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Abstract

We provide a few new empirical facts that theoretical models should fea-
ture in order to be consistent with US data. 1) There are two classes of
shocks: demand and supply. Supply shocks have long-run effects on eco-
nomic activity, demand shocks do not. 2) Both supply and demand shocks
are important sources of business cycles fluctuations. 3) Supply shocks are
the primary driver for consumption fluctuations, demand shocks for invest-
ment. 4) The demand shock is closely related to the credit spread, while
the supply shock is essentially a news shock. The results are obtained
using a novel approach which combines frequency domain identification
and Dynamic Factor Model analysis.
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1. Introduction

Figuring out what is the correct or most reliable theory underlying the data has
always been the cornerstone of macroeconomic research. The empirical business
cycle literature has tried to inform and support the theory by providing various
stylized facts and representations of the macroeconomy.

At the origins of the modern empirical macroeconomic debate, Blanchard and
Quah (1989) (BQ henceforth) draw a sketch of the macroeconomy as driven by
two shocks, a permanent shock and a transitory one, interpreted as supply and
demand, respectively. Both shocks are depicted as important sources of business
cycle fluctuations.

In the following 30 years, empirical research moved away from the idea of a
comprehensive representation of the macroeconomy, focusing mainly on partial
identification and the study of single, more specific sources of fluctuations, such as
technology shocks (Galì, 1999), news shocks (Beaudry and Portier, 2006), noise
shocks (Lorenzoni, 2009; Blanchard et al., 2013), uncertainty shocks (Bloom,
2009), credit shocks (Gilchrist and Zakrajšek, 2012), to name just a few of the
most important.

A couple of recent papers, however, departing from the widespread partial
identification approach, go back to seeking a general and parsimonious repres-
entation of the macroeconomy. Angeletos et al. (2020) (ACD henceforth) look
for the shock that most explains the business cycle —the so called “main busi-
ness cycle shock” (MBC). The authors, using a frequency-domain identification
method in the context of structural VARs, argue that the bulk of cyclical fluctu-
ations in real economic activity can be explained by a single shock. This shock
is not the technology shock of the RBC model (Kydland and Prescott, 1982),
since it has no long run effects on output. However, it cannot be considered a
standard demand shock either, because it has no effect on prices.

The second paper is Avarucci et al. (2021) (ACFZ henceforth). Within a large
factor model framework, ACFZ find that just two statistically identified shocks
are enough to describe all macroeconomic variables, thus confirming, albeit with
a different method, a previous important result by Onatski (2009).

The present paper is close in spirit to BQ, ACD and ACFZ. We provide a
general picture of the main forces driving the US macroeconomy, at both cyclical
and long run frequencies, with the goal of identifying empirical regularities which
theoretical models should feature in order to be consistent with the data.
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Our working hypothesis is that there are two main shocks, as suggested by
the above factor model literature, and that these can be identified as textbook-
type demand and supply shocks. The former should move prices and quantities
in the same direction and have only transitory effects on real activity variables,
while the latter should move prices and quantities in opposite directions and
have permanent effects. What we have in mind is a simple AD-AS model, or
a New Keynesian model where the macroeconomy is described in terms of an
aggegate demand curve (AD) and a Phillips curve (NKPC) which we refer to as
the “traditional view”. In a nutshell, our main result is that this hypothesis is
confirmed by the data.

We use a dataset of 114 quarterly US time series, covering the period 1961:I to
2019:IV and assume that the data follow a large-dimensional Structural Dynamic
Factor model, as introduced by Stock and Watson (2005) and Forni et al. (2009),
which is naturally designed to describe a large number of time series with a
relatively small number of common shocks. Having a large dataset, we can study
the impulse response functions of all relevant macroeconomic variables within a
unified framework; moreover, the rich information environment enables us to
avoid the well-known noninvertibility problem affecting SVAR analysis (Hansen
and Sargent, 1991; Lippi and Reichlin, 1993, 1994). Last but not least, using
High Dimensional Factor techniques, we can estimate the common components
and correct the observed macroeconomic variables for measurement error.

From a methodological point of view, we contribute to frequency domain ana-
lysis by providing a fairly comprehensive treatment of structural identification
in the frequency domain. We extend the approach used in ACD1 (see also Sarno
et al., 2007; DiCecio and Owyang, 2010; Giannone et al., 2019) in several direc-
tions. In particular, in order to implement our identification scheme, we show
how to jointly target variances of different variables and target covariances on a
given frequency band. A second contribution is represented by the fact that we
use this identification in a Dynamic Factor Model.

Our identification strategy unfolds in two steps. In the first step, we select
the two shocks maximizing the explained variance of the main macroeconomic
variables, at all frequencies of macroeconomic interest, that is, excluding fluctu-
ations with period of less than 18 months, of little interest for macroeconomic

1ACD show how to identify the shock which maximizes the explained variance of a given
variable on a specific frequency band. This method is the frequency domain version of Uhlig
(2004), who identifies two shocks that maximize the majority of the k-step ahead prediction
error variances in real GNP for horizons between 0 and 5 years.
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analysis. In so doing, we do not target a single variable at a time, as in ACD,
but target jointly several variables. More specifically, we include in the target
the variances of the main trending real activity variables (GDP, consumption,
investment, TFP and labor productivity) as well as the variances of other im-
portant real and nominal variables (the unemployment rate, hours worked, the
inflation rate, the federal funds rate and the S&P500 stock price index).

We find that these two shocks are successful in explaining the bulk of the
variance of the main macroeconomic aggregates at both business cycle and long
run frequencies, providing a fairly complete picture of the US macroeconomy.
Adding a third shock increases only marginally the explained variance of the
main real and nominal variables.

In the second step, we rotate the two main shocks in order to give them an
economic interpretation. We implement two different identification schemes. In
the first one (Identification I) we define a demand shock and a supply shock with
a completely novel criterion. The demand shock is obtained by maximizing the
covariance of GDP and inflation at business-cycle frequencies. The supply shock
is automatically identified, by the orthogonality condition, as the shock minim-
izing the above covariance. In the second scheme (Identification II) we define a
permanent and a transitory shock. Precisely, we define the permanent shock as
the one that explains most of the long run variance of trending real activity vari-
ables (i.e. GDP, TFP, consumption, investment and labor productivity). The
transitory shock is automatically identified by the orthogonality condition as the
one minimizing the explained long run variance of the above variables.

In a sense, this procedure is close in spirit to BQ. Just like BQ, we provide a
general picture of the forces driving the macroeconomy. By reducing the number
of shocks of interest in the first stage, and identifying all of these shocks in the
second stage, our method can be regarded as a global identification exercise, as
opposed to the prevailing partial identification approach.

Our main results are the following. First, the two identification schemes
provide the same outcomes. Demand and supply shocks of Identification I are
almost identical to the transitory and permanent shocks of Identification II, re-
spectively. Hence, we show empirically that demand shocks have transitory effect
on real economic activity. Second, both shocks, demand and supply, explain siz-
able fractions of business cycle fluctuations. Third, the demand shock is the
most important cyclical shock for output, investment and unemployment, while
private consumption fluctuations are mostly explained by supply shocks. Finally,
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notice that our identifying restrictions are quite loose in the sense that we cannot
pin down the exact nature of two shocks. However, given that the demand shock
explains almost all cyclical variance of the risk spread and is the main driver of
interest rates at all frequencies, it is reasonable to think that the identification
captures, to a large extent, financial or credit spread shocks. Moreover, the sup-
ply shock has the features of a news technology shock: an S-shaped response of
TFP and it accounts for almost all the long run and the long cycles (between 8
and 20 years).

The above findings are broadly consistent with BQ’s ones, but complete BQ’s
sketch with a large body of new evidence about prices, interest rates, consump-
tion, investment and other macroeconomic variables. Differently from BQ, where
long run neutrality of demand shocks is assumed, here it shows up as a result.
Several papers have shown that special demand side shocks, such as monetary
policy shocks or financial shocks, have transitory effects on output. But no one,
to our knowledge, have shown that shocks identified as standard demand shocks
have no long run effects on real activity.

By focusing on just two shocks, demand and supply, we do not want to deny
that there is a plurality of sources of fluctuations, nor deny the importance of
specific shocks analyzed in the literature. Rather, we think that such shocks
can be grouped into the broader supply and demand categories: for instance,
the technology shock is of course a supply shock, whereas uncertainty and credit
shocks are best seen as transitory demand shocks. Our idea is that shocks having
different nature but belonging to the same group, demand or supply, do have
similar effects on the main macroeconomic aggregates, so that grouping them can
produce meaningful results, in terms of impulse response functions and variance
decomposition.

Our paper can be regarded as complementary to ACFZ. In that paper, the
focus is the criterion to estimate the number of shocks and the main empirical
results is that there are two main shocks hitting US macroeconomy; in our paper
we take this evidence as the starting point and go on by identifying the shocks
on economic grounds and estimating the impulse-response functions.

Our results are partially at odds with the picture emerging from ACD. We
agree that the demand shock is the most important cyclical shock and is discon-
nected with long run real activity. On the other hand, our demand shock has
important effects on inflation and our supply shock explains a sizable fraction
of the cyclical variance of output. We believe that the difference in the results
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arises because, as shown in Granese (2024), the small-scale VAR used in ACD
is susceptible to informational deficiency problems, that can be avoided with a
data-rich environment like a factor model.

Our paper is also related to Furlanetto et al. (2021), since our identification
scheme, albeit based on frequency domain techniques, is similar to theirs from
a substantive economic point of view. In contrast with their findings, where
the demand shock is found to have long run effects, our demand shock does not
affect real per-capita GDP and labor market in the long run. The differences
can be probably attributed to the different sample used in the analysis. In their
baseline exercise, the sample used is shorter than ours. With a longer sample,
their results become more in line with ours (see their Figure 10).

Our findings regarding the joint dynamics of inflation and real activity over
the business cycle align well with the evidence presented in Bianchi et al. (2023),
who employs a Trend-Cycle VAR model.2

Finally, our results are largely in line with those of Francis and Kindberg-
Hanlon (2022), even though the model and the method used here are different. In
that paper a SVAR is used and variance maximization is coupled with additional
identification constraints, whereas here we rely on a structural factor model and
do not impose further constraints.

The paper is structured as follows. In Section 2 we present the factor model
setup and a comprehensive treatment of frequency domain identification. In
Section 3 we present the design of our empirical analysis, with special focus
on our two-stage identification procedure. In Section 4 we present the results.
Section 5 concludes.

2. Frequency domain identification in the factor model

2.1. The Structural Dynamic Factor Model

Let xt be a n-dimensional, zero-mean stationary vector of observable economic
variables. The vector xt is part of an infinite dimensional panel of time series.

2In that paper, a Trend-Cycle VAR is used to identify the shock that explains most of the
cyclical component of unemployment. This shock produces IRFs very similar to those of our
demand shock and accounts for about 30% of the inflation cycle.
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The vector admits the representation

xt = χt + ξt = ΛFt + ξt (1a)

C(L)Ft = ϵt (1b)

ϵt = Rut (1c)

where Λ is a n × r matrix of coefficients, Ft is a r × 1 vector of unobserved
factors and ξt a n × 1 vector of idiosyncratic components (see Forni et al. (2008)
for further details). The common component χt = ΛFt and the idiosyncratic
component are assumed to be orthogonal. The vector ϵt ∼ WN(0, Σε), C(L) is
an r × r, stable polynomial matrix, ut is a q × 1 vector of orthonormal structural
shocks (with q ≤ r) and R is a r × q matrix of coefficients and has maximum
rank q.

By inverting the matrix C(L) we get Ft = C(L)−1ϵt = C(L)−1Rut, so that
the dynamic relationship between ut and the common components is

χt = ΛC(L)−1Rut = B(L)ut. (2)

Then, we have the structural dynamic representation

xt = B(L)ut + ξt, (3)

where the macroeconomic variables are represented as driven by a few pervas-
ive structural shocks, loaded with the impulse response functions in B(L), plus
measurement error. We are interested in the effect of structural shocks on the
common components χt of some key series, i.e. on the variables obtained by re-
moving measurement errors, so we are neglecting the idiosyncratic components.
Notice that representation (3) is not unique, since the impulse response functions
are not identified. Forni et al. (2009) (Proposition 2), show that identification is
achieved up to orthogonal rotations, just like in structural VAR models.

We define R = SH, where S is an r × q matrix such SS ′ = Σε and H is
a q × q orthonormal matrix (a matrix such that H−1 = H ′) which imposes the
identifying restrictions. Thus, the structural representation for χt is

χt = ΛC(L)−1SHut = D(L)Hut = B(L)ut (4)
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and the structural shocks ut = R−1ϵt = H ′S−1ϵt = H ′ηt, where ηt ∼ WN(0, I).3

As in SVAR analysis, if a subset of f (f < n) shocks are identified (partial
identification) only f columns of H have to be pinned down in order to get the
corresponding f columns of the structural impulse response functions. In the
next section we discuss how to implement shock identification in the frequency
domain.4

2.2. Frequency band targets

The identification approach is based on the maximization/minimization of the
contribution of the structural shock to the variance or the comovements of a set
of variables of interest in a given frequency band, which we refer to as targeted
frequency band covariances. In this subsection we define the objects to be re-
stricted to reach identification. In the two following subsections we show how to
implement the identification.

Let us go back to representation (4). Letting
[
θ, θ

]
be a band of frequencies

such that 0 ≤ θ ≤ θ ≤ π, the comovements between the components of χt with
period between 2π/θ and 2π/θ are measured by the frequency band covariance
matrix

V
(
θ, θ

)
=
∫ θ

θ
ℜ
(

D
(
e−iθ

)
D
(
eiθ
)′
)

dθ

where ℜ (z) denotes the real part of z.5 The matrix V (θ, θ) captures the entire
frequency band volatility of the variables. The variance (or covariance) con-
tribution of any generic shock h′ηt, where h is such that h′h = 1, to V

(
θ, θ

)
is:

Ψ
(
θ, θ

)
=
∫ θ

θ
ℜ
(

D
(
e−iθ

)
hh′D

(
eiθ
)′
)

dθ. (5)

Our identification approach consists of imposing restrictions on the contribution
of the shock to the elements of the frequency band covariance matrix.

Let Ψlk

(
θ, θ

)
be the l, k element of Ψ

(
θ, θ

)
. This is the objective function to

3When q < r, S−1 is meant to be the left inverse.
4This is not the first paper using frequency domain techniques to identify structural shocks

—in addition to ACD, let us mention Christiano et al. (2006), Sarno et al. (2007), DiCecio and
Owyang (2010), Giannone et al. (2019), Dieppe et al. (2021). It is however, to our knowledge,
the first paper providing a comprehensive theory of identification in frequency domain and to
use it in a Dynamic Factor Model.

5The diagonal elements of the spectral density matrix are real while the off-diagonal ele-
ments, the cross-spectra, are typically complex, with a real part, called co-spectrum, and an
imaginary part. The integral of the co-spectrum of two variables over a given frequency band
is the covariance of the two variables over that band, while the integral of the cross-spectrum
is the cross covariance.

8



be restricted to reach identification, in the case of a single target. The specifica-
tion of the objective function can be properly defined for different targets (l, k)
and/or frequency band, according to the identification scheme. For instance, if
the interval [θ, θ] is the cyclical band, the diagonal element Ψ11

(
θ, θ

)
is the cyc-

lical variance of x1t attributable to the combination h′ηt. This is the objective
function, for instance, used in ACD to identify the business cycle shock. The
off-diagonal term Ψ12

(
θ, θ

)
is the cyclical covariance between variable x1t and

x2t attributable to the same shock. In the empirical section below, one of our
identification schemes targets the covariance between GDP growth and inflation.

It is also possible to target more than one element of Ψ
(
θ, θ

)
. This multiple-

target approach is a key point to implement the identification strategy used
in the empirical section below. Letting (M1, N1), (M2, N2), . . . , (Mm, Nm)
be the m entries of interest, we can target a weighted sum of such entries∑m

k=1 ωkΨMkNk

(
θ, θ

)
where ωk are weights assigned to each element of the sum.

We show in the Appendix A that the multi-target variable can be written as

m∑
k=1

ωkΨMkNk

(
θ, θ

)
= h′OMN

(
θ, θ

)
h (6)

where OMN is defined in equation (12) in Appendix A.

2.3. Identification constraints

The identification strategy pursued in this paper is based on quantitative restric-
tions. Qualitative constraints could also be considered and their implementation
is similar to that in the time domain.6

Let us assume that the shock of interest is the first one, u1t, and that
such shock is the one maximizing Ψlk

(
θ, θ

)
, in the case of a single target, or∑m

k=1 ωkΨMkNk

(
θ, θ

)
, in the case of multiple target. In this case h1, the first

column of the matrix H, is formally given by

h1 = arg max
h∈Rq

h′ OMN

(
θ, θ

)
h s.t. h′h = 1. (7)

It is easily seen that h1 is equal to the eigenvector associated to the largest
eigenvalue of the matrix OMN(θ, θ) (Uhlig, 2004), and delivers the shock u1t =
h′

1ηt. This is a generalization of the approach used in ACD to identify the
6That is, we could draw rotation matrices, or rotation vectors h, and then retain the draws

satisfying the desired restrictions on the elements of interest of the frequency band covariance.
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business cycle shock. In that paper, a single target is used, with k = l, so
that the objective function is Ψll

(
θ, θ

)
. We can then retrieve the corresponding

structural IRFs as
b(L) = D(L)h1 = ΛC(L)−1Sh1. (8)

where b(L) is a column of B(L). If the researcher is interested in identifying
more than one shock, the procedure can be extended to identify multiple shocks
sequentially: first, obtain the shock with the largest contribution to the frequency
band covariance, then obtain the shock orthogonal to the first, solving another
maximization problem, and so on. Suppose, without loss of generality, that the
shocks u1t, u2t, ..., uqt, have to be identified. The vector h1 is found according to
equation (7). The vectors hj with 1 < j ≤ q are found solving the following
maximization problem:

hj = argmax
h∈Rq

h′ OMN

(
θ, θ

)
h s.t.

h′h = 1,

h′hℓ = 0, ℓ < j.
(9)

Notice that the objective function can in principle be appropriately redefined for
each shock by changing the targets (M, N) and/or the frequency band

[
θ, θ

]
,

according to the identification scheme (even if for notational simplicity we avoid
to explicit the possible dependence on j of M, N, θ and θ).

Here are some examples.
For instance, we could identify the aggregate supply shock as the one max-

imizing the long run variance of GDP growth and then identify the aggregate
demand shock as the shock orthogonal to the supply shock, which maximizes the
cyclical variance of GDP growth. In this case, we change the frequency band
of interest in the two maximization problems. Another example is the identi-
fication of a real and a nominal shock. We could first maximize the variance
of GDP growth and then maximize the variance of inflation. In this case, the
target would change in the two maximization problems. Moreover, we might
be interested in identifying the two main business cycle shocks: first, the shock
with the largest contribution to the frequency band covariance, then the shock
orthogonal to the first with the second largest contribution. In this case, the
target and the frequency band are assumed to be the same for all shocks.

It is also possible to use the sequential procedure just explained to nest two
sets of quantitative constraints, i.e. two step procedure, by maximizing the
appropriate target functions on the corresponding frequency band. For instance,
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in the first step, two main shocks are obtained by maximizing the appropriate
target function on the band [0 2π/6], which excludes fluctuations of less than
18 months, of little interest for macroeconomic analysis. In the second step two
structural shocks are found by combining the two shocks obtained in the first
step. This is the route we follow in this paper and the specific approach will be
discussed below.

Of course, in the above problems, the argmax can be replaced by the argmin.
For instance if we want to identify a shock that has only transitory effects on a
given variable, the long run variance of such a variable has to be minimized.

3. Empirical Approach

3.1. Data and estimation procedure

Coming to the empirical application, we use the quarterly dataset for high di-
mensional macroeconomic analysis recently developed by Granese (2024).

The n × T dataset is made up of 114 US quarterly series, covering the period
1961:I to 2019:IV. Most series are from the FRED-QD database.7 TFP data
series are from John Fernald’s website (Fernald, 2012) while the Confidence data
are available on the Michigan survey of consumer website.8 Following standard
practice, consumption includes non-durables and services, while investment has
been broadly defined to include consumer durables. Both measures are deflated.
Monthly data, like the macroeconomic uncertainty measure estimated by Jurado
et al. (2015), have been aggregated to get quarterly figures. Finally, it is worth
noting that most series are expressed in per capita terms, dividing by population
aged 16 years or more (civilian non-institutional population series) and stock
market data have been deflated by the GDP deflator. We transform each series to
reach stationarity. The complete list of variables and transformations is provided
in Appendix (C).

The analysis focuses on a subset of 13 macroeconomic series of interest: (1)
the log difference of the real per capita GDP; (2) the log difference of real per
capita consumption, defined as the sum of non-durable consumption and services;
(3) the log difference of real per capita investment, computed as the sum of fixed
investment and durable consumption; (4) the unemployment rate, (5) the log of

7The FRED-QD is a large (248 series) quarterly macroeconomic database developed by
McCracken and Ng (2020).

8http://www.sca.isr.umich.edu/
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real per capita hours worked; (6) the inflation rate, defined as the log difference of
the GDP deflator; (7) labour productivity; (8) the cumulated sum of the utility-
adjusted total factor productivity; (9) the Federal Funds rate; (10) the risk spread
between Moody’s Baa Corporate Bond Yeald and the 10-Year Treasury Constant
Maturity Rate; (11) Shiller’s real S&P500 stock price index; (12) the measure of
macroeconomic uncertainty by Jurado et al. (2015), JLN henceforth, at the three-
month horizon, and (13) the Michigan University confidence index component
concerning expected business conditions for the next five years (BC5Y).9

We estimate the first two equations (1a)-(1b) using 11 factors and the two
step estimation technique discussed in Forni et al. (2009), (see Appendix B for
the details).

To conclude this section, let us look at the common-idiosyncratic variance
decomposition of the key variables above with r̂ = 11 static factors, shown
in Table 1. The common variance of the main macroeconomic aggregates like
GDP, consumption, investment and unemployment rate are 94, 82, 90 and 94
percent of total variance, respectively. These numbers seem compatible with the
measurement error interpretation of the idiosyncratic components.

3.2. Identification: A two-step procedure

Aim of this work is to provide a global and parsimonious description of the
main forces driving the macroeconomy overall, at both cyclical and long run
frequencies. There are two main questions we want to address. First, how many
shocks are needed to explain the bulk of fluctuations in the main macroeconomic
aggregates? Second, what are they and what are their effects? To address these
two questions we develop a two-step strategy based on the econometric theory
presented in the previous section.

First Step. First of all, we find the q shocks which explain the bulk of
cyclical and long run variance of the main macroeconomic aggregates, both real
and nominal. To do this, we solve maximization problems (7) and (9) with a
multiple target and in the frequency interval [θ θ] = [0 2π/6] (the trend-cycle
band henceforth), which corresponds to periodicities greater than 18 months,

9BC5Y summarizes responses to the following forward-looking question: “Turning to eco-
nomic conditions in the country as a whole, do you expect that over the next five years we will
have mostly good times, or periods of widespread unemployment and depression, or what?”.
The anticipation properties of this variable on future movements in economic activity in gen-
eral and TFP in particular are widely discussed in Barsky and Sims (2012) and Beaudry and
Portier (2006).
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thus excluding high frequency fluctuations of less than 18 months, of little in-
terest for macroeconomic analysis.10 More specifically we include in the target
the variances of the growth rates for trended real activity variables (i.e. GDP,
consumption, investment, TFP, labour productivity) as well as the variances of
other real and nominal variables (i.e. unemployment rate, hours worked, inflation
rate, Federal Funds Rate and S&P500 stock price index). The weights are given
by the reciprocals of the (frequency band) variances of the variables, computed
as the average of the spectral densities in the relevant frequency interval.

Let us set M1 and N1 equal to the position of GDP in the data set, M2 and
N2 equal to the position of consumption, etc., and call gj, for j = 1, ..., q, the q

vectors solving the maximization problem gj = arg max g′OMN

(
θ, θ

)
g subject to

g′g = 1 and g′gl = 0 for l < j. From the maximization we obtain the r×q matrix
G = [g1 g2 . . . gq]. We show below that two shocks are enough to explain the bulk
of cyclical and long run fluctuations in the main macroeconomic aggregates.

Second Step. The shocks g′
1ηt, ..., g′

qηt (as discussed in Appendix A2, ηt

is the vector of Cholesky shocks) lack of any economic interpretation: they are
simply the largest contributors to the frequency band variances ordered in de-
creasing order of importance. We therefore move on to the second step and
identify two structural shocks. We use two identification schemes.

Identification I. We identify a demand shock and a supply shock using a
novel approach. The demand shock is obtained by maximizing the covari-
ance of GDP growth and the inflation rate at business cycle frequencies.
The supply shock is automatically identified by the orthogonality condi-
tion as the shock minimizing such covariance. This identification scheme
is related to the one recently used by Furlanetto et al. (2021), in that the
demand shock is defined on the basis of the comovements of output and
inflation and can in principle affect output in the long run.11

Identification II. We identify a permanent and a transitory shock. The per-
manent shock is identified as the one that explains most of the long run
variance12 of trending real activity variables, i.e. GDP growth, TFP, con-

10The band [0 2π/6] includes: business-cycle frequencies, [2π/32 2π/6], corresponding to
cycles between 18 months and 8 years, long cycles, [2π/80 2π/32), which includes waves ranging
from 8 and 20 years, and the long run, [0 2π/80), corresponding to cycles of 20 years or more,
with quarterly data.

11Note that unlike our identification scheme, the one used by Furlanetto et al. (2021) is
implemented in the time domain.

12The long run is defined as frequencies in the interval [0 2π/80), corresponding to cycles of
20 years or more.
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sumption growth, investment growth and labor productivity. The transit-
ory shock is automatically identified by the orthogonality condition as the
one minimizing the explained long run variance of the above variables. The
effects on cyclical variance are left unrestricted, so that the two shocks can
explain whatever fraction of business cycle fluctuation in the real activity
variables, as well as the cyclical volatility of inflation and interest rate.

To impose the identifying restrictions in the second step we solve a problem
very similar to the one of equation (7). The only difference is that now we
rotate just the two main shocks obtained from the first step rather than the
r Cholesky shocks. Formally, let G∗ = [g1 g2] and consider the n × 2 matrix
D∗(L) = D(L)G∗. We combine the columns of D∗(L) and the shocks G∗′ηt by
solving the following maximization problem:

h∗
1 = argmax

h∗∈R2
h∗′O∗

MN

(
θ, θ

)
h∗ s.t. h∗′h∗ = 1 (10)

Where O∗
MN

(
θ, θ

)
is defined as in formula (12) of Appendix (A) but using

D∗(L) instead of D(L). and h∗ and h∗
1 are 2-dimensional orthonormal vectors.

In a context with two structural shocks, the solution to (10) is enough to
identify simultaneously both h1 = G∗h∗

1 and h2 = G∗h∗
2, since the vector h∗

2 is
pinned down by the orthogonality restrictions. The structural impulse-response
functions of the two shocks are the entries of D(L)[h1 h2] = D∗(L)[h∗

1 h∗
2] and the

two structural shocks are [h1 h2]′ηt. For the two identifications, the specification
of the objective function is the following:

Identification I: the frequency interval is [θ θ] = [2π/32 2π/6]. M is the
position of GDP and N the position of inflation in vector xt.

Identification II: the frequency interval is [θ θ] = [0 2π/80], and M = N

is the vector whose elements are the positions of the real variables in the
vector xt.

4. Results

4.1. Two shocks

As explained above, in the first step of our procedure we select the two shocks
maximizing the explained variance of the main macroeconomic variables on the
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trend-cycle band, that is, on a frequency band including all the frequencies of
main interest for macroeconomic analysis. Table 2 reports, for each variable, the
percentage of variance jointly explained by the two shocks on the whole trend-
cycle band, on the business-cycle frequencies and on the long run, along with
the variance explained by the shock with the third largest contribution. The aim
is to see how large is the explained variance when only two shocks are selected
and how large is the variance we lose with respect to the specification with three
shocks.

The percentage of cyclical variance jointly explained by the two shocks is
about 76 for real per capita GDP growth, 70 for consumption, about 79 for
investment and the unemployment rate. We also see that two shocks are enough
to capture about 86% of cyclical inflation fluctuations, about 76% of the federal
funds rate and more than 82% of the risk spread, the JLN uncertainty measure
and BC5Y. We conclude that two shocks are enough to provide an accurate
description of the business cycle fluctuations in both real and nominal variables.

Turning to the long run, we see that the percentage of variance jointly ex-
plained by the two shocks is 81 for real per capita GDP growth, 82 for unem-
ployment rate, about 76 for consumption and about 66 for TFP. Two shocks
account for about 85% of inflation fluctuations, 86% of the FFR and risk spread,
and about 91% of uncertainty. Thus, two shocks not only account for the bulk
of business cycles fluctuations, but also explain the long run.

The variance that we lose by selecting two shock instead of three is negligible
for almost all variables, so the third shock is not large or pervasive enough to
be considered as a main driver of the US economy. The third shock captures
essentially the cyclical fluctuations of TFP, which are of little interest for our
analysis, because we are mainly interested in the long-run fluctuations of TFP.

All in all, our findings depict a picture of the US macroeconomy where two
shocks provide a complete and parsimonious characterization at both cyclical
and long run frequencies. This is in line with existing factor model evidence. As
pointed out in the introduction, Onatski (2009), using his test for the number
of shocks in a large dynamic factor model, cannot reject the null that there are
2 shocks against the alternative that there are from 3 to 7. ACFZ propose a
new consistent estimator for the number of shocks, the “Dynamic eigenvalue
Difference Ratio estimator” (DDR), that can be applied to single frequencies as
well as to frequency bands, and finds that the US macroeconomy is well described
by two major shocks. These results are in line with the evidence provided in
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papers such as Sargent and Sims (1977) and Giannone et al. (2005). To further
corroborate our results, we apply the DDR estimator to our dataset on the whole
interval [0 π] and on the trend-cycle band. The criterion selects two shocks on
both bands.13

4.2. Identification I: explained cyclical and long run variances

Table 3 presents the results for Identification I, where we identify a supply and
a demand shock based on the cyclical covariance between the inflation rate and
per capita GDP growth. The table reports the cyclical and long run variances
explained by the identified shocks. Notice that under this identification scheme
both the long run and cyclical variance contributions are left unrestricted. Thus,
we can verify whether the supply shock is permanent or not and whether the
demand shock is transitory or not.

A first key result is that the demand shock explains a negligible fraction of
the long run variance of trending real activity variables. It accounts for about
3% of GDP growth, less than 9% of consumption and hours worked, about 5%
of investment, 11% of unemployment and less than 1% of TFP. Hence, unlike
Furlanetto et al. (2021), we do not find evidence of hysteresis effects on output
and labor market. On the other hand, our demand shock explains most of the
long run variance in the inflation rate (about 65%) and the federal funds rate
(about 84%).

The supply shock explains the bulk of the long run variance of real activity
variables. It explains 78% of output growth, about 70% of consumption, invest-
ment and unemployment, and 55% of hours worked. Note that the percentage of
TFP long run variance explained by the supply shock is about 65%, in line with
the view that supply shocks include an important technological component.

Turning to the explained variances at business cycle frequencies, we see that
the demand shock is the main source of cyclical fluctuations in output growth.
It accounts for about 49% of GDP fluctuations. Still, the supply shock explains
a sizable fraction of GDP cyclical variance, about 27%. As for inflation fluctu-
ations, both demand and supply shocks explain an important part of cyclical
variance. The former captures about 44% while the latter explains 42%.

An interesting result emerges when comparing the importance of the two
shocks for GDP, consumption, investment, unemployment and hours worked.

13To compute the DDR estimator, we set the bandwidth parameter MT = ⌊a
√

T ⌋ with
a = 0.5.
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The supply shock is dominant for consumption. It accounts for about 41% of
business cycle fluctuations, whereas the demand shock explains less than 30%.
This result is in line with Cochrane (1994) and can be easily explained in the
light of permanent income theory: consumption is largely driven by permanent
income, and permanent shocks have larger effects on permanent income than
transitory shocks (Quah, 1990).14

The demand shock is also dominant for unemployment and investment. The
cyclical variance of unemployment explained by our demand shock is about 50%,
whereas the variance due to the supply shock is 29%. This result is in line with
the evidence in Blanchard and Quah (1989), where the aggregate demand shock,
the transitory one, plays a major role for unemployment fluctuations. As for
investment, the demand shock accounts for about 55% of the cyclical variance,
whereas the permanent shock accounts for only 24%. A possible explanation is
that private investment is closely related to credit market conditions, which in
turn are largely driven by demand. Indeed the demand shock explains almost
all cyclical variance of the risk spread – about 77%, as against a scanty 11%
explained by the supply shock.

A few additional observations are in order. First, the forward-looking measure
of consumer confidence (BC5Y) is mostly explained by the supply shock, both
at business cycle frequencies and in the long run. This finding seems consistent
with Barsky and Sims (2012) and with the “news” interpretation of confidence
indicators: consumer confidence is likely to reflect information about future pro-
ductivity rather than animal spirits.

Second, the federal funds rate is explained almost exclusively by the demand
shock, both at cyclical frequencies and in the long run. This is consistent with
the idea that monetary policy follows a systematic rule according to which the
nominal rate reacts positively to current inflation and real activity changes, in
order to stabilize cyclical fluctuations. Supply shocks induce negative comove-
ments of inflation and GDP growth, so that monetary policy reacts weakly to
them.

Finally, both demand and supply have a sizable role in explaining JLN uncer-
tainty at cyclical frequencies. Demand shocks explain 46% while supply shocks
explain about 37%. If we interpret exogenous uncertainty shocks as demand

14Micro evidence suggests that individual choices of consumption and saving may differ from
the predictions of the permanent income theory. In particular, theories of liquidity-constrained
households are supported by empirical evidence. However, this does not preclude that at the
aggregate level consumption largely follows expectations about future income that are mainly
driven by permanent shocks.
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shocks, we are left with a lower bound of approximately 40% of endogenous un-
certainty fluctuations, induced by non-uncertainty shocks (that is, supply shocks
and other demand-side shocks, such as credit or monetary policy shocks). There-
fore, JLN macroeconomic uncertainty can be considered endogenous to a consid-
erable extent. This finding is broadly consistent with Ludvigson et al. (2021).

Figure 1 summarizes the above findings by reporting the variance decompos-
ition for the variables of interest. The figure reports the percentage of explained
variance of each shock, frequency by frequency. The pink area is the long run
frequency band, the lilac area is the business cycle frequency band. The blue
line refers to the permanent shock and the red line to the transitory shock. The
yellow line is the sum of the two.

The figure also provides additional information about the “long cycles” fre-
quency band, i.e. fluctuations of periodicity between eight and twenty years that
fall in the white area between the long run and the business cycle frequency
bands. The upper-left panel refers to GDP growth: long cycles are explained al-
most exclusively by the supply shock. The same result applies to all real activity
variables but unemployment. It follows that if the business cycle were defined by
including longer cycles, e.g. cycles with periodicity between 6 and 50 quarters
as suggested by Beaudry et al. (2020), the importance of the supply shock in
explaining real activity fluctuations would increase.15

4.3. Identification I: impulse response functions

Turning to the impulse response functions, Figure 2 overlaps the responses to
the supply shock of Identification I and the permanent shock of Identification II,
whereas Figure 3 overlaps the responses to the demand shock of Identification I
and the transitory shock of Identification II. The solid black lines are the point
estimates for Identification I, the cyan dashed lines are the point estimates for
Identification II and the dark and light gray areas are the 68% and 90% confidence
band, respectively, relative to Identification I.16

Let us now focus on responses to the supply shock, Identification I (black
lines, Figure 2). The shock has a large positive permanent effect on GDP and its
components and generates a temporary hump-shaped response of unemployment

15Beaudry et al. (2020) show that many macroeconomic aggregates appear to have a peak
in their spectral densities at periodicities between 32 and 50 quarters and that the implied
movements coincide with NBER cycle dating. For this reason, they argue that the definition
of the business cycle should be modified accordingly.

16The IRFs of Identification II with their confidence bands are reported in Appendix E.
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and hours worked. GDP increases immediately by around 0.2%, peaks around
the 10th quarter and converges to 1% in the long run. Investment follows a
similar pattern, peaking around 2.1%. The effect on consumption appears to be
smaller, reaching a maximum of about 0.8 percent in the long run. Unemploy-
ment behaves counter-cyclically and reaches a minimum of about -0.3% around
the 8th quarter. The supply shock generates a negative comovement between in-
flation rate and output growth. The former immediately falls by around -0.13%
and the effect is relatively short lived. The response of stock prices is positive
and persistent, peaking at 6 percent, while the risk premium, after a nearly zero
impact effect, decreases with a temporary hump-shape, reaching a minimum of
about -0.11%.

A few additional observations are in order. First, we see that systematic
monetary policy, as proxied by the federal funds rate, reacts negatively to the
supply shock on impact, with an insignificant response after about one year. This
suggests that systematic policy reacts more to inflation than to real activity.
However, the effect of the unit variance supply shock is relatively small, the
maximum being about 40 basis points, as against the 80 basis points of the
demand shock (black line, Figure 3). Second, the response of TFP to the supply
shock has an S shape which resembles the one typically found for the news
technology shock, with a relatively small impact effect (about 1.3) and a much
larger long run effect (about 3.5). This suggests that the supply shock includes
an important news shock component as in Beaudry and Portier (2006). The
significant positive impact effect of the supply shock on the consumer confidence
component BC5Y, documented above, is in line with this interpretation, given
the anticipation properties of this variable about future technology. Finally, JLN
uncertainty decreases immediately in response to positive supply shocks, with a
maximum effect at horizon one of about -0.025%. These movements in macro
uncertainty persist for about two years after the shock.

Figure 3 reports the impulse response functions to the demand shock, Iden-
tification I (solid black lines). The responses of real economic activity variables
are temporary and hump-shaped, peaking at horizon 3 or 4 (one year after the
shock). The effects are no longer statistically significant after about 2-3 years.
GDP has a positive impact effect of 0.4% and a peak of about 0.6%. Unem-
ployment falls at a minimum of around -0.3%, then shows a significant and short
lived rebound effect between the 12th and the 20th quarter, with a peak of about
0.15%. Investment shows a similar, albeit less pronounced and not significant
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rebound effect.
The response of inflation and the interest rate are very similar in their shape.

The former increases on impact by about 0.1%, peaks slightly higher, and con-
verges to zero afterward. The effect appears to be more persistent than that of
the supply shock. The interest rate increases in a hump-shaped pattern, reaching
a maximum of about 0.8%. As noted above, this suggests a very active behavior
of monetary policy, consistent with standard Taylor rules, implying a systematic
policy reaction to inflation and output. As expected, TFP essentially does not
react to the unit variance demand shock, the effect being not significant at all
horizons. For stock prices the effect is positive but very short lived, being signi-
ficant only on impact (about 2%). Thus, the stock market reacts more to supply
shocks than demand shocks. The effects on the risk premium are much larger and
short lived for demand shocks than for supply shocks. The shape of the impulse
response function of the risk premium, with a maximum effect on impact and
at lag 1 (about -0.3%), closely resembles the one of the excess bond premium
obtained in Gilchrist and Zakrajšek (2012). The result suggests that shocks re-
lated to credit and financial conditions represent an important component of our
demand shock.

4.4. Identification II

Let us now turn to Identification II, where we identify a permanent and a trans-
itory shock on real variables. Here the co-spectrum of inflation and GDP growth
is left unrestricted, so that, looking at the impulse-response functions, we can
verify whether the permanent shock is a supply shock and the transitory shock
is a demand shock.

More importantly, the two identification schemes provide very similar out-
comes. The matching is really striking: the correlation of the demand (supply)
shock of Identification I and the transitory (permanent) shock of Identification II
is higher than 0.99. In the literature, transitory shocks are often interpreted as
demand shocks, so that, finding such a strong and positive correlation provides
a sort of validation for our Indentification I.

Table 4 presents results for the variance decomposition. Notice first that
Identification II is successful in isolating a transitory shock. Indeed, the percent-
age of GDP growth, consumption and TFP long run fluctuations accounted for
by the transitory shock is negligible (1.7, 5.9 and 1.6% respectively). The vari-
ance decomposition results in the table are very similar to those obtained with
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Identification I. Once again, both shocks are important sources of business cycle
fluctuations in real economic activity. The permanent shock is more important
for consumption, while the transitory shock is more important for output growth,
unemployment and investment. Concerning inflation, both transitory and per-
manent shocks explain a large percentage of cyclical fluctuations. In particular,
the transitory shock is not disconnected from inflation, in that it accounts for
about 49% of cyclical variance, contrary to what found in ACD. This result is
not at all implied by our identification.

Turning to the impulse response functions, Figure 2 and Figure 3 compare
results of Identification II (cyan dashed lines) with those of Identification I (solid
black lines). The correspondence between the two identification schemes is strik-
ing. The key message is that our expansionary transitory shock raises inflation,
whereas our expansionary permanent shock reduces inflation.

Summing up, the general picture emerging from our empirical analysis is in-
consistent with the view that a single shock can explain US economic fluctuations,
as in standard RBC models (Kydland and Prescott, 1982). On the contrary, it
supports the view that the data are generated by shifts in both the supply and
the demand curve as in simple New Keynesian Models (see Galí, 2015). The
macroeconomy is driven by two main shocks: a supply shock having long-lasting
effects on real economic activity and a demand shock having only transitory ef-
fects. Both shocks explain a sizable part of business-cycle fluctuations. Moreover,
while the supply shock is dominant for consumption, the demand shock is dom-
inant for GDP, unemployment, hours and investment. These results are very
much in line with the papers by BQ and Cochrane (1994).

Our findings are partially at odds with those of ACD. On the one hand, our
demand shock is similar to ACD’s MBC shock in that it is disconnected from the
long run and explains a good deal of business-cycle fuctuations in real activity.
On the other hand, a sizable fraction of business-cycle fluctuations is explained
by our supply shock; moreover, our demand shock, unlike the MBC shock, is not
disconnected from inflation. Of course, we can in principle combine the supply
and the demand shock to obtain a shock which is disconnected from inflation,
but then the disconnection from the long-run is lost. We explore all possible
combinations of our two shocks in the online Appendix D . The main conclusion
of the exercise is that there is no way to get a shock that is disconnected from both
inflation and long-run real economic activity, as the ACD’s MBC shock. Why
our findings are different from ACD’s? As argued in the Appendix, a possible
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explanation is that ACD’s VAR is informationally deficient (see also Granese,
2024).

4.5. Robustness

In this subsection we conduct a few robustness exercises for Identification I.17

First, we test robustness to the inclusion of additional lags with respect to
the one lag baseline specification. We estimate the model with two, three (as
suggested by the AIC criterion) and four lags, respectively. Table 5 reports the
cyclical (top panel) and long run (bottom panel) variances accounted for by
the identified supply and demand shocks. The first two columns correspond to
our baseline specification, p = 1, while the remaining ones are for the alternative
specifications, p = 2, 3, 4. In addition, Panel (a) of Table 7 summarizes the above
findings by reporting, for each variable and shock, the maximum and minimum
shares of explained variance, as the lag order changes.

As for the business cycle, baseline results appear to be quite robust with
respect to changes in specification. The GDP growth variance explained by the
supply shock ranges from a minimum of 27% (baseline) to a maximum of 30%
(4 lags specification), while for the demand ranges from 47% (3 lags) to 51%
(4 lags). The investment variance explained by the supply shock ranges from a
minimum of 24% (baseline) to a maximum of 34% (4 lags specification), while
for the demand ranges from 49% (4 lags) to 55% (baseline). The finding that
consumption fluctuations are mostly explained by supply shocks is a fully robust
result. In the 3 lags specification, it explains 51% of the consumption cyclical
variance, while only 20% is explained by the demand shock, a difference of 31
percentage points. All in all, the demand shock is still the most important
cyclical shock for real activity, but the increase in the number of lags seems to
enhance the cyclical footprint of the supply shock, reinforcing our view that the
business cycle is driven by two main shocks.

The only sensitivity analysis worth noticing is the following. As lags increase,
the demand shock appears less tightly connected, in terms of variance contribu-
tions, to inflation fluctuations. The cyclical variance explained by the demand
shock ranges between a minimum of 17% (4 lags specification) to a maximum
of 44% (baseline) while for the supply shock it ranges from 42% (baseline) to
63% (4 lags). The demand shock is partially disconnected from inflation only
in the 4 lags specification in which, however, it accounts for 17% of inflation, as

17A number of robustness results for Identification II are reported in the online Appendix E.
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against the 7% found in ACD. For the transitory shock of Identification II, the
percentage of explained variance of inflation is somewhat more robust across lag
specifications, ranging between 29 and 49% (see Appendix E).18

Turning to the long run, the variance decomposition displays figures fairly
close to the baseline for most of the variables. For example, the output growth
long run variance explained by the supply shock varies from 67% (4 lags) to 78%
(baseline), while for the demand shock ranges from about 3% (3 lags and baseline
cases) to 11% (4 lags). The main conclusions about the long run contribution of
the two shocks are confirmed, except one: the finding that demand shock explains
most of the long run fluctuations in inflation (64% vs. 20% of the supply shock)
is not robust: for the 2, 3 and 4 lags specifications, demand explains 36, 21 and
13% percent, respectively, while supply explains 34, 26 and 36%.

Figures E.6 and E.7 in the online Appendix E display the impulse response
functions to the supply and the demand shocks, respectively, for different lag
specifications. All in all, the dynamic responses to supply shocks are similar to
those obtained in the baseline exercise, most of them lying within the baseline
confidence bands. As for the demand shock, the magnitude of responses is slightly
smaller only for inflation and interest rate, with similar shapes.

We now check the robustness of the results as the number of static factors
increases. In particular, we compare the results of our baseline specification
(r = 11) with four alternatives: r = 13, 15, 17, 20. Table 6 reports the cyclical
(top panel) and long run (bottom panel) variances accounted for by the iden-
tified supply and demand shocks. As the number of static factors changes, the
contribution of the identified shocks to the cyclical and long run variances of
the main macroeconomic variables does not change much. As in the previous
exercise, panel (b) of Table 7 summarizes the above findings by reporting, for
each variable and shock, the maximum and minimum shares of explained vari-
ance obtained as the factor specification changes. For example, the percentage
of cyclical variance explained by the demand shock varies between 49 and 52 for
GDP, depending on the specification of r, 25 and 29 for consumption, 53 and
55 for investment, and so on. The results become slightly sensitive only when
the number of static factors becomes very large with respect to the benchmark.
For example, the consumption cyclical variance explained by the supply shock
ranges between a minimum of about 26% (r = 17 and r = 20) to a maximum
of 41% (baseline case): when r = 17 and r = 20, supply is no longer dominant

18As suggested by a referee, in light of recent literature (Barnichon and Mesters, 2020) the
divorce of demand shocks and inflation could be more pronounced in recent subsamples.
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for consumption, although demand alone still cannot explain most of the cyclical
fluctuations.

The IRFs for the above exercise are reported in the online Appendix E (Fig-
ures E.8 and E.9). The responses are very much similar to the baseline, always
lying within the confidence bands.

Finally we consider two subsamples: the period 1989:I–2019:IV and the pre-
ZLB period 1961:I–2007:IV. The IRFs are reported in the online Appendix E,
Figures E.10 and E.11. All in all, results are reasonably similar to the baseline.
Note that in the former subsample inflation seems to be less responsive to both
demand and supply shocks, which is in line with the literature documenting a
flattening of the Phillips curve around the 1990s. Indeed, the beginning of the
first subsample (1989:I) is chosen to align to Del Negro et al. (2020).

5. Matching facts with a DSGE model

Our results about the existence of two main shocks should not be interpreted
as evidence against the empirical relevance of large-scale DSGE models with
multiple shocks as in Smets and Wouters (2007) or Justiniano et al. (2010). In-
deed, as observed in the Introduction, our shocks can be interpreted in a more
semi-structural perspective as representing two broad categories (demand and
supply) which can include a number of different shocks with similar character-
istics in terms of impulse response functions.

What we claim is that, independently of the model complexity, in order to
be supported by the data, the model should be able to generate our empirical
results once our identification procedure is applied to model-generated data.

In this section we apply our method to data generated from an off-the-shelves
classical DSGE model, the one in Justiniano et al. (2010), henceforth JPT. The
model is equipped with all the frictions that are considered necessary to capture
the persistence of macro data: habit persistence, adjustment costs to investment,
sticky prices, sticky wages, etc. The DSGE is hit by seven structural shocks:
monetary policy, technology, government spending, investment, price markup,
wage markup and intertemporal preference.

We use the same specification and parameterization as in JPT. We build the
large N dataset and the simulations as follows.

1. We apply the Kalman smoother to the DSGE using as observables the
closest versions of the 7 data series used by JPT in the estimation of their DSGE
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present in our dataset, namely GDP, investment, consumption, hours, wages,
interest rate and inflation and obtain smoothed estimates of all DSGE variables,
states and controls.

2. We project the n series of our dataset on the smoothed states of the DSGE
and collect the projection matrix, M. The matrix M captures the empirical
relationship between the states of the DSGE and the data.19

3. From the DSGE model we generate all states and stationary endogenous
variables. The seven shocks are orthogonal Gaussian i.i.d. with variance equal to
the variance estimated in JPT. For each simulation, the large dataset is produced
multiplying the matrix M just described to the simulated states.

4. Using step 3. we generate 100 artificial datasets. For each dataset, we
identify a supply and a demand shock using Identification I described in Section
3.2 and compute shocks and impulse response functions.

Figures 4 and 5 display the IRFs estimated on simulated data. We report
the mean and the 68% and 90% percentile of the simulated distribution of the
IRFS. The effects of the demand shock are qualitatively in line with the empirical
ones, with the noticeable exception of consumption, which exhibits a negative
IRF (albeit not statistically different from zero at the 90% level). Turning to the
supply shock, the IRFs of the simulated data are qualitatively similar to those
of actual data.

Table 8 shows the cyclical and the long-run variance contribution of supply
and demand shocks. From the Table we see that both supply and demand shock
are important drivers of the business-cycle, in line with our empirical results,
even if the relative importance for the GDP is reversed, the supply shock being
the most important one. For investment, the demand shock is the main driver,
in line with our empirical results. As for the long run variance, the supply shock
is the prominent one for real activity variables, in line with the data. Notice
however that the long-run fluctuations of investment are explained to a lesser
extent by the two shocks (60% as against 72%).

In order to understand what structural shock is captured by the estimated
demand and supply shocks, Table 9 displays the average across 100 simulations of
the correlation between the supply (demand) shock and each of the 7 structural
shocks. The identified demand shock is mainly capturing the investment shock,
while the supply shock is mainly capturing the technology shock and to a lesser

19This is the approach used in Boivin and Giannoni (2006) and Gelfer (2019) to match
large cross-sections to DSGE models. In their approach, observed variables are linear and
contemporaneous functions of the states.
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extent the investment and the price and wage markup shocks. Interestingly,
the result that demand shock is correlated with the investment shock is in line
with the results in JPT, where it is claimed that variability of output and hours
at business cycle frequencies are due to shocks to the marginal efficiency of
investment.

6. Summary and conclusions

In this paper we provide a comprehensive and stylized description of the U.S.
macroeonomy and investigate whether the traditional view has support in the
data. The evidence shows that this is the case.

The result is obtained assuming that the data follow a Structural Dynamic
Factor Model and using a novel identification technique in the frequency domain.
Our identification strategy unfolds in two steps. In the first step, we select the
two shocks with the largest contribution to the cyclical and long run variance
of the main real and nominal macroeconomic variables. We show that adding
a third shock would only marginally increase the explained variance. In the
second step, we rotate the two main shocks in order to give them an economic
interpretation. We implement two different identification schemes: in the first
one we define a demand and a supply with a completely novel criterion based
on the covariance between inflation and output, while in the second scheme we
define a permanent shock on real activity and a transitory one in a way that is
very close to BQ.

The two identification schemes provide strikingly similar outcomes in terms
of both variance decomposition and impulse response functions. The US mac-
roeconomy is driven by two main forces: a supply shock, which is permanent and
generates a negative comovement between prices and quantities, and a demand
shock, which is transitory and generates a positive comovement between prices
and quantities. We show empirically that demand shocks have only transitory
effect on real economic activity. Both demand and supply are important sources
of business cycle fluctuations. The demand shock is closely related to credit mar-
ket conditions and is the main business-cycle shock for output, investment and
unemployment, while the supply shock is to a large extent a news technology
shock and is the main business cycle shock for private consumption. Finally,
supply shocks not only account for almost all the long run fluctuations of real
activity, but also for long cycles (between 8 and 20 years).
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All in all, the evidence strongly support the very standard view of the macroe-
conomy where fluctuations in real economic activity and prices arise from shifts
in the aggregate demand and aggregate supply curves. From our perspective,
theory should look at the U.S. macroeconomy through the lens of a two-shock,
New Keynesian textbook framework, in order to be consistent with the data.
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Tables

Variables χ ξ

GDP 94.33 5.67
Consumption 81.62 18.38
Investment 89.54 10.46
Unemployment Rate 94.17 5.83
Hours Worked 83.53 16.47
Inflation 90.47 9.53
Labor Productivity 89.31 10.69
TFP 80.91 19.09
FFR 97.92 2.08
Baa-GS10 Spread 78.05 21.95
S&P500 94.47 5.53
JLN Uncertainty 3M 83.81 16.19
BC5Y 75.87 24.13

Table 1: Percentage of the variance explained by the estimated common and
idiosyncratic components of selected variables. Baseline specification: r = 11
static factors. We run the test proposed by Alessi et al. (2010).

Variables Trend-Cycle band Cyclical band Long Run band

First two Third First two Third First two Third

GDP 77.9 1.9 76.2 2.0 81.0 0.7
Consumption 70.8 1.0 69.7 0.6 75.6 1.6
Investment 79.9 0.5 78.9 0.6 72.3 0.2
Unemployment Rate 83.7 3.9 78.5 1.6 82.0 7.3
Hours Worked 65.3 14.6 58.1 12.6 63.5 16.6
Inflation 85.5 6.3 86.1 7.2 85.4 5.8
Labor Productivity 47.3 30.8 46.9 31.0 63.4 10.8
TFP 31.6 54.0 27.4 58.0 66.1 20.0
FFR 83.8 1.1 75.5 3.6 85.9 0.3
Baa-GS10 spread 85.0 0.8 87.8 0.3 86.1 1.0
S&P 500 real 55.0 2.0 57.1 1.3 30.9 6.0
JLM uncertainty 85.4 1.2 82.9 1.3 91.8 2.0
BC5Y 85.5 6.8 89.1 2.4 83.4 9.2

Table 2: Percentage of variance explained by the first two main shocks and
by the third for a few selected variables, by frequency band. Business cycle
frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with periodicity
between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80],
corresponding to periodicity greater than 20 years, with quarterly data.
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Variables Cyclical variance Long Run variance

Supply Demand Sum Supply Demand Sum

GDP 27.1 49.1 76.2 77.7 3.3 81.0
Consumption 40.6 29.2 69.7 66.9 8.7 75.6
Investment 23.6 55.3 78.9 67.8 4.5 72.3
Unemployment Rate 29.0 49.5 78.5 70.9 11.0 82.0
Hours Worked 26.3 31.9 58.1 54.7 8.8 63.5
Inflation 41.8 44.3 86.1 20.0 65.4 85.4
Labor Productivity 22.5 24.4 46.9 60.1 3.3 63.4
TFP 21.0 6.4 27.4 65.2 0.9 66.1
FFR 13.3 62.2 75.5 2.3 83.6 85.9
Baa-GS10 10.8 77.0 87.8 44.0 42.1 86.1
S&P500 33.3 23.8 57.1 30.4 0.5 30.9
JLN Uncertainty 3M 37.4 45.5 82.9 54.5 37.3 91.8
BC5Y 69.1 20.1 89.1 74.8 8.6 83.4

Table 3: Identification I. Percentage of variance explained by the supply (de-
flationary) shock and the demand shock for a few selected variables, by fre-
quency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding
to cycles with periodicity between 18 months and 8 years. Long run frequency
band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with
quarterly data.

Variables Cyclical variance Long Run variance

Perm Trans Sum Perm Trans Sum

GDP 29.6 46.6 76.2 79.3 1.7 81.0
Consumption 43.9 25.9 69.7 69.7 5.9 75.6
Investment 25.5 53.4 78.9 67.2 5.1 72.3
Unemployment Rate 30.1 48.4 78.5 68.7 13.2 82.0
Hours Worked 29.2 29.0 58.1 57.3 6.3 63.5
Inflation 37.2 48.8 86.1 15.5 69.9 85.4
Labor Productivity 23.0 23.9 46.9 58.3 5.1 63.4
TFP 20.7 6.7 27.4 64.5 1.6 66.1
FFR 10.9 64.5 75.5 0.9 85.0 85.9
Baa-GS10 12.9 74.8 87.8 49.2 36.9 86.1
S&P500 36.2 20.9 57.1 30.2 0.7 30.9
JLN Uncertainty 3M 39.8 43.1 82.9 49.2 42.5 91.8
BC5Y 71.2 17.9 89.1 71.5 11.9 83.4

Table 4: Identification II. Percentage of variance explained by the permanent
shock and the transitory shock for a few selected variables, by frequency
band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles
with periodicity between 18 months and 8 years. Long run frequency band: [0 ≤
ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with quarterly
data.
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Variables
P=1 P=2 P=3 P=4

Percentage of Explained Cyclical Variance
Supply Dem Supply Dem Supply Dem Supply Dem

GDP 27.1 49.1 26.5 49.7 29.0 47.4 30.4 51.2
Consumption 40.6 29.2 45.6 21.2 50.7 20.1 46.5 25.9
Investment 23.6 55.3 25.2 53.3 30.4 49.9 34.2 49.2
Unemployment 29.0 49.5 31.8 51.4 37.3 44.2 41.8 40.1
Hours Worked 26.3 31.9 23.2 40.1 28.0 32.5 27.3 34.1
Inflation 41.8 44.3 54.2 33.2 57.9 23.1 62.8 16.5
Labor Productivity 22.5 24.4 25.1 30.6 21.9 38.5 15.9 40.7
TFP 21.0 6.4 20.5 8.7 16.6 14.0 12.7 10.9
FFR 13.3 62.2 21.6 55.6 27.0 41.0 32.2 36.8
Baa-GS10 10.8 77.0 14.0 72.9 22.1 60.1 23.4 55.9
S&P500 33.3 23.8 32.3 21.1 26.0 33.6 25.1 35.2
JLN Uncertainty 37.4 45.5 41.5 42.4 44.0 41.3 47.6 38.3
BC5Y 69.1 20.1 68.4 20.9 68.8 19.9 69.4 21.1

Percentage of Explained Long Run Variance
Supply Dem Supply Dem Supply Dem Supply Dem

GDP 77.7 3.3 69.6 5.2 71.4 2.3 66.5 11.3
Consumption 66.9 8.7 52.8 10.9 57.9 2.8 52.0 9.8
Investment 67.8 4.5 74.5 1.1 77.3 1.1 76.7 4.2
Unemployment 70.9 11.0 81.2 6.0 84.6 4.6 85.7 4.9
Hours Worked 54.7 8.8 50.5 21.2 63.3 13.1 53.9 24.1
Inflation 20.0 65.4 33.6 36.3 26.3 20.8 36.3 13.2
Labor Productivity 60.1 3.3 65.1 0.5 76.4 0.2 74.0 5.0
TFP 65.2 0.9 60.3 0.7 67.1 1.3 63.8 5.5
FFR 2.3 83.6 12.4 66.5 9.2 42.6 18.8 39.0
Baa-GS10 44.0 42.1 23.6 35.3 27.9 14.7 21.2 18.0
S&P500 30.4 0.5 37.5 0.1 43.1 0.8 46.2 1.5
JLN Uncertainty 54.5 37.3 70.8 21.5 68.8 17.6 80.5 9.5
BC5Y 74.8 8.6 85.5 1.0 88.2 1.3 91.8 0.4

Table 5: Identification I: Percentage of variance explained by the supply
shock and the demand shock for a few selected variables, by frequency band,
according to different lags order: p = [1 2 3 4]. Baseline specification: p = 1.
Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with
periodicity between 18 months and 8 years. Long run frequency band: [0 ≤
ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with quarterly
data.
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Variables
R=11 R=13 R=15 R=17 R=20

Percentage of Explained Cyclical Variance
Supp Dem Supp Dem Supp Dem Supp Dem Supp Dem

GDP 27.1 49.1 22.2 51.8 23.8 49.0 18.2 50.9 18.0 50.8
Consumption 40.6 29.2 30.4 28.4 31.0 25.4 26.1 28.6 26.6 27.5
Investment 23.6 55.3 24.3 54.1 25.6 52.8 22.1 55.2 21.6 53.7
Unemployment 29.0 49.5 30.6 46.7 30.9 44.6 27.4 51.8 28.2 49.9
Hours Worked 26.3 31.9 19.8 32.3 23.5 28.4 18.2 29.7 19.2 31.5
Inflation 41.8 44.3 45.0 30.6 40.8 29.1 43.5 30.7 44.5 28.9
Labor Productivity 22.5 24.4 18.1 29.0 20.3 27.2 16.6 32.5 17.8 33.8
TFP 21.0 6.4 14.5 5.7 16.4 5.8 20.4 3.9 17.9 3.8
FFR 13.3 62.2 24.9 52.3 23.8 52.9 15.7 47.6 17.0 45.7
Baa-GS10 10.8 77.0 13.0 72.1 13.1 67.4 12.7 49.1 12.6 49.3
S&P500 33.3 23.8 25.6 32.3 26.9 31.7 19.7 38.0 16.7 36.9
JLN Uncertainty 3M 37.4 45.5 43.8 36.7 43.5 36.9 43.2 33.7 42.9 33.7
BC5Y 69.1 20.1 54.1 20.2 47.8 15.5 45.3 14.4 43.7 13.3

Percentage of Explained Long Run Variance
Supp Dem Supp Dem Supp Dem Supp Dem Supp Dem

GDP 77.7 3.3 74.7 6.1 75.4 5.6 67.9 4.8 69.1 6.5
Consumption 66.9 8.7 60.9 9.5 61.0 8.3 56.7 8.8 57.0 10.2
Investment 67.8 4.5 68.4 2.5 68.1 2.9 64.9 1.4 64.4 1.7
Unemployment 70.9 11.0 78.0 7.8 73.0 8.6 74.0 10.0 74.8 9.3
Hours Worked 54.7 8.8 52.8 12.6 50.9 11.0 55.8 10.3 53.8 10.9
Inflation 20.0 65.4 22.6 47.7 20.4 48.6 19.1 47.4 20.7 46.0
Labor Productivity 60.1 3.3 62.0 1.4 62.2 1.8 69.8 0.6 70.3 0.2
TFP 65.2 0.9 65.5 0.1 65.3 0.1 70.4 0.3 68.7 0.7
FFR 2.3 83.6 6.0 70.5 5.0 71.6 3.8 69.8 4.9 67.9
Baa-GS10 44.0 42.1 38.5 33.4 37.2 34.1 28.8 23.6 27.6 25.6
S&P500 30.4 0.5 29.7 1.9 29.0 1.8 22.6 1.2 22.4 1.0
JLN Uncertainty 3M 54.5 37.3 67.0 23.7 61.5 25.3 54.3 29.3 57.7 26.5
BC5Y 74.8 8.6 82.7 4.2 79.9 4.8 80.8 4.5 79.8 3.5

Table 6: Identification I: Percentage of variance explained by the Demand
shock and the Supply shock for a few selected variables, by frequency band,
according to the number of static factors: r = [11 13 15 17 20]. Baseline specific-
ation: r = 11 static factors. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years. Long
run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than
20 years, with quarterly data.
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(a) Robustness Identification I: Maximum and Minimum percentage value
of explained variance according to different lags order: p = [ 1 2 3 4 ].
Baseline specification: p = 1 lag.

Variables
Cyclical Variance Long Run Variance

Supply Demand Supply Demand
Min Max Min Max Min Max Min Max

GDP 26.5 30.4 47.4 51.2 66.5 77.7 2.3 11.3
Consumption 40.6 50.7 20.1 29.2 52.0 66.9 2.8 10.9
Investment 23.6 34.2 49.2 55.3 67.8 77.3 1.1 4.5
Unemployment 29.0 41.8 40.1 51.4 70.9 85.7 4.6 11.0
Hours Worked 23.2 28.0 31.9 40.1 50.5 63.3 8.8 24.1
Inflation 41.8 62.8 16.5 44.3 20.0 36.3 13.2 65.4
Labor Productivity 15.9 25.1 24.4 40.7 60.1 76.4 0.2 5.0
TFP 12.7 21.0 6.4 14.0 60.3 67.1 0.7 5.5
FFR 13.3 32.2 36.8 62.2 2.3 18.8 39.0 83.6
Baa-GS10 10.8 23.4 55.9 77.0 21.2 44.0 14.7 42.1
S&P500 25.1 33.3 21.1 35.2 30.4 46.2 0.1 1.5
JLN Uncertainty 3M 37.4 47.6 38.3 45.5 54.5 80.5 9.5 37.3
BC5Y 68.4 69.4 19.9 21.1 74.8 91.8 0.4 8.6

(b) Robustness Identification I: Maximum and minimum value of explained
variance according to the number of static factors: r = [ 11 13 15 17 20 ].
Baseline specification: r = 11 static factors.

Variables
Cyclical Variance Long Run Variance

Supply Demand Supply Demand
Min Max Min Max Min Max Min Max

GDP 18.0 27.1 49.0 51.8 67.9 77.7 3.3 6.5
Consumption 26.1 40.6 25.4 29.2 56.7 66.9 8.3 10.2
Investment 21.6 25.6 52.8 55.3 64.4 68.4 1.4 4.5
Unemployment 27.4 30.9 44.6 51.8 70.9 78.0 7.8 11.0
Hours Worked 18.2 26.3 28.4 32.3 50.9 55.8 8.8 12.6
Inflation 40.8 45.0 28.9 44.3 19.1 22.6 46.0 65.4
Labor Productivity 16.6 22.5 24.4 33.8 60.1 70.3 0.2 3.3
TFP 14.5 21.0 3.8 6.4 65.2 70.4 0.1 0.9
FFR 13.3 24.9 45.7 62.2 2.3 6.0 67.9 83.6
Baa-GS10 10.8 13.1 49.1 77.0 27.6 44.0 23.6 42.1
S&P500 16.7 33.3 23.8 38.0 22.4 30.4 0.5 1.9
JLN Uncertainty 3M 37.4 43.8 33.7 45.5 54.3 67.0 23.7 37.3
BC5Y 43.7 69.1 13.3 20.2 74.8 82.7 3.5 8.6

Table 7: Percentage of variance explained by the supply shock and the de-
mand shock (Identification I) for a few selected variables, by frequency band.
Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles
with periodicity between 18 months and 8 years. Long run frequency band:
[0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with
quarterly data.
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Variables Cyclical variance Long Run variance

Supply Demand Sum Supply Demand Sum
GDP 46.3 39.4 85.8 69.6 9.3 79.0
Consumption 18.8 22.8 41.6 57.6 13.2 70.7
Investment 35.1 51.8 87.0 46.9 13.6 60.5
Hours 38.3 42.9 81.2 34.2 28.8 63.0
Inflation 31.6 38.0 69.6 47.2 15.4 62.6
Interest rate 32.1 26.7 58.7 26.1 25.2 51.3

Table 8: Identification I on simulated data. Percentage of variance explained
by the supply (deflationary) shock and the demand shock for a few selected
variables, by frequency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years. Long
run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than
20 years, with quarterly data. Average across 100 simulations.

Shocks Supply Demand

Monetary p. 0.03 0.01
Technology 0.44 0.10
Government 0.01 0.03
Inv. spec. 0.17 0.61
Price mkp 0.14 0.01
Wage mkp 0.11 0.08
Preference 0.02 0.06

Table 9: Correlation of supply (demand) shocks with respect to each of the
7 DSGE structural shocks, average across 100 simulations.
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Figures

Figure 1: Identification I: Spectral Decomposition for a few selected vari-
ables, frequency by frequency. The figure reports the percentage of explained
variance. Blue line: Contribution of the supply shock; Red line: Contribution
of the demand shock; Yellow line: sum. Pink shadowed area: Long run fre-
quencies (>80 quarters); Lilac shadowed area: Business Cycle frequencies (6-32
quarters).
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Figure 2: Impulse response functions of the Supply shock (Identification
I, black line) and the Permanent shock (Identification II, cyan dashed
line). The dark gray and light gray areas are the 68% and 90% confid-
ence bands, respectively, for Identification I.
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Figure 3: Impulse response functions of the Demand shock (Identification
I, black line) and the Transitory shock (Identification II, cyan dashed line).
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively, for Identification I.
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Figure 4: Identification I: impulse response functions of demand shock. Sim-
ulated data from the DSGE model in Justiniano et al. (2010). The dark gray
and light gray areas are the 68% and 90% confidence bands, respectively, for
Identification I.

Figure 5: Identification I: impulse response functions of supply shock. Sim-
ulated data from the DSGE model in Justiniano et al. (2010). The dark gray
and light gray areas are the 68% and 90% confidence bands, respectively, for
Identification I.
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Appendices for Online Publication

A. Frequency domain identification

In this Appendix we show how to target multiple elements of the matrix Ψ
(
θ, θ

)
appearing in equation (5). We can write the l, k element as Ψlk

(
θ, θ

)
= ElΨ

(
θ, θ

)
E ′

k

where El is the l-th row of the n-dimensional identity matrix. Using equation
(5), we have20

Ψlk

(
θ, θ

)
= h′

[∫ θ

θ
ℜ
(

D
(
e−iθ

)′
E ′

lEkD
(
eiθ
))

dθ

]
h.

The contribution of the shock h′ηt to the weighted sum ∑m
k=1 ωkΨMkNk

(
θ, θ

)
is given by

h′
[∫ θ

θ
ℜ
(

D
(
e−iθ

)′ m∑
k=1

ωkE ′
Mk

ENk
D
(
e−iθ

))
dθ

]
h

where ωk are the weights, to be chosen by the researcher. The weighted sum∑m
k=1 ωkE ′

Mk
ENk

= P ′
MΩPN , where

PM =
(
E ′

M1 , E ′
M2 , . . . , E ′

Mm

)′

and
PN =

(
E ′

N1 , E ′
N2 , . . . , E ′

Nm

)′

are m × n matrices, and Ω = diag (ω1, ω2, . . . ωm) is m × m matrix.
Hence the multi-target can be written as

m∑
k=1

ωkΨMkNk

(
θ, θ

)
= h′OMN

(
θ, θ

)
h (11)

where
OMN

(
θ, θ

)
=
∫ θ

θ
ℜ
(

D
(
eiθ
)′

P ′
MΩPND

(
e−iθ

))
dθ. (12)

This is the objective function of our identification problem, in the case of multiple
targets. Of course, this objective function reduces to the single target objective
function in the case m = 1.

An example of multiple-target identification is the cyclical variance of a set of
real economic activity variables: one could jointly maximize the cyclical variance
of GDP growth and unemployment. Assuming that GDP growth and unemploy-
ment are the first two variables in xt, we have m = 2, M1 = N1 = 1 and

20To see this, notice that ElD
(
e−iθ

)
h is a scalar so that it is equal to h′D

(
e−iθ

)′ E ′
l . The

same reasoning applies to h′D
(
eiθ
)′ E ′

k

1



M2 = N2 = 2,

P ′
M = P ′

N =



1 0
0 1
0 0
... ...
0 0


, Ω =

(
ω1 0
0 ω2

)
.

In this case, a reasonable choice for the weights is to take the reciprocals of the
cyclical variances of the variables, i.e. ω1 = 1

V11(θ,θ) and ω2 = 1
V22(θ,θ) .

B. DFM estimation and rank reduction

B.1. DFM estimation

First Step. We set a value for the number r of the static factors, using the
criterion by Bai and Ng (2002) with the penalty modification proposed in Alessi
et al. (2010), finding a number of static factors r̂ = 11.21 The static factors Ft =
(F1t . . . Frt)′ are estimated by the first r̂ principal components of the variables in
our dataset. The estimated loading matrix, Λ̂, is the n × r̂ matrix having on the
columns the normalized eigenvectors corresponding to the r̂-largest eigenvalues of
the sample covariance matrix of the data, Σ̂x. The estimated common component
vector is given by χ̂t = Λ̂F̂t.

Second Step. We run a VAR(p) for the estimated factors F̂t to get estimates
Ĉ(L) and ϵ̂t of C(L) and the VAR innovations ϵt. The estimated Moving Average
representation is F̂t = Ĉ(L)−1ϵ̂t. The number of lags p is determined according
to the BIC criterion (p̂BIC = 1). In the robustness section we repeat the analysis
with different lags order. To orthogonalize the shocks we use the Cholesky factor
Ŝ of Σ̂ϵ. Therefore, the Cholesky IRFs of the common components are obtained
according to (4) as

D̂(L) = Λ̂Ĉ(L)−1Ŝ.

From this matrix, we estimate the spectral density of the common components
at the Fourier frequencies θ = 2πs/T , s = 1, . . . , T , and take the real part, so
that the resulting off-diagonal terms are co-spectra rather than cross-spectra.
This is useful when we take an off-diagonal term as a target, since the integral of
the co-spectrum of two variables over a given frequency band is the covariance of
the two variables over that band. Finally, we compute V

(
θ, θ

)
by replacing the

integral with the simple average of the real part of the spectral density matrix,
across the frequencies belonging to the relevant interval. Ψ(θ, θ) and OMN

(
θ, θ

)
21In the robustness section, we take into account the uncertainty in estimating the number

of static factors, and repeat the analysis with different specifications of r̂.
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are estimated in a similar way.

B.2. Rank Reduction

In the standard DFM estimation procedure the identification techniques are ap-
plied to the residuals of the VAR estimated for Ft after estimating q, the number
of common shocks, and the rank reduction. The estimated factors F̂t are not
exactly singular, as they contain a residual of the idiosyncratic components that
disappears completely only asymptotically. As a consequence, the vector ϵ̂t has
rank r > q, although the last r−q eigenvalues of Σ̂ϵ are close to zero (Forni et al.,
2020). In the standard procedure, singularity is forced on ϵ̂t by means of rank-
reduction techniques. In Forni et al. (2009), the rank reduction is obtained by
using the spectral decomposition of Σ̂ϵ, so that the vector ϵ̂t is replaced by the q̂-
dimensional vector V −1ϵ̂t, where V −1 is the matrix whose rows are the normalised
eigenvectors corresponding to the q-largest eigenvalues of the variance-covariance
matrix of ϵ̂t. This is equivalent to assume that the static rank of the common
components is r, which is the rank of its covariance matrix, while the dynamic
rank is q, which is the rank of its spectral density. In empirical situation, the
number q of dynamic factors or common shocks is unknown and has to be de-
termined by existing information criteria. For instance, the criterion proposed
by Hallin and Liška (2007) is based on the properties of dynamic eigenvalues
of the data and looks for the value q that minimizes the contribution of the
idiosyncratic component. Alternative methods are proposed by Onatski (2009),
Amengual and Watson (2007) and Bai and Ng (2007). Recently, Avarucci et al.
(2021) introduce a novel consistent criterion to estimate the number of common
shocks that can be applied to single frequencies as well as to frequency bands.
Such criteria, albeit consistent, often give different results each other.

Forni et al. (2020) shown that the rank reduction step can be ignored with
no consequences on the (IRFs) estimation accuracy. Since different information
criteria often give different results, the estimation of q and the rank reduction
can be a potential source of error, in particular whether q̂ underestimates the
true q, leading to large estimation errors implied by a possible mis-specification
of q. Therefore, we apply the identification techniques to the not exactly singular
Cholesky-transformed residuals of the estimated VAR without reducing the rank.

Moreover, by reducing the number of shocks of interest in the first stage
of our identification strategy, where we select the two shocks maximizing the
explained variance of targeted variables on the band [0 2π/6], rather than across
all frequencies, we do not need to implement the rank reduction step in our
estimation procedure.
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C. Data Description and Data Treatment

For the description of each variable see McCracken and Ng (2020). For variables
not in the FRED-QD dataset, refer to the Mnemonic and note. Treatment
codes: 1 = no treatment; 2 = first difference, ∆xt; 4 = log(xt); 5 = log of the
first difference, ∆ log(xt).

ID FRED-QD Mnemonic Treatment NoteID code

1 1 GDPC1/CNP16OV 5
2 2 PCECC96/CNP16OV 5
3 3 PCDGx/CNP16OV 5
4 4 PCESVx/CNP16OV 5
5 5 PCNDx/CNP16OV 5
6 6 GPDIC1/CNP16OV 5
7 7 FPIx/CNP16OV 5
8 8 Y033RC1Q027SBEAx/CNP16OV 5
9 9 PNFIx/CNP16OV 5

10 10 PRFIx/CNP16OV 5
11 11 A014RE1Q156NBEA 1
12 12 GCEC1/CNP16OV 5
13 13 A823RL1Q225SBEA 1
14 14 FGRECPTx/CNP16OV 5
15 15 SLCEx/CNP16OV 5
16 16 EXPGSC1/CNP16OV 5
17 17 IMPGSC1/CNP16OV 5
18 18 DPIC96/CNP16OV 5
19 19 OUTNFB/CNP16OV 5
20 20 OUTBS/CNP16OV 5
21 (PCESVx+PCNDx)/CNP16OV 5
22 (PCDGx+FPIx)/CNP16OV 5
23 22 INDPRO/CNP16OV 5
24 23 IPFINAL/CNP16OV 5
25 24 IPCONGD/CNP16OV 5
26 25 IPMAT/CNP16OV 5
27 28 IPDCONGD/CNP16OV 5
28 30 IPNCONGD/CNP16OV 5
29 31 IPBUSEQ/CNP16OV 5
30 35 PAYEMS/CNP16OV 2
31 36 USPRIV/CNP16OV 2
32 38 SRVPRD/CNP16OV 2
33 39 USGOOD/CNP16OV 2
34 51 USGOVT/CNP16OV 2
35 57 CE16OV/CNP16OV (EMRATIO) 2
36 58 CIVPART 2
37 59 UNRATE 1
38 60 UNRATESTx 1
39 61 UNRATELTx 1
40 62 LNS14000012 1
41 63 LNS14000025 1
42 64 LNS14000026 1
43 74 HOABS/CNP16OV 4
44 76 HOANBS/CNP16OV 4
45 77 AWHMAN 1
46 79 AWOTMAN 1
47 81 HOUST/CNP160V 5
48 95 PCECTPI 5
49 96 PCEPILFE 5
50 GDPDEF 5 GDP: Implicit Price Deflator
51 97 GDPCTPI 5
52 98 GPDICTPI 5
53 120 CPIAUCSL 5
54 121 CPILFESL 5
55 122 WPSFD49207 5
56 123 PPIACO 5
57 124 WPSFD49502 5
58 126 PPIIDC 5
59 129 WPU0561 5
60 130 OILPRICEx 5
61 135 COMPRNFB 5
62 138 OPHNFB 5
63 139 OPHPBS 5
64 140 ULCBS 5
65 142 ULCNFB 5
66 143 UNLPNBS 5

Continued on next page
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Continued from previous page

ID FRED-QD Mnemonic Treatment NoteID code

67 dtfp 1 Fernald’s TFP growth
68 dtfp util 1 Fernald’s TFP growth CU adjusted
69 dtfp I 1 Fernald’s TFP growth - Inv
70 dtfp C 1 Fernald’s TFP growth - Con
71 dtfp I util 1 Fernald’s TFP growth CU - Inv
72 dtfp C util 1 Fernald’s TFP growth CU - Con
73 144 FEDFUNDS 1
74 145 TB3MS 1
75 146 TB6MS 1
76 147 GS1 1
77 148 GS10 1
78 150 AAA 1
79 151 BAA 1
80 152 BAA10YM 1
81 156 GS10TB3Mx 1
82 BAA-AAA 1
83 GS10-FEDFUNDS 1
84 GS1-FEDFUNDS 1
85 BAA-FEDFUNDS 1
86 158 BOGMBASEREALx/CNP16OV 5
87 160 M1REAL/CNP16OV 5
88 161 M2REAL/CNP16OV 5
89 163 BUSLOANSx/CNP16OV 5
90 164 CONSUMERx/CNP16OV 5
91 166 REALLNx/CNP16OV 5
92 168 TOTALSLx/CNP16OV 5
93 188 UMCSENTx 1
94 Business Condition 12 Months 1 Michigan Consumer Survey
95 Business Condition 5 Years 1 Michigan Consumer Survey
96 Current Index 1 Michigan Consumer Survey
97 Expected Index 1 Michigan Consumer Survey
98 News Index: Relative 1 Michigan Consumer Survey
99 197 UEMPMEAN 1

100 201 GS5 1
101 210 CUSR0000SAC 5
102 211 CUSR0000SAD 5
103 212 CUSR0000SAS 5
104 213 CPIULFSL 5
105 245 S&P 500 5
106 246 S&P: indust 5
107 S&P 500/GDPDEF 5
108 S&P: indust/GDPDEF 5
109 JLN Macro Unc 1-month 1 Jurado Ludvigson and Ng Uncertainty
110 JLN Macro Unc 3-month 1 JLN Uncertainty
111 JLN Macro Unc 12-month 1 JLN Uncertainty
112 DPCCRC1Q027SBEAx/CNP16OV 5 Real PCE Excluding food and energy
113 DFXARC1M027SBEAx/CNP16OV 5 Real PCE: Food
114 DNRGRC1Q027SBEAx/CNP16OV 5 Real PCE: Energy goods

D. ACD under the microscope: inflation and the long-
run

In this Appendix we study whether our data support a representation in which
a shock presents the distinctive feature of ACD’s MBC shock: the contempor-
aneous disconnection from both inflation and long-run real economic activity. Is
there an orthogonalization of our two shocks such that both disconnections hold?

Let us start from the results of Identification II. Clearly, the temporary shock
is, by construction, disconnected from the long-run real economic activity. Yet
it is far from being disconnected from the inflation (see Table 4) in the main
text. So, imposing the long-run disconnection yields a shock with no inflation
disconnection. What about the other way around? We now search for a linear
combination of our two shocks with minimum contribution to the cyclical fluc-
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tuations of the inflation. The result of this exercise is also at odds with ACD:
the shock we found is not disconnected from the long-run economic activity as
it explains 57% of the long-run GDP growth variance (see Table D.1, Panel
A). Hence, imposing the inflation disconnection yields a shock with no long-run
disconnection.

Variables A: no-infl shock B: GDP targeting shock

Cyclical v. Long-Run v. Cyclical v. Long-Run v.

GDP 56.1 57.0 59.5 34.4
Consumption 60.9 62.4 54.1 43.0
Investment 52.2 34.3 59.1 17.3
Unemployment Rate 46.4 27.0 51.0 12.7
Hours Worked 51.2 54.0 49.6 38.4
Inflation 8.0 6.0 13.6 23.6
Labor Productivity 26.9 20.8 27.0 6.9
TFP 11.6 31.2 7.9 13.9
FFR 17.0 28.0 33.3 52.3
Baa-GS10 56.8 83.2 73.0 77.0
S&P500 51.7 15.1 45.9 7.0
JLN uncertainty 3M 59.5 6.3 59.2 7.3
BC5Y 63.7 19.4 47.6 4.5

Table D.1: Percentage of cyclical and long-run variance explained by the
shock disconnected from inflation (Panel A), and by the GDP targeting shock
(Panel B) for a few selected variables, by frequency band. Business cycle
frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with periodicity
between 18 months and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80],
corresponding to periodicity greater than 20 years, with quarterly data.

Finally, let us see what happens if we apply to our two shocks the same iden-
tification imposed in ACD, that is, maximizing the cyclical variance of a single
real economic activity variable (here we use GDP growth). This identification
yields a shock which is partially disconnected from the inflation but again not
disconnected from the long-run — it explains 13.6% of the cyclical variance of
inflation and 34.4% of GDP growth’s long-run variance (see Table D.1, Panel B).

Figure D.1 explores all possible linear combinations of our two shocks: given
all rotation angles, we show that a shock explaining less than 20% of both cyclical
inflation and long-run GDP cannot be obtained.
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Figure D.1: Percentage of variances explained by all linear combina-
tion of the two shocks g′

1ηt, g′
1ηt described in the First Step of Section

3.2. Any generic linear combination is obtained as R (θ) (g′
1ηt g′

2ηt)′, where

R (θ) ≡
(

cos (θ) −sin (θ)
sin (θ) cos (θ)

)
is a two dimensional rotation matrix. The

angle 0 ≤ θ ≤ π is in abscissa.

Orthogonality
Principal Components 1 lags 2 lags 3 lags 4 lags

r=6 0.00 0.00 0.00 0.03
r=7 0.01 0.00 0.00 0.00
r=8 0.01 0.00 0.00 0.01
r=9 0.01 0.00 0.00 0.01
r=10 0.02 0.01 0.00 0.04
r=11 0.02 0.02 0.01 0.08

Table D.2: p-values of the orthogonality F -test (Forni and Gambetti,
2014), one to four lags, for the MBC shock, estimated with ACD’s VAR
specification. r is the number of principal components used in the test.
Source: Granese (2024).

Why our result are different from ACD? A possible explanation is the follow-
ing. It is well-known that, while large dimensional factor models are generally
unaffected by non-invertibility issues, VAR systems could be informationally de-
ficient. Granese (2024) investigates whether the 10-variable VAR considered by
ACD contains enough information to recover the MBC shock obtained by tar-
geting the unemployment rate. To do so, the author uses the invertibility test
of Forni and Gambetti (2014), which tests for the orthogonality of the estimated
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shock with respect to the past of the principal components of a large macroe-
conomic dataset (the author uses the same data set used here). He finds that
informational sufficiency is rejected, since the MBC shock is predicted by the
lags of the principal components. The p-values are reported in Table D.2.

E. Additional Results and Robustness

Tables

Frequencies DDR DGR DER

0 ≤ ω ≤ 2π/6 2 2 1
0 ≤ ω ≤ 2π/8 2 2 1
0 ≤ ω ≤ π 2 1 1

Table E.1: Number of estimated dynamic factors by DDR, DGR and
DER evaluated at selected frequencies or frequency bands. The size of
the spectral window - bandwidth parameter - is MT = ⌊a

√
T ⌋ with a = 0.5.

DDR: Dynamic Difference Ratio Estimator; DGR: Dynamic Growth Ratio
Estimator; DER: Dynamic Eigenvalue Ratio Estimator.
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Variables
P=1 P=2 P=3 P=4

Percentage of Explained Cyclical Variance
Perm Trans Perm Trans Perm Trans Perm Trans

GDP 29.6 46.6 29.6 46.6 28.8 47.7 27.1 54.5
Consumption 43.9 25.9 50.4 16.5 52.7 18.1 51.3 21.0
Investment 25.5 53.4 27.1 51.4 30.0 50.3 30.2 53.2
Unemployment 30.1 48.4 31.8 51.4 36.4 45.1 36.4 45.5
Hours Worked 29.2 29.0 27.7 35.6 29.6 31.0 31.7 29.6
Inflation 37.2 48.8 44.0 43.4 52.1 28.9 43.6 35.7
Labor Productivity 23.0 23.9 26.1 29.5 22.0 38.5 17.4 39.2
TFP 20.7 6.7 19.1 10.0 17.3 13.3 16.3 7.3
FFR 10.9 64.5 15.0 62.2 23.1 44.9 17.9 51.2
Baa-GS10 12.9 74.8 16.2 70.7 21.6 60.6 20.0 59.3
S&P500 36.2 20.9 37.2 16.2 29.5 30.1 35.4 24.9
JLN Uncertainty 3M 39.8 43.1 43.7 40.2 44.0 41.2 45.0 40.9
BC5Y 71.2 17.9 72.5 16.8 70.6 18.1 71.0 19.5

Percentage of Explained Long Run Variance
Perm Trans Perm Trans Perm Trans Perm Trans

GDP 79.3 1.7 72.9 2.0 73.0 0.7 76.5 1.4
Consumption 69.7 5.9 57.6 6.1 59.2 1.5 59.4 2.4
Investment 67.2 5.1 73.3 2.2 76.9 1.5 79.6 1.3
Unemployment 68.7 13.2 80.1 7.1 83.9 5.3 83.9 6.7
Hours Worked 57.3 6.3 58.8 12.9 68.0 8.4 71.3 6.7
Inflation 15.5 69.9 24.2 45.8 22.0 25.0 22.3 27.2
Labor Productivity 58.3 5.1 64.1 1.5 76.4 0.2 78.9 0.1
TFP 64.5 1.6 60.2 0.7 67.4 0.9 68.3 1.1
FFR 0.9 85.0 5.6 73.3 5.9 45.8 5.6 52.2
Baa-GS10 49.2 36.9 31.6 27.3 31.2 11.3 31.5 7.7
S&P500 30.2 0.7 36.9 0.8 43.6 0.2 46.2 1.6
JLN Uncertainty 3M 49.2 42.5 59.8 32.4 62.5 23.8 61.0 29.0
BC5Y 71.5 11.9 81.6 4.9 85.7 3.8 86.8 5.4

Table E.2: Identification II: Percentage of variance explained by the
permanent shock and the transitory shock for a few selected variables,
by frequency band, according to different lags order: p = [1 2 3 4].
Baseline specification: p = 1. Business cycle frequency band: [2π/32 ≤
ω ≤ 2π/6] corresponding to cycles with periodicity between 18 months
and 8 years. Long run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to
periodicity greater than 20 years, with quarterly data.
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Variables
R=11 R=13 R=15 R=17 R=20

Percentage of Explained Cyclical Variance
Perm Trans Perm Trans Perm Trans Perm Trans Perm Trans

GDP 29.6 46.6 24.0 50.1 25.7 47.1 18.7 50.4 19.0 49.9
Consumption 43.9 25.9 33.3 25.4 33.3 23.1 27.1 27.6 28.3 25.8
Investment 25.5 53.4 25.5 53.0 26.8 51.6 22.4 54.9 21.9 53.4
Unemployment 30.1 48.4 30.7 46.5 31.3 44.1 26.9 52.3 27.3 50.8
Hours Worked 29.2 29.0 23.3 28.8 26.2 25.6 20.5 27.5 21.9 28.8
Inflation 37.2 48.8 36.9 38.6 34.4 35.5 36.7 37.5 34.5 38.8
Labor 23.0 23.9 18.3 28.8 20.4 27.1 17.3 31.9 18.8 32.8
TFP 20.7 6.7 13.6 6.6 15.4 6.8 19.9 4.5 17.3 4.4
FFR 10.9 64.5 18.3 58.9 18.1 58.6 11.6 51.8 10.7 52.0
Baa-GS10 12.9 74.8 14.4 70.7 14.2 66.3 13.7 48.2 13.7 48.2
S&P500 36.2 20.9 31.1 26.8 31.9 26.7 23.3 34.3 21.8 31.9
JLN Uncertainty 39.8 43.1 46.7 33.8 45.8 34.6 44.3 32.5 44.2 32.4
BC5Y 71.2 17.9 56.1 18.1 50.1 13.1 47.7 12.1 46.8 10.2

Percentage of Explained Long Run Variance
Perm Trans Perm Trans Perm Trans Perm Trans Perm Trans

GDP 79.3 1.7 78.7 2.1 78.8 2.1 70.3 2.5 73.2 2.4
Consumption 69.7 5.9 65.6 4.8 64.9 4.4 59.9 5.6 62.0 5.2
Investment 67.2 5.1 68.3 2.5 68.0 3.0 64.6 1.7 64.8 1.4
Unemployment 68.7 13.2 74.8 11.0 70.2 11.4 71.4 12.6 70.9 13.2
Hours Worked 57.3 6.3 58.4 7.0 55.5 6.4 60.1 6.0 59.9 4.8
Inflation 15.5 69.9 15.1 55.3 14.0 54.9 13.4 53.1 12.3 54.4
Labor 58.3 5.1 59.4 4.0 59.8 4.2 68.1 2.3 68.0 2.5
TFP 64.5 1.6 64.4 1.2 64.3 1.2 70.1 0.6 68.7 0.8
FFR 0.9 85.0 2.1 74.5 1.8 74.8 1.3 72.3 1.0 71.8
Baa-GS10 49.2 36.9 46.5 25.4 44.4 26.9 33.9 18.5 35.3 17.9
S&P500 30.2 0.7 31.0 0.6 30.2 0.7 23.4 0.4 23.1 0.3
JLN Uncertainty 49.2 42.5 57.9 32.8 53.8 33.1 47.1 36.5 47.1 37.2
BC5Y 71.5 11.9 77.5 9.4 75.4 9.2 76.8 8.5 74.2 9.1

Table E.3: Identification II: Percentage of variance explained by the
Transitory shock and the Permannent shock for a few selected vari-
ables, by frequency band, according to the number of static factors:
r = [11 13 15 17 20]. Baseline specification: r = 11 static factors. Business
cycle frequency band: [2π/32 ≤ ω ≤ 2π/6] corresponding to cycles with
periodicity between 18 months and 8 years. Long run frequency band:
[0 ≤ ω ≤ 2π/80], corresponding to periodicity greater than 20 years, with
quarterly data.
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(a) Identification II: Maximum and Minimum percentage value of ex-
plained variance according to different lags order: p = [ 1 2 3 4 ].
Baseline specification: p = 1 lag.

Variables
Cyclical Variance Long Run Variance

Perm Trans Perm Trans
Min Max Min Max Min Max Min Max

GDP 27.1 29.6 46.6 54.4 72.9 79.3 0.7 2.0
Consumption 43.9 52.7 16.5 25.9 57.6 69.7 1.5 6.1
Investment 25.5 30.2 50.3 53.4 67.2 79.6 1.3 5.1
Unemployment 30.1 36.4 45.1 51.4 68.7 83.9 5.3 13.2
Hours Worked 27.7 31.7 29.0 35.6 57.3 71.3 6.3 12.9
Inflation 37.2 52.1 28.9 48.8 15.5 24.2 25.0 69.9
Labor Productivity 17.4 26.1 23.9 39.2 58.3 78.9 0.1 5.1
TFP 16.3 20.7 6.7 13.3 60.2 68.3 0.7 1.6
FFR 10.9 23.1 44.9 64.5 0.9 5.9 45.8 85.0
Baa-GS10 12.9 21.6 59.3 74.8 31.2 49.2 7.7 36.9
S&P500 29.5 37.2 16.2 30.1 30.2 46.2 0.2 1.6
JLN Uncertainty 3M 39.8 45.0 40.2 43.1 49.2 62.5 23.8 42.5
BC5Y 70.6 72.5 16.8 19.5 71.5 86.8 3.8 11.9

(b) Identification II: Maximum and minimum value of explained variance
according to the number of static factors: r = [ 11 13 15 17 20 ]. Baseline
specification: r = 11 static factors.

Variables
Cyclical Variance Long Run Variance

Perm Trans Perm Trans
Min Max Min Max Min Max Min Max

GDP 18.7 29.6 46.6 50.4 70.3 79.3 1.7 2.5
Consumption 27.1 43.9 23.1 27.6 59.9 69.7 4.4 5.9
Investment 21.9 26.8 51.6 54.9 64.6 68.3 1.4 5.1
Unemployment 26.9 31.3 44.1 52.3 68.7 74.8 11.0 13.2
Hours Worked 20.5 29.2 25.6 29.0 55.5 60.1 4.8 7.0
Inflation 34.4 36.9 35.5 48.8 12.3 15.5 53.1 69.9
Labor Productivity 17.3 23.0 23.9 32.8 58.3 68.1 2.3 5.1
TFP 13.6 20.7 4.4 6.8 64.3 70.1 0.6 1.6
FFR 10.7 18.3 51.8 64.5 0.9 2.1 71.8 85.0
Baa-GS10 12.9 14.4 48.2 74.8 33.9 49.2 17.9 36.9
S&P500 21.8 36.2 20.9 34.3 23.1 31.0 0.3 0.7
JLN Uncertainty 3M 39.8 46.7 32.4 43.1 47.1 57.9 42.5 32.8
BC5Y 46.8 71.2 10.2 18.1 71.5 77.5 8.5 11.9

Table E.4: Percentage of variance explained by the permanet shock and
the transitory shock (Identification II) for a few selected variables,
by frequency band. Business cycle frequency band: [2π/32 ≤ ω ≤ 2π/6]
corresponding to cycles with periodicity between 18 months and 8 years.
Long run frequency band: [0 ≤ ω ≤ 2π/80], corresponding to periodicity
greater than 20 years, with quarterly data.
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Figures

Figure E.1: Identification I: Point estimates of the Impulse Response
Functions of the Supply Shock. The dark gray and light gray areas are
the 68% and 90% confidence bands, respectively.
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Figure E.2: Identification I: Point estimates of the Impulse Response
Functions of the Demand Shock. The dark gray and light gray areas
are the 68% and 90% confidence bands, respectively.
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Figure E.3: Identification II: Spectral Decomposition for a few selected
variables, frequency by frequency. The figure reports the percentage
of explained variance. Blue line: Contribution of the permanent shock;
Red line: Contribution of the transitory shock; Yellow line: sum. Pink
shadowed area: Long run frequencies (>80 quarters); Lilac shadowed
area: Business Cycle frequencies (6-32 quarters).
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Figure E.4: Identification II: Point estimates of the Impulse Response
Functions of the Permanent Shock. The dark gray and light gray areas
are the 68% and 90% confidence bands, respectively.
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Figure E.5: Identification II: Point estimates of the Impulse Response
Functions of the Transitory Shock. The dark gray and light gray areas
are the 68% and 90% confidence bands, respectively.
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Figure E.6: Identification I: Impulse response functions of the Supply shock,
according to different lag orders: p = [1 2 3 4]. Baseline specification: p = 1.
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively. Black line and confidence bands: baseline specification.
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Figure E.7: Identification I: Impulse response functions of the Demand shock,
according to different lag orders: p = [1 2 3 4]. Baseline specification: p = 1.
The dark gray and light gray areas are the 68% and 90% confidence bands,
respectively. Black line and confidence bands: baseline specification.
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Figure E.8: Identification I: Impulse response functions of the Supply
shock, according to different number of static factors: r = [11 6 9 13 15].
Baseline specification: r = 11. The dark gray and light gray areas are
the 68% and 90% confidence bands, respectively. Black line and confid-
ence bands: baseline specification.
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Figure E.9: Identification I: Impulse response functions of the Demand
shock, according to different number of static factors: r = [11 6 9 13 15].
Baseline specification: r = 11. The dark gray and light gray areas are
the 68% and 90% confidence bands, respectively. Black line and confid-
ence bands: baseline specification.
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Figure E.10: Identification I: Impulse response functions of the Supply
shock, according to different subsamples. Baseline specification: 1961:I
- 2019:IV. The dark gray and light gray areas are the 68% and 90% con-
fidence bands, respectively. Black line and confidence bands: baseline
specification. Blue line: 1989:I - 2019:IV. Green line: 1961:I - 2007:IV.
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Figure E.11: Identification I: Impulse response functions of the Demand
shock, according to different subsamples. Baseline specification: 1961:I
- 2019:IV. The dark gray and light gray areas are the 68% and 90% con-
fidence bands, respectively. Black line and confidence bands: baseline
specification. Blue line: 1989:I - 2019:IV. Green line: 1961:I - 2007:IV.
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Figure E.12: Identification II: Impulse response functions of the Per-
manent shock, according to different lags order: p = [1 2 3 4]. Baseline
specification: p = 1. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands:
baseline specification.
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Figure E.13: Identification II: Impulse response functions of the Trans-
itory shock, according to different lags order: p = [1 2 3 4]. Baseline
specification: p = 1. The dark gray and light gray areas are the 68% and
90% confidence bands, respectively. Black line and confidence bands:
baseline specification.
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Figure E.14: Identification II: Impulse response functions of the Per-
manent shock, according to different number of static factors: r =
[11 6 9 13 15]. Baseline specification: r = 11. The dark gray and light
gray areas are the 68% and 90% confidence bands, respectively. Black
line and confidence bands: baseline specification.
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Figure E.15: Identification II: Impulse response functions of the Trans-
itory shock, according to different number of static factors: r =
[11 6 9 13 15]. Baseline specification: r = 11. The dark gray and light
gray areas are the 68% and 90% confidence bands, respectively. Black
line and confidence bands: baseline specification.
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