L1SAScore: Exploring Linear Sum Assignment on
BERTScore

Stephen Mander[0009-0005-8073-04101* 51\ Jegse Phillipg[0009—0001-8031-4864]

School of Computing and Communications, Lancaster University, UK
{s.mander3*, j.m.phillips}@lancaster.ac.uk

Abstract. Metrics play a crucial role in evaluating the performance of
machine learning models. In the context of Natural Language Processing
(NLP) tasks, such as text summarization and machine translation, Natu-
ral Language Generation (NLG) metrics such as BLEU and ROUGE have
been widely used. However, these metrics are based on n-gram matching
and do not capture the semantic similarity between the generated and
reference texts. To address this, BERTScore has emerged as a popular
evaluation metric that uses a pre-trained Large Language Model (LLM)
to measure semantic similarity between two sentences. Unlike n-gram-
based metrics, BERTScore uses the contextual and semantic embeddings
of words, allowing flexible semantic evaluation. We outline a number of
hypotheticals in which the dependence of BERTScore on token embed-
ding cosine similarity may be exploited. The comparative distribution
of BERTScores on a set of reference - prediction pairs mean that results
often scale differently with training to traditional metrics, which requires
more expertise when interpreting results.

In this paper, we demonstrate an improvement to BERTScore, using
accelerated Linear Sum Assignment approximations that reduce the
mean score while maintaining accuracy. Linear Sum Assignment allows
BERTScore to be more easily understood in the context of other NLG
metrics, by changing the distribution of the metric.

Keywords: NLG Metrics - BERTScore - Linear Sum Assignment

1 Introduction and Background

A variety of metrics are used for the evaluation of models performing NLG
tasks. The most common of which is BLEU [I0], a metric originally designed for
machine translation but frequently used in machine translation, summarisation,
and other NLG tasks. Other task-specific metrics are frequently used, such as
ROUGE [9] and METEOR [4] for summarisation. These metrics are largely based on
comparing a machine generated prediction text to a human-written reference text,
analysing the number of n-grams which match between the two texts. Although
these metrics use differing operations to provide a final score between 0 and
1, representing the similarity between the texts, they are all limited by their

* corresponding author

2 S. Mander, J. Phillips

reliance on n-gram matching. Where a machine may generate a sentence which
uses multiple words that are synonyms to that which a human may write, all of
these scores will be low, despite the sentiment of the sentences matching.

To address the issue of NLG metrics not recognising the sentiment of a
sentence, Zhang et al. [I3] propose BERTScore, which is a metric used to measure
the similarity between two pieces of text. BERTScore uses embeddings from an
LLM - the BERT (Bidirectional Encoder Representations from Transformers)
model - to capture the sentiment of words within a text before using a cosine
similarity matrix to compare texts. While this captures the sentiment of the texts
being compared, there are flaws in the methods used.

BERTScore may incorrectly give an overinflated score where repeated tokens
have similar latent embeddings, especially if a similar latent embedding is in the
other sequence accidentally. Such similarities may readily occur when decoding
and reencoding between tokenization schemes. Many tokenizers have conflicting
tokenization schemes, which may cause this. For example, the CLIP tokenizer [IT]
uses a padding token containing a zero, which clashes with the encoding of an
exclamation mark, causing it to look identical to a model.

Here are the steps involved in calculating BERTScore:

1. Tokenization: The input text is divided into individual tokens. Tokenization
is done using the WordPiece tokenizer, which breaks words into subwords
and assigns each subword a unique token.

2. Encoding: Each token is passed through a pre-trained model.

3. Similarity calculation: Encoded representations of the tokens are used to
calculate the similarity between the two pieces of text. BERTScore uses the
cosine similarity metric to measure the similarity between the vectors. The
maximum values are summed for each prediction and reference.

4. Aggregation: Finally, individual token similarities are aggregated to obtain
an overall similarity score. BERTScore uses a variant of the F1 score, called
the Precision-Recall-F1 (PRF) score, to combine token similarities. The
PRF score takes into account both precision (how many tokens are correctly
matched) and recall (how many tokens are missed).

In this paper, we generate latent embeddings and the token similarity matrix, as
in BERTScore, and use it to compare 5 approximations of Linear Sum Assignment.
Each approximiation is applied to the in generating the BERTScore metric, in
order to provide an improvement to the metric by reducing the mean score while
maintaining accuracy, making the results better reflective of the texts being
analysed.

2 Related Works

In 2020, BERTScore [I3] was introduced, which has since emerged as the predom-
inant metric for NLG based on large language models. Other similar LLM-based
metrics for NLG tasks include MoverScore [14], which focusses on the principle of
measuring semantic distance to improve the metric; and FrugalScore [5], which

Li1SAScore: Exploring Linear Sum Assignment on BERTScore 3

aims to minimise the environmental impact of BERTScore while maintaining
accuracy.

Since then, approaches like BARTScore [I2] have replicated the efficacy
achieved using different underlying models. Fig. 5 demonstrates the importance
of such work, showing that although we have used a range of different approaches,
some models are simply not suitable for some metric styles, as shown by the
use of the CLIPScore [6] methodology with the ALBERT model [8]. However
BARTpase, @ model which other metrics are using, performs lowest, illustrating
that poor scores may just mean that the end of text token is treated differently
in some models rather than being a primary indicator of poor performance.

CLIPScore makes use of the embedding of the final token in a sequence as a
summary of the semantics of a set of tokens. CLIPScore explicitly uses a pre-
trained CLIP model for a metric grounded in a visual domain. We deviate from
using the specific text encoder to instead apply the approach to the pretrained
models being tested.

3 Methods

3.1 Proof of concept

Fig. [1] plots the distribution of sequence lengths within the EN-DE dataset from
the larger WMT 2016 dataset [2]. In this work, two sequence lengths are tested:
128 and 384. Fig. [2] illustrates that padding to different lengths will significantly
increase the frequency of padding tokens. Repetition of tokens will be the test
used to illustrate how repeated tokens negatively affect BERTScore metric. For
this purpose, we disable the masking of padding tokens during calculation. This
allows us to simulate the cases where sequences have many repeated tokens
without having to generate out-of-distribution inputs.

Histogram of sentence lengths

120

= .
100 7

=3 Padding Length = 384
3 Padding Length = 128

500000

400000

300000

Frequency
Count
S
8

200000

100000

[

100 150 200 250
Sentence length

0.455 0.460 0.465 0.470 0.475 0.480 0.485

Fig. 1. A Histogram showing sequence 18- 2-
lengths in WMT 2016 dataset. From A showing the scores of DistilBERT in
this we derive using sequence lengths & perfect case, with the distributions of

of 128 and 384 as test cases for how Padding length 128 and 384 imposed

padding tokens skew BertScore over each other

4 S. Mander, J. Phillips

3.2 Linear Sum Assignment

The Linear Sum Assignment(LSA) problem is a combinatorial optimisation
problem that deals with finding the best assignment of a set of tasks to a set of
agents in such a way that the total cost or benefit is minimised or maximised.
The problem can be mathematically formulated as follows:

Given a similarity matrix S, where S;; represents the similarity between the
1th token in a reference sequence and the jth token in a prediction, the goal is to
find a permutation matrix P that maximises the objective function:

n n
maximize E E Si; Pij

i=1 j=1

where n is the number of assignments to make, which is equal to the minimum
of matrix width and matrix height. Subject to the constraints that each task is
assigned to exactly one agent, and each agent is assigned to exactly one task.
The rules that govern Linear Sum Assignment are as follows:

1. Each row and column of the matrix must contain exactly one assigned element
to ensure that each resource is assigned to exactly one task and vice versa.

2. No two assigned elements can be in the same row or column, to prevent
multiple resources from being assigned to the same task or multiple tasks
from being assigned to the same resource.

3. The assignment should be made in such a way that the sum of the assigned
elements is minimised or maximised, depending on the objective that is
defined based on the problem at hand.

To solve the Linear Sum Assignment problem, various algorithms can be
used, such as the Hungarian algorithm [7] or the auction algorithm [I]. These
algorithms efficiently find the optimal assignment by iteratively updating the
assignment matrix until the optimal solution is reached. However, in common
libraries, these methods are regularly CPU bound and can add an unreasonable
overhead if the accelerator has a high transfer latency.

In this paper, we have chosen the approximations detailed in Table [1| due to
the widespread use of accelerators in contemporary machine learning workflows.
Our source code for comparing these approximations is available online. E|

We detail whether these algorithms are suitable for gradient calculation. The
approaches employed in this study do not currently incorporate a gradient; as
we discuss in Section [f] integrating gradients is an avenue of future work that we
intend to consider. Instead of removing nonzero elements with a one-hot mask,
approaches like using Gumbel-Softmax could be used to maintain gradients while
yielding a one-hot output. This creates potential for use in a wider host of ML
applications.

Li1SAScore: Exploring Linear Sum Assignment on BERTScore 5

Table 1. Comparison of Methods.

Method Name

Can
have
gradient

Descriptor

Stock

X

The hungarian algorithm implemented in
DETR-style computer vision [3] applications
found in the scipy optimise library.

Row masking ap-
proach

A rework of the stock algorithm in Pytorch
that works by calculating the deltas between
the top values in each column of the tensor
Select the one with the largest delta and
mask the row corresponding to the highest
value. Repeat until all values are assigned.

Recursive approach
with Argmax

For a fixed number of iterations (optimally
around 6-8) add the delta of each value to
the highest other value in the row and col
umn, an auction style method that can main-
tain a gradient. Using argmax to select the
result.

Recursive approach
with TopK Filtering

Use “topk” to choose the best configuration
after the above steps. No guaranteed com-
pliance with LSA rules.

Aggressive Auction
with TopK Filtering

A more ruthlessly efficient version of the ini-
tial recursive method with the same argmax
column selection.

CLIPscore per model

Fig. 3. The distribution of CLIPScores per model. To be used as baseline evaluation
scores. Independent of the LSA algorithm and padding.

4 Results

To fully evaluate this effect, the baseline of CLIPScore [6] is used: the cosine
similarity of the latent embeddings of the "[EOT|" token in each sequence.
This score is not affected by LSA or the length of the sequence. It can be
concluded from Fig. [3] that the selected models have a wide range of performance
profiles in the chosen dataset, which is an indicator that our proposed method
applies evenly across the distribution. From Fig. [3} each model has a very unique

L A replication package containing the code we have used throughout this paper can
be found at anonymous.4open.science/r /LiSAScore-9330.

https://anonymous.4open.science/r/LiSAScore-9330/

6 S. Mander, J. Phillips

performance that does not change with other factors. The expectation is therefore
that LiSAscore created a figure with sufficient fidelity to be able to identify a
model by performance. We would therefore expect the violin plot of each LSA
approach to have many individual peaks in the best case. As each plot represents
the outputs from all models and each has a unique profile in this domain, the
models’ performance should be visible within the plot of all runs.

F1 score per model

Fig. 4. F1 Scores grouped my model used across all runs.

F1score per LSA Algorithm

K900

¢
o
\ 4

Fig. 5. F1 scores across all runs grouped by algorithm. Notable for numbers of visible
peaks in each violin-plot

When comparing Fig. [5] to Fig. [with the baseline in Fig. [3] we conclude that
the use of LSA is much more granular and sensitive to hyperparameters. LSA
algorithm “Accelerator Approximation”, which represents the accelerator-based
row masking approach as detailed in Table[I] shows five distinct and evenly spaced
regions, which correspond to the models CLIPScores. It can be seen in Fig. |5l that
runs without LSA have comparatively few peaks and troughs, meaning that it is
not as good an indicator of performance as CLIPScore and may be overly sensitive
to many tokens. A key observation of Fig. [fis that recursive algorithms accentuate
the distinction between good and bad, but appear to be poor representations of
which model was used. As improving interpretability is a key goal, this makes
the recursive family of approximations offer a significant advancement: Allowing
the optimum case to be isolated irrespective of performance. The increased
distance and reduced variance in each peak is alteration of the score matrix as
a solution is iterated toward, which is demonstrated in the following example
in Fig. [7] and Fig. [6] This phenomenon is caused by recursive approximations
assigning extreme values rather than strict adherence to the governing principles
of LSA. The magnitude increase of values used in the set of recursive algorithms

Li1SAScore: Exploring Linear Sum Assignment on BERTScore 7

is demonstrably effective for evaluation metrics based on the distance between
good and bad samples.

2500 @ perfect_match = True
17.5 4 [perfect_match = False

15.0 2000

1500 4

Count

=

=3

5
Count

1000 4

501 500 - I—
251 -
[perfect_match = False
|
0.1 0.2

3 perfect_match = True "]
03 0.4 0.5 0.6 0.7

0.0

0.982 0.983 0.984 0.985 0.986 0.987

Fig. 7. The comparative F1 scores of posi-
tive and in-batch negative sequence gener-
ated with XLM-RoBERTa with a recursive
LSA approach

Fig. 6. The F1 scores of positive and in-
batch negative sequence generated with
XLM-RoBERTa without LSA

An initial comparison of Fig. [f]and Fig. [7] shows the proportional difference in
the resultant scores produced. The new results are significantly more meaningful
to users, demonstrated using the recursive function with Argmax for LSA. Taking
into account the inclusion of the data in Fig.[7] this shows that our improvement
is well emphasised by the difference in model performance. In the baseline of
Fig. [6] we can show that the difference between sequences and in-batch negatives
is very minimal using BERTScore. By contrast, using Linear Sum Assignment,
although both scores are reduced, the difference between positive and negative
samples is significantly more pronounced, both in absolute and relative terms.

5 Conclusion

We have shown that implementing Linear Sum Assignment in BERTScore in place
of a maximal value selection improves usability as a metric, as demonstrated
across many pre-trained models. Our approach minimises the risks and errors
posed by repeated tokens in the input or prediction sequence.

We show that using the Linear Sum Assignment algorithms provides a signifi-
cant increase in usability and conformity with other metrics. We have demon-
strated that using Linear Sum Assignment increases the metric distance between
different perturbations sufficiently so that individual permutations form distinct
clusters. We have also outlined how different approximations using recursive algo-
rithms behave differently for this usage, which may have significant implications
for future work. From this work, there is a clear recommendation that recursive
approximations are used to emphasise the correct or incorrect behaviour of a

8 S. Mander, J. Phillips

model, where stock implementations and nearby approximations offer a more
stable metric for all use cases.

We recommend further exploration of the comparative strength of LISAScore
compared to other model-based scoring with respect to known edge cases. We
consider this work to be foundational for further exploration of these metrics as
part of gradient descent training.

6 Future Works

Although this paper primarily provides an improvement in the metric, the greatest
result is a family of algorithms that can now maintain a gradient.

At current, to perform a contrastive loss, the padding tokens must be kept,
to maintain equal sequence lengths, and masked. Whether they are masked or
not, they are likely to dominate the result of any contrastive loss. The concept
of contrastive loss here is juxtaposed with BERTScore’s objective is to have a
metric that is tolerant to deviating word order. More research is required on
the performance of L1ISAScore within summarization tasks, where sequence
lengths may have significant imbalance. In such a case, L1ISAScore forces only
the minimum sequence length of tokens to be selected, which may have a positive
effect on the scores and punish excessively short summaries. Without LSA, the
selection of tokens in the output sequence is predominantly biased to match
against every token in the input sequence. The frequency of stop words and
vague statements can be gamified to fool these metrics. By using Linear Sum
Assignment with other methods like IDF scaling, the counting imbalance between
the two sequences of differing lengths can be minimised.

Limitations

During the implementation of these methods, we iterate over the batch dimension,
using a simple for loop. There is much potential to massively reduce the cost
of this by batching the operations, as most take place over a fixed step count,
and further optimisations are readily findable. Such optimisations are regrettably
outside the scope of these findings and can be implemented upon acceptance of
this concept.

We also acknowledge the limitations of storage space and available hardware
for the tests, which meant replication across other datasets and tasks has been
limited, although rudimentary experimentation suggests that other datasets
would offer concurrent results.

Ethics Statement

The primary ethical considerations for this document are the environmental
impact of the use of LLMs and the provenance of the data we have used. Although
any use of LLMs has a measurable environmental impact, we have made every

Li1SAScore: Exploring Linear Sum Assignment on BERTScore 9

effort to reduce this impact. In total, we conducted 336 runs of our experiment,
totalling 17 days of compute time. To ensure that our experiment is as replicable
as possible, we used the EN-DE dataset from the larger WMT 2016 dataset [2] -
which contains well-documented and publicly available data.

Acknowledgements

We would like to express our gratitude to the HPC offerings at Lancaster Univer-
sity, especially the multi-node cluster of the UCREL NLP-Group.

1]
2]

4]

(6]
7]
8]

[10]

Bibliography

Bertsekas, D.: New auction algorithms for the assignment problem and
extensions. Results in Control and Optimization 14, 100383 (2024)

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck,
M., Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Névéol,
A., Neves, M., Popel, M., Post, M., Rubino, R., Scarton, C., Specia, L.,
Turchi, M., Verspoor, K., Zampieri, M.: Findings of the 2016 conference on
machine translation. In: Bojar, O., Buck, C., Chatterjee, R., Federmann,
C., Guillou, L., Haddow, B., Huck, M., Yepes, A.J., Névéol, A., Neves, M.,
Pecina, P., Popel, M., Koehn, P., Monz, C., Negri, M., Post, M., Specia,
L., Verspoor, K., Tiedemann, J., Turchi, M. (eds.) Proceedings of the First
Conference on Machine Translation: Volume 2, Shared Task Papers. pp.
131-198. Association for Computational Linguistics, Berlin, Germany (Aug
2016). https://doi.org/10.18653/v1/W16-2301} https://aclanthology.org/
W16-2301

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S.: End-to-end object detection with transformers. In: European conference
on computer vision. pp. 213-229. Springer (2020)

Denkowski, M., Lavie, A.: Meteor universal: Language specific translation
evaluation for any target language. In: Bojar, O., Buck, C., Federmann, C.,
Haddow, B., Koehn, P., Monz, C., Post, M., Specia, L. (eds.) Proceedings
of the Ninth Workshop on Statistical Machine Translation. pp. 376-380.
Association for Computational Linguistics, Baltimore, Maryland, USA (Jun
2014). https://doi.org/10.3115/v1/W14-3348, https://aclanthology.org/
W14-3348

Eddine, M.K., Shang, G., Tixier, A.J.P., Vazirgiannis, M.: Frugalscore:
Learning cheaper, lighter and faster evaluation metricsfor automatic text
generation. arXiv preprint arXiv:2110.08559 (2021)

Hessel, J., Holtzman, A., Forbes, M., Bras, R.L., Choi, Y.: Clipscore: A
reference-free evaluation metric for image captioning. In: EMNLP (2021)
Kuhn, H-W.: The hungarian method for the assignment problem. Naval
research logistics quarterly 2(1-2), 83-97 (1955)

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert:
A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942 (2019)

Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries. In:
Text Summarization Branches Out. pp. 74-81. Association for Computa-
tional Linguistics, Barcelona, Spain (Jul 2004), https://aclanthology.org/
Wo4-1013

Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for
automatic evaluation of machine translation. In: Isabelle, P., Char-
niak, E., Lin, D. (eds.) Proceedings of the 40th Annual Meeting of

https://doi.org/10.18653/v1/W16-2301
https://aclanthology.org/W16-2301
https://aclanthology.org/W16-2301
https://doi.org/10.3115/v1/W14-3348
https://aclanthology.org/W14-3348
https://aclanthology.org/W14-3348
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013

[11]

[12]

[13]

[14]

LiSAScore: Exploring Linear Sum Assignment on BERTScore 11

the Association for Computational Linguistics. pp. 311-318. Associa-
tion for Computational Linguistics, Philadelphia, Pennsylvania, USA (Jul
2002). https://doi.org/10.3115/1073083.1073135, https://aclanthology!
org/P02-1040

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable
visual models from natural language supervision. In: International conference
on machine learning. pp. 8748-8763. PMLR (2021)

Yuan, W., Neubig, G., Liu, P.: Bartscore: Evaluating generated text as
text generation. Advances in Neural Information Processing Systems 34,
27263-27277 (2021)

Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Eval-
uating text generation with bert. In: International Conference on Learning
Representations (2020)

Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: Moverscore:
Text generation evaluating with contextualized embeddings and earth mover
distance. arXiv preprint arXiv:1909.02622 (2019)

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040

	LiSAScore: Exploring Linear Sum Assignment on BertScore

