Imitation, network size, and efficiency

Alós-Ferrer, Carlos and Buckenmaier, Johannes and Farolfi, Federica (2021) Imitation, network size, and efficiency. Network Science, 9 (1): 1. pp. 123-133.

Full text not available from this repository.

Abstract

A number of theoretical results have provided sufficient conditions for the selection of payoff-efficient equilibria in games played on networks when agents imitate successful neighbors and make occasional mistakes (stochastic stability). However, those results only guarantee full convergence in the long-run, which might be too restrictive in reality. Here, we employ a more gradual approach relying on agent-based simulations avoiding the double limit underlying these analytical results. We focus on the circular-city model, for which a sufficient condition on the population size relative to the neighborhood size was identified by Alós-Ferrer & Weidenholzer [(2006) Economics Letters, 93, 163-168]. Using more than 100,000 agent-based simulations, we find that selection of the efficient equilibrium prevails also for a large set of parameters violating the previously identified condition. Interestingly, the extent to which efficiency obtains decreases gradually as one moves away from the boundary of this condition.

Item Type:
Journal Article
Journal or Publication Title:
Network Science
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3300/3315
Subjects:
?? agent-based modelsimitationnetworkspareto efficiencyrisk dominancestochastic stabilitycommunicationsocial psychologysociology and political science ??
ID Code:
221557
Deposited By:
Deposited On:
11 Jul 2024 14:30
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 01:20