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defined by those model specifications depend on whether risks to be apportioned in these

tasks are symmetric or asymmetric, whether they include small probability outcomes, and on

the level of loss aversion. We highlight that some of the predicted choice behaviour in the risk-

apportionment tasks differs from the ones in alternative models of decision under risk. We
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1 Introduction

Since Markowitz (1952) first postulated that the utility function should be defined in terms of

gains and losses relative to “customary wealth,” and Kahneman and Tversky (1979) combined

utility over gains and losses with probability weighting, many models within the decision theory

literature include reference-dependent preferences. A few examples include cumulative prospect

theory (CPT) (Tversky and Kahneman, 1992), rank dependent utility (Quiggin, 1981, 1982), dis-

appointment models (see Bell, 1985; Loomes and Sugden, 1986; Gul, 1991; Delquié and Cillo,

2006), regret theory (Bell, 1982; Loomes and Sugden, 1982), and salience theory (Chetty et al.,

2009; Bordalo et al., 2012). Models with reference-dependent preferences have become influential

in decision theory and behavioural economics. These include models with reference points that

are deterministic or stochastic, prospect or choice specific, and that use linear or nonlinear proba-

bility weighted functions. Significant progress has been made in the modelling and interpretation

of empirical and experimental evidence in areas such as finance (e.g. Benartzi and Thaler, 1995;

Chen, 2016 ch.8 and 9; Wang et al., 2017), risk taking (e.g. Bordalo et al., 2012; Loomes and Sug-

den, 1982), consumer choice (e.g. Heidhues and Kőszegi, 2014; Munro and Sugden, 2003), labour

supply (Camerer et al., 1997; Farber, 2008; DellaVigna et al., 2017), sports (Pope and Schweitzer,

2011; Allen et al., 2017), and health (e.g. Bleichrodt et al., 2001, Bleichrodt et al. 2003).

Kőszegi and Rabin (2006, 2007) contributed to this literature with the development of two

expectations-based reference-dependent models, the choice-acclimating personal equilibrium model

(CPE) and the preferred-personal equilibrium (PPE) model. These models were later applied to a

number of issues in economics. For instance, Pagel (2015, 2017) applied the Kőszegi and Rabin

framework to life-cycle consumption phenomena and asset pricing, Balzer and Rosato (2021) to

the analysis of bidding in auctions, and Herweg et al. (2010) to contract theory. Furthermore,

Abeler et al. (2011) and Crawford and Meng (2011) find evidence consistent with Kőszegi and

Rabin in the context of labour supply, while Gill and Prowse (2012) find supporting evidence in

tournaments, and Card and Dahl (2011) on human conflict. Alternative empirical evidence does

not find a significant role for rational expectation-based reference points in general (e.g. Allen et

al., 2017)) or the the Kőszegi and Rabin preferences in particular (e.g. Barseghyan et al., 2013; Hef-

fetz and List, 2014). Additionally, the supporting evidence previously found can also be consistent
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with other reference-dependent models (see Baillon et al., 2020).

Despite recent attention to expectations-based reference-dependent models in general, and the

Kőszegi and Rabin specification in particular (see e.g., in addition to the references in previous

paragraph, Cerulli-Harms et al. 2019; Freeman, 2017,2019; Knetsch and Wong, 2009; Meisner and

von Wangenheim 2023; O’Donoghue and Sprenger, 2018; Sprenger, 2015), an area where their

properties have not yet been examined is risk apportionment tasks for elicitation of risk attitudes

of higher order. Theoretical research has demonstrated the important role that higher-order risk

preferences, particularly prudence and temperance, play in economic models of risky choice such as

health, precautionary savings, asset pricing, contests, auctions and several other (see Trautmann

and van de Kuilen (2018) for a review of this literature). Eeckhoudt and Schlesinger (2006) demon-

strated how these higher order preferences could be elicited in experimental research on the basis

of the choices between particular lottery pairs -the so called risk-apportionment tasks, that we

consider here. Subsequently, a number of studies have utilised this experimental design in order

to elicit the higher order risk preferences of decision makers (e.g. Maier and Rüger, 2012; Deck

and Schlesinger, 2010; 2014; and 2018, Ebert and Wiesen, 2014; Noussair et al., 2014; Heinrich and

Mayrhofer, 2018; Brunette and Jacob, 2019; and Bleichrodt and van Bruggen, 2022). While empir-

ical and experimental studies about higher order risk attitudes have been growing over the last

two decades, the literature on the predictions of risky choice models on behaviour in these choice

tasks to elicit higher order risk preferences is still scarce (see Eeckhoudt and Schlesinger, 2006;

Deck and Schlesinger, 2014; Paya et al., 2023; Georgalos et al., 2023). There is no research to date

which, within the context of risk-apportionment tasks for elicitation of higher-order risk attitudes,

theoretically examines choice behaviour assuming expectations-based reference dependent mod-

els such as the ones developed by Kőszegi and Rabin or disappointment aversion models.1 That

is the purpose in this paper.

We examine the utility associated with choices in risk-apportionment tasks that elicit higher-

order risk preferences for the most typically employed CPE model specification of Kőszegi and

Rabin and for the disappointment aversion model, which we will denote as KR and DA, respec-

1Baillon et al. (2020) empirically identify which reference point decision makers use. Allowing for a number of
alternative reference points, they report that up to 20% of the risky choices were consistent with expectations-based
reference point models. The CPE model of Kőszegi and Rabin is included as only one of those models. However, the
lottery choices in that study were all designed to elicit second order risk preferences.
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tively. We are able to demonstrate the new findings that a KR decision maker (DM) exhibits lottery

choices consistent with prudence, imprudence or prudence neutrality, depending on the symme-

try of the risk to be apportioned in the risk-apportionment tasks and on whether those prospects

include small-probability outcomes. For instance, for the widely-used elicitation tasks with sym-

metric risk, a KR DM would make choices consistent with prudence neutrality. With respect to

risk attitude of order four, a loss averse KR DM exhibits intemperance, although her choices would

imply the reverse preference if she was gain seeking. We also obtain that the predictions under

symmetric zero-mean risk are the same for the PPE model specification of Kőszegi and Rabin.

Likewise, we demonstrate choice behaviour for those elicitation tasks within the DA specification.

The predictions are in most cases similar to the ones for KR preferences, although, they can differ,

such as when the lotteries accommodate small probability outcomes. Finally, our findings into the

risk profile of a DM are employed to examine whether experimental data is in line or not with

preferences exhibited by a KR or DA DMs. We find that a relatively small proportion, a maxi-

mum of 13%, of experimental subjects choosing risk apportionment tasks covering all the cases

examined in this paper are consistent with KR and DA.

The reminder of the paper proceeds as follows. In Section 2 we describe the specifications

of the Kőszegi and Rabin and disappointment aversion expectations-based reference dependent

models we examine in the paper. In Section 3 we first set out the method of elicitation of higher

order risk preferences considered here. We subsequently present the analyses and predictions

regarding third and fourth order risky choices for the previously presented model specifications.

In Section 4 we contrast the predictions set out in this paper with the ones of alternative risky

choice models. This section also presents an experimental analysis of those predictions employing

data from three prominent studies. Finally, Section 5 presents some concluding remarks.

2 Expectations-based reference dependent models

In reference-dependent models, choices over risky outcomes are evaluated from a reference point.

However, we will employ the term ‘referent’ rather than reference point, and we will denote it by

R, to describe the location around which losses and gains are defined. This is helpful because it

emphasises that, within the Kőszegi and Rabin framework, there is not a single reference point.
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In their approach the referent is prospect specific (i.e. can differ between the prospects in the

choice set), hence it is stochastic and based on expectations of the entire distribution of expected

outcomes.

We follow the review paper of O’Donoghue and Sprenger (2018) to introduce expectations-

based reference-dependent models in general, and the ones of Kőszegi and Rabin and disappoint-

ment aversion, in particular. Consider prospect L with payoffs x1, x2, ..., xN and corresponding

probabilities p1, p2, ..., pN , where ∑N
n=1 pn = 1, and is represented by L ≡ (p1 : x1, p2 : x2, ..., pN : xN).

For the general case of prospects over N potential outcomes, the DM evaluates lottery L according

to the following preferences

U(L|R) ≡
N

∑
n=1

pn [u (xn) + v (xn|R)] , (1)

where u (xn) denotes the intrinsic utility from outcome xn, and v (xn|R) denotes the gain-loss

utility associated with getting outcome xn given referent R. Kőszegi and Rabin assume that the

comparisons of gains and losses are aggregated by the DM using the weights that correspond to

the probabilities in the reference lottery R.

To model the determination of expectations-based reference points within the context of pref-

erences described in (1), Kőszegi and Rabin introduced three solution concepts: personal equi-

librium (PE), preferred personal equilibrium (PPE) and choice-acclimating personal equilibrium

(CPE). A choice will constitute a PE if the DM would want to make it given that she expects it.

Definition 1 Given a choice set L, a lottery L ∈ L is a personal equilibrium (PE) if U(L|L) ≥ U(L′|L)

for all L′ ∈ L.

There may be a multiplicity of PE within choice set L. Since the DM can decide which of those

to choose it is reasonable to assume the DM would make the choice that yields the maximum

utility ex-ante and that will constitute the PPE.

Definition 2 Given a choice set L, a lottery L ∈ L is a preferred personal equilibrium (PPE) if it is a PE

and if for any other PE L′ it holds that U(L|L) ≥ U(L′|L′).

The third equilibrium concept, CPE, uses the criteria used in the PPE except that the DM does

not restrict herself to choose among PE alternatives.
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Definition 3 Given a choice set L, a lottery L ∈ L is a choice-acclimating personal equilibrium(CPE) if it

holds that U(L|L) ≥ U(L′|L′) for all L′ ∈ L.

Kőszegi and Rabin motivate the use of the three alternative equilibrium concepts according to

the time elapsed between the choice and the resolution of the uncertainty. They argue that PE and

PPE are appropriate for decisions where the DM commits to the choice made only shortly before

the uncertainty is resolved. However, CPE is applicable when the DM commits well in advance to

the resolution of uncertainty. The CPE concept is arguably more tractable and less complicated to

work with (see Baillon et al., 2020 and a review of applications of the Kőszegi and Rabin models

in O’Donoghue and Sprenger, 2018). Moreover, the results we obtain are qualitatively similar for

the case of symmetric risk, which was the only case within our framework where the PPE was

unique. For those reasons, in the paper, we will focus on the CPE model, and we will make the

analysis with the PPE model available in an appendix.

As with any other risky choice decision model, there are in principle a wide range of model

specifications that could be used. We will employ the ones used by Kőszegi and Rabin and in

most of the literature that have followed from their work (e.g. Cerulli-Harms et al. 2019; Herweg

et al. 2010; Sprenger, 2015; Pagel, 2015, 2017). In particular, they assume that preferences are linear

in probabilities, that intrinsic utility is linear, i.e. u (xn) = xn, and that the reference-dependent

gain-loss utility µ (·) is two-part linear where gains and losses are defined in terms of intrinsic

utilities with parameter λ capturing the degree of loss aversion when comparing gains to losses

and that it is assumed to be λ > 1.

v(x|R) = µ (u (x)− u (R)) where µ(z) =

 z for z ≥ 0

λz for z < 0
(2)

We therefore characterise the implications of loss aversion without diminishing sensitivity, as

presented in Kőszegi and Rabin (2007).2 We further assume, as it is typically done in experimental

work, that the subject’s initial wealth remains constant and final wealth is equated with outcome

(e.g. Sprenger, 2015; Cerulli-Harms et al. 2019; Baillon et al., 2020).

2µ (·) satisfied that µ (0) = 0. It is also common to scale the two-part linear gain-loss utility (2) by a parameter η,
where η would represent the weight attached to gain-loss utility and it is the same for all dimensions of consumption.
However, given that η would not play any significant role in our derivations we have omitted it in our analysis. We
also note that we will discuss below cases where diminishing sensitivity in the functional form µ (·) is taken into
consideration.
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Following from (1), (2), and Definition 3, the CPE preferences (denoted as KR hereafter) be-

come

U(L|L) ≡
N

∑
n=1

pn [u (xn) + v (xn|L)]

≡
N

∑
n=1

pn

[
u (xn) +

N

∑
m=1

pmµ (u (xn)− u (xm))

]

≡
N

∑
n=1

pnu (xn) +
N

∑
n=1

N

∑
m=1

pn pmµ (u (xn)− u (xm)) . (3)

The Kőszegi and Rabin models mentioned above are close to models of disappointment aver-

sion, some of them introduced two decades earlier (see Bell, 1985; Loomes and Sugden, 1986; Gul,

1991; Delquié and Cillo, 2006). We note that the model of Delquié and Cillo (2006) is like the CPE

model discussed above. Masatlioglu and Raymond (2016) discuss the link between this model and

models of disappointment aversion and EUT. From the perspective of our analysis, the relevant

difference between KR and disappointment aversion models is the way the referent is specified.

Disappointment aversion models assume that the lottery outcomes (xn) are compared to a sin-

gle summary statistic from the reference lottery R. In particular these models assume v (xn|R) =

µ

(
u (xn)−

N
∑

m=1
pmu (xm)

)
.3 Assuming utility is linear, u (xn) = xn, the intrinsic utility of the out-

comes is compared to the mean of the reference lottery (L), and the preferences (denoted as DA

hereafter) become

U(L|L) ≡
N

∑
n=1

pnu (xn) +
N

∑
n=1

pnµ

(
u (xn)−

N

∑
m=1

pmu (xm)

)
. (4)

3We note that in Gul’s (1991) formulation, the referent is the certainty equivalent of the lottery including disappoint-
ment, while in Bell (1985) and Loomes and Sugden (1986) the referent is effectively the certainty equivalent using only
intrinsic utility.
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3 Experimental elicitation of higher-order risk preferences using risk

apportionment tasks and expectations-based reference dependent mod-

els

The original definitions of higher order preferences were based on utility functions. The term

prudence was coined by Kimball (1990) and derived from the importance of the third derivative

of utility in determining demand for precautionary savings. Kimball et al. (1992) introduced

the concept of temperance relating the fourth derivative of the utility function to behavioural

aspects of investors. Within the EUT framework, the risk attitude of prudence is equivalent to an

aversion to increases in downside risk as defined by Menezes et al. (1980), and the risk attitude of

temperance is equivalent to an aversion to an increase in outer risk (Menezes and Wang, 2005).

Eeckhoudt and Schlesinger (2006) provide a behavioural model-free definition of higher or-

der risk preferences through simple lottery pairs. Experimental work has, since then, mainly

employed the link between observable lottery choices in the suggested risk-apportionment tasks

and higher order risk attitudes to assess the risk profile of DMs.4 We now introduce the lottery

forms most commonly used in experimental research —the so-called risk-apportionment lotter-

ies—to elicit third and fourth order risk preferences (see Eeckhoudt and Schlesinger, 2006; Deck

and Schlesinger, 2010, 2014; Maier and Rüger, 2012; Ebert and Weisen, 2014; Noussair et al., 2014;

Heinrich and Mayrhofer, 2018; Brunette and Jacob, 2019; Bleichrodt and van Bruggen, 2022). In

subsequent subsections we will specify various forms of lottery structures that have been em-

ployed to elicit higher order risk preferences accounting for issues such as asymmetric risks (Ebert

and Wiesen, 2014), small probabilities (Bleichrodt and van Bruggen, 2022), or equal moments other

than the order of the preference being examined (Ebert and Wiesen, 2011; Bleichrodt and van

Bruggen, 2022).

Lottery [x, y] denotes outcomes x and y are each received with probability 0.5. A zero-mean bi-

nary random variable with two outcomes of opposite sign and equal absolute amount e is denoted

as ε̃, i.e, ε̃ = [e,−e]. The DM is endowed with the preference relation ⪰ . The lottery designed to

elicit prudence is B3 = [x, c + ε̃] , i.e., outcome x is received with probability 0.5, outcome c + e

4Higher-order preferences have also been measured using alternative approaches to the one of risk apportionment
tasks. For instance, directly through elicitation of utility functions and certainty equivalents, or indirectly through
financial and economic decisions or via survey measures. This will be discussed in more detailed in Section 4 below.

8



with probability 0.25, and outcome c − e with probability 0.25. We note that c > x > e. The lottery

designed to elicit the reverse preference of imprudence is A3 = [c, x + ε̃] . The risk preference of

prudence, B3 ⪰ A3, is determined by whether the zero-mean risk ε̃ is allocated (apportioned) to

the state of higher wealth (c). Therefore, the DM has in this case a preference for combining ‘good’

with ‘bad’ and disaggregating the ‘harms’, as in B3, rather than combining ‘bad’ with ‘bad’ as in

A3, where the zero-mean risk ε̃ is allocated to the state of lower wealth (x).5

The risk preference of temperance, consistent with risk apportionment of order four, is a pref-

erence for disaggregating two independent zero-mean risks, ε̃1 and ε̃2. The lottery pair designed

to elicit such risk preference is B4 = c + [ε̃1, ε̃2] and A4 = c + [0, ε̃1 + ε̃2], where ε̃1 and ε̃2 are two

independent zero-mean risks. A DM is temperate if she prefers to combine the relatively ‘good’

and ‘bad’ outcomes (B4) instead of combining the two ‘bad’ outcomes together (zero-mean risks

ε̃1 and ε̃2) as it is the case in A4. Hence, temperance implies B4 ⪰ A4. Intemperance implies the

reverse preference.

The analytical derivations of the utility of each lottery from their corresponding referent are

presented in the appendices. In particular, Appendix A provides the calculations related to KR’s

predictions about choices in the risk-apportionment tasks of order 3 and 4. Likewise, Appendix B

presents the calculations for DA, while Appendix C shows the ones related to the PPE specification

of Kőszegi and Rabin.

3.1 Analysis of third order risk preferences

In this section we consider various forms of lottery pairs, introduced by Eeckhoudt and Schlesinger,

2006; Ebert and Weisen, 2014; and Bleichrodt and van Bruggen, 2022, that have been employed in

the experimental literature to elicit prudence. First we consider the lottery pair B3 and A3, and find

that the value of both lotteries for KR is equal, hence the DM is indifferent between them (see ex-

pressions (5) and (6) where the values of U(B3|B3) and U(A3|A3) have been obtained). Therefore,

the first prediction is that a KR DM would exhibit prudent neutral choice when the zero-mean risk

5The proposed ‘combining good with bad’ framework by Eeckhoudt et al. (2009) assumed risk averse preferences,
hence the terms ‘good’, ‘bad’, and ‘harm’ relate to that behavioural trait. Crainich et al. (2013) extended this framework
to risk seekers and kept the same terminology to examine risk lovers’ utility function. See Deck and Schlesinger (2014)
for a further discussion of the ‘combining good with bad’ framework, models of EUT that can accommodate such be-
haviour, as well as experimental evidence on higher order risk attitudes. We also note that, within an EUT framework,
lottery A3 can also be interpreted as a downside risk increase of lottery B3 (see Menezes et al., 1980), and lottery A4
described in the next paragraph is an outer risk increase of lottery B4 (see Menezes and Wang, 2005).
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to be apportioned is symmetric.6 The prediction is the same under the PPE model approach (see

Appendix C). This prediction also holds for DA (see expressions (20) and (21) in Appendix B).

PREDICTION 1: Assuming preferences are determined by either KR or DA, the DM would be indif-

ferent between lotteries B3 and A3, therefore implying prudence neutrality.

This is the first model we are aware of that, whilst being consistent with aversion to risk, it

implies neutrality in risk apportionment of order 3. This prediction differs from the most com-

monly used models of decision under risk whose choice behaviour in risk-apportionment tasks

for eliciting higher order risk attitudes have been previously examined, such as CPT or EUT (see

Eeckhoudt and Schlesinger, 2006, Deck and Schlesinger, 2014, Paya et al., 2023, and Bleichrodt and

van Bruggen, 2022).

Whilst the lottery pair considered above has been widely used in previous empirical studies

to elicit risk apportionment of order 3, other forms of lottery pairs have been employed to account

for skewed risk, small probabilities or higher order even moments. We now examine whether any

of those forms impact on the prediction made above.

First, we consider a modification to the design of B3 and A3 introduced by Ebert and Wiesen

(2014) to account for asymmetric risks. In this case, the zero-mean risk ε̃′ is skewed rather than

symmetric, where outcome −e is obtained with probability q, and outcome q
1−q e is obtained with

probability 1 − q, that is, ε̃′ =
(

1 − q : q
1−q e, q : −e

)
. The risk preference exhibited by the DM

will depend on the skewness of the risk and the lottery structure. For positively skewed risk,

i.e., q > 0.5, the loss averse (λ > 1) KR and DA DMs will make the prudent lottery choice (see

expressions 7, 8, 22 and 23), although in some specific case they will be indifferent between the

lottery pair (see expressions (9) and 24). For negatively skewed risk, the KR and DA DMs will

make the imprudent lottery choice (see expressions 11, 12, 26, 27), although in a specific case they

would be indifferent between B3 and A3 (see expressions 10 and 25).

This feature of the model contrasts with the fact that a change in the asymmetry of the back-

ground risk does not alter the choice within the elicitation task of order 3 in other models such as

6We note that this is the case regardless of the functional form of the gain-loss utility. This restriction could therefore
make a difference in terms of the preferences exhibited by the KR DM if departures from linear intrinsic utility were
considered. The first term in (3) would then determine the risk preference exhibited by the DM. For instance, under
power utility with exponent less than unity the first term in (3) would imply that prudence would prevail in this case.
This remark also applies to subsequent results where the prediction holds irrespective of the functional form of µ (·) .
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the CPT and EUT models indicated above.

PREDICTION 2: The lottery pair B3 and A3 is defined such that the zero-mean risk is asymmetric,

ε̃′ =
(

1 − q : q
1−q e, q : −e

)
.

If q > 0.5, a loss averse KR DM would choose lottery B3 over A3 except when e < (c − x) and
q

1−q e < (c − x) that she would be indifferent between them. If q < 0.5, a loss averse KR DM would choose

lottery A3 over B3 except when e < (c − x) that she would be indifferent between them.

If q > 0.5, a loss averse DA DM would choose lottery B3 over A3 except when e < 0.5 (c − x) and
q

1−q e < 0.5 (c − x) that she would be indifferent between them. If q < 0.5, a loss averse DA DM would

choose lottery A3 over B3 except when e < 0.5 (c − x) that she would be indifferent between the lottery

pair.

The second type of lottery pairs we consider is the one recently introduced by Bleichrodt and

van Bruggen (2022). They extend the lottery design previously used in the literature to measure

higher order risk preferences such that small probabilities could be accounted for. To do so, they

use the lottery (p : x, p : y, 1 − 2p : z) to denote outcomes x and y are given with probability p each,

and outcome z with probability 1 − 2p. This lottery can be rewritten as L = (2p : [x, y], 1 − 2p : z)

(see Bleichrodt and van Bruggen, 2022, Appendix C). Within this lottery structure, the lottery that

elicits prudence in their small probability gain treatment is B3,sp = (2p : [x, c + ε̃], 1 − 2p : z), that

is, outcome x is given with probability p, outcome c + e with probability p
2 , outcome c − e with

probability p
2 , and outcome z with probability 1− 2p. The lottery that elicits the reverse preference

is A3,sp = (2p : [c, x + ε̃], 1 − 2p : z) . Constants c, x, e, z are such that c > x > e > z. The lottery

outcomes will fall within the gain or loss domain depending on whether c is larger or smaller

than x + e. Our calculations in the appendix reveal that both cases yield the same qualitative

result. We also assume that x > e + z since Bleichrodt and van Bruggen (2022) argued that payoff

z is considered to be small relative to the other payoffs in the lottery, although in Appendix A

we comment on the result if this assumption does not hold. We note that stochastic dominance

preferences imply risk apportionment of any order not only for the 50-50 lotteries discussed above

but also for these extended definitions to account for small probabilities (see Bleichrodt and van

Bruggen (2022) for a detailed discussion on this issue).

This lottery pair, B3,sp and A3,sp, has the property that the central moments of mean and vari-
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ance are equal, skewness is always greater in B3,sp and kurtosis can be higher or lower in B3,sp.

Our derivations presented in Appendix A demonstrate that the value of both lotteries under KR

are equal (see expressions (13)-(16)), and the DM is indifferent between the them.7 DA does not,

in this case, yield an unambiguous prediction, and the lottery choice exhibited by the DM will

depend on the lottery payoff structure (see expressions (28) and (29)). However, a restricted ver-

sion of this type of lottery pairs to elicit prudence provides a specific prediction. In particular, if

condition z = x+c
2 is imposed, the first, second and fourth central moments of the two lotteries

are equal, whilst skewness is positive in the lottery consistent with prudence and skewness seek-

ing, and is negative in the lottery consistent with the reverse preference, with the same absolute

amount.8 The utilities of these two lotteries with equal kurtosis labelled B3,sk and A3,sk, are also

presented in Appendix B. Expressions (30), (31) reveal that the DA DM would, in both cases, be

indifferent between the two lotteries.

PREDICTION 3: The lottery pair to elicit risk apportionment of order 3 that account for small prob-

abilities outcomes is B3,sp and A3,sp , and the KR DM would be indifferent between them. However, the

choice of the DA DM depends on the lottery payoff structure. For the case that the lottery pair to account

for small probabilities outcomes is designed to have the same first, second and fourth central moments, B3,sk

and A3,sk, the DA DM would be indifferent between the two lotteries.

3.2 Analysis of fourth order risk preferences

In this section, we examine choice behaviour of the DM in risk apportionment tasks to elicit fourth

order risk attitudes. For the case of two independent and symmetric zero-mean risks ε̃1 = [e1,−e1]

and ε̃2 = [e2,−e2] , our analysis described in Appendix A shows that the prediction of the lottery

choice made by a loss averse KR DM is intemperate, A4 ⪰ B4. This is the case if either the size

of the two risks is different (e1 > e2) or equal (e1 = e2) (see expressions (17), (18) and (19), respec-

7We note here that if diminishing sensitivity is taken into consideration, then computation reveals that the lottery
choice exhibited by the DM depends on the functional form of the intrinsic utility function. For instance, let us consider
the Tversky and Kahneman (1992) parameters for loss aversion (λ = 2.25) and coefficient of the power utility function
(α = 0.88), and with values of p = 0.06, x = 44, c = 75, e = 32, z = 1. In this case, the utility of each lottery
is U(B3,sp) = −4.7208 and U(A3,sp) = −4.7206. Therefore the second term in (3) would imply imprudent choice.
However, we now also need to consider the first term in (3) representing expected utility. Under power (exponent less
than unity) utility function, this term would imply prudence, yielding, overall, a prudent lottery choice.

8We note that, theoretically, prudence implies skewness seeking, but not the other way around. Given that in this
lottery pair, the fourth order moment is equal, the lottery choice is also a test for skewness seeking (see Ebert and
Wiesen, 2011).
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tively). DA implies the same risky choice for those tasks (see expressions (32) and (33)). Similarly,

the prediction for the case of symmetric risk under the KR PPE model specification yields the

same prediction (see Appendix C). The analytic solutions for the cases of small probability gains

and asymmetric risk are complex and we have not included them in this analysis.

PREDICTION 4: Assuming either KR or DA, the two independent symmetric zero-mean risks are

either of equal or different size, the loss averse DM would choose lottery A4 over B4, A4 ⪰ B4, therefore

implying intemperance ((anti)risk apportionment of order 4).

Prediction 4 differs from EUT models with power utility with exponent less than unity, EUT

models of mixed risk aversion, and also from CPT models assuming the status quo reference point

and lotteries in the gains domain (see Deck and Schlesinger, 2014; Paya et al., 2023; Bleichrodt and

van Bruggen, 2022). It is also worth noting that, although this predicted lottery choice would not

differ from the one made by an EUT mixed-risk lover (see Deck and Schlesinger, 2014), it would

for the lottery choices eliciting risk apportionment of order 3, as stated in the previous subsection.

Prediction 4 hinges on the assumption of loss aversion, i.e., parameter λ > 1. Whilst there

is overwhelming evidence supporting loss aversion in experimental research, some studies have

reported that gain-seeking preferences could occur over smaller losses (e.g. Gal and Rucker, 2018;

and Gächter et al., 2022) (see Wakker (2010) for a discussion of the concept of gain-seeking). If the

DM was gain-seeking, implying λ < 1, the prediction would be reversed and the DM would make

the temperate choice. This predicted link between loss aversion and fourth order risky choices is

also a feature that could potentially characterise KR or DA from other alternative specifications

such as CPT (see Paya et al., 2023).

4 Experimental Evidence

We have demonstrated the cases where, in experimental research relying on risk-apportionment

tasks to elicit higher order preferences, a DM with expectations-based reference dependent pref-

erences would make choices consistent with risk or (anti)risk apportionment of orders 3 and 4,

depending upon the precise lottery pair structure employed in the experimental design. We sum-

marise those results in Table 1 where we have also included the predictions of other commonly
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used models of decision under risk and uncertainty, in particular, EUT models of mixed risk-

averse and mixed risk-loving, as well as CPT specifications under two alternative reference points

(see Deck and Schlesinger, 2014, Paya et al., 2023, Bleichrodt and van Bruggen, 2022). For in-

stance, in the first row, we report that a DM consistent with EUT mixed-risk-averse preferences

would make prudent and temperate choices regardless of whether the zero-mean risk is symmet-

ric or asymmetric. Likewise, a DM consistent with CPT preferences under the status quo reference

point and symmetric zero-mean risk would make, over gains (third row), prudent and temperate

choices, while, over losses (fourth row), prudent and intemperate ones. Therefore, the results

in this paper underline a differential choice in experimental elicitation of higher-order risk pref-

erences using risk apportionment tasks between preferences defined by KR, DA and alternative

risky choice models. Below, we highlight experimental results reported in the literature on higher

order risk attitudes and relate them to the predictions presented here.

The studies of Maier and Rüger (2012) and Deck and Schlesinger (2014) employ the 50-50

lottery pair B3 and A3 with symmetric risk described in Section 3 above. We note that experimental

research employing these risk-apportionment tasks typically employs the number of choices made

by DMs to classify them as prudent, imprudent or prudent neutral. Neutrality usually implies the

number of choices of lottery B3 a subject made in the experiment is around the mean of tasks

designed to elicit third order risk preferences, which is equivalent to the behaviour of choosing B3

with probability 1
2 (see Deck and Schlesinger, 2014). The option of indifference between lotteries

is not explicitly available. In practice, there is no statistical test carried out at the subject level with

the null hypothesis of random choice or indifference. Therefore, experimental evidence suggesting

neutrality in third, likewise fourth, order risk preferences should be taken with caution.9 We will

interpret such evidence as risky choice behaviour that might be in line with preferences exhibited

by a particular preference specification, e.g. KR or DA, rather than explicitly in favour of those

preferences.

For instance, Deck and Schlesinger (2014, p.1940) report that 35% of subjects were classified as

prudent neutral. Maier and Rüger (2012, p20) reported “Another large part of the subject pool is not

distinguishable from being prudence neutral.”10 Whilst there seems to be potentially a non-negligible

9Future research might shed light on this issue if, for instance, elicitation methods, experimental design and subject-
level tests of random choice made it possible to explicitly test for neutral higher order risk preferences.

10Maier and Rüger (2012) do not provide a specific criterion to define prudent neutral subjects. Using the ‘rule of
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share of choices reported in these experimental studies that would be in line with the third order

risky choice exhibited by KR or DA, we note that the predominant third order preference revealed

in experimental studies is that of prudence as illustrated in the review paper by Trautmann and

van de Kuilen (2018). This is also supported by studies that measure prudence employing meth-

ods that do not employ risk-apportionment tasks. For instance, Schneider and Sutter (2021) re-

port predominantly prudent behaviour using a method based on the elicitation of utility points

through the use of certainty equivalents with equally likely outcomes. An earlier study relying

on direct elicitation through certainty equivalents is Tarazona-Gomez (2004) who find support for

modest prudence. Another approach is to infer prudence via the precautionary savings motive

based on EUT models (e.g. Dynan, 1993; Carroll and Kimball, 2008). Alternatively, the preva-

lence and intensity of prudence has been inferred indirectly from subjects’ choices in financial and

economic decisions such as auctions (Kocher et al. 2015), bargaining (Embrey et al. 2014), savings

and investment tasks in the laboratory (Bostian and Heinzel, 2011; Xu et al. 2016), or asset markets

(Huber et al. 2014).

The evidence in the literature regarding fourth order risk attitudes is, however, less clear cut.

There is not a consensus view whether a preference for temperate over intemperate lotteries is

prevalent for the majority of the population (see Trautmann and van de Kuilen 2018). In this re-

gard, there is considerable experimental evidence that would correspond with the prediction of

intemperate behaviour (e.g. Deck and Schlesinger 2010; Bleichrodt and van Bruggen 2022). How-

ever, the predictions outlined in our paper show that not all subjects making choices consistent

with prudence neutral or intemperance in tasks designed to elicit risk apportionment would nec-

essarily be consistent with KR and DA. Only those that exhibited risky choices consistent with the

predictions regarding both third and fourth order risk apportionment tasks would be. Consid-

ering the predictions on both third and fourth order risky choices, the evidence for subjects that

behave both as prudent neutral and intemperate as implied by the expectations-based reference-

dependent models presented here finds weaker support. For instance, Deck and Schlesinger (2014)

report that only 11 out of 150 subjects would be consistent with these two risk attitudes.11 In the

thumb’ of 25% of the choices, in their case, 7 out of 28, falling into the middle range, that is, subjects making between
11 and 17 prudent choices would be classified as prudent neutral, and by looking at their Figure 2, one would infer
around 50% of subjects could be classified as prudent neutral.

11The study of Maier and Rüger (2012) does not provide the number of subjects at the intersection of third and fourth
order risk preferences. Hence, one can only assume that there would be an upper bound to the proportion of subjects

15



next section, we examine this issue in more detail employing data from three experimental studies.

Table 1. Predicted choice in risk-apportionment tasks for models commonly used in

decision theory under risk and uncertainty

Model Ref. Point Risk Domain 3rd order 4th order

Expected Utility (Mixed Risk Averse) - Sym/Asym G P T

Expected Utility (Mixed Risk Loving) - Sym/Asym G P IT

Cumulative Prospect Theory (CPT) SQ Sym G P T

Ls P IT

G(SP) P IT

Asym G P T/IT

Ls P T/IT

EV Sym G/Ls P/IP T/IT

Asym G/Ls P/IP T/IT

Kőszegi-Rabin (KR) L Sym G/Ls PN IT

G(SP) PN -

Asym G/Ls P/IP/PN -

Disappointment Aversion (DA) EV Sym G/Ls PN IT

G(SP/SK) PN -

Asym G/Ls P/IP/PN -

Notes: Column 2 specifies the reference point: status quo (SQ), expected value (EV), or the lottery

outcomes (L). Column 3 describes whether the zero-mean risk is assumed to be symmetric (Sym)

or asymmetric (Asym). Column 4 denotes the domain of lottery payoffs: gains (G), losses (Ls),

small probability gains (G(SP)) or small probability gains with same kurtosis (G(SP/SK)).

Column 5 reports the predicted risky choice of order 3: prudent (P), imprudent (IP),

prudent neutral (PN). Column 6 reports the predicted risky choice of order 4:

temperate (T), intemperate (IT). Assuming loss aversion parameter λ > 1.

classified as both risk neutral and intemperate that would correspond to the lower proportion of each of those two risk
attitudes, which in their case would be around 15%.
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4.1 Evidence from three experimental studies

We employ three experimental datasets designed to elicit higher-order risk preferences to exam-

ine the theoretical predictions set out in the previous section. The reason of using those datasets,

namely the ones from Bleichrodt and van Bruggen (2022), Ebert and Wiesen (2014) and Heinrich

and Mayrhofer (2018), is that, in addition to using the 50-50 probability lotteries with symmetric

risk, the former study is the only one that employs small probability outcomes, and the latter two

studies the only ones that use asymmetric zero-mean risks. With those three datasets we can there-

fore test all four predictions derived in section 3. In particular, we utilise the data from Bleichrodt

and van Bruggen (2022) to jointly test the two predictions involving 50-50 probabilities, one about

third order and the other one about fourth order, that is, Predictions 1 and 4, as well as the one

involving small probability outcomes, Prediction 3. Data from Ebert and Wiesen (2014) and Hein-

rich and Mayrhofer (2018) will be used to jointly test predictions about third order choices with

both symmetric and asymmetric risks and fourth order risky choices, that is, Predictions 2 and 4.

The Bleichrodt and van Bruggen (2022) dataset consists of three treatments, two involving

gains and one involving losses which we will not use as we only focus on the gain treatments.

These two gain treatments involve a between-subjects design with subjects being randomly allo-

cated either to the 50-50 gain treatment, which involves the standard 50-50 risk apportionment

tasks to elicit higher order risk preferences, or to the small probabilities treatment, which involves

the small probability lotteries, as discussed in section 3.1. All those tasks are listed in Appendix

D. There are in total data for 121 subjects in the 50-50 treatment and 124 subjects in the small-

probabilities one. In each treatment subjects had to provide their choices in pairwise lotteries for

all three higher order risk preferences (risk aversion, prudence and temperance). Within each or-

der, there were in total 12 tasks with lotteries consisting of a risk apportionment option and its

reverse. We follow Bleichrodt and van Bruggen (2022) and classify subjects as risk averse, pru-

dent or temperate if they made lottery choices consistent with those traits at least 10 out of the 12

tasks within each order. Similarly, subjects who made those choices for no more than 2 tasks are

classified as risk loving, imprudent or intemperate while if an option has been chosen between 3

and 9 times, the subject is classified as neutral, for that particular order. Furthermore, to take into

account the presence of stochasticity in choice, we adopt their Maximum Likelihood Estimation

(MLE) approach, and estimate the distribution of different risk apportionment types allowing for
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errors. Specifically, assuming three DM types within a given order (averse, neutral, and loving),

one can estimate a mixed binomial distribution and derive population proportion estimates for

each type, denoted as πs, πn, and πo. Each type with strict preferences (i.e. averse or loving) is

allowed to make errors. That is, in any task, a subject who satisfies risk apportionment chooses the

corresponding option with probability 1 − ωs, and with probability ωs < 1/2 she chooses the op-

posite one. Similarly for subjects who satisfy the opposite of risk apportionment, we assume that

they make a mistake with probability ωo < 1/2, with ωo ̸= ωs. Neutral subjects are by definition

indifferent between the two options.

The probability of choosing the option indicating a given risk apportionment x out of 12 times

can be represented by the following density, within a given order:

f (x) =
(

12
x

)[
πs(1 − ωs)

xω12−x
s + πn

1
2

x 1
2

12−x
+ π0ωx

o (1 − ω0)
12−x

]

with πs + πn + πo = 1.

We have predictions about third and fourth order risky choices and, therefore, we are inter-

ested in the frequencies of combinations of third and fourth-order choices, which give in total 9

possible combinations. Therefore, we extend the above specification to include the joint proba-

bilities of subjects belonging to a specific combination (e.g. prudent-neutral and intemperate), in

addition to the four order-specific error terms ωs, ωo, ξs and ξo for the prudent, imprudent, tem-

perate and intemperate types respectively. The estimated proportions are presented in Figure 1.

Using the estimated proportions, we can jointly test predictions 1 and 4. The majority (28%) of the

subjects is classified as preferring the prudent neutral and temperate neutral lotteries, while only

6% of the subjects behave according to the predictions of KR and DA.

Finding 1 6% of the subjects make lottery choices consistent with prudence neutrality and intemperance,

in line with the predictions of KR and DA for the case of 50-50 lotteries with symmetric risk.

To test prediction 3 related to small probabilities outcomes, we repeat the same estimation

using the data from the small-probabilities treatment. We do not have a prediction of fourth-order

risky choice for small probabilities. We therefore complement the analysis by incorporating the
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Figure 1: MLE Combinations of Third- and Fourth-Order Risk Preferences 50-50 Gains Treatment.
Estimated error rates ω̂s = 0.081 (prudent), ω̂o = 0.009 (imprudent), ξ̂s = 0.050 (temperate) and
ξ̂o = 0.022 (intemperate).

second order choice that would be consistent with KR which in this case is that of risk aversion.

Figure 2 shows the estimated proportions between all combinations of second and fourth-order

risk preferences in the small-probabilities treatment. The majority of the subjects (61%) is classified

as prudent and risk averse, while 13% of the subjects behave according to the predictions of KR

(prudence neutrality and risk aversion).

Finding 2 13% of the subjects make lottery choices consistent with prudence neutrality and risk aversion

in line with the predictions of KR for the case of small probabilities outcome lotteries.

Finally, to test prediction 2 related to risk apportionment tasks with asymmetric zero-mean

risk, we employ the data from Ebert and Wiesen (2014) and Heinrich and Mayrhofer (2018) be-

cause, to the best of our knowledge, those are the only studies that deviate from the common

practice of eliciting higher order risk preferences using exclusively risk apportionment tasks with

symmetric zero-mean risk. The experiment of Ebert and Wiesen (2014) consists of 127 subjects

(119 once those who switched multiple times are discarded) making their choices from a menu
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Figure 2: MLE Combinations of Second- and Fourth-Order Risk Attitudes Small Probabilities
Gains Treatment. Estimated error rates ω̂s = 0.052 (prudent), ω̂o = 0.034 (imprudent), ξ̂s = 0.047
(temperate) and ξ̂o = 0.048 (intemperate).

of pairwise lotteries designed to elicit risk preferences. There were in total 6 risk apportionment

tasks per subject, one to elicit second order, three to elicit third order, and two to elicit fourth order

risk preferences. Within the tasks to elicit third order risk preferences, one task is designed with

symmetric zero-mean risk (PRU1) while the other two with asymmetric zero-mean risk (PRU2

and PRU3). Similarly, in the tasks designed to elicit risk apportionment of order four, one task

includes symmetric zero-mean risk (TE1) and the other one asymmetric risk (TE2). The full list of

tasks is provided in Appendix E.

The aim of the experiment was to elicit compensations for n-th order risk preferences and,

in particular, to identify the smallest amount for which a DM would choose the seeking option

over the averse one. A compensation of zero would indicate neutral attitude, a negative amount

would classify a subject as n-th order risk loving, while a positive one would indicate n-th or-

der risk averse behaviour. This methodology was designed to yield model-independent inten-

sity measures of risk attitudes of different orders. The experiment included various treatments

varying a number of elements such as sequence effects, width of the grid interval of potential

compensations, as well as coarseness of the grid. Heinrich and Mayrhofer (2018) adopt the same
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experimental design to study higher order preferences in a social setting. In their experiment, sub-

jects had to make decisions in isolation and in a social setting where their choices had an influence

on others’ payoffs. We use the data from the individual decision making part of their experiment,

which was identical to Ebert and Wiesen (2014) treatments that adopted a fine compensation grid.

Their dataset consists of the choices of 312 subjects, where 35 subjects had been discarded because

of multiple switch in the choices.

We follow the analysis method adopted in these studies, and classify subjects according to the

mean value of the compensation they demanded within each order. KR and DA predict that when

the zero-mean risk is symmetric the agent would make choices consistent with prudence neutral

and intemperance within the lotteries designed to elicit risk apportionment of order three and

four, while in the case of asymmetric zero-mean risk this might not be the case. In particular, for

task PRU2 the predicted lottery choice for both KR and DA would be the imprudent one given the

risk is negatively skewed and e > (c − x) . On the other hand, for task PRU3, the predicted lottery

choice for both KR and DA would be the prudent one given the risk is positively skewed and

e < (c − x) (but e > 0.5(c − x)) and q
1−q e > c − x. According to this, our hypothesis is that, within

the subjects that make lottery choices consistent with intemperance in task TE1, the proportion

of those who prefer the imprudent lotteries in tasks PRU1 and PRU2, is lower compared to the

proportion of subjects who prefer the imprudent lotteries considering only task PRU2. Likewise,

within the subjects that make lottery choices consistent with intemperance in task TE1, the propor-

tion of those who prefer the prudent lotteries in tasks PRU1 and PRU3 should be lower compared

to the proportion of subjects who prefer the prudent lotteries considering only task PRU3.

In the Ebert and Wiesen (2014) sample, we find that, out of the experimental subjects that

make the intemperate choice in task TE1, the number of subjects who make imprudent choices

when considering tasks PRU1 and PRU2 and when considering only task PRU2 is the same. We

also find that the number of subjects who make prudent choices when considering tasks PRU1

and PRU3 is actually two less than the number obtained when we only consider task PRU3. In the

Heinrich and Mayrhofer (2018) experimental sample, we find that only one more subject makes

imprudent choices in task PRU2 relative to those considering both tasks PRU1 and PRU2. We

also find that 18 subjects make the prudent choices in tasks PRU1 and PRU3, while 16 subjects

choose the prudent lotteries in task PRU3. All those differences are statistically insignificant. This
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experimental evidence does not support the predictions implied by the KR and DA specifications

that different third order choices should be observed in the presence of asymmetric zero-mean

risk relative to symmetric risk.

Finding 3 There is no significant difference in third order risky choices when subjects face risk apportion-

ment lotteries with symmetric or asymmetric zero-mean risk.

Overall, the experimental findings in this section employing three different datasets on risk

apportionment tasks for elicitation of higher-order risk preferences suggest that a relatively small

proportion of DMs, 13% as the upper limit, make choices consistent with KR or DA.

5 Conclusions

This is the first paper to examine choice behaviour in risk-apportionment tasks to elicit higher

order risk attitudes exhibited by a DM defined by some of the most popular expectations-based

reference-dependent models. We have demonstrated the cases where, in experimental research us-

ing risk-apportionment tasks, a DM defined by a Kőszegi and Rabin or a disappointment aversion

model specification may exhibit prudent, imprudent or prudent neutral choices. We illustrated

how the precise structure of the lotteries impacted on these choices. In particular whether the lot-

teries exhibited symmetric or asymmetric risks, small probabilities of outcomes and equal higher

order moments. We also illustrated that the assumption of loss aversion implies that a DM defined

by either the KR or DA model would make risky choices consistent with anti-risk apportionment

of order four. Our analysis has implications for the interpretation of experimental research. In

particular, some of the predictions for elicitation tasks of higher-order risk preferences differ from

those in models of decision under risk such as CPT or EUT. The ability of the model specifications

outlined in this paper to describe risky choices found in the literature is also examined employing

data from three influential experimental studies. We find that only a small proportion of subjects

make risky choices consistent with the Kőszegi and Rabin and disappointment aversion model

specifications.
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Appendix A The Kőszegi and Rabin model: derivations of the utility

of lotteries to elicit higher order risk preferences

In this Appendix, we provide the calculations that are employed as the basis of the predictions

presented in the main text of the paper. We note that, under the assumptions described in section

2, the first term in (3) represents the DM’s expected value of the lottery. Given that all the lottery

pairs presented below to elicit the risk preferences of prudence and temperance share the same

expected value, they will cancel each other when computing the difference between the lottery

pair. Therefore, to simplify notation, we have omitted the first term in (3) from the calculations.

We now present the utility of the lotteries designed to elicit prudence and the reverse pref-

erence, B3 = [x, c + ε̃] and A3 = [c, x + ε̃], respectively, and recall that ε̃ = [e,−e] and that [x, y]

denotes outcomes x and y are each received with probability 0.5.

U(B3|B3) = 0.5 (0.5µ(0) + 0.25µ(c − x + e) + 0.25µ(c − x − e))

+ 0.25 (0.5µ(− (c − x)− e) + 0.25µ(0) + 0.25µ(−2e))

+ 0.25 (0.5µ(e − (c − x)) + 0.25µ(2e) + 0.25µ(0))

= 0.5 (0.25µ(c − x + e) + 0.25µ(c − x − e)) + 0.25 (0.5µ(− (c − x)− e)− 0.5µ(e))

+ 0.25 (0.5µ(e − (c − x)) + 0.5µ(e)) (5)

U(A3|A3) = 0.5 (0.5µ(0) + 0.25µ(e − (c − x)) + 0.25µ(−e − (c − x)))

+ 0.25 (0.5µ(c − x − e) + 0.25µ(0) + 0.25µ(−2e))

+ 0.25 (0.5µ(c − x + e) + 0.25µ(2e) + 0.25µ(0))

= 0.5 (0.25µ(e − (c − x)) + 0.25µ(− (c − x)− e)) + 0.25 (0.5µ(c − x − e)− 0.5µ(e))

+ 0.25 (0.5µ(c − x + e) + 0.5µ(e)) . (6)

We note that both expressions (5) and (6) yield the same outcome. Moreover, both expressions

have been left in terms of the form of the gain-loss utility function µ (·) defined in section (2), to
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demonstrate that this result holds regardless of the specific functional form assumed for µ (·).12

We now consider a departure from the assumption of symmetry of the zero-mean background

risk. We assume it is asymmetric, that is, ε̃′ =
(

1 − q : q
1−q e, q : −e

)
. The predicted choice be-

haviour will depend on the skewness of the risk and the relative size of e and (c − x). Recall that

c > x > e.

Let us now compute the utility of the lottery pair. First, lottery B3

U(B3|B3) = 0.5
(

0.5µ(0) + 0.5 (1 − q) µ(c − x +
q

1 − q
e) + 0.5qµ(c − x − e)

)
+ 0.5 (1 − q)

(
0.5µ(− (c − x)− q

1 − q
e) + 0.5 (1 − q) µ(0) + 0.5qµ(− e

1 − q
)

)
+ 0.5q

(
0.5µ(e − (c − x)) + 0.5 (1 − q) µ(

e
1 − q

) + 0.5qµ(0)
)

The value of U(B3|B3) depends on the lottery parameters and there are two cases:

e > c − x

U(B3|B3) = 0.25q (1 − λ) (e − (c − x)) + 0.25 (1 − q) (1 − λ)

(
c − x +

q
1 − q

e
)

+ 0.25q (1 − q) (1 − λ)

(
e

1 − q

)

e < c − x

U(B3|B3) = 0.25(1 − q)(1 − λ)

(
c − x +

q
1 − q

e
)
+ 0.25q (1 − λ) (c − x +−e)

+ 0.25q (1 − q) (1 − λ)

(
e

1 − q

)

Second, we derive the calculations for lottery A3

12Departing from linear utility in u (·) would imply that the difference in utility between B3 and A3 would be deter-
mined by the difference in the first term of (3). In this case, that first term would represent the expected utility of the
lotteries rather than their expected value. Therefore, they may not cancel out when computing their difference in utility,
and if, for instance, the utility function was power with exponent less than unity, the DM would exhibit prudence.
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U(A3|A3) = 0.5
(

0.5µ(0) + 0.5 (1 − q) µ(
q

1 − q
e − (c − x)) + 0.5qµ(− (c − x)− e)

)
+ 0.5 (1 − q)

(
0.5µ

(
c − x − q

1 − q
e
)
+ 0.5 (1 − q) µ(0) + 0.5qµ(− e

1 − q
)

)
+ 0.5q

(
0.5µ(c − x + e) + 0.5 (1 − q) µ(

e
1 − q

) + 0.5qµ(0)
)

.

The value of U(A3|A3) also depends on the lottery parameters and there are two cases:
q

1−q e < c − x

U(A3|A3) = 0.25q (1 − λ) (c − x + e) + 0.25 (1 − q) (1 − λ)

(
c − x − q

1 − q
e
)

+ 0.25 (1 − q) q (1 − λ)

(
e

1 − q

)
.

q
1−q e > c − x

U(A3|A3) = 0.25q (1 − λ) (c − x + e) + 0.25 (1 − q) (1 − λ)

(
q

1 − q
e − (c − x)

)
+ 0.25 (1 − q) q (1 − λ)

(
e

1 − q

)
.

The predicted risky choices will therefore be the following. Let us first assume the risk is

positively skewed, i.e., q > 0.5.

If e > c − x (and therefore it also holds that q
1−q e > c − x)

U(B3|B3)− U(A3|A3) = 0.25(1 − q)(1 − λ)(2c − 2x) + 0.25q(1 − λ)(2x − 2c)

= −0.5(1 − q)(λ − 1)(c − x) + 0.5q(λ − 1)(c − x) (7)

which is positive for q > 0.5 and therefore, the loss averse DM makes the prudent choice.
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If e < c − x and q
1−q e > c − x

U(B3|B3)− U(A3|A3) = 0.25(1 − q)(1 − λ)(2c − 2x) + 0.25q(1 − λ)(−2e)

= 0.5(λ − 1)eq − 0.5(1 − q)(λ − 1)(c − x)

= 0.5(λ − 1)(q(e + c − x) + x − c) (8)

which is positive since eq > (1 − q)(c − x) which holds since q
1−q e > c − x, therefore the DM

prefers the prudent choice.

If e < c − x and q
1−q e < c − x

U(B3|B3)− U(A3|A3) = 0.25(1 − q)(1 − λ)(
2q

1 − q
e) + 0.25q(1 − λ)(−2e)

= 0.5(1 − λ)

(
(1 − q)

q
1 − q

e − qe
)

(9)

= 0

Therefore, the DM is prudent neutral in this case.

Let us now assume the risk is negatively skewed, i.e., q < 0.5.

If e < c − x (and therefore it also holds that q
1−q e < c − x)

U(B3|B3)− U(A3|A3) = 0.5(1 − q)(1 − λ)
q

1 − q
e − 0.5q(1 − λ)e

= 0.5q(λ − 1)e − 0.5(1 − q)(λ − 1)
q

1 − q
e (10)

= 0

and the DM is prudent neutral.

If e > c − x and q
1−q e < c − x

U(B3|B3)− U(A3|A3) = 0.25(1 − q)(1 − λ)

(
2q

1 − q
e
)
+ 0.25q(1 − λ)(2x − 2c)

= 0.5q(λ − 1)(c − x)− 0.5(1 − q)(λ − 1)
q

1 − q
e

= c − x − e (11)
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which is negative and therefore the loss averse DM makes the imprudent choice.

If e > c − x < e and q
1−q e > c − x

U(B3|B3)− U(A3|A3) = 0.25(1 − q)(1 − λ)(2c − 2x) + 0.25q(1 − λ)(2x − 2c)

= 0.5(λ − 1)(c − x)(2q − 1) (12)

The loss averse DM makes again the imprudent choice since q < 0.5.

We now present the calculations of the expected utility of the lotteries designed to elicit third

order risk attitudes accounting for small probability outcomes as described in the paper, that is,

lottery pair B3,sp, and A3,sp.

U(B3,sp|B3,sp) =
p
2

( p
2

µ(0) +
p
2

µ(−2e) + pµ(x − c − e) + (1 − 2p)µ(z − c − e)
)

+
p
2

( p
2

µ(2e) +
p
2

µ(0) + pµ(x − c + e) + (1 − 2p)µ(z − c + e)
)

+p
( p

2
µ(c + e − x) +

p
2

µ(c − e − x) + pµ(0) + (1 − 2p)µ(z − x)
)

+(1 − 2p)
( p

2
µ(c + e − z) +

p
2

µ(c − e − z) + pµ(x − z) + (1 − 2p)µ(0)
)

U(A3,sp|A3,sp) =
p
2

( p
2

µ(0) +
p
2

µ(−2e) + pµ(c − x − e) + (1 − 2p)µ(z − x − e)
)

+
p
2

( p
2

µ(2e) +
p
2

µ(0) + pµ(c − x + e) + (1 − 2p)µ(z − x + e)
)

+p
( p

2
µ(x + e − c) +

p
2

µ(x − e − c) + pµ(0) + (1 − 2p)µ(z − c)
)

+(1 − 2p)
( p

2
µ(x + e − z) +

p
2

µ(x − e − z) + pµ(c − z) + (1 − 2p)µ(0)
)

.

Recall that the gain-loss utility function is a two-part linear where λ is the coefficient of loss

aversion and that c > x > e > z. The lottery outcomes will fall within the gain or loss domain

depending on whether c is larger or smaller than x+ e. Our calculations reveal that both cases yield

the same qualitative result. First, we consider the case where c > x+ e.13 Expanding and removing

13Note that we also assume that x > e + z given that, as argued by Bleichrodt and van Bruggen (2022), payoff z is
considered to be small relative to the other payoffs in the lottery. However, if that assumption was dropped and it
was assumed that x < e + z then U(B3,sp|B3,sp) > U(A3,sp|A3,sp) and the DM would exhibit prudence (calculations
available upon request). This is intuitive given that, in that case, there would be a relatively large mass associated to
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common terms in U(B3,sp|B3,sp) and U(A3,sp|A3,sp), we find that the difference in expected utility

between the two lotteries depends on the evaluation of the difference between

U(B3,sp|B3,sp) = −λp ((c − z)− p (x + c) + 2pz)

+p (p(c − x)− λ(1 − 2p)(x − z))

+(1 − 2p) (p(c − z) + p(x − z)) (13)

U(A3,sp|A3,sp) = p (p(c − x)− λ(1 − 2p)(x − z))

−λp (p(c − x) + (1 − 2p)(c − z))

+(1 − 2p) (p(x − z) + p(c − z)) . (14)

It can easily be seen that in this case U(B3,sp|B3,sp) = U(A3,sp|A3,sp).

Second, we consider the case where c < x + e. Expanding and removing common terms in

U(B3,sp|B3,sp) and U(A3,sp|A3,sp), we find that

U(B3,sp|B3,sp) =
p
2
(1 − λ) ((c + e − z) + (c − e − z))

+p (1 − λ) ((x − z)) (15)

U(A3,sp|A3,sp) =
p
2
(1 − λ) ((x + e − z) + (x − e − z))

+p (1 − λ) ((c − z)) (16)

It can easily be seen that also in this case U(B3,sp|B3,sp) = U(A3,sp|A3,sp).

We now consider the value of the lottery pair designed to elicit risk apportionment of order

the large probability (1 − 2p).
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4. We assume that both independent zero-mean risks are symmetric, i.e., ε̃1 = [e1,−e1] and ε̃2 =

[e2,−e2] . First, we consider the general case where the size of the risks differ, e1 > e2.

U(B4|B4) = 0.25 (0.25µ(0) + 0.25µ(−2e1) + 0.25µ(e2 − e1) + 0.25µ(−e1 − e2))

+0.25 (0.25µ(2e1) + 0.25µ(0) + 0.25µ(e2 + e1) + 0.25µ(−e2 + e1))

+0.25 (0.25µ(e1 − e2) + 0.25µ(−e1 − e2) + 0.25µ(0) + 0.25µ(−2e2))

+0.25 (0.25µ(e1 + e2) + 0.25µ(−e1 + e2) + 0.25µ(2e2) + 0.25µ(0))

U(A4|A4) = 0.5 (0.5µ(0) + 0.125µ(e1 + e2) + 0.125µ(e1 − e2) + 0.125µ(−e1 + e2) + 0.125µ(−e1 − e2))

+0.125 (0.5µ(−e1 − e2) + 0.125µ(0) + 0.125µ(−2e2) + 0.125µ(−2e1) + 0.125µ(−2e1 − 2e2))

+0.125 (0.5µ(−e1 + e2) + 0.125µ(2e2) + 0.125µ(0) + 0.125µ(−2e1 + 2e2) + 0.125µ(−2e1))

+0.125 (0.5µ(e1 − e2) + 0.125µ(2e1) + 0.125µ(2e1 − 2e2) + 0.125µ(0) + 0.125µ(−2e2))

+0.125 (0.5µ(e1 + e2) + 0.125µ(2e1 + 2e2) + 0.125µ(2e1) + 0.125µ(2e2) + 0.125µ(0)) .

Removing the common terms in U(B4|B4) and U(A4|A4), we find that the difference in ex-

pected utility between the lottery pair depends on the difference between these two expressions:

U(B4|B4) =
1

16
(µ(2e1) + µ(−2e1)) +

1
16

(µ(2e2) + µ(−2e2))

U(A4|A4) =
1
32

(µ(2e1) + µ(−2e1)) +
1
32

(µ(2e2) + µ(−2e2)) +

+
1
64

(µ(2e1 + 2e2) + µ(−2e1 − 2e2)) +
1

64
(µ(2e1 − 2e2) + µ(−2e1 + 2e2)) .

The difference in expected utility between the lottery pair depends on

U(B4|B4) =
1

16
(2e1 − 2λe1 + 2e2 − 2λe2) = − (λ − 1)

8
(e1 + e2) (17)
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U(A4|A4) = − (λ − 1)
8

e1 −
(λ − 1)

16
e2. (18)

Assuming λ > 1, these expressions imply that U(B4|B4) < U(A4|A4).

We now consider the particular case that the zero-mean risks are of equal size, e1 = e2. It is easy

to see that if the two zero-mean independent risks have payoffs of equal size then the difference

in utility reduces to

U(B4|B4)− U(A4|A4) = − (λ − 1)
8

(e1) +
(λ − 1)

16
(e1) . (19)

Assuming λ > 1, this difference is negative and therefore the DM also exhibits in this case

choice consistent with intemperance ((anti)risk apportionment of order 4).

Appendix B Disappointment Aversion (DA) model: derivations of the

utility of lotteries to elicit higher order risk preferences

We recall that, like in Appendix A, the reference-dependent gain-loss utility µ (·) is two-part linear

with loss aversion parameter λ. The lotteries to elicit risk apportionment of order 3 are B3 =

[x, c + ε̃] and A3 = [c, x + ε̃], where ε̃ = [e,−e] and c > x > e. The referent is in this case the

expected value of each of the lotteries, 0.5 (x + c) . We note that the expected utility of the lottery

pair will depend on the relative size of the risk (e) and the expected value (0.5 (c − x)). However,

the qualitative result is the same in both cases, and we therefore only present below one of these

cases, in particular, e > 0.5 (c − x) .

U(B3|B3) = 0.5µ (x − 0.5(x + c)) + 0.25µ (c + e − 0.5(x + c))

= 0.25λ(c − x) + 0.25(c − x) + 0.25e − 0.25λ(e − 0.5(c − x)

= −0.125 (λ − 1) (c − x)− 0.25 (λ − 1) e (20)
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U(A3|A3) = 0.5µ (c − 0.5 (x + c)) + 0.25µ (x + e − 0.5 (x + c)) + 0.25µ (x − e − 0.5 (x + c))

= 0.25 (c − x) + 0.125 (x − c) + 0.25e − 0.25λe + 0.125λ (x − c)

= −0.125 (λ − 1) (c − x)− 0.25 (λ − 1) e. (21)

Therefore, U(B3|B3) = U(A3|A3) and the DM would in this case exhibit indifference between

the lottery pair designed to elicit risk apportionment of order 3.

If background risk is assumed to be asymmetric, that is, ε̃′ =
(

1 − q : q
1−q e, q : −e

)
, the pre-

dictions can be drawn depending on the relative size of the risk (e) and the expected value of the

lotteries (0.5 (c + x)), and on the skewness of the zero-mean risk determined by q.

The value of U(B3|B3) and U(A3|A3) depend on the lottery parameters and we have the fol-

lowing cases:

First, if e > 0.5(c − x)

U(B3|B3) = −0.25λ (c − x) + 0.25 (1 − q) (c − x) + 0.5(1 − q)
q

1 − q
e − 0.5qλ (e − 0.5 (c − x))

= 0.25 (1 − λ) (c − x) (1 − q) + 0.5q (1 − λ) qe

= −0.25 (λ − 1) (c − x) (1 − q)− 0.5q (λ − 1) e

U(A3|A3) = 0.25µ(c − x) + 0.5(1 − q)µ(x +
q

1 − q
e − 0.5(c + x)) + 0.5qµ(x − e − 0.5(c + x))

= 0.25µ(c − x) + 0.5(1 − q)µ
(

q
1 − q

e − 0.5(c − x)
)
+ 0.5qµ(−0.5(c − x)− e)

In this case, if q > 0.5 then it always holds that q
1−q e > 0.5(c − x) and therefore

U(A3|A3) = 0.25(c − x) + 0.5qe − 0.25(1 − q)(c − x)− 0.25qλ(0.5(c − x) + e)

= 0.25q(1 − λ)(c − x) + 0.5q(1 − λ)e
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If, on the other hand, q < 0.5 then q
1−q e < e and there are two cases

if q
1−q e > 0.5(c − x) then the result is the same as above, i.e., U(A3|A3) = 0.25q(1 − λ)(c −

x) + 0.5q(1 − λ)e

if q
1−q e < 0.5(c − x) then

U(A3|A3) = 0.25(c − x)− 0.5(1 − q)λ(0.5(c − x)− q
1 − q

e)− 0.25qλ(c − x)− 0.5qe

= 0.25(1 − λ)(c − x)

Second, if e < 0.5(c − x)

U(B3|B3) = −0.25λ(c − x) + 0.25(1 − q)(c − x) + 0.5qe + 0.25q(c − x)− 0.5qe

= 0.25(c − x)(−λ + (1 − q) + q)

= 0.25(1 − λ)(c − x)

U(A3|A3) = 0.5µ(0.5(c − x)) + 0.5(1 − q)µ(x +
q

1 − q
e − 0.5(x + c)) + 0.5qµ(x − e − 0.5(x + c))

In this case, if q < 0.5 then it always holds that q
1−q e − 0.5(c − x) < 0 and

U(A3|A3) = 0.5µ(0.5(c − x)) + 0.5(1 − q)µ(x +
q

1 − q
e − 0.5(x + c)) + 0.5qµ(x − e − 0.5(x + c))

= 0.25(c − x)− 0.5(1 − q)λ(0.5(c − x)− q
1 − q

e)− 0.5qλ(0.5(c − x) + e)

= 0.25(1 − λ)(c − x)

If, on the other hand, q > 0.5 then q
1−q e > e and there are two cases

if q
1−q e < 0.5(c − x) then the result is the same as above, i.e., U(A3|A3) = 0.25(1 − λ)(c − x).

if q
1−q e > 0.5(c − x) then
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U(A3|A3) = 0.25(c − x) + 0.5(1 − q)(
q

1 − q
e − 0.5(c − x))− 0.5qλ(0.5(c − x) + e)

= 0.25(c − x) + 0.5qe − 0.25(1 − q)(c − x)− 0.25qλ(c − x)− 0.5qλe

= 0.25q(1 − λ)(c − x) + 0.5qe(1 − λ)

Once we have computed the value of U(B3|B3) and U(A3|A3) for all possible cases, we obtain

the predicted risky choices. Let us first assume the risk is positively skewed, i.e., q > 0.5.

If e > 0.5(c − x) (and it always holds that q
1−q e > 0.5(c − x))

U(B3|B3)− U(A3|A3) = 0.25(c − x)(1 − q)(1 − λ) + 0.5qe(1 − λ)

− 0.25q(1 − λ)(c − x)− 0.5qe(1 − λ)

= 0.25(c − x)(λ − 1)(2q − 1) > 0 (22)

therefore, the loss averse DM makes the prudent choice.

If e < 0.5(c − x) and q
1−q e > 0.5(c − x)

U(B3|B3)− U(A3|A3) = 0.25(1 − λ)(c − x)− 0.25q(1 − λ)(c − x)− 0.5qe(1 − λ)

= −0.25(λ − 1) ((c − x)(1 − q)− 2qe) > 0 (23)

since ((c − x)(1 − q)− 2qe) < 0 and the loss averse DM makes the prudent choice.

If e < 0.5(c − x) and q
1−q e < 0.5(c − x) then

U(B3|B3)− U(A3|A3) = 0.25(1 − λ)(c − x)− 0.25(1 − λ)(c − x) (24)

= 0

and the DM is indifferent between the lottery pair.

Let us now assume that the risk is negatively skewed, i.e., q < 0.5.

If e < 0.5(c − x) (and therefore it always holds that q
1−q e < 0.5(c − x))

33



U(B3|B3)− U(A3|A3) = 0.25(1 − λ)(c − x)− 0.25(1 − λ)(c − x) (25)

= 0

and therefore, the DM exhibits prudent neutral choice.

If e > 0.5(c − x) and q
1−q e < 0.5(c − x)

U(B3|B3)− U(A3|A3) = 0.25(c − x)(1 − q)(1 − λ) + 0.5qe(1 − λ)− 0.25q(1 − λ)(c − x)

= 0.25q(λ − 1) ((c − x)− 2e) < 0 (26)

and therefore, the loss averse DM exhibits imprudent choice.

If e > 0.5(c − x) and q
1−q e > 0.5(c − x)

U(B3|B3)− U(A3|A3) = 0.25(c − x)(1 − q)(1 − λ) + 0.5qe(1 − λ)

− 0.25q(1 − λ)(c − x)− 0.5qe(1 − λ)

= 0.25(c − x)(λ − 1)(2q − 1) (27)

and given that in this case q < 0.5, the loss averse DM exhibits the imprudent choice.

We now present the calculations of the expected utility of the lotteries designed to elicit third

order risk attitudes accounting for small probability outcomes as described in the paper, that is,

lottery pair B3,sp, and A3,sp.

U(B3,sp|B3,sp) = pµ (x − px − pc − (1 − 2p)z)

+
p
2

µ (c + e − px − pc − (1 − 2p)z)

+
p
2

µ (c − e − px − pc − (1 − 2p)z)

+ (1 − 2p)µ (z − px − pc − (1 − 2p)z) (28)
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U(A3,sp|A3,sp) = pµ (c − px − pc − (1 − 2p)z)

+
p
2

µ (x + e − px − pc − (1 − 2p)z)

+
p
2

µ (x − e − px − pc − (1 − 2p)z)

+ (1 − 2p)µ (z − px − pc − (1 − 2p)z) (29)

Even though the last term can be ignored as it is common in both lotteries, there is not an

unambiguous choice in this case between B3,sp and A3,sp.

We also present the calculations of the expected utility of the lotteries designed to elicit pru-

dence and the reverse preference accounting for equal kurtosis, B3,sk and A3,sk, (i.e. restriction

z = x+c
2 is imposed).

U(B3,sk|B3,sk) = pµ (x − 0.5(x + c)) (30)

+
p
2

µ (c + e − 0.5(x + c))

+
p
2

µ (c − e − 0.5(x + c))

U(A3,sk|A3,sk) = pµ (c − 0.5(x + c)) (31)

+
p
2

µ (x + e − 0.5(x + c))

+
p
2

µ (x − e − 0.5(x + c))

where it holds U(B3,sk|B3,sk) = U(A3,sk|A3,sk) and the DM is indifferent between the two.

We now present the case of the lottery pair designed to elicit risk apportionment of order 4, i.e.,

B4 = c + [ε̃1, ε̃2] and A4 = c + [0, ε̃1 + ε̃2] , where the two independent and symmetric zero-mean

risks are ε̃1 = [e1,−e1] and ε̃2 = [e2,−e2] . In this case, the expected value of both lotteries is the

same and it is equal to c. The calculation of the expected utilities will depend on whether the size

of the two independent risks are the same or not. However, the results are qualitatively the same
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and we only present below the case where they differ, i.e. e1 > e2.

U(B4|B4) = 0.25µ (e1) + 0.25µ (−e1) + 0.25µ (e2) + 0.25µ (−e2)

= −0.25 (λ − 1) e1 − 0.25 (λ − 1) e2 (32)

U(A4|A4) = 0.5µ (0) + 0.125µ (e1 + e2) + 0.125µ (e1 − e2) + 0.125µ (−e1 + e2) + 0.125µ (−e1 − e2)

= −0.25 (λ − 1) e1. (33)

Assuming λ > 1, the result that U(B4|B4) < U(A4|A4) implies the DM would exhibit (anti)risk

apportionment of order 4 and lottery choice consistent with intemperance.

Appendix C Predictions under the KR preferred personal equilibrium

(PPE)

We recall Definitions 1 and 2

Definition 1 Given a choice set L, a lottery L ∈ L is a personal equilibrium (PE) if U(L|L) ≥

U(L′|L) for all L′ ∈ L.

Definition 2 Given a choice set L, a lottery L ∈ L is a preferred personal equilibrium (PPE) if it is

a PE and if for any other PE L′ it holds U(L|L) ≥ U(L′|L′).
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C.1 Risk apportionment of order three

U(B3|B3) =
1
2

(
1
2

µ(0) +
1
4

µ(c + e − x) +
1
4

µ(c − e − x)
)

+
1
4

(
1
2

µ(x − c − e) +
1
4

µ(0) +
1
4

µ(−2e)
)

+
1
4

(
1
2

µ(x − c + e) +
1
4

µ(2e) +
1
4

µ(0)
)

=
1
2

(
1
4
(c + e − x) +

1
4
(c − e − x)

)
+

1
4

(
−1

2
λ(c − x + e)− 1

4
λ2e
)

+
1
4

(
−1

2
λ(c − x − e) +

1
4

2e
)

=
c
4
− x

4
− λc

4
+

λx
4

+
e
8
− λe

8

U(A3|A3) =
1
2

(
1
2

µ(0) +
1
4

µ(x + e − c) +
1
4

µ(x − e − c)
)

+
1
4

(
1
2

µ(c − e − x) +
1
4

µ(0) +
1
4

µ(−2e)
)

+
1
4

(
1
2

µ(c + e − x) +
1
4

µ(2e) +
1
4

µ(0)
)

=
1
2

(
−1

4
λ(c − x − e)− 1

4
λ(c − x + e)

)
+

1
4

(
1
2
(c − x − e)− 1

4
λ2e
)

+
1
4

(
1
2
(c + e − x) +

1
4

2e
)

=
c
4
− x

4
− λc

4
+

λx
4

+
e
8
− λe

8
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U(A3|B3) =
1
2

(
1
2

µ(c − x) +
1
4

µ(e) +
1
4

µ(−e)
)

+
1
4

(
1
2

µ(e) +
1
4

µ(x − c + 2e) +
1
4

µ(x − c)
)

+
1
4

(
1
2

µ(−e) +
1
4

µ(x − c) +
1
4

µ(x − c − 2e)
)

=
1
2

(
1
2
(c − x) +

1
4

e − 1
4

λe
)

+
1
4

(
1
2

e +
1
4
(x − c + 2e)− 1

4
λ(c − x)

)
+

1
4

(
−1

2
λe − 1

4
λ(c − x)− 1

4
λ(c − x + 2e)

)
=

3c
16

− 3x
16

− λ3c
16

+
λ3x
16

+
3e
8
− 3λe

8

U(B3|A3) =
1
2

(
1
2

µ(x − c) +
1
4

µ(e) +
1
4

µ(−e)
)

+
1
4

(
1
2

µ(e) +
1
4

µ(c − x + 2e) +
1
4

µ(c − x)
)

+
1
4

(
1
2

µ(−e) +
1
4

µ(c − x) +
1
4

µ(c − x − 2e)
)

=
1
2

(
−1

2
λ(c − x) +

1
4

e − 1
4

λe
)

+
1
4

(
1
2

e +
1
4
(c − x + 2e) +

1
4
(c − x)

)
+

1
4

(
−1

2
λe +

1
4
(c − x)− 1

4
λ(x − c + 2e)

)
=

3c
16

− 3x
16

− λ3c
16

+
λ3x
16

+
3e
8
− 3λe

8

Combining the relations together we get that both lotteries A3 and B3 are personal equilibria

when it holds that:

U(A3|A3) ≥ U(B3|A3)

and

U(B3|B3) ≥ U(A3|B3)
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This is satisfied when

U(A3|A3) ≥ U(B3|A3) ⇒ c
4
− x

4
− λc

4
+

λx
4

+
e
8
− λe

8

≥ 3c
16

− 3x
16

− λ3c
16

+
λ3x
16

+
3e
8
− 3λe

8

⇒ 1
4
≥ 3

16

which always holds (similarly for B3). Therefore, the preferred personal equilibrium would pre-

dict that the decision maker is indifferent between B3 and A3, since U(B3|B3) = U(A3|A3) and

therefore, CPE and PPE yield the same prediction.

C.2 Risk apportionment of order four

Here we work with the hypothesis that e1 > e2.

U(B4|B4) =
1
4

(
1
4

µ(0) +
1
4

µ(−2e1) +
1
4

µ(e2 − e1) +
1
4

µ(−e1 − e2)
)

+
1
4

(
1
4

µ(2e1) +
1
4

µ(0) +
1
4

µ(e1 + e2) +
1
4

µ(e1 − e2)
)

+
1
4

(
1
4

µ(e1 − e2) +
1
4

µ(−e1 − e2) +
1
4

µ(0) +
1
4

µ(−2e2)
)

+
1
4

(
1
4

µ(e1 + e2) +
1
4

µ(e2 − e1) +
1
4

µ(2e2) +
1
4

µ(0)
)

=
1
4

(
−1

4
λ2e1 −

1
4

λ(e1 − e2)− 1
4

λ(e1 + e2)
)

+
1
4

(
1
4

2e1 +
1
4
(e1 + e2) +

1
4
(e1 − e2)

)
+

1
4

(
1
4
(e1 − e2)− 1

4
λ(e1 + e2)− 1

4
λ2e2

)
+

1
4

(
1
4
(e1 + e2)− 1

4
λ(e1 − e2) +

1
4

2e2
)

= −6λe1
16

+
6e1
16

+
2e2
16

− 2λe2
16
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U(A4|A4) =
1
8

(
1
8

µ(0) +
1
8

µ(e1 + e2) +
1
8

µ(e1 − e2) +
1
8

µ(e2 − e1) +
1
8

µ(−e1 − e2)
)

+
1
8

(
1
8

µ(−e1 − e2) +
1
8

µ(0) +
1
8

µ(−2e2) +
1
8

µ(−2e1) +
1
8

µ(−2e1 − 2e2)
)

+
1
8

(
1
8

µ(−e1 + e2) +
1
8

µ(2e2) +
1
8

µ(0) +
1
8

µ(−2e1 + 2e2) +
1
8

µ(−2e1)
)

+
1
8

(
1
8

µ(e1 − e2) +
1
8

µ(2e1) +
1
8

µ(2e1 − 2e2) +
1
8

µ(0) +
1
8

µ(−2e2)
)

+
1
8

(
1
8

µ(e1 + e2) +
1
8

µ(2e1 + 2e2) +
1
8

µ(2e1) +
1
8

µ(2e2) +
1
8

µ(0)
)

=
1
8

(
1
8
(e1 + e2) +

1
8
(e1 − e2)− 1

8
λ(e1 − e2)− 1

8
λ(e1 + e2)

)
+

1
8

(
1
8

λ(e1 + e2)− 1
8

λ2e2 − 1
8

λ2e1 − 1
8

λ(2e1 + 2e2)
)

+
1
8

(
−1

8
λ(e1 − e2) +

1
8

2e2 − 1
8

λ(2e1 − 2e2)− 1
8

λ2e1
)

+
1
8

(
1
8
(e1 − e2) +

1
8

2e1 +
1
8
(2e1 − 2e2)− 1

8
λ2e2

)
+

1
8

(
1
8
(e1 + e2) +

1
8
(2e1 + 2e2) +

1
8

2e1 +
1
8

2e2
)

= −6λe1
16

+
6e1
16

+
e2
16

− λe2
16

In what follows we assume that 2e2 − e1 ≥ 0 which means that e1 − 2e2 < 0 (the result is

symmetric if one assumes the reverse).
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U(B4|A4) =
1
2

(
1
4

µ(e1) +
1
4

µ(−e1) +
1
4

µ(e2) +
1
4

µ(−e2)
)

+
1
8

(
1
4

µ(−e2) +
1
4

µ(−2e1 − e2) +
1
4

µ(−e1) +
1
4

µ(−2e2 − e1)
)

+
1
8

(
1
4

µ(e2) +
1
4

µ(−2e1 + e2) +
1
4

µ(2e2 − e1) +
1
4

µ(−e1)
)

+
1
8

(
1
4

µ(2e1 − e2) +
1
4

µ(−e2) +
1
4

µ(e1) +
1
4

µ(e1 − 2e2)
)

+
1
8

(
1
4

µ(2e1 + e2) +
1
4

µ(e2) +
1
4

µ(e1 + 2e2) +
1
4

µ(e1)
)

=
1
2

(
1
4

e1 − 1
4

λe1 +
1
4

e2 − 1
4

λe2
)

+
1
8

(
−1

4
λe2 − 1

4
λ(2e1 + e2)− 1

4
λe1 − 1

4
λ(2e2 + e1)

)
+

1
8

(
1
4

e2 − 1
4

λ(2e1 − e2) +
1
4
(2e2 − e1)− 1

4
λe1
)

+
1
8

(
1
4
(2e1 − e2)− 1

4
λe2 +

1
4

e1 − 1
4

λ(2e2 − e1)
)

+
1
8

(
1
4
(2e1 + e2) +

1
4

e2 +
1
4
(e1 + 2e2) +

1
4

e1
)

=
10e1
32

+
10e2
32

− 10λe1
32

− 10λe2
32
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U(A4|B4) =
1
4

(
1
2

µ(−e1) +
1
8

µ(e2) +
1
8

µ(−e2) +
1
8

µ(e2 − 2e1) +
1
8

µ(−2e1 − e2)
)

+
1
4

(
1
2

µ(e1) +
1
8

µ(e2 + 2e1) +
1
8

µ(2e1 − e2) +
1
8

µ(e2) +
1
8

µ(−e2)
)

+
1
4

(
1
2

µ(−e2) +
1
8

µ(e1) +
1
8

µ(e1 − 2e2) +
1
8

µ(−e1) +
1
8

µ(−e1 − 2e2)
)

+
1
4

(
1
2

µ(e2) +
1
8

µ(e1 + 2e2) +
1
8

µ(e1) +
1
8

µ(−e1 + 2e2) +
1
8

µ(−e1)
)

=
1
4

(
1
2

λe1 +
1
8

e2 − 1
8

λe2 − 1
8

λ(2e1 − e2)− 1
8

λ(2e1 + e2)
)

+
1
4

(
1
2

e1 +
1
8
(e2 + 2e1) +

1
8
(2e1 − e2) +

1
8
(e2)− 1

8
λe2
)

+
1
4

(
−1

2
λe2 +

1
8
(e1)− 1

8
λ(2e2 − e1)− 1

8
λe1 − 1

8
λ(e1 + 2e2)

)
+

1
4

(
1
2

e2 +
1
8
(e1 + 2e2) +

1
8

e1 +
1
8
(−e1 + 2e2)− 1

8
λe1
)

=
10e1
32

+
10e2
32

− 10λe1
32

− 10λe2
32

Combining the relations together we get that both lotteries A4 and B4 are personal equilibria

when it holds that:

U(A4|A4) ≥ U(B4|A4)

and

U(B4|B4) ≥ U(A4|B4)

condition which is satisfied whenever λ > 1. Therefore, the preferred personal equilibrium would

predict that the decision maker prefers lottery A4, since U(A4|A4) > U(B4|B4) whenever λ > 1,

and therefore, CPE and PPE yield the same prediction.
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Appendix D Tasks from Bleichrodt and van Bruggen (2022)

Order Task Risk Apportionment Option Reverse Option

1 [4, 11 + [3, -3]] [11, 4 + [3, -3]]
2 [3, 9 + [2, -2]] [9, 3 + [2, -2]]
3 [5, 8 + [4, -4]] [8, 5 + [4, -4]]
4 [5, 10 + [3, -3]] [10, 5 + [3, -3]]
5 [3, 8 + [1, -1]] [8, 3 + [1, -1]]

3 6 [5, 9 + [4, -4]] [9, 5 + [4, -4]]
7 [6, 12 + [5, -5]] [12, 6 + [5, -5]]
8 [6, 10 + [5, -5]] [10, 6 + [5, -5]]
9 [5, 10 + [4, -4]] [10, 5 + [4, -4]]
10 [4, 6 + [3, -3]] [6, 4 + [3, -3]]
11 [2, 6 + [1, -1]] [6, 2 + [1, -1]]
12 [3, 6 + [2, -2]] [6, 3 + [2, -2]]

1 7 + [[2,-2],[4,-4]] 7 + [0,[2,-2] + [4,-4]]
2 7 + [[3,-3],[3,-3]] 7 + [0,[3,-3] + [3,-3]]
3 5 + [[1,-1],[2,-2]] 5 + [0,[1,-1] + [2,-2]]
4 5 + [[1,-1],[3,-3]] 5 + [0,[1,-1] + [3,-3]]
5 8 + [[2,-2],[3,-3]] 8 + [0,[2,-2] + [3,-3]]

4 6 9 + [[2,-2],[6,-6]] 9 + [0,[2,-2] + [6,-6]]
7 8 + [[3,-3],[4,-4]] 8 + [0,[3,-3] + [4,-4]]
8 8 + [[2,-2],[5,-5]] 8 + [0,[2,-2] + [5,-5]]
9 10 + [[3, -3], [6, -6]] 10 + [0, [3, -3] + [6, -6]]
10 10 + [[4, -4], [5, -5]] 10 + [0, [4, -4] + [5, -5]]
11 8 + [[1,-1],[6,-6]] 8 + [0,[1,-1] + [6,-6]]
12 5 + [[2,-2],[2,-2]] 5 + [0,[2,-2] + [2,-2]]

Table D.1: Tasks used in the 50-50 Gains treatment.
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Order Task Risk Apportionment Option Reverse Option

1 (0.14: [20, 50 + [15, -15]], 0.86: 1) (0.14: [50, 20 + [15, -15]],0.86:1)
2 (0.16: [22, 80 + [16, -16]], 0.84: 1) (0.16: [80, 22 + [16, -16]],0.84:1)
3 (0.18: [30, 70 + [25, -25]], 0.82: 1) (0.18: [70, 30 + [25, -25]],0.82:1)
4 (0.10: [30, 60 + [24, -24]], 0.90: 2) (0.10: [60, 30 + [24, -24]],0.90:2)
5 (0.10: [54, 96 + [50, -50]], 0.90: 2) (0.10: [96, 54 + [50, -50]],0.90:2)

3 6 (0.08: [60, 100 + [46, -46]], 0.92: 1) (0.08: [100, 60 + [46, -46]], 0.92: 1)
7 (0.06: [42, 88 + [38, -38]], 0.94: 2) (0.06: [88, 42 + [38, -38]], 0.94: 2)
8 (0.04: [34, 64 + [20, -20]], 0.96: 2) (0.04: [64, 34 + [20, -20]], 0.96: 2)
9 (0.04: [60, 125 + [45, -45]], 0.96: 2) (0.04: [125, 60 + [45, -45]], 0.96: 2)
10 (0.02: [55, 150 + [30, -30]], 0.98: 2) (0.02: [150, 55 + [30, -30]], 0.98: 2)
11 (0.20: [40, 60 + [28, -28]], 0.80: 1) (0.20: [60, 40 + [28, -28]], 0.80: 1)
12 (0.12: [44, 75 + [32, -32]], 0.88: 1) (0.12: [75, 44 + [32, -32]], 0.88: 1)

1 (0.08: 70 + [[20, -20], [45, -45]], 0.92: 1) (0.08: 70 + [0, [20, -20] + [45, -45]], 0.92: 1)
2 (0.10: 70 + [[28, -28], [30, -30]], 0.90: 2) (0.10: 70 + [0, [28, -28] + [30, -30]], 0.90: 2)
3 (0.10: 65 + [[24, -24], [36, -36]], 0.90: 2) (0.10: 65 + [0, [24, -24] + [36, -36]], 0.90: 2)
4 (0.12: 32 + [[14, -14], [14, -14]], 0.88: 2) (0.12: 32 + [0, [14, -14] + [14, -14]], 0.88: 2)
5 (0.12: 60 + [[22, -22], [26, -26]], 0.88: 2) (0.12: 60 + [0, [22, -22] + [26, -26]], 0.88: 2)

4 6 (0.14: 75 + [[25, -25], [30, -30]], 0.86: 1) (0.14: 75 + [0, [25, -25] + [30, -30]], 0.86: 1)
7 (0.16: 35 + [[10, -10], [20, -20]], 0.84: 1) (0.16: 35 + [0, [10, -10] + [20, -20]], 0.84: 1)
8 (0.06: 100 + [[30, -30], [50, -50]], 0.94: 1) (0.06: 100 + [0, [30, -30] + [50, -50]], 0.94: 1)
9 (0.04: 85 + [[34, -34], [40, -40]], 0.96: 2) (0.04: 85 + [0, [34, -34] + [40, -40]], 0.96)
10 (0.02: 68 + [[18, -18], [42, -42]], 0.98: 1) (0.02: 68 + [0, [18, -18] + [42, -42]], 0.98: 1)
11 (0.20: 55 + [[5, -5], [38, -38]], 0.80: 1) (0.20: 55 + [0, [5, -5] + [38, -38]], 0.80: 1)
12 (0.08: 58 + [[14, -14], [34, -34]], 0.92: 2) (0.08: 58 + [0, [14, -14] + [34, -34]], 0.92: 2)

Table D.2: Tasks used in the Small Probabilities Gains treatment.
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Appendix E Tasks from Ebert and Weisen (2014).

B2

1
2 −10

1
2

−5
A2

1
2 −10 − 5 + mRA

1
2

mRA

Risk Aversion

with endowment x = 25.

B3

1
2 ε̃1

1
2

−5
A3

1
2 −5 + ε̃1 + mPR

1
2

mPR

Prudence

with different zero-mean risks ε̃ for tasks PR1, PR2 and PR3, i.e. ε̃1 = [0.5, 7; 0.5,−7] for PR1,

ε̃1 = [0.8, 3.5; 0.2,−14] for PR2, and ε̃1 = [0.8,−3.5; 0.2, 14] for PR3, as well as x = 20 for all tasks.

B4

1
2 ε̃1

1
2

ε̃2

A4

1
2 ε̃1 + ε̃2 + mTE

1
2

mTE

Temperance

with different zero-mean risks ε̃1 and ε̃2 for tasks TE1 and TE2, i.e. ε̃1 = [0.5, 7; 0.5,−7],

ε̃2 = [0.5, 3.5; 0.5,−3.5 for TE1, and ε̃1 = [0.8,−2.8; 0.2, 11.1], ε̃2 = [0.8, 2.8; 0.2,−11.1] for TE2,

as well as x = 17.5 for both tasks.

There were four grids with four different ranges (i) [−2.5, 2.25] and (ii) [−0.5, 4.25] both with

an increment of 0.25, as well as (iii) [−5, 4.5] and (iv) [−3, 6.5] with an increment of 0.50. Heinrich

and Mayrhofer (2018) used only grids (i) and (ii).
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