN) we see that
the task is equivalent to showing that the following converges to 0 on the vector η(uNN):

π(1− q2uNN)
[
π(ujk), π(1− tuNN)−1

]
+ (q−1 − q)π(1− tuNN)−1π(ujNuNk) (4.2)

� we show that it converges to 0 strongly. Let us abbreviate π(uil) to πil for each i and l. It
follows from Identity (2.6d) that

[πjk, π
α
NN ] = −(q−1 − q)

(∑α−1

ν=0
q2ν
)
πα−1NN πjNπNk (α ∈ Z+),

thus, taking the Neumann series for (I−tπNN)−1, which is valid since tπNN is a strict contraction,[
πjk, (I − tπNN)−1

]
= −(q−1 − q)

∑∞

α=1

∑α−1

ν=0
q2νtαπα−1NN πjNπNk.

Substituting this into (4.2) then gives the following operator composed with (q−1 − q)πjNπNk:

− (I − q2πNN)
∑∞

α=1

∑α−1

ν=0
q2νtαπα−1NN + (I − tuNN)−1

=
∑∞

ν=0

∑∞

α=ν+1

(
q2(ν+1)(tπαNN − tq2ν(tπNN)α−1

)
+ (I − tuNN)−1

=
∑∞

ν=0

(
(q2tπNN)ν+1

∑∞

β=0
(tπNN)β − t(q2tπNN)ν

∑∞

β=0
(tπNN)β

)
+ (I − tuNN)−1

= (I − q2tuNN)−1
(
q2tπuNN − tI + I − q2tuNN

)
I − tuNN)−1

= (I − q2tuNN)−1(1− t)(I − tuNN)−1

so the required convergence follows from Lemma 4.1. �

Theorem 4.7. Let π1 ⊕ · · · ⊕ πN be the full decomposition of a representation π of SU q(N)
and let η1 ⊕ · · · ⊕ ηN be the induced decomposition of a π-ε-cocycle η. Then, for n > 2,
ηn = pw-limt→1− ηπn,ξ(n,t) where ξ(n, t) := −πn(1− tunn)−1ηn(unn).
Thus, in terms of the decomposition hπ = hπG ⊕ hπR,

η = pw-limt→1− ηG ⊕ ηπR,ξ(t) where

ξ(t) := −π2(1− tu22)−1η2(u22)⊕ · · · ⊕ πN(1− tuNN)−1ηN(uNN).
(4.3)

Proof. Let n > 2. By Theorem 4.5, ηn = η̃n◦sn,N for a cocycle η̃n on SU q(n) and, by Lemma 2.22,
it su�ces to prove that ηπ̃n,ξ(n,t) converges pointwise to η̃n. Now πn(1 − unn) is injective (by
Theorem 4.4), π̃n(1− tunnn) = πn(1− tunn) for all t ∈ [0, 1] and η̃n(unnn) = ηn(unn) so π̃n(1−unnn)
is injective and ξ(n, t) = −π̃n(1 − tunnn)η̃n(unnn). The theorem therefore follows by applying
Proposition 4.6 with N = n. �

Noting that if π is completely non-gaussian, so hπG = {0}, then (4.3) simpli�es to the pointwise
convergence ηπ.ξ(t) → η as t→ 1−, we draw the following immediate corollary.

Theorem 4.8. SUq(N) has property (NAI), and thus also (LK).

Decomposition of generating functionals and Hunt formula for SUq(N).

Lemma 4.9. Let (π′, η′) and (π′′, η′′) be cyclic representation-cocycle pairs on SU q(N) such that

(π′, η′) lives on SU q(N − 1) and π′′(1− uNN) is injective. Then the following hold.

(a) The cocycle η′ vanishes on (1− uNN)K.
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(b) The set η′′((1− uNN)K) = π′′(1− uNN)η′′(K) is dense in hπ
′′
.

(c) The cocycle η′ ⊕ η′′ is cyclic.

Proof. (a) This follows since π′(1−uNN) = 0 because π′ lives on SU q(N−1) and 1−uNN ∈ ker sN .
(b) By Lemma 4.1, π′′(1− uNN) has dense range so this follows from the cyclicity of η′′.
(c) The cyclicity of η′ ⊕ η′′ follows from that of η′ and η′′ since, for c1, c2 ∈ K, by part

(b) there is a sequence (dp) in K such that η′′((1 − uNN)dp) → η′′(c2 − c1), and by part (a)
η′((1− uNN)dp) = 0 for all p so

(η′ ⊕ η′′)(c1 + (1− uNN)dp) =

(
η′(c1)

η′′(c1) + η′′((1− uNN)dp)

)
→
(
η′(c1)

η′′(c2)

)
as p→∞. �

Definition 4.10. Let N > 2. We say that a completely non-gaussian generating functional γ
on SU q(N) is gf-irreducible if the following holds: for any generating functional decomposition
γ = γ′ + γ′′, if γ′ lives on SU q(N − 1) then it is a drift.

Proposition 4.11. Let γ be a generating functional on SU q(N) for N > 2, and let (π, η, γ) be

its Schürmann triple. Then γ is gf-irreducible if and only if π(1− uNN) is injective.

Proof. Suppose �rst that γ is gf-irreducible. By Theorems 4.4 and 4.5 and Propositions 4.6
and 2.8, π and η decompose as πN ⊕ πN and ηN ⊕ ηN , where πN(1 − uNN) is injective, ηN

lives on SU q(N − 1) and ηN is approximately inner and so completable by a PN -invariant
generating functional γN . The normalised hermitian functional γN := γ−γN satis�es γN(c∗c) =
‖η(c)‖2 − ‖ηN(c)‖2 = ‖ηN(c)‖2 for all c ∈ K and so is a generating functional which completes
ηN and thus also lives on SU q(N − 1), and satis�es γN + γN = γ. Thus γN is a drift and so

ηN = 0. But ηN is cyclic (since η is) and so hπ
N

= {0} thus π = πN and so π(1 − uNN) is
injective.
Suppose conversely that π(1 − uNN) is injective, and let γ′ + γ′′ be a generating functional

decomposition of γ such that γ′ lives on SU q(N − 1). Let (π′, η′, γ′) and (π′′, η′′, γ′′) be the
Schürmann triples of γ′ and γ′′. Then (π′, η′, γ′) lives on SU q(N−1), so η′ vanishes on (1−uNN)K
by part (a) of Lemma 4.9, also (π′⊕ π′′, η′⊕ η′′, γ) is a Schürmann triple so there is an isometry

V ∈ B(hπ; hπ
′ ⊕ hπ

′′
) such that

(
η′(c)
η′′(c)

)
= V η(c) for all c ∈ K. In view of part (b) of Lemma 4.9,

these together imply that η′ = 0, so γ′ is a drift. Therefore γ is gf-irreducible. �

Definition 4.12. A generating functional decomposition γ = γ1 + · · ·+ γN on SU q(N) is full if

(1) for 1 6 n < N , γn = γ̃n ◦ sn,N for a generating functional γ̃n on SU q(n), and
(2) for n > 2, γ̃n is gf-irreducible and Pn-invariant.

For n = 1, (1) says that γn is gaussian. Given (1), letting (π̃n, η̃n, γ̃n) be γ̃n's Schürmann triple,
so that (πn := π̃n◦sn,N , ηn := η̃n◦sn,N , γn := γ̃n◦sn,N) is γn's Schürmann triple, the condition (2)
is equivalent to (2)′: πn(1− unn) is injective and γn is PN -invariant, by Proposition 4.11 (since
πn(1−unn) = π̃n(1−unnn)), and the compatibility of the family of projections (Proposition 3.4).

Lemma 4.13. If a generating functional γ on SU q(N) has a full decomposition γ1 + · · · + γN
then, in terms of each γn's Schürmann triple (πn, ηn, γn),

(a) π1 ⊕ · · · ⊕ πN is a full (representation) decomposition, and

(b) the cocycle η1 ⊕ · · · ⊕ ηN is cyclic.
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Proof. Let γ = γ1 + · · · + γN be such a decomposition. For each n denote by (π̃n, η̃n, γ̃n) the
induced Schürmann triple on SU q(n), noting that for n = 2, · · · , N , γ̃n is gf-irreducible and, by
(2)′, the operator πn(1− unn) is injective and γn is PN -invariant, in particular (a) holds.
(b) For N = 1 there is nothing to prove. Suppose therefore that the proposition holds for

N = K−1 where K > 2, and that a generating functional γ on SU q(K) has a full decomposition
γ = γ1 + · · · + γK . In the above tilde notations, note that for k = 1, · · · , K − 1, (π̂k :=
π̃k ◦ sk,K−1, η̂k := η̃k ◦ sk,K−1, γ̂k := γ̃k ◦ sk,K−1) is a cyclic Schürmann triple (since (πk, ηk, γk)
is) and set γ̂K := γ̂1 + · · · + γ̂K−1, noting that this generating functional decomposition is full
because γ̂k = γ̃k ◦ sk,K−1 for each k and, for k = 2, · · · , K − 1, γ̃k is gf-irreducible and Pk-
invariant. Therefore, by the induction hypothesis, η̂1 + · · · + η̂K−1 is cyclic which means that
η1⊕· · ·⊕ ηK−1 is cyclic and so, by part (c) of Lemma 4.9, η1⊕· · ·⊕ ηK = (η1⊕· · ·⊕ ηK−1)⊕ ηK
is too. Hence (b) follows by induction. �

Theorem 4.14. Every generating functional γ on SU q(N) has a unique full decomposition.

Proof. Existence. Let γ be a generating functional on SU q(N) and let (π, η, γ) be its Schürmann
triple. By Theorem 4.4, π has a full decomposition π1 ⊕ · · · ⊕ πN ; let η1 ⊕ · · · ⊕ ηN be the
corresponding decomposition of η. By Theorems 4.5 and 4.7, ηn lives on SU q(n) for each n and,
for n = 2, · · · , N , ηn is approximately inner and thus completable by a PN -invariant generating
functional γn, so γn also lives on SU q(n). Moreover, letting (π̃, η̃, γ̃) be the induced Schürmann
triple on SU q(n), π̃n(1− unnn) equals πn(1− unn) and so is injective, thus γ̃n is gf-irreducible by
Proposition 4.11. Now the functional γ1 := γ − (γ2 + · · · + γN) is hermitian and normalised,
and satis�es γ1(c

∗c) = ‖η(c)‖2− (‖η2(c)‖2 + · · ·+ ‖ηN(c)‖2) = ‖η1(c)‖2 for all c ∈ K and so is a
generating functional which completes η1; moreover it is gaussian because π1 is. It follows that
γ1 + · · ·+ γN is a full decomposition of γ.
Uniqueness. Let γ1+· · ·+γN and γ′1+· · ·+γ′N be full decompositions of a generating functional

γ on SU q(N). Set π := π1 ⊕ · · · ⊕ πN and η := η1 ⊕ · · · ⊕ ηN where, for each n, (πn, ηn, γn) is
γn's Schürmann triple � and do likewise for γ′1, · · · , γ′N . Since γ1 = γ − (γ2 + · · ·+ γN) and for
n > 2, γn ◦ PN = γn and γn(c∗c) = ‖ηn(c)‖2 for c ∈ K, and likewise for γ′1, · · · , γ′N , uniqueness
follows once it is veri�ed that ‖ηn(·)‖ = ‖η′n(·)‖ for n > 2. By Lemma 4.13, π := π1 ⊕ · · · ⊕ πN
and π′ := π′1 ⊕ · · · ⊕ π′N are full (representation) decompositions and (π, η, γ) and (π′, η′, γ)
are cyclic Schürmann triples. Therefore there is a unitary operator U ∈ B(hπ; hπ

′
) such that

η′ = Uη(·) and π′ = Uπ(·)U∗. The full decomposition π = π1⊕ · · ·⊕πN evidently induces a full
decomposition, say πU1 ⊕ · · · ⊕ πUN , of π′; the resulting decomposition η′ = ηU1 ⊕ · · · ⊕ ηUN satis�es
‖ηUn (·)‖ = ‖ηn(·)‖ for each n. Thus, by the uniqueness part of Theorem 4.4, for each n, πUn = π′n
so ηUn = η′n, thus ‖η′n(·)‖ = ‖ηn(·)‖ as required. �

Combining the theorems of this section with Theorem 3.6 and Remarks 2.18 and 2.4, we
deduce our main result.

Theorem 4.15 (Hunt formula for SUq(N)). Let γ be a generating functional on SU q(N). Then
there is a unique decomposition γ = γD + γG + γNG, in which γD is a drift, and γG and γNG
are PN -invariant generating functionals which are respectively gaussian and completely non-

gaussian. Moreover, the following hold.

(1) γG and γD are uniquely parameterised by a matrix in MN−1(R)+ and vector in RN−1.

(2) γ has a unique full decomposition γ1 + · · · + γN , and if (πn, ηn, γn) is γn's Schürmann

triple for each n then (π := π1⊕ · · · ⊕ πN , η := η1⊕ · · · ⊕ ηN , γ) is γ's Schürmann triple.
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(3) γNG = pw-limt→1− ωξ(t) ◦ πR ◦ PN where πR is the non-gaussian remainder of π and

ξ(t) := −π2(1− tu22)−1η2(u22)⊕ · · · ⊕ πN(1− tuNN)−1ηN(uNN).

The realisation of γNG in (3) is analogous to that of γL in the classical Hunt formula (1.1)
given in the remark following Proposition 2.8.
For the liming case q = 1 corresponding to the compact Lie group SU(N) the proofs of

Lemma 3.1 and Theorem 4.7, on which our Hunt formula depends, are no longer vadid. How-
ever, the theorem as stated still holds. Indeed the gaussian/nongaussian decomposition and
parameterisations (1) are statements of Hunt's results in the language of generating functionals,
moreover (2) is seen by decomposing the Lévy measure into its restrictions to the corresponding
subgroups of SU(N).

5. From parametrization by hπ to quasi-innerness

Given a gf-irreducible generating functional on SU q(N), with Schürmann triple (π, η, γ), by
Proposition 4.11 and Lemma 2.28 we know that π(1− uNN) is injective and so η is determined
by its value η(uNN). One may therefore ask which vectors of the representation space hπ arise in
this way. In case N = 2 every vector does, so the cocyles are parameterised by hπ ([23, Theorem
2.8]; [21, Theorem 3.3]). We now show this to be false for N = 3; the argument extends to higher
values of N . The section ends with an indication of a positive counterpart to this, namely a
quasi-innerness property of completely non-gaussian cocycles/π-ε-derivations.

Proposition 5.1. There is a representation π of SU q(3) and vector ξ in hπ such that π(1−u33)
is injective but η(u33) 6= ξ for every π-ε-cocycle η.

Proof. Following Woronowicz, we write the generators ujk of SU q(2) as[
u11 u12
u21 u22

]
=

[
α −qγ∗
γ α∗

]
.

Let ρ be the irreducible representation of SU q(2) on `2(Z+) de�ned, in terms of the standard
orthonormal basis (en)n>0 by

ρ(α) : en 7→
√

1− q2n en−1 and ρ(γ) : en 7→ qnen

(where e−1 := 0). For k = 1, 2, set ρk := ρ◦rk for the CQG epimorphisms rk : SU q(3)→ SU q(2)
given by

r1 : [ujk] 7→

α −qγ∗ 0
γ α∗ 0
0 0 1

 and r2 : [ujk] 7→

1 0 0
0 α −qγ∗
0 γ α∗


(so r1 = s3). Then ρ1 and ρ2 are representations of SU q(3) and so, setting π := ρ1 ? ρ2,

[
π(ujk)

]
j,k

=
[∑3

i=1
ρ1(uji)⊗ ρ2(uik)

]
j,k

=

ρ(α)⊗ I −qρ(γ)∗ ⊗ ρ(α) q2ρ(γ)∗ ⊗ ρ(γ)∗

ρ(γ)⊗ I ρ(α)∗ ⊗ ρ(α) −qρ(α)∗ ⊗ ρ(γ)∗

0 I ⊗ ρ(γ) I ⊗ ρ(α)∗

 .
Now π(1 − u33) = I ⊗ ρ(1 − α∗) is injective because ρ(1 − α∗) is. Suppose for a contradiction
that there is a π-ε-cocycle η satisfying η(u33) = e0 ⊗ e0. Since π(u31) = 0 and ρ(α)e0 = 0,
Relation (2.12c) for j = 1 = k implies that

(I ⊗ ρ(1− α∗))η(u11) = (I − π(u33))η(u11) = (I − π(u11))η(u33) = ρ(1− α)e0 ⊗ e0 = e0 ⊗ e0.
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For n > 0, set an := 〈e0 ⊗ en, η(u11)〉. Then, since ρ(α∗)en =
√

1− q2(n+1)en+1,

e0 =
∑

n>0
an(I − ρ(α∗))en =

∑
n>0

an
(
en −

√
1− q2(n+1)en+1

)
= a0e0 +

∑
n>1

(
an − an−1

√
1− q2n

)
en.

Thus a0 = 1 and, for n > 1, |an|2 =
∏n

k=1(1− q2k). Therefore, since
∑
|an|2 6 ‖η(u11)‖2 <∞,∏n

k=1(1− q2k)→ 0 as n→∞ so
∑
q2k diverges and we have our contradiction. �

This leaves us with the question, which vectors in hπ may occur as values η(uNN) for a cocycle
η. Every element in the dense subspace ranπ(1 − uNN) occurs; and the collection of cocycles
determined by them is precisely the set of coboundaries. Indeed, for ξ′ = −π(1− uNN)ξ, by the
contraction operator lemma we have (see Theorem 4.7) the following pointwise convergence:

−π ◦ (id− ι ◦ ε)(·)π(1− tuNN)−1ξ′ → π ◦ (id− ι ◦ ε)(·)ξ = ηπ,ξ as t→ 1−,

and the identity ηπ,ξ(uNN) = π(uNN − 1)ξ = ξ′.

Proposition 5.2. Let (ξ(λ)) be a net in hπ. Then the net of coboundaries (ηπ,ξ(λ)) converges

pointwise on SU q(N) provided that it converges on ujj for 1 6 j 6 N .

Proof. This follows from Remark 2.26 since, for j 6= k, setting l := max(j, k). Relations (2.6a)
or (2.6b) imply that

ηπ,ξ(λ)(ujk) = π(ujk)ξ(λ) = π(1− qull)−1π(1− qull)π(ujk)ξ(λ)

= −π(1− qull)−1π(ujk)π(ull − 1)ξ(λ) = −π(1− qull)−1π(ujk)ηπ,ξ(λ)(ull). �

We conclude this section with a quasi-innerness property enjoyed by all completely non-
gaussian cocycles.

Theorem 5.3. Let π be a completely non-gaussian representation of SU q(N), and let (hπ, J)

denote the completion of hπ with respect to the norm |||·||| : ξ 7→
(∑N

j=1 ‖π(1−ujj)ξ‖2
)1/2

. Then

a net (ξ(λ)) in hπ is |||·|||-Cauchy if and only if the corresponding net of π-ε-coboundaries
(
ηπ,ξ(λ))

converges pointwise. Moreover, the following hold.

(1) There is a unique operator π : K → B(hπ; hπ) which `extends' the representation π in

the sense that it satis�es

π(ac) = π(a)π(c) and π(c)J = π(c) (a ∈ SU q(N), c ∈ K).

(2) The prescription χ 7→ ηπ,χ :=
(
a 7→ π(a− ε(a)1)χ

)
de�nes a linear isomorphism from hπ

to the space of π-ε-cocycles.

There is also a unique operator π : K2 → B(hπ) such that

π(c∗c) = π(c)∗π(c) and J∗π(e)J = π(e) (c ∈ K, e ∈ K2).

This has the property: for all χ ∈ hπ, the generating functional ωχ ◦ π ◦ PN completes (π, ηπ,χ).
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6. The case of Uq(N)

A Hunt formula for Uq(N) may be obtained by employing very simlar arguments to those used
above for SUq(N). The upshot is the same as Theorem 4.15 except that it is with respect to
the tower of subgroups Uq(0) 6 · · · 6 Uq(N) with Uq(0) denoting the trivial compact quantum
group, rather than the tower SUq(1) 6 · · · 6 SUq(N) (also starting at the trivial group), thus
N replaces N − 1 in (1), the decomposition in (2) starts at n = 0 rather than n = 1, and the
components of ξ(t) in (3) start at n = 1 rather than n = 2. We therefore instead discuss only
the (NAI) and (GC) questions for Uq(N), as these may easily be deduced from our results and
reasoning for the SUq(N) quantum groups.
Since SUq(N+1) > Uq(N) > TN , it follows from Remarks 3.7 that Uq(N) has the same gauss-

ian generating functionals as SU q(N + 1) and a hermitian projection P ′ for Uq(N) compatible
with that of SU q(N + 1) is the one corresponding to the following choice of basis extension:

E ′ =
{
tN(dn) : 2 6 n 6 N

}
∪
{
tN(dN+1) = (2i)−1(D−1 −D−1∗)

}
.

Theorem 6.1. Uq(N) does not have property (GC), unless N = 1.

Proof. The reasoning used in the proof of the SU q(N) counterpart (Theorem 3.3) applies. By
part (d) of Lemma 3.1, the basis extension E ′ again consists of elements whose commutators lie
in K3, and dimK/K2 = N > 2 unless N = 1 so Corollaries 2.13 and 2.12 again apply. �

Since the (NAI) property is hereditary (Proposition 2.23) and SUq(N+1) has it (Theorem 4.8),
Uq(N) does too.

Theorem 6.2. Uq(N) has property (NAI), and thus also (LK).
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