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Abstract 34 
 35 

Accurate measurements of glycaemic control and the underpinning regulatory mechanisms 36 
are vital in human physiology research. Glycaemic control is the maintenance of blood 37 
glucose concentrations within optimal levels and is governed by physiological variables 38 
including insulin sensitivity, glucose tolerance and β-cell function. These can be measured 39 
with a plethora of methods, all with their own benefits and limitations. Deciding on the best 40 
method to use is challenging and depends on the specific research question(s). This review 41 
therefore discusses the theory and procedure, validity and reliability and any special 42 
considerations of a range common methods used to measure glycaemic control, insulin 43 
sensitivity, glucose tolerance and β-cell function. Methods reviewed include, HbA1c, 44 
continuous glucose monitors, oral glucose tolerance tests, mixed meal tolerance tests, 45 
hyperinsulinaemic euglycaemic clamp, hyperglycaemic clamp, intravenous glucose 46 
tolerance test, and indices derived from both fasting concentrations and the oral glucose 47 
tolerance test. This review aims to help direct understanding, assessment, and decisions 48 
regarding which method to use based on specific physiology related research questions.  49 

Introduction 50 
 51 

Glycaemic control is the maintenance of blood glucose concentrations within optimal levels  52 
and measurements of glycaemic control are typically used within clinical environments for 53 
diagnostic purposes (Perlmuter et al., 2008). Maintaining glycaemic control within optimal 54 
levels helps reduce the risk of secondary complications, making it an important clinical 55 
measure (Perlmuter et al., 2008). It can be measured from glycosylated haemoglobin 56 
(HbA1c), continuous glucose monitors (CGMs), finger-prick blood glucose monitoring, oral 57 
glucose tolerance tests and mixed meal tolerance tests (American Diabetes Association 58 
Professional Practice Committee, 2022). Glycaemic control measurements do not, however, 59 
explain the physiology underlying the maintenance of euglycaemia or dysglycaemia. 60 
Physiological factors associated with glycaemic control include, but are not limited to insulin 61 
sensitivity, β-cell function, and glucose tolerance. 62 

Methods to measure glycaemic control, alongside methods to measure the associated 63 
physiology preceding abnormalities in glycaemic control are discussed. This includes 64 
methods to measure insulin sensitivity, glucose tolerance, and β-cell function. This review 65 
will consider the theory and procedure, the validity and reliability and any special 66 
considerations for each of the following methods, HbA1c, continuous glucose monitors, oral 67 
glucose tolerance test, mixed meal tolerance test, hyperinsulinaemic euglycaemic clamp, 68 
hyperglycaemic clamp, intravenous glucose tolerance test, and indices derived from both 69 
fasting concentrations and the oral glucose tolerance test. 70 

 71 

 72 
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 74 

 75 

Methods to Measure Glycaemic Control  76 



Glycaemic control, the maintenance of optimal blood glucose levels, is typically measured by 77 
HbA1c, regular blood glucose sampling, continuous glucose monitors, oral glucose tolerance 78 
tests (OGTT) or mixed meal tolerance tests. 79 

1. HbA1c 80 
a. Theory and procedure 81 

HbA1c is often used as a measurement in clinical environments for diagnosis and prognosis, 82 
and has previously been reviewed in detail for clinical populations (American Diabetes 83 
Association Professional Practice Committee, 2022). In research, it can be useful for 84 
measuring treatment effects, trends over time, in epidemiological studies or for comparison 85 
between different populations (Nathan et al., 2007). HbA1c is thought to be the gold 86 
standard for measuring glycaemic control and assessing outcomes in diabetes 87 
(Chehregosha et al., 2019). Haemoglobin has a 120-day lifespan and glycated haemoglobin 88 
(HbA1c) occurs due to the irreversible binding of glucose to haemoglobin (Nathan et al., 89 
2007). Measurements of HbA1c therefore reflect mean blood glucose concentrations for the 90 
8-12 weeks prior (Nathan et al., 2007). HbA1c can be measured from a single blood sample 91 
via an assay (American Diabetes Association Professional Practice Committee, 2022).  92 

b. Validity and Reliability 93 

The logical validity of HbA1c is high as the irreversible binding of glucose to haemoglobin 94 
allows HbA1c to act as a cumulative measure of blood glucose concentration for the 95 
preceding 8-12 weeks (Chehregosha et al., 2019). Due to the representation of mean blood 96 
glucose concentration over the period, variability is reduced in comparison to fasting plasma 97 
glucose (Owora, 2018). At the current diagnosis threshold for type 2 diabetes (≥6.5%, 48 98 
mmol/mol), HbA1c has shown poorer sensitivity and higher specificity for discriminating type 99 
2 diabetes for individuals previously undiagnosed, with 60% of individuals remaining 100 
undiagnosed when compared with oral glucose tolerance test diagnosis (Kaur et al., 2020; 101 
Pajunen et al., 2011). HbA1c has shown to be a strong predictor of outcomes when 102 
measured close to diagnosis (Laiteerapong et al., 2019). Evidence suggests HbA1c has 103 
poor reproducibility (intraclass correlation coefficient = 0.35) in normoglycaemic individuals 104 
(Simon et al., 1999). 105 

c. Special considerations 106 

HbA1c cannot measure glycaemic variability or acute glycaemic events which often correlate 107 
with symptoms from diabetes (American Diabetes Association Professional Practice 108 
Committee, 2022). The accuracy of the HbA1c measurement depends on the accuracy of 109 
the assay used, with a number of assays certified (American Diabetes Association 110 
Professional Practice Committee, 2022). Consideration needs to be taken for individuals that 111 
might be anaemic and other diseases associated with a loss of erythrocytes or an inability of 112 
haemoglobin to bind to glucose (American Diabetes Association Professional Practice 113 
Committee, 2022). Differences in the mean age of red blood cells contributes to variability 114 
between HbA1c measures (Cohen et al., 2008). HbA1c is also known to increase with age in 115 
normoglycaemia and differ between ethnic populations, and therefore comparison between 116 
different age groups and ethnic populations requires additional consideration (Owora, 2018). 117 

 118 

 119 

2. Continuous glucose monitoring 120 
a. Theory and procedure 121 



Continuous glucose monitors (CGMs), as shown in figure 1, measure glucose 122 
concentrations from interstitial fluid using electro-chemical technology to assess glycaemic 123 
control (Davison et al., 2022). CGMs allow “free-living” glycaemia to be recorded throughout 124 
the day and night (Lee et al., 2021). Measurements are recorded every 1-15 minutes and 125 
are stored immediately on the receiver or mobile application for later extraction and 126 
processing (Bergenstal, 2018). In addition to mean glucose, calculations can also be carried 127 
out to provide additional insight on overall glycaemic control, such as glycaemic variability 128 
and the amplitude of glycaemic variability, the J-Index (based on mean and SD of all glucose 129 
values), glucose management indicator (GMI) and time in range (3.9 – 10 mmol/L (70-180 130 
mg/d)) (Bergenstal, 2018). 131 

 132 

 133 

 134 

Figure 1 – A continuous glucose monitor used within a research setting. The CGM is 135 
fitted to a participant on the lateral abdomen or posterior upper arm. Recordings are stored 136 
on the receiver device. Once the research period concludes, the data are exported from the 137 

receiver for collation in excel or similar. 138 

 139 

b. Validity and reliability 140 

The logical validity of CGMs for measuring glycaemic control is high with blood glucose 141 
concentration measured at regular intervals. Glucose measurements are, however, sampled 142 
from interstitial fluid, which results in a physiological delay versus circulatory glucose 143 
concentrations (Sinha et al., 2017). Average lag time is reported as 5-6 minutes in healthy 144 
adults but has decreased in newer models with lag times as low as ~2 minutes (Alva et al., 145 
2023; Sinha et al., 2017).  146 

CGMs in normoglycaemic individuals show agreement with venous samples but accuracy of 147 
calculated measures of glycaemia and glycaemic variability deviated significantly, 148 
overestimating glycaemia during the day and underestimating glycaemic variability (Akintola 149 
et al., 2015). Accuracy of CGMs is acceptable for non-critically ill and critically ill inpatients, 150 
paediatric (4-5 year olds) and adults with type 1 and type 2 diabetes, with accuracy highest 151 
when glycaemic control is stable (Alva et al., 2023; Finn et al., 2023; Lindner et al., 2021). A 152 
recent meta-analysis, however, found poor accuracy for hypoglycaemia detection and 153 
therefore care should be taken when used in research where the detection of hypoglycaemia 154 
is important (Lindner et al., 2021). For measures of overall glycaemic control, an average of 155 
blood glucose concentration >26 days from CGMs has shown to correlate best with HbA1c 156 
(Tozzo et al., 2024).  157 

Bland-Altman analyses have shown CGMs underestimate the postprandial rise in glucose 158 
concentration for healthy individuals but overestimate plasma glucose during steady state 159 
exercise, specifically in women (Barua et al., 2022; Herrington et al., 2012). For accurate 160 
measurements of blood glucose concentration under these conditions, finger prick blood 161 
sampling may be superior. In a comparison of two of the most popular CGM brands, Abbott 162 
and Dexcom, within person and between sensor variation was high in individuals with type 2 163 
diabetes over a 3 month period, suggesting poor long term reliability (Selvin et al., 2023). 164 
This may be due to biological variation and differences in sensor technology (Selvin et al., 165 
2023). Inter-day variations are also poor for normoglycaemic, prediabetes and diabetes 166 



(Matabuena et al., 2023). Individuals with type 2 diabetes show least variation, thought to be 167 
due to poor adaption to functional changes (Matabuena et al., 2023). Further research is 168 
required on the reproducibility of CGMs. 169 

c. Special Considerations 170 

CGMs are useful for therapeutic use, determining the effect of an intervention on glycaemic 171 
control and are less invasive than regular finger prick blood samples. In research, it is 172 
recommended to calibrate CGMs with finger prick samples. Fitting requires a brief ~10-173 
minute visit to a lab and participant burden is relatively low. Participants are often required to 174 
wear the CGM for a long period (typically, 24hrs-2weeks) to provide an accurate 175 
representation of glycaemic control and this therefore increases participant burden.  176 

Medications and supplements, such as acetaminophen (paracetamol) and ascorbic acid 177 
(vitamin C), can interfere with the electrochemistry of CGMs and therefore must be 178 
controlled for appropriately (Heinemann, 2022). Cost and lifespan vary between brands, but 179 
systems typically require a sensor, transmitter and receiving device (or app). 180 

Investigations into the impact of visceral adiposity on the accuracy of CGM readings is 181 
limited but no association was observed between participant characteristics (body mass 182 
index (BMI), sex, and mean age) and pooled sensitivity and specificity in a meta-analysis 183 
(Lindner et al., 2021). No differences were also found between body composition or the 184 
location of sensor insertion (arm vs abdomen) on device accuracy (Abraham et al., 2023; 185 
Steineck et al., 2019).  186 

3. Oral Glucose Tolerance Test 187 
a. Theory and Procedure 188 

An oral glucose tolerance test (OGTT), as shown in figure 2, assesses an individual’s ability 189 
to process a large glucose load (Jagannathan et al., 2020). OGTTs are clinically used to 190 
diagnose glucose intolerance, or in research settings to assess glucose handling, insulin 191 
sensitivity and β-cell function, both typically estimated from indices (Hannon et al., 2018; 192 
Muniyappa et al., 2008). Following an overnight fast, for a standard clinical OGTT, 193 
participants consume a glucose load (75g dextrose in 300ml water) with blood samples 194 
taken every 30 minutes for the subsequent 2hrs (Stumvoll et al., 2000). Variations of the test 195 
during research, however, include different glucose doses (50-100g), different sampling 196 
periods and administration methods (Jagannathan et al., 2020). Blood glucose 197 
concentrations can be analysed immediately or processed and stored for analysis along with 198 
insulin at a later date, typically via an enzyme-linked immunosorbent assay (ELISA) or 199 
radioimmunoassay (Matsuda & DeFronzo, 1999). Glucose and insulin concentrations can be 200 
plot at each time point, producing a curve to further understand an individual’s glycaemic 201 
control, glucose tolerance and insulin sensitivity (Jagannathan et al., 2020).  202 

 203 

Figure 2 – A summary of an oral glucose tolerance test (OGTT) or a mixed meal 204 
tolerance test (MMTT). The participant is seated in a comfortable semi-supine position, with 205 

their hand placed in a heated box. After 15 minutes, a retrograde cannula is placed in the 206 
dorsal surface of their hand and a fasting blood sample is taken. The participant then 207 

consumes a glucose load (75g dextrose in 300ml water) for an OGTT or a standardised 208 
meal for a MMTT and blood samples are taken regularly. From each of these samples, 209 

glucose is usually measured immediately, with plasma and serum extracted for later 210 



determination of insulin and any other analytes. A response curve is plot with the 211 
concentration at each time point.  212 

 213 

b. Validity and Reliability 214 

The OGTT activates a physiological response to a glycaemic load. This is more 215 
representative of continuously changing glycaemia and the negative feedback mechanisms 216 
between glucose and insulin postprandially (Otten et al., 2014). Time to peak glucose 217 
represents the ability of β-cells to secrete sufficient insulin quickly whereas 2hr glucose 218 
concentrations represent insulin action on glucose uptake to return to basal (Chung et al., 219 
2017). Development of changes to postprandial glycaemic control typically occur prior to 220 
changes in fasting blood glucose concentration (Jagannathan et al., 2020). The OGTT can 221 
therefore detect dysglycaemia more effectively than fasting measures (Jagannathan et al., 222 
2020). Direct measures of an individual’s glucose tolerance and glycaemic control can be 223 
made but whole body insulin sensitivity has to be estimated via insulin sensitivity indices 224 
(Otten et al., 2014). 225 

The OGTT can effectively differentiate between impaired glucose tolerance, diabetes, and 226 
normal glucose tolerance when 2hr post glucose values are compared and therefore 227 
indicates good construct validity (Bartoli et al., 2011). Test-retest reliability can be poor, 228 
particularly in individuals with impaired glucose metabolism (Gordon et al., 2011; Ko et al., 229 
1998). Reproducibility can be improved by following standardised protocols, and ensuring 230 
careful handling and analyses of samples (Ko et al., 1998).  Potential intra- and 231 
interindividual variability in OGTTs can be dictated by glucose absorption and the incretin 232 
response and therefore reproducibility needs to be considered (Hücking et al., 2008). 233 

c. Special Considerations 234 

The OGTT is less invasive, time consuming, and complex, reducing participant burden and 235 
increasing simplicity compared to glycaemic clamp methodologies and intravenous glucose 236 
tolerance tests (IVGTTs), discussed below. Glucose tolerance is tested under relatively 237 
comparable real world physiological conditions. This allows for measurement of dynamic 238 
changes in glucose and insulin concentrations (Hücking et al., 2008). Any samples obtained 239 
for analysis at a later date should be stored at ~≤-80°C to prevent degradation of analytes 240 
(Kong et al., 2017). 241 

OGTT methodologies differ, especially between those used in clinical and research settings. 242 
Evidence on the differences between using arterialised venous vs venous blood sampling to 243 
measure metabolites has been documented (Edinburgh et al., 2017). To allow for the less 244 
invasive collection of arterialised distal blood samples, participants can place their hand in a 245 
heated box (~41°C (Tam et al., 2012) ~ 15 minutes prior to samples being taken, and 246 
between sampling, to allow for arterialisation of the blood via arterial-venous shunting 247 
(Brooks et al., 1989). When comparing arterial venous and venous samples, arterial-venous 248 
blood samples (achieved by heating the hand to ~37degrees) have been shown to provide 249 
metabolite concentrations that are better estimates of arterial samples (Edinburgh et al., 250 
2017).  251 

Evidence on the impact of retrograde vs antegrade cannulation on differences in metabolites 252 
measured from either arterial-venous or venous blood samples is limited (McNair et al., 253 
1995; Rowe et al., 1994). Retrograde cannulation increases the rates of cannulation failure, 254 
is reported to be more painful by participants and when compared, antegrade vs retrograde 255 
cannulation did not alter the reproducibility of measurements taken from intravenous glucose 256 



tests (McNair et al., 1995; Rowe et al., 1994). To allow for comparisons between studies, 257 
essential reporting of the methods used is important but there is still no clear consensus of 258 
the specific method to be adopted. This is likely to depend on the population to be studied, 259 
for example retrograde cannulation is not recommended for children and other vulnerable 260 
populations, and the availability of specialist staff or equipment (Edinburgh et al., 2017). 261 

4. Mixed Meal Tolerance Test 262 
a. Theory and Procedure 263 

A mixed meal tolerance test (MMTT), as shown in figure 2, assesses an individual’s ability to 264 
process a meal (Brodovicz et al., 2011). This method has the greatest ecological validity, 265 
representative of daily life and the physiological processing of glucose. The methodology is 266 
similar to an OGTT, but assesses the impact of proteins and fat alongside glucose on 267 
glycaemic control, β-cell function, glucose tolerance and insulin sensitivity (Brodovicz et al., 268 
2011). Proteins, fat, and glucose all stimulate the incretin response involved in insulin 269 
secretion (Brodovicz et al., 2011). Differences have therefore been found in the β-cell 270 
function, and insulin and glucose concentrations determined between an OGTT and a mixed 271 
meal tolerance test (Brodovicz et al., 2011). The meal has not been standardised between 272 
studies but typically includes carbohydrates, fat, and protein, evidence of meals are provided 273 
in the following studies (Brodovicz et al., 2011; Rijkelijkhuizen et al., 2009; Shankar et al., 274 
2016). Samples are taken at regular time points for up to 5 hours (Shankar et al., 2016).  275 

The incremental area under the curve (iAUC) can be calculated to determine c-peptide, 276 
insulin and glucose responses (Kössler et al., 2021). β-cell function can be estimated from 277 
insulin or often, due to its secretion in equimolar concentration and limited hepatic clearance, 278 
c-peptide (Brodovicz et al., 2011). Indices to measure β-cell function include the 279 
insulinogenic index and the ratio of insulin to glucose AUC (Brodovicz et al., 2011; Shankar 280 
et al., 2016). Insulin sensitivity can be determined from insulin sensitivity indices, such as 281 
Matsuda and OGIS (Brodovicz et al., 2011; Rijkelijkhuizen et al., 2009). 282 

b. Validity and Reliability 283 

A mixed meal tolerance test is the most ecologically valid method for assessing glycaemic 284 
control, the effectiveness of β-cell secretion and estimating insulin sensitivity as it replicates 285 
the daily postprandial response (Brodovicz et al., 2011). 286 

The MMTT is able to discriminate differences in both β-cell function and insulin sensitivity 287 
across the metabolic spectrum from normal glucose tolerance to prediabetes and diabetes 288 
(Shankar et al., 2016). Moderate reproducibility of the mixed meal tolerance test has been 289 
reported, with reproducibility ranging from weak to strong in different populations, with the 290 
test weakly reproducible in individuals with type 2 diabetes (Shankar et al., 2016). 291 
Intraindividual coefficients of variation are comparable when liquid meals differing in 292 
nutritional content were compared (Kössler et al., 2021). Estimates of β-cell function are 293 
higher in a MMTT than an OGTT, thought to be explained by increased β-cell secretion 294 
during the MMTT (Rijkelijkhuizen et al., 2009).  295 

Equations such as AUC, Matsuda and Stumvoll methodologies, discussed in table 1, can 296 
estimate insulin sensitivity from the MMTT (Rijkelijkhuizen et al., 2009). The correlation 297 
between mixed meal tolerance test and oral glucose tolerance test derived indices is high 298 
(Rijkelijkhuizen et al., 2009). Frequently compared with the OGTT and associated indices, 299 
further research is required on the agreement of the MMTT with the gold standard 300 
hyperinsulinaemic euglycaemic and hyperglycaemic clamps. 301 

 302 



c. Special Considerations 303 

The mixed meal tolerance test has similar considerations to the OGTT. The test is less 304 
invasive and easier to perform than the gold standard measures of insulin sensitivity and β-305 
cell function, but is less controlled and cannot directly determine insulin sensitivity. A 306 
standardised test meal is not consistently used within research. Some use a liquid meal, 307 
others use a solid meal or a combination of both and the composition of branded nutritional 308 
meals is likely to change over time (Brodovicz et al., 2011; Shankar et al., 2016). The mixed 309 
meal tolerance test typically lasts ~4 hours with samples taken approximately every 30 310 
minutes but can vary (Brodovicz et al., 2011). Evidence on the validity and reliability of the 311 
mixed meal tolerance test in different ethnic groups is limited (Ladwa et al., 2021). 312 

 313 

Methods to measure the physiology underpinning glycaemic control. 314 
 315 

Impairments in insulin sensitivity, β-cell secretion and glucose tolerance occur significantly 316 
earlier than changes in glycaemic control (Kahn et al., 2014). Therefore, effective 317 
measurements of factors underpinning glycaemic control is important in physiology research 318 
for the understanding, prevention, and intervention of associated diseases.  319 

Insulin sensitivity is the effective metabolic action of the hormone insulin (Katz et al., 2000). 320 
The more insulin sensitive an individual is, the more effective their body is at physiologically 321 
disposing of glucose into tissue (Bird & Hawley, 2017). In clinical populations, impaired 322 
insulin sensitivity contributes to abnormal glycaemic control due to reduced whole body 323 
glucose uptake (Bird & Hawley, 2017). Insulin sensitivity can be measured directly by the 324 
hyperinsulinaemic euglycaemic clamp, which is the gold standard for measuring tissue 325 
insulin sensitivity (DeFronzo et al., 1979). Insulin sensitivity can also be estimated from the 326 
hyperglycaemic clamp, minimal model of the intravenous glucose tolerance test, insulin 327 
sensitivity indices calculated from the oral glucose tolerance test, mixed meal tolerance test, 328 
and fasting glucose and insulin concentrations. 329 

Glucose tolerance is the ability to return to euglycaemic concentrations after a perturbation 330 
(Ahrén, 2013). Impaired glucose tolerance, due to poor glucose disposal, can result in blood 331 
glucose concentrations remaining outside of euglycaemic levels for a prolonged period of 332 
time and this can contribute to abnormal glycaemic control observed in pre-diabetes (Ahrén, 333 
2013). Glucose tolerance can be measured from an intravenous glucose tolerance test 334 
(IVGTT), an oral glucose tolerance test (OGTT) or a mixed meal tolerance test (MMTT). 335 
Glucose tolerance tests, typically the OGTT, can be used for diagnosis of type 2 diabetes in 336 
clinical settings. Within research, these methods can be used to understand glucose 337 
tolerance directly and other factors indirectly, such as insulin sensitivity (Muniyappa et al., 338 
2008).  339 

β-cell function results from β-cell sensitivity to glucose, insulin secretion, and the effects of 340 
incretin hormones, requiring β-cells to effectively produce, store and secrete insulin to 341 
ensure euglycaemia is maintained (Hannon et al., 2018). Impairments in β-cell function 342 
reduce the effectiveness of insulin secretion resulting in hyperglycaemia. The 343 
hyperglycaemic clamp is the gold standard for the assessment of β-cell sensitivity to glucose 344 
(Hannon et al., 2018). The OGTT, IVGTT, and MMTT can also be used to assess β-cell 345 
function (Hannon et al., 2018). Alongside an assessment of β-cell function, a measure of 346 
insulin sensitivity needs to be incorporated to account for the hyperbolic relationship 347 



between insulin sensitivity and β-cell secretion (Hannon et al., 2018; Kahn, 2003). Both β-348 
cell dysfunction and decreased insulin sensitivity precede hyperglycaemia which can be 349 
measured from glycaemic control methods (Kahn, 2003). 350 

 351 

1. Hyperinsulinaemic Euglycaemic Clamp  352 
a. Theory and Procedure  353 

Hyperinsulinaemic euglycaemic clamps, as shown in figure 3, are the gold standard for 354 
estimating tissue insulin sensitivity and are reviewed extensively elsewhere (DeFronzo et al., 355 
1979; Heise et al., 2016; Uwaifo et al., 2002). In brief, the hyperinsulinaemic euglycaemic 356 
clamp involves the infusion of insulin to increase and maintain high plasma insulin 357 
concentrations, traditionally ~100 mIU/ml (DeFronzo et al., 1979). To reach the desired 358 
hyperinsulinaemic concentrations, a priming dose acutely raises plasma insulin 359 
concentrations (Picchini et al., 2005). Glucose concentration is held at basal levels (4-360 
6mmol/L (Davison et al., 2022)) by an additional variable glucose infusion, preventing 361 
hypoglycaemia (DeFronzo et al., 1979). The high insulin concentration aims to completely 362 
suppress hepatic glucose production so the only glucose available is from the exogenous 363 
supply. The glucose infusion rate required to maintain basal glucose concentrations is 364 
therefore representative of glucose disposal into tissue (DeFronzo et al., 1979). To estimate 365 
insulin sensitivity, the glucose disposal rate is typically normalised by body weight or fat-free 366 
mass (Muniyappa et al., 2008). 367 

The hyperinsulinaemic euglycaemic clamp can also be performed at different insulin doses 368 
in a single test (Sowell et al., 2003). The insulin infusion starts at the lowest dose and then 369 
increases to a higher dose at a specific time point (Sowell et al., 2003). A lower insulin 370 
infusion dose helps to determine insulin sensitivity whereas a higher insulin infusion dose 371 
can be useful to determine the maximal responsiveness of an individual to insulin (Sowell et 372 
al., 2003).   373 

 374 

Figure 3 – Hyperinsulinaemic euglycaemic clamp. A participant is seated in a semi-375 
supine position and their hand is placed in a heated box (~41°C (Tam et al., 2012)). On the 376 
opposite arm, insulin is infused at a high concentration along with glucose at a variable rate 377 
to maintain a stable glucose concentration (and a stable isotope if glucose uptake is to be 378 
traced). A cannula is inserted into a peripheral wrist vein and the lower arm is placed in a 379 

heated box (if arterialised samples are required) and frequent blood samples are taken every 380 
2-5 mins. The glucose concentration is analysed immediately to inform glucose infusion 381 

adjustments. Insulin concentrations can be later determined.  382 

 383 

b. Validity and Reliability  384 

The logical validity of this test is high as long as hepatic glucose production is sufficiently 385 
supressed by the continuous high dose insulin infusion (Tam et al., 2012). The variable 386 
glucose infusion rate to maintain basal concentrations therefore represents glucose uptake 387 
and utilisation reflective of insulin sensitivity (Tam et al., 2012). Hyperinsulinaemic 388 
euglycaemic clamps create highly standardised environments where differences in 389 
individuals can be detected with the highest sensitivity rather than replicating real-life 390 



physiological conditions. This, however, results in limited ecological validity (Heise et al., 391 
2016; Hücking et al., 2008).   392 

The hyperinsulinaemic euglycaemic clamp can successfully differentiate between 393 
normoglycaemic and individuals with diabetes and definitions of cut-off points for insulin 394 
resistance are previously described (Tam et al., 2012). The clamp has also shown to 395 
differentiate between obese and non-obese individuals, independent of age, indicated by 396 
reduced glucose infusion rates (Karakelides et al., 2010).  397 

The clamp is repeatable over both a shorter (3-4 weeks) and longer (~2.30 year) period in 398 
healthy adults (DeFronzo et al., 1979; James et al., 2020). Based on methods suggested by 399 
Bland and Altman, the intraindividual differences lay within the 95% limits of agreement and 400 
were smaller than the repeatability coefficient (±0.025), confirming the reproducibility of the 401 
test over the longer period (James et al., 2020).  402 

 403 

2. Hyperglycaemic Clamp 404 
a. Theory and Procedure  405 

Hyperglycaemic clamps, as shown in figure 4, are the gold standard method for estimating 406 
the function of β-cells (DeFronzo et al., 1979; Elahi, 1996; Uwaifo et al., 2002). Estimations 407 
of insulin sensitivity, glucose effectiveness and insulin clearance can also be made (Uwaifo 408 
et al., 2002). Participants are infused with a variable glucose concentration to maintain high 409 
plasma glucose concentrations (typically > ~6.9mmol/l (125mg/dl)) (DeFronzo et al., 1979). 410 
The aim of the high plasma glucose concentration is to activate insulin secretion which 411 
allows β-cell function to be assessed (DeFronzo et al., 1979).412 



In individuals with impaired glucose tolerance and decreased insulin sensitivity, impairments 413 
of insulin secretion in the first phase response can be detected in the early stages of the 414 
disease (Hannon et al., 2018). The hyperglycaemic clamp allows independent assessment 415 
of first and second phase insulin secretion to give a better understanding of the underlying 416 
physiology (DeFronzo et al., 1979). Tissue insulin sensitivity can also be estimated from the 417 
hyperglycaemic clamp, using the ratio of glucose metabolism to plasma insulin concentration 418 
or insulin sensitivity indices for example (DeFronzo et al., 1979; Elahi, 1996; Mitrakou et al., 419 
1992).  420 

 421 

Figure 4 – Hyperglycaemic clamp. A participant is seated in a semi-supine position and 422 
their hand is placed in a heated box (~41°C (Tam et al., 2012)). On the opposite arm, for a 423 

hyperglycaemic clamp, glucose is intravenously infused to maintain high glucose 424 
concentrations (along with a stable isotope if glucose uptake is to be traced). A cannula is 425 

inserted into a peripheral wrist vein and the lower arm is placed in a heated box (if 426 
arterialised samples are required) and frequent blood samples are taken every 2-5 mins. 427 

The glucose concentration is analysed immediately to inform glucose infusion adjustments. 428 
Insulin concentrations can be later determined.  429 

 430 

b. Validity and Reliability 431 

Hyperglycaemic clamps have high logical validity, aiming to stimulate and maintain a β-cell 432 
response by infusing a high concentration of glucose throughout the test (DeFronzo et al., 433 
1979; Meneilly & Elliott, 1998). When the same hyperglycaemic concentration is maintained, 434 
β-cell responses can be compared between populations (DeFronzo et al., 1979; Meneilly & 435 
Elliott, 1998).  The hyperglycaemic clamp has limited ecological validity due to the 436 
supraphysiological levels of glucose infused over a long period that do not represent daily 437 
life (Hücking et al., 2008).  438 

The hyperglycaemic clamp can accurately and reliably differentiate measures of β-cell 439 
function, insulin sensitivity and insulin clearance between individuals at different stages of 440 
the pathophysiological progression from normal glucose tolerance to impaired glucose 441 
tolerance and type 2 diabetes, along with youth and adult populations, and at a range of 442 
obesity (Hannon et al., 2018; Mather et al., 2021; Meneilly & Elliott, 1998). Test-retest 443 
reliability was high over a 3-4 week period (DeFronzo et al., 1979).  444 

Estimations of insulin sensitivity from the hyperglycaemic clamp have shown to correlate 445 
with direct measures of tissue sensitivity from the gold standard hyperinsulinaemic 446 
euglycaemic clamp (DeFronzo et al., 1979; Mitrakou et al., 1992). In children, the two 447 
clamps were significantly correlated for measures of insulin sensitivity but assumptions 448 
regarding equivalence could not be made (Uwaifo et al., 2002). 449 

c. Special Considerations of Glycaemic Clamps 450 

Despite glycaemic clamps being the gold standard method, the complexity of the methods, 451 
the availability of equipment, clinically trained staff support, and the cost of equipment make 452 
the methods logistically and practically challenging. Glycaemic clamps have a high 453 
participant burden due to the invasive nature, period of fasting prior (~12hrs) and time taken 454 
for the test to be carried out (≥3hrs) (DeFronzo et al., 1979; Tam et al., 2012). This makes 455 



them challenging to use in vulnerable or high-risk populations including children and 456 
adolescents and are never used for clinical purposes, only research.  457 

Careful consideration needs to be taken to determine the concentration and speed of 458 
infusate so that blood insulin and glucose levels do not significantly increase or decrease to 459 
harmful concentrations (DeFronzo et al., 1979).  In hyperinsulinaemic euglycaemic clamps, 460 
isotopic or radioactive tracers can be used to monitor the level of hepatic glucose production 461 
to ensure endogenous glucose production is completely suppressed (Heise et al., 2016). 462 
Mathematical methods to determine the contribution of endogenous glucose to glucose 463 
uptake by using tracers are discussed elsewhere (Finegood et al., 1987). Specific tracers 464 
can also provide additional evidence during clamps on metabolic pathways and the 465 
metabolic fate of a range of molecules, including glucose, fat, and protein metabolism (Brook 466 
& Wilkinson, 2020).   467 

The aim of clamp methodologies is to create highly standardised environments where 468 
differences in individuals can be detected with the highest sensitivity rather than replicating 469 
real-life physiological conditions (Heise et al., 2016). The clamp therefore does not take into 470 
consideration the dynamic relationship between insulin and glucose under normal 471 
physiological conditions (Heise et al., 2016). 472 

Hyperinsulinaemic euglycaemic and hyperglycaemic clamps are the most common 473 
examples of glycaemic clamps but other clamps are available to investigate different 474 
research questions, including hyperinsulinaemic-hypoglycaemic clamps, isoglycaemic 475 
clamps, and hyperinsulinaemic-hyperglycaemic clamps, among others (Fabricius et al., 476 
2021; MacLaren et al., 2011). 477 

3. Intravenous glucose tolerance test 478 
a. Theory and Procedure 479 

The intravenous glucose tolerance test (IVGTT), as shown in figure 5, allows glucose 480 
tolerance, β-cell function, and insulin sensitivity to be estimated from a singular test 481 
(Bergman, 2021; Bergman et al., 1979; Godsland et al., 2024). An IVGTT involves an 482 
intravenous glucose dose, typically 0.3, 0.5 or 1g per kg of body weight as a 20 - 50% 483 
glucose solution, injected over 1-3 minutes (Ahrén, 2013; Godsland et al., 2024). Both 484 
glucose and insulin plasma concentrations are sampled frequently post-infusion (typically, -485 
10minutes, -1minute, then for the first 30 minutes at 2-5minute intervals, 30-60minutes at 5-486 
10minute intervals, and > 60minutes at 30minute intervals (Ahrén, 2013; Bergman, 2021)). 487 
The test directly measures glucose tolerance, which is how effectively an individual 488 
processes the glucose infusion to return to fasting concentrations (Bergman et al., 1979).  489 

β-cell secretion can be estimated from the 10-minute period post glucose infusion (acute 490 
insulin response to glucose (AIRg)) (Godsland et al., 2024). C-peptide concentrations can 491 
also be measured to understand β-cell secretion during an IVGTT (Hannon et al., 2018). C-492 
peptide is secreted in equimolar concentrations to insulin but is not degraded by hepatic 493 
systems and can therefore reflect a more accurate measure of insulin secretion rates 494 
(Hannon et al., 2018).  495 

Insulin sensitivity can be estimated from the IVGTT (Bergman, 2021; Bergman et al., 1979). 496 
The minimal model is most commonly used, which estimates both glucose effectiveness 497 
(glucose kinetics at fasting insulin concentrations) and insulin sensitivity (the role of insulin 498 
on glucose kinetics) (Bergman, 2021; Bergman et al., 1979). The theory behind the minimal 499 
model links together the negative feedback loop of glucose and insulin into two separate 500 
subsystems, with insulin concentration as the input and glucose concentration as the output 501 



(Bergman et al., 1979).  The modified IVGTT includes an infusion of, most commonly insulin 502 
but also tolbutamide, 20 minutes post glucose injection to accurately measure insulin 503 
sensitivity in individuals with impaired insulin secretion (Bergman, 2021). 504 

 505 

Figure 5 – A summary of an intravenous glucose tolerance test (IGVTT). The participant 506 
is seated in a comfortable semi-supine position, with their hand placed in a heated box. After 507 

15 minutes, a retrograde cannula is placed in a peripheral wrist vein and a fasting blood 508 
sample is taken. The participant is then injected with a glucose load and blood samples are 509 

taken at regular intervals; a tracer can also be injected at this time point. For a modified 510 
IVGTT, an insulin dose is injected 20 minutes after the glucose load. From each of these 511 
samples, glucose is usually measured immediately, with plasma and serum extracted for 512 

later determination of insulin and any other analytes. The minimal model can then be used to 513 
estimate insulin sensitivity from the insulin and glucose concentrations.  514 

 515 

b. Validity and Reliability 516 

The logic behind the IVGTT is valid as a measured dose of glucose is infused with an 517 
assessment of how the individual responds to the perturbation (Bergman, 2021). Glucose 518 
tolerance is determined from the time taken to respond to the glucose load and return to 519 
euglycaemia. β-cell function can be determined from the acute first phase insulin (or c-520 
peptide) response as the glucose load stimulates β-cell secretion. The minimal model can 521 
estimate insulin sensitivity from the IVGTT.  522 

AIRg determined from the IVGTT and hyperglycaemic clamp were found to correlate 523 
significantly in healthy individuals (p<0.005, r = .75) (Hansen et al., 2020; Korytkowski et al., 524 
1995). However, using AIRg as a measure of β-cell function in individuals with 525 
hyperglycaemia is limited due to dysfunction in the acute insulin response (Hansen et al., 526 
2020; Korytkowski et al., 1995). Interindividual variation is high for normoglycaemic 527 
individuals, metabolic syndrome and type 2 diabetes (Bardet et al., 1989; Hansen et al., 528 
2020). Test-retest reliability is high determined from IVGTTs carried out 9 months apart 529 
(Bardet et al., 1989). 530 

When estimating insulin sensitivity using the minimal model, the test discriminated 531 
decreasing insulin sensitivity associated with increasing BMI (Bergman et al., 1987). 532 
However, the test poorly correlated with insulin sensitivity for individuals with type 2 diabetes 533 
(r=0.3, p=0.085), with only ~50% of insulin sensitivity estimations definitive (Saad et al., 534 
1994). Evidence suggests the simplicity of the minimal model underestimates insulin 535 
sensitivity, and overestimates glucose effectiveness (Saad et al., 1994). Insulin sensitivity 536 
values indistinguishable from zero contribute to underestimations, particularly in individuals 537 
with diabetes and allowing negative insulin sensitivity values has been suggested (Ni et al., 538 
1997). A two-compartment minimal model involving a tracer, has also been suggested to 539 
increase accuracy (Toffolo & Cobelli, 2003).  The minimal model as a measure of insulin 540 
sensitivity has found to be reproducible 3 weeks apart in normoglycaemic young males 541 
(Ferrari et al., 1991).  542 

c. Special considerations 543 

The IVGTT is simpler to perform than the gold standard hyperinsulinaemic euglycaemic 544 
clamp but is still highly invasive with a high participant burden. Although the method can be 545 



used on vulnerable populations such as women during pregnancy and children, the test can 546 
be challenging with mild adverse events (Skajaa et al., 2020; Tompkins et al., 2010). Indeed, 547 
modifications to the protocol may increase safety and comfort. IVGTTs have previously been 548 
used in large epidemiological studies, such as the Insulin Resistance Atherosclerosis Study 549 
(IRAS), but require large capacity, funding and expertise to be carried out (Muniyappa et al., 550 
2008).  Although the insulin sensitivity of individuals of different ethnicities has been 551 
compared using the IVGTT (Ellis et al., 2012), evidence on the reliability of using the IVGTT 552 
in different ethnic populations is limited.  553 

To measure only the impact of insulin on glucose disposal, particularly for insulin sensitivity, 554 
stable isotopes can be intravenously injected to improve the precision of the model (Toffolo 555 
& Cobelli, 2003). The use of labelled isotopes also allows for a two compartment rather than 556 
a one compartment model to estimate insulin sensitivity (Toffolo & Cobelli, 2003).  557 

Insulin sensitivity must be measured and taken into account to accurately measure β-cell 558 
function, this is due to the tight relationship between insulin secretion and insulin action 559 
(Hannon et al., 2018). The disposition index, discussed in detail elsewhere, describes the β-560 
cell sensitivity-secretion relationship (Bergman et al., 2002). 561 

 562 

4. Oral Glucose Tolerance Test Derived Indices 563 
a. Theory and Procedure 564 

Both insulin release and insulin sensitivity are interdependent and provide useful information 565 
on glucose homeostasis. Insulin sensitivity cannot be directly determined from the glucose 566 
and insulin concentrations of an OGTT (Stumvoll et al., 2000). Table 1 highlights some of the 567 
indices which assess insulin sensitivity from concentrations measured during the OGTT.  568 

Table 1- A summary of OGTT derived Indices.  569 



Indices Equation 

Matsuda 
(Matsuda & DeFronzo, 
1999) 

= ଵ଴଴଴଴

ට൫ீ௟௨௖௢௦௘(଴௠௜௡)௫ூ௡௦௨௟௜௡(଴௠௜௡)൯௫(ீ௟௨௖௢௦௘(௠௘௔௡)௫ூ௡௦௨௟௜௡(௠௘௔௡))

Cederholm 
(Cederholm & Wibell, 
1990) =  

ಸ೗ೠ೎೚ೞ೐ ೗೚ೌ೏(೘೒)
భమబ శ (ಸ೗ೠ೎೚ೞ೐(బ೘೔೙)షಸ೗ೠ೎೚ೞ೐(భమబ೘೔೙)) ೣ భ.భఱ ೣ భఴబ ೣ బ.భవ ೣ ಳ೚೏೤ ೘ೌೞೞ

భమబ
ಸ೗ೠ೎೚ೞ೐(೘೐ೌ೙)

௟௢௚(ூ௡௦௨௟௜௡(௠௘௔௡))
 

Gutt 
(Gutt et al., 2000) 

=  

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑙𝑜𝑎𝑑 (𝑚𝑔) + (𝐺𝑙𝑢𝑐𝑜𝑠𝑒(0𝑚𝑖𝑛) − 𝐺𝑙𝑢𝑐𝑜𝑠𝑒(120𝑚𝑖𝑛)) 𝑥 0.19 𝑥 𝐵𝑜𝑑𝑦 𝑚𝑎𝑠𝑠
120

𝐺𝑙𝑢𝑐𝑜𝑠𝑒(𝑚𝑒𝑎𝑛(0, 120𝑚𝑖𝑛))
𝑙𝑜𝑔(𝐼𝑛𝑠𝑢𝑙𝑖𝑛(𝑚𝑒𝑎𝑛(0, 120𝑚𝑖𝑛))

 

Stumvoll ISI 
(Stumvoll et al., 2000)  

= 0.157 − 4.576 𝑥 10ିହ𝑥 𝐼𝑛𝑠𝑢𝑙𝑖𝑛(120𝑚𝑖𝑛)-0.00519 𝑥 𝐺𝑙𝑢𝑐𝑜𝑠𝑒(90min)-0.000299 𝑥 𝐼𝑛𝑠𝑢𝑙𝑖𝑛(0min) 

Stumvoll ISI* 
(Stumvoll et al., 2000) =  0.226– 0.0032 𝑥 𝐵𝑀𝐼 ൬

𝑘𝑔
𝑚ଶ൰ – 0.0000645 𝑥 𝐼𝑛𝑠𝑢𝑙𝑖𝑛(120𝑚𝑖𝑛)– 0.00375 𝑥 𝐺𝑙𝑢𝑐𝑜𝑠𝑒(90𝑚𝑖𝑛) 

OGIS 
(Mari, Pacini, et al., 2001) 

A complex computation including the following variables glucose concentration (0, 90, 120 min), insulin 
concentration (0, 90min), glucose dose (g), body mass and height. The calculation can be programmed on a 
spreadsheet or online (Mari, Trainito, et al., 2001). 



 570 

b. Validity and Reliability 571 

OGTT indices are developed based on the feedback mechanism of insulin and glucose to 572 
allow for an estimation of insulin sensitivity. They typically use both glucose and insulin 573 
concentrations at specific time points during the OGTT, with some indices including 574 
additional variables (Hudak et al., 2021; Otten et al., 2014). 575 

OGTT derived indices have a higher discriminant ratio (1.92 (1.59-2.33)) to determine 576 
metabolic differences than indices derived from fasting concentrations (1.82 (1.51-2.22)) but 577 
poorer reproducibility (Hudak et al., 2021). Matsuda and OGIS both show good agreement, 578 
based on Bland-Altman analysis, and the best correlation with the hyperinsulinaemic 579 
euglycaemic clamp, with OGIS found to have the best test-retest reliability and Matsuda 580 
found to have the worst (Hudak et al., 2021; Leonetti et al., 2004). Evidence within the 581 
literature suggests Cederholm has the poorest correlation with the hyperinsulinaemic 582 
euglycaemic clamp (Hudak et al., 2021; Otten et al., 2014). The increased number of 583 
variables included in the equation could lead to increased variability (Hudak et al., 2021).  584 

c. Special Considerations 585 

The reproducibility of the indices is directly impacted by the reproducibility and quality of the 586 
OGTT carried out and therefore the OGTT should be highly controlled. 587 

Care should be taken when comparing mixed race or mixed sex populations using insulin 588 
sensitivity indices (Pisprasert et al., 2013). For example, estimation using indices has shown 589 
to predict higher insulin resistance for African American populations than European 590 
Americans even though measurements by the hyperinsulinaemic euglycaemic clamp were 591 
similar, likely due to differences in the physiological mechanisms behind insulin sensitivity 592 
that the indices are based on (Pisprasert et al., 2013). Out of the indices discussed in this 593 
review, Matsuda was found to be the most reliable measure of insulin sensitivity in African 594 
Americans (Pisprasert et al., 2013). Matsuda index has also found to be valid measure of 595 
insulin sensitivity in South Asians (Trikudanathan et al., 2013). 596 

The indices use slightly different variables to estimate insulin sensitivity. Matsuda is a simple 597 
equation, utilising both fasting and mean insulin and glucose concentrations to measure 598 
insulin sensitivity but does not consider any demographic factors, such as body mass or 599 
glucose distribution volume, which could impact the insulin sensitivity determined (Matsuda 600 
& DeFronzo, 1999). Cederholm utilises four time points during the OGTT and takes into 601 
consideration an individual’s body mass but the number of variables included are thought to 602 
impact its correlation with clamp measures (Cederholm & Wibell, 1990). Gutt built upon the 603 
equation by Cederholm and Wibell (1990), reducing the number of variables and increasing 604 
correlation with the hyperinsulinaemic clamp (Gutt et al., 2000; Otten et al., 2014). Stumvoll 605 
used a linear regression to determine which variables are the best predictors of insulin 606 
sensitivity determined by the hyperinsulinaemic clamp, producing an equation with BMI (ISI*) 607 
and one without (ISI) (Stumvoll et al., 2000). OGIS is the most complex equation, using 608 
unknown predictor variables determined from a comparison of an OGTT and 609 
hyperinsulinaemic clamp, along with height, body weight, glucose dose and 0, 90, 120min 610 
glucose and insulin concentrations (Mari, Pacini, et al., 2001). It has shown good agreement 611 
and reproducibility with the hyperinsulinaemic clamp and online software is available to 612 
assist with computation (Hudak et al., 2021; Leonetti et al., 2004). Evidence suggests OGIS 613 
has the highest validity and reliability, Matsuda provides the simplest equation to use and 614 



both Gutt and Stumvoll allow for the inclusion of demographic variables into the equation 615 
(Hudak et al., 2021; Otten et al., 2014). 616 

 617 

 618 

5. Fasting Indices 619 
a. Theory and Procedure  620 

Fasting indices, shown in table 2, can act as surrogate measures for both insulin sensitivity 621 
and β-cell function (Otten et al., 2014). Two examples of common fasting indices are the 622 
homeostasis model assessment (HOMA) and the quantitative insulin-sensitivity check index 623 
(QUICKI). Both HOMA and QUICKI are based on the feedback loop of insulin and glucose to 624 
maintain homeostasis (Katz et al., 2000; Wallace et al., 2004). During fasting, insulin levels 625 
and hepatic glucose production should remain constant (Katz et al., 2000; Wallace et al., 626 
2004). When an individual is hyperglycaemic at fasting, insulin concentrations are insufficient 627 
to maintain effective glycaemic control. QUICKI can estimate insulin sensitivity and the 628 
HOMA indices can estimate both insulin resistance (HOMA-IR) and β-cell function (HOMA-629 
β) (Katz et al., 2000; Wallace et al., 2004).  630 

 631 

 632 



 633 

Table 2- Indices derived from fasting concentrations.634 

Indices Equation 

Quantitative insulin-sensitivity 
check index (QUICKI) 
(Katz et al., 2000) 

=
1

[log൫𝐼𝑛𝑠𝑢𝑙𝑖𝑛(଴௠௜௡௦)൯ + log൫𝐺𝑙𝑢𝑐𝑜𝑠𝑒(଴௠௜௡௦)൯]
 

Homeostasis Model Assessment- 
Insulin resistance (HOMA-IR) 
(Matthews et al., 1985) 

= (𝐼𝑛𝑠𝑢𝑙𝑖𝑛(0𝑚𝑖𝑛𝑠) 𝑥 𝐺𝑙𝑢𝑐𝑜𝑠𝑒(0𝑚𝑖𝑛𝑠))
22.5

 

Homeostasis Model Assessment- 
β-cell function (HOMA-β) 
(Matthews et al., 1985) 

= (
20 𝑥 𝐼𝑛𝑠𝑢𝑙𝑖𝑛(0𝑚𝑖𝑛𝑠)

𝐺𝑙𝑢𝑐𝑜𝑠𝑒(0𝑚𝑖𝑛𝑠) − 3.5
) 



 635 

b. Validity and Reliability 636 

The fasting indices can provide estimates of insulin sensitivity and β-cell function based on 637 
the ability of glucose and insulin to maintain homeostasis (Muniyappa et al., 2008). During 638 
fasting conditions, glucose concentration represents hepatic glucose production and the 639 
ability of insulin to stimulate the disposal of glucose produced endogenously (Muniyappa et 640 
al., 2008). Fasting insulin represents secretion from β-cells which will be higher or lower 641 
dependent on the insulin sensitivity of the individual (Muniyappa et al., 2008). When insulin 642 
secretion can no longer counteract impairments in insulin sensitivity, fasting hyperglycaemia 643 
prevails, evidenced in type 2 diabetes (Muniyappa et al., 2008). The indices therefore utilise 644 
the negative feedback loop between insulin and glucose to maintain euglycaemia 645 
(Muniyappa et al., 2008).  646 

The relationship between insulin sensitivity derived from a hyperinsulinaemic euglycaemic 647 
clamp and fasting insulin sensitivity indices is hyperbolic and logarithmic transformations of 648 
the indices are therefore recommended (Mather et al., 2001). The ability of both QUICKI and 649 
logHOMA-IR to discriminate between individuals of differing insulin sensitivity, from lean to 650 
diabetic, is statistically comparable to the discriminant ratio of the hyperinsulinaemic 651 
euglycaemic clamp (Mather et al., 2001). QUICKI and logHOMA-IR correlate well with the 652 
hyperinsulinaemic euglycaemic clamp in individuals with diabetes or obesity but correlate 653 
poorly in lean healthy subjects, suggesting the indices perform poorer in those who are 654 
insulin sensitive (Mather et al., 2001). QUICKI correlates well with the hyperinsulinaemic 655 
clamp to changes in insulin resistance due to interventions, including diet and exercise in 656 
individuals with type 2 diabetes (Katsuki et al., 2002). Correlation between repeated tests of 657 
logarithmically transformed indices has been assessed using Bland-Altman plots showing 658 
good test-retest reliability and uniform variability (Mather et al., 2001).  659 

c. Special Considerations 660 

HOMA and QUICKI are useful measures in epidemiological studies due to the relatively low 661 
participant burden. Fasting indices fail to provide any indication of insulin sensitivity 662 
postprandially or in response to dynamic glucose or insulin concentrations. They are most 663 
useful in studies where other methods to measure insulin sensitivity are not feasible, or 664 
insulin sensitivity is a secondary research question. Care should also be taken when using 665 
the HOMA-β index to measure β-cell function as it should always be used in conjunction with 666 
a measure of insulin resistance (HOMA-IR) (Matthews et al., 1985; Wallace et al., 2004).  667 

Summary  668 

HbA1c and CGMs provide an overall measurement of glycaemic control, particularly useful 669 
in clinical populations but do not probe the physiology underlying glucose regulation such as 670 
insulin sensitivity, glucose tolerance and β-cell function. The hyperinsulinaemic euglycaemic 671 
clamp is the gold standard for measuring insulin sensitivity and the hyperglycaemic clamp is 672 
the gold standard for measuring β-cell sensitivity. Although highly standardised, both have a 673 
high participant burden and do not allow for dynamic measurements. The intravenous 674 
glucose tolerance test allows glucose tolerance, and an estimation of β-cell function and 675 
insulin sensitivity to be measured with high reproducibility. Both the oral glucose tolerance 676 
test and mixed meal tolerance tests provide more dynamic measurements of glycaemic 677 
control and glucose tolerance but have poor reproducibility. The mixed meal tolerance test is 678 
most representative of daily life but poor standardisation in the meal provides limited 679 



comparability between studies. The fasting indices are useful in epidemiological studies or in 680 
conjunction with other methods. 681 

Table 3 - Methods to study glycaemic control and insulin sensitivity in human 682 
physiology research. 683 

Method Research recommendations Important considerations: 

HbA1c • Measures glycaemia over 
the previous 120 days 

• Often used clinically for 
diagnosis 

• Useful for investigating 
intervention effects on 
glycaemic control 

• Cannot measure acute 
glycaemic control or 
glycaemic variability 

Do you have an individual trained 
on venepuncture? 
Do you have facilities to assess 
HbA1c concentration from the blood 
samples? 

CGM • Measures free-living 
glycaemia 

• Can collect 
measurements for long 
periods 

• Can measure glycaemic 
variability 

• Low participant burden, 
most suitable for 
vulnerable populations  

• Can be used as a useful 
secondary measure 
throughout different 
interventions 

Have you followed the company 
training on how to fit the relevant 
CGM?  
Can you blind the device? 
 

OGTT and indices • Nutrition research 
• Superior ecological 

validity 
• Measure of glucose 

tolerance 
• Estimates of insulin 

sensitivity from indices  
• Useful for higher sample 

sizes as less equipment 
required, and safer for 
patient groups than 
clamp methods 

Do you have an individual trained to 
fit cannulas? 
Do you have a heated box or will 
you be using venous samples? 
Do you have equipment to measure 
glucose and insulin immediately or 
will this be done later? 

• Do you have storage 
facilities for the blood 
samples (≤-70°C freezer)? 

Immediate access to a refrigerated 
centrifuge to spin the blood 
samples? 
 



Mixed Meal 
Tolerance Test 

• Dynamic measurements 
of insulin sensitivity in 
response to nutritional 
intake 

• Impact of proteins, fats, 
and glucose on insulin 
sensitivity 

• Measurements of β-cell 
function taking into 
consideration incretin 
hormones 

• Diurnal variations in 
insulin sensitivity 

Do you have an individual trained to 
fit cannulas? 
Do you have a heated box or will 
you be using venous samples? 
Do you have equipment to measure 
glucose and insulin immediately or 
will this be done later? 

• Do you have storage 
facilities for the blood 
samples (≤-70°C freezer)? 

Immediate access to a refrigerated 
centrifuge to spin the blood 
samples? 
 

Hyperinsulinaemic 
euglycaemic Clamp 

• Gold standard for 
measuring insulin 
sensitivity 

• Highly controlled 
research 

• The main aim of the 
research is to investigate 
insulin sensitivity 

Do you have an individual trained to 
fit cannulas? 
Do you have training on how to use 
the specialist equipment and a 
clinical member of staff to 
administer Intravenous 
glucose/insulin and monitor the 
participant throughout? 
Do you have specialist training on 
using and storing isotopes? 

• Radiolabelled isotopes 
• Stable isotopes 

Will you be using an automated 
algorithm to calculate the glucose 
infusion rate during the experiment?
 

Hyperglycaemic 
clamp 

• Gold standard for 
measuring β-cell function 

• Highly controlled 
research 

• Measures both 1st phase 
and 2nd phase insulin 
secretory response 

• Estimates whole body 
insulin sensitivity 

Do you have an individual trained to 
fit cannulas? 
Do you have training on how to use 
the specialist equipment and a 
clinical member of staff to 
administer Intravenous 
glucose/insulin and monitor the 
participant throughout?  
Do you have specialist training on 
using and storing isotopes? 

• Radiolabelled isotopes 
• Stable isotopes 

Will you be using an automated 
algorithm to calculate the glucose 
infusion rate during the experiment?
 



Intravenous 
glucose tolerance 
test 

• A dynamic test of glucose 
tolerance, does not 
require steady state 
conditions 

• Estimations of glucose 
effectiveness, insulin 
sensitivity and β-cell 
secretion all from one 
test 

• Useful to measure the 
acute insulin response 
after the glucose load 
 

Do you have an individual trained to 
fit cannulas? 
Do you have training on how to use 
the specialist equipment and a 
clinical member of staff to 
administer glucose/insulin injection 
intravenously? 
Do you have specialist training on 
using and storing isotopes? 

• Radiolabelled isotopes 
• Stable isotopes 

Do you have an understanding of 
the mathematical modelling used to 
determine insulin sensitivity from 
this method? 
 

Fasting Indices • Large scale 
epidemiological studies 

• Studies on high-risk 
patients  

• Studies on vulnerable 
populations 

• Studies where only 
estimates of insulin 
sensitivity are required 

• Studies where hepatic 
insulin resistance is to be 
estimated 

Do you have an individual trained 
on venepuncture? 
Do you have facilities to assess 
glucose and insulin concentration 
from the blood samples? 
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