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Abstract

Sequential sorting facilities are a key step in the courier, express, and parcel delivery

industry. In these facilities, staff are assigned to work areas (WAs) to sequentially

process different commodities as they move through the facility. When setting the staff

levels at these WAs, the shift manager needs to balance different objectives, such as the

overall number of staff, the cost of unsorted mail, and how frequently the shift levels

change. However, existing literature on staffing these facilities (particularly in the field

of mail delivery) focuses on longer timescales, assumes simpler operational constraints,

and generally assumes deterministic mail volumes. In this thesis, we develop novel

deterministic and stochastic models to staff these facilities for a mail sorting centre. We

also propose a framework for general problem-based scenario reduction to use with the

stochastic model. The deterministic model is a time-expanded network design model,

using staff numbers to increase throughput capacities between WAs. To account for

the uncertainty of commodity volumes, we also propose a novel stochastic model. This

model is a stochastic programming model where the workplan is the first stage decision,

the mail volumes are stochastic, and how the mail is routed over time is the second-stage

decision. To solve the stochastic model (and other similar models) more efficiently, we

propose a framework to generalise several problem-based scenario reduction methods.

We show the applicability of the framework by performing numerical tests using different

combinations of candidate solutions and scenario reduction techniques on three different

test problems, including the stochastic mail centre staffing problem.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Staffing in sequential sorting facilities

Present in every industry, rostering the required staff and resources is a key management

task (Van den Bergh et al., 2013). This is often a balance of assigning enough workers

to complete all required tasks in a shift, and not wasting resources by allocating too

many staff.

Setting the staff levels is particularly important in sequential sorting facilities. In

these facilities, different types of material, called streams are sorted from each other.

These streams arrive at the facility mixed, before passing through a sequential series

of work areas (WAs) in order to be sorted by a given deadline. Material which is not

sorted by this deadline is said to be delayed, and subject to a penalty. In each WA,

the processing is done by a number of processing units. These can be either machines

(staffed by workers) or workers themselves, and are the units that actually sort/process

the materials. Each processing unit has a given throughput, giving the maximum items

it can process in a given time period. If more items need to be sorted, then the shift

manager can assign more processing units for that WA, at an additional cost per unit. It

1
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is the job of the shift manager to determine a workplan outlining how many processing

units need to be rostered in each WA at each time period over a shift. This workplan

must balance the cost of the rostered processing units along with the cost for any

delayed material at the end of a shift.

These facilities are a central part of the courier, express, and parcel (CEP) industry,

which deals with the delivery of letters and parcels from one party to another. This

is a vast industry globally, with over $415 billion USD (approximately £341 billion) in

revenue worldwide in 2022 (PR Newswire, 2023). Within the UK, Royal Mail (one of

the largest CEP companies in the UK) delivered over 10 billion letters and 1.2 billion

parcels in the 2018-2019 financial year (Royal Mail, 2019). With these large volumes

of items to be sorted, it is imperative that sorting in the sequential sorting facilities

(often called sorting centres, distribution centres or mail centres) is done efficiently and

in a cost-effective manner. The motivation for this thesis is to determine the optimal

method of setting these workplans.

1.1.2 Mail centres

As an example application, we focus on mail centres of a large UK-based mail company

(UKMC). The mail centres are the central point of the entire postal delivery system,

and where the majority of sorting takes place. In this problem, the different mail types

act as the different streams. Each stream generally describes a combination of the

class (1st or 2nd class), product size (regular envelope, A4 envelope, parcel, etc), and

destination (going to another mail centre, or going to nearby delivery offices).

A small amount of sorting is needed to separate the streams from each other, but the

majority of required sorting is to sort items by destination. This is done at the various

WAs in the mail centre. A small number of WAs separate the streams, and then the

majority sort them into increasingly fine-grained areas of geographical segregation. At

most WAs, the sorting is done by automatic sorting machines, each requiring a number
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of staff to operate. However, items which cannot be mechanically sorted (for example,

the address label is not clear and cannot be automatically read) are sorted by hand in

different WAs.

These facilities are complicated by operational factors, including the tethering of

WAs (i.e. WAs which cannot start processing material until another WA has completely

finished processing all material), splitting of flows of streams, and variation in the

amount of material that arrives.

Current literature on organising is somewhat limited. Firstly, existing models for

staffing mail centres tend to focus on a longer timescale than is needed to solve this

problem (years rather than months) and do not take all operational constraints (such

as tethered WAs or split flows of mail) into account. Secondly, the literature assumes

that all mail is known before the workplan is made. In reality, mail volumes can vary

considerably day-to-day, and are only confirmed after workplans are set.

1.2 Thesis summary

The remaining chapters of the thesis are as follows.

Chapter 2 outlines necessary background information, and reviews the relevant lit-

erature. We cover the relevant definitions of network models, stochastic programs,

and scenario set selection. We also review the current state of the literature on staff

allocation, mail centre optimisation, network models, and scenario set selection.

Chapter 3 shows a staff allocation problem at a sequential sorting facility. In this

facility, staff need to be assigned to WAs, through which streams flow sequentially to

be processed. Assigning staff optimally involves a trade-off between a number of dif-

ferent objectives, such as minimising the overall number of workers, as well as having

fewer changes in the staff levels over time. While optimising for these, many opera-

tional requirements need to be met, including minimum processing volumes, correct
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ordering/processing of the streams, and not exceeding staff resource constraints.

We develop a deterministic time-expanded network design model to solve the staff

allocation problem. The model addresses the problem at a more granular timescale and

with more operational constraints than previously used models. We use a lexicographi-

cal approach to deal with the multiple objectives. To demonstrate the model’s value, we

apply it to a staff problem of a UK mail centre, showing that in the majority of cases,

our model improves on current staffing practises on both objectives. We also show how

the model performs in a number of different environments, including increasing total

mail volumes, and changing the proportion of letters and parcels to be sorted.

We extend the deterministic model from Chapter 3 to allow for stochastic mail

volumes in Chapter 4. This model is a stochastic programming model based on the

deterministic network design problem from Chapter 3, with scenarios to represent po-

tential volumes of streams on different days in the centre. We also examine different

weightings of the first and second stage objectives, and allow more flexibility in the

workplan in the second stage of the model.

We apply this model to the same mail centre dataset used in Chapter 3. We fit the

stochastic programming model using this data, and compare it to using the deterministic

model when assuming the mail volumes take increasingly higher multiples of expected

demand. We find that when 20 or more scenarios are used for the stochastic programs,

our the stochastic programs result in lower expected costs than the deterministic models.

We also investigate the weightings between the first and second stage objectives of the

stochastic programs, during which we found an appropriate balance between the two.

Finally, we showed that allowing flexibility in the second stage of the model results in

lower first and second stage costs.

One of the insights we gain from Chapter 4 is that the model could benefit from

using more sophisticated scenario reduction techniques. Chapter 5 shows our work on

improving these techniques. Finding representative scenario sets for stochastic pro-
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gramming is key for finding good quality solutions within a reasonable time. Recent

work advocates for the use of ‘problem-based’ scenario reduction techniques - that is,

techniques which use information about the current problem to select scenario sets.

However, these techniques are often tailored to specific problems.

We instead develop a framework to generalise a number of existing problem-based

scenario reduction methods. The framework consists of creating a number of candidate

solutions, testing each existing scenario on each candidate solution, to create a ‘recourse

matrix’, and using the recourse matrix in an existing scenario reduction technique. We

use this framework to test a number of combinations of candidate solutions with a

number of existing scenario reduction methods on three different problems, showing

some insights into which combinations prove better than others.

The conclusions of our work are discussed in Chapter 6. Here we outline how our

work contributes to both staff allocation (Chapters 3 and Chapter 4) and scenario set

selection (Chapter 5) fields. We also discuss future avenues for research which have

been opened by our work.



Chapter 2

Theoretical background and

relevant literature

2.1 Introduction

In this chapter, we introduce the theoretical background and foundation for the models

developed in the later chapters. We then provide an overview of the literature on

extensions of fundamental models to identify research gaps.

We identify three main streams of literature that are particularly relevant for this

research, namely network design models (Section 2.2), stochastic programming (Section

2.3) and scenario set selection (Section 2.4). In Sections 2.2.4 and 2.3.4, we also consider

literature on network design models and stochastic programming especially for the

staffing problem in mail centres.

We start by defining networks, as well as extensions such as time-expanded and

multi-commodity networks. We use these definitions to present the minimum cost flow

problem, as well as the multi-commodity and network design extensions. We discuss

common solution techniques to this problem, before reviewing how these problems

relate to current literature on staffing in mail centres. Network design models serve as

6
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theoretical basis both for Chapters 3 and 4.

In Section 2.3, we provide background on stochastic programming, which will be

useful for Chapters 4 and 5. In addition to identifying basic properties and solution

approaches, we also review literature on how stochastic programming compares to other

approaches in accounting for randomness in mail volumes.

We conclude with Section 2.4, where we discuss scenario set selection in more detail

when using the approaches from Section 2.3. We cover literature on evaluating scenario

sets and review popular scenario set selection techniques. This provides important

background for our work in Chapter 5.

2.2 Network flow models

2.2.1 Overview

In this section we provide an overview of network flow models, and how they can be

used in staff allocation. Network flow models are concerned with sending units of flow

optimally across a network. This could be, for example, sending units of a product

across a distribution chain, or sending generated electricity through a power grid. For

the purposes of this thesis, we define a network as follows, using a very similar definition

as Ahuja et al. (1994):

Definition 2.2.1. A network is a graph G = (N ,A) which consists of:

• A set of nodes N (indexed by n). Associated with each node is a demand bn,

representing the demand for the commodity at that node. We say that a node with

bn > 0 is a source node, a node with bn < 0 a sink node, and nodes with bn = 0

transshipment nodes.

• A set of directed arcs A ⊂ N×N , indexed by a. The direction of the arc indicates

the direction that flow is allowed to move across the arc. Each arc will have a
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cost ca, and a capacity ua.

For convenience, we also define the sets δ+(n) and δ−(n) as the sets of arcs where

the origin node and destination node is node n, respectively.

From Definition 2.2.1, we can define the Minimum Cost Flow Problem, or MCFP

(Ahuja et al., 1994). Given a network (N ,A), we can define the variable xa giving the

flow of the commodity to send along arc a. Using this, we define the MCFP as

min
∑
a∈A

caxa (2.2.1)

s.t.
∑

a∈δ+(n)

xa −
∑

a∈δ−(n)

xa = bn, ∀n ∈ N (2.2.2)

0 ≤ xa ≤ ua, ∀a ∈ A (2.2.3)

The premise of the MCFP is to minimise the total cost of flow along the arcs

(2.2.1), subject to meeting demand at all nodes (2.2.2), as well as ensuring flows are

non-negative, and do not exceed arc capacities (2.2.3).

From the general MCFP many other problems can be formulated as special cases.

These include shortest path problems and maximum flow problems. The problem has

many applications and extensions. See Ahuja et al. (1994) for a comprehensive overview

of networks.

2.2.2 Extensions and variations

Time-expanded networks The MCFP deals with moving commodities around a

network, as we need for modelling mail moving through a mail centre in our problem.

However, we also need a way to incorporate deadlines in our problem. To do this,

we need to consider the minimum cost flow over time problem, as stated by Skutella

(2009): Given a network G = (N ,A) with associated arc costs, capacities, and transit
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times, a source node s ∈ N and a sink node t ∈ N , and a time horizon T ≥ 0, what

is the flow that minimises the cost of sending the required flow from s to t within the

time horizon T?

A popular method of dealing with this problem is to use a time-expanded network

(also called a dynamic or space-time network). First defined by Ford and Fulkerson

(1958), there are a number of similar definitions with subtle differences (Skutella, 2009;

Fischer and Helmberg, 2014). Here we give the definition of Skutella (2009):

Definition 2.2.2. Suppose we have:

• A given finite time horizon, represented as T + 1 discrete time periods t =

0, 1, ..., T .

• A network G = (N ,A) with:

– Arc capacities u (for now, we will assume the lower bound on each arc is 0)

– Arc costs c

– Arc transition times θij, which denote the number of time periods taken to

move between nodes i and j ∈ N , with θij ∈ N, ∀i, j ∈ N

Then we define the time-expanded network as GT = (N T ,AT ) with

N T :={(i, t) : i ∈ N , t = 0, 1, ..., T − 1}

AT :={((i, t), (j, t+ θij)) : (i, j) ∈ A, t = 0, 1, ..., T − 1− θij}

∪ {((i, t), (i, t+ 1)) : i ∈ N , t = 0, 1, ..., T − 2}

With arc costs c((i,t),(j,t+θij)) = cij and c((i,t),(i,t+1)) = 0, and arc capacities u((i,t),(j,t+θij)) =

uij and u((i,t),(i,t+1)) = ∞

The idea of the time-expanded network is to take a base network G and make T

copies of it, representing each of the time periods in 0, 1, ..., T − 1. The nodes in these
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copies of G make up the nodes of the new time-expanded network GT . Each node in

N T now represents both a location from the base network w ∈ N and a time period

t ∈ 0, 1, .., T (the sink node is often associated with time T ). The arcs of GT represent

flows that are possible in the network, both in terms of location in the base network,

and time period. For example, if there exists an arc (w1, w2) ∈ A, w1, w2 ∈ N , and

the travel time θw1w2 = t̂, then the arc ((w1, 0), (w2, t̂)) would exist in AT , as would

((w1, 1), (w2, t̂+1)), ((w1, 2), (w2, t̂+2)), and so on. Therefore, movement of flow across

an arc a = (w1, t1) → (w2, t2) now represents flow moving from w1 to w2 over the time

period [t1, t2].

The advantage of a time-expanded network is that once it has been set up, it can

be used with the MCFP just like a regular network. Therefore, any solution algorithms

that work with the MCFP, and any extensions to it, are also applicable to MCFP with

time-expanded networks. The drawback to these networks is that since the number of

nodes is proportional to both |N | and T , the sizes of the MCFP using a time-expanded

network grows rapidly. This can quickly become intractable, with Klinz and Woeginger

(2004) showing that the MCF over time problem is weakly NP-hard.

By using a time-expanded network, we have incorporated time and deadlines into

the interpretations of the flows in the network. By altering the construction of the

network, we can enforce deadlines into the sorting. For example, if flow needs to be

reach a certain node by time T , we simply connect the sink node to the node representing

this destination node at time T . Therefore, for flow to reach the sink node (i.e. to have

a feasible solution) it must pass through the required node at time T .

Multi-commodity networks The MCFP is designed to optimise a network with a

single commodity, where all units of this commodity may be treated the same. However,

in the mail centre, there are multiple streams which need to be sorted in the same

WAs at the same time. This could mean that the streams need to follow different

paths through the network, or have different throughputs, or different sorting deadlines.
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Because of this, we need to use a multi-commodity network. This network is very similar

to the networks 2.2.1 and 2.2.2. However, we now consider a set of commodities K,

each having a specified demand at each node bkn. With these additions, we can amend

Problem (2.2.1) to be the multi-commodity minimum cost flow problem (MCMCFP):

min
∑

a∈A,k∈K

cax
k
a

s.t.
∑

a∈δ+(n)

xk
a −

∑
a∈δ−(n)

xk
a = bkn, ∀n ∈ N , ∀k ∈ K

0 ≤ xk
a, ∀a ∈ A, ∀k ∈ K∑

k∈K

xk
a ≤ ua, ∀a ∈ A (2.2.4)

We see the MCMCFP is very similar to the MCFP. The key differences are an

extension of constraints (2.2.2) to hold for all commodities, and the addition of the

bundle constraint (2.2.4). The bundle constraint is a total capacity on the sum of the

flow for all commodities on each arc. The addition of the bundle constraint is significant,

as it prevents the problem being dis-aggregated into K smaller MCFPs.

Network design problems The other important extension to the MCFP is the

minimum cost network design problem (which were will refer hereafter to as the network

design problem). In the network design problem, the user has control to add/increase

capacity to arcs in the network, as well as deciding where the flow goes. Practically,

this is achieved by adding variables ya, a ∈ A, which can increase the capacity of arc

a in the network. These variables can be defined as binary, indicating whether or not

the arc is present in the network, or continuous/integer, which then can be used to

change the capacity of the arc. Each arc will often have an associated cost ma. The

formulation of the network design problem is very similar to that of the MCFP. The

only differences is that Constraint (2.2.3) is changed to link the presence of arcs to the
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flow along the arcs:

0 ≤ xa ≤ uaya, ∀a ∈ A

and that the cost of including arcs is added to the objective function:

∑
a∈A

(caxa +maya) (2.2.5)

Note that the network design problem can build upon the MCMCFP to include

multiple commodities.

2.2.3 Solution techniques

Initial algorithms for the MCFP include the cycle-cancelling algorithm (Klein, 1967),

successive shortest-path algorithm (Busaker and Gowen, 1961) and the network simplex

algorithm (Orlin et al., 1993). These algorithms have been extended and applied widely

- see one of Kovács (2015), Vieira et al. (2019), or Cruz-Mej́ıa and Letchford (2023) for a

full review. However, these algorithms all are designed for single-commodity networks,

and hence cannot be used for our setting. Instead, we consider the simplex algorithm

for linear programs of Dantzig (1954). Given that the formulation of the MCFP (2.2.1)

is linear in all constraints and variables, this algorithm can be applied to this problem.

The advantage of the simplex algorithm is its versatility. For example, we see that the

MCMCFP is also linear. Hence, the simplex algorithm can be applied to the MCMCFP

as well. Furthermore, even when integral variables are introduced in the network design

problem (2.2.5), the branch-and-bound algorithm (Land and Doig, 1960) and cutting

plane (Gomory, 1958) extensions of the simplex algorithm mean that this problem can

be solved as well.

We do note the relative disadvantage in speed of the simplex algorithm compared

to the other MCFP algorithms (Vieira et al., 2019). However, work has been done
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to speed up these models. These include the Lagrangian Relaxation (Fisher, 1985),

Dantzig-Wolfe Decomposition (Dantzig and Wolfe, 1961), and Benders Decomposition

(Benders, 1962) techniques. These techniques have all been shown to improve the so-

lution time of linear/integer programs using the simplex method and associated exten-

sions. We also note their appropriateness for this particular problem. Both Lagrangian

Relaxation and Dantzig-Wolfe Decomposition are designed for problems where relaxing

one of the constraints makes the problem significantly easier. In the MCMCFP, this

is the case when the bundle constraint (2.2.4) is relaxed, as the problem decomposes

into k independent MCFPs, which are much easier to solve (either by the simplex al-

gorithm, or one of the earlier-mentioned algorithms). We also note that the difficulty

in the network design problem comes from the arc variables y, and that if these were

known, the problem would again by easier to solve. This can be dealt with using Ben-

ders Decomposition, which iteratively fixes the y variables, solves for the x variables,

and uses the solution information to update the y variables. Finally, we also recognise

the previous use of these decompositions (particularly Dantzig-Wolfe and Benders De-

composition) in solving MCMCFPs and network design problems in other applications.

Dantzig Wolfe has been applied to MCMCFPs in telecommunications traffic (Mamer

and McBride, 2000), airline scheduling (Lei et al., 2013), and school timetabling (Dor-

neles et al., 2017). Benders Decomposition has been employed in the design of supply

chain networks (Easwaran and Uster, 2009; Pishvaee et al., 2014), refinery systems (Sa-

haridis et al., 2011), wireless sensor networks (Lin and Uster, 2014), transit systems

(Marin and Jaramillo, 2009).

2.2.4 Optimal staffing with network problems

Network models have been used for staff allocation in a number of different settings,

including airport ground crews (Andreatta et al., 2014), and bus crews (Paias et al.,

2021; Xie and Suhl, 2015). These papers use multicommodity network flow models
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to schedule crews, treating crews as the flows, and duties that need to be performed

as different nodes. We also see that network design problems have been used to both

design and staff mail centres (Bard et al., 1993). In this case, the decision variables

include not just staff allocation, but equipment purchasing and floor space allocation.

Further extensions to this model include additional decisions to re-configure sorting

machines (increasing throughput capacities) and out-sourcing some of the mail sorting

(Jarrah et al., 1994a). We note that Jarrah et al. (1994a) also consider a secondary

objective of the ‘smoothness’ of a workplan. That is, they also try to minimise how

much the workplan for each WA changes between time periods. They deal with this

objective using lexicographic optimisation. In discussion with our industry partner, we

were also informed that we should consider this objective in our model as well.

Despite this, there are two important considerations which make the current network

design models for mail centres insufficient for our setting. Firstly, network design models

for mail centres have a slightly different focus than we need to for our problem. This

includes both temporal - current models plan the mail centre for years (Bard et al.,

1993; Jarrah et al., 1994b), rather than days - and operational - purchasing machines

(Bard et al., 1993) and allocating floor space (Jarrah et al., 1994b), rather than just

allocating staff. Current models also do not focus as much on the different objectives

as we require, and are missing key details such as tethered WAs and split mail flows.

2.3 Stochastic programming

2.3.1 Two-stage stochastic programs with fixed recourse

The two-stage stochastic program with fixed recourse was first proposed by Dantzig

(1955). In this problem, the decision maker has a number of first-stage decisions that

need to be made before a realisation of a random process reveals itself. The decision

maker then needs to make a number of second stage decisions or recourse actions in
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the face of this, which have associated costs. The general form of a two-stage stochastic

linear program is given by:

min cTy + EP [Q(y, ξ)] (2.3.1)

s.t. Ay ≤ b

y ≥ 0

with recourse function Q defined as:

Q(y, ξ) := min dTξ x

Tξx+Wξy ≤ hξ

x ≥ 0

where

• y are the first-stage decision variables.

• x are the second-stage decision variables.

• A, b, c are deterministic matrices/vectors corresponding to the constraints/costs

on the first-stage variables.

• ξ = (Tξ,Wξ, hξ, dξ) is a random vector, which we assume follows some probability

distribution P .

• Tξ,Wξ, hξ, dξ are matrices/vectors corresponding to the constraints/costs on the

second-stage variables for realised scenario ξ. Note that not all of these elements

are necessarily random in every stochastic program.

Here we make an important remark on notation. The convention in the stochastic

programming literature is that the first stage variables are represented with x, and
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the second stage with y. However, we note that in network design problems, the

arcs are denoted with y variables and the flows with x. Unfortunately, we see that

when extending this to stochastic network design models, the arc placements behave

as the first stage decisions, and the flows as the second stage decisions. This gives a

contradiction in conventional notation. For consistency, we will refer to y variables as

first stage decisions, and x variables as second stage decisions.

We demonstrate a two-stage stochastic program with a network design problem

with uncertain demands. Consider the Network Design Problem (2.2.5). Previously, we

assumed all node demands bkn were fixed when optimising this problem. Now, we assume

that these demands are stochastic, and we need to select our arcs (the y variables)

before the demands (the bn parameters) are known. We assume that the demands bkn

are random variables. Rather than enforcing that all demand is met, there is a cost

associated with unmet demand, w. Therefore, this program is written as:

min
y

∑
a∈A

maya + EP [Q(y, b)]

s.t. ya ∈ {0, 1},∀a ∈ A

where Q(y, b) is the recourse function, given by the optimal value to the linear program:

min
x,z

∑
k∈K,n∈N

wkz
k
n (2.3.2)

s.t.
∑
a∈On

xk
a −

∑
a∈Dn

xk
a = bkn + zkn, ∀n ∈ N , ∀k ∈ K

0 ≤ xk
a, ∀a ∈ A, ∀k ∈ K∑

k∈K

xk
a ≤ yaua, ∀a ∈ A

where the new decision variable zkn is the recourse action for unmet demand for com-
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modity k at node n. In a practical application, this could represent a number of different

actions, such as accepting that the demand is unmet (usually with an accompanying

penalty) or taking (expensive) stop-gap measures to meet the demand in the event of

this realisation.

2.3.2 Performance measures for stochastic programs

Given we will be applying a stochastic program to the mail centre problem (and com-

paring it to previous deterministic methods) we want to be able to show the difference

in performance of the two methods. In this section, we outline some ways to show

the value of using a stochastic program over a deterministic solution. We define these

measures adapting the terminology of Birge and Louveaux (2011).

To define these ideas, we first need to define some other concepts. In order to define

these concepts, we define

z(y, ξ) = cTy +Q(y, ξ) (2.3.3)

s.t. Ay ≤ b, y ≥ 0

That is, z(y, ξ) is the total cost of the Stochastic Program (2.3.1) for a given first stage

decision y and realisation ξ. We define ȳ(ξ) as the solution to (2.3.3). The first baseline

solution is the Wait and See or WS solution. This is defined by Madansky (1960) as

WS =Eξ

[
min
y

z(y, ξ)

]
= Eξz(ȳ(ξ), ξ)

the WS solution is the expectation of z when we can observe the variable ξ before

planning for a decision. It is the best case (and in many cases, unrealistic) scenario,

where all information is known before making a decision. While not realistic, it can be
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used as a baseline measure.

By contrast, we define the Recourse Problem (RP) as

RP = min
y

Eξz(y, ξ)

with optimal solution x∗. The recourse problem is just the stochastic program from

(2.3.1).

With these, we can now define the Expected Value of Perfect Information (EVPI )

as

EV PI = RP −WS

The EV PI gives the difference between the objective of the recourse problem (where

decisions are made before all information is known), and the expected value of the

wait and see solution (where all information is observed before decisions are made).

Therefore, the EV PI tells how much value is lost by having to make decisions before

knowing all information. It can also be interpreted as how much it would be worth to

receive perfect forecasts of the uncertainty when making the decisions.

The EV PI gives the value of perfect forecasts to the uncertainty, and is an im-

portant benchmark to compare to. However, given perfect forecasts are unavailable

in real-world applications, a different measure can be used to evaluate a stochastic

program, known as the Value of the Stochastic Solution or VSS.

Firstly, we define the Expected Value or EV problem. This problem is defined as

EV = min
y

z(y, ξ̄) (2.3.4)

where ξ̄ is the expected value of the uncertain parameters in the stochastic program.

This problem is the same as assuming the uncertain parameters take their expected
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values, then solving a deterministic problem based on these values. We define ȳ(ξ̄) as

the solution to Problem (2.3.4). Using ȳ(ξ̄) we can define the Expected Value of the EV

solution or the EEV solution as

EEV = Eξ

[
z
(
ȳ(ξ̄), ξ

)]
that is, we take the expectation of using ȳ(ξ̄) over all possible realisations of ξ. This

gives what the expected long-term cost would be of using the EV solution.

Now we have defined the EEV , we can use it to define the Value of the Stochastic

Solution or VSS. This is defined as

V SS = EEV −RP

with RP defined as above. The V SS is therefore the reduction in cost that we achieve

by using a stochastic program rather than just assuming the expected values of the

uncertain parameters. This is a useful measure, as it allows a comparison between

deterministic and stochastic models.

There are a few basic properties of these solutions. Proofs for these properties are

provided in Chapter 4 of Birge and Louveaux (2011).

Firstly, we have:

WS ≤ RP ≤ EEV

The WS solution will be superior, as we are assuming we have perfect information

when making our decisions. The RP solution will be preferred to the EEV solution is

it uses more information when making the decisions.
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Secondly, we have the following

0 ≤ EV PI ≤ EEV − EV

0 ≤ V V S ≤ EEV − EV

The lower bounds hold for all stochastic programs. The upper bounds hold only when

c, T , and W are fixed over all ξ. This shows that when EEV = EV , both the EV PI

and V V S = 0. This occurs when the optimal solution to z(y, ξ) is independent of ξ. In

these cases, the uncertain variables do not affect the optimal decision to the problem,

hence there is no value from knowing this information, or incorporating the uncertainty

in the decision making process. If this is not the case, then there is potential to either

account for or use this information to improve solutions.

2.3.3 Deterministic equivalent and solution techniques

When P is continuous, the expectation in Problem 2.3.1 is often intractable, making

the problem impossible to solve. This is often dealt with by approximating P with a

discrete distribution P∗. That is, P∗ consists of discrete scenario set S = [ξ1, ..., ξn]

with associated probabilities p1, . . . , pn. We discuss how this scenario set is chosen in

Section 2.4.

When approximating P with P∗ the expectation in (2.3.1) becomes

∑
s∈S

psQ(y, ξs)

This allows us to alter Problem (2.3.1) to define the scenario-based stochastic program:
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min cTy +
∑
s∈S

psd
T
ξsxs (2.3.5)

s.t. Ay ≤ b

Tξsxs +Wξsy ≤ hξs , ∀s ∈ S (2.3.6)

xs ≥ 0, ∀x ∈ S

y ≥ 0

We see that Problem (2.3.5) now becomes a linear/integer program, depending on

the nature of the x and y variables (in (2.3.5), they are defined as linear). Given this,

the solution techniques previously described for linear/integer programs can again be

applied here.

We again note the issues with tractability that can occur using the simplex method

(for linear programs) and branch-and-bound algorithm (for integer programs). This is

especially prevalent with stochastic programs as the size of the problem scales poorly

with the number of scenarios, as an entire set of second stage decision variables (xs)

and second stage constraints (Constraint (2.3.6)) are needed for every scenario used.

Fortunately, the decomposition techniques discussed in Section 2.2.3 can also be applied

here. Benders Decomposition especially is very commonly used for stochastic programs,

given their structure. That is, if the first-stage decisions are fixed, then the stochastic

program decomposes into |S| smaller sub-problems (one for each scenario), which is

ideal for Benders Decomposition. First used for stochastic programs by Van Slyke

and Wets (1969), it is known in stochastic programming literature as the “L-shaped

method”. Multiple adjustments have been made to the method since its first use.

Rahmaniani et al. (2017) provide a review of state-of-the-art techniques for it.
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2.3.4 Accounting for randomness in mail centres

We see very little work accounting for randomness in daily mail volumes when staffing.

Jarrah et al. (1994a) do note the fluctuations in the mail volumes. However, they

plan for them by simply taking the expected value of the mail volumes, increasing

the volume by 25%, and taking this to be the deterministic demand. While Zhang

et al. (2009) consider disruptions to the workplans, they optimise making changes to

a given workplan, given certain disruptions. That is, the model reacts to disruptions,

rather than ‘anticipates’ or plans for them. Because of this, we will need to use more

advanced techniques (such as stochastic programming) to plan for the uncertainty in

the mail volumes.

2.4 Scenario set selection

Given the importance of scenario-based stochastic programs, a natural question is how

to chose an appropriate scenario set.

Picking this set is a balance of two important, but contradictory, aspects. Firstly,

we wish to pick a scenario set that accurately represents the uncertainty. While there

are many ways to consider this, the most common method is to increase the size of

the scenario set. This improves the representation of the uncertainty. However, keep

in mind that for each scenario, Problem (2.3.2) will need an entire set of second stage

variables and associated constraints. Therefore, as the scenario set size is increased, the

size of the problem to solve vastly increases. This trade-off is shown in Figure 2.4.1.

Therefore, the challenge in scenario set selection is to try and balance these two

aspects. That is, trying to pick a scenario set that is small enough such that Problem

(2.3.2) is tractable, but also representative enough that the scenario-based problem

yields a good approximation of the recourse function.
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Figure 2.4.1: The contradiction in scenario set selection.

2.4.1 Performances measures for scenario sets

We need some measures to assess the quality of the sets themselves. We outline a

number of them here. In this section, we are assuming that we are solving the two-

stage stochastic program given by (2.3.1). We denote the objective of this problem

evaluated for a given solution y under ‘true’ distribution P as FP(y) for this section.

If P is continuous (or discrete, but large), FP(y) cannot be evaluated directly. We

need to determine an appropriate scenario set S to use as an approximation. Note

that in some literature, this is referred to as a ‘scenario tree’. The use of scenario

‘tree’ rather than ‘set’ comes from the multistage stochastic program setting (King and

Wallace, 2012) We use ‘set’ as we are only dealing with two-stage problems. We assume

that S has finite support [ξ1, ..., ξn], with associated probabilities p1, ..., pn.

Various concepts we outline require the optimal values or optimal solutions to FP .

We define F ∗
P and y∗P as the optimal value and an optimal solution (respectively) to FP

under distribution P . Note that when we solve the stochastic program over a scenario

set S, we will slightly abuse our notation and define the optimal value and (an) optimal

solution as F ∗
S and y∗S .

The most natural way to assess the quality of a scenario set is using the approxima-
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tion error (Pflug, 2001) between the scenario set and the ‘true’ distribution.

Definition 2.4.1. Suppose we want to approximate Problem FP using scenario set S

The approximation error from using S as an approximation to P is then defined as

e(P ,S) = FP(y
∗
S)− F ∗

P

While this is the measure that we are trying to minimise, we cannot use it in practise

- if we could solve the stochastic program over P to obtain F ∗
P , then we would not need

to use a scenario set.

Instead, we can often find the out of sample (OOS) value for a given scenario set S.

Definition 2.4.2. The OOS value for a scenario set S under true distribution P is

given by:

OOSS = FP(y
∗
S)

That is, it is the first stage cost of y∗S and the average recourse cost of the true

distribution under solution y∗S . This is easy to do if P is discrete. If P is continuous,

we instead may approximate it using a large sample.

The OOS values do not given any information about how close to optimal a given

solution is. However, it does allow comparison between two scenario sets. In particular,

if we have two scenario sets S1 and S2, we can compare these two sets by calculating

y∗S1
and y∗S2

and comparing OOSy∗S1
and OOSy∗S2

.

2.4.2 Scenario set selection methods

Taxonomy of Scenario set selection techniques

We now discuss different methods of selecting scenario sets for stochastic programs.

Broadly speaking, there are two main ways that scenario set selection procedures can
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be classified:

1. What information is used in the methods. That is, if the method is distribution-

based or problem-based.

2. Whether the selected scenarios are newly generated, or (if the true distribution is

discrete) are a subset of the existing true distribution. That is, if the method is

a scenario generation method or a scenario reduction method.

The first classification refers to whether the information used to select scenar-

ios is drawn from information about the true distribution only (distribution-based),

or whether information specific to the problem we are solving is also incorporated

(problem-based). The second classifies scenarios based on where the scenarios in the

new set come from. That is, is the new set populated by new scenarios which are

user-generated (including sampling scenarios from a continuous distribution), or from

an existing scenario set which has been reduced in size.

At this point, we make an important note on terminology. In the literature, ‘scenario

generation’ is often used to refer to any scenario set selection procedure. However, we

use it to specifically refer to methods in which new scenarios are ‘generated’, as opposed

to methods which start with a large scenario set and select a subset. Throughout the

thesis, we will use the term ‘scenario set selection’ to refer to general methods of choosing

a scenario set, and ‘scenario generation’ to specifically refer to methods which generate

new scenarios.

Distribution-based scenario set selection

Traditionally, most methods have been distribution-based. This means that the scenario

sets are selected such that the set best represents a desired distribution. This could be

the true distribution, or a distribution with user-desired properties.

The most straight-forward method of distribution-based (and indeed all) scenario

set selection methods is Monte Carlo sampling. In this method, the scenarios are
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randomly drawn from some probability distribution. This can be from a continuous

distribution (in which case the procedure is a scenario generation procedure), or can

select members of a larger discrete distribution (which makes this procedure a scenario

reduction method).

This is computationally very easy, and has been used by authors previously (April

et al., 2003; Jobst and Zenios, 2003). When the scenario set is chosen with this, the

solution to the stochastic program is known as the sample average approximation, or

SAA. In order to improve upon basic Monte Carlo sampling, simple variance reduction

techniques have also been used for scenario set selection. These include Latin hypercube

or antithetic sampling (Higle, 1998). However, these techniques rely on the scenarios

having independent marginal distributions.

More sophisticated methods try to pick representative sets more formally. These

approaches (known as optimal discretisation approaches) try to pick a set which min-

imises some distance metric between some true distribution and the selected scenario

set. A common metric used is the Wasserstein distance which we define here for the

case where the true distribution is discrete, using the definition of Dupacova et al.

(2003).

Definition 2.4.3. The Wasserstein distance DW (P ,S) between two discrete distribu-

tions P = [ζ1, ..., ζm] and S = [ξ1, ..., ξn] of size m and n with probabilities p1, ..., pm and

q1, ..., qn respectively is defined as the square root of the objective value to the problem:

min
π∈Rm×n

+

m∑
i=1

n∑
j=1

πij∥ζi − ξj∥2

s.t.
n∑

j=1

πij = pi,∀i ∈ [1, ...,m]

m∑
i=1

πij = qi,∀j ∈ [1, ..., n]
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The Wasserstein distance can be interpreted as the solution to the optimal trans-

portation problem from P to S. The πij variables can be interpreted as the amount

of probability mass being transported from ζi to ξj at cost ∥ζi − ξj∥2. A more general

definition of the Wasserstein distance is provided by Villani (2003).

The Wasserstein distance was first used as a scenario generation technique by Pflug

(2001). This distance can also be generalised to the Fortet-Mourier metric (which has

fewer assumptions on the objective function of the stochastic program) and used as

well. This was done by Dupacova et al. (2003), who also developed scenario reduction

algorithms to solve this for discrete true distributions. Further theoretical developments

have been made to these methods (Heitsch and Römisch, 2003, 2007), as well as exten-

sions of these methods to multi-stage scenario sets (Growe-Kuska et al., 2003; Heitsch

and Römisch, 2009), and changes to increase computational efficiency (Kammammettu

and Li, 2023). However, while there is a lot of theoretical grounding for these methods,

they often involve solving highly non-convex problems, which can be difficult.

Given these difficulties, the optimal discretisation problem is often solved used clus-

tering techniques. In clustering, the scenario set is grouped into |S| clusters. The

selected scenario set is the set of the cluster centroids. Previously, the optimal discreti-

sation method of Pflug (2001) was solved with a k-means type algorithm, and k-means

has also been applied to multi-stage scenario set selection methods Sutien et al. (2010).

However, other clustering techniques, such as k-medians (Kaufman, 1990) and spectral

clustering (Von Luxburg, 2007) could also be used for scenario set selection. Whether

clustering is regarded as a scenario generation or reduction method is specific to the

type of clustering used. For example, if k-means clustering is used, the cluster centroids

are new observations equal to the means of the clusters. Hence, these are scenario gen-

eration procedures. On the other hand, in k-medoids clustering the cluster centroids

are the medoid observations in the cluster. Hence, this would be a scenario reduction

method if used in scenario set selection.
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Other methods try to construct a scenario set to have specific user-desired properties.

In these methods, an initial set of randomly generated scenarios is then transformed to

match pre-set target moments. With these methods, the user can set up to the first four

moments (Høyland et al., 2003; Ponomareva et al., 2015), as well as matching given

correlations between the scenarios as well (Høyland et al., 2003). Similar methods have

also been used to control marginal distributions (Kaut and Lium, 2014), copulas (Kaut

and Wallace, 2011) and empirical CDFs (Calfa et al., 2014).

Other authors have matched the moments using regression-type procedures (Høyland

and Wallace, 2001). In these procedures, a non-linear optimisation problem is created

and solved to generate the scenario set. For example, if we need the scenario set ξ to

have the mean µ, we solve a problem with the constraint

∑
s∈S

psξ
i
s = µi

where i is the index of the variable in the scenario. Further constraints can be added if

specific variances and higher moments are needed. These constraints can be treated as

soft constraints, and put into the objective function of the program to be minimised.

Alternatively, they can be viewed as hard constraints, in which case, only a feasible

solution needs to be found to give the scenario set.

Problem-based scenario set selection

More recent methods try to use information specific to the problem when selecting sce-

narios. These are known as problem-based methods. Many of these methods are based

on or are analogous of existing distribution-based methods. These include sampling

(Dantzig and Glynn, 1990; Infanger, 1992), clustering (Feng and Ryan, 2016; Narum,

2020; Hewitt et al., 2022), and (near) means-matching (Zhang et al., 2023).

Early work by Dantzig and Glynn (1990) and Infanger (1992) used importance

sampling to select scenarios. In this work, scenarios from lower-probability regions of
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the distribution were weighted more heavily in their sampling process. The process has

quite restrictive requirements of the objective function to be minimised, but has still

been used by more recent authors (Papavasiliou and Oren, 2013).

Other authors frame the problem as classifying scenarios by how much they will af-

fect the stochastic program if included. This can be done in different ways for different

problems, having been done for risk-adverse stochastic programs (Arpón et al., 2018),

problems optimising tail-risk measures (Fairbrother et al., 2022), and two-stage pro-

grams (Prochazka and Wallace, 2018). The drawback of these methods is that they are

often tailored to the specific problem to be solved, and are hence difficult to generalise.

A different approach is to create a number of candidate solutions, and test these

solutions on different scenarios in the full set. This gives information that can again

be used in scenario set selection methods. The specifics about how to create the pool

of candidate solutions vary. These include heuristics (Prochazka and Wallace, 2020),

solving single-scenario deterministic problems (Feng and Ryan, 2016; Sun et al., 2018;

Bertsimas and Mundru, 2023; Hewitt et al., 2022; Keutchayan et al., 2023; Zhang et al.,

2023), and solving smaller stochastic programs (Narum, 2020; Narum et al., 2024).

These approaches seem promising, with different scenario reduction methods applied

to different candidate solution pools. However, little work has been done to unify and

generalise these approaches. We give a framework to draw these together in Chapter 5.

2.4.3 Stability

Given the different methods available to select scenario sets, we now discuss some

ways of evaluating different methods. Furthermore, most methods have an element of

inherent randomness. That is, the scenario set selected by the method will not be the

same every time. Because of this, we wish to see that methods are consistent (produce

sets with similar optimal values) and that the sets that they produce are of high quality

(lower optimal values).
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For this, we can examine the Out-Of-Sample (OOS) stability (Kaut and Wallace,

2007). When using OOS stability, we are evaluating if the overall cost with respect to

the true distribution is the same for the optimal solution of different sets Si, i ∈ 1, ..., N

generated by a given scenario set selection method. That is, we want to see

OOSSi
≈ OOSSj

,∀i, j, i ̸= j ∈ 1, ..., N (2.4.1)

Property (2.4.1) basically states that no matter the scenario set used to approximate

the true distribution (generated by the method), the solution to the stochastic program

under the set will give roughly the same objective value.

The OOS stability does not tell us much in-and-of itself. However, it is useful for

comparing different scenario set generating procedures. What we ideally wish to see

for the OOS stability is:

1. A narrower range of the OOS values. Since we are trying to approximate the

expected recourse cost, it is ideal that the estimated recourse values are not too

spread.

2. A lower average of the OOS values. Since we are trying to minimise a problem,

we wish to see that the narrower range of recourse values means that better first

stage solutions can be chosen.

To properly assess the OOS stability of a model, we need to check that Property

(2.4.1) holds for multiple different solutions from multiple different sets. One way to

assess this is through the following procedure:

For an arbitrary number of runs N :

1. Generate scenario sets Si, i = 1, ..., N

2. For each scenario set Si:

(a) Evaluate FSi
(y) to obtain y∗Si
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(b) Calculate OOSSi
.

This gives us N OOS values we can examine, based on the criteria above.

Sometimes the OOS stability cannot be calculated. This can occur if P is too large

to calculate FP(y), or P is continuous (and a large approximate distribution is not

available). While we cannot test overall quality of the solutions, we can measure the

in-sample stability (Kaut and Wallace, 2007). This is a measure of how effective a

scenario set selection procedure is at creating sets that will give a similar solution every

time. Suppose that (via some method) we have produced a set of N unique scenario

sets S ′ = [S1, ...,SN ]. We say that our model has in-sample stability if

F ∗
Si

≈ F ∗
Sj
,∀Si,Sj ∈ S ′ (2.4.2)

Note that King and Wallace (2012) assert that we only care that the objective values

of the two SPs in (2.4.2) are similar, not the corresponding optimal solutions y∗Si
and

y∗Sj
. They argue that since we are trying to solve a problem, we can regard two scenario

sets as being similar if the objective values from the stochastic program are similar.

2.5 Summary

Tying back to staff rostering in sequential sorting facilities, we established at the start

of this chapter that a promising area to explore was network design models. However,

in keeping with both our problem statement, and the gaps in the literature, we would

need to consider a new method to account for the randomness in the mail volumes.

We reviewed different extensions and techniques for solving network flow problems.

Crucially, we saw that there are extensions to the base MCFP available to account for

time deadlines, multiple commodities, and network design - all key features in our mail

centre problem. Within the literature, extensions have been made to improve solution
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algorithms for the models. These new advancements will be useful for our new work on

mail centre staffing. We show our work in this area in Chapter 3.

In terms of stochastic models, we saw that stochastic programming would be well

suited for this type of problem. This allows us to further the field in mail centre staffing,

by properly accounting for randomness in mail volumes for the first time (to the best

of our knowledge). This work is presented in Chapter 4.

Looking deeper into the stochastic programming field, we examined the area of

scenario set selection. We noted that there appeared to be a gap in the area of problem-

based scenario reduction, in that there was no general framework to make existing

methods problem-based. We develop a framework to generalise existing problem-based

scenario reduction methods in Chapter 5.



Chapter 3

A time-expanded network design

model for staff allocation in mail

centres

3.1 Introduction

Running any large facility requires rostering staff and resources (Van den Bergh et al.,

2013). We consider facilities which process large quantities of different streams of

materials, which have to pass through a series of different work areas (WAs) to be

processed. Operational workforce planning is difficult because changes in staff levels

and processing rates at upstream WAs will have large effects on downstream WAs. This

may be further complicated by additional factors such as some WAs not being able to

operate simultaneously, flows of materials being split between several areas, arrivals of

streams at the facility at different times, and deadlines on processing.

The shift manager often has multiple objectives to balance when setting staff lev-

els. Firstly, staff and resources are costly, so the manager wants to minimise costs of

resources used. Secondly, the decision maker may need to consider the impact of shift

33
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patterns on staff. In particular, it is preferable for a worker to not change WAs too

often during a shift. Hence, the decision maker could aim to minimize the number of

changes in the roster for a WA to achieve a smooth shift pattern.

As an example of such a facility, we consider mail centres. These are facilities where

mail is processed (i.e. sorted) by both type and destination as part of the delivery

process. This application is particularly important as due to increases in electronic

communication, there are increased pressures on the mail industry, which requires them

to plan their workforce operations as efficiently as possible.

In a mail centre, the streams consist of different combinations of mail type (e.g.

letters and parcels of different sizes) and priorities (e.g. first class, second class,

tracked/untracked, etc). There are many tasks required to sort mail, such as:

1. Receiving mail as it arrives at the mail centre.

2. Within letters and parcels, segregating items:

• Sorting letters by size (e.g., regular-sized envelopes, flats (larger envelopes),

and other sizes).

• Sorting parcels of different dimensions for automatic sorting machines.

• Separate non-machineable items to be sorted manually (e.g., address not

recognizable by machine, damaged items, parcels of irregular shapes (e.g.,

tubes) or exceeding standard dimensions).

3. Arranging and stacking items to be fed into the automatic sorting machines.

4. Sorting items by destination. This can involve:

• Sorting into outward (mail that needs to go to another mail centre in the

country) or inward (mail that is addressed to a destination nearby, needing

to go to a nearby delivery office).
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• Sorting inward mail into postcodes/destinations. This can involve multiple

stages of sorting, with mail being disaggregated into finer regions at each

stage.

• Sequencing mail within postcodes, so they are in order of delivery and ready

for post officers to deliver them.

5. Sending mail onto onward destinations.

These tasks are performed sequentially by different WAs. For the majority of mail,

these tasks are carried out automatically by machines. Mail that cannot be sorted by

machines (e.g. because the address cannot be read) needs to be processed manually at

other WAs.

As a universal service, there are strict service levels that a postal system has to meet

(Office of Communications, 2012). Meeting these quality of service targets depends

heavily on both the number of letters/parcels that need to be sorted and the number

of staff rostered to sort them. Additional complications which arise in this context are

that there are different mail types with different sorting requirements, and operational

requirements given the start and finish times of the different WAs.

The appropriate number and placement of staff need to be determined for each day

the centre operates. Existing approaches either do not consider sorting deadlines, they

are set at a much longer time scale than required (multiple years, as opposed to a single

day), or do not adequately model the splitting of flow between different WAs - a key

aspect of our setting.

In this paper, we contribute a new staff scheduling model to address optimal staffing

in sequential sorting facilities with high volumes of heterogeneous products. We assess

the benefits of the new model by applying it to a mail centre in the United Kingdom.

We model this as a design problem on a multi-commodity network (Ahuja et al., 1994),

and consider minimising both the maximum number of staff required in the mail centre

over a shift, as well as the number of changes in staff levels between the different time
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periods. This approach builds upon previous models in the literature, but with a more

fine-grained time scale (as opposed to the strategic long-term focus of previous work),

emphasis on smoothness of shifts, and new operational constraints, such as split flows

and tethered WAs.

The outline of the paper is as follows. Section 3.2 provides a review of the relevant

literature. Section 3.3 defines the problem and gives an overview of our specific appli-

cation of a mail centre. Section 3.4 explains our mathematical model in detail. Section

3.5 presents computational results of our model for a real-world case study. Finally,

Section 3.6 discusses these results in context, as well as limitations and further research.

3.2 Literature review

Staff scheduling is important in almost every industry. It has been studied in fields in-

cluding healthcare (Devesse et al., 2022), transport (Tello et al., 2019), telecommunica-

tions (Louly, 2013), education (Kabiru et al., 2017), and security (Restrepo et al., 2012).

Extensions of the problem have been made to account for complexities in the available

workforce. These include variation in employee skills and effectiveness (De Bruecker

et al., 2015), contract type and duration (Bard et al., 2003), job precedence (Zhang

and Bard, 2005; Zhang et al., 2009), and shift time flexibility (Ni and Abeledo, 2007;

Brunner et al., 2009).

Staff scheduling can cover a number of different aspects (Ernst et al., 2004). These

include:

• Demand modelling - determining the number of staff needed to complete all re-

quired tasks on a shift. This has been used in airport security screening (Li et al.,

2018) and bus crew scheduling (Paias et al., 2021).

• Days off scheduling - determining the number of rest days required for staff be-

tween work days, also covered by Paias et al. (2021).
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• Shift scheduling - assigning which staff from a pool of employees to tasks that

need to be completed, with examples in physician scheduling (Devesse et al.,

2022; Tapak et al., 2023).

• Line of work construction - creating repeating cyclic rosters for staff. An example

of this is given by Xie and Suhl (2015), to create rosters for bus crews.

• Task or staff assignment - the assignment of tasks to different staff members, or

staff to different lines of work. Andreatta et al. (2014) use this in scheduling

airport crews.

The large variety of problems also requires different techniques for solving these

models. Devesse et al. (2022) use a mixed-integer-programming formulation to solve

the physician scheduling problem in emergency rooms. Li et al. (2018) design different

networks of security screening for airports, and use simulation to test which networks

are the most effective. Tapak et al. (2023) used column generation and constraint

programming to devise crew schedules for a railway system. Network models are another

technique used to organise scheduling. Andreatta et al. (2014) staff airport ground crews

by visualising tasks as a graph in which different nodes represent different aspects of

a task (staff member to complete it or equipment to be used), and the flows represent

different tasks that use these resources. Xie and Suhl (2015); Paias et al. (2021) look at

scheduling bus crews using network flows. In their example, the flows represent workers

to complete various duties (nodes).

Within the mail industry, there are a wide variety of approaches to optimal staff

scheduling. Jarrah et al. (1994b) and Bard et al. (2003) both calculate how many staff

are required for each shift, and determine who works from a pool of available workers.

However, this ignores mail sorting deadlines, as well as job precedence constraints.

Other approaches do incorporate sorting deadlines and job precedence. Zhang and

Bard (2005), Qi and Bard (2006), and Zhang et al. (2009) consider both staff rostering
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and equipment scheduling. In these studies, which machines to schedule and how many

staff members to roster on are treated as different decision variables while taking job

precedence into account. In particular, Zhang and Bard (2005) and Zhang et al. (2009)

examine the scheduling of both equipment and workers, characterising it as a multi-

level lot sizing problem. In this problem, they schedule when mail is sent between

different WAs, to optimise when equipment is scheduled to run, and when to allocate

staff. However, the main focus of these problems is when to set-up and run machines.

The question of when to allocate staff is only dealt with as an auxiliary problem, after

the equipment schedules have been decided.

Another approach is by Bard et al. (1993) and Jarrah et al. (1994a), who minimise

the equipment and staffing costs of setting up a USPS General Mail Facility (GMF).

They model the GMF as a network design problem, with mail passing between WAs

representing the flows in the model. Furthermore, they use a time-expanded network to

include deadline constraints in sorting this mail. However, the authors consider fewer

WAs and streams than needed to deal with present-day mail centres. They also omit

more specific operational constraints, such as split flows of commodities, and focus on

more strategic planning time-horizons (i.e. years, rather than hours or days).

An important aspect is to consider the smoothness of a shift. Here, ‘smoothness’

refers to how often and how much the number of rostered workers changes during a

shift. A smoother shift has fewer and smaller changes in the number of staff work-

ing between the time periods. This is desirable for the staff, as they do not have to

change WAs unnecessarily during a shift. Furthermore, it has been shown that task-

switching can lead to higher error rates in multiple fields (Skaugset et al., 2016). Shift

smoothness is common in scheduling/rostering problems (Brucker and Knust, 2012),

but generally is not considered when using network design problems to determine staff

levels. Specifically to mail sorting, Jarrah et al. (1994a) is the only previous study to

look at smoothness, but only as a secondary priority compared to other objectives.
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Looking at the literature, there is little research on using networks to solve staffing

problems for sequential sorting facilities - particularly considering multiple objectives.

Furthermore, our problem can be thought of as a demand modelling problem - deter-

mining the number of staff required at various times to account for ‘demand’ (in this

case, materials to be sorted). Network design models also do not appear to have been

used for this type of shift scheduling. To bridge this gap, we analyse the effect of differ-

ent objectives and priorities. Closest to ours is the work by Jarrah et al. (1994a), who

use a network design to organise a mail centre, but they do not evaluate the trade-offs

between competing objectives and their priorities. Also, they take a long-term strategic

view, rather than a day-to-day operational view. Another novelty of our model is that

we consider indirect streams and tethering, which are important aspects for the sorting

facilities we analyse.

3.3 Problem description

3.3.1 General problem overview

We consider a facility which processes large quantities of different types of items which

we call streams and may have different properties and requirements. Each stream

must pass through several different WAs where items are processed, and subsequently

forwarded to the next one until they have been entirely processed.

Mappings Each stream has a known path(s) through the work areas of the facility.

The stages of these paths are known as mappings. Mappings are pairs of work areas

giving where the stream is coming from and where it is going. There are two types

of mappings. Direct mappings mean that the whole stream passes between the two

work areas. Indirect mappings mean that only a certain proportion of the stream

passes between the two work areas. The remainder goes to other work areas, given by
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different indirect mappings.

Work plans Workers are needed to run the work areas. This could be to either

operate machines which sort the materials, or to sort the materials by hand themselves.

The facility manager needs to decide on a work plan, showing how many staff to assign

to each WA over the course of a day. Staff levels are linked to the processing as the

more staff assigned to a WA, the more items that can be processed in a given time

interval.

Our aim is to create a work plan for a whole day. Note that the work day is divided

into shifts. If a worker is required for part of a shift, then they must be paid for the

whole shift. Under the assumption that a worker can be reassigned to any other work

area over the course of a shift, the number of workers required for a shift is the maximum

number of workers assigned to work areas over the course of the shift.

Priorities The time by which an item is processed is important as companies are often

subject to contracts that require them to meet deadlines. In our specific example, these

deadlines are enforced through assigned priorities at each work area. The priority gives

the volume of flow that the work area has to process in a given shift. In this problem,

we have 3 types of priority:

1. All - that is, all flow entering this work area needs to be processed this shift.

2. 0 - that is, no flow is to be processed, which means that this work area is not

open during this shift, and will not be staffed.

3. A given mail volume r > 0 - this means that at least r units of flow must be

processed and leave the work area during the shift.

Operational constraints The number of staff that can work on a WA during a time

interval is subject to operational constraints. WAs can have different start or finish
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times for different shifts. Often these are given as set times. However, some work areas

cannot start until another one has finished. These work areas are referred to as being

tethered, which is a common occurrence in scheduling problems (Brucker and Knust,

2012). Another general constraint could be a maximum number of staff that can be

rostered in a work area at a given time - for example, due to a limited amount of floor

space.

The main aim when creating a work plan is to minimize the costs of workers while

meeting all required deadlines. Also important is the shift pattern, that is, how the

number of workers at a WA changes over time. A shift pattern with many large and

frequent changes will be less practical for the workers compared to a shift pattern with

fewer changes.

3.3.2 Mail sorting centre example

In Figure 3.3.1, we show a simplified version of a mail centre as an illustrative example.

In reality, mail centres are much larger with many more types of mail than shown here.

This is a closed system, where all mail that enters the network passes through WAs and

then leaves the network. There are four mail types in the illustrative example, which

need to move between eight WAs in order to be sorted. WA 1 would sort letters from

parcels, and remove letters/parcels that cannot be mechanically sorted. The mechanical

sort letters and parcels would then pass to WAs 2 and 4 respectively. These would be

automated sorting machines, and would perform the majority of destination sorting. A

small proportion of the mechanically sorted letters/parcels would be unable to be read

by a machine and so would be passed to WAs 5 and 6 where they would join the other

manually sorting letters/parcels. WA 3 would take the letters/parcels which cannot

be processed by a machine, and sort them into letters vs parcels. At WAs 5 and 6,

the letters/parcels that need to be manually sorted (including those rejected by the

automatic sorting machines) will be manually sorted by destination. WA 7 acts as a
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Figure 3.3.1: Diagram of a small example mail centre. (Abbreviations: Mech.: me-
chanically sorted, Man.: manually sorted)

sequencing WA. Finally, all sorted mail would move to WA 8, which is a consolidation

WA, where the mail is prepared to be sent to its next destination.

The arrows show the mappings of the commodities between the different WAs.

The majority of mappings are direct mappings, indicating all flow of a commodity

passes between the two WAs - such as the mapping for mechanically sorted letters

(Mech Letters) from WA 1 to WA 2. There are a number of indirect mappings which

are labelled on the relevant commodities. For example, there is an indirect mapping

between WA 5 and WA 7, indicating that 27% of all commodities that leave WA 5 need

to go to WA 7. The remaining 73% will go straight to WA 8.

The different WAs need staff to operate them. Either to operate the automatic

sorting machines (in WAs 2, 4, and 7), sort by hand (WAs 5 and 6) or send onwards

(WA 8). The shift manager needs to decide how many workers are needed in each WA

at each time.
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Figure 3.4.1: Base network of a small example of a mail centre

3.4 Mathematical model

3.4.1 Overview of network design problem

We model the sequential processing facility as a network design problem by first con-

structing a base network describing the mappings E between the different WAs w ∈ W

in the facility. The base network for the small example of the mail centre shown in Fig-

ure 3.3.1 is given in Figure 3.4.1.

The base network does not include any concept of time. However, there are strict

deadlines on processing all streams. Therefore, we construct a time-expanded net-

work to incorporate time. Let T = {1, . . . , T} represent a discretisation of time over

the course of a day. Each t ∈ T corresponds to a short time interval, e.g., 10 minutes.

In a time-expanded network, we have a node (w, t) for each WA w ∈ W and t ∈ T ,

as well as source and sink nodes to represent points where streams enter and leave the

system. Flows in this network will represent the movement of a commodity stream

through the WAs in the facility over time.

The arcs in the time-expanded network consist of the following:

• ((w, t), (w, t+ 1)) for w ∈ W , t ∈ [1, T − 1]: Flow travelling along these arc
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represents material that is held in WA w from time t to time t+ 1.

• ((w1, t), (w2, t+ 1)) where (w1, w2) is an arc in the base network and t ∈ [1, T −1]:

Flow travelling along these arcs represent material that is processed at w1 in time

t and then sent on to w2.

• (s, (w, t)) where s is a source node, and w ∈ W , t ∈ T : flow along these arcs

represent points at which streams enter the system.

• ((w, t), e)) where w ∈ W , t ∈ T and e is a sink node: flow along these arcs

represent streams leaving the system.

The time-expanded version of the base network from Figure 3.4.1 is shown in Figure

3.4.2. For this example, we have only one source node linked to WA 1 at time period 1

which means in this case that all streams to be processed arrive there at the beginning

of the day. For convenience, we also add a dummy ‘completion’ WA. This WA signifies

flow which has been completely processed and is waiting to be shipped out of the facility.

The sink node is then linked to the completion WA in the final time period. Adding the

completion WA is useful, as we can easily keep track of which flow has been processed

(as it arrives in the sink via this completion area) and which has been delayed (arrives

at the sink via different arcs). This helps adhere to WA priorities, mentioned earlier.

We therefore add “Completion” as a WA in the network, and add it to the set W .

There is also only one sink node which is linked to every WA at the final time period.

In doing this, we allow for the case where not all of a stream is processed over the course

of a day. This will mean our optimization model below will remain feasible even if it

is not possible to process everything in the given time limit. Although we only have

one source and sink in this example, it is possible to have multiple. Additional sources

would represent additional times and WAs where streams arrive, and additional sink

nodes may be used to represent different deadlines for processing.
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Figure 3.4.2: Time-expanded version of the base network from Figure 3.4.1 for 8 time
periods.

3.4.2 Mathematical formulation

The problem of staffing at a sequential sorting facility can be formulated as network

design problem on time-expanded network presented above. Flow on this network

represents the movement of material as it is processed over the course of a day. The

design element comes from the fact that we must decide the number of workers to

allocate to each WA over time, determining the flow capacity on arcs between WAs.

Note that we present the formulation here minimising the number of workers in the

mail centre at any point in time over each shift as the objective. We discuss different

choice for different objectives in Section 3.4.3.

We use the following notation to describe our model.

Sets and indices:

• W : set of WAs indexed by w.

• E : set of mappings between WAs.

• I: set of indirect mappings.
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• H: set of tethered WAs.

• J : set of shifts, indexed by j.

• T : set of time periods, indexed by t.

• Tj: set of time periods associated with shift j. Note, Tj ⊂ T .

• N : set of nodes in the time expanded network, indexed by i.

• A: set of arcs in the time expanded network, indexed by a.

• δ+(i) and δ−(i): sets of outgoing and incoming arcs for node i, respectively.

• K: set of commodities, indexed by k.

• wO(a) and wD(a): origin and destination WAs associated with arc a.

• tO(a) and tD(a): origin and destination times associated with arc a.

• ID+(w,w′, t) := {a|wO(a) = w,wD(a) = w′, tO(a) > t, tD(a) = tO(a) + 1}: a set

of all the arcs originating at WA w and finishing at w′, originating at a time later

than t. This is used in defining constraints to enforce the indirect streams.

• ID−(w) := {a|wO(a) ̸= w,wD(a) = w}: a set of all the arcs originating at

different WAs, and finishing at WA w. This is also used to define the indirect

stream constraints.

Parameters:

• cw: number of staff members required to operate one processing unit in WA w.

• bki : demand for commodity i and node k. For the majority of nodes and com-

modities, this will be 0 - that is, flow simply passing through here. At the source

nodes, this will be positive, as this is where flow enters the network. For sink

nodes, this will be negative, indicating where flow leaves the network.
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• vka : commodity specific capacity for arc a and commodity k. These are used to

enforce that the commodities follow the correct mappings.

• ρw,w′ : proportion of total flow passing fromWA w to WA w′ from indirect mapping

(w,w′) ∈ I.

• uw: total WA processing capacity per time period per processing unit for WA w.

• Cwt: processing unit capacity for WA w in time t.

Decision variables

• xk
a: amount of commodity k sent along arc a.

• ywt: number of processing units rostered in WA w for time t. Here, we use the

term ‘processing unit’ to describe one either person or machine that is used to

sort the commodity in a WA.

• gj: auxiliary continuous variable, giving the number of workers required for shift

j.

• Swt and Fwt: auxiliary binary variables indicating if WA w has started and finished

in or before time t, respectively.
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Formulation

min
∑
j∈J

gj (3.4.1)

s.t. gj ≥
∑
w∈W

cwywt, ∀t ∈ Tj, ∀j ∈ J (3.4.2)

∑
a∈δ+(i)

xk
a −

∑
a∈δ−(i)

xk
a = bki , ∀k ∈ K, i ∈ N (3.4.3)

xk
a ≤ vka ,∀a ∈ A, ∀k ∈ K (3.4.4)∑

k∈K

∑
a|(w,Wd(a))∈E

xk
a ≤ ywtuw,∀w ∈ W , ∀t ∈ 1, ..., T (3.4.5)

∑
a∈ID+(w,w′,t)

xk
a = ρw1w2

∑
a∈ID−(w)

xk
a, ∀k ∈ K, ∀(w,w′) ∈ I, ∀t ∈ T (3.4.6)

ywt ≤ Cwt, ∀w ∈ W , t ∈ T (3.4.7)

ywt ≤ CwtSwt, ∀w s.t. ∃ w′ ∈ W | (w′, w) ∈ H (3.4.8)

ywt ≤ Cwt(1− Fwt), ∀w s.t. ∃ w′ ∈ W | (w,w′) ∈ H (3.4.9)

Swt ≤ Sw,t+1, ∀t ∈ 2, ..., T, (3.4.10)

Fwt ≤ Fw,t+1, ∀t ∈ 2, ..., T (3.4.11)

Fwt ≥ Sw′t+1, ∀t ∈ 2, ..., T, (w,w′) ∈ H (3.4.12)

xk
a ≥ 0, ∀a ∈ A, k ∈ K (3.4.13)

ywt ∈ N0, ∀w ∈ W , t ∈ T

Swt, Fwt ∈ {0, 1}, ∀w ∈ W , t ∈ T (3.4.14)

The objective (3.4.1) is to minimise the total number of workers scheduled over a

given day. When we are counting the number of workers in the facility at a time, we

are counting the number of processing units in the manual WAs, plus the number of

processing units in the machine WAs multiplied by the number of workers needed to

work one machine in this WA.
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Constraint (3.4.2) forces the g variables to take the value of the maximum number

of workers in the WAs over the shifts.

The mass balance constraint (3.4.3) ensures that all mail that enters the network

leaves the network, and that the inflow equals the outflow in all nodes (except for the

source and sink nodes).

Constraints (3.4.4)- (3.4.6) enforce limits on the amount of flow travelling along arcs,

but with slightly different purposes. (3.4.4) limits the commodity specific flow along

each arc. This is used to ensure flow stays along the correct mappings. By contrast,

Constraint (3.4.5) ensures that the flow leaving a node in a time period is limited by

the number of processing units assigned to that WA in that time period. This links our

staff rostering levels with our processing capacity. Constraint (3.4.6) ensures that the

correct proportion of flow follows the indirect mappings.

The number of processing units assigned to each WA in each time period is limited

to its capacity by Constraint (3.4.7).

Constraints (3.4.8)-(3.4.12) are used to enforce tethering. Constraints (3.4.8) and

(3.4.9) ensure that no processing units are assigned in WAs before they start or after

they finish. Constraints (3.4.10) and (3.4.11) are used to ensure that once a WA has

started or finished for the day, it does not start or finish again. Constraint (3.4.12)

ensures that if WAs w and w′ are tethered, then w must finish before w′ starts.

Finally, we define the types of decision variables used (including non-negativity) in

Constraints (3.4.13)-(3.4.14).

3.4.3 Alternative objectives

Another objective is to ensure that shifts are as smooth as possible, which we achieve by

minimising the total number of changes in workers between consecutive time periods

in each WA. Let the decision variable hwt, w ∈ W , t ∈ 2, ..., T define the change in

processing units between time periods t− 1 and t at WA w. To calculate hwt, we then



CHAPTER 3. A TIME-EXPANDED NETWORK DESIGN MODEL 50

add the following constraints to the model:

yw,t − yw,t−1 ≤ hwt, ∀w ∈ W ,∀t ∈ 2, ..., T, (3.4.15)

−(yw,t − yw,t−1) ≤ hwt, ∀w ∈ W ,∀t ∈ 2, ..., T. (3.4.16)

Constraints (3.4.15) and (3.4.16) force hwt to be greater than or equal to the change

in processing units in WA w between the time periods t and t− 1.

The objective to minimise the total number of changes in processing unit numbers

between consecutive time periods (not counting changes between shifts) is therefore:

min
∑
w∈W

∑
t∈T

cwhwt (3.4.17)

min
∑
w∈W

∑
j∈J

∑
t∈T ′

j

cwhwt

where T ′
j is a set of all time periods in Tj except for the first time period in Tj. This

is so the changes in staff numbers at each WA between shift changes is not counted.

We also deal with meeting priorities as a soft constraint here. From the priorities listed

previously, there are two types of priorities we need to consider - “All” and r priorities.

For any WA with “All” as priority in shift j, we penalise any flow along the arc linking

this WA during the last time in shift j to the node of this WA in the first time in shift

j + 1 (or to the sink, if j is the final shift). Mathematically, we write this as

∑
a∈AAll

∑
k∈K

xk
a

where AAll is the set of all arcs which start at a WA with “All” priority in shift j at
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the final time in shift j and finish at either the same WA in the next time period (if j

is not the final shift) or the sink node (if j is the final shift).

The r priority WAs are more complex. For these WAs, we need to calculate the

volume of flow processed over a shift, and then penalise any shortfall. To do this, we

first introduce a variable dw ≥ 0 to represent the delayed flow in WA w ∈ W . This is

defined through the constraint:

∑
t<T

∑
a∈Awt

xk
a + dw ≥ rw, w ∈ WR

where Awt is the set of all arcs originating at node (w, t) and terminating at (w′, t+ 1)

where (w,w′) ∈ E , WR is defined as the set of WAs with an r priority, and rw is the

target value for WA w ∈ WR.

Priorities can then be enforced by minimizing the total delayed flow:

∑
a∈AAll

∑
k∈K

xk
a +

∑
w∈WR

dw (3.4.18)

There are various approaches to balancing multiple objective functions in optimi-

sation. In the case where there is a strict order of importance for the objectives, a

natural approach to use is lexicographic optimisation. In lexicographical optimisation,

the model is first solved with one objective. Then, it is solved with the second objective,

subject to keeping the first objective at its best value, and so on with other objectives.

This is the approach we shall use in our numerical tests, in which, in particular, we will

experiment with the order in which we optimise the maximum workers and smoothness

objectives.
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3.5 Results and discussion

To test our model, we applied it to data collected from a mail centre based in the

United Kingdom (UKMC). We solved this model using four approaches, balancing the

objectives differently in each. We compared our results to the actual workplans the

UKMC would use, given the same forecasts of mail volume. We also use our model

to investigate the effect of different mail scenarios has on staffing levels, as well as

investigating the effect of the time granularity in our model has on outcomes.

3.5.1 Data and setting

We collected data from the mail centre for a three month period (June 29 to September

30, 2020). This data contained multiple data sets consisting of the following:

• Arrival volumes of each stream for each day.

• Origin WA, destination WA and stream for each mapping in the mail centre.

For indirect mappings, the ratio of mail passing to that destination WA was also

given.

• Capacity for the number of workers for each WA.

• Throughput for each WA.

• Sorting priority for each WA on each shift on each day.

• Number of workers in each WA for each 10-minute interval on each day suggested

by the UKMC.

We used this data to build a network of the mail centre, then time-expanded this

network out with 144 different time periods (a 24 hour day split into 10 minute intervals,

starting at 6:00 am), and added the required sources and sinks. This new network
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contains 8,127 nodes, connected by 45,163 edges. Note that in later experiments, we

change the number of time periods we use to time-expand the network.

3.5.2 Experimental set-up

The shift manager faces a number of objectives - the throughput of delayed mail, the

number of workers, and the number of changes. In this experiment, we will assume that

the number of delayed mail is an absolute priorty. Therefore, we will minimise Objective

(3.4.18) first, and lexicographically constraint the model to meet this minimum before

meeting any other objectives. Since this is always the first priority, and we will always

be meeting this before optimising with respect to any other objective, we will think of

this objective as a constraint, and references to “objectives” in the remainder of this

paper will refer to either maximum workers or changes.

For the maximum number of workers and smoothness objectives in (3.4.1) and

(3.4.17), we test four approaches:

1. Minimising the maximum number of workers only (MMWT).

2. Minimising the total changes in staff levels at WAs between time periods (MC)

only.

3. Lexicographically first minimising the maximum number of workers, then min-

imising the total changes (Lex 1).

4. Lexicographically first minimising the total changes, then minimising the maxi-

mum number of workers (Lex 2).

We also performed some experiments where we optimised the primary objective (either

workers or changes), with varying bounds (not at the optimal value) on the secondary

objective. From these experiments, this was deemed to not be a suitable approach to

this problem. See Appendix 3.D.
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We implement and solve all optimisation models using the Python interface to the

Gurobi solver (version 9.0.0) (Gurobi Optimization, LLC, 2022) on a High Performance

Computing Facility. For each day, we ran the model using 1 core and 3 hours per

objective. For a full breakdown of the computational performance of the model, see

Appendix 3.A. For the lexicographical approaches, if the model does not converge in

this time limit, we take the current best objective value found, and use this as RHS for

the lexicographical constraint.

3.5.3 Comparison between approaches, and with the UKMC

Firstly, we compare how the different approaches perform under each objective by

solving the model for every day (excluding Sundays) for the three month period we

consider. These were compared to each other, and to staff levels suggested by the UK

mail company (UKMC). The UKMC sets their workplans with a basic algorithm. The

details of this algorithm are given in Appendix 3.B.

Figures 3.5.1 and 3.5.2 show the maximum workers and changes (respectively) re-

quired for each day for the different approaches, as well as those recommended by the

UKMC. Across both metrics, the broad picture is the same. Firstly, the approaches

designed for a given metric (MMWT and Lex 1 for max. workers, MC and Lex 2 for

changes) perform much better than those that do not. What is more noteworthy is how

much better MC and Lex 2 perform regarding max. workers than MMWT and Lex

1 do regarding changes. This seems to be because there are already some constraints

(e.g. Constraint (3.4.7)) to limit how many workers are in WAs at different times.

However, there are no constraints limiting changes. Therefore, if left unchecked, there

is more scope for a model to schedule many changes than to schedule many workers.

Secondly, there are many instances of our approaches outperforming the UKMC. While

this occurs for any approach designed for a specific objective (e.g. MMWT or Lex 1

for max. workers), we see that Lex 2 outperforms UKMC on both metrics, showing
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Figure 3.5.1: Boxplots of maximum workers for each day for the different approaches,
as well as those recommended by the UKMC.

the value of this approach. Note that to see the differences in the changes between the

approaches more clearly, we re-create Figure 3.5.2 without MMWT or Lex 1. This is

shown in Figure 3.C.1 in Appendix 3.C.

3.5.4 Increasing mail volumes

As well as producing work plans, the proposed optimisation model can be used to

investigate the effect of different scenarios. One scenario is a potential increase in total

mail traffic, which happened, for example, during the COVID-19 pandemic. In this

experiment, we look at the effect of increasing mail volumes by 10% and 20% using our

optimisation approach.

The effect of increasing mail volumes on max. workers and changes is shown in

Figures 3.5.3 and 3.5.4, respectively. Broadly, both max. workers and changes increase

as the mail volumes increase. However, the proportional increases are less than those

of the mail volume increases. For example, Looking at MMWT and Lex 1 with respect

to max. workers, the median max workers increase from 253 to 276.5 and 296.5 for

10% and 20% increases respectively. This is a 9% and a 17% increase – showing that
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Figure 3.5.2: Boxplots of changes required for each day for the different approaches, as
well as those recommended by the UKMC.

the workers become more efficient as the mail volumes are increased. We also see this

for MC (approximately 9% and 12% increases) and Lex 2 (approximately 7% and 12%

increases). Changes show a similar pattern. We see a (approximately) 6% and 11%

increase in changes for MC and Lex 2, and an 8% and 14% increase for MMWT for

the respective 10% and 20% increases in mail volumes. An exception to this pattern

is the result for Lex 1 with respect to changes. In this case, the median changes seem

to decrease as mail volumes are increased, albeit with increasing spread. For the other

three approaches however, the pattern is clear.

3.5.5 Changing proportion of letters vs parcels

Another scenario is a reduction in the proportion of the mail volumes which are letters,

rather than parcels. This scenario mimics the current long-term decline in the number

of letters sent, and an increase in the number of parcels. In our sample, an average day

consists of roughly 80% letters and 20% parcels. In this experiment we explore what

happened if (while keeping the total volumes the same), we reduced to proportion of

letters to 50% and 20%, along with the corresponding increase in parcels.



CHAPTER 3. A TIME-EXPANDED NETWORK DESIGN MODEL 57

Figure 3.5.3: Max workers vs mail volume increase for different approaches.

Figure 3.5.4: Changes vs mail volume increase for the different approaches
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Figure 3.5.5: Max workers vs proportion of letters. 80% letters is the current baseline

For MMWT, Lex 1, and Lex 2, there is a clear increase in the maximum workers

required when the proportion of letters decreases (see Figure 3.5.5). This suggests that

parcels are more labour-intensive, and that workforces need to take this into account

going forward. The trend for MC is harder to see from Figure 3.5.5, but the median

max workers also increases with an increase in parcels (464, 642, and 775 workers for

80% letters, 50% letters, and 20% letters respectively).

The relationship between changes and proportion of letters/parcels is shown in Fig-

ure 3.5.6. Again, we see an unusual pattern in the Lex 1 results, in that the median

seems to decrease while the spread increases. However, for the other three approaches,

the pattern is clear. The changes increase as the number of parcels is increased. Given

that the max. workers increase with more parcels, this means that there is more scope

to have large changes in numbers.
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Figure 3.5.6: Changes vs proportion of letters. 80% letters is the current baseline

3.5.6 Reducing the time granularity

Given the complexity of the model, there were some computational challenges. In order

to ease these, we also examined how the model behaved when using only 48 or 24 time

periods (half hourly and hourly time intervals, respectively) when time-expanding the

model.

The results are shown in Figures 3.5.7 and 3.5.8. There are two important aspects to

note. Firstly, the number of changes strongly reduces as the length of the time periods

increases, across all approaches. Going from 10 minute intervals (144 time periods) to

30 minute intervals (48 time periods) gives reductions in changes ranging from 34%

(MC and Lex 2) to 71% (MMWT). Going from 10 minute to 1 hour intervals (24 time

periods) results in reductions ranging from 67% (MC and Lex 2) and 88% (MMWT). If

there are fewer distinct time periods, there are fewer chances to change worker numbers.

However, this comes at a cost of increasing the max. workers. For example, the

max. workers required for MC increased from a median of 464 to 555.5 (20% increase),

when decreasing from 144 to 24 time periods. We also observe an 11% increase for Lex
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Figure 3.5.7: Max workers vs different levels of time discretisation, split by approach

Figure 3.5.8: Changes vs different levels of time discretisation, split by approach
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2 (333 workers to 370), and a 3% decrease for MMWT and Lex 1. This is important

- by considering longer time intervals, we reduce changes, but this requires more max.

workers (though proportionally less) when considering MC and Lex 2 and sometimes

even decreasing maximum workers required (for MMWT and Lex 1) because there is a

more balanced spread of workers across the WAs due to the longer time intervals (i.e.,

a worker stays on for longer at the same WA).

3.6 Conclusion

Staffing in sequential sorting facilities is important, as upstream delays will propagate

through the facility. We present a new model to solve this problem for several objectives

that are important in practice. This is based on a network flow model, but incorporates

additional complexity, such as indirect streams and tethered WAs. We also account

for time-dependency in sorting deadlines using a time-expanded network, at a very

fine-grained timescale. This poses additional challenges as it increases the size of the

network, and hence the model complexity.

We apply this model to data collected at a mail sorting facility over a time period

of 3 months. The data includes daily mail volumes for different streams of mail (e.g.

first class letters, second class letters), suggested staff workplans provided by the com-

pany, and details on sorting constraints for each stream. We compared the different

approaches with each other, as well as against staff levels suggested by the UKMC. We

also examined how the model performs under different scenarios. Namely, when mail

volumes are increased, when the split between letters and parcels changes, and when

the level of time discretisation is decreased.

When comparing all objectives, we naturally found that MMWT and Lex 1 were

the best approaches regarding maximum workers, and MC and Lex 2 were the best

regarding changes. However, Lex 2 consistently outperformed the UKMC on both
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considered objectives.

Increasing mail volumes resulted in more workers required, but the proportional

increase in workers was less than that of the increase in mail. Changes also showed

increases as the mail volumes increased.

The proportion of parcels vs letters also had an interesting effect on the results.

Both max workers and changes increased as the proportion of parcels increased. This

suggest that parcels are more labour-intensive to sort. Given the long term increasing

trend in parcel volumes (and decreasing trend in letter volumes), this is important

information for practitioners.

Finally, when changing the time granularity, reducing the number of time periods

has differing effects, depending on the approach used. For Lex 2 and MC, there is a

trade-off when reducing the time granularity, between reducing the number of changes,

but increasing the max. workers. For Lex 1 and MMWT, the number of changes

reduces, but there is also a slight reduction in the max. workers. This shows that there

can be benefits to having a reduced time discretisation, but it is approach-dependent.

While the results are positive, there are some limitations with this work. We as-

sume that the mail volumes are known before staff allocation. This is often unrealistic

in practise. An avenue for future research would be to relax this assumption. For

example, this could be formulated as a stochastic problem, with mail volumes treated

as random variables, and including probabilistic constraints. Such an approach would

need greater computational power to solve the model. Using or developing more so-

phisticated optimisation techniques to solve this is another area for future research.

We contribute to the staff rostering literature by showing the value from using

network models to set short-term operational staff levels for sequential sorting facilities.

We also highlight the importance of examining the priorities of differing objectives.

From a managerial perspective, our model allows decision makers to determine work

plans balancing several objectives for their day to day operations. By analysing several
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scenarios and potential future trends, such as decreasing letter and increasing parcel

volumes, decision makers can assess whether their current setup is appropriate to meet

future challenges or whether adaptations are required.
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Figure 3.A.1: Optimality gap of the models vs time granularity, split by objective.

3.A Computational performance

To examine the computational performance of the model, we report the optimality gap

for each objective for each day. Given the effect that the level of time discretisation

should have on these gaps, we plot them against time granularity, split by objective in

Figure 3.A.1.

Note that the gaps for 10-minute intervals should be representative of the gaps for

all other experiments. We see that the gaps are very large for the Lex 1 objective, and

(while smaller) are also still large for Lex 2. The gaps for MMWT and MC are much

smaller, with MMWT having a median gap of 1.2%.

We see significant improvement in the gaps for MC, Lex 1, and Lex 2 as the level

of time granularity is decreased (MMWT does not improve, primarily given how well

it performs already).
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Figure 3.C.1: Boxplot of changes for the different objectives with MMWT and Lex 1
removed, for easier comparison.

3.B UKMC algorithm for setting staff levels

The UKMC sets their workplans with an algorithm which:

1. Smooths the arrival of mail evenly between all time periods between its arrival

time and the arrival time of the next delivery of mail.

2. Calculates the amount of mail going through each work area at each time period.

3. Divides the calculated mail traffic by the given throughput per processing unit

(in this case, sorting machines) to obtain the number of machines.

4. Multiplies the number of machines by the number of workers required to work

one machine to calculate the final number of workers in each time period in each

work area.



CHAPTER 3. A TIME-EXPANDED NETWORK DESIGN MODEL 66

Figure 3.D.1: Increase in max workers by allowable increase in changes

3.C Results with omissions

Figure 3.C.1 shows the total changes for the MC and Lex 2 objectives, along with those

suggested by the UKMC. It is now clear that MC and Lex 2 show lower changes than

the UKMC.

3.D Constraining the secondary objective

We examine the effect of applying a bound on the secondary objective at various levels

when minimising the first objective. This prevents the model from finding solutions

which, while performing well on one objective, are extremely poor regarding the other.

We set the constraints to be at most 50%, 100%, 500%, and 1000% worse than the

optimal value for the secondary objective. We then look at how much proportionally

worse the primary objective becomes relative to its optimal value (which we found

previously) when imposing this constraint.

As can be expected, tightening the bound on changes causes the minimum maximum

number of workers to become worse (see Figure 3.D.1). This shows that while we can
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Figure 3.D.2: Increase in changes by allowable increase in max workers

limit how many changes the model sets, this does come at a cost. The median increase

in the max workers is 0.3% when the changes have to be within 500% of the minimum,

3% if the changes have to be within 100%, and 8% when the changes have to be within

50%. We see similar results when changes is the primary objective. The main difference

is that the bound on max workers needs to be much tighter to start affecting the number

of changes (Figure 3.D.2). For 100%, 500%, and 1000% bounds, the median increase in

the optimal number of changes is 0%. This shows that the minimum number of changes

is less sensitive to these constraints on the max workers. We also included a bound of a

10% increase in the maximum workers, to see when the bound was tight enough to start

affecting the workers. With the 10% increase, the median changes were 26% above their

lowest possible values, showing that at this point, the bound is tight enough to start

affecting the changes. While this can be useful in practice, an important question is

which value for a bound is appropriate to avoid setting it arbitrarily. For this decision

to be made, the whole optimisation model would need to be run first. In contrast,

lexicographical optimisation ensures that (given the priorities of the objectives) we are

achieving the lowest possible on one objective, and conditionally the lowest possible
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value on the second objective.



Chapter 4

Staff allocation in mail centres

under uncertain mail volumes

4.1 Introduction

In staff rostering, a shift manager needs to determine how many staff to roster onto a

shift to complete all required tasks. Rostering decisions are often based on the amount

of work that needs to be done. However, this information is often unknown before the

staff workplans need to be set. This leaves the shift manager in a delicate position,

needing to determine the staff levels before having all the information they need to

make the optimal choice.

This is especially important in sequential sorting facilities. In these facilities, streams

of materials need to be sorted at different work areas or WAs in sequence in order to

be sorted/processed. Given the sequential nature of the required sorting within these

facilities, understaffed WAs early in the process can cause delays and inefficiencies which

will propagate through the system. In addition, the optimal staff levels will heavily

depend on the amount of material to be processed. Variation in the volume of this

material will have consequences in staffing these facilities. Furthermore, the rostering

69
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decisions often have to be made before the exact amount of material to process is known.

Mail centres are one example of such facilities. These are the facilities in the post

delivery system where the majority of sorting occurs. Within each mail centre, there

are many steps to the process:

1. Accepting mail when it arrives.

2. Within the letters and parcels (these arrive already segregated), separate mail

based on:

• Size. For example, sorting regular-sized envelopes from larger sized envelopes

(flats), or sorting parcels of different dimensions.

• Machinable vs non-machinable. Machinable items refer to those that can be

automatically read and sorted by sorting machines. Non-machinable items

cannot be sorted automatically, and instead must be sorted by hand. For

example, parcels of irregular dimensions and shapes, or letters with hard-to-

read addresses.

3. ‘Facing’ letters and parcels. That is, stacking them in such a way that they can

be fed into the automatic sorting machines.

4. Sorting items by destination. This can be any of:

• Segregating ‘outward’ vs ‘inward’ mail. Outward mail is mail that needs to

be sent to another mail centre closer to its destination, opposed to inward

mail, which is addressed nearby.

• Sorting mail into destinations and postcodes. This can have multiple steps,

sorting the mail into finer geographical areas at each step.

• ‘Sequencing’ the inward mail. This is a process where the individual letters

within postcodes are sorted into delivery order based on the post officer’s

delivery route. After this stage, mail is ready to be delivered.
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What makes this more complicated is that there are multiple different streams of

mail. These streams differentiate mail on a combination of type (e.g. regular-sized

envelops vs flats) and priority (e.g. first vs second class). The different streams all need

to pass through different areas in a specific order to be sorted. Furthermore, there are

specific time deadlines and service requirements for the different streams. For example,

93% of all first class letters need to be delivered the next working day. Additional oper-

ational constraints make this problem even more complex. These include the splitting

of flows, where the total volume of material sent to a WA needs to be split by given

proportions to subsequent WAs; and tethering of WAs, where certain WAs cannot start

processing mail until specific previous WAs have processed all their mail and closed for

the shift.

However, there is considerable variation in daily mail volumes. Figure 4.1.1 shows

the daily mail volumes for each day of the week (excluding Sundays) in one year period

(April 2020 to March 2021) in a mail centre for a UK-based mail company (UKMC).

This shows the considerable difference in volumes over the year, with some days showing

a range of more than 2 million items between their heaviest and lightest volume days.

Furthermore, the staff levels need to be decided before the exact mail volumes are

known. This means that we need a method to determine the staff levels that takes

account of the uncertainty of mail volumes.

In this chapter, we use a stochastic programming model to account for the uncer-

tainty in mail volumes. First proposed by Dantzig (1955), stochastic programs are

models in which some decisions are made before some uncertain parameters are known

(first stage decisions) and some are made in response to observing the uncertain pa-

rameters (second stage decisions). This fits a shift manager having to set a workplan

for a mail centre before knowing all mail volumes, and having to decide how to respond

to this.

The main contribution of this chapter is to provide a novel modeling approach
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Figure 4.1.1: Boxplots showing the variation in daily mail volumes, split by day of the
week. Data covers the 12 month period 30 March 2020 to 26 March 2021, taken from
a large UK-based mail company.
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for staffing in a sequential sorting facility that accounts for uncertainty in the stream

volumes. Here we show the improvement that can be made when modelling this facility

using varying numbers of discrete scenarios. Also, we relax the model slightly, and

allow changes to the workplan in the second stage, and show the improvement that this

can offer. We do this to demonstrate the benefits that can be gained by allowing more

flexibility in the model. We compare the results from this model with the initial model

where the workplan is set across all scenarios.

The outline of this chapter is as follows. In Section 4.2, we review current techniques

and literature on this problem. Section 4.3 shows how we adapt current deterministic

models to account for random mail volumes. We present our computational results in

Section 4.4. Conclusions and further work is discussed in Section 4.5.

4.2 Literature review

Previous work has been done optimising multiple parts of the mail industry. This

includes a variety of areas, from designing the optimal queueing system in a post office

(Balachandran, 1977) up to designing the whole postal network (Song et al., 2009;

Jarrah et al., 2016). Specifically to mail centres, there have been previous attempts to

determine optimal staffing. Zhang and Bard (2005), Qi and Bard (2006), and Zhang

et al. (2009) all attempt to determine optimal staff levels, along with scheduling the

equipment to be used. These authors attempt to model the problem using job-shop

and lot-sizing problems, solving it with LP and MIP-based methods. Zhang and Bard

(2005) were the first to use this approach. Qi and Bard (2006) extended it, by using

the LP model to solve the equipment scheduling problem, and a simulation model to

solve the staffing problem. Zhang et al. (2009) then extend this further to adjust given

schedules for disruptions.

As outlined in Chapter 3, another common approach is to use a network design
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model, similarly used by Bard et al. (1993) and Jarrah et al. (1994a). These approaches

model a mail centre as a network, and use a network design formulation to assign staff

levels. Bard et al. (1993) and Jarrah et al. (1994a) take a much longer-term view of the

mail centre, including variables to allow the purchasing of additional equipment, and

optimising the cost of running the mail centre over a longer time horizon (years, rather

than shifts). In Chapter 3 we focused on setting the staff levels, taking a more detailed

approach towards the mail centre. We also modelled additional operational constraints,

such as the tethering of different WAs, and proportionally splitting the flows of material

between different downstream WAs. Finally, we also highlighted a number of possible

different objectives for the mail centre staffing problem. These include minimising the

number of required workers, maximising the ‘smoothness’ of a shift, or minimising the

cost of purchasing new machines.

However, the majority of these models assume the mail volumes are known when

optimising. For these models, the way to account for this uncertainty would be to

assume the mail volumes would take some known values, such as their expected values.

An exception to this is Jarrah et al. (1994a) who acknowledge the randomness in mail

volumes, and account for it by solving the model with the expected mail volumes,

increased by 25% as a buffer. However, this fails to acknowledge the difference in

variation in different mail centres or different streams, meaning that a 25% buffer could

be inappropriately high or low. For example, if mail volumes are frequently more than

25% higher than the averages (which we see in Figure 4.1.1), then the mail centre

will routinely be understaffed. On the other hand, if volumes greater than this 25%

buffer are rare, the mail centre will routinely be overstaffed. Furthermore, unless the

streams are highly correlated, it is very unlikely that all will exceed their expectation

by 25% on the same day. Therefore, assuming a 25% buffer on all streams will be overly

conservative.

There are several possible ways to incorporate stochasticity. These include chance-
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constrained programs (Charnes and Cooper, 1959), stochastic dynamic programs (Bell-

man, 1958) and stochastic programs (Dantzig, 1955). Chance-constrained models seem

to line up well with the quality of service standards that mail centres need to adhere to,

but unfortunately, frequently are non-convex and computationally intractable (Hong

et al., 2011). Stochastic dynamic programs have the sequential nature that is present

in the sequential sorting facility. However, these models also suffer from tractability

issues (Powell, 2011).

As a result, we use stochastic programming, which we described in Chapter 2. This

will better account for the variation in the mail volumes by explicitly including the

expectation of the delayed mail in the objective function, improving on the work of

Jarrah et al. (1994a) in handling the uncertainty in the mail centre problem.

While our model in Chapter 3 addresses the staffing problem well for deterministic

mail volumes, this needs to be extended to account for randomness in the mail volumes.

Stochastic programming seems to be an ideal approach to deal with this uncertainty.

We therefore will extend our model from Chapter 3 with a stochastic programming

approach. This will provide a better model for shift managers to use when solving this

problem.

4.3 Problem description and mathematical model

4.3.1 Problem description

We propose a stochastic extension to the sequential sorting facility problem described

in Chapter 3. This features the same concepts of mappings, WAs, and the same oper-

ational constraints. Our aim is to develop a workplan for the whole day, determining

how many processing units are required in each WA at each time period. This needs to

be done without knowing the exact mail volumes that will arrive on the given day. In

addition, once the mail volumes become known, we also need to decide how to route the
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mail through the mail centre across time, and how much mail will be left as delayed.

The ideal workplan will balance the number of processing units being used (as fewer

processing units is cheaper) with having enough capacity to be able to sort the mail.

Unlike the deterministic model, we cannot simply set a minimum required volume of

mail to sort each shift as a capacity in the model. Given the variation in mail volumes,

it would be either impossible or prohibitively costly to roster enough staff to ensure the

minimum is met regardless of the observed mail volumes. Instead we have to try and

minimise the expected amount of delayed mail on a given day.

The change to the problem setting is the inclusion of scenarios. Each scenario

represents a set of possible mail volumes arriving at the mail centre on a given day.

We assume that a set of potential scenarios is already available. For example, this set

could be from existing empirical data, or forecast models. The exact mail volumes are

only observed after setting the workplan. In a practical setting, this would parallel a

shift manager having experience in daily mail volumes, using this experience in setting

the workplan the week before the shift, and getting exact mail volumes the day of the

shift.

We make a number of the same assumptions about the network structure and oper-

ations that we did in Chapter 3. A key assumption we make is that workers can switch

WAs instantly. That is, they can be working at at WA in one time period, and another

in the next. Furthermore, we assume that workers are able to work in any WA in the

centre.

Regarding the scenarios, we assume that the only difference between the scenarios is

the mail volumes. The mail centre structure and parameters (e.g. throughputs, capac-

ities, cost of delayed items, etc) are assumed to be known constants. This assumption

could be relaxed if the appropriate data was provided.
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4.3.2 Stochastic programming model

Here we give the formulation for our stochastic programming model for staffing the mail

centre. We base our model on the deterministic model, shown in Chapter 3, making

the necessary adjustments to extend it to a stochastic program.

Deterministic mail centre model

We recall that the deterministic model is a network design model consisting of a base

network B = (W , E) describing the mappings (E) between a set of WAs (W) in a

network. We then time-expand this network for our desired number of time periods,

and add the appropriate source and sink nodes. We also add a dummy ‘completion’

WA, to ‘hold’ the mail that has been completely sorted.

Each node (aside from the sources and sinks) represents a WA w at a given time

period t. There is also an associated demand bki associated with each node i and each

commodity k. For the majority of the nodes in the network, this demand will be 0.

That is, the flow is only allowed to pass through the node. For the sources (and sinks),

the demands of the commodity give the (assumed) volume of that stream of mail in the

mail centre for that day.

The arcs in the network represent movement of mail between both WAs and time

periods. These show the possible ways that mail can move in the mail centre. For

example, if mail is processed at WA w in time t and then moves to WA w′, this mail

travels along arc (w, t), (w′, t+1). If it is not processed, and remains in WA w, it travels

along arc (w, t), (w, t + 1). Each arc has a commodity-specific capacity vka , to direct

streams along the correct mappings. The arcs coming from node i = (w, t) also have

a joint capacity, proportional to the number of processing units scheduled in WA w at

time t. Finally, a number of arcs are designated as penalty arcs. These are arcs leaving

WAs where mail must be sorted in the final time period of a shift, but not connected to

downstream WAs in the network. Instead, these arcs either connect to the sink, or to



CHAPTER 4. THE STOCHASTIC MAIL CENTRE MODEL 78

the same WA in the first time period of the next shift. These WAs will have a user-set

penalty for their uses.

There are two major decisions that the shift manager needs to make. The first

consists of how many processing units to roster in each WA w for each time period

t. These variables are denoted by ywt. The second is how to direct the mail in the

network throughout the whole time period. The amount of stream k to send along arc

a is denoted by xk
a. These two objectives are often in conflict with each other. Rostering

more workers in the workplan has a higher cost, however, it increases the throughputs

of the WAs. This means that less mail needs to be directed along the delay arcs, which

results in penalties.

Extending the deterministic model to the stochastic model

The main change we need to make to the deterministic model is to include scenarios

into the model. We introduce a new set of scenarios, S. Each scenario s ∈ S has an

associated probability ps.

In practical terms, a scenario represents mail volumes for various commodities on a

given day. In terms of our model, we can represent this by having different demands at

the sources and sinks for the different scenarios. That is, we alter our node demands

bki to be bksi , representing the demand for commodity i and node k in scenario s.

Having introduced the scenarios, we also need variables to show how the mail is

directed around the network for each individual scenario. We do this by amending

the flow variables. These variables now represent flows of commodities along arcs for

specific scenarios. That is, we now add the s index to our xk
a variables, to obtain xks

a ,

which represents the amount of stream k sent along arc a in scenario s.

Having established how to consider scenarios, we now present the full stochastic

formulation for the mail centre problem.

Sets and indices
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• S: the set of scenarios in the model, indexed by s.

• W : set of WAs indexed by w.

• E : set of mappings between WAs.

• I: set of indirect mappings.

• H: set of tethered WAs.

• J : set of shifts, indexed by j.

• T : set of time periods, indexed by t.

• Tj: set of time periods associated with shift j. Note, Tj ⊂ T .

• N : the set of nodes in the time-expanded network, indexed by i.

• A: the set of arcs in the time-expanded network, indexed by a.

• δ+(i) and δ−(i): the sets of outgoing and incoming arcs for node i, respectively.

• K: the set of commodities, indexed by k.

• wO(a) and wD(a): the origin and destination WAs associated with arc a.

• tO(a) and tD(a): the origin and destination times associated with arc a.

• ID+(w,w′, t) := {a|wO(a) = w,wD(a) = w′, tO(a) > t, tD(a) = tO(a) + 1}: a set

of all the arcs originating at WA w and finishing at w′, originating at a time later

than t. This is used in defining constraints to enforce the indirect steams.

• ID−(w) := {a|wO(a) ̸= w,wD(a) = w}: a set of all the arcs originating at

different WAs, and finishing at WA w. This is also used to define the indirect

stream constraints.
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Parameters

• ps: the probability of scenario s.

• cw: the number of staff members required to operate one processing unit in WA

w.

• bksi : the demand for commodity i and node k in scenario s. For the majority of

nodes and commodities, this will be 0. That is, flow is simply passing through

here. At the source nodes, this will be positive, as this is where flow enters the

network. For sink nodes, this will be negative, indicating where flow leaves the

network.

• vka : the commodity specific capacity for arc a and commodity k. These are used

to enforce that the commodities follow the correct mappings.

• ρw,w′ : the proportion of total flow passing from WA w to WA w′ from indirect

mapping (w,w′) ∈ I.

• uw: the total WA processing capacity per time period per processing unit for WA

w.

• Cwt: the processing unit capacity for WA w in time t.

• α: the weighting given to the first stage objective. We set 0 ≤ α ≤ 1.

Decision variables

• First-stage decisions:

– ywt: number of processing units rostered in WA w for time t. Here, we use

the term ‘processing unit’ to describe one person or machine that is used to

sort the commodity in a WA.
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– gj: auxiliary continuous variable, giving the number of workers required for

shift j. This is explained fully in Section 4.3.3

– Swt and Fwt: auxiliary binary variables indicating if WA w has started and

finished in or before time t, respectively.

• Second-stage decision variables:

– xks
a : amount of commodity k sent along arc a in scenario s.

– dsw: The amount of r priority delayed mail generated by WA w in scenario

s. Section 4.3.3 gives more details on this variable.



CHAPTER 4. THE STOCHASTIC MAIL CENTRE MODEL 82

Formulation

min α
∑
j∈J

gj + (1− α)
∑
s∈S

ps

( ∑
a∈AAll

∑
k∈K

xks
a +

∑
w∈WR

dsw

)
(4.3.1)

s.t. gj ≥
∑
w∈W

cwywt, ∀t ∈ Tj, j ∈ J (4.3.2)

∑
a∈δ+(i)

xks
a −

∑
a∈δ−(i)

xks
a = bksi , ∀k ∈ K, i ∈ N , s ∈ S (4.3.3)

xks
a ≤ vka , ∀a ∈ A, k ∈ K, s ∈ S (4.3.4)∑

k∈K

∑
a|(w,wD(a))∈E

xks
a ≤ ywtuw,∀w ∈ W , s ∈ S (4.3.5)

∑
a∈ID+(w,w′,t)

xks
a = ρw1w2

∑
a∈ID−(w)

xks
a , ∀k ∈ K, (w,w′) ∈ I, t ∈ T , s ∈ S(4.3.6)

ywt ≤ CwtSwt, ∀w s.t. ∃ w′ ∈ W | (w′, w) ∈ H (4.3.7)

ywt ≤ Cwt(1− Fwt), ∀w s.t. ∃ w′ ∈ W | (w,w′) ∈ H (4.3.8)

Swt ≤ Sw,t+1, ∀t ∈ 2, ..., T, w ∈ W (4.3.9)

Fwt ≤ Fw,t+1, ∀t ∈ 2, ..., T, w ∈ W (4.3.10)

Fwt ≥ Sw′t+1, ∀t ∈ 2, ..., T, (w,w′) ∈ H (4.3.11)∑
t<T

∑
a∈Awt

xks
a + dsw ≥ rw, w ∈ WR,∀s ∈ S (4.3.12)

xks
a ≥ 0, ∀a ∈ A, k ∈ K, s ∈ S (4.3.13)

ywt ≤ Cwt, ∀w ∈ W , t ∈ T (4.3.14)

ywt ∈ N0, ∀w ∈ W , t ∈ T (4.3.15)

Swt, Fwt ∈ {0, 1}, ∀w ∈ W , t ∈ T (4.3.16)

Objective (4.3.1) minimises the maximum workers in the mail centre, and the ex-

pected cost of the delayed mail over the scenarios (we discuss our choice of objective

in Section 4.3.3). Constraint (4.3.2) forces the auxiliary g variables to take the correct

values. Constraint (4.3.3) is the mass balance constraint for the flows in the network.
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The correct mappings are enforced by the commodity-specific arc capacity constraints

(4.3.4). Constraint (4.3.5) has two important functions. Firstly, it links the number

of processing units rostered in a WA with its sorting capacity. Secondly, it forces the

use of the same workplan across all scenarios. The indirect streams are enforced with

Constraints (4.3.6). The tethered WAs are enforced with Constraints (4.3.7), (4.3.8),

(4.3.9), (4.3.10), and (4.3.11). Constraint (4.3.12) is used to help control the auxil-

iary d variables, explained more in Section 4.3.3. Lastly, Constraints (4.3.13), (4.3.14),

(4.3.15), and (4.3.16) define the variable types and bounds.

4.3.3 Objectives

Stochastic programs often have two objectives - one to govern the first stage, and one

for the second. Here, we discuss our choice for these objectives, as well as a proposed

method to balance them.

First stage objective

For this chapter, we will minimise the number of workers required for each shift as

our first-stage variable. This is done by minimising the maximum number of workers

required in each shift, as was done in Chapter 3. This is represented by the variable gj

and enforced by Constraint (4.3.2), with the objective function given by:

∑
j∈J

gj.

This objective minimises the maximum workers in the mail centre at any one time

period (referred to as MMWT).
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Second stage objective

The first stage objective focuses on the staff workplan. However, we also need to

measure how this workplan performs in the second stage once the random mail volumes

become known. The most obvious is to minimise delayed mail - that is, mail that should

be sorted within a shift, but has to be passed to the next shift. In the deterministic

model in Chapter 3, this was calculated by counting mail that travelled on the arcs

of the time-expanded network that span the change of shifts. We do the same in the

stochastic model, but now we do this for each scenario.

From the priorities listed in Chapter 3, there are two types of priorities we need to

consider - “All” and r priorities. For any WA with “All” as priority in a given shift,

we penalise any flow along the arc linking this WA at the final time in this shift to the

same WA in the next time period (or, in the case of the final shift, to the sink node).

Mathematically, we write this as

∑
a∈AAll

∑
k∈K

xks
a

for each scenario s. We define AAll as the set of all arcs which start at a WA with “All”

priority in the final time period of a shift, and finish at either the same WA in the first

time period of the next shift, or the sink node.

The r priority WAs are more complex. For these WAs, we calculate the volume

of flow processed over a shift, and then penalise any shortfall. To do this, we first

introduce a variable dsw ≥ 0 to represent the delayed flow in WA w in scenario s. This

is defined through the constraint:

∑
t<T

∑
a∈Awt

xks
a + dsw ≥ rw, w ∈ WR,∀s ∈ S

where Awt is the set of all arcs originating at node (w, t) and terminating at (w′, t+ 1)
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where (w,w′) ∈ E , WR is defined as the set of WAs with an r priority and rw is the

target value for WA w ∈ WR.

Having defined these variables, the objective which would give this is:

∑
s∈S

ps

( ∑
a∈AAll

∑
k∈K

xks
a +

∑
w∈WR

dsw

)
(4.3.17)

We refer to this objective as the delayed mail cost, or DMC.

Balancing objectives

In stochastic programs, the first and second stage objectives are often added together

to create one objective function. We are concerned in this problem by the difference

in magnitude between the first and second stage objectives. The maximum number of

workers will be in the orders of hundreds, whereas delayed mail can be in the tens or

hundreds of thousands.

To account for this, we will experiment with giving different weightings to the two

objectives. We do this using the weighted-sum method from existing multi-objective

optimisation literature. In this case, we define the parameter α to be the weighting we

give the first-stage objective, with 0 ≤ α ≤ 1. We then let 1 − α be the weighting for

the second-stage objective.

With these, our objective becomes:

α
∑
j∈J

gj + (1− α)
∑
s∈S

ps

( ∑
a∈AAll

∑
k∈K

xks
a +

∑
w∈WR

dsw

)
.

4.3.4 Allowing changes to the set workplan

In Section 4.3.2 we proposed a two-stage model with recourse, in which the only second-

stage decision was when to process mail, and how much mail to leave as delayed (rep-
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resented by the x and d variables). The workplan (i.e. the y variables) were set in the

first stage. This is a very restrictive interpretation of the mail centre. It may in fact

be possible to make some small adjustments to the workplan on the day of the shift,

in response to some unexpected mail volumes. Say for example, an equal number of

workers have been assigned to work in WAs that process first class and second class

mail. However, on a particular day, a surprisingly high volume of first class letters ar-

rive to be sorted. In this situation, it may be beneficial to move some workers from the

second class letters WA to the first class letters WA. This represents the shift manager

making minor adjustments to the workplan in response to observing mail volumes. We

say ‘minor’ as these changes would be made very soon before the shift, and hence it

would be difficult to make large-scale changes at this stage. In this section, we outline

changes to our model which allow for such changes to a workplan to be made in the

second stage.

To allow changes to the workplan, we introduce a new variable:

• qswt: the change to the number of processing units rostered in WA w for time t in

scenario s.

These allow the workplan to change for various scenarios in case a specific WA observes

either more or less mail than planned for. As they represent changes in the integer y

variables, the q variables are integral as well. Since the change to the y variables can be

positive or negative, the q variables are unbounded. However, the number of workers

in WA w at time t must still be between 0 and Cwt. Therefore, we need to add the

constraint:

0 ≤ ywt + qswt ≤ Cwt, ∀w ∈ W , t ∈ T , s ∈ S.

If the workplan is changed, then the node capacities in the network will change. We
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change Constraint (4.3.5) to

∑
k∈K

∑
a|(w,Wd(a))∈E

xks
a ≤ (ywt + qswt)uw,∀w ∈ W , s ∈ S.

to enforce this.

If we are reassigning workers from the current workplan, they need to already be on

shift and working at that time period, according to the workplan. Therefore, we cannot

reassign more workers than we have in the mail centre at that point. This is equivalent

to saying any additional worker we add to one WA must be taken from another WA.

We enforce this through the additional constraint

∑
w∈W

cwq
s
wt = 0, ∀t ∈ Tj, ∀j ∈ J ,∀s ∈ S.

Considering the inconvenience of changing the workplan at the last minute, we

want to penalise excess changes to the workplan. We do this by adding a penalty term

in the objective function, based on these changes. We recognise that the q variables

can take positive or negative values, so we cannot simply sum these and add them to

Objective (4.3.1). Instead, we create additional auxiliary variables z with the following

constraints:

0 ≤ zswt,∀w ∈ W , t ∈ T , s ∈ S, (4.3.18)

qswt ≤ zswt,∀w ∈ W , t ∈ T , s ∈ S. (4.3.19)

Given we are trying to minimise the z variables, and that there are no other con-

straints on these variables, Constraints (4.3.18) and (4.3.19) mean that the z variables

will take the value of the corresponding q variable if q is positive, or 0 if q is negative.

We want to add this to Objective (4.3.17). In order to do this, there are two

considerations. Firstly, it is unclear how much we should penalise these second-stage
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changes to the workplan. Therefore, we define the parameter κ to control the penalty.

Secondly, we stated in Section 4.3.3 that we can run into problems with the different

magnitudes of the different objectives. Since these second-stage changes will be in the

same order as the first-stage objectives, we also will multiply this term by α in the

objective. Therefore, we will add the following term to the Objective (4.3.17):

ακ
∑
s∈S

ps
∑

w∈W,t∈T

zswt.

4.4 Results

To determine the benefits of using a stochastic program to account for the random mail

volumes, we perform a series of experiments. We compared the stochastic programming

models to the deterministic model presented in Chapter 3. This is to show the benefit

of using a stochastic programming model over a deterministic model. We also noted the

difference in magnitude between the first and second stage objectives, and hence varied

the weights of the two objectives. Finally, we performed an experiment to determine

the benefit of allowing changes to the workplan in the second stage of the model. This

showed the benefit available to shift managers if such flexibility was allowed in the

planning.

4.4.1 Data and setting

We obtained data from a UK-based mail company (UKMC). This data consisted of:

• Data on the mail centre structure/operations, including:

– The mappings of the streams passing through various WAs.

– The throughput of machines/staff at different WAs.
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– The capacities of different WAs.

This data (which we previously used in Chapter 3) was used to build the network

for the mail centre, given for each different day in one week (July 20-25, 2020).

It consisted of 180 streams, in 60 different WAs. It was noted that there were

substantial differences between the WA priorities and stream mappings on the

different days.

• Data on the stream volumes on different days. This was given for every day in a

1-year period (March 30 2020 to March 27 2021). The mail volume data consisted

of 312 days (one scenario for each day of mail volumes in the dataset, with no

data for Sundays, for 52 weeks). We again noted significant differences for the

different weekdays. These differences are shown via a boxplot of the mail volumes

for each day of the week, given in Figure 4.1.1 in Section 4.1.

4.4.2 Experimental set-up

We used this data to create a time-expanded network for the mail centre. Given the

differences in the network structure, WA priorities, and average mail volumes for the

different weekdays, we model each day of the week separately in all experiments. This

meant that we had six networks, one for each day of the week (excluding Sundays).

Using this data, we constructed the network to model the mail centre, and created a

scenario set. We modelled the network as having 48 30-minute time periods, split into

three 8-hour (16 period) shifts. We chose 30 minute intervals (as opposed to the 10

minute intervals used in Chapter 3) as the stochastic programs are more computation-

ally intensive than deterministic models. Hence, the time intervals were increased to

reduce the number of variables and constraints in the model.

Once built, the network consisted of 2,654 - 2,820 nodes and 14,826 - 14,992 edges,

depending on the day of the week. The slight differences are due to different mail arrival
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Table 4.4.1: Nodes and edges for the networks for each day of the week

Day Nodes Edges
Mondays 2,800 14,972
Tuesdays 2,820 14,992

Wednesdays 2,818 14,990
Thursdays 2,814 14,986
Fridays 2,819 14,991

Saturdays 2,654 14,826

patterns and WA operating times between days. The exact nodes and edges for each

day of the week are given in Table 4.4.1.

Due to the different patterns of demand on each weekday, we split the mail volume

data into six distinct sets (of 52 days each), one for each day of the week (excluding

Sundays). Each of these sets was then used as a scenario set with equally probable

scenarios. That is, we have a separate stochastic program for each day of the week.

We use here historical data directly only for the purposes of testing our approach. If

this model were used in practice, we would use some sort of forecasting model which

incorporates the latest available estimates we have for mail volumes. When solving

these problems, we use the full set of scenarios for each day, or solve for a subset of

randomly sampled scenarios.

Given we have mail volume data for an entire year, but mail centre network structure

data for only one given week, we assume that the network structure for a given day of

the week is constant throughout the period.

Each scenario represents one day of mail volumes arriving at a mail centre. We

used the maximum number of workers (MMWT, as described in Section 4.3.3) and

the delayed mail cost (DMC, described in Section 4.3.3) as our first and second stage

objectives, respectively.

All models were fitted and solved using Gurobi optimiser, version 10.0.3. Python

version 3.9.10 was used as the interface. Models were solved using only 1 core (to

facilitate parallelisation of solving multiple problems at once), with a time limit of 120
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minutes. Models were solved on a high performance computing cluster. Optimality

gaps for those models not solved within the time period are given in Appendix 4.A.

4.4.3 Experiments

Balancing the first and second stage objectives

We first wanted look at the balance between the first and second stage objectives, using

the weighted sum objective (4.3.17). We tested this for α = 0.5, 0.9, 0.99, and 0.999.

Recall that higher values of α give more weighting to the first stage objective (MMWT).

We chose this range as we recognised that the model would be more likely to favour

DMC rather than MMWT given the difference in magnitude between the number of

workers and the potential number of delayed letters. For this experiment, we solved

the stochastic program with all 52 scenarios to avoid any randomness associated with

the random sampling of scenario sets. To examine the behaviour of the model for the

different values of α, we plotted the first vs the second stage objectives. This is shown

in Figure 4.4.1.

We see that Mondays, Tuesdays, Wednesdays, Thursdays and Fridays display a

similar pattern. On these days, we can see that the weighting towards the first stage

objective needs to be set very high before the model stops compromising on this objec-

tive. For α = 0.5 & 0.9, we see that the values of DMC and MMWT are all relatively

similar. The MMWT results are between 600-700 workers (across the 3 shifts). The

DMC alters somewhat across the days of the week, but is similar for this range of α for

each day. A change occurs when α = 0.99. This caused the MMWT to drop to 400-

450 workers (a roughly 25% drop), with a slight increase in the DMC (between 8 and

24%). When increasing α to 0.999, we see a very big increase in the DMC, increasing

between 200 and 600%. The MMWT correspondingly falls to roughly 200 - a decrease

of more than 60%. Most of the values of α seem to favour one objective over the other.

α = 0.5 & 0.9 favour delayed mail, whereas α = 0.999 favours MMWT. In order to try
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(a) Mondays. (b) Tuesdays.

(c) Wednesdays (d) Thursdays

(e) Fridays (f) Saturdays

Figure 4.4.1: MMWT vs DMC for different values of α, split by different days of the
week. Text next to data points indicates the value of α.
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and balance the two, it seems that the best choice for α is 0.99.

The pattern for Saturdays (Figure 4.4.1f) is slightly different. The model for α =

0.999 still heavily prioritises MMWT. However, the values for α = 0.5, and 0.9 are more

spread than the other weekdays, and closer to α = 0.99. We again see that α = 0.99

gives large reductions in the MMWT (11%-35%) for only small increases in the DMC

values (approximately 6%). Therefore, α = 0.99 again appears to ideally balance the

two objectives.

EV vs Stochastic program

Having determined an appropriate balance between the two objectives, we wanted to

determine the benefit of accounting for variation in the mail volumes compared to the

deterministic models. We compared:

• The deterministic model from Chapter 3, using the expected value of each stream

as the demand for that day, increased by m%. This is referred to as the EVm

solution, adapting the definition of the EV solution from Birge and Louveaux

(2011).

• The stochastic programming model (4.3.1) using 3, 5, 10, 20, 25, and 30 scenarios.

Given we are comparing against deterministic models (which are computationally

much easier to solve than stochastic programs), we wanted to determine how the

EVm solutions performed against stochastic programs of varying sizes.

We compare the stochastic programming models to the EV solutions to see the benefits

that can be gained from explicitly accounting for the stochasticity in the daily mail

volumes. Alternatively, the deterministic model is much less computationally intensive.

Therefore, if there is a deterministic model which performs similarly to the stochastic

model, then computational time can be saved by using this model instead. We also

do this for increasing values of m to determine if assuming a higher expected demand
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improves the deterministic solutions. We choose m = 0, 20, 40, 60, 80, and 100. Note

that the EV0 solution is simply the expected value (EV ) solution commonly used in

stochastic programming literature. We also test the values of m = 40, 60, 80, 100 to

determine if there are better or worse values to use for the deterministic model.

For the stochastic programming models, we measured the performance of these

solutions by looking at the stability of the out-of-sample (OOS) costs as defined in

Sections 2.4.1 and 2.4.3 of Chapter 2. We calculate these OOS values with respect to

the full scenario sets consisting of the 52 scenarios described above. This gave us an

indication of the quality and stability of estimations to the recourse function for the

stochastic programs. To gauge the OOS stability, we solved each stochastic program

20 times, each time with a different randomly-sampled subset of the full scenario set.

This gave us an indication of the size and variability in the OOS costs for stochastic

programs of various sizes. When looking at the OOS costs, a lower median cost and a

narrow spread of values across the runs indicates a better-performing model.

For the EVm methods, we also calculate the OOS value for these solutions. We

note that in this case, the OOS cost for this solution is the EEV , from the stochastic

programming literature. We use this as a benchmark to compare to the OOS recourse

averages for the stochastic programming models. We refer to the expectation of the EVm

solution as the EEVm value. We also refer to the EV solution (the deterministic model

with no assumed increase in the demands) as the EV0 solution (with corresponding

EEV0 value) for consistency. Note that unlike the OOS for the stochastic programs,

there is no variation in the EEVm values.

In this experiment, we set α = 0.99, following our observations from Section 4.4.3.

Recall that the basic model (4.3.1)-(4.3.16) assumes no changes can be made to the

workplan in the second stage of the model.

Figure 4.4.2 shows the EEVm results compared to the average OOS costs for the

stochastic program solutions for different numbers of scenarios. Each subplot shows a
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different day of the week.

Initially, we see that the problem is quite unstable for small scenario set sizes (3 and

5 scenarios), with similar OOS costs to the EV0 and EV20 solutions. However, as the

scenario set size increases, the stability and median OOS costs improve. Furthermore, if

enough scenarios are chosen, the stochastic programs always achieve lower OOS results

than all the EV models, with the comparative benefits of the stochastic programs

increasing as the scenario set size increases. The stochastic programs generally perform

better than all EV models when 20 or more scenarios are used, regardless of the assumed

demand. The stochastic programs start to converge at 20 scenarios, showing that less

benefit is gained from using more scenarios than this. Furthermore, we see that the

EEV0 value is worse than the median OOS costs for all stochastic programs for all days,

with only a small number of outlying OOS runs performing worse than this across all

days.

Looking at the EEVm values for 20, 40, 60, 80, and 100% increases, we see that

increasing m does not necessarily result in lower EEV values. That is, we see a trade-

off between planning for more mail and incurring higher overall costs. We note that

the value of m which minimises EEVm is different for the different days. The lowest

value is EEV100 for Mondays (although the EEV60 and EEV80 values are very simi-

lar). However, EEV40, EEV60, and EEV80 are the best performing for Tuesdays and

Thursdays, Wednesdays and Fridays, and Saturdays respectively. While there is some

variation among the days, the stochastic programs with 10 scenarios show either similar

or lower median OOS costs than the best EV solutions (only Mondays and Wednesdays

have worse OOS scores for 10 scenarios). The majority of OOS runs for 20 scenarios

out-perform the best EV solutions for all weekdays.
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(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday. (f) Saturday.

Figure 4.4.2: EEV for the EV solutions and OOS results for stochastic programs with
increasing scenario set sizes for α = 0.99, for different days of the week.
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Allowing changes to workplans

Having established the benefits of the stochastic model over the deterministic, and

determined an appropriate weighting between the first and second stage objectives, we

now add more flexibility in the second stage decisions. Previously, the only second stage

decision was where to route the mail to minimise delays. Now, we investigate allowing

changes to the workplan in the second stage, as outlined in Section 4.3.4.

We compare no permitted changes (our previous models) with changes permitted

with κ = 0 and κ = 0.5. κ = 0 indicates a model with free changes, and κ = 0.5

indicates that a worker can be moved for half of the cost of them being assigned in

the original workplan. From our previous experiments, we chose to solve the models

using 20 scenarios, due to the increased difficulty for solving for all 52 scenarios, and

as Figure 4.4.2 showed that the stochastic programs generally started to converge for

this many scenarios. As in the previous experiment, we set α = 0.99, based on our

observations from Section 4.4.3. We again calculate the OOS costs from 20 trials.

To see how these changes affect the model, we look at the MMWT, DMC, and

changes penalty OOS costs separately. These are shown in Figures 4.4.3, 4.4.4, and

4.4.5 respectively.

Figure 4.4.3 shows that for all days of the week, κ = 0 results in lower MMWT

values than κ = 0.5, which in turn has a lower MMWT values than the model with no

changes. This makes sense. If more flexibility is allowed in the second stage (or if it

is penalised less) then the model can be more aggressive in the first stage - assigning

fewer workers that can be moved around in the second stage.

Looking at the OOS delayed mail costs, we see consistent behaviour across the

days (Figure 4.4.4). Across all days, the models with changes permitted show similar

OOS costs for both levels of κ, with the no-changes model showing higher costs, again

highlighting the benefit of additional model flexibility.

We see that κ = 0 results in much lower delayed mail costs than κ = 0.5. However,
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(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday. (f) Saturday.

Figure 4.4.3: First stage objective results for the model with changes to the workplan
allowed in the second stage κ = 0, κ = 0.5, and the original model with no changes
allowed, split by weekday.
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(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday. (f) Saturday.

Figure 4.4.4: OOS delayed mail costs for the model with changes to the workplan
allowed in the second stage for κ = 0, κ = 0.5, and the original model with no changes
allowed, split by weekday.
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it is unclear how much the workplan has to change in the second stage to achieve this.

We examine this by comparing the workplan changes made under the two values of κ,

shown in Figure 4.4.5.

We see that there are orders of magnitude of difference between the changes for the

two different penalties. This pattern is the same for all days of the week. We especially

note the extremely large number of changes when κ = 0 (recall that one change is one

worker changing their assigned WA for one time period). We note that this is in the

order of thousands of changes (typically 4,000-5,000), and the order of the number of

workers is in the hundreds (300-400). This equates to roughly 80 workers (20-25% of

all staff) being changed each time period. This is obviously impractical to implement

in the mail centre given the short time frame in which these changes can be done. By

contrast, for κ = 0.5, we see between 60-80 changes per scenario. This equates to 1-2

changes per time period, which is much more feasible.

We also note that while there is an order of magnitude in increase in the number

of changes, we do not gain a similarly proportional decrease in the maximum workers

(Figure 4.4.3). This also suggests that κ = 0 results in impractical workplans and

decisions.

4.5 Conclusions

While there is a body of work for staffing mail centres assuming known mail volumes,

there has been little work done for random mail volumes. We address this by extending

the model developed in Chapter 3 to a stochastic programming model. We examined

different weights between the first and second stage objectives, to counteract the dif-

ference in magnitude between them. Upon establishing an appropriate weighting, we

compared the behaviour of this model to the behaviour of the deterministic model as-

suming the expected values of the mail volumes, as well as various increases of the mail



CHAPTER 4. THE STOCHASTIC MAIL CENTRE MODEL 101

(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday. (f) Saturday.

Figure 4.4.5: Average second stage changes per scenario to the workplan for the model
with changes to the workplan allowed in the second stage for κ = 0, κ = 0.5, split by
weekday. Note that these have been plotted on a log scale.
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volumes. Finally, we allowed additional flexibility in the second stage of the model, and

examined what effect this had on staffing and delayed mail costs.

When examining the different weightings between the objectives, we found that

for values of α less than 0.99, the results were similar. At α = 0.99 we started to

see a tradeoff between the two objectives, with higher α values tipping the model

towards favouring the first stage. We then saw this balance when we repeated the EV

calculations for α = 0.99. In this instance, we now saw that there was a trade-off, in

that the best increase differed among the days of the week, and in the majority of cases

was lower than 100%.

After applying this value of α to the stochastic programs, we compared stochastic

programs of different sizes to deterministic models with increasing expected demand.

We saw that the stochastic programming models result in lower total costs than the

EV0 model. We found that this was true for stochastic programs with as few as three

scenarios in the scenario set, with the benefits increasing as the sample size increased.

When compared to the EV20 model, we saw the stochastic program with 3 scenarios

performed similarly, but those with 5 or more scenarios outperformed this. We also saw

that increasing m improved the overall performance of the deterministic models. This

resulted in the best EVm models performing similarly to the stochastic program with

10 scenarios. However, with 20 or more scenarios, the stochastic program outperformed

all EV models.

The final experiment showed the benefits we get from allowing changes in the second

stage of the model. We found that changes to the workplan at any penalty resulted

in lower delayed mail costs for all days, and lower staffing costs for all days except

Saturdays. In this instance, having no changes on the penalty (κ = 0) out-performed

penalising the changes (κ = 0.5). However, the number of second-stage changes made

to the work plan is much higher with no penalty, and would be impractical to implement

in practise. Therefore, allowing changes with κ = 0.5 gave more appropriate results.
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Despite the clear improvements in the models, we note some limitations with the

work. When the objectives are appropriately weighted, we need larger scenario sets

(more than 10 scenarios) to see the benefit over the deterministic models. However, we

recall that our scenario sets were chosen by random sampling. As discussed in Section

2.4 of Chapter 2, there are many better ways to select scenario sets. We develop a

new framework for this in Chapter 5, but the simple application of an established

scenario set method could also prove beneficial. Furthermore, we have only assumed

one possible method of change for the adjustments to the workplan in the second stage.

Other options could include being able to bring in additional workers at a higher cost

(similar to overtime workers).

This work contributes to the literature by showing that mail centre staffing can be

improved by accounting for randomness in mail volumes. It also advocates for allowing

flexibility after setting the staff levels to respond to observed mail volumes.

4.A Convergence and optimality gaps

Here we give the optimality gaps for the fitted models. Each gap is expressed as the

proportion difference between the best solution found and the best bound found.

Table 4.A.1 shows the optimality gap for the models fitted for the different values α

split by weekday. We see the gaps are less than 1% for all weekdays when α = 0.5, and

0.9. It is also less than 1% for α = 0.99 on Mondays, Tuesdays, Fridays, and Saturdays,

and is 1.09% for Wednesdays.

We see larger gaps for α = 0.99 on Thursdays, and for α = 0.999 on all days

except Saturdays. For α = 0.999 the largest gap we see is for Thurdays, with a gap

of 12.75%. The gaps for α = 0.999 on other days ranged from 4.5% (Fridays) to 7.8%

(Wednesdays). While concerning, we note that for this value of α (0.999) we see that

the DMC is much larger than all other values (1.7-5 times larger) and the MMWT is
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much smaller than the other values (2 - 3.5 times smaller). Therefore even if we ran the

model for longer, and it were to converge, and even if the convergence occurred at the

best bound, the model with this value of α would still be in a similar position on the

curve relative to the other values of α. Given the gaps and relative differences in the

objectives for α = 0.999, we conclude that the lack of convergence will not affect the

relative position of this model compared to the other values of α. By the same logic,

we realise that the model for α = 0.99 for Thursdays will also remain in roughly the

same relative position, and as such will remain the ideal compromise point.

Table 4.A.1: Optimality gaps for the stochastic programs for different values of α, split
by day of the week.

(a) Mondays

α Optimality Gap
0.999 0.0681
0.99 0.0062
0.9 0.0005
0.5 0.0001

(b) Tuesdays

α Optimality Gap
0.999 0.0467
0.99 0.0009
0.9 0.0002
0.5 0.0001

(c) Wednesdays

α Optimality Gap
0.999 0.0781
0.99 0.0109
0.9 0.0005
0.5 0.0002

(d) Thursdays

α Optimality Gap
0.999 0.1275
0.99 0.0940
0.9 0.0003
0.5 0.0001

(e) Fridays

α Optimality Gap
0.999 0.0453
0.99 0.0015
0.9 0.0003
0.5 0.0001

(f) Saturdays

α Optimality Gap
0.999 0.0001
0.99 0.0001
0.9 0.0001
0.5 0.0000

We see larger optimality gaps for the models allowing changes to the workplan in

the second stage (Figure 4.A.2). While often less than 3%, these can reach 6%, and

we note much larger problems with convergence on Thursdays (with gaps of 10-20%).

This is concerning. However, we note that

• The pattern of results was similar for all days, regardless of the optimality gaps.



CHAPTER 4. THE STOCHASTIC MAIL CENTRE MODEL 105

• The optimality gaps were generally larger for the model with κ = 0.5. This meant

that these results could improve if the model was left to run for longer. However,

the difference in the gap size was smaller than the proportional difference in the

objectives. This meant that even if this model convergence, it would still result

in higher values than for κ = 0.

• We acknowledge that κ = 0 resulted in an infeasible number of changes, and

would never be implemented in practise. Therefore, we are more concerned as

to how κ = 0.5 performed compared to the model with no changes. This model

performed worse than the model with κ = 0.5, and with smaller optimality gaps.

Therefore, even if we did achieve convergence, the benefit of using the model with

κ = 0.5 would only increase.

For Thursdays, we acknowledge the very large gaps. However, we see that the results

for Thursdays were similar to the other days of the week, suggesting that the overall

pattern of results would be the same if this were to converge.
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(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday. (f) Saturday.

Figure 4.A.1: Optimality gaps for calculating the first stage decisions for the stochastic
programs with α = 0.99, split by weekday.
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(a) Monday. (b) Tuesday.

(c) Wednesday. (d) Thursday.

(e) Friday. (f) Saturday.

Figure 4.A.2: Optimality gaps for calculating the first stage decisions the model with
changes to the workplan allowed in the second stage for no penalty, and a penalty of
0.5, split by weekday.



Chapter 5

General problem-based scenario

reduction

5.1 Introduction

Decisions frequently need to be made before all information is known. In portfolio

selection, capital needs to be allocated to different investments without knowing the

exact returns. In facility location, facilities need to be constructed and opened despite

uncertain customer locations and demands. In power generation, contracts for energy

supply need to be bid on before demand is known. In all of these cases, we can use

stochastic programming to determine the optimal first stage decisions, accounting for

this uncertainty.

Two-stage stochastic programming with recourse was first proposed by Dantzig

(1955). Under this paradigm, the decision maker has a number of first-stage decisions

that need to be made before a random process is realised. The decision maker then

makes a number of second stage decisions, also called recourse actions, in response to

this, which have associated costs. For example, in a facility location problem, the first-

stage decisions are where to open new facilities. Once opened, the customer locations

108
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and demands are observed. The second stage decisions/recourse actions may then be

which facilities to serve which customers from, with different costs for the customers,

depending on which facility they are served.

Solving a stochastic program involves minimising the cost of the first stage decisions,

and the expected cost of the second stage decisions given the first stage. The expectation

of the second stage costs is often intractable if the true distribution of the uncertain

variables is either very large or continuous. Therefore, the true distribution is often

approximated with a discrete distribution S.

The problem in stochastic programming comes with the selection of the scenario set

S. This is referred to as scenario set selection. This broadly falls into two categories.

We can start with an empty scenario set, and populate it by generating new scenarios,

with some scenario generation process. For example, sampling from a distribution, or

constructing a scenario set with desired statistical properties (Høyland et al., 2003). Al-

ternatively, we can start with a large (discrete) scenario set, and select a more tractable

subset, with a scenario reduction process. This can be a more appropriate approach

when the starting distribution is discrete, or is an empirical distribution of observed

outcomes. This approach is the focus of this chapter.

There is a balance involved with scenario set selection. As the size of S increases,

the uncertainty is represented more accurately. However, as S increases, the size of

the stochastic program increases, and can quickly become intractable. Therefore, the

challenge is to pick S such that the uncertainty is accurately represented, but without

S growing too large.

Different methods have been developed to select scenario sets. Traditionally, these

methods have been distribution-based. That is, the scenario set is selected using in-

formation about the true distribution of the problem, without consideration of the

problem. For example, sampling from a given distribution, or minimising the Wasser-

stein distance between the true distribution and a target distribution (Dupacova et al.,
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2003).

More recent approaches incorporate information about the specific problem into the

scenario set selection method. These methods are referred to as problem-based. The

rationale for this is that by incorporating problem information, the methods can create

more concise scenario sets. For example Fairbrother et al. (2022) consider the problem

of minimising a tail risk measure in a stochastic program. The authors identify an

area of the distribution called the risk region, which determines the value of the tail

risk measure. They generate scenario sets in which nearly all scenarios are within this

region.

Unfortunately, the key feature of problem-based methods are often also their draw-

back. The methods can often not be applied to a wide range of problems, or need

careful tailoring to be used in different contexts. For example, the method proposed by

Fairbrother et al. (2022) can only be used where the risk region can be identified for

the problem. However, there have been recent advancements which have more general

requirements. Firstly, the ability to solve the problem with single or very few scenarios.

Secondly, the ability to evaluate solutions out of sample. Essentially, these methods

work by finding possible solutions to the problem, and testing how these solutions per-

form for different scenarios in the set. The information from this testing is then used in

the scenario set selection procedure. Examples include Hewitt et al. (2022); Keutchayan

et al. (2023); Zhang et al. (2023); Narum et al. (2024).

In this chapter, we use the similarities between these recent papers to develop a

framework for problem-based scenario reduction incorporating ideas from the recent

literature cited above. The framework consists of creating a pool of candidate solutions,

calculating the recourse values for each scenario and each candidate solution, and using

this information in existing scenario reduction techniques. This framework treats these

three steps independently, allowing users to select different approaches for each step of

the problem. This framework includes several existing methods, and suggests different
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approaches by combining different steps in new ways.

This chapter makes two main contributions. The first is the proposed framework

for general problem-based scenario reduction describe above. The second is that we

perform computational experiments, applying this framework to a number of problems,

transformations, and scenario reduction methods. This demonstrates how the frame-

work can be generalised. Furthermore, we find that creating the candidate solutions

by solving smaller stochastic programs generally (but not always) performs better than

other candidate solutions. However, we did not find one scenario reduction method

that consistently outperformed others.

The structure of the paper is as follows. In Section 5.2, we review the relevant lit-

erature. Section 5.3 gives a motivating example, and outlines our proposed framework.

We present the results from our computational experiments in Section 5.4, and our

conclusions are discussed in Section 5.5.

5.2 Literature review

Initial scenario set selection procedures were generally distribution-based. The simplest

of these is Monte Carlo sampling, where scenarios are independently sampled from

some distribution (either continuous or a larger existing discrete set). This has been

developed with more sophisticated sampling techniques, including antithetic and Latin-

hypercube sampling (Higle, 1998), which were used to reduce the variance in sampled

sets. Other approaches instead construct a scenario set with specific statistical proper-

ties. For example, Høyland et al. (2003) develop a scenario generation method which

creates a scenario set matching pre-set moments and correlations. Kaut and Wallace

(2011) proposed another generation method which can match pre-described copulas.

This gives the user more control over the dependency structure. Further distribution-

based methods choose reduced sets that are ‘closest’ to some original set or distribution,
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e.g. Pflug (2001) and Dupacova et al. (2003) (‘Closest’ in this context means the set

with the smallest Wasserstein distance from the reference set).

As the field has developed, several authors have shown that gains can be made from

incorporating problem-specific information into the scenario selection process. The

early pioneers of this were Dantzig and Glynn (1990) and Infanger (1992), who used

importance sampling when drawing their random samples. The idea of importance

sampling is that the probabilities with which observations are drawn are deliberately

biased to favour certain regions of the distribution (usually regions of low probability)

more than the original distribution. The samples are later de-biased when taking the

estimator. However, their sampling procedures require that problems are of a specific

form.

Feng and Ryan (2016) extended the work of Dupacova et al. (2003) to include

problem information. Whereas Dupacova et al. (2003) used the Wasserstein distance as

a metric to select scenarios, Feng and Ryan (2016) develop sensitivity indices, which take

given first and second stage solutions, and return a value providing some information

about the problem. These are then used to cluster the scenarios. The sensitivity

indices are functions chosen specific to the problem to give information which will

be relevant. A similar method was developed by Sun et al. (2018), who recognised

that for their problem (a power generation problem) a new variable (total power flow)

could be found by solving single-scenario deterministic models, which was beneficial in

their clustering procedure for scenario reduction. Again though, both these methods

create new information which is only relevant to the specific problems they are solving.

Feng and Ryan (2016) note that ‘useful [sensitivity] indices are problem-specific’, as

demonstrated by the indices they choose. Sun et al. (2018) find that the scenario-

specific problems they solve have a problem-specific interpretation, which is why these

can be used for their problem.

A different approach was taken by Prochazka and Wallace (2020), who created a
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pool of solutions (via problem-specific heuristics) to act as a proxy for the feasible

region. They then chose a scenario set that would minimise the distance of the average

recourse for the reduced set vs the full set, over all solutions in the pool. However, they

chose this set by developing a loss function to minimise. This loss function is generally

intractable for most problems, and requires tailored heuristics, limiting the applicability

of the method. Indeed Prochazka and Wallace (2020) note that a drawback of their

method is its specificity to their problem. This makes empirical comparisons between

their method and others difficult.

We take particular interest in a number of new approaches without this drawback.

These approaches take pre-existing methods, such as clustering (Narum, 2020; Hewitt

et al., 2022; Bertsimas and Mundru, 2023; Keutchayan et al., 2023), Singular Value

Decomposition (SVD) (Narum et al., 2024), and property-matching (Prochazka and

Wallace, 2020; Zhang et al., 2023). They then apply these methods not to the scenarios

themselves, but to the scenarios after ‘transforming’ them to a new space. Whilst

there are some variations in the approaches, they all share a common element. Namely,

they all get additional information about the problem by using ‘candidate’ first stage

solutions and finding the second-stage/recourse costs for each combination of scenario in

the full set and candidate solution. This can be thought of as transforming the scenarios

to a different space, where different dimensions in the space measure the performance

of different candidate solutions on that scenario. We note that the requirements of

a problem to be used with these methods are quite nonrestrictive. Specifically, the

only requirements are that the problem needs quick methods of finding appropriate

candidate solutions, and that the methods are compatible with testing these solutions

with specific scenarios.

An important difference in these methods comes from how the candidate solutions

are selected. Hewitt et al. (2022) and Bertsimas and Mundru (2023) create candidate

solutions by solving a deterministic program for each scenario in the full scenario set.
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They then test each solution with each scenario, and measure how much worse that

solution/scenario combination is than using the candidate solution for the given sce-

nario. A way to think about this is that they are calculating the opportunity cost of

planning for scenario a if scenario b is actually observed. After performing this ‘trans-

formation’, the information is used in different ways. Bertsimas and Mundru (2023)

replace the L2-norm in the objective in an optimal transport problem (thus altering the

Wasserstein distance metric) and select scenarios based on this. They show that solving

this problem is equivalent to performing k-means clustering on the problem, using the

opportunity cost as the distance. We note there that some of their theoretical results

make assumptions that cannot necessarily be generalised. For example, they assume

scenarios have unique optimal deterministic solutions. However, the problem-based dis-

tance metric itself is generalisable. Hewitt et al. (2022) use the opportunity cost as the

distance between scenarios, and then perform spectral clustering for reduction instead,

whereas Keutchayan et al. (2023) make a transformation to a similar space to perform

a method similar to k-medoids.

Other approaches use candidate solutions without creating distance metrics from

them. Zhang et al. (2023) also employ single-scenario candidates. They choose the

scenario set (of desired size) which minimises the difference in OOS recourse between

the chosen set and the full set for the candidate solutions. This is equivalent to a

sparse regression problem, which is solved with a heuristic. They also reduce the set of

candidates by solving a solution pooling problem (they show this reduces to a facility

location problem). Another approach is taken by Narum et al. (2024). They first

create the output distribution by evaluating how the scenarios perform when applied to

a number of candidate solutions. This is similar to Hewitt et al. (2022) and Keutchayan

et al. (2023). However, Narum et al. (2024) create their candidate solutions using small

scenario sets (each a subset of the full set) rather than a single scenario, and solving the

stochastic program over each of these sets. They then use SVD to decompose the output
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distributions of the stochastic program, and choose a new scenario set which preserves

the expectations of the most important singular vectors for the output distribution.

They show this method to be superior to multiple distribution-based methods for solving

a number of different problems.

We note that the general idea behind a number of the papers above is to trans-

form the scenarios to some problem-based space, and then apply a scenario reduction

method to select the scenario set. However, the work in previous papers seem to treat

these two steps as both embedded within a larger scenario set selection approach. Our

proposed framework de-couples these two steps, giving the user the ability to choose

the transformation and the method which suits the problem.

Another aspect that has not been addressed by existing literature is a numerical

comparison of using the different spaces to see how they perform. Examples of this

exist for distribution-based methods (Higle, 1998; Linderoth et al., 2006), but not yet

for problem-based. This is important, as (in our proposed framework) the creation

of the different spaces is independent of actually performing the scenario reduction

method. This would give insight into how the different spaces perform in different

settings, or if one space seems to perform better in general than the others. We also

note the value of comparing different scenario reduction methods (e.g. clustering, SVD)

combined with different spaces. We therefore conduct a numerical comparison of the

commonly used transformations in the literature.

Our two main contributions are to propose a framework for generalised problem-

based scenario reduction, and to use this framework to perform a numerical comparison

of existing methods and transformations. The proposed framework will generalise a

number of existing problem-based scenario reduction methods, and allow for the use

of different transformations and reduction techniques to be combined. The numerical

study will shed light on how these different spaces compare to one another.
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Table 5.3.1: Scenarios for the mail centre example

Letters Parcels
Scenario 1 0 0
Scenario 2 0 500
Scenario 3 0 700
Scenario 4 1,000 200
Scenario 5 1,000 300
Scenario 6 1,000 1,000

5.3 Motivation and proposed framework

5.3.1 Motivating example

Literature has shown the advantage of problem-based scenario reduction. Specifically,

multiple authors create problem-based information by evaluating the recourse when

scenarios are applied to given candidate solutions. These recourse costs are then used

with reduction techniques, such as clustering (Hewitt et al., 2022), dimensionality re-

duction (Narum et al., 2024) or property matching (Zhang et al., 2023). The rationale

behind these approaches is that when reducing the large scenario set, we want to treat

scenarios similarly (e.g. group them in the same cluster) if they perform similarly on

given solutions.

To see the advantage of this approach, we consider a small example of a mail centre

over one time period. Suppose our small mail centre consists of only two streams -

letters and parcels - with a dedicated work area (WA) for each. We assume that one

worker in the letters WA can sort 100 letters per time period, whereas, one worker

in the parcels WA can sort 20 parcels per time period. The cost for failing to sort

either letters or parcels is 1 unit per 50 unsorted letters (or part thereof), or 4 units

per 50 unsorted parcels (or part thereof). Our objective is to minimise the total cost

of unsorted items plus the total number of workers allocated to sort the items.

Consider that we have a scenario set of possible mail volumes shown in Table 5.3.1.

We visualise this in the two-dimensional space shown in Figure 5.3.1.
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Suppose we want to reduce this set to 3 scenarios. One method we could use to

do this is k-medoids clustering. In this method, a ‘medoid’ centre is found for each

cluster, and the scenarios are grouped based on which medoid they are closest too. The

‘medoid’ for each cluster is defined as the scenario within the cluster with the lowest

average distance to the other points in the cluster. By ‘distance’ we mean Euclidean

distance (although other metrics can be used as well). The resulting clusters will group

scenarios which are closer together.

When applied to scenario reduction, the number of clusters is set to be the size of

the new scenario set. The method then clusters the scenarios, and the medoids of the

clusters are chosen to be the new scenario set. The idea behind this is that the scenarios

in a given cluster will behave similarly to the medoid of their cluster.

In Figure 5.3.1, we plot the scenarios in Euclidean space (which we will refer to as

the ‘scenario space’). We see that scenarios 1, 2, and 3 are closer to each other than

they are to scenarios 4, 5, and 6, with 6 being much further away from scenarios 4 and

5. Therefore, the clustering algorithm should (and does) sort the scenarios into these

groups when k-medoids is applied (the groupings are shown by the different colours).

The medoid scenarios of the clusters are shown by the triangles. While this is trivial

for the orange cluster (scenario 6) and the yellow cluster (scenarios 4 and 5), we see

that the ‘middle’ scenario (scenario 2) is chosen for the blue cluster (scenarios 1, 2, and

3).

Scenarios 2, 5, and 6 are the representative scenarios chosen for their respective

clusters, with assigned probabilities of 1
2
, 1

3
, and 1

6
, respectively. From Figure 5.3.1,

this appears a reasonable scenario set to select. The clusters seem to divide the set

into relatively similar scenarios, with the probabilities representing the concentration

of probability mass appropriately.

Issues arise because two quite different scenarios can perform similarly on a given

solution. To demonstrate this, we chose two example solutions, shown in Table 5.3.2.
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Figure 5.3.1: Scatter plot of scenarios from Table 5.3.1. Different colours represent the
different clusters chosen. Triangles represent the medoid scenario kept by the scenario
reduction method. The size of the triangles represents the relative probability mass in
the reduced scenario set.
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Table 5.3.2: Number of workers in each WA for the two candidate solutions.

Letters WA workers Parcels WA workers
Solution 1 20 5
Solution 2 5 20

The first solution prioritises sorting letters over parcels, the second does the reverse.

We calculate the recourse value for each scenario with the two solutions, and plot these

recourse values in Figure 5.3.2a.

Figure 5.3.2a shows the new behaviour of the scenarios in this transformed space,

which we refer to as the recourse space. We see that the relative distances between the

scenarios has changed. The most notable change is for scenarios 4 and 5, which now

lie in between scenarios 1 and 2, and scenario 3 which has moved closer to scenario

6. Looking at the medoids previously found, we now see that scenario 5 is now much

closer to scenario 1 than scenario 2 is, and that scenario 3 has moved quite far away

from any other scenarios. However, much of the probability mass (1
2
) is still located at

scenario 2, meaning less mass is located near scenario 3 or scenario 1. This means that

if these scenarios represent important regions of the space, then this information will

be lost in the reduced set. The region near scenario 1 will be under-represented, and

the region near scenario 3 will not be represented at all.

Figure 5.3.2b shows the clusters we obtain if we perform the clustering after trans-

forming to the recourse space. If we cluster in this space, we would obtain clusters of

scenario 1, 4, 5, and 2, scenario 3, and scenario 6. These clusters clearly group scenar-

ios in a more appropriate way than our previous clustering. In addition, the medoid

scenarios (3, 5, and 6) and their probabilities (1
6
, 2

3
, and 1

6
, respectively) distribute the

mass across the space more appropriately. The assignment of 2
3
to scenario 5 covers

the high number of scenarios with low recourse on both solutions (i.e. the bottom left

corner of the plot) and the addition of 1
6
probability to scenario 3 now covers regions

of medium-high recourse on solution 1, and medium recourse on solution 2.

The two different scenario sets (found by clustering before vs after transforming the
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(a) Scatter plot of recourse values for applying each candidate solution in Table 5.3.2 to
each scenario in Table 5.3.1. The colors and marker symbols show the same clusters and
representative scenarios as shown in Figure 5.3.1.

(b) Scatter plot of recourse values for applying each candidate solution in Table 5.3.2 to each
scenario in Table 5.3.1. The colors now represent the clusters chosen if clustering is performed
in this space. Again, the triangles show the chosen scenarios, with sizes proportional to their
assigned probabilities.

Figure 5.3.2: Clusterings performed in the 5.3.2a scenario space, and 5.3.2b the recourse
space, projected into the recourse space.
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Table 5.3.3: OOS results for the solutions found using standard clustering or recourse
space clustering.

Scenario space clustering Recourse space clustering
Letter WA workers 10 10
Parcels WA workers 25 15

Cost scenario 1 35 25
Cost scenario 2 35 41
Cost scenario 3 51 57
Cost scenario 4 35 25
Cost scenario 5 35 25
Cost scenario 6 75 81
Average cost 44.33 42.33

Optimality gap 4.51% 0.00%

scenarios) yield very different solutions. To show this, we used the two reduced scenario

sets to solve the mail centre problem, and calculated the average recourse cost over the

full scenario set. These are shown in Table 5.3.3.

We see that the recourse space clustering gives a different solution to that of the

scenario space clustering. Both allocate 10 workers to the letters WA. The original

clustering (which we will call the scenario space clustering) allocates 25 to the parcels

WA, whereas the recourse space clustering solution only allocates 15. This results in

the recourse space clustering solution having 10 fewer workers overall. The reason for

this difference is that the second scenario set (found when clustering after transforming)

places more probability mass in the region containing scenarios 1, 2, 4, and 5. These

are the scenarios with fewer parcels. Therefore, fewer workers are allocated to the

parcels WA. While each solution performs better on three of the six scenarios, we see

the average cost over all the scenarios is lower for the recourse space clustering solution.

Furthermore, when solving the entire stochastic program over all 6 scenarios, we obtain

an objective value of 42.33. We see that the recourse space clustering solution achieves

the same objective value as the full problem (meaning it is an optimal solution). How-

ever, the scenario space clustering solution is 4.51% worse than the solution from the

full model. This shows the recourse space clustering leads to a better overall solution.
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Our previous example shows both the issues with the performance of scenario re-

duction using only scenario information, as well as the benefit of incorporating problem

information in the reduction process. We also see that in both the example from the

literature and our toy example, this similarity/dissimilarity was found by applying a

number of solutions to these scenarios, and using this information in the scenario re-

duction procedure. This suggests that a common framework could be used to make a

number of existing scenario reduction methods problem-based. In the remainder of this

section, we propose and describe such a framework.

5.3.2 Proposed framework

Our framework consists of three main steps. The first step in this framework is to

create a pool of M candidate solutions, which we denote ym, m = 1, ...,M . The idea

behind using the candidate solutions is to provide the information as to how similarly

different scenarios react to the different solutions. Using a pool allows us to examine

the scenarios in multiple situations. The user can use a number of methods to calculate

these solutions. We discuss options for this in Section 5.3.3.

After creating the candidate decisions, we need to use them to transform the sce-

narios. We denote our full or true scenario set as S = [ξ1, ..., ξS] of size S. We transform

each scenario ξs ∈ S into the recourse space (as also defined in our motivating example).

We do this by calculating the recourse values Q(ym, ξs) for each candidate solution ym

and scenario ξs. These Q values are then used to populate the S ×M recourse matrix :

R :=


Q(y1, ξ1) · · · Q(ym, ξ1)

...
. . .

...

Q(y1, ξS) · · · Q(ym, ξS)


where R represents the projection of the scenarios into the recourse space.

This information is then used in the scenario reduction methods. Any scenario
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Traditional scenario reduction:

Old Scenarios

ξ1, ..., ξs
p1, ..., ps

New Scenarios

ξS1 , ..., ξSn

r1, ..., rn

Scenario reduction

Our framework:

Old Scenarios

ξ1, ..., ξs
p1, ..., ps

Candidates

y1, ..., yk

Recourse values

Qy1,ξ1 , ..., Qyk,ξs

New Scenarios

ξS1 , ..., ξSn

r1, ..., rn

Scenario reduction

Figure 5.3.3: Diagram comparing approaches to scenario reduction.

reduction that works directly on the scenarios (i.e. in the scenario space) can be applied

using the recourse space instead. For example, k-medoids clustering normally uses the

Euclidean distance between the rows of R to make this method problem-based.

Note that some authors use R to create new variables/distance metrics which they

use instead of R. We give more details of this in Section 5.3.3.

In summary, our framework consists of three steps:

1. Creating a pool of candidate solutions, y1, ..., yM .

2. Calculating the recourse matrix R, to transform the scenarios to the recourse

space.

3. Using the information from the transformed scenarios in the chosen scenario re-

duction method (for example, k-medoids clustering).

A diagram of this framework is shown in Figure 5.3.3.

Figure 5.3.3 highlights the independence of each of the above steps, allowing different

methods to be combined. They also require very little of the specific stochastic problem

they are applied to, meaning this framework can be widely applied. All that is required



CHAPTER 5. GENERAL PROBLEM-BASED SCENARIO REDUCTION 124

is a set of candidate solutions (or a suitable method to generate this set) and to be able

to calculate the Q values to populate the R matrix.

5.3.3 Choosing candidate solutions

Part of the new framework involves testing the scenarios on a set of candidate solutions.

This is to get recourse values of the scenarios for the scenario reduction methods. There

is no set procedure on how to choose the candidate scenarios. As a guide, we suggest

that candidate scenarios be:

1. Of reasonable quality.

2. Somewhat varied.

3. Relatively easy to calculate.

Points 1 and 2 were suggested by Narum et al. (2024). Point 1 is motivated by results

from Narum et al. (2024) (and supported by similar results from Zhang et al. (2023))

that bound the approximation error on using the set of candidate decisions to approx-

imate the expected recourse from other candidate decisions. The authors give a bound

on this approximation containing a term proportional to the distance the new decision

is from the set of candidate decisions. They argue that if the set of candidate decisions

is therefore of higher quality, this will be closer to the good solutions we are trying to

find (and approximate). The need for varied solutions (Point 2) is to better represent

the space of recourse values for a wide range of feasible solutions. We suggest Point 3 as

we need to calculate multiple candidate solutions. Therefore, we should avoid excessive

computational times to calculate each solution.

There are many different and possible ways to choose the number of candidate

solutions, and the methods of calculating them. Previous methods in the literature

outline some possibilities:
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• Single-scenario candidates (Hewitt et al., 2022; Keutchayan et al., 2023; Zhang

et al., 2023).

• Multi-scenario candidates (Narum, 2020; Narum et al., 2024).

• Problem-specific heuristics (Prochazka and Wallace, 2020).

We explain the single-scenario and multi-scenario candidates in more detail here.

As our scope is on creating a general framework, we do not discuss problem-specific

heuristics.

Single-scenario candidates

Single-scenario candidates are calculated by solving a deterministic problem for scenar-

ios in the full scenario set. That is, our candidate solutions are:

ym ∈ argminy∈Y Q(y, ξm),m ∈ S

That is, ym is an optimal decision if ξm was the observed scenario.

Some authors (Bertsimas and Mundru, 2023; Hewitt et al., 2022) use R to create

a different (but related) distance measure to use for their scenario reduction method,

which we refer to as the opportunity cost distance (Hewitt et al. (2022) first used this

terminology). We briefly describe this here.

The opportunity cost approach The opportunity cost can be viewed as standar-

dising single-scenario candidate recourse values by the recourse found when using the

optimal solution for the given scenario. To formally explain this, we first define

δms := Q(ym, ξs)−Q(ys, ξs)
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That is δms is the additional cost if scenario s is observed, but we ‘plan for’ scenario

m. This is in effect the opportunity cost of planning for scenario m (hence the name

of this space).

There is no guarantee that δms = δsm. Therefore, to ensure opportunity cost is

symmetric, we make the final calculation, and define:

dsm :=
1

2
(δsm + δms)

where dsm is the opportunity cost distance between scenarios s andm. This is the metric

used by Bertsimas and Mundru (2023). Hewitt et al. (2022) uses a near-identical metric,

which differs in that the two distances are added, but the sum is not multiplied by a

half. We will keep the constant 1
2
in our experiments.

We note that Keutchayan et al. (2023) refer to their approach as the opportunity

cost. However, they do not include the Q(ys, ξs) term in their calculation of δ, nor do

they perform the symmetry step to calculate d. Therefore, their transformation would

be regarded as using single-scenario candidates to calculate the recourse space under

our framework.

Multi-scenario candidates

Another approach is used by Narum (2020) and Narum et al. (2024). In their approach,

the candidate solutions are found by solving smaller stochastic programs. That is, for

each candidate solution m, a small scenario set of size r is selected, and the stochastic

program is solved for this smaller scenario set, giving the candidate solutions. The

scenario sets are usually selected using random sampling, but could potentially be

found by other existing scenario set selection methods.
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5.3.4 Requirements on the scenario reduction methods

The requirements of the scenario reduction methods we can use in this framework

are more restrictive. The key requirement is that the scenarios chosen in the reduced

subset are already present in the full scenario set. This is because there is no method

for transforming the scenarios back from the recourse space into the original scenario

space. This means that we cannot be certain that any new scenario created by a method

will fall in the appropriate region of the recourse space once transformed. For example,

in k-medoids clustering, the chosen scenarios are the medoids of the clusters, which are

observations (i.e. scenarios) present in the cluster. However, for k-means clustering, the

cluster centre is given by a created observation taking the mean value of each dimension

of the observations in the cluster. If we used this method of clustering instead, we would

be unable to create a new scenario which would take the mean value of the recourse in

each dimension in the cluster. This requirement rules out some methods for use within

this framework, such as k-means clustering (as described), Latin Hypercube Sampling,

variance reduction techniques (such as importance sampling or antithetic sampling),

and the moment-matching method of Høyland et al. (2003), among others. We clarify

which reduction methods are suitable with our framework in Table 5.3.4.

Table 5.3.4: Scenario reduction methods classified by their suitability with our frame-
work.

Suitable for our framework Unsuitable for our framework
k-medoids clustering k-means clustering

Output distribution decomposition with SVD Moment matching
Spectral clustering Variance reduction
Means matching Latin hypercube sampling

5.3.5 Applicability to current approaches

The purpose and benefit of this proposed framework is how well it fits with current

approaches already used in the literature. Table 5.3.5 describes other papers that fit
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Table 5.3.5: Description of how previous literature fits into our proposed framework.

Reference Candidates Transformation Reduction method
Narum (2020) Multi-scenario Recourse space k-medoids
Hewitt et al. (2022) Single-scenario Opportunity cost Spectral clustering
Zhang et al. (2023) Single-scenario Recourse space Sparse regression to

match means
Narum et al. (2024) Multi-scenario Recourse space SVD decomposition of

output distribution

into this framework.

It is worth noting that some of the methods have additional processing steps which

sit outside of the framework. The method of Zhang et al. (2023) for example filters out

some candidate decisions before solving. We also note some previous methods which

are similar to this framework, but with small differences which make them unsuitable.

For example, Keutchayan et al. (2023) uses the recourse space with single scenario can-

didates, combined with a clustering algorithm which is similar to k-medoids, but with

an adjusted distance metric. Bertsimas and Mundru (2023) also use the opportunity

cost distances with an algorithm based on k-means clustering.

Table 5.3.5 shows the range of candidate decisions, transformations, and scenario

reduction methods which have already been used. We see that at each step of the

framework (candidate decisions, transformations, and reduction methods), multiple

approaches have been used, showing the variety of techniques that can be used with

this framework. Furthermore, we identify a number of combinations that have not

been used in the literature yet. These include single-scenario candidates with SVD,

opportunity cost with k-medoids clustering and spectral clustering with either single or

multi-scenario candidates, suggesting these combinations should be tested together.



CHAPTER 5. GENERAL PROBLEM-BASED SCENARIO REDUCTION 129

5.4 Results

5.4.1 Experimental set-up

Having outlined our framework, we apply it to existing transformations in a numerical

comparison. This will allow for a meaningful comparison between different approaches,

and to test new combinations of candidate solutions, transformations, and methods.

This also has the potential to reveal better-performing approaches within a step of the

framework (for example, single vs multi-scenario candidates).

We test the suitability of the transformations for general problem-based scenario

reduction. Therefore, we apply multiple scenario reduction methods to three different

problems:

1. The Stochastic Service Network (SSN) problem from Crainic et al. (2016). This

is a network design problem, in which we are designing a network to handle the

flow of different commodities with stochastic demands.

2. The Telecommunications Network (TN) problem from Sen et al. (1994). Another

network design problem, this describes designing a network to handle an unknown

number of requests on a telecommunications network.

3. The stochastic mail centre staffing problem (MC) developed in Chapter 4.

The problems exhibit a number of different characteristics and behave in different

ways. An overview of their characteristics is given in Table 5.4.1. The SSN problem is a

small problem, which is often stable. The TN problem has a much higher dimension in

the scenarios, and can be unstable. The MC problem is much larger than the other two

problems, and hence struggles to solve for larger instances. The problem features vary

in a number of ways as well, including; problem size, shape of the marginal distributions

of variables in the scenarios, and the dimension of each scenario. Further information

about the problems and their formulations is given in Appendix 5.A.
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Table 5.4.1: Overview of features for the test problems

Problem Num. variables |S| Marginals Dependence Dist. dimension
SSN 1,260 1,000 Uniform Independent 10
TN 1,152 1,000 Gamma Independent 82
MC 286,179 52 Empirical Empirical 180

For the SSN and TN problems, scenarios are generated through a distribution-

based process. Since we are testing scenario reduction methods, we use the process

to generate 1,000 scenarios for each, and treat this as the full scenario set. When

conducting experiments, we reduce this set down to 3, 5, 10, and 20 scenarios. For

the MC problem, scenario data was provided by a UK-based mail company, covering

observed mail volumes in a given mail centre over a one-year period (April 2020 to

March 2021). We then use this data as the empirical distribution of the scenarios.

Given the numerous differences in the mail centre problem between days of the week,

we only solve the problem for Mondays. This gives a full scenario set of 52 scenarios.

Due to the large size of this problem, we reduced our full scenario set to sets of 2 - 10

scenarios for this problem when performing our experiments.

For each method, we test four combinations of transformations and methods. For

transformations we consider:

1. The Euclidean distance between the different scenarios. We refer to this as the

scenario space.

2. The recourse space using single-scenario candidates (SSC). The candidate deci-

sions were found by randomly selecting scenarios from the full scenario set, and

solving the problem for each given scenario. We used 100 candidate decisions for

the SSN and TN problems. Given we only had 52 scenarios for the MC problem,

we created a candidate decision for every scenario in the set for this problem.

3. The opportunity cost (OC) space with single-scenario candidates, as described in

Section 5.3.3.
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4. The recourse space using multi-scenario candidates (MSC). The candidate de-

cisions were found by randomly sampling 6 scenarios from the full scenario set

and solving a small stochastic program over these scenarios for each candidate

decision. We used 100 candidate scenarios for each problem.

For methods, we use the following scenario reduction techniques:

1. k-medoids clustering (KM) (Kaufman, 1990). This clustering method partitions

the set of observations into clusters, where the cluster centroid is the observation

in the cluster with the lowest average distance to other observations in that cluster.

2. The SVD and output decomposition method (Narum et al., 2024). In this method,

SVD is performed on a space matrix, and a linear program (with a random ob-

jective) is solved to select a scenario set which preserves the expectations of the

singular vectors with the highest singular values.

3. Spectral clustering (SC) (Von Luxburg, 2007). This clustering method constructs

an affinity matrix of the observations, before clustering the observations based on

the eigenvalues of the affinity matrix.

As stated in Section 5.3.4, these methods are scenario reduction methods that return

a subset of the full scenario set, and thus are suitable for our framework. We also note

from Table 5.3.5 that they have also all been used in problem-based scenario reduction

before. We note that we do not use the means-matching method from Zhang et al.

(2023). We found that this method is more complicated to implement due to the

filtering step, and the bespoke algorithm for solving the regression problem.

For each combination of problem, method, and transformation, we will compare the

out-of-sample (OOS) stability to evaluate the performance of the different approaches.

In the OOS stability, we reduce the initial scenario set to the desired number of scenarios

20 times. For each of these 20 reduced scenario sets, we solve the stochastic program

to get a solution. We then apply this solution to each of the scenarios in the full
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scenario set, find the objective cost, and take the mean of these objective costs. We

then examine the spread of the 20 average recourse costs to determine the effectiveness

of the scenario reduction.

All mixed integer/linear programming was done with Gurobi v10.0.3, with the

Python v3.9 API. Additional programming was also conducted in Python v3.9. We ap-

ply the k-medoids clustering with the alterating algorithm from the ‘kmedoids’ python

package v0.4.0. We implemented the SVD procedure from Narum et al. (2024) in

Python. We also implemented the spectral clustering algorithm as presented in Hewitt

et al. (2022). We made one modification to the method. Instead of using the k-means

clustering for the clustering step, and then finding cluster medoids, we instead applied

the k-medoids clustering algorithm directly to perform the clustering on the eigenvec-

tors. This was so that the method directly returned scenarios that already existed in

the full scenario set. In the procedure of Hewitt et al. (2022), the authors manually

found the cluster medoids after the clustering had been performed. Furthermore, we

found that the implementation of the k-means clustering made the method too stable

for our problems.

5.4.2 Computational results

Random sampling

Firstly, we examine the OOS results for the three problems when using random sam-

pling. This shows the stability and behaviour of the problems, and acts as a baseline

method to which we can compare the other results. Figure 5.4.1 shows these results.

The SSN problem has OOS values ranging between 0 and 500, the TN problem ranges

between 0 and 35, and the MC problem ranges between 80,000 and 300,000. We notice

that the SSN problem and TN problem both come quite close to 0 recourse at 20 sce-

narios. Specifically, the SSN problem achieves a median recourse of approximately 4,

and the TN problem achieves a median recourse of 2. These problems also both show a
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steady improvement in the spread of the recourse values for the increases in the scenario

sizes. The MC problem behaves slightly differently. Firstly, the recourse values do not

converge as closely to the minimum values (albeit over a different range of scenarios)

as the other problems do. Furthermore, while the spread of the OOS values do narrow

as scenarios are increased, this does not occur as quickly as it does for the other two

problems. This suggests that this problem is a more unstable stochastic program to

solve than the other two.

Having looked at the baseline levels for our three test problems, we now examine

their results when using our scenario reduction methods. Figures 5.4.2, 5.4.3, and

5.4.4 show the OOS results for the SSN, TN, and MC problems, respectively. Each

figure shows the results for the problem for the three different methods within the

subfigures. Each subfigure shows the OOS results from 20 runs for the three different

spaces for reduced scenario sets of an increasing sample size. A superior method/space

is indicated by both a lower median value to the OOS results (to show a method is

performing better) and a lower spread of values (to show a method is estimating the

recourse cost consistently).

Stochastic service network problem

We find that in most cases using MSC results in a lower median and spread of OOS

values, shown in Figure 5.4.2.

For the KM method (Figure 5.4.2a), we see that MSC has the lowest median OOS

cost for all scenario set sizes, and has the lowest spread of OOS values when using 5

or more scenarios. OC and SSC have similar medians, with SSC having slightly lower

medians for 10 and 20 scenarios. The scenario space has a much higher median than

all other spaces for 3 scenarios, but relatively similar medians to SSC and OC when 5,

10, or 20 scenarios are used.

For the SVD method, we see that the MSC actually has the highest median OOS
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(a) Out of sample stability for the RS reduction method applied
to the SSN problem.

(b) Out of sample stability for the RS reduction method applied
to the TN problem.

(c) Out of sample stability for the RS reduction method applied
to the MC problem.

Figure 5.4.1: OOS results for the random sampling method applied to the three prob-
lems
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of the four transformations, with the lowest being the SSC, when 3 scenarios are used.

However, when more scenarios are used, we see that MSC then has the lowest OOS

cost of the spaces for 5 and 10 scenarios, and equal lowest with the other spaces at 20

scenarios. SSC and OC perform relatively similarly across all scenario sizes (SSC being

slightly lower for 3 and 5 scenarios). The scenario space performs better than OC and

MSC, and similarly to SSC for 3 scenarios. However, it performs either equally or worse

in terms of median OOS, and worse in terms of spread than the other spaces for 5, 10,

and 20 scenarios.

The behaviour of the SC method in Figure 5.4.2c is different again. We see that the

MSC generally shows the lowest median OOS cost of the 4 spaces, being the lowest for

3, 10, and 20 scenarios and second lowest (after OC) for 5 scenarios. We also see the

scenario space being the highest OOS cost for 5 or more scenarios.

We note two main differences between the SC method and the other methods. First,

we note that the OC space shows clearly lower OOS than SSC for 3 and 5 scenarios,

with the two being either similar, or SSC performing better at lower scenarios for the

other methods. Second, the spread of OOS values is much lower for all spaces when

three scenarios are used. This could be because the nature of spectral clustering means

that the k-medoids clustering step is only performed in s dimensions. When s = 3, this

is lower than the dimension of the scenarios of this problem (10). Clustering algorithms

generally perform better in lower dimensions (Houle et al., 2010), meaning that it is

possible that the method more consistently finds optimal or close to optimal clusters

across the different OOS runs, compared to the standard k-medoids clustering method.

We also note that the SVD method has more inherent randomness built into the method

than clustering methods (which do have a theoretical ‘best’ clustering).
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(a) Out of sample stability for the KM reduction method applied
to the SSN problem.

(b) Out of sample stability for the SVD reduction method applied
to the SSN problem.

(c) Out of sample stability for the SC reduction method applied
to the SSN problem.

Figure 5.4.2: OOS results for the three reduction methods applied to the SSN problem
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Telecommunications network problem

For the TN problem, shown in Figure 5.4.3, we again see that MSC shows the lowest

median OOS values in the majority of cases. It is the lowest for all scenario set sizes

for the KM and SVD methods, and the lowest for 5, 10, and 20 scenarios.

For the KM method (Figure 5.4.3a), we note that the OC space is the worst per-

forming of the four spaces. This is particularly noticeable for smaller scenario set sizes

(3 and 5 scenarios). Between the other two spaces, the SSC space performs better than

the scenario space for 3 and 5 scenarios, and the two perform similarly for 10 and 20

scenarios.

The spaces perform more similarly as scenario set sizes increase for the SVD method

(Figure 5.4.3b). The MSC space performs best, the OC and SSC spaces perform simi-

larly (except for 5 scenarios, where SSC performs better), and the scenario space per-

forms the worst. However, the difference between the spaces reduces as the number of

scenarios increases. We also see that for each scenario set size, the spread of OOS values

for each space is reasonably similar, especially as the number of scenarios increases.

For the SC method, there is less of a consistent pattern between the spaces for

different scenario set sizes. For larger scenario sets, we again see MSC having the

lowest median OOS, and OC having the highest, with all spaces having similar OOS

spreads. However, for 3 scenarios, we see MSC has the highest median OOS, and that

the medians for the other three spaces are similar (as they are for 5 scenarios as well).

Mail centre problem

The results for the MC problem are more mixed, as shown in Figure 5.4.4. First,

we note that in this instance, the full scenario set is small enough that we can solve

the stochastic program over the entire set. The objective value for the full stochastic

program is shown in each sub-figure of Figure 5.4.4 via the solid red line. Secondly, we

note that there is much more varied behaviour of the three spaces between the methods
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(a) Out of sample stability for the KM reduction method applied
to the TN problem.

(b) Out of sample stability for the SVD reduction method applied
to the TN problem.

(c) Out of sample stability for the SC reduction method applied
to the TN problem.

Figure 5.4.3: OOS results for the three reduction methods applied to the TN problem.
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for this problem.

For the KM method (Figure 5.4.4a), the MSC space shows the highest median OOS

of all spaces over all scenario set sizes. This is in contrast to the previous problems and

methods, where MSC was routinely the lowest. Instead, we see that the SSC space has

the lowest OOS cost for 4 or more scenarios (with OC having the lowest for 2 scenarios).

The scenario space performs poorly with 2 scenarios (only MSC has a higher median

OOS cost), but performs similarly to OC for increasing sample sizes.

The SVD method (Figure 5.4.4b) appears to behave more similarly to the previous

two problems. The MSC space has the lowest median OOS for 4, 6, 8, and 10 scenarios,

and has the second lowest (after SSC) for two scenarios. However, we see that the other

three spaces perform quite similarly to each other as the scenario set size increases. We

also note that (unlike the other two methods) the OOS costs for all spaces is approaching

the minimum at 10 scenarios.

The results for the SC method are again different to the previous methods (Figure

5.4.4c). In this case, there is not a clear relationship between the spaces as the scenario

set size increases. The MSC shows the lowest median OOS cost for 2 and 4 scenarios,

but the highest for 6, 8, and 10. Furthermore, we see that the scenario space jumps

from having the highest OOS cost for 2 scenarios to the lowest for 8 scenarios. The

SSC and OC results also do not seem to show a clear relative relationship to the other

spaces as the scenario set sizes increase.

While the spaces behave similarly with the SVD method as they do with the other

methods and problems, they behave quite differently with the KM and SC methods for

this problem. This is possibly because these methods simply do not perform as well as

the SVD method does for this problem. We examine this by comparing the error for

each reduction method with multi-scenario candidates for this problem. We compare

the errors by reducing to 6 scenarios with each method, and calculating the average

error for this scenario set over 10 candidate solutions, found by solving the stochastic
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program over 6-scenario scenario sets, chosen by random sampling. We perform 10

trials of this to account for the randomness in the sampling procedures. A detailed

explanation of the error calculations is given in Appendix 5.B. We show these errors as

boxplots in Figure 5.4.5.

The errors are much lower for the SVD method than the other two methods. This

shows that the SVD method is selecting scenario sets that give an objective cost much

closer to that of the full stochastic program, indicating that this method is performing

better for this problem than the other methods. This is consistent with the OOS re-

sults from Figure 5.4.4, explaining why the multi-scenario candidates perform relatively

poorly for this problem and these methods.

Summary

Looking across the different methods and problems, we broadly see that the MSC space

generally has the lowest OOS cost. This is particularly prevalent for the SSN and TN

problems. For these problems, we also find that the SSC space performs reasonably well,

often being the second-best performing space, particularly as the number of scenarios is

increased. Furthermore, it is the best-performing space for larger scenario sets for the

MC problem with the KM and SC methods, where the MSC performs relatively poorly.

It is possible that the underlying structure of the output distribution for this problem

is more complex than the others. Therefore, more variety in the candidate solutions is

needed to capture it, hence the SSC space performs better.

We note that the two most unusual results were for the KM and SC methods with the

MC problem. These experiments were the only combinations of problem and method

which did not show the MSC to be the best transformation. Further analysis showed

that the errors found for the MSC space with either the KM or SC methods were much

higher than those of the SVD method. This indicates that these methods are choosing

poor scenario sets with this transformation and this problem, suggesting they are not
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(a) Out of sample stability for the KM reduction method applied
to the MC problem.

(b) Out of sample stability for the SVD reduction method applied
to the MC problem.

(c) Out of sample stability for the SC reduction method applied
to the MC problem.

Figure 5.4.4: OOS results for the three reduction methods applied to the MC problem.
Solid red line shows the true minimum when solving over the entire scenario set.
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Figure 5.4.5: Sampling errors for the MC problem with the different methods

appropriate for this problem. However, we do find that single candidate solutions

perform well for this problem.

5.5 Conclusion

Given the trade-offs involved in scenario set selection for stochastic programming, it is

vital to be able to choose a small but representative subset. Previous research shows

the benefits of problem-based scenario set selection over distribution based. Here,

we present a framework to help generalise existing problem-based scenario reduction

approaches, and use this framework to compare and combine existing approaches in

the literature. We tested four different transformations with three different scenario

reduction methods and three different test problems.

We saw that for most combinations of problem and method, using MSCs gave the

best performance regarding OOS costs. Using SSCs also performed reasonably well,

especially for larger scenario set sizes. Given these are computationally much easier to

calculate, this shows that the SSC space is still a useful approach, showing the benefit
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of using these in a general problem-based method. We also saw poorer performance

from the MSC space when using the clustering methods. This suggests that there is no

‘free lunch’ when it comes to choosing candidate solutions. Different transformations

may work better or worse for different problems.

A limitation of this work is that there is no way to ‘place’ a scenario in the recourse

space. For example, one of the methods we looked at was k-medoids clustering. In

k-medoids clustering, the cluster centre is the medoid member of the cluster. That

is, the cluster centre is an already existing point in the cluster set. If we wanted to

use k-means clustering instead, then we would need to calculate a new mean point of

the cluster, which would be the cluster centre. In the scenario space, this is straight-

forward. However, there is no way to create a scenario which we know will be the mean

of the scenario set once projected onto the recourse space. Therefore, we can not use

this framework with such a method. The bigger implication is that we cannot use any

scenario generation methods with this framework, by the same logic. Thus, we are

limited to scenario reduction techniques. A second limitation is that calculating the

recourse matrix can be time consuming, as many deterministic or stochastic models

need to be solved to do this. However, we note that once the recourse matrix has been

calculated, it can easily be applied to multiple scenario reduction methods.

Despite this limitation, this represents a significant contribution to the scenario

reduction literature. This framework gives a straightforward method to make scenario

reduction methods problem-based. Very mild conditions are required for the problem

to be solved. These amount to being able to find reasonable feasible solutions, and

calculating recourse costs for scenarios under given solutions in a reasonable time. We

also saw when comparing the different spaces that using MSCs and SSCs performed

better than the scenario space in the majority of cases, showing the value of applying this

framework. Therefore, we have shown this framework can make valuable improvements

to existing scenario reduction techniques.
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5.A Description of test problems

5.A.1 Stochastic service network problem

The stochastic service network problem is taken from Hewitt et al. (2022). The problem

is a network design problem, with stochastic demand at each node. Our problem is to

choose which arcs to install in the network, at the lowest cost, and with the lowest

expected cost of unmet demand in the scenarios.

We view our network as a direction graph G = (N ,A) with a node set N and

arc set A. We also have a set of commodities K, and a set of scenarios S, with

associated probabilities ps, s ∈ S. Each scenario represents different demands dksi giving

the demand for commodity k ∈ K at node i ∈ N in scenario s ∈ S, as well as the

different capacities us
ij for arc (i, j) ∈ A in scenario s.

From here, we somewhat modify the formulation from Hewitt et al. (2022). We

assume that if we wish to send flow of commodity k in scenario s along arc (i, j) we

can do so in one of two ways. Either:

1. We can install an arc (i, j) for fixed cost fij, then use this arc at a cost ciJ .

2. We can send the item along auxiliary arc linking nodes i and j at a cost much

higher than cij, denoted as P .

From these, we can define our decision variables:

• yij: binary decision variable indicating if we will install arc (i, j) in the network.

• xks
ij : continuous variable indicating how much flow of commodity k we send along

installed arc (i, j) in scenario s.

• zksij : continuous variable indicating how much flow of commodity k we send along

auxiliary arc (i, j) in scenario s.
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With this information, we obtain the following formulation:

min
∑

(i,j)∈A

fijyij +
∑
s∈S

ps

∑
k∈K

∑
(i,j)∈A

(cijx
ks
ij + Pzksij )


s.t.

∑
j∈N+(i)

(xks
ij + zksij )−

∑
j∈N−(i)

(xks
ji + zksji ) = dksi , ∀i ∈ N , ∀k ∈ K,∀s ∈ S

∑
k∈K

xks
ij ≤ us

ijyij,∀(i, j) ∈ A,∀s ∈ S

yij ∈ {0, 1}, xks
ij , z

ks
ij ≥ 0,∀(i, j) ∈ A, ∀k ∈ K,∀s ∈ S

where N+(i) are the set of successor nodes to node i, and N−(j) are the predecessor

nodes.

To generate the instances, we followed similar rules to Crainic et al. (2016). When

performing our experiments, we generated instances consisting of 10 nodes, 60 arcs,

and 10 commodities. The arcs where randomly chosen from the set A×A with equal

probability.

The d, u, c, and f parameters were randomly drawn from uniform distributions

between 1 and 10 (d and u varied across scenarios, c and f were held constant across

scenarios). After random generation, the c and f parameters were adjusted so that

we could control the relative importance of the different costs and the tightness of the

bounds. For this we defined the capacity ratio C and the fixed cost ratio F as follows:

C =
|A|T∑
(i,j)∈A uij

F =
|K|

∑
(i,j)∈Afij

T
∑

k∈K
∑

(i,j)∈A ckij

where T :=
∑
k∈K

∑
i∈N

dki

For this problem, we set C = 5 and F = 3. We generated |S| = 1000 scenarios as
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the full scenario set to sample from. We set the penalty for using the auxiliary arcs to

P = 10000.

5.A.2 Telecommunications network problem

Similarly to the SSN, the TN problem determines where in a telecommunications net-

work to install extra capacity for telecommunications, given uncertain demand between

pairs of nodes. The problem formulation was first given by Sen et al. (1994). We use

this formulation, with instances and scenario data from Narum et al. (2024).

For the notation, we let:

• N = {1, ..., n} be the set of links whos capacity can be increased.

• M = {1, ...,m} be the set of point-to-point demand pairs.

• Z be the set of scenarios, with associated probabilities pz.

• dzi be the stochastic demand for demand pair i in scenario z.

• b be the total possible capacity that can be added to the network.

• R(i) be the set of routes that can be used for demand pair i.

• airj be a binary variable indicating if link j is present in route r ∈ R(i).

• ej be the base/existing capacity for link j.

We then also define the decision variables:

• xj: the amount of capacity to add to link j ∈ N .

• f z
ir: the number of connections associated with pair i using route r ∈ R(i) in

scenario z.

• szi : the unmet demand for pair i in scenario z.
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Figure 5.A.1: The network used in the TN problem (Narum et al., 2024)

With this, we can now define the stochastic program

min
∑
z∈Z

∑
i∈M

szi

s.t.
∑
j∈N

xj ≤ b

∑
i∈M

∑
r∈R(i)

airjf
z
ir ≤ xj + ej,∀j ∈ N∀z ∈ Z

∑
r∈R(i)

f z
ir + szi = dzi ,∀z ∈ Z

f z
ir ≥ 0, szi ≥ 0.

The network for our instance is shown in Figure 5.A.1.

This network consisted of 31 nodes, with 82 demand pairs, and 89 links. The median

number of routes between each demand pair was 8.5. The demand for each demand

pair was drawn from a Gamma distribution with a shape parameter of 5 and a expected

value of 25 for all demand pairs. We assumed independence between all demand pairs.
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5.A.3 Mail centre staffing problem

We use the mail centre staffing problem presented in Chapter 4. We use minimising

the maximum number of workers as the first stage solution, and minimising delayed

mail in each scenario as the second stage solution, with α = 0.5, and no changes in the

second stage permitted.

Sets and indices

• S: the set of scenarios in the model, indexed by s.

• W : set of WAs indexed by w.

• E : set of mappings between WAs.

• I: set of indirect mappings.

• H: set of tethered WAs.

• J : set of shifts, indexed by j.

• T : set of time periods, indexed by t.

• Tj: set of time periods associated with shift j. Note, Tj ⊂ T .

• N : the set of nodes in the time expanded network, indexed by i.

• A: the set of arcs in the time expanded network, indexed by a.

• δ+(i) and δ−(i): the sets of outgoing and incoming arcs for node i, respectively.

• K: the set of commodities, indexed by k.

• wO(a) and wD(a): the origin and destination WAs associated with arc a.

• tO(a) and tD(a): the origin and destination times associated with arc a.
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• ID+(w,w′, t) := {a|wO(a) = w,wD(a) = w′, tO(a) > t, tD(a) = tO(a) + 1}: a set

of all the arcs originating at WA w and finishing at w′, originating at a time later

than t. This is used in defining constraints to enforce the indirect steams.

• ID−(w) := {a|wO(a) ̸= w,wD(a) = w}: a set of all the arcs originating at

different WAs, and finishing at WA w. This is also used to define the indirect

stream constraints.

Parameters

• ps: the probability of scenario s.

• cw: the number of staff members required to operate one processing unit in WA

w.

• bksi : the demand for commodity i and node k in scenario s. For the majority of

nodes and commodities, this will be 0 - that is, flow simply passing through here.

At the source nodes, this will be positive, as this is where flow enters the network.

For sink nodes, this will be negative, indicating where flow leaves the network.

• vka : the commodity specific capacity for arc a and commodity k. These are used

to enforce that the commodities follow the correct mappings.

• ρw,w′ : the proportion of total flow passing from WA w to WA w′ from indirect

mapping (w,w′) ∈ I.

• uw: the total WA processing capacity per time period per processing unit for WA

w.

• Cwt: the processing unit capacity for WA w in time t.

• α: the weighting given to the first stage objective. We set 0 ≤ α ≤ 1.
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Decision variables

• First-stage decisions:

– ywt: number of processing units rostered in WA w for time t. Here, we use

the term ‘processing unit’ to describe one person or machine that is used to

sort the commodity in a WA.

– gj: auxiliary continuous variable, giving the number of workers required for

shift j.

– Swt and Fwt: auxiliary binary variables indicating if WA w has started and

finished in or before time t, respectively.

• Second-stage decision variables:

– xks
a : amount of commodity k sent along arc a in scenario s.

– dsw: The amount of r priority delayed mail generated by WA w in scenario

s.
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Formulation

minα
∑
j∈J

gj + (1− α)
∑
s∈S

ps

( ∑
a∈AAll

∑
k∈K

xks
a +

∑
w∈WR

dsw

)

s.t. gj ≥
∑
w∈W

cwywt, ∀t ∈ Tj, ∀j ∈ J

∑
a∈δ+(i)

xks
a −

∑
a∈δ−(i)

xks
a = bksi , ∀k ∈ K, i ∈ N , s ∈ S

xks
a ≤ vka ,∀a ∈ A, ∀k ∈ K, s ∈ S∑

k∈K

∑
a|(w,Wd(a))∈E

xks
a ≤ ywtuw,∀w ∈ W , s ∈ S

∑
a∈ID+(w,w′,t)

xks
a = ρw1w2

∑
a∈ID−(w)

xks
a , ∀k ∈ K, ∀(w,w′) ∈ I, ∀t ∈ T , s ∈ S

ywt ≤ CwtSwt, ∀w s.t. ∃ w′ ∈ W | (w′, w) ∈ H

ywt ≤ Cwt(1− Fwt), ∀w s.t. ∃ w′ ∈ W | (w,w′) ∈ H

Swt ≤ Sw,t+1, ∀t ∈ 2, ..., T,

Fwt ≤ Fw,t+1, ∀t ∈ 2, ..., T

Fwt ≥ Sw′t+1, ∀t ∈ 2, ..., T, (w,w′) ∈ H∑
t<T

∑
a∈Awt

xks
a + dsw ≥ rw, w ∈ WR,∀s ∈ S

ywt ≤ Cwt, ∀w ∈ W , t ∈ T

xks
a ≥ 0, ∀a ∈ A, k ∈ K, s ∈ S

ywt ∈ N0, ∀w ∈ W , t ∈ T

Swt, Fwt ∈ {0, 1}, ∀w ∈ W , t ∈ T
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5.B Performance of scenario reduction methods with

MC problem

Here, we examine the performance of the different scenario reduction methods when

applied to the MC problem. We do this by examining the sampling error from the sets,

done with the following procedure:

1. Generate M candidate decisions ym,m = 1, ...,M .

2. For k trials:

(a) For each ym:

i. Sample scenario set Sk using the chosen method, with scenarios ϕs and

associated probabilities rs, sinSk

ii. Compute the error:

errkm = |
∑
s∈Sk

rsQ(ym;ϕs)−
∑
s∈S

psQ(ym;ϕs)|

(b) Calculate the average error over the candidates ¯errk =
1
M

∑M
m=1 errkm

This gives k average errors for each method.

We calculated the average errors for the three scenario reduction methods, with

M = 10 candidate solutions, and k = 10 trials. The results from this are shown in

Figure 5.4.5.



Chapter 6

Conclusions

The courier, express, and parcel delivery industry is a vast industry worldwide, with

sequential sorting facilities being a key part of it. The sequential nature of these facilities

means that determining the correct staff levels is especially important, to stop upstream

delays propagating through the system. Previous models for staffing these facilities

were either lacking sufficient detail, set on longer-term timescales, or did not allow

for randomness in daily material volumes. The work in this thesis addresses these

shortcomings.

Here we summarise the contributions and limitations of each chapter, and provide

some final remarks.

Chapter 3 In Chapter 3, we outlined a deterministic model to determine a workplan

for a day in the mail centre. This model is based on a network design model. However,

additional complexity has been added in the form of indirect streams and tethered

WAs. Sorting deadlines are dealt with by using a time-expanded network at much

finer-grained time periods than previous work.

We applied the developed model to three months of data provided by the UKMC.

This data gave information necessary to build the network, daily mail volumes for the

different streams, and workplans suggested by the UKMC’s staffing algorithm. We used

153
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this data to build the network, optimise it for each day, and compare our workplans to

those suggested by the UKMC. We then used the data to simulate different conditions

(i.e. changes in the mail volumes) to see how the model would respond. We tested

four different approaches - minimising each objective (maximum workers and changes)

on their own, and lexicographically minimising each one with the other as a secondary

objective.

As expected, we found that approaches that focused on a specific objective were the

best performing on that objective. For example, the MMWT and Lex 1 approaches

worked best regarding the maximum workers objective. However, we found that the

Lex 2 approach consistently outperformed the UKMC staff levels on both objectives.

When increasing the mail, we found that the proportional increase in required workers

was less than the proportional increase in the mail. The number of workers required also

increased as the proportion of parcels vs letters was increased. This may foreshadow

future staffing decisions giving the long term trends of increasing parcels and decreasing

letter volumes. Finally, we noticed different behaviours in the approaches when the time

granularity is decreased. Lex 2 and MC showed a trade-off between the two objectives as

time granularity decreases (finer granularity results in more changes, but fewer workers).

Lex 1 and MMWT improves both objectives as the number of time periods decreases.

This contributes to the literature by demonstrating the value of using a network

model for staffing in mail centres (and other sequential sorting facilities). This work

also highlights the effects that the priorities of different objectives can have on different

results. From a managerial perspective, decision makers can use our model to determine

workplans for day-to-day operations.

A limitation of this work is the assumption of known mail volumes. While in keeping

with the literature, this assumption proves to be unrealistic in practice.

Chapter 4 We addressed this limitation in 4, by developing a stochastic programming

model of the mail centre. This model is an extension of the deterministic model from
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Chapter 3. We showed the effectiveness of this model by comparing results from the

model to results obtained from the EV solution, as well as EV solutions with increased

demand. We also examined different weightings between the two objectives, to account

for the differences in magnitude between them. Finally, we added more flexibility to

the model, allowing for the workplan to be changed (for a penalty) in the second stage

of the model.

When changing the weights between the objectives, we found that only a weight-

ing of α = 0.99 for the first stage objective, and 0.01 for the second stage objective

appropriately balanced the two objectives. When applying these weights, we find two

observations. We show that the stochastic programming model with as few as 3 sce-

narios resulted in better (i.e. lower cost) solutions than the EV solutions (and the

gap between the two increased as the number of scenarios increased). We noticed that

increasing m (the proportional increase in expected demand) did not uniformly result

in better EVm solutions, with a variety of values of m giving the best results for the

different weekdays. However, the stochastic program model still out-peformed the EV

solutions when 20 or more scenarios were chosen.

Finally, we allowed the model to move workers around the mail centre in each

time period in the second stage. This, as expected, showed clear benefits in both the

first stage (primarily if there were no penalties to these changes) and the second stage

objectives. However, if no penalty was imposed on the second-stage changes, then the

model made an impractical number of changes, suggesting a penalty of κ = 0.5 gave

more appropriate results.

The main drawback of this approach was the additional computational burden from

solving the stochastic programs. This is especially important when we appropriately

weight the two objectives, where we see we need scenario sets of 20 scenarios or more

to out-perform the EV60 or EV80 solutions. However, we note that the scenario sets in

this chapter were chosen with random sampling. A more sophisticated technique could
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result in better scenario sets, reducing the computational burden.

Chapter 5 We explored other methods of scenario reduction in Chapter 5. Here,

we discussed previous work showing the advantage of using problem-based scenario

reduction methods over distribution-based. However, we also recognised that many

specific problem-based methods could be generalised under a unifying framework.

The framework consisted of three steps. Firstly, a number of candidate decisions

were found. These could be identified in a number of ways, including heuristics or

solving smaller stochastic programs (of various sizes). Secondly, a deterministic model

was solved with each scenario and each candidate decision and the recourse was found,

to transform the scenarios into the recourse space. Finally, the recourse space was used

to perform scenario reduction with existing distribution-based methods.

We applied this framework to a number of different approaches to finding candidate

solutions and reduction methods, and tested this on three problems. While there was no

one approach or method which worked best in every situation, we observed that using

multi-scenario candidates performed better than the other spaces for most methods and

most problems.

A limitation of our work on scenario reduction is that the framework cannot be used

for scenario generation methods. This is because we need the selected scenarios to be

a subset of the full scenario set. This excludes the many current scenario set selection

methods. Therefore, a direction for future research would be to modify the framework

to include scenario generation methods.

Final remarks This work represents an important contribution to the literature. It

both shows a practical solution to a real-world problem (demonstrated on real-world

data) and advances methods for network models, stochastic programming and scenario

reduction. The deterministic sequential sorting facility model has a new level of detail

and time-granularity that gives more control over the staffing levels. This can be used
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by shift managers to make lower cost (and more efficient) staffing decisions, as we have

shown. Furthermore, our analysis also showed the solutions the model would give if

various aspects of the mail volumes were to change, showing the versatility of the model.

The stochastic model extends this, accounting for the randomness in the mail vol-

umes. If large variations in volumes occur between days, and accurate forecasts are

unavailable (as we see for our mail centre example), this is an important addition to

the model. We saw that (given an appropriate weighting between the objectives is

set) stochastic programs with enough scenarios out-performed the deterministic mod-

els, showing the value of this in facilities where accurate forecasts are not available.

In addition, allowing flexibility to the workplan in the second stage also results in im-

provements. This gives the shift managers even more tools to select appropriate staff

levels.

Given that a minimum number of scenarios is needed to see the benefit of the

stochastic programs, our scenario reduction framework is useful to determine better

solutions at lower computational costs. The generality of the framework means that

many existing (and future) scenario reduction methods can be improved by this, and

many approaches can be combined in new ways. This could include extensions to

methods we did not test here, such as the moment-matching method of Zhang et al.

(2023), or the k-means-like method of Bertsimas and Mundru (2023). Furthermore,

more sophisticated methods could be used to find candidate solutions. Currently, when

stochastic programs are solved, the scenario sets are found by random sampling. It may

be beneficial to use more sophisticated scenario generation techniques at this stage as

well.
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