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Abstract 

 

In recent decades, the use of machine learning techniques in classification problems has 

become increasingly popular across a wide variety of domains. For users to have trust in 

such classifiers though, one must be able to reliably quantify uncertainty. A common 

way of quantifying uncertainty in classifiers is through reference sampling where a 

smaller set of ground-truths is sampled and compared to their predicted counterparts to 

make inferences about the precision and accuracy of classifiers using statistical 

methods. 

However, classification via machine learning can bring some additional challenges to 

uncertainty quantification, as machine learning techniques are often (i) trained using 

data that has not been sampled with formal statistical inference in mind; (ii) are often 

black-box when compared to traditional modelling. 

These issues are further compounded when sampling reference data under conditions 

suitable for uncertainty quantification is expensive. Here, users are often forced to make 

a compromise between the degree of uncertainty and the costs of reference sampling, 

even when the original classifier built using machine learning may be performing well. 

In short, when it comes to quantifying and reducing uncertainty, it is not just about how 

well the classifier performs. One must also be able to collect enough data sampled under 

the right conditions. 

This thesis explores how users may better manage the cost-benefit trade-offs of 

reference sampling when quantifying and reducing uncertainty in machine learning 

classifiers. Specifically, this thesis investigates how a framework for adaptively 

sampling reference data can be used to better manage uncertainty using two land cover 

mapping case studies to evaluate the proposed framework. With these case studies, the 

following problems are considered: (i) quantifying uncertainty in area estimation and 

mappings; (ii) proposing efficient sample designs under uncertainty; (iii) proposing 

sample designs when the cost of reference sampling varies across a mapped region. 
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Chapter 1: Introduction 

1.1 Motivation 

The act of taking a population and separating its members into meaningful categories is 

a long-established practice in scientific applications. This can range from low stake 

applications such as separating spam emails from more genuine ones [1], [2], [3] or 

determining the breed of a dog from an image [4], [5], [6], to much higher stake 

applications such as categorising which people are suffering from a particular disease or 

illness [7], [8], [9], [10] or determining if a credit card transaction is likely to be 

fraudulent [11], [12], [13]. 

In many applications though, it is not practically possible to place populations into 

categories manually. This can be because of the size of the population, or the costs 

involved in categorising each member of the population. For example, there may be too 

many emails being sent at any given moment for a team of people to decide what should 

be considered spam email. Similarly, fraudulent credit card transactions are a relatively 

small percentage of the total transaction amounts [14], so a thorough review of every 

transaction would likely cost more than they would lose to fraud in the first place.  

In cases when manually categorising large portions of a population is not viable, it is 

often beneficial to make use of classification algorithms, which this thesis will refer to 

as classifiers as a shorthand. In this context, classifiers are algorithms that aim to 

automate categorisation. Typically, these instructions involve a series of inputs, which 

this thesis will refer to as predictors for reasons that should become clearer later. 

Classifiers can be either discrete or fuzzy in their application. A discrete classifier is 

one where the classifier aims to place members in exactly one of the available 

categories. A fuzzy classifier is one where members may partially belong to multiple 

categories (for example a dog may be a mix of different breeds). 

One approach to constructing classifiers that has become popular in recent times is to 

use machine learning techniques (MLTs). The distinction between MLTs and other 
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forms of modelling lies in the more automated nature of MLTs, which often makes 

them a much more scalable approach when dealing with large data sets. 

Classifiers (even those built with MLTs) will rarely be perfect though, and one will 

always need to account for such imperfections. One way of accounting for 

imperfections in classifiers is through uncertainty quantification (UQ). In this thesis, 

UQ refers to a process of providing a probabilistic statement as a measure of how 

confident one is in the true value of an unknown quantity based on a prediction 

provided by a classifier. UQ can capture this confidence at different levels, with some 

measures reflecting an aggregate level of confidence (e.g., overall accuracy) and other 

measures reflecting confidence for the classification of a single member of the 

population.  

In most cases, methods of uncertainty quantification require some form of a reference 

sample. Here, a reference sample refers to a set of data that is collected in a specific way 

(i.e. under a sample design) that allows one to estimate unknown parameters used to 

express uncertainty in quantifiable terms. For example, one will typically not know how 

accurate a classifier will be when applied to a target population, but it is possible to 

estimate this overall accuracy value using a randomly selected subset of the population 

(i.e. simple random sampling). The uncertainty in this estimate may be quantified by 

taking advantage of the simple random design and well-known results in statistical 

inference (e.g. using confidence intervals). 

In a perfect world, one would always have large sets of data collected under simple 

random sampling when quantifying uncertainty, as simple random sampling has many 

properties that make UQ through statistical inference much easier to deal with (Section 

2.2 will go into more depth on this topic). However, practical restrictions often make 

simple-random sampling at a large-scale unviable. This problem is indicative of the 

wider problem of sampling design where meeting the design requirements necessary for 

formal statistical inference can make reference sampling expensive (even when large 

sets of training data are available). 

As an example, suppose one is wanting to quantify uncertainty under a machine-

learning classifier in a fraud detection application where manual categorisations may 

require lengthy and expensive investigations. Here, one may be able to build an accurate 

classifier using a set of training data containing confirmed fraudulent cases that have 
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accumulated naturally over many years. Within this data set though, there is likely to be 

some bias in which members have been manually categorised. For instance, it may not 

be cost-effective to conduct investigations on low-value cases, and clients may not 

appreciate being inconvenienced (or worse, openly suspected of fraud) with an 

investigation given little initial evidence. Hence, this original reference data based on 

past cases is unlikely to be representative of the entire population. Unless one can 

explicitly quantify how this process is defined (which is likely to be difficult when such 

decisions involve human judgement), many methods of UQ that are based on statistical 

inference will be inapplicable when attempting to use this original training set. 

This can create unfortunate situations where MLTs may offer reliable and cost-effective 

ways of creating accurate classifiers but are still left imprecise because one does not 

have enough of the right types of data to justify more precise estimates. In other words, 

predictions from the MLTs are forced to remain imprecise not because the MLTs are 

necessarily doing a poor job at classification, but because one does not have enough 

data sampled under the right conditions to formally justify higher levels of precision. 

The overall motivation of this thesis is to address these kinds of situations by better 

managing the trade-off between sampling costs and uncertainty when dealing with 

classifiers built using MLTs. Whilst there is much in the literature for managing 

uncertainty in traditional modelling settings (e.g. power analysis, targeted sampling 

etc.), the use of MLTs brings a number of additional challenges, some of which include:  

(i) Many MLTs are not designed to include formal uncertainty quantification. 

(ii) MLTs often need to be trained on reference data that is not suitable for UQ 

as this may be the only way of generating large enough training sets.  

(iii) UQ often involves many subjective choices related to modelling and 

sampling assumptions. These assumptions can be particularly hard to verify 

in MLTs as they often lack interpretability and explainability.   

(iv) The field of machine learning, in general, is one of regular change that draws 

from a broad range of philosophies and ideas, meaning that MLTs 

considered state-of-the-art today may look very different from the state-of-

the-art MLTs several years later. 

The major consequence of these challenges is that much of the current literature for 

managing uncertainty efficiently does not easily translate over to MLTs. Hence, a key 
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part of addressing the overall motivation lies in developing a set of methods that can 

deal with such complications. In particular, this thesis considers how such challenges 

may be overcome through a framework that (i) samples the data used in UQ adaptively, 

and (ii) focuses on methods that are agnostic to the choice of MLT, how it has been 

trained, or the specific method of UQ. 

1.2. Background 

1.2.1. Definitions and terminology 

This thesis focuses on how uncertainty can be managed efficiently in classification 

problems involving machine learning techniques. Ultimately, this work lies at the 

intersection of three topics: machine learning techniques, uncertainty quantification and 

reference sampling (as illustrated in Figure 1.1). This subsection sets out what is meant 

by these three terms before setting out what is meant by managing uncertainty 

efficiently.  

 

Figure 1.1. A pictorial representation for the focus of this thesis. 

Machine learning techniques 
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A machine learning technique (MLT) for this thesis is an algorithm that attempts to 

automate the process of learning. The vagueness of this definition (in particular terms 

such as “automated” and “learning”) reflects how widespread machine learning has 

become since it was first coined in the 1950s [15]. Early applications of machine 

learning in the 1960s often focused on pattern recognition to learn effective strategies in 

well-defined gaming situations [16], [17], [18], [19]. Over the past 70 years though, 

machine learning has expanded to many other domains including medical diagnosis 

[20], [21], [22], image recognition [23], stock trading [24], [25], [26], [27], and climate 

modelling [28], [29], [30]. With this, machine learning has arguably evolved to become a 

crucial sub-discipline of data science. This evolution can be summarised with machine 

learning developing from automatically answering questions such as “What is the best 

move to play in this game?” to also including questions such as “What is the 

relationship between these collections of variables?”.  

Because machine learning has entered so many domains over the years, it is difficult to 

give a precise definition of a machine learning technique that fully captures these 

different applications without including almost all forms of modelling. For example, 

one commonly cited definition for a machine learning technique given by Mitchell [31] 

is: 

"A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E."  

With this definition though, any model in which the parameters are estimated using 

sampled data could be considered a machine-learning technique. This would go very 

much against the spirit of machine learning, which is built on the idea of a computer 

programme extracting the relationships automatically, rather than starting with the 

relationship and using data to refine the specifics of such a relationship. 

For example, suppose two variables are linearly related. An MLT could discover this 

relationship automatically (once given enough data), whilst a more traditional modelling 

approach may assume this linear structure initially and use data to estimate the most 

appropriate choice of parameters (in this case, the gradient and intercept). Given enough 

data, both approaches may reach a similar conclusion, but machine learning starts from 

a different level of assumed knowledge. 
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When exactly a method of building a classifier becomes an MLT can be up for debate. 

For example, it is not clear when semi or nonparametric modelling crosses over into 

machine learning. Conversely, within any MLT, there is always a degree of domain 

knowledge necessary when some of the parameters or features need to be set by the 

users (e.g. loss functions, smoothing parameters, defining how one will judge two 

instances as similar etc.). Hence, deciding when a method is so sensitive to these 

choices that it can no longer be considered an MLT can be a subjective matter. 

Consequently, a precise definition of machine learning is set aside for this thesis. Instead, 

the term MLT is used as a descriptor that summarises a type of method which tends to 

have the following characteristics: 

• In general, MLTs place less reliance on knowing the physical processes 

involved in a system when compared to traditional forms of modelling.  

• MLTs often need large volumes of data to be effective. 

• Many popular MLTs lack the interpretability and explainability seen in more 

traditional modelling. In other words, there is a tendency for MLTs to be black-

box in nature. 

It is important to stress here that these characteristics are not a definitive set of 

properties that must be observed for a method (classifier or otherwise) to be considered 

an MLT. For example, some classification methods are commonly called MLTs and are 

interpretable or effective with low volumes of data (these methods will be reviewed in 

detail throughout Chapter 2). Nevertheless, these characteristics are useful 

generalisations when trying to discuss the unique challenges MLTs bring to managing 

reference sampling and uncertainty quantification.  

Uncertainty quantification 

 

Uncertainty quantification (UQ) in this thesis refers to the act of providing a 

probabilistic statement to express confidence in estimations or predictions based on a 

current level of information. Again, this definition is left deliberately vague as a means 

of recognising that there are many viable approaches to quantifying uncertainty (see 

Section 2.1 for further details). At a high level, these different approaches can rely on 

subtly different assumptions and perspectives about how one interprets a set of data. 

Some examples of this include whether to treat unknown values as fixed or to allow 
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them to partially belong to multiple values; assumptions about the specific way in which 

any data have been obtained; and whether one believes particular modelling 

assumptions are appropriate. This, in part, motivates the term uncertainty quantification 

as opposed to more deterministic language such as uncertainty calculation.  

To compare different methods of UQ, it can be useful to consider uncertainty as a 

combination of multiple components of uncertainty. For this thesis, uncertainty will be 

expressed as a combination of three components, aleatoric, epistemic, and ontological 

uncertainty [32]: 

• Aleatoric uncertainty - derived from the Latin aleator or dice player and is 

sometimes referred to as irreducible uncertainty. It is this form of uncertainty 

that cannot be reduced through sampling. In practice, aleatoric uncertainty is 

commonly expressed as a purely stochastic process. Here, it is often used to 

capture things such as measurement errors or to represent a “remainder” 

component in a model. 

 

• Epistemic uncertainty - based on the Greek word for knowledge, episteme, 

epistemic uncertainties are components of the uncertainty that can in principle 

be known within a fixed system. It is this form of uncertainty that we expect to 

quantifiably reduce through sampling. Sources of epistemic uncertainty include 

uncertainty in the true value of model parameters or uncertainty in the true 

values of input features that have themselves been estimated as part of a wider 

modelling chain. 

 

• Ontological uncertainty - ontological uncertainty arises from different beliefs 

regarding the true nature of a process. This could be things such as the belief of 

whether particular modelling assumptions are realistic or if the sample size is 

sufficient for one to take advantage of well-known results such as the central 

limit theorem. Evidence supporting underlying assumptions can help reduce 

ontological uncertainties, which may make use of reference data. This could be 

with simple visual validation or with more sophisticated statistical testing. 

To illustrate components of uncertainty, suppose one has a simple linear regression 

model between two observations, 𝑥𝑖 and 𝑦𝑖, 
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𝑦𝑖 = β0 + β1𝑥𝑖 + ϵi, ϵi ~ N(0, σ2). 

           (1.1) 

When quantifying the uncertainty in some 𝑦𝑖 given 𝑥𝑖 in this example, the three sources 

of uncertainty can be observed. Firstly, the noise component, ϵi, generates aleatoric 

uncertainty. Secondly, uncertainty in the values of β0, β1, 𝜎 are sources of epistemic 

uncertainty. Finally, the question of whether the relationship between 𝑦𝑖 and 𝑥𝑖 is linear 

as well as the structure of ϵi (e.g. questions over whether they are Gaussian and 

independent) are sources of ontological uncertainty. 

It is also important at this stage to differentiate between the concepts of uncertainty and 

ambiguity and how they relate to UQ and fuzzy classification. In short, uncertainty in 

classification problems refers to the degree to which a particular value is unknown, 

which is quantified using probabilistic statements. Ambiguity refers to situations when 

instances do not belong to exactly one pre-defined class and so need to be manually 

categorised using fuzzy logic rules. In the same way that a discrete classifier aims to 

emulate manual categorisation, fuzzy classifiers aim to emulate or estimate these fuzzy 

logic rules. Both uncertainty and ambiguity may be present within a given problem. 

Example 1.2 illustrates the difference between uncertainty and ambiguity.  
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Example 1.2. An illustrative example of the difference between uncertainty and 

ambiguity under classifying dog breeds from images.  

 

Reference sampling. 

 

In this thesis, a reference sample consists of two components, the reference data and the 

sample design. Reference data are a record of information that one believes may be 

relevant to a specific classification problem. For example, the reference data may be a 

Example: Uncertainty and Ambiguity 

Suppose one wishes to classify the breed of a dog from the images below. For the sake of simplicity, assume 

that the dog is some mixture of an American bulldog and Staffordshire bull terrier (with the possibility of 

being a pure breed of either case) 

  

Here, the difference between uncertainty and ambiguity can be exemplified by the statements in the table 

below. 

 No ambiguity Ambiguity is present 

No uncertainty  
The dog is known to be a 

purebred American bulldog. 

The mother is known to be a 

purebred American bulldog and 

the father is known to be a 

purebred Staffordshire bull 

terrier (i.e., known to be 50-50). 

Uncertainty is present 

The dog is known to be either a 

pure-breed American bulldog or 

a pure-breed Staffordshire bull 

terrier, but one can not tell for 

sure which one. 

The dog is a mixture of 

American bulldog and 

Staffordshire bull terrier 

(including purebred) but the 

exact degree is not known. 
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set of images that have been manually categorised, or it may be a set of results from lab 

testing, where each result is paired with a set of potential predictors. The sample design 

is a description, or set of instructions, that dictates how the reference data are (or were) 

obtained. Often, there will be stochastic elements used in the sampling design. Strictly 

speaking though, a stochastic component is not necessary, but it is often required for 

UQ or to avoid problems such as overfitting or bias when training MLTs. One of the 

most well-known sample designs is simple random sampling.  

It is important to emphasise that both the reference data and sample design are 

necessary if one wishes to use a reference sample for most methods of UQ. Firstly, the 

reference data are needed to provide the raw numerical inputs. The reason the design is 

also needed is that many methods of UQ are based on precise probabilistic statements, 

which relate the reference data, sample design, and true values of unknown parameters 

in some way. Typically, these statements follow a structure similar to “given that one 

has observed this reference data under this sample design, it is likely that the true value 

for this unknown parameter is within this range”. Note, this means that the uncertainty 

quantified from two identical sets of reference data may be quite different if they have 

been obtained from different sample designs. 

As an example, one can consider a scenario where an amusement park wishes to know 

how satisfied users are with the park (e.g. opinion of the overall cleanliness, if 

attractions are easy to find, queuing times etc.). In this case, the manual categorisations 

are the responses given by the visitors to related questions in a questionnaire. Naturally, 

interviewing all the guests is not a realistic prospect, so one may need to estimate the 

true distribution of the responses through a survey. The responses to such a survey make 

up the reference data. If the participants are selected randomly, one may make use of 

straightforward statistical approaches to quantify uncertainty in such estimates. Suppose 

though, that instead of a random sample, the interviewers only ask the guests in the 

queue for the main attraction during peak hours for the sake of convenience (e.g. people 

may be more willing to answer a small survey whilst queueing to pass time). With the 

reference data from this design, quantifying uncertainty becomes more difficult than in 

the previous case. This is because there are biases in the design that one needs to 

account for when quantifying uncertainty. For example, those already in a long queue 

during peak hours are likely to be more tolerant of queuing times by the fact that they 

willingly entered such a queue. Other biases may be less direct. For example, the main 
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attractions in an amusement park are often one of the fastest or largest in the park and 

typically have a higher minimum height requirement. This can be a proxy source of bias 

for other factors such as age or gender.  

In general, one will often encounter the problem where some sample designs offer a 

more convenient way for collecting the reference data, but at the expense of requiring 

additional steps or assumptions to be made when quantifying uncertainty (and vice-

versa). Choosing the most appropriate sample design in these situations often means 

balancing the trade-offs between convenience, cost, and the assumptions necessary for 

UQ.  

Managing uncertainty efficiently.  

 

For this thesis, managing uncertainty efficiently refers to quantifying and reducing 

uncertainty in a way that makes the best use of limited resources. Some examples of 

efficient uncertainty management include:   

• Optimising designs in reference sampling to give more precise estimates for a 

set level of resources. 

• Using a cost-benefit analysis to decide an appropriate level of resources to reach 

a desired level of uncertainty.    

• Sampling reference data in a way that allows for a similar level of precision in 

estimates whilst reducing reliance on assumptions in UQ (i.e. a reduction in 

ontological uncertainty without a noticeable loss in precision). 

• Exploiting new ways of generating reference data to make reference sampling 

cheaper.  

• Using state-of-the-art classification methods to improve the quality of 

predictions and reduce uncertainty.  

The important thing to note here is that for this thesis, efficiency in uncertainty 

management does not solely focus on optimising reference sampling under some 

predefined objective functions. Instead, efficiency in the context of this thesis relates to 

using the best combination of tools from machine learning, UQ, and reference sampling 

so that uncertainty is quantified and reduced effectively.
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1.2.2 Domain of application: land cover maps 

As part of the methodology this thesis will make use of case studies within land cover 

mapping applications to develop and evaluate methods related to adaptive sampling (see 

Section 1.3 for further details). Within land cover mapping applications, there are two 

key components to consider, the land cover map itself, and ground-truth assessments. A 

land cover map is a spatial representation of how the surface of a landmass varies. This 

can include things such as different types of vegetation cover, the degree of 

urbanisation, inland water, bare soil etc.  

A ground-truth assessment, by definition, is the most accurate (or precise) 

categorisation of land cover available for an area. Some examples of ground-truth 

assessments include physical surveys, assessments based on lab testing or local sensory 

data, and assessments based on high-resolution aerial imagery (e.g., using aerial 

photography obtained from a drone). These assessments may be discrete (e.g., assigning 

an area based on the dominant type of land use) or continuous (e.g., a proportional 

breakdown of the different types of land cover across a large area).  

As a side note, ground-truth assessments are not necessarily objective assessments. For 

example, two surveys may come to slightly different assessments of the same area and 

there is usually some form of noise due to measurement error in any sensing equipment. 

Theoretically, non-objective ground-truths could be accounted for in modelling through 

additional aleatoric components. However, this thesis will assume all ground-truths to 

be objectively true as i) non-objective ground-truths go beyond the scope of the thesis; 

ii) to explore this concept fully, one would need to have access to case studies where 

multiple ground-truth assessments of the same areas are available, and such examples 

are not commonly found in land cover mapping applications and it would be expensive 

to generate such data.  

Ideally, land cover maps would be built using full coverage census – i.e. made purely 

from ground-truth assessments. However, this tends to be unrealistic as applications 

often cover national or multinational areas. When this is the case, land cover maps serve 

to model an area and will act as the classifiers in the context of this thesis.  

Since the turn of the 21st century, there has been a growing trend of using satellite 

imagery data and MLTs to construct land cover maps [33], [34], [35]. The main idea 
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here is that satellite imagery acts as an inexpensive source of data that covers the 

entirety of a mapped area, making it a popular source of predictive features in 

classifiers. MLTs then provide a way of using the features from the satellite to produce 

land cover maps (e.g. taking elevation readings along with intensities from different 

types of electromagnetic radiation such as infrared, visible light, microwaves etc). This 

combination can be a cost-effective way of producing land cover maps as data from 

satellite imagery is becoming more available with open-source projects [36], [37], [38], 

[39] and the automated nature of MLTs helps in cutting the cost associated with 

creating models. 

Within any mapping made through modelling, there is bound to be some degree of 

erroneous cases (as defined by disagreeing with a ground-truth assessment). These 

erroneous cases add a degree of uncertainty to how a land cover map would appear if it 

were to be made through a full census. A widely recommended practice in land cover 

mapping applications is to account for erroneous cases with UQ constructed using a 

sample of ground-truth assessments to act as reference data [40], [41], [42], [43]. 

However, the size of these samples and locations that can be visited can be limited by 

cost and practical restrictions (e.g. one may not be able to physically survey some areas 

within the mapping space). Such sampling limitations can ultimately lead to a high 

degree of uncertainty as estimates are left imprecise due to a lack of relevant ground-

truth data. This is especially true when estimating the prevalence of rare or heavily 

clustered land cover types [44].  

The purpose of the land cover mapping applications in this thesis is to act as case 

studies to test how adaptive sampling may help in collecting ground-truth data so that 

uncertainty can be quantified and reduced efficiently. Figure 1.3 illustrates the main 

components of the land cover mapping problems. 
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Figure 1.3. A summary of how the challenges in collecting ground-truth data impact 

uncertainty in land cover mappings and how the thesis aims to address this through 

adaptive sampling. 

From a more general perspective, the reason for using land cover mapping applications 

as case studies is that the issues mentioned here are representative of the challenges 

faced when trying to quantify and reduce uncertainty in MLTs (see Figure 1.4 for an 

illustrative overview). In this more general context, the land cover maps built with 

satellite imagery and MLTs are a substitute for classifiers built with MLTs and ground-

truth assessments are a stand-in for manual categorisations. The problems surrounding 

the level of uncertainty from sampling limitations for ground-truth data are specific 

cases where there are restrictions in reference sampling. Hence, if one can develop an 

adaptive approach to reference sampling for land cover mappings, these methods should 

generalise to the wider problem of designing reference samples that efficiently manage 

the uncertainty in classifiers built using MLTs.  
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Figure 1.4 An overview of how the land cover mapping applications fit in with the 

wider focus of this thesis. 

1.3. Programme of research  

1.3.1. Aims and objectives 

This thesis aims to investigate how one can better manage trade-offs between sampling 

restrictions and uncertainty in machine learning through an adaptive approach to 

sampling that is agnostic to the type of classifier and UQ. Here, adaptive sampling 

refers to a form of reference sampling whereby reference data are collected iteratively 

and uses the previous reference data to inform the design of future samples. Under 

adaptive sampling, the sample design of each iteration is free to vary in terms of size 

and which members of the population are targeted so that uncertainty can be managed 

efficiently.  

The aim of this thesis is motivated by the need to create a cost-effective way of 

managing uncertainty in classifiers built using machine learning techniques. The 

motivation for an approach that is both classifier and UQ-agnostic comes from the 

problem that many machine learning classifiers are black-box in nature and there are 

often multiple viable MLTs and approaches to UQ based on different philosophies or 
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assumptions one is willing to accept. Hence, by keeping any adaptive sampling 

practices agnostic to these choices, the work in this thesis has a better chance of being 

relevant to a broader range of problems.  

Specifically, this thesis focuses on the following objectives: 

A. Develop a framework for adaptive sampling that allows users to efficiently 

manage uncertainty in classifiers built with machine learning techniques. This 

framework should allow users to leverage the information contained in an initial 

reference sample to make informed and more cost-effective choices related to 

further sample designs when quantifying uncertainty under classifiers built using 

machine learning techniques.  

 

B. Evaluate the proposed framework using a series of land cover mapping 

applications.  

 

C. Provide recommendations on how the proposed framework could be further 

developed to address any unresolved weaknesses found in the evaluation stages. 

1.3.2 Approach 

This thesis constructs and evaluates a framework for adaptive sampling through an 

iterative process of reflection and refinement using a series of case studies involving 

land cover mapping problems. This is done as a means of developing methods and 

gaining insights into how adaptive sampling can be used to manage uncertainty in 

classifiers efficiently when they have been built using MLTs. 

More specifically, this thesis uses two land cover mapping case studies that consider the 

problem of generating ground-truth sample designs to efficiently manage uncertainty 

within the following contexts:  

(i) UQ under discrete classification maps. 

(ii) UQ under fuzzy classification maps.  

(iii) Sample design when the total size is limited by cost restrictions. 

(iv) Sample design when the cost of ground-truth sampling varies across a 

region.  
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Figure 1.5 displays which areas each case study covers. 

 

Figure 1.5. An overview of how the two case studies in this thesis cover the different 

classification scenarios.   

Note, these four situations are not an exhaustive list of scenarios. Rather, it reflects the 

types of problems practitioners often face. There are other issues and contexts to 

consider (Section 7.3 discusses this further) but through prioritisation, the thesis focuses 

on these four contexts. 

Case study 1: Urban mapping in the Lagos region 

 

The first case study involves an urban mapping of Lagos and the surrounding areas 

from early 2016. In this case study, two maps are provided, a prediction map and a 

reference map, both made using Landsat 8 imagery [45] and Random Forest classifiers 

[46]. Both maps classify pixels at a 30m resolution into one of three discrete categories: 

urban land, non-urban land and water. From this, two urban extent maps are generated 

at a 1km resolution, which represents the degree of urbanisation based on the proportion 

of urban 30m pixels that fall within each 1km square for each map. i.e., the predicted 

urban extent map is a set of 1km squares, with each square being assigned a value of 0 

to 1 based on the proportion of 30m pixels in the same area that was classified as urban 

in the prediction map. This provides the case study with both discrete (30m) and fuzzy 

(1km) classification problems. 
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Figure 1.6. A summary of how the prediction and reference maps are defined for the 

30m and 1km maps. 

This case study is chosen to act as a bounded case study where initial ideas and 

concepts can be cheaply explored in early iterations in the context of both discrete and 

 

Landsat 8 Imagery of the Lagos 

area circa 2016. 

 

True colour map. 

 

RBG composite of the first 

3 principal components 

 

 

 

Polygons are drawn on and 

assigned a value of Urban Land, 

Non-Urban Land, and Water. 

 

These polygons act as training 

data for the prediction and 

reference maps.  
 

Training polygons for the 

prediction map. 

 
Training polygons for the 

reference map. 

 

 

30m resolution maps are made 

using a Random Forest classifier 

trained using their respective 

polygons. 

  

e.g. the prediction map is made 

from a Random Forest trained 

on the pink polygons above.  
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fuzzy classification problems, as one has access to both the prediction and reference 

maps. From a visual inspection of the maps in Figure 1.6, one can see that for a large 

proportion of the mapping area, the prediction and reference maps will agree, but there 

may be disagreements in areas near small towns or the outer region of cities. Hence, 

there is a suspicion before one starts that any optimal design for reference will want to 

target these areas more heavily. 

The role of this case study is to give a space where one can investigate how well 

methods might learn to target these areas if one pretends that the full reference map is 

not available. From this, one can bring forward a shortlist of the better-performing 

methods for the second case study.  

Another important property of this case study is the scale of the mapping area. One of 

the advantages of MLTs is that they can deal with large volumes of data (especially 

once fitted). Hence, if any method of generating sample designs for UQ is going to be 

suitable for applications involving MLTs, such methods will need to be capable of 

dealing with large volumes of data. In this case study, the 30m resolution maps consist 

of approximately 40 million pixels and the 1km resolution maps involve 36 thousand 

areas to consider, which provides a sufficient volume of data when evaluating the 

computational demand of any proposed methods. 

Case study 2: Woodland mapping in England 

 

The second case study involves quantifying the uncertainty for woodland mapping in 

England when the cost of collecting ground-truth data are high and the ability to collect 

data varies across the region due to travel restrictions motivated by COVID-19 

regulations in 2020. In this scenario, one is faced with the problem of trying to generate 

a sample design that best manages the trade-offs between the degree of uncertainty in 

predictions; the costs associated with sending experts to perform physical ground 

visitations; and the additional COVID-19 travel restrictions that imply a strong 

preference to avoid sampling areas that are far from the locations of the experts. 

 

Along with the predicted woodland map, there is also a propensity map that represents 

the preference for physically visiting some areas over others due to travel restrictions 

brought about by the COVID-19 virus (Figure 1.7B). Essentially, this map illustrates the 
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preference that experts physically visit areas that are close to their home locations, 

which allows them to avoid overnight stays. 

 

 

 

Figure 1.7. (Left, A) Woodland mapping generated for England from the 2015 UK land 

cover map. (Right, B) A mapping of the propensity scores based on the distance from 

where surveyors are located. 

 

The motivation behind the choice of this case study is to act as a secondary stage for 

evaluating and refining methods shortlisted in the first case study with a more 

challenging scenario. It maintains some of the important properties in the first case 

study as (i) there are approximately 130,000 1km squares in the mapping area which 

provide sufficient volume of data to be relevant to MLT applications; (ii) there is an 

expectation that misclassifications will be uncommon and clustered, which provides a 

suitable problem when evaluating targeted sampling practices. 

 

However, it differs from the first case study by providing a more realistic scenario that 

better reflects the challenges related to UQ and reference sampling one is likely to face. 

Namely, one will not have the benefit of a full set of reference data at the beginning and 

standard sampling designs such as simple random sampling may not be viable in 

practice.  
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Additionally, the specific mechanics behind the propensity score will not be used in this 

case study. Hence, many of the results from this case study related to propensity scoring 

are likely to be relevant to classification problems in other domains, providing that a 

user can quantify their preference for sampling from different members of a population 

beforehand. 

1.3.3 Overview of thesis  

This thesis introduces an approach for managing the costs associated with quantifying 

and reducing uncertainty in classification problems by considering how one may collect 

the necessary reference data more efficiently. More specifically, the thesis is structured 

as follows: 

• Chapter 2 provides an extensive literature review on the topics of uncertainty 

quantification, reference sampling, and machine learning and examines how the 

current literature relates to managing uncertainty efficiently in machine learning 

classifiers.  

• Chapter 3 sets the evaluation criteria, proposes a framework for adaptive 

sampling, and populates said framework with a series of methods. Here, the 

framework represents adaptive sampling as an abstract process with four key 

stages and the methods are specific practices available to users that target these 

different stages.  

• Chapters 4 and 5 use the Lagos and England woodland case studies respectively 

to evaluate the framework and methods introduced in Chapter 3.  

• Chapter 6 reflects on case studies in Chapters 4 and 5 to evaluate the framework 

against the criteria set out in Chapter 3 at a more general level before discussing 

several important items emanating from this work. 

• Chapter 7 summarises the work of the thesis and documents important areas of 

future work.  
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Chapter 2. Literature Review 

When considering the problem of managing uncertainty efficiently in classifiers built 

using machine learning techniques, one is considering an intersection of three topics: 

uncertainty quantification (UQ), reference sampling and machine learning classifiers. 

The purpose of this chapter is to review the literature surrounding these three topics 

within this context. The structure of the chapter is as follows (see Figure 2.1 for an 

illustration): Section 2.1 reviews two key concepts behind quantifying uncertainty in 

classification problems: the first is design and modelling dependencies (2.1.1). The 

second is the choice between frequentist and Bayesian inference (2.1.2). Section 2.2 

reviews the approaches one can take to reference sampling and how such methods 

interact with quantifying and efficiently managing uncertainty. Section 2.3 reviews the 

state of the art for classification algorithms made using MLTs. Finally, Section 2.4 

reviews the literature for methods that look at reference sampling and UQ under MLTs, 

looking specifically at the intersection between these areas. 

 

Figure 2.1 A visual representation of the structure of Chapter 2 and how it relates to 

the focus of the thesis.  
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2.1 Uncertainty quantification 

Uncertainty quantification aims to provide a numerical representation of uncertainty 

using available evidence and reasoning. However, many subjective choices need to be 

made when choosing how to quantify uncertainty which makes the topic of developing 

efficient sample designs more difficult, as there is no guarantee that efficient sample 

designs under one method of UQ will be efficient under another method of UQ. In other 

words, the fact that there are subjective choices in how one quantifies uncertainty in the 

first place makes the idea of trying to create efficient sample designs more difficult as 

there are simply more scenarios to consider. Hence, before focusing on how to sample 

efficiently, it is important to understand how methods of UQ are chosen. 

When choosing a method of UQ, there are two major considerations that this section 

will cover. The first is to what extent one should rely on sample design or modelling 

assumptions. The second choice is whether to base UQ on a frequentist or Bayesian 

perspective.  

2.1.1 Design and modelling dependencies 

Quantifying uncertainty is more than a simple calculation using reference data. 

Typically, there needs to be some additional assumptions placed as to how the reference 

data were collected (i.e. the design) or contextual information (modelling) before 

methods of UQ can be considered legitimate. 

Traditionally, the reliance a method of UQ places on the sample design and modelling 

assumptions has been framed in terms of design-based inference and model-based 

inference. Here, there is a well-established literature discussing the pros and cons of 

each approach, both at a general level [47], [48], [49], [50] and across many domains 

including, sociology [51], forestry monitoring [52], [53], soils monitoring [54], 

neurology [55], and land use/land cover mappings [47], [52], [56]. 

In more recent years though, the discussion has moved away from the binary choice of 

model and design-based inference in UQ and more towards a discussion on how 

methods of UQ have different degrees of reliance on design and modelling assumptions 

[43], [57], [58]. These more fluid perspectives are useful for differentiating between 
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different forms of UQ including model-assisted estimation [59] and hybrid estimation 

[43] (see Figure 2.2 for an illustration). 

 

Figure 2.2. An overview of how some methods of uncertainty quantification have 

different reliance on modelling and design assumptions. Original image from Ståhl et al 

[43]. 

Because of this extra utility in a more fluid view of model and design-based estimation, 

this thesis will from now on adopt language that better reflects varying degrees of 

reliance on modelling and design assumptions in UQ. More specifically, the design 

dependencies for a method UQ refer to aspects that rely on the design of the sample. 

Likewise, the modelling dependencies refer to aspects that rely on additional modelling 

assumptions. A method of UQ with many (or few but severe) dependencies of one type 

of inference is said to be highly reliant on that type of inference.     

For this thesis, several key themes stand out from the literature when discussing the 

advantages and drawbacks of different levels of modelling and design dependencies: 
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• As a method of UQ becomes more design-dependent, its validity depends more 

on being able to (i) implement strict probabilistic sample designs (see Section 

2.2.1 for further details on probability sampling) and (ii), assign an explicit value 

to each member of the population that indicates the probability that said member 

will be included within such a design (these probabilities are often referred to as 

inclusion probabilities). In addition, when inclusion probabilities are close to or 

exactly zero because of sampling restrictions (e.g. one is unable to survey a 

particular subset of a population), one may see a decrease in the precision of 

estimates or force a user to exclude subpopulations in any analysis, as estimates 

may not be well-defined when inclusion probabilities are exactly 0.  

 

• Purely design-based approaches are only suitable for population-level estimates 

(e.g. overall accuracy, population means, etc.). Hence, if one wishes to quantify 

uncertainty for estimates involving individual cases or small subsets of a 

population, some degree of modelling dependency will be necessary.  

 

• Modelling can provide a way of increasing the precision of estimates under 

limited data by taking advantage of correlations between auxiliary variables and 

target variables. The exact balance of design and modelling dependencies can 

vary, with model-assisted estimators relying more heavily on design 

dependencies and less on modelling assumptions than, say, a purely model-

based approach. However, one must be cautious when making a direct 

comparison between the precision of estimates with these approaches, as they 

will often rely on different modelling assumptions and sources of ontological 

uncertainty. 

 

Data-driven vs process-driven modelling. 

 

When making decisions related to design and modelling dependencies in UQ, it is 

useful to distinguish between data-driven modelling and process-driven modelling. 

Hunter et al. [60] describe process-driven modelling with 

 “Process-driven models are developed from the known physical process(es) in a 

system, which are represented mathematically.”  
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In contrast, Hesamia et al. [61] use the following to describe data-driven models  

“Regarding data-driven modeling, data are analyzed in the system for investigating the 

relation with the system state variables without considering the physical behavior of the 

system.” 

Another way of viewing this difference is that process and data-driven modelling aims 

to quantify a physical process with relevant variables and use reference data to calibrate 

parameters within these models. On the other hand, data-driven modelling aims to form 

some sort of generalised structure for the relationship between variables. When the 

entirety of the data from a population is unavailable, such relationships must be 

estimated with a sample. Whilst MLTs are not strictly required for data-driven 

modelling, their use has made the distinction between process-driven and data-driven 

modelling more apparent in many domains including mechanical engineering [62], 

plant-wide industrial processes, [63], clinical drug development [64] and fault diagnosis 

in nuclear power systems [65].  

In terms of UQ and the relation to modelling and design dependencies, the differences 

between process-driven and data-driven modelling can be seen as specific cases of the 

idea presented in Figure 2.2 (see Figure 2.3), with more modelling dependencies placed 

on process-driven modelling (from the fact that one will often need to predefine any 

causal relationships between variables) and more design dependencies in data-driven 

modelling as causal relationships between variables are not assumed. 
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Figure 2.3. A representation of how process-driven and data-driven modelling relates 

to reliance on design and modelling assumptions. 

The motivation for highlighting the distinction between process-driven and data-driven 

modelling in particular is that, for many MLTs, it is not easy to quantify uncertainty 

through process modelling due to a lack of interpretability and explainability [66], [67]. 

Consequently, the use of MLT classifiers will typically come at the cost of forgoing 

process-driven modelling in UQ, which in turn will inevitably mean a reliance on either 

data-driven modelling or some form of UQ with a higher level of design dependency.  

2.1.2 Frequentist and Bayesian inference 

At a high level, a method of UQ aims to represent the perceived likeness of an unknown 

value or event based on currently available information. Typically, this involves 



 

35 
 

representing uncertainty in terms of probabilistic statements, to which there are two 

major interpretations of probability, frequentist and Bayesian [68], [69].  

From a frequentist interpretation, probabilities are based on proportions related to a 

large number of events. For example, if a fair coin is flipped many times, one would 

expect around half of the flips to land on heads, and this would be the basis of assigning 

a statement of the form “each flip on the coin has a fifty per cent chance of landing on 

heads”. For uncertainty quantification, this frequentist idea of probability is called upon 

when producing confidence intervals. Neyman [70] defines confidence intervals with:  

An X% confidence interval for a parameter 𝜃 is an interval (L, U) generated by a 

procedure that in repeated sampling has an X% probability of containing the true value 

of 𝜃, for all possible values of 𝜃. 

Using frequentist approaches in discrete classification problems is well-established for 

many common estimates [71]. For example, when estimating performance metrics in 

discrete classifiers from a sample (e.g. overall accuracy, sensitivity, specificity etc.), this 

can often be viewed as estimating binomial proportions. From this, there are many well-

known approaches for producing confidence intervals [72]. When deriving a closed 

form for the distribution of an estimate is more difficult, one can rely on simulation-

based methods such as bootstrapping [73]. Such methods are commonly used when 

estimating metrics such as the area under the ROC curve [74], [75]. 

For fuzzy classification problems, there is a wide variety of frequentist-based UQ 

methods centred on regression analysis [76] and model-assisted estimation [77] that one 

can draw upon. 

With Bayesian inference [78], [79], uncertainty in 𝜃 given a sampled set of data 𝐷 is 

represented as a probability distribution, 𝜋(𝜃|𝐷), by using Bayes theorem:  

𝜋(𝜃|𝐷) =  
𝜋(𝐷|𝜃)𝜋(𝜃)

𝜋(𝐷)
, 

where 𝜋(𝐷|𝜃) is the likelihood function (often defined using the sample design and 

other assumptions), 𝜋(𝜃) denotes the prior distribution, and 𝜋(𝐷) is the marginal 

likelihood. The prior distribution reflects belief in the likely values of 𝜃 before 

observing the data, 𝐷. The choice of prior distribution may be influenced by many 

factors such as previous studies; the context of the problem (e.g. knowing values are 



 

36 
 

bounded by definition); the subjective belief of the user; a desire for the posterior 

distribution to be primarily influenced by the observed data (this is commonly referred 

to as using a vague or non-informative prior distribution [80], [81]), or for 

mathematically desirable properties that allow for closed form posterior distributions 

(e.g. conjugate priors [82], [83], [84]). In general, when the choice of the prior 

distribution is not clear, a sensitivity analysis is recommended [85]. The calculation of 

𝜋(𝐷) is often avoidable in practice as it only acts as a normalising constant.  

With any posterior distribution, one has the additional option of a Bayesian analogue to 

confidence intervals with credible intervals [86]. The difference between Bayesian 

credible intervals and frequentist confidence intervals is that credible intervals are a 

measure of uncertainty that captures the most likely values for 𝜃 based on the posterior 

distribution. For example, an equal-tailed 𝑋% credible interval for 𝜃 given 𝐷 would be 

the 
𝑋

2
-th and (100 −

𝑋

2
)-th percentiles of the posterior distribution 𝜋(𝜃|𝐷). 

There has been substantial debate over the benefits and drawbacks of frequentist and 

Bayesian inference at a general level [68], [69], [87]. When considering the method of 

UQ under restricted sampling designs, these arguments can be usefully broken down 

into the following headings: sources of ontological uncertainty; the ability to deal with 

design-based approaches; the ease of applying simulation-based methods.  

Sources of ontological uncertainty 

 

With frequentist methods, a key source of ontological uncertainty comes from the 

potential difference between the nominal coverage and the stated coverage. The nominal 

coverage is the true proportion of confidence intervals (or regions when considering 

higher dimensional estimates) that would contain any unknown value should the sample 

design be repeated a large number of times. In an ideal situation, the nominal coverage 

is exactly (or at least close to) the stated level of confidence.  

In some well-structured situations, this can be guaranteed by pivoting key statistics [88]. 

Briefly, such methods begin with a statistic for 𝜃 derived from the sampled data. When 

this statistic satisfies a number of key properties, one can then use the distribution of 

this statistic to reverse engineer a confidence interval for a 𝜃 at a specified level of 

confidence with the guarantee that the nominal coverage will match this. 
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Mismatches between stated confidences and nominal coverage occur in two common 

scenarios. The first scenario is when the distribution of a statistic for 𝜃 is discrete. As a 

quick description, this is because, when a distribution of a statistic is discrete, the 

cumulative distribution function (CDF) for that statistic will not be continuous, which 

makes it impossible to invert this CDF at the points that would ensure an exact level of 

coverage. One well-known example of this is when estimating binomial proportions 

with Clopper-Pearson intervals [89]. Here, using the exact distribution can be overly 

cautious in some situations, i.e. the nominal coverage is so much greater than the stated 

level of confidence, that the confidence intervals are unnecessarily wide [90]. This can 

be a substantial drawback when sample sizes are limited and may motivate one to look 

at alternative statistics that sacrifice exact coverage for narrower confidence intervals 

with coverages that are close enough approximations to their stated level of confidence. 

In the case of binomial proportions, this can be seen in Agresti–Coull intervals [91] or 

using methods based on Bayes theorem [92]. 

The second scenario is when one is relying on approximate distributions of statistics. 

Such approximations are useful when: (i) deriving the exact distribution for a statistic is 

overly cumbersome or analytically impossible; (ii) one is wishing to avoid other sources 

of ontological uncertainty by making assumptions necessary for exact methods. Two 

well-known examples of these methods are applications involving the central limit 

theorem [93], and bootstrapping methods [94], [95]. The central limit theorem and 

bootstrapping are highly generalisable methods based on asymptotic theory that offer a 

means of approximating distributions of key statistics under sufficiently large sample 

sizes without making strong assumptions about the distribution of a population. 

In either case, once one begins deviating from using the exact distribution of statistics 

(which is often necessary in practice), there is an underlying source of ontological 

uncertainty regarding whether any stated level of confidence is sufficiently close to the 

nominal coverage. In the case of estimating a binomial proportion from a simple 

random sample, previous work has been able to demonstrate that differences between 

the nominal coverage and stated confidence for approximate methods are sensitive to 

the true proportion value, the sample size, and the stated level of confidence [91]. 

Because of the relative simplicity of these cases, one can empirically assess these 

relationships. However, analysis of this kind does not extend well to more sophisticated 
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scenarios, as visualising results across multiple dimensions can quickly become 

difficult. 

Two noteworthy situations where it can become difficult to formulate exact 

distributions for statistics are multilevel modelling [96] and adaptive sampling. To be 

clear, there are frequentist methods capable of providing confidence intervals under 

multilevel modelling adaptive sampling. In multilevel modelling, one can use 

asymptotic properties of maximum likelihood estimates [97] or bootstrapping [98] to 

construct confidence intervals. Likewise, it is possible to construct confidence intervals 

with sufficient coverage under adaptive sampling when the decision-making processes 

involved can be explicitly quantified. Examples of such methods can be found in 

clinical trials [99], [100], [101], [102], [103] and estimating insect populations [104]. 

The point to emphasize here is that should one need to rely on approximate methods in 

these situations, confirming nominal coverage empirically is difficult due to an increase 

in the number of factors involved. With multilevel modelling, one must consider 

nominal coverage across all true values of all the estimates involved. With adaptive 

sampling, any factor in the decision-making processes (e.g. sample size within batches, 

stopping rules, targeted sampling etc.) must be considered in any analysis. 

The net result of this is that, when using frequentist methods to quantify uncertainty 

under limited sample sizes, one is forced to either (i) restrict sample designs to simple 

situations so that one can use methods that can ensure a reasonable match between 

coverage (either analytically or empirically), which may, in turn, limit the efficiency of 

any uncertainty reduction, or (ii) rely on methods that have a realistic possibility of 

producing invalid measures of uncertainty, with no easy way to confirm the validity of 

said methods. 

In comparison, under Bayesian inference, the posterior distribution is a purely logical 

statement based on the observed data, prior distribution, and likelihood function. In 

other words, if one believes that the likelihood function and prior distribution are 

appropriate, then the posterior distribution is an appropriate quantification of 

uncertainty in 𝜃 after observing 𝐷. This gives Bayesian techniques an advantage over 

frequentist methods under limited sample sizes, as it allows one to bypass any concerns 

regarding stated confidence and nominal coverage. The potential drawback for this is 

that sources of ontological uncertainty are now more heavily placed on the 
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appropriateness of the prior distribution and the assumptions necessary to formulate 

likelihood functions. 

Another key difference with Bayesian inference is that, because uncertainty in 𝜃 is 

represented as a probability distribution, one can apply well-known results from 

probability theory by treating the posterior for 𝜃, 𝜃|𝐷, like any other random variable. 

In particular, it allows one to make use of three techniques, marginalisation [68], [79], 

Monte Carlo integration [105], and Markov Chain Monte Carlo (MCMC) methods 

[106], [107]. These techniques are powerful tools when dealing with more sophisticated 

situations such as multilevel modelling. For example, suppose one is interested in some 

function of 𝜃, 𝑔(𝜃). Through marginalisation, one can express the posterior distribution 

for 𝑔 as: 

𝜋(𝑔(𝜃)|𝐷) = ∫ 𝜋(𝑔(𝜃)|𝜃, 𝐷)𝜋(𝜃|𝐷)𝑑𝜃. 

        

When no analytical solution for 𝜋(𝑔(𝜃)|𝐷) is available, one may use Monte Carlo 

integration to approximate 𝜋(𝑔(𝜃)|𝐷) if one can sample from the posterior distribution, 

𝜋(𝜃|𝐷), and apply 𝑔 under fixed values of 𝜃. The same principle can be applied 

multiple times to include more advanced cases of multilevel modelling. MCMC 

methods offer a way of approximating the posterior distribution, 𝜋(𝜃|𝐷), if analytical 

solutions for 𝜋(𝜃|𝐷) are not available. The combination of Monte Carlo methods and 

marginalisation is a key advantage of Bayesian inference, as it allows one to move to 

more sophisticated scenarios such as multilevel modelling without needing to rely on 

asymptotic theory or difficult-to-obtain analytical solutions [108]. It is important to 

stress here that the precision of Monte Carlo approximations is governed by the number 

of simulations and not the size of any reference sample. This means that, given enough 

simulations and computational resources, one can reach an arbitrary degree of precision 

for a posterior distribution with Monte Carlo methods. In contrast, frequentist methods 

rely on asymptotic results that are approximations with respect to the amount of 

reference data available. Since generating simulations is generally far easier than 

collecting more reference data, concerns over the suitability of approximations are 

unlikely to be as prevalent here.  
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Applications of multilevel modelling do not need to be particularly sophisticated for this 

advantage of Bayesian inference to be useful in classification problems. One example of 

this is when comparing the performance of multiple classification algorithms 

simultaneously [109]. With frequentist approaches though, the shortcomings of 

significance testing make similar analysis much more difficult. 

Another situation relevant to classification problems is when dealing with stratified 

sampling. One example of this is when estimating deforestation under stratified 

sampling in land change mapping [110]. In this example, the total area of deforestation, 

𝐴 = ∑ 𝑊𝑖𝑝𝑖
𝑛
𝑖=1 , is a weighted sum based on the 𝑛 strata, with stratum sizes, 𝑊𝑖, and the 

proportion of deforested area in each stratum, 𝑝𝑖. Such a case can readily be handled 

with Bayesian inference by generating a posterior distribution for each 𝑝𝑖 and 

approximating a posterior distribution for 𝐴 with simulation-based methods. In 

comparison, many of the frequentist methods considered are either not suited for 

stratified sampling or are called into question because of a combination of modest 

sample sizes within some strata and that some highly weighted strata were expected to 

have almost no deforestation (i.e. there were strata with a large 𝑊𝑖 and  𝑝𝑖 very close to, 

if not exactly equal to, 0).  

Finally, the third advantage of Bayesian inference is the ease with which one can 

quantify uncertainty under iterative sampling. With Bayesian inference, a posterior 

distribution is the same regardless of whether the entire reference sample is viewed as a 

single batch or viewed as a series of subsamples that are updated sequentially [111]. 

This can be neatly summarised with the phrase today’s posterior is tomorrow’s prior 

[112] and be mathematically represented with the result that for two observed data sets 

𝐷1, 𝐷2 

𝜋(𝜃|𝐷1, 𝐷2) ∝ 𝜋(𝐷2|𝜃)𝜋(𝜃|𝐷1). 

The benefit of this property over previously mentioned frequentist approaches is that it 

allows one to treat batches of samples as a single sample and vice-versa, which greatly 

simplifies UQ under adaptive sampling. This property is not available in frequentist 

inference, as the latter must account for decision-making processes made during each 

iteration of sampling.  
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The ability to deal with design-dependent inference. 

 

When deciding upon frequentist or Bayesian inference, it is important to consider how 

they interact with methods of UQ as design and modelling dependencies vary (see 

Section 2.1.1 for further details on design and modelling dependencies). For instance, 

many popular design-based approaches are based on frequentist inference, and there is 

not always a Bayesian equivalent to draw upon. One notable example of this is in 

model-assisted estimation [59]. Model-assisted estimation is popular in applications 

such as forestry monitoring when estimating large-scale quantities such as total 

deforestation [113]. Model-assisted estimation allows one to make use of auxiliary 

information to make precise estimates without needing to rely on formal modelling 

assumptions, which can easily become difficult to manage (e.g. accounting for 

structures regarding spatial correlations). Developing a Bayesian equivalent to model-

assisted estimation is not as easy, as one will, at some point, need to impose further 

modelling assumptions to generate a suitable likelihood function. Depending on the 

circumstances, this advantage may be substantial enough to overshadow other 

advantages Bayesian inference may bring.  

The ease of applying simulation-based methods 

 

Simulation-based methods such as bootstrapping in frequentist inference and MCMC 

sampling in Bayesian are popular techniques in modern statistical inference that offer 

highly generalisable approaches for uncertainty quantification. Putting aside any 

sources of ontological uncertainty from the assumptions made or the philosophical 

differences for a moment, and focusing only on the application of each method, 

bootstrapping is arguably a much simpler method that is easier to implement in practice.  

With bootstrapping, one can construct confidence intervals for an estimate by simply 

resampling from the observed data (with replacement) and fitting estimates based on 

these resamples. Hence, if one can calculate an estimate based on the observed data, 

there is little stopping a person from applying bootstrapping methods.  

MCMC sampling methods such as random walk Metropolis-Hastings (RW-MH) allow 

one to sample from posterior distributions under almost any prior distribution and 

likelihood function [114]. With RW-MH though, one must carefully set the proposal 

distributions, striking a suitable balance between visiting areas where the posterior 
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distribution is of higher density more often and exploring the space the posterior 

distribution occupies without getting stuck in small areas [115]. As this posterior 

distribution increases in dimensionality, fine-turning these proposal distributions 

becomes increasingly more difficult. 

Specifically, on RW-MH, there has been substantial work on methods to propose such 

distributions [116], [117], [118], [119]. There has also been substantial work for 

approaches that aim to mitigate against problems involved in setting proposal 

distributions, if not avoid them altogether. This includes making use of hierarchical 

structures in modelling to break a problem of generating a high-dimensional posterior 

distribution into several lower-dimensional problems, and linking them together with 

RW-MH and Gibbs sampling [120], [121], [122], or using of likelihood-free 

approximations [123], [124] as a means of generating posterior distributions (note, the 

latter methods are sometimes referred to as approximate Bayesian computation). In 

some specific circumstances, it is possible to use bootstrapping to generate posterior 

distributions [125].  

Whether these methods are useful to a specific problem will depend on the context of 

any situation. Furthermore, problems related to the efficiency in MCMC sampling may 

become less of an issue with the increasing availability of cloud computing services 

[126], [127].  

However, the fact that bootstrapping is easier to apply without needing to rely on more 

advanced methods is an advantage that, for now, cannot be ignored. Depending on the 

context of the problem, this advantage alone may be enough for users to adopt 

frequentist inference in UQ, especially when the philosophical difference between 

frequentist and Bayesian inference is not a major concern.  

2.1.3 Reflections  

Careful consideration of how uncertainty is quantified is vital in any research that aims 

to investigate how uncertainty can be managed efficiently. Given that there are an 

infinite number of possible approaches to UQ, it is not possible to systematically review 

every method individually. However, it is possible (and useful) to consider the 

fundamental philosophies that underpin such methods. This section has considered 
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design and modelling dependencies (2.1.1) along with frequentist and Bayesian 

inference (2.2.2). 

Focusing on the choice between design and modelling dependencies first, there has been 

a substantial amount of work evaluating the pros and cons of design-based and model-

based inference when quantifying uncertainty. More recent work has focused on 

blurring this dichotomy and allowing for hybrid approaches, which aim to strike the 

most appropriate balance between design requirements and modelling assumptions. 

The debate between frequentist and Bayesian inference is also well-studied. Whilst 

Bayesian inference goes back to the original founding of Bayes theorem, the increase in 

computational capacity and the development of MCMC methods have led to a growing 

interest in Bayesian inference throughout the late 20th and early 21st centuries. 

From the perspective of developing sample designs to manage uncertainty efficiently, 

this thesis draws the following key observations: 

• In situations where sample sizes and designs are limited, methods of UQ based 

on fully design-based inference may not be efficient at managing uncertainty. 

This is especially true when sampling from some subsets of a target population 

is difficult or impossible.  

 

• Discussions related to the appropriateness of different design and modelling 

dependencies are largely going to be domain-specific and context-specific. 

Furthermore, experts within a domain may even disagree on such issues. Hence, 

any framework for managing uncertainty efficiently should be as generalisable 

as possible and not rely on one specific set of design requirements or modelling 

assumptions. 

 

• Bayesian inference offers several advantages over frequentist inference. These 

include the ability to (i) easily propagate uncertainty via simulation-based 

methods, (ii) naturally handle sequential sampling (iii) formally include prior 

knowledge when quantifying uncertainty.  

 

• There are some niche situations where some frequentist methods of UQ may be 

preferred over Bayesian approaches. Two notable examples include using 
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model-assisted estimators and methods using bootstrapping. However, these 

methods are based on asymptotic theory (along with many other popular 

frequentist-based methods). This can be a problem when sample sizes are 

limited, as it will not always be clear when (or if) such methods are valid.  
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2.2 Reference sampling 

When considering how one can best balance different trade-offs between the costs of 

collecting reference data and uncertainty, how the reference data are collected (i.e. the 

sample design), and the types of reference data collected are naturally going to play an 

important role. This section reviews the current literature on how one may construct 

sample designs that can efficiently manage uncertainty. This thesis reviews such work 

across two complementary themes. Section 2.2.1 reviews sampling techniques from the 

perspective of probability vs non-probability sampling. Section 2.2.2 reviews methods 

for creating efficient sample designs. 

2.2.1 Probability and non-probability sampling 

A sample design is said to use probability sampling if members of the population are 

selected through a known probabilistic mechanism that can be expressed using a 

probability density function (pdf). In contrast, non-probability sample designs select 

members with methods that cannot be expressed using a pdf. The lack of a known pdf 

may be caused by one of two cases. The first case is when the sample design does not 

contain any stochastic components, meaning there is no underlying probabilistic 

mechanism. The second case is when there may well be a probabilistic mechanism 

governing which members are selected, but one is unable to describe this with a pdf due 

to a lack of understanding. Popular examples of probability and non-probability 

sampling are presented in Table 2.4. 
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Table 2.4. An overview of popular examples of probability and non-probability 

sampling 

 

  

Probability sampling Description 

Simple random sampling Each member of the population is selected independently and 

with an equal probability of being selected.  

 

Stratified random sampling The population is first partitioned into smaller groups known as 

strata. A simple random sampling is then conducted within 

each stratum, where each stratum is treated as an independent 

sub-population.  

Systematic random sampling Systematic random sampling begins by arranging the 

population within some ordered frame (e.g. alphabetical order). 

A member of the population is then selected through simple 

random sampling to act as a starting point. With this starting 

point, the remaining members of the population are then 

selected based on some periodic rule (e.g. every fifth member 

counting from the starting point). 

Cluster and multistage 

sampling 

The population is first arranged in groups called clusters. 

Following this, a set number of clusters are selected through a 

known probability sampling (e.g. simple random sampling or 

weighted according to cluster size). All members of the 

selected clusters are included in the sample. With multistage 

sampling, further sample designs are implemented within each 

cluster (e.g. simple random sampling, an additional clustered 

sampling etc.). 

Non-probability sampling Description 

Quota sampling  The members of the population are selected to meet a specific 

objective based on some quota (e.g. a sample of 100 male and 

100 female students). 

Snowball sampling First-level members are selected using some initial sample 

design. These first-level members are then used as a basis for 

selecting new members (e.g. using nearby members, first-level 

members recruiting new members etc.). This procedure is 

repeated iteratively to create a “snowballing” effect when 

sampling members. Snowball sampling may also be referred to 

as chain sampling or chain-referral sampling. 

Convenience / purposive 

sampling. 

The selection of members is based on some predetermined 

criteria. These criteria may include conveniences in sampling 

or other judgments made by the researchers (e.g. selecting 

extreme events, sampling experts for opinions etc.).  

Self-Selection Sampling Members of the population are given to the researchers via a 

voluntary process that is not controlled by the researcher.  
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The advantages and disadvantages of different types of probability sampling are well-

studied [128], [129], [130]. The key takeaways in the context of developing efficient 

sample designs are:  

Probability sampling is a requirement for design-dependent approaches of UQ.  

 

As discussed in Section 2.1.1, some methods of UQ make use of design dependencies, 

meaning that they use probability designs as part of their fundamental basis. Hence, if 

one is wishing to employ design-dependent methods of UQ, some form of probability 

sampling is going to be necessary. 

Non-probability sampling is often more convenient than probability sampling.  

 

Non-probability sample designs are often a response to the practical difficulties found in 

probability sampling (or when there is a lack of control over how the sample is 

obtained). For example, quota sampling is useful when one is unable to obtain a 

probability sample but is trying to create a sample that is representative of the 

population being studied [129]. In such a case, quota sampling may be viewed as a non-

probability analogue of stratified random sampling. Self-selection and snowball 

sampling can be useful when finding consenting members of a population is difficult 

[131], [132]. Purposive sampling may benefit classification problems that deal with rare 

events or multiple classes, as this can be a way of ensuring one has enough reference 

data from all categories.  

UQ from non-probability sampling is possible but requires some degree of 

modelling assumptions.  

 

In general, it can be difficult to use data from non-probability sampling in many 

methods of UQ, especially if the method of UQ relies on many design dependencies. 

However, it is possible to quantify uncertainty in estimates with such data with the 

addition of modelling dependencies.  

One option is to use a fully model-based approach (see Section 2.1.1 for a discussion on 

the advantages and disadvantages of model-based approaches). Examples of using 

model-based approaches to quantify uncertainty under non-probability sampling can be 

found in soils monitoring [133], [134], forestry monitoring [135], [136], and market 

research using online surveys [137]. 
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An alternative option for including non-probability sample designs is via propensity 

scoring [138], [139], [140]. Propensity scoring is based on the idea a non-probability 

sample design may be modelled as a probability sample under the right circumstances. 

Propensity scoring has been shown to be popular in clinical trials [141], [142], [143] as 

well as internet surveys [144], [145], [146], [147]. Propensity scoring has recently been 

considered in land cover mappings, where the use of volunteered reference data are 

becoming more common [148]. 

Regardless of the specific modelling practices, the core premise of these approaches is 

that the problem of managing uncertainty efficiently can be addressed by making easily 

obtainable reference data suitable for UQ. In short, modelling and propensity scoring 

focuses on bringing cheaper designs into UQ as opposed to more traditional approaches 

that look to spend resources more carefully under expensive designs that are already 

suited for UQ.  

The drawback of modelling and propensity scoring though is that there is inevitably 

going to be some form of ontological uncertainty from the additional modelling 

assumptions. Determining when this extra ontological uncertainty is worth the cost of 

any additional reference data is always going to be context-specific and prone to 

subjective choices. 

Different forms of probability sampling provide different trade-offs between 

sampling convenience, efficiency, and ease of UQ.  

 

Whilst all design-dependent approaches to UQ require probability sampling, not all 

probability sample designs are equally as efficient at reducing uncertainty. Here, there 

are three factors to consider: the ease of implementing the sample design in practice, 

how efficient the sample design is at reducing uncertainty, and the assumptions or 

conditions necessary to quantify UQ. 

At a general level, simple random sampling lies at one extreme of this trade-off balance. 

With simple random sampling, UQ is typically the most straightforward, as there are 

few (if any) additional assumptions or further information required beyond those that 

already exist in the original model. The drawback of simple random sampling is that it 

can be difficult to implement in practice in many situations and may be inefficient in 

some applications. From this, other forms of probability sampling can be viewed as a 
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trade-off, where extra sampling convenience or efficiency is achieved at the expense of 

additional assumptions in UQ. 

Example 2.5 illustrates this idea of balancing trade-offs in the context of a land cover 

example. Even in this relatively constrained example, one can see how context-specific 

details such as sampling cost across an area, design costs being dependent on how far 

away the selected sites are from each other, and expectation of spatial autocorrelation 

are playing a substantial role in how one may choose a type of sample design. 

Sensitivity to details like these makes it difficult to say much about the pros and cons of 

sample designs at a general level. Instead, one would expect to conduct an analysis 

similar to example 2.5, yet context-specific, when dealing with new situations. 

Example 2.5: Balancing trade-offs in probability sampling in land cover 

mapping applications 

 

Suppose that one has constructed a land cover map and wishes to collect reference 

data using physical surveys to estimate the accuracy of a land cover map and the total 

area for different types of land cover. For the sake of simplicity assume that one has 

already decided upon a design-based estimator for UQ and needs to decide if the 

reference data should be collected under simple random sampling, stratified random 

sampling, systematic random sampling, or cluster sampling (single staged). 

 

However, collecting reference data often involves physically visiting sites to conduct 

surveys, which can be expensive, especially if they are far away from each other or in 

hard-to-reach places. This in turn creates a need to carefully consider the efficiency of 

sample designs. In addition to this, there is a general expectation of spatial 

autocorrelation in land cover mapping applications [149], [150], [151]. This is 

because types of land cover typically cluster in areas and misclassifications are not 

usually uniformly distributed but tend to also appear in clusters (e.g. near border 

regions, specific classes misclassified etc.). With this contextual information, one can 

begin to evaluate the pros and cons of the different design options. 

 

Under simple random sampling, one can use many well-known results to easily 

provide unbiased estimates for the variance of key statistics, making UQ 

straightforward. The drawbacks though are that firstly, the sampling costs may be 

unpredictable and potentially overly burdensome. This is because, under simple 

random sampling, any combination of members (under a fixed size) has an equal 

chance of being selected. Hence, if one is unfortunate enough, one may happen to 

draw a selection where many of the sites are far away from each other or contain an 

unusual number of hard-to-reach areas. In addition, simple random sampling may 

also be inefficient when spatial autocorrelation is present, as one needs to rely on 

chance alone to select enough sites from unique clusters.  

 

Systematic random sampling based on spatial grid sampling can be an efficient 

method of sampling when positive spatial autocorrelation is present. The drawbacks 

though are that (i) the individual spaces will be far from each other (adding to 
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sampling costs) (ii) providing unbiased variance estimates for key statistics can be 

difficult [152], and may require additional modelling assumptions to implement 

[153], [154], [155], (iii) Batch sampling is much harder under this kind of sampling, 

as providing unbiased variance estimates under multiple iterations is especially 

difficult when compared to the other design types here.  

 

Under stratified random sampling, UQ is not too difficult as one can provide 

unbiased variance estimates that are relatively easy to calculate for many situations. 

One notable exception is when strata are homogenous, as variance estimates may be 

unreliable (and possibly undefined) when one does not observe enough positive and 

negative cases [110]. Note this is not a niche or non-trivial issue in land cover 

mappings though, as the presence of spatial autocorrelation and accurate mappings 

makes homogenous strata more likely. One way to avoid this problem would be to 

ensure enough positive and negative cases are observed across strata, but this may 

create a high barrier to entry for the total sample size, particularly if there are many 

homogenous strata. 

 

Assuming variance estimates are reliable though, sample sizes for each stratum are 

free to vary according to convenience (increasing sampling convenience) and 

potentially optimised under a fixed sample size (increasing the overall efficiency), 

which can be extended to include different sampling costs within each stratum (see 

Section 2.2.2 for further details).  

 

Cluster sampling may act as a means of keeping sampling costs down by selecting 

groups of sites that are close together. Unbiased variance estimates are available for 

UQ, even when cluster sizes are different and there the cluster has an unequal chance 

of selection [59] (increasing UQ convenience). However, the formulae for these 

estimates are noticeably more complicated when compared to simple random 

sampling.  

 

At a general level cluster sampling can be inefficient [129] and becomes worse as 

clusters become more homogenous. When clusters are equally sized and randomly 

selected, this relationship can be quantified explicitly in terms of variance inflation 

factors and intra-cluster correlations [156]. This point is especially relevant to land 

cover mappings, as clusters are more likely to be homogenous because of spatial 

autocorrelation. 

 

Here, there is an interesting dynamic when considering the efficiency of clustered 

sampling. Whis clustered sampling may be less efficient than other designs with 

equal sample sizes, it may be more efficient from a cost perspective as it is much 

easier to collect larger sample sizes. When exactly the benefits of cheaper sampling 

will outweigh the general inefficiency will naturally depend on the specific features 

of a problem (e.g. the cost of sampling against degrees of spatial autocorrelations). 

 

With this analysis, one can begin to draw conclusions about the overall the pros and 

cons of different design types in land cover mapping applications. Figure 2.5 

summarises how these design types compare against the ease of implementation, 

efficiency, and ease of quantifying uncertainty without relying on additional 

modelling assumptions. 
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Figure 2.5 An overview of how different designs compare in the context of estimating 

accuracy and total prevalence land cover mapping applications.  

 

For a further discussion on the topic of design choice in land cover mapping 

applications see [157]. 

 

 

2.2.2 Methods for creating efficient sample designs 

As discussed in Section 2.2.1, some sample designs can be more efficient than others 

depending on the context. This section considers more proactive approaches for creating 

efficient designs. Here, the literature surrounding these approaches will be grouped 

under the following headings:  

1. Methods for optimising sample designs,  

2. The role of aleatoric and epistemic uncertainty in efficient sample design.  

3. Accounting for uncertainty in design analysis. 

Methods for optimising sample designs 

 

Having decided on a particular type of sampling design, there are still many (sometimes 

subjective) choices that need to be made. One simple example involves controlling the 

sample sizes within each stratum under stratified random sampling. As an example, 

suppose one wishes to estimate the overall accuracy (𝑂𝐴) of the classifier using simple 

Ease of UQ

Ease of
implementation

Efficiency

Simple random

Systematic random

Stratified random
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stratified random sampling. In this case, the maximum likelihood estimate for the 

overall accuracy is   

�̂�𝐴 =  ∑ 𝑊𝑖

𝑚

𝑖=1

�̂�𝑖 =  ∑ 𝑊𝑖

𝑘𝑖

𝑛𝑖

𝑚

𝑖=1

, 

where 𝑚 is the number of strata; 𝑊𝑖 is the relative size of stratum 𝑖 with ∑ 𝑊𝑖
𝑚
𝑖=1 = 1 ; 

𝑛𝑖 is the sample size for stratum 𝑖 ; 𝑘𝑖 is the number of members that were correctly 

classified. The precision of the estimate can be measured with the variance of the 

estimate �̂�𝐴. In this example, this variance for �̂�𝐴 is given by  

𝑉(�̂�𝐴 ) =  ∑
𝑊𝑖

2𝑂𝑖(1 − 𝑂𝑖)

𝑛𝑖

𝑚

𝑖=1

, 

           (2.1) 

where 𝑂𝑖 is the overall accuracy within stratum 𝑖. From (2.1) one can see that precision 

of the estimate, �̂�𝐴, is influenced by both the within-strata accuracies, 𝑂𝑖 and the relative 

sizes of each stratum, 𝑊𝑖. Broadly speaking, the optimal choice for 𝑛𝑖 under the 

restriction ∑ 𝑛𝑖
𝑚
𝑖=1 = 𝑁, favours larger stratum where the within stratum accuracies are 

closer to 0.5 (this is because 0.5 maximises the expression 𝑂𝑖(1 − 𝑂𝑖). Conversely, this 

means less sampling resources should go to strata that are small or those with either 

very high (or very low) accuracies. For a more precise balancing of this relationship, 

one can use methods from non-linear integer programming to optimise size allocation 

[158]. Such methods can also be extended to include (i) balancing uncertainty reduction 

across multiple estimates (ii) scenarios where the cost of sampling can vary across the 

strata, and (iii) restrictions to the minimum and maximum values of each 𝑛𝑖 [159], 

[160], [161].  

Whilst each 𝑛𝑖 is strictly speaking an integer in this example, dropping this assumption 

can be computationally convenient. For example, one can make use of Lagrange 

multipliers to approximate efficient sample designs with closed-form non-integer 

solutions [162]. This more heuristic approach has been successfully used for 

applications involving estimating the billing accuracy in insurance claims [163] and 

estimating total areas in land cover mappings [164]. 
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Similar practices may also be applied to optimise sample designs across more 

sophisticated design-based methods such as model-assisted estimation [165], [166]. 

Generally speaking, these methods share the same overall principle as the earlier 

example with stratified sampling, whereby members with a greater degree of variation 

will tend to have higher inclusion probabilities when all other factors are fixed. 

Furthermore, it is possible to give a closed form for (asymptotically) optimal solutions 

for model-assisted estimation, providing that the model can be correctly specified [59], 

[167]. 

When trying to optimise sample designs under model-based approaches, there is a well-

established literature on how one may target sampling to manage uncertainty efficiently 

going back to the late 1950s [168]. Since then, these methods have been extended to 

include closed-form solutions for generalised linear models [169] and numerical 

methods for more complex model structures [170], [171], [172], [173]. 

The role of aleatoric and epistemic uncertainty in sample design  

 

Distinguishing between aleatoric and epistemic uncertainty plays an important role in 

sample design, as this offers a way of informing users when they are approaching the 

point of diminishing returns for further sampling. Whilst the idea of distinguishing 

between aleatoric and epistemic uncertainty (and quantifying their components) is not 

necessarily new [174], there has been a growing interest in using components of 

uncertainty in machine learning applications [175], [176]. Recent work has focused on 

how epistemic and aleatoric uncertainty may be quantified for popular MLTs including 

Random Forest  [177] and neural networks [178], [179]. 

Techniques from more traditional concepts from statistical inference may also be 

reframed as discussions related to aleatoric and epistemic uncertainty. As an example, 

showing the consistency of an estimator [180] is equivalent to showing there is no 

aleatoric component (or it is infinitely small). Discussions related to power analysis 

[181] can be reframed as quantifying the rate at which epistemic uncertainty declines as 

sample sizes increase under a particular type of design.    

Separating aleatoric and epistemic components offers a useful way of guiding efficient 

sample designs that do not rely on optimisation methods. This could be a key advantage 

under MLTs where it is often difficult to apply traditional optimisation techniques due 
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to the complexity and black-box nature of many MLTs. The potential drawback though 

is that analysing aleatoric and epistemic components does not give the same explicit 

suggestions in the same way optimisation methods can. 

Accounting for uncertainty in design analysis 

 

When creating sample designs, the efficiency is often dependent on unknown parameter 

values. For example, in the case of stratified sampling in (2.1), one would need to know 

each 𝑂𝑖. One expectation of this is in the case of simple linear regression [182] where 

the optimal designs are based purely on the independent variables, though this is very 

much an exception that proves the rule. Measures such as aleatoric and epistemic 

components may also be dependent on unknown parameter values. This can be 

exemplified in (1.1), where the true value of 𝜎 determines the aleatoric component of 

uncertainty.  

When dealing with parameter uncertainty, Bayesian inference is a useful tool for 

seamlessly folding uncertainty in parameter values into design analysis [183], [184]. 

Furthermore, stochastic variation and Bayesian inference complement each other well, 

as by treating unknown parameter values as random variables, the problem of 

optimising sample designs based on prior information can be treated as a stochastic 

optimisation problem [185], [186].  

In addition to the uncertainty in parameters, stochastic variation from probabilistic 

sampling and noise components in modelling can also add a degree of uncertainty when 

formulating how sample design will affect uncertainty. Here, there is a good deal of 

work related to stochastic optimisation methods that may prove useful in this thesis 

[187], [188], [189].  

Overall, any analysis related to the true efficiency of a sample design will itself be 

subject to some uncertainty. If this uncertainty is not appropriately accounted for, one 

runs the risk of placing false confidence in sample designs. In the context of adaptive 

forms of sampling, one may be especially prone to such a pitfall, as, in early iterations, 

estimates are likely to be less precise because of the lower sample sizes. 
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2.2.4 Reflections. 

When creating sample designs that can efficiently manage uncertainty, there is much in 

the current literature to draw upon. From Section 2.2.1, one can see that there are a wide 

variety of standard sample designs one can potentially choose from. The most 

appropriate choice of sample design often involves balancing several criteria such as 

how easy (or costly) it is to implement a design, the ease with which uncertainty can be 

quantified, and the overall efficiency in terms of uncertainty reduction.  

From Section 2.2.2, one can see there are many ways to improve the efficiency of 

designs through targeted sampling. In addition, one can answer questions such as “how 

much reference data are enough?” by considering the aleatoric and epistemic 

components of uncertainty. Furthermore, methods of stochastic optimisations pair well 

with Bayesian inference as a way of incorporating uncertainty into these processes.  

For this thesis though, there are still two key remaining challenges, representing gaps in 

the state-of-the-art. 

The first challenge is in identifying a generalisable approach for selecting which type of 

design to adopt. When selecting types of sample design and reference data, the act of 

balancing different criteria is often sensitive to context-specific details (see Example 

2.5). As one moves on to more advanced scenarios (e.g. using propensity scoring to 

allow data collected from non-probability sampling in UQ), managing these different 

considerations can quickly require a substantial degree of domain knowledge. To 

further complicate matters, generating efficient sample designs requires already 

knowing (or having a good idea of) the very parameter values that one is trying to 

estimate. 

Heavy reliance on domain knowledge is not ideal in any situation. In the context of 

machine learning classifiers though, this is an especially substantial issue, as this would 

take away from one of the main advantages of MLTs, which is their ability to be 

effective in the absence of domain knowledge. Hence, it would be greatly beneficial to 

have generalisable methods of choosing the most appropriate sample designs and types 

of reference data (e.g. useful diagnostic tests) so that one can keep to the general theme 

of not requiring large amounts of domain knowledge.  
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The second challenge lies in dealing with the fact that questions over efficient sample 

designs often involve an exploration of different trade-offs, rather than optimising 

specific designs. In Section 2.2.2, there were a variety of methods that gave users ways 

of creating efficient sample designs under specific conditions (e.g. model structures, 

cost restrictions, types of designs etc.). Whilst these methods can be useful, they are 

only one part of any solution. Other factors such as ontological uncertainty and 

sampling convenience are not easily quantifiable and are prone to subjectivity, meaning 

that there is not always an objectively optimal choice of design. In addition, the choice 

of model can have a large impact on the relationship between sample design and 

uncertainty reduction. 

Overall, one key lesson from this section is that there is more to managing uncertainty 

efficiently than optimising sample designs. Often, managing uncertainty efficiently will 

mean trying to find sample designs that give the best trade-offs between different forms 

of uncertainty and other subjective elements given a limited number of resources. 
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2.3 Machine learning techniques in classification problems 

The performance of machine learning techniques in classification plays an important 

role when it comes to quantifying and managing uncertainty, as an accurate classifier 

can lay a strong foundation for reducing uncertainty efficiently. As an example, one can 

look back to the stratified random sampling case discussed in Section 2.2.2. Here, the 

variance for the estimate of the total area, �̂�𝐴, in (2.1) will reduce as each 𝑂𝑖 approaches 

1, which is equivalent to the classifier becoming more accurate. This example is 

illustrative of a wider theme whereby improving the classifiers themselves can be one 

way of improving the overall efficiency in uncertainty reduction (see Figure 2.6). 

 

Figure 2.6. An overview of how the choice of machine learning techniques (red) can 

impact uncertainty estimates and hence impact the efficiency of uncertainty reduction.  

Overall, there has been a substantial amount of work related to developing and 

improving machine learning classifiers over the last 70 years. Furthermore, there has 

been substantial work on how one may do so when under sampling limitations. For this 

section, it is useful to break this work into the following themes: supervised learning 

methods (2.3.1), unsupervised, semi-supervised and weakly supervised learning (2.3.2), 

transfer learning and synthetic data (2.3.3), and methods for selecting MLTs (2.3.4). 
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2.3.1 Supervised learning 

Supervised learning refers to the task of learning a function that maps an input to an 

output based on example input-output pairs (which will be referred to as fully-labelled 

data) [190]. In many ways, supervised learning forms the foundation for many machine 

learning classifiers. Here, one can split supervised learning across three themes: core 

algorithms, non-parametric and semi-parametric regression, and ensemble learning. The 

first theme is the set of core algorithms which refers to the set of methods that are 

commonly cited in machine learning literature and can be viewed as classic MLTs. 

The second theme of MLTs is those that are based on non-parametric and semi-

parametric regression. These methods differ from the core set in the fact that the 

approach is closer to traditional statistical modelling.  

The final theme of supervised learning discussed in this section is ensemble learning 

[191]. With ensemble learning, classifiers use a combination of multiple classification 

algorithms (often from the core set introduced earlier) and are a popular choice for their 

seeming ability to avoid overfitting and that they are generally easier to implement 

multiple simple classifiers over a single more complex one [192].  

Table 2.7 provides some examples of supervised learning methods from each theme. 
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Table 2.7 Examples of supervised learning methods separated across the themes: core 

methods, non-parametric and semi-parametric regression, and ensemble learning. 

Supervised learning methods  

Core algorithms 

Name Source(s)  

Bayesian network classifiers  [193] 

Naive Bayes classifiers  [194] 

K-nearest neighbours  [195] 

Symbolic machine learning [196], [197] 

Logistic regression  [198], 

Artificial neural networks  [199], [200] 

Support vector machines (SVMs)  [201] 

Non-parametric and semi-parametric regression 

Gaussian process models [202] 

Generalised additive models  [203] 

Multivariate adaptive regression splines (MARS)  [204] 

Kernel regression  [205] 

Ensemble learning 

AdaBoost  [206] 

Gradient boosting  [207] 

Bootstrap aggregation (bagging)  [208] 

Subspace partitioning  [209] 

Error-correcting codes  [210] 

Random feature selections  [211] 

 

Note that these themes are designed to be useful descriptors of supervised learning 

methods and there is a degree of subjectivity and overlap. For example, the Random 

Forest classifier [212] is a well-known ensemble method based on decision trees that 

could arguably be considered a core method these days. Similarly, there is no definitive 

standard for when a type of non-parametric regression model gains enough popularity in 

machine learning to cross over into being a core method of supervised learning. 

The main motivation for highlighting these themes is that (i) non-parametric and semi-

parametric regression models originate from formal statistical modelling, meaning they 

interact with UQ differently when compared to many core methods and (ii) ensemble 
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methods are often additions to classification techniques which can be separated from the 

underlying classifiers.  

2.3.2 Unsupervised, semi-supervised, and weakly-supervised learning  

Unsupervised, semi-supervised, and weakly-supervised learning are all forms of 

machine learning that aim to improve classifiers by making use of data that is outside 

the standard pairing of input features and labelled data used to train supervised learning 

methods.  

With unsupervised learning, training data are assumed to be unlabelled; meaning the 

data contain inputs and no labels. Under semi-supervised learning, training makes use 

of both unlabelled and labelled data. Weakly supervised learning makes use of weakly-

labelled data; meaning there is some sort of labelled data, but it is somehow not of the 

same quality of manual categorisation that is assumed in supervised learning (e.g. 

labelling may be imprecise or inaccurate). Figure 2.8 depicts how different forms of 

supervision in machine learning make use of different types of labelling. 

 

Figure 2.8 A representation of how forms of supervision in machine learning make use 

of different types of labelling in reference data. 

From the perspective of efficiently managing uncertainty in machine learning 

classifiers, it is useful to break the literature surrounding unsupervised, semi-supervised, 

and weakly-supervised learning across three broad categories: adjusting supervised 
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learning methods through modelling, unsupervised pre-processing, and label 

reinforcement.  

Adjusting supervised learning methods through modelling 

 

Many supervised learning methods can be adjusted to include unlabelled and weakly-

labelled data. Many supervised learning methods can combine unlabelled data with 

fully-labelled data by extending existing objective functions [213]. Some specific 

examples of extending objective functions to include unlabelled data include support 

vector machines [214], neural networks [215], Random Forests [216], and Gaussian 

process models [217]. 

When dealing with weakly-labelled data, inaccuracy or imprecision may be accounted 

for by including noise structures in modelling [218]. This approach tends to synergise 

well with Bayesian inference [219] and MLTs based on non-parametric and semi-

parametric regression [220]. 

Unsupervised pre-processing 

 

Unsupervised pre-processing uses unsupervised learning methods as a means of 

cleaning or preparing the training data before fitting said data to a separate supervised 

learning classifier.   

One popular class of unsupervised pre-processing are clustering methods. Clustering 

methods aim to automatically detect and associate members of a population with similar 

input features. Some popular clustering methods in machine learning include 

Hierarchical clustering [221], K-means [222], and DBSCAN [223]. In classification 

contexts, the core premise of clustering techniques is that features with similar inputs 

are likely to belong to the same (or similar) classes. Clustering methods tend to pair 

well with subspace partitioning methods and can set up the modelling assumptions for 

semi-supervised classification [224], [225], [226], [227].  

Another popular class of unsupervised pre-processing are dimensionality reduction 

methods. With dimensionality reduction methods, the aim is to project the data within 

the input feature space onto a lower-dimensional manifold that contains as much 

relevant information as possible to mitigate against the curse of dimensionality [228] - a 
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phrase that describes how machine learning becomes exponentially more difficult as the 

number of input features (or the dimensionality) increases. Popular dimensionality 

reduction techniques include principal component analysis (PCA) [229], self-organising 

maps [230], and using neural networks in autoencoding [231]. 

Label reinforcement 

 

Label reinforcement aims to improve classification by enhancing how unlabelled and 

weakly-labelled data are used without altering the classification method. 

One popular label reinforcement is a multiple-voter approach where one compensates 

for weak labelling by taking multiple readings of the same instance [232], [233], [234]. 

Other label reinforcement methods aim to improve weakly-labelled data by identifying 

points that are likely to be mislabelled so that they can be amended or removed [235].  

Another approach to label reinforcement is multi-instance learning [236]. With multi-

instance learning, training data are arranged into sets, called bags, and a label is 

provided for the entire bag. In recent years, there has been a growing area of research on 

how multi-instance learning can help reinforce unlabelled and weakly-labelled data 

when there is a limited set of fully-labelled data available [237], [238], [239].  

2.3.3 Transfer learning and generating synthetic data 

When reference data within a domain is limited due to sampling restrictions, it can be 

difficult to get enough data to sufficiently train machine-learning classifiers. This 

section notes two types of approaches that may improve classifiers when training data 

are limited: transfer learning and generating synthetic data. 

Transfer learning   

 

Transfer learning aims to improve machine learning classifiers under limited training 

data by transferring information from a similar or related problem to a current one. The 

premise here is that one can train a classifier with fewer reference data by making use of 

the lessons learned from similar problems (e.g. estimates for model parameters, optional 

choices for machine-learning structures and hyperparameters etc).  
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Over the last decade, there has been a noticeable interest in the applications of transfer 

learning [240], [241], [242], [243] and it has seen use in natural language processing  

[244], [245], image classification [246], [247] and time series classification.  

Synthetic data generation 

 

An alternative way to overcome the problem of training classifiers under limited 

reference data is to use synthetic reference data to assist training procedures. The core 

idea of this approach is that synthetic data are much easier to generate than real-world 

reference data and can be used alongside a relatively small set of real-world reference 

data. Some popular methods that use synthetic data to improve classifiers include: up-

sampling [248], the Synthetic Minority Oversampling Technique (SMOTE) [249], 

adversarial example generation [250], [251] and generating synthetic reference data 

based on model simulations [252], [253], [254], [255]. 

2.3.4 Methods for choosing suitable MLTs 

From sections 2.3.1-2.3.3, one can see that there is a diverse set of tools available in 

machine-learning classification. As this set of tools grows, choosing the most suitable 

methods in a given situation can seem increasingly more difficult. Over the years, there 

has been substantial work on choosing suitable machine-learning methods which can be 

split across the themes of internal performance assessments, surveying, and meta-

learning. 

Internal performance assessments compare various performance metrics when in the 

training stage of machine learning. Examples of internal performance metrics include 

cross-validation [256], out-of-the-bag error rates [257] along with more statistically 

formal methods such as hypothesis testing [258], [259] and Bayesian inference [260]. 

Surveying is an approach that evaluates MLTs across different problems to investigate 

if there are any wider trends regarding the suitability of techniques. Typically, 

surveying is done at a domain-specific level with examples found in the early detection 

of lung cancer [261], malware detection [262], and land use and land cover mappings 

[33]. 
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Meta-learning is based on the idea of learning to learn. [263] describes meta-learning as 

“the science of systematically observing how different machine learning approaches 

perform on a wide range of learning tasks, and then learning from this experience, or 

meta-data, to learn new tasks much faster than otherwise possible.” In recent years, 

there has been a particular interest in meta-learning to automate decision-making 

processes in neural networks and deep learning [264], [265].  

It is important to stress that internal performance assessments, surveying and meta-

learning are complementary forms of analysis that tend to focus on different levels. For 

example, internal performance assessments typically focus on one problem but allow 

the option to explore methods to a greater depth (e.g. where misclassifications are likely 

to occur, false positive and false negative rates etc.). On the other extreme, meta-

learning is often forced to abstract away via meta-features and make inferences at a 

more general level, which can be a useful practice for shortlisting. Surveying typically 

lies somewhere in between these two extremes, and it is often easier to conduct a 

qualitative assessment with surveying when compared to meta-learning.  

2.3.5 Reflections 

From sections 2.3.1-2.3.4, it is evident that the use of machine learning techniques in 

classification problems is a well-studied topic that spreads across many subjects. Figure 

2.9 summarises the subjects and methods discussed in sections 2.3.1-2.3.4. However, 

due to the vast literature surrounding the topics, it is important to note that sections 

2.3.1-2.3.4 and Figure 2.9 are by no means an exhaustive list of available methods in 

machine learning classification.  
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Figure 2.9. A summary of the topics and methods in machine learning classification 

discussed in sections 2.3.1-2.3.4 

From the perspective of managing uncertainty efficiently, the choices of MLTs in 

classification play an important role, as the quality of a classifier can impact overall 

efficiency. Hence anything used to improve or build upon the quality of classifiers can 

potentially help in reducing uncertainty efficiency in machine learning classification. 

The most direct option for improving the classification method may be to improve the 

supervised learning methods. Examples of this include using different activation 

functions in neural networks [266], [267] or using different kernel functions in SVMs 

[268], [269]. However, it is not clear if there is much scope for improving supervised 
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classification methods by simply tweaking hyper-parameters or cost functions at this 

stage of development.  

Complementary methods such as semi-supervised and weakly supervised learning 

(2.3.2), transfer learning or using synthetic data (2.3.3) may look promising for 

improving classification methods, especially when ground-truth reference data are 

limited. With such methods though, there is no guarantee of improving classifiers. Some 

authors have reported that such methods can hurt performance. Examples of this can be 

found in semi-supervised algorithms [270], [271], [272], inaccurate supervision [218], 

[273], [274], multi-instance learning [275], and transfer learning [242], [276], [277], 

[278]. Hence, to apply such methods consistently, one would ideally want to know 

when such methods are likely to be beneficial. The idea of using meta-learning 

techniques (2.3.4) to automate the process of choosing suitable MLTs and tuning 

hyperparameters has also been explored in recent years [279], [280], [281]. However, 

the degree that these methods can consistently select the better-performing classifiers is 

an open-ended question at this stage.  

Regardless of whether any of the methods discussed in this section can improve 

classification algorithms though, there is more to selecting MLTs than raw performance 

measures such as accuracy and precision. In many circumstances, there are other factors 

to consider such as the ability to handle missing data [282], [283], sensitivity to hyper-

parameter choices [284], [285], reliance on pre-processing techniques [57], [286], or 

their ability to deal with categorical data etc.  

For example, one might be able to show that, under the right kernel structure, SVMs can 

outperform Random Forests under limited training data in a context where the 

predictors are fully available and continuous. However, in a context where data may be 

missing from inputs (e.g. some questions in a survey left unanswered) and one is 

dealing with discrete inputs, Random Forests are still likely to be more suitable than 

SVMs. 

From this discussion, it becomes clear that, whilst it may theoretically be possible to 

manage uncertainty more efficiently by improving the quality of the classifiers 

themselves, the general topic of improving classifiers with MLTs is a mature one. 

Hence, any improvements in uncertainty reduction via improving machine learning 

classification may only be incremental.  
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Furthermore, improving the performance of machine learning classifiers would only 

serve as one potential component when considering the wider aim of quantifying and 

managing uncertainty more efficiently. Many MLTs discussed in this section fail to 

meet the sampling and modelling requirements discussed throughout Section 2.1 and 

2.2. For example, transfer learning may be a useful practice for producing more 

accurate classifiers given a limited amount of training data, but it is not clear how 

transfer learning would be formally integrated into methods of UQ (without relying on 

some heavy modelling assumptions). 

This thesis proposes that a key gap in the literature lies in developing tools for 

quantifying and efficiently managing uncertainty that is agnostic to the choice of MLT.  

This is not to say that the choice of MLT is not important for reducing uncertainty. One 

can anticipate that with time, existing MLT algorithms will eventually be replaced with 

more accurate and precise methods. Rather, this thesis proposes that given the diverse 

range of methods available, the complexity of the data sets typically involved in 

machine learning problems, and domain-specific restrictions, any framework for 

managing uncertainty efficiently will need to have the flexibility to deal with a diverse 

set of plausible MLTs and associated methods. 

To phrase this another way, the gap in the current research does not lie so much in 

making or selecting better MLTs these days but instead lies in how one quantifies (and 

efficiently manages) uncertainty for a given machine learning classifier approach and 

context. 
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2.4 The Intersection of MLTs, UQ, and Reference Sampling 

This section reviews the current literature for work that combines uncertainty 

quantification and reference sampling with machine learning classification. More 

specifically, this section focuses on the following topics: reference sampling for MLTs 

(2.4.1), combining Bayesian inference and MLTs (2.4.2), and interpretability and 

explainability in MLTs (2.4.3).  

2.4.1 Reference sampling for MLTs 

MLTs often require large volumes of training data to be effective. Whilst some methods 

can help mitigate this problem (see Section 2.3 for further details), this subsection 

focuses on how to collect the data more efficiently to begin with. In other words, 

Section 2.3 focuses on how one may train MLTs efficiently once given the reference 

data, whereas this subsection focuses on how one might sample the reference data more 

efficiently.    

One approach to sampling reference data more efficiently is to make use of reference 

data that has been volunteered by third parties (this is sometimes referred to as citizen 

science) [287]. Using volunteered data as a cost-effective means of training classifiers 

has been gaining interest in many domains including archaeological prospection [288], 

collecting ground-truth data for land cover mappings [289] and earth science 

applications [290]. Bayas et al [291] took this a step further and considered how to 

combine volunteered data and targeted sampling in land cover mapping applications by 

incentivising users to target areas through gamification.  

For a more controlled approach to creating efficient designs, a subfield of machine 

learning known as active learning [292], [293], [294], [295] may also be useful. Ren et 

al [295] describe active learning as: 

“Active learning (AL) attempts to maximize a model's performance gain while 

annotating the fewest samples possible.” 

Over the years, active learning has been successfully applied to many popular MLTs 

including linear classifiers [296], support vector machines [297], and neural networks 
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via improving stochastic gradient descent methods [298], [299], [300]. Furthermore, 

there has been recent work combining active learning and Bayesian neural networks to 

produce deep active Bayesian learning [301], [302]. 

The real-world benefits of active learning have been seen in material science [303], text 

labelling applications [304], [305] and object detection methods [306].  

Although these approaches help in producing more cost-effective training methods for 

training MLTs, some challenges remain. Firstly, the use of volunteered data may only 

be a viable option for specific domains. For example, Scheibein et al [307] highlight 

potential ethical and reliability concerns in volunteered science data in addictions and 

substance-use research.  

Secondly, the challenges surrounding UQ under non-probability sampling discussed in 

Section 2.2.3 still hold when considering volunteered data and active learning. Under 

the framing set out in Section 2.2.3, volunteered data may be viewed as a specific case 

of non-probability sampling. Likewise, active learning techniques may be viewed as 

heuristic optimisation methods.  

2.4.2 Combining Bayesian inference and MLTs 

Over the last decade, there has been a noticeable amount of work on combining 

Bayesian inference with popular MLTs such as support vector machines (SVMs) [308], 

[309] and neural networks [178], [310]. Theoretically, MLTs such as SVMs and neural 

networks can be treated as any other parameterised model, meaning that one should be 

able to apply Bayesian techniques to them.  

However, the complexity and high dimensionality involved in many MLTs creates 

heavy computational demands when generating posterior distributions, making 

Bayesian inference for MLTs difficult to realise in practice. Recently there has been a 

growing interest in methods that can help overcome the issues of these computational 

demands so that one can benefit from the advantages of machine learning and Bayesian 

inference simultaneously. For SVMs, Wenzel et al. [311] took inspiration from previous 

work in Gaussian process models [312], [313] to use stochastic variational inference 

and inducing points when generating posterior distributions.  
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For neural networks, some examples include using bootstrapping methods [314], 

truncating the problem to focus only on output layers [315], and using gradient descent 

methods to approximate posterior distributions [316], [317]. 

Even though reducing computational demands for posterior generation is an important 

step towards benefiting from the advantages of both Bayesian inference and MLTs, 

these methods alone will not be enough to address the wider problem of efficiently 

managing uncertainty in MLTs.  

This is because any method that reduces the computational demands in posterior 

generation can only ever make the calculations in UQ easier, but they do not address 

whether these quantifications of uncertainty are precise enough or even valid. To 

address the question of validity in UQ under Bayesian neural networks, one must still 

carefully consider the sample design for reference data used in training alongside any 

other modelling assumptions such as prior distributions and hyperparameters set by the 

user.   

2.4.3 Interpretability and Explainability in MLTs  

One of the major challenges for UQ in machine learning stems from the problem that 

many MLTs are black-box in nature, which causes issues with ontological uncertainty 

as verifying modelling assumptions in classifiers becomes difficult when it is unclear 

how these techniques are operating in the first place.  

When trying to address the issues of UQ in black-box MLTs, it is useful to consider the 

ideas of interpretability and explainability. A popular definition for interpretability 

presented by Miller defines interpretability as “the degree to which a human can 

understand the cause of a decision” [318]. Explainability refers to the degree that the 

internal logic and mechanics inside a machine-learning system are understood [319].  

Although related (and often used interchangeably), there is a subtle difference between 

interpretability and explainability that is important for the discussion of UQ in MLTs. 

Explainability is necessary for UQ because one needs some understanding of the 

internal mechanics of a machine learning classifier to know what modelling 

assumptions are being made. Interpretability is necessary for handling ontological 
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uncertainty in UQ as there needs to be a degree of human-level understanding within a 

classifier if humans are to decide if any modelling assumptions are appropriate.  

As machine learning has become more popular, there has been a rising interest in 

methods that make MLTs more interpretable and explainable [319], [320]. Many 

approaches focus on adding interpretability to existing MLTs. Some popular methods 

here include using importance measures and sensitivity analysis to indicate which 

features are influencing machine learning outputs the most [321], [322], [323], [324], 

[325], [326], creating adversarial examples to assess the robustness of classifications 

[327], [328], [329], and emulating MLTs with easier to understand models such as 

Decision Trees [330], [331] or localised linear models [332], [333], [334].  

Approaches for making MLTs more interpretable have become popular in natural 

language processing [335], [336] and image classification problems [337], [338], [339], 

[340]. Figure 2.10 provides examples of methods that aim to add interpretability to 

MLTs in NLP problems and Figure 2.11 provides examples for image classification 

applications.  
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Figure 2.10. Examples of approaches that aim to add interpretability to MLTs in NLP 

applications. A) Non-technical and detailed explanations provided by QUINT for the 

automated response to the question “Where was Martin Luther raised?” [341] B) 

Explaining outputs by highlighting similar phrases with kernel-based methods [342] C) 

An example of LIME being used to explain why the classifier believes that the statement 

is sincere [319]. 
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Figure 2.11. Examples of approaches that aim to add interpretability to MLTs in image 

classification applications. A) Using image segmentation to explain MLTs that generate 

automatic descriptions for images [343] B) Using ACT-X to highlight influential areas 

in images and provide text-based explanations [342] C) An example of highlighting 

influential areas to detect weaknesses in classifiers (in this case falsely classifying a 

husky as a wolf based on the presence of snow alone) [319] 

 

Whilst approaches such as those in Figures 2.10 and 2.11 may be useful when 

developing machine learning classifiers and building user trust [344], [345], there are 

major limitations when it comes to quantifying uncertainty. Rudin [346] discusses the 

limitations of using post-hoc approaches to add interpretability and explainability at a 

general level where two main issues are particularly relevant to uncertainty 

quantification. 

The first issue is these methods often fail to provide enough explainability that is 

needed for UQ. For example, Figure 2.11 illustrates how one can highlight influential 

areas of an image as part of explanations. However, there is no immediate way of going 
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from this type of information into a formal statement that quantifies uncertainty as it is 

still unclear how the machine learning classifiers are operating. 

The second issue is determining how faithful any emulations are to the original 

classifier. Ultimately, any emulation of a machine learning classifier is a model. As 

such, uncertainty in emulations themselves will need to be accounted for when 

quantifying uncertainty. If not careful, one can easily fall into the trap of simply shifting 

many of the black-box elements of the original classifier to the model that links the 

classifier and emulated output without addressing the core issue which is to quantify 

uncertainty in the original machine learning classifier. 

Some authors have experimented with MLTs that are built with interpretability and 

explainability in mind from the beginning. These methods are often referred to as 

intrinsic methods. Some examples of intrinsic methods include: supersparse Linear 

Integer Models (SLIM) [347] that are restricted to simple functions such as additions, 

subtractions, and multiplications of input features to keep predictions more 

interpretable; GA2M [348] which is based on generalised additive models (GAMs) with 

pairwise interactions; and generalised linear rule models [349] which use generalised 

linear models to create rule-based classifiers. 

Although intrinsic methods like these may help in overcoming issues of interpretability 

and explainability in MLTs, there is currently a debate over whether this comes at the 

expense of performance. Rudin [60] argues that it is possible to use intrinsic methods 

without suffering a substantial penalty to performance in high-stake decision-making, 

whereas other authors point out that there has been a lack of interest in intrinsic machine 

learning applications such as NLP and computer vision in recent years as they tend to 

lack the performance of current black-box methods [29].  

As discussed in Section 2.3, the performance of the classifier plays a pivotal role in how 

much (and how efficiently) uncertainty can be reduced with reference sampling. Hence, 

the extent of any performance drop in intrinsic methods must be carefully considered.  
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2.4.4 Reflections. 

As machine learning classifiers become more popular, it is only natural that one would 

want to take methods of quantifying and managing uncertainty through reference 

sampling (discussed throughout sections 2.1 and 2.2) and combine them with MLTs 

(discussed in Section 2.3) 

From the current literature, this section identified three areas of work that are useful 

when managing uncertainty in MLTs efficiently. These areas are: 

(i) Reducing the training cost of MLTs by using cheaper forms of reference 

sampling (e.g. using volunteered data) or targeting designs to focus on areas that 

train MLTs more efficiently (i.e. active learning). 

(ii)  Quantifying uncertainty in MLTs by treating them as parametrised models and 

using Bayesian inference.  

(iii) Improving the interpretability and explainability of MLTs to address issues 

related to ontological uncertainty in MLTs.  

However, integrating MLTs into the dynamic between uncertainty management and 

reference sampling is not without its challenges. Often, integrating MLTs results in 

work where one can either quantify uncertainty in MLTs or use different forms of 

reference sampling to train MLTs efficiently, but not both. The main reflection from 

this section is that if one is to develop a framework for quantifying and efficiently 

managing uncertainty in MLTs, one will need to consider the topics of MLTs, reference 

sampling, and uncertainty quantification simultaneously, yet a lot of the current 

literature focuses on at most two of these three topics at a time. Hence, there is a 

substantial opportunity for this thesis to focus on the intersection of machine learning, 

UQ, and reference sampling. 
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2.5 Summary 

When managing the trade-offs between uncertainty and the costs of collecting reference 

data for classifiers built using MLTs, three fundamental questions need to be 

considered.  

1. How should uncertainty be quantified? 

2. How should reference data be sampled?  

3. How does the introduction of MLT classifiers affect any answers to 1 and 2? 

Overall, there is a lot in the current literature that focuses on questions 1 and 2, and a 

growing focus on answering question 3 as interest in MLTs has increased over the 

years. 

Focusing on question 1 first, a review of the literature indicates that there are many 

plausible ways to quantify uncertainty, each with different advantages and drawbacks. 

One key choice a user will need to make is whether to base UQ on a frequentist or 

Bayesian perspective. Another key choice is between the design and modelling 

dependencies (see Section 2.1.1 for further details). When discussing the suitability of 

different UQ methods, one will need to ask questions such as “To what extent do I 

believe the modelling assumptions used in this method of UQ hold?” and “Do I believe 

the data here were (or can be) collected in a way that meets its design requirements?”. 

Generally speaking, Bayesian inference has been gaining popularity in the last two 

decades and offers a generalisable approach to UQ via Monte Carlo simulation. 

However, there are still applications where one may prefer frequentist methods (e.g. 

model-assisted estimation), so the choice here is not an objectively clear one. As for the 

choice between modelling and design dependencies, there is a lot in the current 

literature that focuses on the suitability of different dependencies at a domain level. 

However, it is difficult to extrapolate beyond domain-specific analysis here, as the 

suitability of different dependences can be sensitive to context-specific factors. For 

example, obtaining a simple random sample may be easy in one domain, but nearly 

impossible in another.  

In relation to question 2, there is a good body of work related to various types of 

probability and non-probability designs one can employ when collecting reference data 
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(see Section 2.2.1 for further details). There is also a substantial amount of work-related 

to how one might make sample designs more efficient via optimisation and analysis of 

aleatoric and epistemic components of uncertainty. As one becomes more familiar with 

this literature, it becomes clear that the topics of uncertainty quantification and efficient 

sample designs are highly interconnected. Some noteworthy examples of this 

interconnectivity include (i) methods that use propensity scoring will require some 

modelling dependencies, (ii) Bayesian inference offers a generalisable method for 

propagating uncertainty in optimisation methods, (iii) design-based methods will not be 

suitable if some areas are inaccessible (i.e. areas have inclusion probabilities of 0). 

Note, these examples are not an exhaustive list of such overlaps but rather an illustration 

of how the method of UQ and choice sample design cannot be viewed in isolation. 

Considering question 3, the introduction of MLTs affects the dynamic between 

uncertainty and reference sampling in three major ways. Firstly, MLTs offer a way of 

creating accurate classifiers without the need for a large degree of domain expertise. 

These performance gains will typically reduce noise components, which help in 

reducing uncertainty efficiently. The second factor is that MLTs tend to require larger 

sample sizes in training to be effective, which may add a noticeable burden to sampling 

costs, especially if one is relying solely on probabilistic designs. The third factor is that 

many MLTs are black-box in nature, as they often lack interpretability or explainability. 

This can make it difficult to verify or trust methods of UQ that rely on modelling 

assumptions when using MLT classifiers, potentially limiting the types of UQ one can 

employ.  

There has been a substantial amount of work that aims to tackle or mitigate these 

factors. For example, there is substantial research on how MLTs may be improved and 

trained more efficiently along with substantial research on making MLTs more 

transparent and suitable for UQ. In particular, there has been a lot of focus on the role of 

transfer learning, active learning, and Bayesian deep learning in recent years. However, 

much of this work fails to consider how the interconnected nature of UQ and sample 

design may apply to MLTs, which can create conflicts between many popular methods. 

It is from these conflicts that one comes to realise that there is a gap in the literature that 

focuses specifically on the interaction between UQ and reference sampling in the 

context of MLTs. Addressing this gap provides an opportunity to enhance MLTs in a 
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way that goes beyond incremental performance gains, but rather addresses the issue of 

trying to build trust in MLTs through UQ without needing overly expensive sample 

designs.  
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Chapter 3 A Framework for Adaptive Sampling 

3.1 Introduction 

From the review of the literature in Chapter 2, it is clear that the problem of managing 

uncertainty efficiently under machine learning classifiers will involve a balancing act 

between uncertainty, practical restrictions in sampling, and the types of machine 

learning techniques used. However, balancing these choices involves dealing with many 

interconnected challenges. Some key examples of these challenges include: 

• The decision on how to quantify uncertainty. 

• Sampling restrictions do not always follow neatly defined objective functions.  

• Uncertainty is often tied to the performance of the classifier. 

• The fact that machine learning often calls upon a wide range of perspectives and 

ideas that are not always designed with UQ in mind.  

• The breadth, depth, and evolving nature of the machine learning literature.  

• Uncertainty in factors that drive these choices (e.g. uncertainty in parameter 

values, the validity of assumptions in models etc.). 

The relationship between uncertainty in machine-learning classifiers and reference 

sampling generally depends on four factors. These factors are domain-specific features 

(e.g. restrictions in sample designs, types of data available etc), the choice of machine 

learning techniques, how uncertainty is quantified, and the sample design.  

Figure 3.1 illustrates how these four factors may be viewed as trying to navigate 

branches in decision trees. Under this view, managing uncertainty efficiently can be 

seen as trying to find suitable paths through this decision tree (i.e., finding orange paths) 

given a set of domain-specific features (outlined in blue).   

However, finding these efficient paths can be difficult given the wide variety of 

approaches to UQ, and MLTs available. One option here would be to simplify the 

process by fixing the MLTs or methods of UQ (outlined in green), but this may narrow 

the focus too much and does not help a user when these specific methods do not align 

well with the current problem.  
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Figure 3.1 A visual representation of the problem of managing uncertainty efficiently 

under machine learning classifiers using decision trees. Here, decision trees are made 

up of domain features and choices related to MLTs, UQ and sample design. 

As the scale and complexity grow across these four factors, the idea of developing a 

system which can proscribe the best combinations of sample design, UQ and MLT in 

given problems seems less and less feasible. These problems here are only further 

compounded by subjective elements in UQ, the ever-changing nature of MLTs, and 

sensitivity to domain-specific features. 
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Instead, this thesis proposes a different approach for managing uncertainty efficiently 

under machine learning classifiers that focuses on an adaptive sampling framework 

which aims to be agnostic to the choices of UQ and MLTs.  

The motivation for this framework is based on two fundamental ideas. The first idea is 

that adaptive sampling can offer a more consistent means of generating efficient sample 

designs. Typically, generating efficient sample designs requires knowledge of unknown 

variables or parameters. This can cause issues when there is an imprecise or inaccurate 

understanding of these variables, as this can drastically alter how the perceived cost-

benefit of a sample design analysis matches reality. With adaptive sampling though, 

previous iterations are used to update the understanding of these variables and 

parameters. Consequently, one can build the evidence needed to create more efficient 

sample designs throughout multiple iterations (and adjust when necessary). 

The second idea is that if a framework is agnostic to the choice of MLTs and the 

method of UQ, it becomes robust and effective in managing uncertainty. The reasoning 

for this is that an agnostic framework gives users the option to replace MLTs with better 

ones or change the method of UQ depending on which modelling and design 

assumptions one is willing to accept. An agnostic framework will also apply to a wider 

range of domains as it creates less reliance on domain-specific features that affect the 

viability of different machine learning and UQ choices.  

Figure 3.2 illustrates this idea from the decision tree perspective introduced in Figure 

3.1. Here, a framework that is agnostic to the choices in MLTs and UQ is represented 

by wide green bands across these levels. 
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Figure 3.2 The motivation behind an adaptive sampling framework that is agnostic to 

machine learning and UQ choices and how it relates to the decision tree perspective 

introduced in Figure 3.1  

The remainder of this thesis will concentrate on developing an adaptive sampling 

framework that is designed to help manage uncertainty efficiently in MLTs without 

being reliant on specific forms of UQ or MLTs. To evaluate this framework, the 

following criteria will be used: 

• The ability to manage uncertainty efficiently under design restrictions. This 

criterion describes the extent to which a framework can help manage uncertainty 
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efficiently under various restrictions or conditions within sample designs. Some 

of these restrictions may be the total sample size, overall costs, and restricted or 

unavailable members within a population. 

 

• Generalisability. This criterion describes how reliant a framework is on specific 

forms of UQ or MLTs. A framework will be high in generalisability if there are 

few dependencies on the types of UQ or MLTs. 

The purpose of this chapter is to introduce the core components of the proposed 

adaptive sampling framework and is structured as follows: Section 3.2 introduces the 

four phases in the adaptive sampling framework and the methods used to populate the 

framework. Section 3.3 gives a worked example of the proposed framework.  Finally, 

Section 3.4 summarises the framework and how the practices introduced in 3.3 interact 

with the four phases of adaptive sampling.  

3.2 Establishing the adaptive sampling framework 

3.2.1 Overview  

To better understand the challenges and opportunities in adaptive sampling, this thesis 

will introduce a strategic-level overview of adaptive sampling consisting of four stages 

(see Figure 3.3). These four stages are: 

Updating the sample: The act of collecting a new sub-sample based on a specified 

sampling design and combining it with any previous subsamples. 

 

Updating uncertainty: The act of quantifying the uncertainty for predictions using the 

total available sample. 

 

Design proposal: The act of generating sample designs for the next sub-sample that are 

likely to be beneficial (e.g. optimal, cost-effective etc.) based on the currently available 

sample. 
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Design assessment: The act of assessing any proposed sample designs based on the 

current information and deciding upon a sample design for the next sub-sample (note 

the option of no further sampling is always one proposal here). 

 

  

Figure 3.3. The key stages of adaptive sampling are represented as an iterative process. 

 

From this strategic-level overview, one can begin to populate the adaptive cycle with 

tactical-level methods that are designed to pass through these stages without making 

many assumptions related to the choice of MLT or the method of UQ. The remainder of 

this section will focus on introducing and motivating such methods. More specifically, 

this section will introduce and motivate the following practices (i) using Bayesian 

inference (3.2.2); (ii) using the predictors in a model as a basis for targeted sampling 

(3.2.3); (iii) quantifying aleatoric and epistemic components of uncertainty (3.2.4); (iv) 

predicting the likely effects of further sampling (3.2.5). An overview of where these 

methods interact with the adaptive sampling cycle is provided in Figure 3.4. 

  

 

Updating 
uncertainty

Design 
proposal

Design 
assessment

Updating the 
sample
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Figure 3.4. A summary of how the methods introduced in Chapter 3 are expected to 

interact with the adaptive sampling cycle. 

3.2.2 Using Bayesian Inference for UQ in adaptive sampling 

Section 2.1.2 introduced two forms of inference for UQ, frequentist and Bayesian. From 

an adaptive sampling perspective, Bayesian inference is a better-suited form of 

inference for two major reasons. The first reason is that Bayesian inference is more 

naturally able to handle sequential sampling. The second reason is that Bayesian 

inference offers a far more generalisable approach to quantifying uncertainty thanks to 

methods such as marginalisation, Monte-Carlo integration and MCMC methods. In 

terms of the four stages of adaptive sampling, these advantages translate over to 

substantial advantages at the updating uncertainty stage. Furthermore, Bayesian 

inference synergises well with the other methods introduced later in this chapter (3.2.3-

3.2.5). This is because many methods introduced in this section rely on estimated 

parameter values. Under Bayesian inference, uncertainty in these estimates can be 

accounted for via marginalisation and simulation methods. In general, it is difficult to 

provide a frequentist equivalent to this without relying on large sample sizes, which is 

unlikely to hold for early sub-samples.  

 

Whilst ideally, one would want to be fully agnostic to the method of UQ (including the 

type of inference), the advantages Bayesian inference offers adaptive sampling are 
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simply too beneficial to ignore when compared to frequentist inference. Consequently, 

this thesis will assume Bayesian inference in UQ from now. It should be noted though 

that there is still a wide variety of UQ methods under this restriction, and no further 

assumptions are required in this framework.  

3.2.3 Using predictors in a model as a basis for targeted sampling 

An important requirement for managing uncertainty effectively in any adaptive 

sampling framework is the ability to quantify uncertainty from targeted and biased 

sample designs. This is because adaptive sampling is typically motivated by situations 

where uncertainty needs to be balanced alongside design restrictions (e.g. limited 

sample sizes, less accessible members of the population etc). In these situations, an 

ability to target sampling toward different members of the population and make use of 

data collected under biased sampling greatly opens the options available when trying to 

efficiently manage these trade-offs.  

 

With this need in mind, the thesis proposes that a simple way of quantifying uncertainty 

under targeted sample designs is to use the predictors in the model used as the basis for 

the said targeted sampling. This idea can also be easily extended to account for biased 

sampling (i.e., uncontrolled targeted sampling). 

  

Whilst it is possible to use modelling to account for any form of targeted sampling in 

UQ [350], [351], a generalised approach for this may require heavy modelling 

assumptions. Supposing one was willing to accept such modelling assumptions, there 

may be an additional obstacle when it comes to fitting the models. 

 

To understand why using the predictors to define targeted sampling makes quantifying 

uncertainty easier, consider how quantifying uncertainty can change under different 

design types in the general setting. With Bayesian inference, this can be seen by first 

conditioning Bayes theorem on a sample design 𝑆 to give 

 

𝜋(𝜃|𝐷, 𝑆) ∝  𝜋(𝐷|𝜃, 𝑆)𝜋(𝜃|𝑆). 

Under this conditioning, the potential issues in targeted sampling can be then reframed 

as understanding how different sample designs 𝑆 affect posterior distributions for 𝜃. To 



 

87 
 

deal with the conditional prior distribution, 𝜋(𝜃|𝑆), first, one can assume 𝜃 is 

independent of 𝑆 (i.e 𝜋(𝜃|𝑆) = 𝜋(𝜃)) without any major implications or loss of 

generality. This is because the only way that this does not hold is if prior knowledge of 

𝜃 is dependent on the sample design, which would border on absurd in practice, as it 

would require that prior knowledge in 𝜃 (i.e. before any data are collected) may change 

simply by proposing different sample designs with no need to implement them. 

With the assumption that 𝜃 is independent of 𝑆, the issues from targeted (or biased) 

sampling in Bayesian inference ultimately comes down to how 𝑆 affects the likelihood 

function, 𝜋(𝐷|𝜃, 𝑆). One option here is to assume 𝑆 away with independence, i.e 

𝜋(𝐷|𝜃, 𝑆) =  𝜋(𝐷|𝜃) for all 𝑆. This approach requires some heavy modelling 

assumptions though, which as discussed in Section 2.2.1, may be difficult to justify, 

especially when dealing with MLTs. An alternative option is to try and explicitly model 

𝜋(𝐷|𝜃, 𝑆). Assuming this is possible, one then has the problem of going from the 

likelihood function to the posterior distribution, 𝜋(𝜃|𝐷, 𝑆). The problem here is not a 

mathematical one, as there are many methods in MCMC sampling that can handle 

bespoke likelihood functions in theory. Rather, the use of bespoke likelihood functions 

can create practical difficulties when it comes to their implementation. The reason for 

these difficulties is that many popular statistical software packages (which have been 

optimised and gone through a sufficient degree of quality assurance) implicitly assume 

sample designs where 𝜋(𝐷|𝜃, 𝑆) =  𝜋(𝐷|𝜃) holds. Hence, if one were to rely on 

bespoke likelihood functions, one would need to go through substantial effort in 

building new (or editing existing) software packages. These problems are compounded 

in adaptive sampling as one has to go through such processes after every iteration.  

One way of avoiding many of the issues that come from targeted sampling is to define 

targeted sampling in terms of the predictors in a model. This is because any sampling 

that can be defined using only the predictors in a model will stratify 𝜋(𝐷|𝜃, 𝑆) =

 𝜋(𝐷|𝜃). For a more formalised statement and proof see Box 3.5.  

 

Using the predictors to define targeted sampling helps in the updating uncertainty stage 

of the adaptive sampling framework in three major ways:  

 

1. It allows one to use third-party software (e.g. R packages including but not 

limited to mgcv [352], rjags [353], BayesGPfit [354], bmkr [355] ) and results 



 

88 
 

related to conjugate priors [356] without any additional work as there is no need 

to adjust likelihood functions or customise pre-built methods for generating 

posterior distributions.  

 

2. It is well suited for sequential sampling. This is because, if two probabilistic 

sample designs can be expressed as functions of a model’s predictors, so can 

their composition. Note, one does not need to explicitly formulate these 

functions or their compositions. One only needs to know that the functions exist 

for the result to extend to sequential sampling.   

 

3. The approach can be reverse-engineered to offer an easier way of accounting for 

sample bias. If one has a biased sample and a good idea of what is influencing 

this bias (e.g. distance, cost, age etc.), then this can be accounted for by 

including these features in a model from the start. This practice may be 

especially useful in the earlier iterations of adaptive sampling as one is typically 

given a biased sample rather than collecting data under controlled and targeted 

designs. Once again, one does not need to explicitly state how the bias is defined 

but only know that it is some function of the influencing factors. Note though, 

that one will typically need enough flexibility in their model (e.g. data-driven 

modelling) as justifying explicit model structure with the additional variables 

may not be easy. Furthermore, the factors influencing the bias may not have 

much predictive power but are nevertheless required in any model to use this 

method. This latter point is relevant as many model selection methods (e.g. 

Bayes factors) may falsely indicate that these features are not needed.  

 

In addition to offering many advantages at the updating uncertainty stage, using the 

predictors to define the targeted sample combines well with other methods at the design 

proposal stage. The high-level idea here is to try to find clusters of desirable cases 

within the feature space of the predictive features (e.g. finding influential points or 

concertation of points with a high degree of epistemic uncertainty) and then define the 

targeted sampling across this feature space to focus on these cases. Under this approach, 

one can create efficient sample designs that are easy to apply under third-party 

statistical software packages and do not require any further modelling assumptions.  
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Box 3.5. A formalised statement and proof for why using the predictors as a basis for 

targeted sampling can make accounting for bias and targeted sampling much easier. 

  

Claim: Let 𝐼 denote a subset of a population and 𝑆 denote some sample design. Next, let 

𝐷(𝐼) = (𝑌(𝐼), 𝑋(𝐼)), where 𝑌(𝐼), 𝑋(𝐼) denotes the outcomes and predictors under a model 

with parameters 𝜃 for the members of the population contained in 𝐼 respectively. If there 
exists a 𝑔 such that 𝜋(𝐼|𝑆) = 𝑔(𝑋) then 𝜋(𝜃|𝐷, 𝑆) =  𝜋(𝜃|𝐷) 
 
Proof: let 𝑆 be a sample design such that 𝜋(𝐼|𝑆) = 𝑔(𝑋). Next, one can consider two 
equivalent expressions for the joint probability distribution, 𝜋(𝐷, 𝑆|𝜃) 
 
In the first case, one has 

𝜋(𝐷, 𝑆|𝜃) =  𝜋(𝑆|𝐷, 𝜃) 𝜋(𝐷|𝜃)  
 
Which comes from the definition of a conditional distribution and is true for any 𝑆. 
 
From this, one can make use of the condition that 𝜋(𝐼|𝑆) = 𝑔(𝑋). Here, 𝜋(𝐼|𝑆) = 𝑔(𝑋) implies 
that 𝜋(𝑆|𝐷, 𝜃) = 𝜋(𝑆|𝑋) as if 𝑋 is known, all other information redundant when determining 
the likelihood that the data were sampled under 𝑆. This gives one form to the joint probability 
distribution as 
 

𝜋(𝐷, 𝑆|𝜃) =  𝜋(𝑆|𝑋) 𝜋(𝐷|𝜃).  
(1) 

 
The second form for 𝜋(𝐷, 𝑆|𝜃) can be given by fist conditioning on the 𝑆 to give 
 

𝜋(𝐷, 𝑆|𝜃) =  𝜋(𝐷|𝜃, 𝑆)𝜋(𝑆|𝜃). 
 
Since the design of 𝑆 is determined only by 𝑋, the likelihood of 𝑆 is unaffected by 𝜃. This gives 
𝜋(𝑆|𝜃) =  𝜋(𝑆). Hence the second expression for 𝜋(𝐷, 𝑆|𝜃) becomes  
 

𝜋(𝐷, 𝑆|𝜃) =  𝜋(𝐷|𝜃, 𝑆)𝜋(𝑆). 
 
           (2) 
Comparing the right-hand sides of (1) and (2) gives 
 

𝜋(𝐷|𝜃, 𝑆) =
𝜋(𝑆|𝑋)

𝜋(𝑆)
𝜋(𝐷|𝜃) ∝  𝜋(𝐷|𝜃). 

           (3) 
 
The desired result, 𝜋(𝜃|𝐷, 𝑆) =  𝜋(𝜃|𝐷), follows immediately form (3), as under a fixed prior 
distribution 𝜋(𝜃), 𝜋(𝐷|𝜃, 𝑆) ∝ 𝜋(𝐷|𝜃)  ⇒ 𝜋(𝜃|𝐷, 𝑆) = 𝜋(𝜃|𝐷). 
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3.2.4 Quantifying aleatoric and epistemic components of uncertainty 

As introduced in Chapter 1 and discussed in Section 2.1, the aleatoric components and 

epistemic components play an important role in managing uncertainty efficiently. This 

is because the aleatoric and epistemic components of uncertainty are useful measures to 

indicate when uncertainty in predictions can be reduced with further sampling and when 

one is approaching the limits of what sampling alone can do in reducing uncertainty.  

 

When trying to quantify the aleatoric and epistemic components of uncertainty though, 

these components are themselves subject to uncertainty as they often rely on unknown 

parameter values. Under Bayesian inference, it is possible to account for this 

uncertainty through marginalisation (along with Monte Carlo integration if need be). To 

see why this is the case, one can consider an example where the precision of predictions 

and estimates are measured using variances. 

 

Suppose one has a model 𝑦 = 𝑓(𝑥; 𝜃) where 𝑥 is a vector of predictors and 𝜃 denotes a 

set of parameters. Here the aleatoric variance for 𝑦 under f is given by 

𝑎𝑉(𝑦; 𝑓) = 𝑉(𝑓(𝑥)). 

The value 𝑎𝑉 is a way of quantifying the maximum level of precision for 𝑦 under 𝑓 

when the precision of an estimate or prediction is measured by its variance. Note, 𝑎𝑉 

does not mean estimates for 𝑦 could not be made more precise with further modelling, 

nor does it deal with any ontological uncertainty that comes from the assumptions in the 

model 𝑓.  

Since 𝑎𝑉 will often depend on the unknown parameter values, 𝑎𝑉 will need to be 

estimated and so will be subject to uncertainty. With Bayesian inference, this 

uncertainty can be accounted for by marginalising over the parameter values to give a 

posterior distribution for 𝑎𝑉. That is 

𝑎𝑉(𝑦; 𝑓)|𝐷 = ∫ 𝜋(𝑉(𝑓(𝑥))|𝜃)𝜋(𝜃|𝐷) 𝑑(𝜃). 
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Assuming no closed-form expression for 𝑎𝑉(𝑦; 𝑓)| 𝐷 can be found, one can use Monte 

Carlo integration to generate 𝑎𝑉(𝑦; 𝑓)|𝐷.  

From 𝑎𝑉(𝑦; 𝑓)|𝐷 the epistemic variance for 𝑦 under 𝑓 given observed data 𝐷 can be 

determined with 

𝑒𝑉(𝑦; 𝑓 )|𝐷 =  𝑉(𝑦; 𝑓|𝐷) −  𝑎𝑉(𝑦; 𝑓)|𝐷, 

where 𝑉(𝑦; 𝑓|𝐷) denotes the variance of predictive distribution for 𝑦 under 𝑓 given 

observed data 𝐷. 

With this example, one can see that Bayesian inference is a highly generalisable 

approach to accounting for uncertainty when quantifying aleatoric and epistemic 

components of uncertainty, as providing that one can sample from the posterior 

distribution for the parameter values, 𝜃|𝐷, one can easily propagate uncertainty in the 

parameters when estimating aleatoric and epistemic uncertainty. 

As a side note, the principles of aleatoric and epistemic variance can be extended to 

include other forms of uncertainty measures (e.g. the length of credible intervals). 

However, this thesis will stick to precision measures based on variances, as linear 

properties of the variances tend to make the calculations more mathematically 

convenient.       

Quantifying aleatoric and epistemic components of uncertainty is useful in the design 

proposal stage of an adaptive sampling framework as they indicate which kinds of 

predictions are likely to benefit from further sampling and when other kinds of 

predictions are close to their maximum precision under a model. This information can 

then be leveraged to inform targeted sampling for future iterations. Quantifying 

aleatoric components of uncertainty can also play an important role in the design 

assessment stage of adaptive sampling, as it can help contextualise any analysis by 

giving users an idea of the maximum effectiveness of any sample design under a 

particular model.  

3.2.5 Predicting the likely effects of further sampling 

Under any adaptive sampling procedure, there will become a point where one will have 

to decide how to continue with further sampling. This decision could involve how to 
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target sampling towards different members of a population, the total sample size, or 

even the decision to end the adaptive sampling procedure altogether. 

One key lesson from the literature review is that the effects of these decisions are 

themselves subject to uncertainty. This uncertainty can come from uncertainty in 

parameter values, uncertainty in model choice and the stochastic nature of many sample 

designs.  

Unfortunately, this uncertainty limits the utility of past studies and post-hoc analysis 

when making sampling decisions. Figure 3.6 provides an overview of the major 

challenges one faces when trying to use past studies to justify sample designs in new 

situations. Briefly, these major challenges are:  

(i) Deciding when previous problems are similar enough to be relevant to a new 

case. 

(ii) Using past case studies for justification of sample designs does not hold 

when dealing with a novel case.  

(iii) Past studies may not consider the same sets of methods, making like-for-like 

comparisons difficult. 

(iv) Uncertainty in key parameter values can make it difficult to judge if a new 

case is similar enough to past studies.  
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Figure 3.6. An illustration of the challenges one faces when using past studies or 

simulation studies to justify efficient sample designs. This example considers three 

methods for proposing efficient sample designs (Methods A, B and C). The coloured 

points represent past studies with the colours representing the most efficient method in 

that study (e.g. a red point represents that method A was the most efficient in that 

study). The black squares represent new cases. The encircled points represent case 

studies where method C was not considered.   
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Because of these challenges, this thesis proposes that sampling decisions should be 

based on predicting the likely effects each design will have on reducing uncertainty 

using probability distributions. Figure 3.7 illustrates the sort of outputs one would 

expect under this alternative approach.  

 

Figure 3.7 An illustration of how one would use probability distribution functions to 

predict (then compare) the different methods of generating sample designs. Here, one 

uses the current information within the new case to make probabilistic statements 

regarding sample designs that have not been implemented yet. In this example, one 

would conclude Method C is likely to be the better option based on current 

understanding.    

Fortunately, generating these probability distributions using the current information is 

relatively easy with Bayesian inference. Effectively, predicting the likely effect of 

further sampling under Bayesian inference is simply two applications of 

marginalisation. As an example, suppose one wishes to assess how an iteration of 

sample design 𝑆 may affect the variance in the prediction of 𝑦 under a model 𝑓 after 

observing data 𝐷. Using marginalisation, one has  

 

𝑉(𝑦, 𝑓|𝐷, 𝑆)|𝐷 =  ∬ 𝜋(𝑉(𝑦, 𝑓|𝐷, 𝐷∗))𝜋(𝐷∗|𝜃, 𝑆) 𝜋(𝜃|𝐷) 𝑑𝐷∗𝑑𝜃, 
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where 𝐷∗(𝑆) is a set of data obtained under design 𝑆 (note 𝐷∗ is usually a random 

variable as 𝑆 typically has a stochastic component).  

In practice, an expression like this may be difficult to solve analytically. Thankfully 

though, one can generate a sample form 𝑉(𝑦, 𝑓|𝐷, 𝑆)|𝐷 through Monte Carlo methods. 

More specifically one can apply the following steps: 

• Step 1, generate 𝜃∗ by drawing a sample from 𝜃|𝐷.  

• Step 2, generate an artificial sample 𝐷∗ by simulating 𝑆 under the assumption 

that 𝜃 = 𝜃∗. 

• Step 3, calculate 𝑉(𝑦, 𝑓|𝐷, 𝐷∗). 

This procedure can be repeated multiple times to build a distribution for 𝑉(𝑦; 𝑓|𝐷, 𝑆)|𝐷. 

Predicting the likely effects of further sampling plays a major role in the design 

assessment phase of the adaptive sampling framework as it gives users an evidence-

based method of comparing different sample designs before they are implemented. In 

these cases, answers are given in probabilistic terms. For example, questions such as 

“how large does a reference sample need to be to reach a set level of precision?” are 

answered with a statement such as “based on the current data, one can expect a sample 

under design A with a sample size of between M and N to meet this goal. However, if 

one were to consider a targeted sample design under B, this sample size may only need 

a sample size between K and L”. 
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3.3 Example Workflow 

Suppose one has a model 𝑦 = 𝑓(𝑥, 𝜃) where 𝑥, 𝜃 are the predictors and parameters in 

model 𝑓 respectively.  

Next suppose that one wishes to reduce uncertainty in 𝑦 using data of the form 𝐷 =

(𝑌, 𝑋) under a measure of uncertainty 𝑈(𝑦, 𝐷) (e.g. 𝑈(𝑦, 𝐷) = 𝑣(𝑦|𝐷), the variance of 

the posterior distribution for 𝑦 given 𝐷).  

 

Table 3.8 provides a worked example for using the proposed adaptive sampling 

framework to suggest sample designs that efficiently reduce uncertainty in 𝑦 for 

different values of 𝑥. 

 

Whilst left at a more general level, the example workflow in Table 3.8 can be used for 

uncertainty management in MLTs. Here, there are two scenarios this workflow may be 

applied to. The first is when 𝑓 is a MLT and the 𝑥 values are some predictors. The 

second scenario is when the 𝑥 values are the outputs of a MLT and 𝑓 is an intermediary 

model for UQ purposes. Note, the benefits and drawbacks of these different model types 

have already been discussed in Chapter 2 and this comment is merely a statement that 

the workflow can be applied in both cases.  
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Table 3.8 (Part I) A generalised workflow for the adaptive sampling framework (and methods 

introduced throughout Section 3) alongside a worked example. 

Stage Core Optional 

Step 1 

(Updating the 

sample) 

Obtain an initial sample 𝐷 under a design 𝑆 

that satisfies 𝜋(𝐼|𝑆) = 𝑔(𝑋). 

If an initial sample design does not 

satisfy this condition but does 

satisfy 𝜋(𝐼|𝑆) = ℎ(𝑊), for some 

set of features 𝑊, then an 

alternative model of the form 𝑦 =
𝑓∗((𝑥, 𝑤); 𝜃∗) can be made to 

satisfy this condition. 

 

Example 

The initial data are 

collected under a 

simple random 

sampling. Simple 

random sampling 

satisfies the condition 

with 𝜋(𝐷|𝑆) = 𝜋(𝑋). 

 

Step 2 

(Updating 

Uncertainty) 

Generate the posterior distribution y|𝐷.  

Use marginalisation and Monte 

Carlo methods to generate y|𝐷 

from 𝜃|𝐷 

 

 

Example 

𝑦 = 𝑓(𝑥; 𝜃) is based 

on a generalised 

additive model [357] 
𝑈(𝑦, 𝐷) is the 

standard deviation of 

the posterior 

distribution of 𝑦. i.e. 

𝑈(𝑦, 𝐷): = √𝑣(𝑦|𝐷) 
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Table 3.8 (Part II) A generalised workflow for the adaptive sampling framework (and 

methods introduced throughout Section 3) alongside a worked example. 

Stage Core Optional 

Step 3 

(Design proposal) 

Propose sample designs 𝑆1, … . , 𝑆𝑛. Such that 

𝜋(𝐼|𝑆𝑖) = 𝑔𝑖(𝑋) 

Estimate aleatoric and 

epistemic components of 𝑧∗ to 

help generate proposal designs. 

 

 

Example 

Two proposal 

designs, both of size 

30. 

Blue: Targeted 

sampling towards 

areas with 

substantial epistemic 

uncertainty. 

Green: Simple 

random sampling 

(again). 

 

 

Step 4 

(Design assessment) 

Estimate the likely effects of sample designs 

𝑆1, … . , 𝑆𝑛 will have on the measure of 

uncertainty by generating posterior distributions  

 

𝑈(𝑦, {𝐷, 𝐷𝑖
∗})|𝐷 

 

Where 𝐷𝑖
∗ denotes data obtained under a sample 

design 𝑆𝑖  

 

Use marginalisation and Monte 

Carlo methods to generate the 

posterior distributions from 

𝜃|𝐷 

Example 
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Table 3.8 (Part III) A generalised workflow for the adaptive sampling framework (and 

methods introduced throughout Section 3) alongside a worked example. 

 

Stage Core Optional 

Step 5 

(Design assessment) 

Decide upon a design 𝑆∗ from 𝑆1, … . , 𝑆𝑛 

or select no further sampling. If no further 

sampling is selected end here. 

Consider the aleatoric component of 

uncertainty to help decide if no 

further sampling should be selected 

and assess sample designs. 

 

 

Example 

 

The targeted sample 

design appears to be 

better at reducing 

uncertainty in the 

areas of substantial 

epistemic 

uncertainty.  

 
Step 6 

(Updating the 

sample and updating 

uncertainty) 

 

Implement 𝑆∗ to obtain data 𝐷∗ and return 

to step 2 with 𝐷 ← {𝐷, 𝐷∗} 
 

Example 
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Additional comments 

 

From the example in Table 3.7, there are three noteworthy observations to comment on. 

Firstly, there is an option to use marginalisation and Monte Carlo methods in many of 

the steps. Whilst strictly not necessary (e.g., one could find closed-form solutions to 

posterior distributions under the right conditions), the fact that this is an option under 

Bayesian inference greatly improves the generalisability of the proposed framework.  

 

Secondly, a case could be made that the condition in step 3 (𝜋(𝐼|𝑆𝑖) = 𝑔𝑖(𝑋)) is 

optional, as one could use other sample designs if they were willing to make enough 

modelling assumptions. However, removing this condition will make steps 4 and 6 

noticeably more difficult.  

 

Thirdly, from all the practices discussed in sections 3.2.2-3.2.5, estimating different 

components of uncertainty is the most optional when creating sample designs. For 

example, one could use any means of proposing sample designs with optimisation 

methods. However, estimating the aleatoric component of uncertainty is recommended 

for at least step 5, as this will help a user in deciding when to stop sampling.  
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3.4 Summary 

When discussing ideas related to how uncertainty from machine learning classifiers may 

be better managed, one must consider that the specific MLTs and methods of UQ may 

be quite different across scenarios. Hence, this chapter introduced a framework for 

uncertainty management based on adaptive sampling that aims to be agnostic to the 

choice of UQ and MLT. 

 

To achieve this framework, this chapter began by breaking adaptive sampling into a 

cyclical process involving the four key phases: updating the sample, updating 

uncertainty, design proposal, and design assessment. Following this, the chapter then 

populated this framework with a number of methods and proposed practices. These 

methods and practices were using Bayesian inference in UQ; using predictors in a 

model as a basis for targeted sampling; quantifying aleatoric components of uncertainty; 

and predicting the likely effects of further sampling. A summary of how these methods 

interact with the stages of adaptive sampling is provided in Figure 3.8.



 

102 
 

 

 

Figure 3.8. A summary of how the methods proposed in Section 3.2 interact with the four key stages of adaptive sampling.
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With this cyclical process and set of methods, a framework for adaptive sampling has 

been set. Under this framework, the methods are designed to address different 

challenges one would expect to see in adaptive sampling. Briefly, the intended 

contribution of each method is as follows:  

 

• Using Bayesian inference in UQ lays the foundation for all remaining methods 

as it allows uncertainty in parameter values to be propagated using simulation-

based methods. It also enables the updating of uncertainty between iterations, as 

it is naturally suited to sequential sampling. 

 

• By using the predictors in a model as a basis for targeted sampling, one can pre-

emptively ensure that updating the uncertainty after the next iteration of 

sampling is a smooth one and avoid many complications that can arise when 

using targeted sampling in a general setting. This idea can be extended to 

include non-deliberate sample bias by having the factors that influence the bias 

in the model from the beginning. 

  

• Quantifying aleatoric and epistemic components of uncertainty helps identify 

which members should be targeted to manage uncertainty efficiently and 

indicate when it is best to stop sampling under a fixed model structure.  

 

• Predicting the likely effects of further sampling offers users a consistent way of 

confirming and assessing proposed sample designs without implementing them. 

This can be used to make informed sampling decisions for future iterations and 

experiment with different “what if?” scenarios.  

 

With the proposed framework for adaptive sampling established, the next stage is to 

investigate how this framework meets the assessment criteria in practice under the two 

case studies.  
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Chapter 4 Case Study 1: Lagos Urban Mapping 

4.1 Problem introduction 

This chapter evaluates the adaptive sampling framework introduced in Chapter 3 using 

the Lagos urban mapping problem first introduced in Chapter 1. 

To recall from Section 1.3, the Lagos case study focuses on managing uncertainty 

around the Lagos area in an urbanisation mapping problem. This first case study 

provides two scenarios in which to evaluate the adaptive sampling framework. The first 

scenario considers an area estimation problem using the discrete 30m maps (part I), 

whilst the second scenario involves managing uncertainty at the pixel level for a 1km 

resolution map that uses fuzzy classifications (part II). 

The two parts of this Lagos study are intended to act as first-level examples before 

building up to a second case study. More specifically, the Lagos urbanisation mapping 

problem acts as a real-world case study where one has access to a full reference map. 

Having a full reference map is useful at this stage of the analysis, as it gives a space 

where adaptive sampling practices can be tried out and refined without needing to worry 

about the practical restrictions of sampling (although various hypothetical sampling 

limitations will be proposed as part of the evaluation). Naturally, unrestricted access to 

all areas and a full reference map will not be available in genuine applications, and this 

will be considered more explicitly during the second case study in Chapter 5.   

From the perspective of the adaptive sampling framework, part I investigates the utility 

of Bayesian inference when predicting the likely effects of different stratified random 

sample designs on aggregate-level estimates, e.g. class prevalence, overall accuracy, 

sensitivity, specificity etc. Because of the relative simplicity in the method of UQ 

(resulting in little ontological uncertainty and no aleatoric uncertainty) and well-

established literature on generating efficient sample designs under stratified random 

sampling, one can easily move past the updating uncertainty and design proposal stages 

in the framework and move straight to the design assessment phases (see Figure 4.1 for 

a summary).
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Figure 4.1. A summary of how the first part of the Lagos urban mapping study relates to challenges across the four key stages of adaptive 

sampling.



 

106 
 

 

The second part of the Lagos case study builds upon part I with consideration of UQ for 

individual instances which brings additional challenges. Firstly, there is now an 

aleatoric component of uncertainty in the model; secondly, the model lacks many 

closed-form solutions compared to part I, forcing one to use Monte Carlo methods when 

proposing and assessing sample designs (see Figure 4.2 for a summary). 
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Figure 4.2. A summary of how the second part of the Lagos urban mapping study relates to challenges across the four key stages of adaptive 

sampling.
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4.2 Lagos urban mapping (I): estimating the urban area from 

a discrete classifier  

The first part of this case study begins with estimating the total urbanised area using the 

30m resolution map. Estimating the degree of urbanisation at a given time can be a 

useful predictor when monitoring population growth [358], [359] or carbon emissions 

due to land-use change [360], [361], [362]. If the prediction map were a perfect 

classifier, the degree of urbanisation in this scenario would be proportional to the 

number of areas classified as urban (note, this scenario puts aside any ontological 

uncertainty related to whether areas at a 30m resolution are realistically fully urban or 

fully non-urban). However, the possibility of misclassifications creates a degree of 

uncertainty in any area estimations. 

To quantify uncertainty in the area estimates due to potential misclassifications, this 

first scenario begins with a stratified random sampling of 1000 pixels where one can 

compare predicted classifications with the reference values. The initial sample size of 

1000 was not based on any objective criteria. However, this choice was motivated by 

the following: 

• The initial estimate should be precise enough that adaptive sampling is feasible. 

If the initial sample size is too low, one cannot get enough meaningful 

information to apply adaptive sampling effectively. 

• The initial estimate should not be so precise that it negates the need for any 

further sampling. 

• There should be a reasonable amount of reference data from each stratum after 

using the initial sample design. 

The four strata are selected based on the predicted map, and their sample sizes are 

proportional to the relative spatial area of each stratum. The first two strata are the 

predicted classes of water and urban land. The remaining pixels (all of which belong to 

the predicted non-urban land stratum) are divided into two strata based on which may 

be prone to errors. A pixel is decided as being prone to error if any of the decision trees 

from the original Random Forest classifier predicted the pixel as urban. The motivation 

for this splitting comes from the work discussed in Chapter 2 where efficient sample 
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designs are more easily generated when one first divides the area into smaller noisy 

strata and large homogenous strata. Figure 4.3 displays the strata map and confusion 

matrix from the initial sample. 

 

  Reference Data Stratum sizes 

  Predicted Class Urban Land Water Nonurban Land Total  Proportion (Wi) Absolute (Km2) 

  Urban Land 56 0 7 63 0.063 2303.7 

  Water 0 60 1 61 0.062 2267.1 

  Nonurban Land 1  10 0 163 173 0.173 6325.9 

  Nonurban Land 2  1 0 702 703 0.703 25706.0 

 

Figure 4.3. An urban mapping of the Lagos area in 2016 based on discretely classified 

pixels at a 30m resolution along with a confusion matrix from an initial reference 

sample. Key: Urban land (grey), Water (blue), and Nonurban Land (yellow and green). 

Yellow Nonurban Lands indicate areas within the nonurban area that are suspected of 

being more prone to errors. 
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With this initial sample, the uncertainty for the proportion of urbanised area 𝑈 is 

quantified using 𝐴 with 

𝐴 = ∑ 𝑊𝑖𝐴𝑖

4

𝑖=1

 

Where  

𝐴𝑖  ~ 𝑏𝑒𝑡𝑎 ( 𝑥𝑖 +  
1

2
, 𝑛𝑖 − 𝑥𝑖 +

1

2
),  

𝑛𝑖 is the total number of pixels randomly selected from stratum 𝑖, 

𝑥𝑖 denotes the number of sampled pixels that are categorised as urban by the reference 

map from stratum 𝑖, 

𝑊𝑖 is the relative size of stratum 𝑖 with ∑ 𝑊𝑖
4
𝑖=1 = 1. 

Under 𝐴, uncertainty for 𝑈 may be quantified under a Bayesian or frequentist 

perspective. From a Bayesian perspective, 𝐴 is a posterior distribution based on a 

weighted sum of within-strata urban proportions, 𝐴𝑖, which have all been assigned 

Jeffreys prior distributions. Under a frequentist perspective, 𝐴 may be viewed as an 

extension of Jeffreys intervals, where the percentiles of 𝐴 may be used to construct 

confidence intervals (e.g. a 90% confidence interval may be made by taking the 5th and 

95th percentile of 𝐴). In either case, an estimation for the total urbanised area may be 

given with �̂� =  ∑ 𝑊𝑖

𝑥𝑖+ 
1

2

𝑛𝑖+
1

2

4
𝑖=1  and the precision of this estimate may be measured with 

the standard deviation of 𝐴, i.e √𝑉(𝐴). The motivation for this measure is that 

(∑ 𝑊𝑖

𝑥𝑖+ 
1

2

𝑛𝑖+
1

2

4
𝑖=1 ) ± (𝑧1−

𝛼

2
 × √𝑉(𝐴)) represents an approximate 100(1 − 𝛼)% credible 

(or confidence) interval.  

Under the initial sample, the estimated urban proportion is 0.0685 (2489 km2) with a 

precision of 0.0042 (155 km2), To put this precision into context, 155 km2  is 

approximately 6.3% of 2489 km2 and annual growth rates in urbanised areas from 1990 

to 2000 at national levels varied from around 2.9% to 7.2% depending on that nation’s 

level of development and across different continents [313], [314]. Hence a precision of 

around 6.3% in this context justifies a need for further sampling, especially if one wants 

to estimate the overall growth of urbanised land over a few years. 
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In terms of uncertainty quantification, the model is simple. Any issues related to 

ontological uncertainty are going to be minor, as it is based on weighted sums of 

proportions that are each estimated based on binomial distributions. In addition, there is 

no need to consider aleatoric uncertainty in this case, as it is known that there is no 

aleatoric component under 𝐴. The use of beta distributions for each 𝐴𝑖 allows for an 

easy way of updating uncertainty, especially when under a Bayesian setting due to 

conjugacy [356].  

One joins this first part of the case study at the design assessment phase of the adaptive 

sampling framework. Here, four sample designs are proposed based on stratified 

random sampling (see Table 4.4 for further details). 

Table 4.4. Confusion matrix from the initial sample along with the proposed sample 

designs (i)-(iv). The values in the proposed sample designs represent the number of 

pixels set to be randomly selected from each of the four strata (e.g. design (i) collects 63 

pixels from the Urban land stratum, 61 pixels from Water stratum, etc).     

  Reference Data Proposed sample designs 

  Predicted Class 
Urban 

Land 
Water Nonurban Land Total  (i) (ii) (iii) (iv) 

  Urban Land (1) 56 0 7 63 63 350 250 189 

  Water (2) 0 60 1 61 61 0 100 183 

  Nonurban Land 1 (3) 10 0 163 173 173 650 500 519 

  Nonurban Land 2 (4) 1 0 702 703 703 0 100 2109 

 

The motivation for the choice of each sample design is as follows:  

• Design (i) is simply the initial sample design implemented once more (i.e. 

another 1000 pixels sampled where the sample sizes for each stratum are 

proportional to 𝑊𝑖). This is included to act as a benchmark as to what would 

happen if one were to continue with the same sample design.  

 

• Design (ii) is based on using non-linear programming to suggest a design that 

optimally minimises √𝑉(𝐴) supposing that a further 1000 pixels could be 

sampled and that the cost of sampling within each stratum is the same (see 

Chapter 2.2.2 for work related to using non-linear programming to suggest 

optimal sample designs). Here, design (ii) suggests that sampling should focus 
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resources on the nonurban land (𝑖 = 3) and predicted urban (𝑖 = 1) strata, with 

the majority of the resources devoted to the former. 

 

• Design (iii) is once again based on a total sample size of 1000. This time though, 

design (iii) attempts to acknowledge the suggested distribution in design (ii), but 

also balances the distribution to consider that one may need to use the map to 

estimate values other than the level of urbanisation. For example, user, producer, 

and overall accuracies are performance metrics that are often used to assess the 

quality of land cover maps [365], [366]. 

 

• Design (iv) is another benchmarking sample design. (iv) is proportional to 

sample design (i) but collects an additional 3000 pixels. Given that sample 

designs (i-iii) involve a total of 2000 (1000 in the initial sample plus a further 

1000), design (iv) represents the initial sample with a total sample size double 

these previous three designs (i.e. 1000 + 3000 to give a total of 4000 pixels). 

The fundamental problem in this first scenario is deciding which one of these sample 

designs (if any) should be implemented in the next phase of sampling. Fortunately, the 

effect any sample design will have on the uncertainty of the total urbanised area can be 

explicitly formulated in this situation. Firstly, let 𝐴(𝑗) denote update of 𝐴 under sample 

designs 𝑗 = 1, … ,4 that is   

𝐴(𝑗) = ∑ 𝑊𝑖𝐴𝑖(𝑗)

4

𝑖=1

 

with 

𝐴𝑖(𝑗)~ 𝐵𝑒𝑡𝑎 ( 𝑥𝑖 + 𝑥𝑖,𝑗
∗ +  

1

2
, 𝑛𝑖 + 𝑛𝑖,𝑗 − (𝑥𝑖 + 𝑥𝑖,𝑗

∗ ) +
1

2
) 

           (4.1) 

Where 𝑛𝑖,𝑗 denotes the number of pixels drawn from stratum 𝑖 under design 𝑗, 𝑥𝑖,𝑗
∗  

denotes the number of pixels obtained under design 𝑗 within stratum 𝑖 that are labelled 

as urban areas by the reference map.  
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Next, using the fact that for 𝑋~𝐵𝑒𝑡𝑎(𝛼, 𝛽) its variance can be written as 𝑉(𝑋) =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
, one can explicitly write down the effect each design will have on the 

precision measurement of the total urbanised area with 

√𝑉(𝐴(𝑗)) = √∑
𝑊𝑖

2 (𝑥𝑖 + 𝑥𝑖,𝑗
∗ + 

1
2) (𝑛𝑖 + 𝑛𝑖,𝑗 − (𝑥𝑖 + 𝑥𝑖,𝑗

∗ ) +
1
2) 

(𝑛𝑖 + 𝑛𝑖,𝑗 + 1)
2

(𝑛𝑖 + 𝑛𝑖,𝑗 + 2)

4

𝑖=1

  

           (4.2) 

Furthermore, because 𝑥𝑖,𝑗
∗  is determined through random sampling within each stratum, 

each 𝑥𝑖,𝑗
∗  can be written as a binomial distribution with 

𝑥𝑖,𝑗
∗ ~𝐵𝑖𝑛(𝑝𝑖, 𝑛𝑖,𝑗 ) 

           (4.3) 

Where 𝑝𝑖 denotes the proportion of urban pixels within stratum 𝑖 that are classified as 

urban according to the reference map. 

With this notation, the uncertainty in the total urbanised area under each sample design 

is set by a stochastic process influenced by a fixed 𝑝𝑖 and variable 𝑛𝑖,𝑗. However, since 

each 𝑝𝑖 would be unknown in a real setting, there is also a degree of uncertainty within 

the value of each 𝑝𝑖. 

It is at this point that one can investigate the utility of Bayesian inference when 

predicting the likely effects of further sampling using Bayesian inference. In terms of 

the notation and context set out so far, the underlying problem lies in how future 

sampling based on stratified random sampling will affect the precision measure, 

√𝑉(𝐴(𝑗)), when there is uncertainty in each 𝑝𝑖 and a stochastic component for each 

𝑥𝑖,𝑗
∗ . 
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Predicting the effects of further sampling under a frequentist setting. 

 

Under a frequentist setting, the uncertainty in each 𝑝𝑖 (given the initial sample) may be 

quantified using confidence intervals constructed using the percentiles of each 𝐴𝑖 

(which equates to a Jeffreys interval in this scenario). Alongside this, one can predict 

the impact each design will have on the precision measure, √𝑉(𝐴(𝑗)), for a fixed set of 

𝑝𝑖 values via simulation methods based on (4.3). Combining these can offer a way of 

predicting the likely values for √𝑉(𝐴(𝑗)) by using the confidence intervals to give a 

plausible range of 𝑝𝑖 values in a sensitivity analysis. 

Applying this approach to the Lagos example, one can use the initial sample to 

construct 99% confidence intervals for each 𝑝𝑖 (see Figure 4.5). Assuming the intervals 

represent a plausible range of 𝑝𝑖 values, one may begin to compare the proposed sample 

designs across values within this four-dimensional cuboid. Figure 4.5 displays the 

results of three such plausible values. The first set of plausible values (a) assumes 𝑝𝑖 =

E(𝐴𝑖) whilst sets (b) and (c) are based on the tails of the individual 99% confidence 

intervals designed to give pessimistic and optimistic estimates for 

√𝑉(𝐴(𝑗)) respectively.  
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Figure 4.5 (A) Box plots for the precision of the estimated urbanised area based on 1 × 105 simulations across the proposed sampling 

distributions using assumed proportion rates in (B) [ black = (a), red =(b), blue = (c)]. (B) The assumed proportion rates in (a)-(c). Lower and 

upper bounds are based on confidence intervals at the 99% level. 
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It is here that a major weakness of UQ under frequentist inference becomes apparent. 

Namely, there is no formal way of distinguishing between the results in Figure 4.5. This 

stems from the problem that under a frequentist setting, there is no formal way to 

distinguish between the values assumed in (a) - (c) as behind each confidence interval, 

there is only a statement related to whether the confidence interval will contain the true 

value of 𝑝𝑖 in relation to repeated sampling. These statements make no claims related to 

whether the edges of these intervals are more or less plausible to those in the middle (or 

anywhere else in the interval for that matter). Hence, the outcomes of each set are 

equally plausible within the logic of confidence intervals. 

To further compound this weakness, there is always going to be a degree of arbitrariness 

when deciding which values of 𝑝𝑖 to consider, as there is no objective method for 

setting the level of confidence within any interval (or region in higher dimensional 

spaces). For example, one could have instead considered a similar methodology with 

95% or 90% confidence levels.  

Predicting the effects of further sampling under a Bayesian setting. 

 

When quantifying uncertainty for 𝑈 under a Bayesian setting, many of the issues seen in 

the frequentist equivalent can be handled seamlessly. The main reason for this lies in the 

fact that uncertainty in each 𝑝𝑖 are represented as probability distributions, as opposed 

to intervals which may contain the true value of 𝑝𝑖. This allows one to use methods such 

as marginalisation and Monte Carlo integration to propagate the uncertainty in each 𝑝𝑖 

into the posterior distribution for √𝑉(𝐴(𝑗)). In particular, a sample from the posterior 

distribution √𝑉(𝐴(𝑗)) |𝒙, 𝒙 = (𝑥1, … , 𝑥4)′may be generated by applying the following 

procure a large number of times.  

1. Set 𝑝𝑖
∗ 𝑖 = 1, … 4 where 𝑝𝑖

∗ is a sample of size 1 drawn from 𝐴𝑖. 

 

2. Generate an artificial sample 𝒙∗ = (𝑥1
∗, … , 𝑥4

∗)′ where 𝑥𝑖
∗~𝐵𝑖𝑛(𝑝𝑖

∗, 𝑛𝑖,𝑗 ). 
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3. Return √𝑉∗  =  √∑
𝑊𝑖

2(𝑥𝑖+𝑥𝑖
∗+ 

1

2
)(𝑛𝑖+𝑛𝑖,𝑗−(𝑥𝑖+𝑥𝑖

∗)+
1

2
) 

(𝑛𝑖+𝑛𝑖,𝑗+1)
2

(𝑛𝑖+𝑛𝑖,𝑗+2)

4
𝑖=1  

 

As a side note, steps 1 and 2 here may also be merged using the beta-binomial 

distribution [367] in this case to reduce computational demands. The results of this 

procedure are displayed in Figure 4.6. 
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Figure 4.6. (A) Box plots for the precision of the estimated urbanised area based on 

1 × 105 simulations across the proposed sample designs and posterior distribution in 

(B). (B) Posterior distributions for the proportion of urban pixels within each stratum 

from the initial test sample. Coloured lines correspond to the rates assumed in Figure 

4.5. 

 
 
 

A) Box plots of posterior precision measures across designs (i) –(iv) 

 
 

B) Posterior distributions for the proportion of urban pixels in each stratum 
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From the box plots in Figure 4.6A, one can observe that designs (ii) and (iii) are likely 

to be more efficient than design (i) and may have a similar impact as design (iv) in 

terms of uncertainty reduction. This result suggests that a targeted sampling of a further 

1000 pixels under sample designs such as (ii) or (iii) may be worth just as much as a 

non-targeted design consisting of a further 3000 pixels when focused solely on urban 

area estimation. From a performance perspective, it may be difficult to justify (ii) over 

(iii), as their distributions seem to have a substantial overlap. In a case such as this 

though, other factors may also be considered. As mentioned earlier, there may be other 

values that need to be estimated from this sample that may lead a user to favour design 

(iii). On the other hand, design (ii) avoids any sampling in the nonurban land 2 and 

water strata, both of which have large areas that are far away from populated areas. 

Depending on how ground-truths are collected under a more realistic example (e.g. 

sending experts or using drone footage to collect higher-resolution imagery), avoiding 

harder-to-reach strata may be a substantial advantage.  

4.3 Reflections (Part I) 

Overall, the first part of the Lagos case study has highlighted the importance of 

Bayesian inference when passing through the design assessment phase (see Figure 4.7 

for a summary). 
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Figure 4.7. A summary of how the adaptive sampling framework has helped to overcome the challenges in the first part of the Lagos case study 

presented in Figure 4.1
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In particular, the first part of this case study has illustrated that predicting the likely 

effects of different sample designs is a lot more interpretable and generalisable under 

Bayesian inference when compared to frequentist inference. The additional 

interpretability comes from the fact that Bayesian inference allowed one to fold 

uncertainty in other parameter values into the likely effects of further sampling to give a 

single distribution of each design which made comparing the likely impact of different 

sample designs much easier.  

The additional generalisability is a result of the ability to combine marginalisation and 

Monte Carlo integration. In this part of the case study, one was first able to use 

marginalisation to break the problem of predicting the likely effects of further sampling 

into more manageable sub-tasks. These sub-tasks involved (i) quantifying the 

uncertainty in parameter values (this was done by quantifying uncertainty in each 

parameter 𝑝𝑖 using 𝐴𝑖) (ii) replicating each sample design under fixed parameter values 

(this was done using a series of binomial distributions) and (iii) updating the chosen 

precision measure once an additional set of reference data had been sampled (this was 

done by using (4.2)). These three subtasks can then be combined to predict the likely 

effects of different sample designs via Monte Carlo integration.  

Apart from one minor step which allowed the first two sub-tasks to be merged with 

beta-binomial distributions to improve computational efficiency, there was nothing 

specific about the model or sample designs that was vital in these three steps. Hence, 

this combination of marginalisation and Monte Carlo integration may be used to predict 

the likely effects for a wide variety of models and sample designs providing that one 

can (i) quantify the uncertainty in parameter values, (ii) replicate sample designs under 

fixed parameter values and (iii) update uncertainty in an estimate under a set of data 

collected under a sample design. 

Looking towards the adaptive framework, combinations of marginalisation and Monte 

Carlo integration play very important parts in ensuring the generalisability of the 

framework as a whole. Given that these simulation-based methods rely on Bayesian 

inference, the use of Bayesian inference becomes almost mandatory in an adaptive 

sampling framework.  
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From a more general perspective, it is possible to abstract from the first part of the case 

study to UQ for estimates made from confusion matrices. Some examples here include 

many commonly used performance metrics such as estimating sensitivity, specificity, 

and overall accuracy. Furthermore, the methods used in this part of the case study were 

agnostic to how the map was generated, meaning one would have been free to use any 

other classification techniques (machine learning or otherwise).  
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4.4 Lagos urban mapping (II): quantifying uncertainty for 

individual cases in a fuzzy classification 

Part II of the Lagos case study evaluates the framework under a fuzzy classification 

problem that quantifies uncertainty for individual instances (in this case 1km pixels). 

This differs from part I, which focused on quantifying uncertainty for a global level 

estimate (i.e. the total urbanised area) based on discrete classifiers. 

Here, each 1km square pixel is assigned a predicted and reference urbanisation extent 

score based on the proportion of pixels classified as urban in the 30m resolution map 

that falls with each 1km pixel. For example, if 25% of the 30m pixels in a 1km area on 

the prediction map were classified as Urban then the predicted extent would be 0.25.  

Under this part of the case study, an initial sample size of 90 is collected under stratified 

random sampling based on the predicted extent of urbanisation. Specifically, 30 pixels 

are randomly selected from each of the following strata: low urbanised areas (a 

predicted extent of urbanisation below 0.1), semi-urbanised areas (a predicted extent of 

urbanisation between 0.1 and 0.7) and highly urbanised areas (a predicted urban extent 

greater than 0.7). This initial sample design was chosen as 30 pixels from each stratum 

was deemed a suitable amount of reference data for an initial sample to be informative 

without being excessive.  
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Figure 4.8 An overview of how the initial sample is obtained in the second part of the 

Lagos case study. 

     

From this initial sample, a truncated Gaussian model is fitted between the predicted and 

reference urban extents with  

𝑦𝑖~ 𝑁𝑇 (𝛽0 + 𝛽1𝑥𝑖, 𝜎2 (1 + 4𝛼(𝑥𝑖(1 − 𝑥𝑖)))
2

, min = 0, max = 1), 

(4.4) 

where 𝑦𝑖 , 𝑥𝑖 are the ground-truth and predicted values for the urbanised area pixel 𝑖 

respectively and 𝑁𝑇(𝜇, 𝜎2, min = 𝑎 , max = 𝑏) denotes a truncated normal distribution 

based on a normal distribution of mean 𝜇 and variance 𝜎2 that is bounded within the 

interval (𝑎, 𝑏). 

Posterior distributions are generated using the Metropolis-Hastings algorithm [368] with 

the likelihood function derived from the truncated normal distribution [369] and 

leveraging the independence of errors.  Here, a non-informative prior is placed on 𝜽 =

(𝛽0, 𝛽1, 𝜎2, 𝛼)′ with 𝜋(𝜽) ∝
1

𝜎2.  
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Effectively, this model is an altered form of a standard linear regression model that has 

been adapted to consider two additional factors. Firstly, the switch to a truncated normal 

distribution allows one to factor in the fact that the reference data are bounded between 

0 and 1. Secondly, a scaling factor of 1 + 4𝛼(𝑥(1 − 𝑥)) has been placed on the 

variance to allow for heterogeneous errors that deflate when the predicted values are 

close to 0 or 1 and to inflate around 0.5, with 𝛼 controlling the degree of this inflation. 

This allows one to factor in that disagreement between predicted values and reference 

values are expected to be smaller around homogeneous areas and greater in 

heterogeneous areas. 

Figure 4.9 provides a difference plot between the reference and predicted values for the 

extent of urbanisation along with a comparison of the standard linear regression model 

and the truncated normal model proposed in (4.4) fitted to the reference sample. Here, 

Figure 4.9 suggests that a standard linear model (which assumes constant variance) is 

too simplistic whereas a model truncated normal model (4.4) is more appropriate. 
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Figure 4.9 (A) A difference plot between the reference and predicted urbanisation as 

the predicted value varies. (B) A simple linear regression fitted to the observed data set. 

(C) A truncated and inflated model proposed in (4.4). The grey bands in B and C 

represent equal-tailed 95% prediction intervals for each point under each model. 
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Proposing efficient sample designs under the model in (4.4) is more complex when 

compared to the area estimation problem in the first part of the case study, as there is 

now an aleatoric component to uncertainty governed by unknown parameters 𝜎 and 

𝛼 along with the predicted urban extent for each 1km pixel. Hence, there is now an 

upper bound as to how far uncertainty may be reduced by further sampling, with this 

bound itself subject to a degree of uncertainty varying across the map. 

Fortunately, the issue of uncertainty in the aleatoric (and epistemic) components of 

uncertainty may be dealt with relatively easily when UQ is based on Bayesian inference 

through marginalisation and Monte Carlo integration.  

Figure 4.10 displays estimates for the aleatoric and epistemic standard deviations across 

the map, whilst Figure 4.11 compares the current and aleatoric uncertainty across the 

predicted urban extents.  

Both plots suggest that further sampling is likely to have little impact on reducing 

uncertainty in this model, as the level of uncertainty and the aleatoric component of 

uncertainty seem to be close (or equivalently, the epistemic component seems close to 

0). 
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Figure 4.10 (A) standard deviations for predictive posterior distribution for each 1km 

pixel (i.e. the current level of uncertainty). (B) and (C) map the mode of aleatoric 

standard and epistemic standard deviations respectively. 
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Figure 4.11. The predictive standard deviations (black) along with the mode of 

aleatoric standard deviation as the predicted degree of urbanisation in the 1km squares 

vary. The red band represents an equal-tailed 95% credible interval for the aleatoric 

standard deviation at each point. 

As side notes, many alternative model structures to (4.4) also account for bounded and 

heterogeneous errors. For example, one alternative way to account for bounded values 

would be to use a two-sided Tobit model [315]. Equally, several modelling assumptions 

in (4.4) could have been validated further (e.g. the independence of error terms, the 

suitability of a Gaussian distribution etc.). 

In practice, one may wish to consider a range of alternative models and validate 

assumptions using formal statistical testing. For the purpose of this thesis though, this 

case study does not go to this level of detail in assessing model choice and the validity 

of assumptions. 

The reason for this is that the focus for this part of the case study is on using Monte 

Carlo methods to quantify aleatoric and epistemic components of uncertainty once a 

model has been chosen. Including multiple alternative models is likely to only repeat 

many of the steps in the evaluation. Likewise, validating every modelling assumption 

places a considerable amount of work for a thesis of this nature on issues that are not its 
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primary focus. In other words, this thesis moves past the model choice and assumption 

validation steps fairly quickly in order to focus on the steps after a model has been 

agreed upon.  

As a secondary side note, the variance of a truncated normal distribution has a closed-

form solution, which is given by  

𝑋~ 𝑁𝑇(𝜇, 𝜎2, min = 𝑎 , max = 𝑏) ⇒  𝑉(𝑋) = 𝜎2 [1 +
𝐴𝜙(𝐴) − 𝐵𝜙(𝐵)

𝑍
− (

𝜙(𝐴) − 𝜙(𝐵)

𝑍
 )

2

],  

where 𝐴 =
𝑎−𝜇

𝜎
, 𝐵 =  

𝑏−𝜇

𝜎
 𝑍 = 𝛷(𝐵) − 𝛷(𝐴); 𝜙, 𝛷 denote the probability and 

cumulative density functions for a standard normal distribution 𝑁(0,1) respectively.  

Closed-form solutions such as this help in making marginalisation and Monte Carlo 

easier by reducing computational demands. Strictly speaking though, a closed-form 

solution is not necessary when quantifying aleatoric and epistemic variances (or 

standard deviations) as variances themselves can be estimated through Monte Carlo 

integration under fixed parameter values.  
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4.5 Reflections (Part II) 

The second part of the Lagos case study has illustrated how estimating aleatoric and 

epistemic components of uncertainty can help users determine when one is approaching 

the limits of further sampling under a fixed model structure (see Figure 4.12 for a 

summary). 
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Figure 4.12. A summary of how the adaptive sampling framework has helped to overcome the challenges in the second part of the Lagos case 

study presented in Figure 4.2.
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Like part I, this second part of the Lagos case study relied heavily on being able to 

apply marginalisation and Monte Carlo integration (which was only possible because 

one adopted Bayesian inference in UQ). This time though, marginalisation and Monte 

Carlo integration were needed to estimate components of uncertainty when no closed-

form solutions were available.  

From a more general perspective, the ability to estimate the limits of further sampling 

plays a vital part when managing uncertainty, as it allows one to contextualise any 

results at the design assessment phase and avoid committing resources to inefficient 

sample designs. Effectively, being able to estimate the aleatoric component of 

uncertainty gives users a way to know when it is time to stop sampling (or when to stop 

targeting some areas of a population). 

With both parts of this case study completed, one can begin to consider how the lessons 

learned under this Lagos example may be brought forward into the second case study. 

In particular, three observations carry forward to the next case study. 

Bayesian inference is vital for ensuring generalisability 

 

In both parts of the Lagos study, one relied upon a combination of marginalisation and 

Monte Carlo integration to propagate uncertainty in key predictions and estimations. In 

the area estimation problem from the first part of the case study, this method was used 

to predict the likely effects of different sample designs. In part II, this method was used 

to estimate the aleatoric component of uncertainty for each 1km pixel. Ultimately, such 

combinations of marginalisation and Monte Carlo are only possible under Bayesian 

inference. Hence whilst it may be possible to predict the likely effects of sampling and 

estimate components of uncertainty in some frequentist settings, choosing to do so may 

come at the cost of foregoing highly generalisable ways of applying such methods. 

Sample design tends to involve balancing probabilistic trade-offs rather than 

optimising designs 

 

Another trait common to both parts of this Lagos case study is that it was impossible to 

give an objective answer as to which sample designs were more appropriate. Even in the 

relatively simple case study part I (where one had access to nonlinear programming to 
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suggest optimal designs), the best one was able to do was to suggest the likely impacts 

of different sample designs (see Figure 4.7). Given the overlap between the distributions 

due to uncertainty in the parameters and stochastic variation, along with considerations 

outside estimating the urban areas (e.g. reducing uncertainty for other metrics, spatial 

clustering etc.), there was a degree of subjectivity as to what the best sample design 

would be in this case.  

In the second part of the case study, the additional model complexity means that it was 

difficult to formulate efficient sample designs in the same way that it was possible in the 

area estimation problem in part I. However, one was still able to use the estimates for 

the aleatoric component of uncertainty to conclude further sampling was unlikely to do 

much in the way of reducing uncertainty in the urban extent map. The key thing to note 

here is that one could express what would be likely to happen given the current data. 

This is illustrated in Figure 4.11 where the aleatoric component is given as a band. 

Ultimately, these two parts of the case study highlight that managing the relationship 

between uncertainty and reference sampling is itself subject to uncertainty and typically 

involves balancing trade-offs with probabilistic statements as opposed to optimising 

sample designs based on strict criteria. 

There is an unexplored method of generating sample designs via clusters of 

epistemic uncertainty in the predictive feature space 

 

Under part II of this case study, one was able to view how the aleatoric (and epistemic) 

components of uncertainty varied across the map and predicted urban extent. The 

motivation behind this is that clusters of high epistemic uncertainty may be useful for 

informing targeted sampling practices to manage uncertainty efficiently. In this example 

though, there were no such clusters, as most of the uncertainty after the initial sample 

was aleatoric across each pixel in the map.  

Nevertheless, the question is still raised as to what one would have done if clusters of 

high epistemic uncertainty were present. For example, if one were to notice pixels with 

a high epistemic component cluster spatially across the map, the solution may not be as 

simple as simply targeting these areas when determining the design for the next 

iteration. From Section 3.2.3 though, one knows UQ is made a lot easier if the reference 
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data are obtained under a probabilistic design defined through the predictors of the 

model used to quantify uncertainty.  

This motivates a hypothesis that one good way of generating efficient sample designs 

would be to look for clusters of high epistemic uncertainty in the predictive feature 

space and to target any probabilistic sampling more heavily toward these areas. 

Unfortunately, it was difficult to test this hypothesis in part II of the Lagos mapping 

problem, as such clusters did not exist after the first iteration of sampling. Nevertheless, 

this idea is something one would want to bring forward into the second case study. 

When combining these three observations and looking toward the second case study, 

this thesis proposes that a large part of any solutions in the second case study will 

involve trying to find clusters of high epistemic uncertainty and looking to target them 

through probabilistic sampling within the predictive feature space. However, one 

suspects that challenges such as uncertainty in key parameter values and other 

considerations (e.g. a preference for spatial clustering) will make the problem of 

efficient sampling less than straightforward. Instead, one suspects that plots like Figure 

4.9 and Figure 4.10 (which compare components of uncertainty across spatial domains 

and predictive features) will play a large role in developing cost-effective sample 

designs and will be used alongside analysis rooted in Bayesian inference that will 

express results using probabilistic statements.  

4.6 Summary 

This chapter has considered the Lagos case study as the first stage of evaluating the 

adaptive sampling framework and has been split into two parts. The first part of the case 

study considered the problem of optimising sample designs when estimating the total 

urbanised area based on a stratified random sampling of discreetly classified pixels. The 

second part of the case study considered how to best manage the cost-benefit trade-off 

in reducing uncertainty for individual pixels under fuzzy classification. 

For the first part of the case study, the fundamental issue was that one needed to know 

how to distribute sample sizes across the strata when estimating the total urbanised area. 

Here, there were two factors to consider: the relative size of each stratum and the true 

proportion of urban pixels in each stratum. With the proportion of urban pixels in each 
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stratum assumed to be unknown (although in this case, one did have a full reference 

map), there was an additional layer of uncertainty as to how different sample designs 

may impact the precision of area estimates. 

Ultimately, the switch to UQ under Bayesian inference allowed one to incorporate these 

sources of uncertainty. From this, one was able to provide probabilistic statements for 

the likely impacts of sample designs before any further sampling had taken place. 

Effectively, this allowed a try-before-you-buy approach to sample design, which may be 

used to provide users with the assurances they may need when comparing different 

sample design options under uncertainty. 

For the second part of the case study, uncertainty for individual pixels at the 1km level 

was quantified by fitting a model between their predicted and reference values. As is the 

case with many models of this nature, there was an aleatoric component of uncertainty, 

which needed to be estimated to ensure one would not waste resources committing to 

sample designs that were likely to have little or no effect on reducing uncertainty. Once 

again, the true nature of the aleatoric component was subject to uncertainty because of 

unknown parameter values, which were incorporated into the analysis via Bayesian 

inference. The ability to estimate the aleatoric component of uncertainty helped greatly 

in this part of the case study as it gave one a means of estimating the maximum level of 

precision for different pixels under the model, which allowed one to conclude that 

enough reference data had already been sampled (under the chosen model). 

When reviewing both parts of the case study, three themes became clear. Firstly, the 

decision to use Bayesian inference in UQ greatly increases the generalisability of 

techniques used in adaptive sampling, as it allows one to take advantage of simulation-

based methods when closed-form solutions are difficult to obtain. Secondly, adaptive 

sampling is better viewed as a way to efficiently manage trade-offs between sampling 

costs and uncertainty reduction rather than trying to treat it as a way of solving 

optimisation problems. Thirdly, the ability to distinguish between aleatoric and 

epistemic uncertainty is likely to have an important role in managing these trade-offs, 

particularly in more model-dependent forms of UQ.  

Overall, the Lagos case study has acted as a useful first test for evaluating the proposed 

framework and methods. Broadly speaking, the framework has been a success in this 

context. However, in some sense, the Lagos case study represented an easier level of 
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challenge by having a full reference map available from the outset. The next phase of 

the analysis (i.e. Chapter 5) will test the framework on a case study with challenges 

related to sampling bias and propensity scoring.  
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Chapter 5 Case Study 2: England Woodland Mapping 

5.1 Problem introduction. 

For the most part, the proposed adaptive framework and methods performed well under 

both parts of the Lagos case study. The purpose of this chapter is to evaluate the 

adaptive framework under a more difficult set of circumstances involving sample bias 

and where there is a preference to sample from some areas more than others due to 

sample restrictions (i.e. propensity scoring). 

More specifically, Chapter 5 evaluates the proposed adaptive sampling framework on 

the England woodland mapping example first introduced in Chapter 1. This England 

study differs from the Lagos study in three major ways. Firstly, there is no longer the 

luxury of a full reference map. This is something one would expect to see in most real-

world applications. Secondly, the England case study begins with the initial set of 

reference data sampled under a known bias. Thirdly, there is a general need to avoid 

some areas of the map and favour others when sampling, which is captured using 

propensity scores. 

This case study has been chosen to represent two problems common to adaptive 

sampling: (i) initial samples may be biased due to practical restrictions and (ii) sampling 

costs can often vary across a population which needs to be considered when balancing 

trade-offs between sample designs and uncertainty reduction.  

From the perspective of the adaptive sampling framework, the problem of initial sample 

bias and varying propensity scores creates additional challenges in the updating 

uncertainty and design proposal stages (see Figure 5.1 for further details). Under this 

perspective, the purpose of this chapter is to provide a case study to evaluate how the 

methods set out in Chapter 3 fare under these additional challenges.
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Figure 5.1. A summary of how the England woodland mapping study relates to challenges across the four key stages of adaptive sampling.
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For this woodland case study, the prediction map is constructed by first dividing the 

area of England into approximately 130,000 1km pixels. Following this, each pixel is 

assigned a predicted proportion of woodland area based on the proportion of the 25m 

pixels in the area that are classified either as Broadleaved, Mixed and Yew Woodland, or 

Coniferous Woodland according to the 2015 UK land cover map [371]. 

As stated earlier, one major difference between this second case study and the Lagos 

case study is in the reference data. Here, there is no full reference map. Instead, the 

reference values (or ground-truths) are based on real-world surveys. The ground-truth 

values for the total proportion of woodland area are then extracted from these 21 class 

surveys.  

 

For this case study, the initial sample is based on a truncated set of the original 

reference data from the 2007 Countryside Survey data [372], [373]. When the 2007 

survey data were collected, systematic random sampling was applied based on 15km 

spatial grids that covered the entirety of England. However, this survey was conducted 

when mappings based on machine learning and satellite imagery were arguably still in 

the early stages. As the techniques in machine learning and the availability of satellite 

imagery have developed, it has become increasingly cheaper to produce prediction 

maps at higher temporal resolutions. This, in turn, has put much more attention on the 

costs and timeliness of collecting survey data. In short, relying on large countrywide 

surveys every decade or so for UQ in maps creates a bottleneck in the overall mapping 

process that becomes increasingly relevant as it becomes easier to produce the 

prediction maps cheaply and at higher time resolutions. The need to move away from 

large countrywide surveys has been further motivated in recent years as a result of 

travel restrictions due to COVID-19 regulations.  

 

At the time of this thesis, no real-world survey data sampled under COVID-19 travel 

restrictions currently exists. To get around this, this case study used the historical 2007 

survey data and supposed a hypothetical set of travel restrictions based on distances 

from surveyors' homes. To put this another way, this case study considers the problem 

of how one would have selected survey sites in 2007 if faced with travel restrictions 

similar to the COVID-19 regulations. Under this hypothetical example, the initial 

sample is based on a small sample of (n=30) close to where the surveyors are based (a 
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propensity score greater than or equal to 4). This process is summarised in Figure 5.2. 

In this case study, the role of the adaptive sampling framework is to help users better 

manage the cost-benefit trade-offs that may come with travelling to less desirable sites 

to conduct surveys.
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Figure 5.2 An overview of the initial sample and its design for the England case study. 

Here the reference data are based on a 2007 survey. The initial sample is a random 

selection of 30 survey sites that fall within the initial target area (i.e. The blue areas on 

the bottom left map, which represent the areas with propensity scores greater than or 

equal to 4).    

 

 
2007 Survey sites (approximate 

locations) 

 

                                Woodland Mapping and propensity scores 

 

              Target area of initial sample                     Initial sample (Ground truth woodland vs Mapped woodland)  
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5.2 Updating the uncertainty from a biased sample  

With the initial sample already collected, the first task in the adaptive sampling 

framework in this case study is to quantify uncertainty for the first time. Unfortunately, 

fitting a model between the predicted and reference values without accounting for the 

bias is not going to be possible without some heavy modelling assumptions (see Section 

2.2.1 for further details). In this instance, the assumptions would require that the 

predicted woodland extent somehow causes the ground-truth values to change. Clearly, 

this is not the case (as much as a world where increasing woodland habitats was as easy 

as editing the predicted values in a map does seem appealing).  

 

Consequently, one must be able to account for bias in the sample design when using a 

model to quantify uncertainty. Given one knows that the bias in the initial sample is 

dependent on only the propensity score, one can use the results in Section 3.2.3 to 

account for bias in the design by incorporating the propensity score into the model.  

 

For the England woodland study, a data-driven model for the reference woodland values 

(given the predicted values from the map) is based on a Bayesian kernel machine 

regression model. Here, the model for reference woodland value of pixel 𝑦𝑖 given its 

predicted value 𝑥𝑖 and propensity score 𝑐𝑖 is written as 

 

𝑦𝑖  = β0 +  β1𝑥𝑖 + ℎ(𝒛𝑖) + 𝜖𝑖 

           (5.1) 

 

where 𝜖𝑖 ~𝑁(0, 𝜎2), 𝒛𝑖 = (𝑥𝑖, 𝑐𝑖)′, ℎ(∙) is some flexible function based on kernel 

machine regression under a Gaussian kernel function (see [374] for further details). 

 

The motivation for this model is based on two principles. The first principle is that one 

suspects the predicted and reference woodland extents to be positively correlated. This 

motivates the linear component, β0 +  β1𝑥𝑖. The second principle is that one would like 

a reasonable degree of flexibility in this data-driven model to avoid too many issues 

over ontological uncertainty and ensure there is enough epistemic uncertainty to make 
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adaptive sampling worthwhile. This motivates the second kernel-based component, 

ℎ(𝒛𝑖). 

 

Once again, there are many alternative models with flexible structures one could have 

used (e.g. generalised additive models [203], Gaussian process models [375] etc.) and 

even models that consider spatial autocorrelation structures [376]. For reasons similar to 

those discussed at the end of Section 4.4, a full assessment of modelling choices is 

omitted at this stage in order to swiftly move on to the next stages in adaptive sampling. 

In general, though, it is good practice to assess the sensitivity of model choice and 

thoroughly validate modelling assumptions.  

 

Under the initial sample, the model in (5.1) is fitted. Figure 5.3 displays this model fit 

along with a 95% prediction surfaces view across the propensity scores and predicted 

woodland extents. 

 

 

Figure 5.3 A plot of the kernel regression model described in (5.1) fitted to the initial 

sample shown in Figure 5.2. By adding the propensity score into the model as a 

predictor, one can make use of the result in Section 3.2.3 to bypass additional modelling 

assumptions related to bias in sampling.    
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5.3 Using aleatoric and epistemic components to propose 

targeted sampling designs 

With the bias in the initial sample accounted for in the first quantification of 

uncertainty, the next step is to propose some appropriate sample designs for the next 

iteration (including the possibility of not sampling further). Much like the second part of 

the Lagos study, one may view how different components of uncertainty compare to the 

current uncertainty across the map (Figure 5.4) and across the predictive feature space 

(Figures 5.5 and 5.6). In this case study though, there are regions where the current 

uncertainty is much greater than its aleatoric component.  

 

In Figure 5.4, these areas may be seen by comparing 5.4b with 5.4c; where the red areas 

indicate the largest gap between the current and aleatoric component of uncertainty and 

the blue areas indicate areas of similarity. When viewing the components across the 

predictive feature spaces in Figures 5.5 and 5.6, one can see that, as the propensity 

scores decrease, the current level of precision begins to increase well above the 

estimated aleatoric component. 
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Figure 5.4. A view of how the current precision and aleatoric components of uncertainty compare spatially. (A) a map of the target area used in 

the initial sample design. (B) a map of the current level of precision for woodland area predations. (C) a map for the estimated aleatoric 

component of uncertainty, a measure of the maximum level of precision for predictions under this model.
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Figure 5.5. Measures of precision across the predictive features in 3D space (mapped 

woodland and propensity score). The black surface represents the current level of 

precision. The red surfaces represent estimates for the aleatoric components (posterior 

mode and 95% credible surfaces). 

 

Figure 5.6. Measures of precision across the predictive features via 2D heat maps. The 

light-blue points indicate the initial sample. 
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Figures 5.4-5.6 all suggest that sampling alone will do little to reduce uncertainty in 

areas with a high propensity score (i.e. areas close to where the surveyors are based) and 

that if sampling is to reduce uncertainty in a meaningful way, it will be in areas that are 

outside of where the initial sample design was conducted. This implies it may be better 

to go further out when sampling (even if it means reducing the total sample size). At 

this point though, it is difficult to give explicit formulae for the optimal balance between 

the relationship between distance from the surveyors’ homes, total sample size, and 

likely reduction of uncertainty.  

 

However, the analysis of these figures is still useful when formulating future sample 

designs. Figures 5.5 and 5.6 play an important role in generating the sample design for 

the next iteration, as any probabilistic sample defined in terms of the predicted 

woodland and propensity score is well suited to make UQ in the next iteration far 

simpler (see Section 3.2.3 for further details). The main use of Figure 5.4 in this 

situation is in contextualising any proposed designs set out using Figure 5.5 in terms of 

spatial clustering and the abundance of different subpopulations. Using Figures 5.4- 5.6 

as guides, three designs for further sampling are proposed. 

 

• Design 1 (blue): A larger-sized sample (120) in the same areas as the initial 

sample (i.e. a propensity score greater than or equal to 4). This design has been 

selected to examine the hypothesis that there is little to be gained when sampling 

from this area alone and that venturing out into further areas will be necessary. 

 

• Design 2 (green): A modestly sized sample (20) targeting propensity score 

greater than 1.8 but less than 2.2. This design has been chosen to consider the 

possibility of experts visiting further away areas. Because of the COVID 

restriction on staying overnight, visiting a large number of sites in these areas 

may not be possible.  

 

• Design 3 (yellow): A modestly sized sample (20) with a mapped woodland area 

greater than 0.5 and a propensity score greater than 1.8 but less than 2.2. This is 

similar to design 2, except it also targets areas that have a higher mapped 
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woodland value. This design is chosen to take into account that woodland areas 

are relatively rare in the mapping and expected to be spatially clustered.  

 

Figure 5.7 shows the targeted areas for each design across the England mapping. Note 

that, since all three sample designs are defined in terms of propensity scores and the 

mapped woodland values, one can easily update the posterior distributions using the 

result from Section 3.2.3.
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Figure 5.7. Spatial mappings for the targeted areas under each sample design (design 1: blue, design 2: green, design 3: yellow).
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5.4 Predicting the likely effects of the sample designs 

With the three sample designs proposed, one reaches the design assessment phase of the 

adaptive sampling framework. Like the first part of the Lagos case study, one may 

assess the designs by predicting the likely impacts on uncertainty via a combination of 

marginalisation and Monte Carlo integration. From Figures 5.7-5.9, the following is 

observed: 

 

• Sample design 1 is likely to have little impact on the precision of the predictions 

when compared to the current precision using the initial sample alone. This can 

be seen throughout figures 5.7-5.9 as the current results are similar to the 

predicted results for design 1 (i.e. one expects to see little reduction in 

uncertainty). Sample designs 2 and 3 are likely to be more effective than design 

1 for reducing uncertainty in the predictions of the 1km woodland areas.  

 

• The predicted precision under designs 2 and 3 are close to the aleatoric standard 

deviation for a large area of the map across all the figures. This suggests that for 

a substantial proportion of the map, there is a good chance that sample designs 2 

and 3 will be enough to achieve the maximum possible precision (under this 

model) for predictions of woodland extent in 1km areas. 

 

• The results for designs 2 and 3 are similar across all three figures. This means it 

is not clear which will be more effective for increasing the precision of 

woodland predictions at this stage. In other words, designs 2 and 3 are likely to 

be as effective as each other for reducing uncertainty based on the initial sample. 
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Figure 5.7. The predicted precision for woodland area predictions under the three 

proposed sample designs presented spatially. 
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Figure 5.8. The predicted precision for woodland area predictions under the three 

proposed sample designs presented across the predictive features in 3D space (mapped 

woodland and propensity score). 

 

Figure 5.9. The predicted precision for woodland area predictions under the three 

proposed sample designs across the predictive features via heat maps. The light-blue 

points indicate the initial sample, and the coloured rectangles display the target areas 

for the proposed sample designs. 
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From a decision-making perspective, these observations suggest that firstly, it would be 

better to venture further away from the experts’ homes to apply designs such as 2 or 3, 

even if it comes at the expense of a smaller sample size. Secondly, they suggest that it 

may be best to apply sample designs such as 2 or 3 (and then perform a second iteration 

of adaptive sampling) before committing to designs with larger sizes. This is because 

there is a strong possibility that the additional reference data from these modestly sized 

samples will be enough for a substantial proportion of the map. Hence, by applying one 

of these modestly sized samples first, one can then lessen the risk of wasting resources 

on unnecessary reference data.  

 

As an aside, it may be difficult to distinguish between designs 2 and 3 based solely on 

their ability to increase the precision in predictions (i.e. reduce uncertainty) at this stage. 

However, there may be other factors to consider from a practical perspective. For 

example, the spatial clustering of design 3 can be convenient when physically visiting 

areas to obtain ground-truths. On the other hand, the fact that sample design 2 is defined 

using only the propensity score has the advantage of not requiring the predicted 

woodland extent when applying the methods in Section 3.2.3. Two examples where this 

may be desirable are when using the reference data to fit other models (e.g. for other 

land use classes) or when one wants to allow the predicted values for the woodland 

extent map to change (e.g. updating the map as new information becomes available or 

when misclassifications have been recognised). 
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5.5 Reflections (Part III) 

Overall, this woodland study has illustrated how the adaptive sampling framework 

introduced in Chapter 3 can be used to facilitate an adaptive sampling approach when 

facing design restrictions (see Figure 5.10 for a full summary).  
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Figure 5.10. A summary of how the adaptive sampling framework helped in overcoming the challenges in adaptive sampling for the England 

woodland mapping case study. 
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In particular, the England woodland case study has illustrated that by using the 

propensity score as a predictor in a model, one was able to include the targeted initial 

sample without needing to rely on additional assumptions. The idea of using propensity 

scores in the model then set in motion an iterative process in which one could generate 

targeted sample designs without needing additional modelling assumptions, so long as 

the design could be written as a probabilistic sample defined using the propensity score 

(or some combination of the predictive features and the propensity score).  

 

This advantage to forgo additional modelling assumptions was relied upon many times 

with other methods of the framework, as it meant that one could make use of third-party 

software without needing to make any alterations to components such as likelihood 

functions (which may have required a lot more work). 

 

For example, it is theoretically possible to adjust the model fit from equation (5.1) to 

account for bias in sample design. However, doing so requires reformulating likelihood 

functions and developing methods to sample from posterior distributions. This latter 

task can be time-consuming and require higher expertise (especially if one uses higher 

dimensional models). By including the propensity score in the model and sample 

design, one was free to use the third-party software (in this case the bkmr package in R 

[377] to fit the models and draw from posterior distributions). Consequently, one was 

able to take advantage of all the quality assurance, optimisation and additional features 

that have gone into the development of this package. These advantages are heavily 

compounded in methods such as predicting the likely effects of further sampling, which 

relies on fitting and applying the same model many times. 

 

The aleatoric components of uncertainty also played a substantial role in this case study. 

By providing estimates for the maximum level of precision under the current model, 

one was provided with a useful guide for proposing sample designs in this case study. 

Furthermore, having estimates for the aleatoric component of uncertainty helped 

contextualise the results when predicting the likely effects of further sampling under 

different designs. From here, one was able to establish when some of the proposed 

sample designs were likely to be good enough in the context of the problem. This kind 
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of analysis can become vital in situations when the problem of sample design involves 

trade-offs between many factors which are not easily expressed in formulaic terms.  

 

Similar to the Lagos case study, the advantages brought by adopting Bayesian inference 

in UQ were seen throughout the case study. Once again, the concepts of marginalisation 

and Monte Carlo integration were essential in applying many of the methods.  

 

From a more general perspective, the idea of using propensity scores within models as a 

means of accounting for purposely biased or targeted sampling can easily be extended 

to other applications. This is because one can change the factors defining a propensity 

score without changing the core methodology. For example, one could easily replace 

the propensity score in the case study with one that uses a more sophisticated model for 

the accessibility of the areas (e.g. a score that considers the distance from roads, 

elevation etc.). 

 

Whilst one was able to use the proposed methods to successfully apply adaptive 

sampling under an example with design restrictions, there were a few limitations in the 

methods used in this case study:  

 

Firstly, the idea of using propensity scores in models to avoid problems with sample 

bias requires that one can explicitly state the factors that bias a sample – i.e., the bias is 

known. This is not an issue if the propensity is pre-defined, as is the case with targeted 

sampling (e.g. based on known costs or preferences), but this does become an issue 

when using reference data where the sample design is not strictly controlled or well 

understood (e.g. relying on volunteered data or found data). 

 

Secondly, there are still major gaps when it comes to proposing efficient sample 

designs. In this case study, aleatoric components were used to act as a guide for sample 

designs. Ideally, one would want a procedure that can give explicit recommendations on 

the sizes of future samples and where designs should be target when facing design 

restrictions. 

 

Thirdly, Monte Carlo methods can be computationally expensive, and this can become a 

problem when dealing with higher-resolution imagery or when predicting the effects of 
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many proposed sample designs. In this case study, one was forced to compromise on 

this by only considering three proposal designs and approximating their effects by 

considering a grid of discrete points across our feature space. Even with these 

compromises, predicting the likely effects of further sampling through Monte Carlo 

simulations took approximately 14 hours for each of the three sample designs on an 

Intel core i5-8350 CPU. 

 

It should be noted though, that these limitations are not insurmountable when 

considering the adaptive sampling framework. In fact, there are potential ways around 

these limitations that fit neatly within the framework. Whilst these potential methods are 

partially beyond this case study and thesis, a discussion of them is provided in Chapter 

7.3. 
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5.6 Summary 

In this chapter, the adaptive sampling framework set out in Chapter 3 was evaluated for 

a second time, this time on an application involving a woodland mapping of England. 

This second case study was chosen in response to the first case study as a means of 

testing the capability of the framework on a more difficult problem. More specifically, 

this second study differed from the first case study by (i) not having the luxury of a full 

reference map, (ii) beginning with an initial sample with a known bias, and (iii) having 

a further restriction to sampling based on propensity scores. 

Overall, the England woodland case study illustrated how the framework could 

successfully incorporate these different challenges to work through an adaptive 

sampling approach. 

Ultimately, the key to the success of the framework in this case study was down to the 

decision to include the propensity scores in the model that linked the predicted values 

with their ground-truth counterparts and then to define any targeted sampling through 

these propensity scores. Once these decisions were set in place, the England woodland 

study became, functionally, very similar to the Lagos case study. The key difference 

was that this time, there was enough epistemic uncertainty in the map to make the idea 

of another round of targeted sampling worth considering. The advantage of using 

Bayesian inference in UQ was once again highlighted in the England case study, as it 

meant that simulation-based methods could be exploited to provide estimates for key 

metrics of the analysis that otherwise may have been unavailable due to a lack of 

closed-form solutions. 

However, despite the success of the framework in this case study, there were still some 

areas which should be looked at further when considering the framework at a more 

general level. The first area is that the bias in the initial sample needed to be known and 

expressed as a probabilistic design based on some known propensity score. In general 

settings, the factors influencing bias in designs may not be known. The second area is 

that the sample designs were based on a visual inspection of maps and two- and three-

dimensional plots. In a more general classification setting, there may not be a map to 

project classifications onto and it may be difficult to extend similar plots for higher 

dimensional settings. Thirdly, whilst the use of simulation-based approaches offers a 
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great advantage in making methods more generalisable, the computational costs were a 

noticeable burden (e.g. it took 14 hours on an Intel core i5-8350 CPU to predict the 

effects of further sampling for each design in this case).  

With the adaptive sampling framework both applied and evaluated in each of the case 

studies, the next stage is to reflect on how these methods fit into the wider context of 

efficiently managing uncertainty in MLTs, and how any methods may be extended or 

refined to go beyond applications in land cover mappings. 
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Chapter 6 Evaluation and Discussion 

6.1 Introduction 

This thesis investigates how one can efficiently manage uncertainty in classifiers in 

situations where (i) the classifiers may be built using machine learning techniques, and 

(ii) sampling reference data suitable for uncertainty quantification may be difficult 

because of practical restrictions such as costs and some members of the population not 

being easily accessible.  

Before starting the investigation, much of the thought was focused on trying to optimise 

reference sampling in machine learning classifiers to produce an efficient way of 

reducing uncertainty. After a literature review and some early exploration though, it 

became clear that an optimisation perspective was too narrow in focus and failed to 

consider the nuanced (and often subjective) choices that need to be made when 

balancing uncertainty, sampling restrictions and machine learning.  

From these insights, the aim of the thesis remained the same, yet the focus shifted a lot 

towards a more iterative approach to managing uncertainty that was not overly reliant 

on specific forms of UQ or MLTs. The motivation for this was that by having an 

approach to uncertainty management that was agnostic to the choice of MLT and UQ, 

one would have a more consistent way of managing uncertainty across different 

applications.  

With a focus on a more iterative and generalised approach, Chapter 3 introduced a 

framework whereby uncertainty could be better managed through adaptive sampling. 

The construction of this framework began by abstracting the idea of adaptive sampling 

to a cyclical process and then populating this process with a set of methods and 

practices. 

 

Chapters 4 and 5 then used two land cover mapping case studies as a way of evaluating 

this framework by providing challenges that one would expect to see across many 

adaptive sampling applications (e.g., limited total sample sizes, design restrictions, 

biased initial samples etc.). However, if this framework is to go beyond these case 

studies to further applications, it is important to consider how the results from these case 
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studies fit the wider context of both quantifying and managing uncertainty in machine 

learning.  

 

The purpose of Chapter 6 is to reflect further on the proposed framework with this 

wider context in mind and will be split into two parts. The first part (Section 6.2) will 

use the results from Chapters 4 and 5 to evaluate the framework against the criteria set 

out in Chapter 3. The second part (Section 6.3) discusses a number of important items 

emanating from this work which include reflecting on the choice of methods within the 

framework, using the framework to explore trade-offs with design choices, and 

recognising the interplay between generalisability and efficiency. Section 6.4 then 

summarises the analysis and thoughts from these two sections. 

6.2 Evaluating the framework 

6.2.1 Evaluation (I): managing uncertainty efficiently under design 

restrictions. 

An important lesson drawn from this thesis is that there can be restrictions on the data 

available for UQ (even in situations where data are abundant enough for MLTs to be 

effective). A key reason for this is that there are often stricter requirements for how the 

data used in quantifying uncertainty needs to be collected that tend to be punished more 

by practical limitations. 

The design restrictions in Lagos and England case studies are, to an extent, 

representative of restrictions commonly seen in classification problems. In the Lagos 

case study, the restrictions focused on the total sample size, which created the problem 

of deciding how to distribute a limited sample size across the strata efficiently. For the 

England case study, additional restrictions were placed via propensity scoring, where 

the initial sample was biased towards where the surveyors were based and sampling far 

away from these areas would lead to a reduction in the total sample size due to limited 

travel time.   

In the first part of the Lagos study, the framework was used to validate efficient sample 

designs (which were motivated by non-linear programming) by predicting the likely 

effect different designs would have on the precision of the area estimate. For the second 
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part of the case study, the framework was used to estimate the limitations of sampling 

using the aleatoric and epistemic components of uncertainty. This helped manage 

uncertainty more efficiently by signalling that additional sampling was unlikely to 

reduce uncertainty further and so it may be best to stop sampling (or possibly consider 

an alternative model).  

The final case study illustrated how the framework can be used to manage uncertainty 

efficiently. By including the propensity score in the model from the start, one could 

easily account for the first challenge of bias in the initial sample. Following that, one 

could use the framework to provide designs that could balance the need for efficient 

uncertainty reduction whilst also being mindful of the distances needed to travel to 

locations. This was achieved by using the estimates of aleatoric and epistemic 

uncertainty to give an idea of which areas were worth sampling and then fine-tuning 

sample designs by assessing different ‘what if?’ scenarios.  

These case studies have illustrated how the framework can be used to manage 

uncertainty efficiently under different design restrictions by offering users a way of 

exploring the potential trade-offs for sample designs between iterations in adaptive 

sampling. Furthermore, an encouraging feature of this framework is that it can still be 

applied when facing the additional challenges that come from quantifying uncertainty in 

machine-learning classifiers. 

One limitation of the framework though is that it does not offer explicit ways of 

recommending efficient sample designs in its current form. That is, whilst the 

framework does allow one to easily explore different sample designs to eventually make 

a decision based on efficiency, the user is still left needing to specify these efficient 

designs in the first place. However, it is important to note that the framework not 

offering explicit ways of recommending designs may not be the major limitation it first 

seems. Firstly, the ability to recommend sample designs (with optimisation methods or 

otherwise) is not a requirement for the adaptive sampling framework to be effective. 

Secondly, for the sake of generalisability, it may be better to keep methods of 

recommending sample designs and the framework as separate entities, with the former 

being used to enhance the latter in specific cases (this is discussed further in Section 

6.3.3). 
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6.2.2 Evaluation (II): generalisability  

Another important lesson from the literature review is that managing uncertainty 

efficiently in machine learning classifiers often comes down to making suitable choices 

at the intersection of machine learning, uncertainty quantification and methods in 

reference sampling. Given the amount of work already on these topics, the subjective 

elements in UQ, and the additional challenges brought about by using MLTs, the idea of 

trying to create a system that provides the best combination of sample design, method of 

UQ, and MLTs at once does not seem feasible.  

Instead, this thesis sought to propose an adaptive sampling framework that could 

remove the choices of UQ and MLTs from this equation by having a framework that is 

agnostic to these two choices. This desire to be agnostic to the choice of UQ and MLT 

was captured via the criterion of generalisability.  

For all three parts of the case studies, the stages of creating the maps (which were all 

done using machine learning classifiers) and quantifying uncertainty were kept separate. 

Hence, the MLTs in each case would have been free to vary. For the method of UQ, the 

case studies illustrate how the framework could be used on (i) population-level 

estimates from discrete classifiers and stratified random sampling (Lagos study, part I) 

(ii) individual-level estimates based on fuzzy classifiers and modelling (Lagos study, 

part II) (iii) individual-level estimates based on fuzzy classifiers through modelling with 

biased sample designs influenced by a known propensity score (England woodland 

study). In these cases, the structures of the models that linked the predicted values to the 

ground-truths were also free to vary, along with how the strata were defined in the area 

estimation part of the Lagos case study and how the propensity scoring was defined in 

the woodland case study. Furthermore, replacing any of these components would not 

have changed the fundamental workflow thanks to the combination of Bayesian 

inference and Monte Carlo methods. 

Consequently, the framework offers a high degree of generalisability. In its current 

form, there may be limitations when using Monte Carlo methods under computationally 

intensive models, insisting on UQ under a frequentist perspective, or when 

experimenting with sample designs in high-dimensional settings. However, these are 

not major limitations and may better be described as challenges within general 
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modelling rather than a weakness of the framework itself (e.g. high-dimensional 

modelling comes with challenges with or without adaptive sampling). 

6.2.3 Evaluation: overview 

Overall, the case studies in this thesis have illustrated how the proposed adaptive 

sampling framework can offer a generalisable approach for managing uncertainty 

efficiently under design restrictions. Table 6.1 summarises how the framework has 

benefited each of the case studies individually, along with any limitations and areas for 

improvement. 

From a more general perspective, the results from these case studies are encouraging. A 

common thread throughout the studies was that the methods in the framework were 

agnostic to the choice of classification method, the models used to quantify uncertainty, 

and propensity scoring used to define which areas were easier to sample from. Hence, it 

is likely that the framework can be applied to a wide range of applications.  

Whilst there are some minor limitations when dealing with more advanced modelling 

and computational costs, the framework offers a substantial contribution in the aim 

toward a generalisable approach to managing uncertainty in machine learning 

classifiers.  
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Table 6.1 A summary of how the adaptive sampling framework performed for the Lagos 

and England case studies against the criteria set out in Chapter 3. Entries with a (+) 

indicate overall positive or successful features and entries with a (-) indicate limitations 

or areas for improvement. 

 

Case Studies 
The ability to manage uncertainty 

under design restrictions. 
Generalisability 

Lagos urban area estimation (part I) 

 

Properties 

Area estimation problem.  

 

A discrete classifier was used. 

 

UQ is based on proportion estimates 

under stratified random sampling. 

 

Design restrictions were based on the 

total sample size. 

 

 

 

 

(+) With the framework, it was 

possible to conduct a cost-benefit 

analysis for different design 

proposals based on the initial sample 

(with appropriate uncertainty 

quantification). 

 

(+) By experimenting with different 

design proposals, it was possible to 

find efficient sample designs.  

 

(+) The framework can be easily 

applied to other population-level 

estimates (e.g. overall accuracy, false 

positive rates, false negative rates 

etc.).  

 

(+) No assumptions were made about 

the classifier used to produce the 

original map. 

 

(-) Requires Bayesian inference for 

some important steps, which excludes 

model-assisted estimators (a popular 

method based on frequentist 

inference).  

Lagos urban mapping (part II) 

 

Properties 

Mapping problem (individual cases).  

 

A fuzzy classifier was used. 

 

Model-based UQ under stratified 

random sampling. 

 

Design restrictions were based on the 

total sample size. 

  

 

 

(+) Estimates for the aleatoric 

component of uncertainty across the 

map indicated that enough sampling 

had already been done.  

 

(+) No assumptions were made about 

the classifier used to produce the 

original map. 

England woodland mapping 

 

Properties 

Mapping problem (individual cases). 

 

A fuzzy classifier was used. 

 

Model-based UQ under probabilistic 

sampling. 

 

Design restrictions were based on the 

total sample size and a preference to 

stay close to where the surveyors 

were based. 

 

 

 

 

(+) Bias in the initial sample could be 

easily accounted for by including the 

propensity score in the model used 

for UQ. 

 

(+) With the framework, it was 

possible to conduct a cost-benefit 

analysis for different design 

proposals based on the initial sample 

(with appropriate uncertainty 

quantification). 

 

(+) Defining targeted sampling 

through the predictive features 

offered a simple way of quantifying 

uncertainty under targeted sampling. 

 

(+) By experimenting with different 

design proposals and contextualising 

them with the aleatoric component 

across the map, it was possible to 

find efficient sample designs.  

 

   

 

(+) No assumptions were made about 

the classifier used to produce the 

original map. 

 

(+) No assumptions were made about 

how the propensity score was 

defined. 

 

(-) Accounting for bias in the initial 

design meant knowing what 

influenced the bias. This may not be 

the case with uncontrolled sampling 

or found data. 

 

(-) Some Monte Carlo methods were 

computationally intensive. This may 

limit the types of models that can be 

used when applied to a larger scale.  

 

(-) Designs were generated using 

experimentation and visualising 

results across maps and the model’s 

feature space. In general, one may not 

have access to such visualisations. 
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6.3 Discussion 

This section discusses three important items emanating from the work in this thesis, 

specifically: understanding the role of the methods in the framework (6.3.1); using the 

framework to experiment with designs (6.3.2); and the interplay between 

generalisability and the ability to manage uncertainty efficiently (6.3.3).  

6.3.1 Reflecting on the choice of methods within the framework. 

The adaptive sampling framework in this thesis was presented alongside a set of 

methods designed to help users navigate various stages of the adaptive sampling cycle.  

To better understand why the framework is likely to be successful in other applications 

(and address any potential limitations), it is important to understand how these methods 

contribute to an adaptive sampling framework. Table 6.2 provides an overview of how 

each method contributes individually to making adaptive sampling either more efficient 

or generalisable.  
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Table 6.2. A summary of how the methods introduced alongside the adaptive sampling 

framework contribute to meeting the criteria set out in Chapter 3. Entries with a (+) 

indicate overall positive or successful features and end entries with a (-) indicate 

limitations or areas for improvement. 

 
The ability to manage uncertainty 

efficiently under design restrictions 
Generalisability 

Bayesian inference in 

uncertainty quantification 

 

(+) Allows prior knowledge to be 

formally incorporated into UQ. 

(-) Does little on its own to help users 

generate efficient sample designs. 

(+) Greatly improves generalisability by making UQ 

under sequential sampling easier and enabling 

Monte Carlo methods. 

(+) Vital for improving the generalisability of other 

methods with Monte Carlo methods. 

(-) Computational costs can be substantial in high-

dimensional models which potentially limits what 

models could be used in practice. 

(-) Excludes the use of UQ based on frequentist 

methods.  

Using the predictive 

features to define targeted 

sampling. 

 

(+) Offers a simple and scalable approach 

to combining multiple iterations of 

targeted sampling. 

(+) Offers a simple method of accounting 

for bias in designs through propensity 

scoring. 

(-) Does little on its own to help manage 

uncertainty efficiently under design 

restrictions. 

(+) No major restrictions are placed on the structure 

of the model.  

(+) No restrictions are placed on how the propensity 

scores are generated. 

(+) Allows one to include biased samples without 

needing to explicitly model the sample design.  

 

Quantifying epistemic and 

aleatoric components of 

uncertainty.  

 

(+) Can improve sampling efficiency by 

helping users identify when it is time to 

stop sampling.  

(+) Can act as a guide to help inform 

users where further designs should target. 

(-) Does little on its own to generate 

explicit rules for optimising sample 

designs. 

(+) Highly generalisable when combined with 

Bayesian inference and Monte Carlo methods. 

(+) Easy to apply to other measures of precision.  

Predicting the likely 

effects of further sampling 

  

(+) A vital method in adaptive sampling 

as it allows one to assess proposed 

sample designs before they are 

implemented.  

(-) Does little on its own to generate 

explicit rules for optimising sample 

designs. 

(+) Highly generalisable when combined with 

Bayesian inference and Monte Carlo methods. 
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From Table 6.2, four important insights arise:  

Bayesian inference greatly improves the generalisability of the framework by 

making other methods easier to apply. 

 

The key advantage of Bayesian inference in UQ is that it indirectly assists in managing 

uncertainty efficiently and in generalisability by making other methods in the 

framework a lot easier to apply. 

This advantage stems from two key properties. The first property is the ability to exploit 

marginalisation and Monte Carlo methods, which were used across all three parts of the 

case studies. This two-part combination was relied upon when predicting the likely 

effects of proposed sample designs when analytical solutions were not available. 

Similarly, the ability to exploit marginalisation and MC methods were used to estimate 

the aleatoric components of uncertainty in the second part of the Lagos study and the 

England woodland study. 

The second key property is that Bayesian inference is naturally suited to sequential 

sampling in UQ. This is what allows one to easily merge multiple iterations of sampling 

in UQ. Concerning specific methods in the framework, the ability to easily handle 

sequential sampling makes predicting the likely effects of sampling far easier when 

using MC methods. This is because predicting the likely effects of sample designs with 

MC methods effectively involves updating models with hypothetical sets of data drawn 

from a simulated design. Here, it does not matter that the data happens to be 

hypothetical, the same principles that make UQ easier under real sequential sampling 

still apply.  

 

Using the predictors to define targeted sampling offers a simple way to include 

biased and targeted sampling. 

 

Using the predictive features for targeted sampling is a helpful tool for simplifying 

many of the key steps in the adaptive sampling framework. 

To understand why this is the case, one can consider the woodland mapping example. 

Here, the bias in the initial sample could be easily dealt with by including the propensity 

score as a feature in the model used to quantify uncertainty. Following that, one could 

propose sample designs that were targeted to improve efficiency yet did not require 
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further modelling assumptions or alterations. This advantage was especially relevant in 

the England case study, as one relied on third-party software to generate posterior 

distributions for the aleatoric components of uncertainty and likely effects of further 

sampling, which is hard to alter in practice without substantial investment.  

 

At a more general level, using predictors for targeted sampling is not a requirement for 

adaptive sampling, nor will it guarantee optimal uncertainty reduction. However, it does 

offer the assurance that such designs will seamlessly fit into any subsequent analysis 

and UQ steps. Given the difficulties of including targeted or biased sampling in UQ in 

the general setting (which are only further enhanced when using MLTs, see Chapter 2 

for further details), this assurance makes the idea of searching for efficient sample 

designs in the predictive feature space appealing from an adaptive sampling perspective.  

 

Components of uncertainty are useful heuristics when managing uncertainty. 

 

The woodland case study and urban mapping part of the Lagos case study both relied 

upon estimates for aleatoric (and by extension epistemic) components of uncertainty. In 

the Lagos study, the aleatoric component of uncertainty indicated that further sampling 

was not necessary across the entirety of the map. In the woodland case study, the 

aleatoric component of uncertainty indicated that there was little to be gained in 

continuing to sample close to where the surveyors were based and offered a way to 

contextualise design proposals when predicting the likely effects of further sampling. 

Hence, these case studies illustrate how estimating the aleatoric components of 

uncertainty is a useful tool when trying to manage uncertainty under design restrictions.  

However, there are some limitations to using the components of uncertainty to manage 

uncertainty. Firstly, the aleatoric and epistemic components of uncertainty at this stage 

can only offer a guide for sample design. Ideally, one would want a way of 

automatically recommending sample designs based on these components as 

experimenting with different design types is not always easy in high-dimensional 

settings. Secondly, there are situations where differentiating between aleatoric and 

epistemic uncertainty offers little practical use in managing uncertainty efficiently. The 

first part of the Lagos case study is an example of such a case, as there was technically 

no aleatoric component of uncertainty. Thirdly, the issue of quantifying the ontological 
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component of uncertainty is left unresolved, meaning that one must implicitly assume 

that any assumptions in UQ are valid beforehand when quantifying components of 

uncertainty. Section 7.3.1 discusses how future work could incorporate ontological 

uncertainty through adaptive modelling.  

Predicting the likely effects of sample designs offers a universal and evidence-

based approach to assessment between iterations in adaptive sampling.  

 

For both the estimation problem in the Lagos study and the woodland mapping 

problem, a large part of deciding which design would be best to adopt in the next 

iteration was based on how different designs were likely to impact uncertainty based on 

the current information. The advantages of this approach to design assessment lie in 

how universal it is and how it can incorporate sources of uncertainty when combined 

with Bayesian inference and iterative sampling.    

The choice between sample designs in the England case study is a good illustration of 

these advantages. Here, all the designs were generated by experimenting with the 

balance between the distance from where the surveyors are based with the likely 

uncertainty reduction. None of the designs were generated by trying to optimise some 

objective function and to do so would have been difficult to justify, as factors such as 

spatial clustering and the true cost of travel may not align neatly with an objective 

function that could be easily optimised.  

Nevertheless, one could predict the impact of each design and make the case that 

designs 2 and 3 (which opted to go for fewer surveys further away) were likely to be 

better for uncertainty reduction than design 1 (which focused surveying on a larger 

number of sites that were close to where the surveyors were based). 

As a side note, the ability to assess the likely impacts of any design is what allows one 

to start employing an evidence-based approach to exploring different trade-offs in 

adaptive sampling, an important topic discussed in Section 6.2.3. 
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6.3.2 Using the framework to explore different design choices in 

adaptive sampling  

A recurring theme throughout this thesis is that creating sample designs to optimise 

uncertainty reduction in machine learning classifiers can be difficult. Two major causes 

of these difficulties are (i) needing sufficient knowledge of a system beforehand (e.g. 

having a good idea of suitable model structures and parameter values) and (ii) cost-

benefit trade-offs of sampling decisions not falling into well-defined objective 

functions. Because of these difficulties, this thesis decided to take an alternative 

approach to balancing uncertainty reduction and sampling restrictions in machine 

learning techniques, proposing that uncertainty could be better managed via adaptive 

sampling. With this change in perspective, Chapter 3 proposed a framework with a 

series of methods that could enable such adaptive sampling.  

After reflecting on the case studies, one of the key advantages this framework offers is 

its ability to provide an easy way of exploring different sample designs based on the 

data from previous iterations. With this ability, the two causes of optimisation 

difficulties that were previously mentioned do not have the same degree of impact. In 

the case of needing sufficient knowledge beforehand, the framework mitigates this issue 

by representing the impact of different design choices as probabilistic statements based 

on the current data. This means that there is less concern over making the correct 

assumptions at the beginning of the sampling process, as uncertainty within a system 

can be accounted for and updated between iterations of sampling. As for situations 

where the cost-benefit trade-offs cannot be easily represented through objective 

functions, the ability to propose and implement different designs lets one consider trade-

offs at higher levels.  

In short, with the proposed framework, one can easily explore targeted designs until one 

finds a suitable design. As situations involving uncertainty management become more 

complex, this approach based on experimentation becomes far easier to apply 

consistently when compared to an optimisation perspective.  

This is not to say that optimisation methods cannot play a useful role in adaptive 

sampling. Instead, it may be better to view optimisation procedures as methods that fit 

into the design proposal stage of the framework. From this perspective, one may still 
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use optimisation methods to suggest sample designs, but they are treated as any other 

design created through experimentation.  

An example of using optimisation methods to complement the framework can be seen 

in the first part of the Lagos study. Here, design (ii) was motivated by a non-linear 

programming problem that was optimised on the assumption that true values of the 

relevant parameters were equal to the modes of their respective posterior distributions. 

However, because one was able to use the framework to predict the likely effects of 

further sampling, the validity of design (ii) was no longer beholden to these assumptions 

being true. Instead, the framework could compare designs without requiring a formal 

justification based on assumed values. 

6.3.3 Recognising the interplay between generalisability and efficiency. 

The final discussion topic is that there is an interplay between managing uncertainty 

under design restrictions and generalisability. Figure 6.3 illustrates this idea but, briefly, 

as a framework becomes more generalisable, one has more options available when 

managing uncertainty, which increases the chances of finding efficient ways of reducing 

uncertainty. Conversely, being able to manage uncertainty efficiently under different 

design restrictions will inevitably make some previously unviable methods practicable 

again, hence increasing generalisability. 

 

Figure 6.3 A summary of how generalisability and efficiency can feed into each other to 

illustrate that these topics should not be viewed in isolation.   
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Recognising this interplay is an important part of understanding the strengths of the 

framework and shaping further development as the underdevelopment of one area will 

inevitably lead to limitations in the other.  

The woodland mapping case study illustrates this interplay. With a generalisable way of 

experimenting with different targeted sampling designs, it was possible to create at least 

two efficient sample designs. This is an example of generalisability feeding into 

managing uncertainty efficiently. An example of managing uncertainty efficiently 

feeding into generalisability comes at beginning of the all the case studies. To recall, the 

core problem of all the case studies was that the maps were generated with machine 

learning classifiers which were assumed to be too black-box to quantify uncertainty 

directly. Instead, the case studies chose to use UQ based on a separate reference sample. 

Because of practical restrictions though, the designs of these reference samples need to 

be carefully considered. Thankfully, the adaptive sampling framework could help in 

managing uncertainty efficiently under the design restrictions. These results ultimately 

feed back into generalisability, as it clears a major bottleneck in UQ under maps made 

with MLTs. In other words, by having a way of managing uncertainty efficiently for 

UQ that does not rely on the choice of MLT, one inevitably has more classification 

methods available (hence increasing generalisability). 

6.4 Summary 

This chapter has provided an evaluation of the proposed adaptive sampling framework 

and raised important issues for discussion emanating from the work.  

 

For the evaluation, the adaptive sampling framework largely met the two criteria by 

offering a generalisable way of managing uncertainty under design restrictions. The 

case studies illustrate how the framework can be used to manage uncertainty under 

design restrictions such as limits on the total sample sizes when the cost of sampling 

varies across a population. In addition, the case studies illustrated a high degree of 

generalisability for the framework as many of the methods were agnostic to the choice 

of classification method, the model used to quantify uncertainty, and propensity scoring. 

Whilst there are some potential limitations when dealing with computationally intensive 

models and in high-dimensional modelling, the framework as a whole offers a 
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substantial contribution towards a generalisable approach to managing uncertainty in 

machine learning classifiers.  

 

The discussion section focused on three main topics: (i) reflecting on the choice of 

methods within the framework. (ii) using the framework to explore different design 

choices in adaptive sampling (iii) recognising the interplay between generalisability and 

efficiency. 

From the first part of this discussion, the following points emerge: 

 

• Bayesian inference greatly improves the generalisability of the framework by 

making other methods easier to apply. 

 

• Using the predictive features to define targeted sampling offers a simple way to 

include biased and targeted sampling. 

• Components of uncertainty are useful heuristics when managing uncertainty. 

 

• Predicting the likely effects of sample designs offers a universal and evidence-

based approach to assessment between iterations in adaptive sampling.  

The second discussion topic was that the adaptive sampling framework is at its best 

when it is used as a tool for exploring trade-offs between uncertainty reduction and 

design restrictions rather than trying to use it as a means of optimising sample designs. 

The argument here begins with the realisation that optimising sample designs is an 

unrealistic prospect once one considers that sample design itself is often subject to 

uncertainty and those design restrictions do not always follow well-defined objective 

functions. Instead, it can often be better (perhaps with the aid of optimisation methods) 

to use the framework to experiment with different designs and explore different trade-

offs. In short, where the first topic in this discussion focused on how the methods allow 

one to easily experiment with different designs, this topic discusses that such an 

explorative-based approach is a better way of viewing the problem of uncertainty 

management under design restrictions in the first place.  

The final topic focused on the observation that the original criteria (the ability to 

manage uncertainty efficiently under design restrictions and generalisability) are not 

separate but interlinked. This is an important lesson for future applications as it offers 

new perspectives when facing the problem of managing uncertainty under design 
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restrictions and highlights that managing uncertainty effectively requires a sufficient 

degree of generalisability and vice-versa. 
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Chapter 7: Conclusion 

7.1 Summary of the thesis 

Classification via machine learning has become increasingly popular across a myriad of 

domains, especially in the last few decades. This popularity is largely due to their ability 

to automatically (or at least with a high degree of automatability) produce high-quality 

models from large sets of data. As these techniques have gained in popularity and 

spread into more applications, there has been increasing demand to quantify uncertainty 

to the same standard one had typically reserved for more traditional forms of modelling 

such as process-driven modelling or data-driven modelling in lower-dimensional 

spaces.   

 

However, because many methods of machine learning are black-box in nature, rely on 

large quantities of data, and have not always been designed with uncertainty 

quantification in mind from the outset, quantifying uncertainty often relies on having 

the ‘right’ kind of reference data. These ‘right’ kind of reference data typically involves 

higher quality data (e.g., ground-truth observations) collected under strictly defined 

sample designs. Ultimately, this tends to create situations where machine learning 

techniques may be held back in applications that demand uncertainty quantification due 

to a lack of this higher-quality data collected under suitable sampling conditions.  

 

This thesis has investigated an adaptive approach to sampling as a means of efficiently 

managing uncertainty in classification where (i) elements of the classifier rely on 

modern machine learning techniques and, (ii) the amount and types of suitable reference 

data are limited in some way by design constraints. This was achieved through the 

following objectives:  
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A. Developing a framework for adaptive sampling that allows users to efficiently 

manage uncertainty in classifiers built with machine learning techniques. This 

framework should allow users to leverage the information contained in an initial 

reference sample to make informed and more cost-effective choices related to 

further sample designs when quantifying uncertainty under classifiers built using 

machine learning techniques.  

 

B. Evaluating the proposed framework using a series of land cover mapping 

applications.  

 

C. Providing recommendations on how the proposed framework could be further 

developed to address any unresolved weaknesses found in the evaluation stages. 

 

To meet objective A, this thesis began with an extensive literature review aimed at the 

topics of uncertainty quantification, machine learning, and methods for generating 

efficient sample designs for reference data. From the review, it became clear that there 

was a substantial amount of work that covered all these topics individually, as well as 

their pair-wise intersections. Despite this though, there were still several challenges (and 

a noticeable gap in the literature on how to solve them) when considering all three 

topics simultaneously. 
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The major causes of these challenges were typically a result of the following five 

factors conflicting with each other: 

 

(i) Many MLTs are not designed with UQ in mind and are commonly black-box in 

nature. 

(ii) MLTs often use large data sets collected under unstructured sample designs. 

(iii) Efficient uncertainty reduction is heavily influenced by the performance of the 

classifier (whether built with MLTs or otherwise). 

(iv) There are many subjective components in UQ that are typically related to what 

kinds of modelling and design assumptions one is willing to accept. 

(v) The effects of different sample designs are themselves subject to uncertainty as 

they often rely on unknown values.  

 

It was from this point that the author proposed that any framework of adaptive sampling 

focused on uncertainty reduction and machine learning classifiers should be as agnostic 

to specific methods of UQ and MLTs as possible. The motivation for this decision 

begins by noting that in many ways, the circumstances of the task and the subjective 

beliefs of stakeholders will tend to dictate what MLTs and methods of UQ will be used 

in the end. Furthermore, the choices for these methods are likely to change (possibly 

quite a lot) over time. Hence, it seemed more worthwhile to develop a framework of 

adaptive sampling where one had a high degree of flexibility over these choices rather 

than trying to optimise sample design for specific sets of circumstances. 

 

Under this change of mindset, this thesis then proposed a generalisable framework for 

adaptive sampling that focused on being agnostic to choices within machine learning 

and uncertainty quantification. This began by breaking the adaptive sampling into a 

cyclical process consisting of four key stages and then populating this framework with a 

series of methods and analytical tools that were designed to be as generalisable as 

possible. Under this framework, the four key stages were updating the sample, updating 

uncertainty, design assessment, and design proposal and the methods/ analytical tools 

considered were: the use of Bayesian inference in UQ, using the predictive features to 

define targeted sampling, quantifying epistemic and aleatoric components of 

uncertainty, and predicting the likely effects of further sampling. 
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The thesis then moved on to meeting objective B by evaluating the framework and 

proposed methods in two case studies spread over three parts. The first case study used 

an urban mapping problem which was split into two parts, an area estimation problem 

involving discrete classifications (part I) and a mapping problem using fuzzy 

classification (part II). The second case study involved a woodland mapping problem 

with additional design restrictions that favoured sampling areas close to the surveyors’ 

homes as a way of overcoming COVID-19 travel restrictions.  

 

In the first part of the Lagos case study, the framework was successfully used to 

compare the likely impacts different forms of stratified sampling would have on the 

precision of area estimates. This offered a great advantage when it came to deciding 

upon a single design to use in the next iteration of sampling, as it gave a way for 

selecting between sample designs without needing to implement them. 

 

For the second part of the Lagos study, the framework was used to manage uncertainty 

efficiently by providing a way of knowing when it is best to stop sampling. This was 

done by quantifying epistemic and aleatoric components of uncertainty and then 

concluding that the current uncertainty was so close to the aleatoric component that it 

was highly likely that further sampling alone would do little to increase the precision of 

estimates. 

 

Together, both parts of the Lagos case study highlighted how being able to predict the 

likely effects of different sample designs and the associated maximum level of precision 

are vital tools when trying to manage uncertainty efficiently through adaptive sampling.  

 

The England woodland study built upon the successes of the framework in the Lagos 

study and sought to test the framework further with the addition of a biased initial 

sample and propensity scoring. Under these conditions, using the predicted features to 

define targeted sampling provided a way of accounting for initial sample bias and a 

basis for targeted sampling that did not rely on any additional modelling assumptions. 

The lack of added modelling assumptions had the additional benefit that it made 

refitting models using third-party software much easier, as it meant one could use many 
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of their inbuilt features (e.g., methods for generating posterior distributions) without 

needing to make adjustments.  

 

This second case study illustrated how the framework and proposed methods could 

come together to provide an evidence-based means of managing uncertainty efficiently. 

In particular, one was able to use the framework to show that it would probably be 

better to conduct fewer surveys in less favourable areas than it was to continue 

surveying more sites in highly favourable areas.   

 

Finally, the thesis moved on to objective C by reflecting on how the framework and 

proposed methods therein could generalise to different kinds of classification problems 

and areas for further development. Focusing on the proposed methods specifically first, 

the stand-out results from this thesis are:  

 

• Although not strictly required in the framework, choosing to adopt Bayesian 

inference in uncertainty quantification is highly recommended as it is naturally 

suited for sequential sampling and facilitates a generalisable way of applying 

other elements of the framework thesis via Monte Carlo methods.      

 

• Using the predicted features of a model as a basis for targeted sampling offers 

users a way of targeted sampling that does not require any additional modelling 

assumptions. This property is especially useful when there are multiple iterations 

of targeted sampling because if each design sample in a chain has this property, 

then so does its composition. Furthermore, this method can be used as an easier 

way to account for sample bias by forcing the factors influencing bias into the 

model to begin with.  

 

• Quantifying aleatoric and epistemic components of uncertainty is a useful tool 

for knowing when one has reached the limits of further sampling and can offer a 

useful guide for targeted sampling. However, more work is needed to investigate 

how to best leverage these components of uncertainty when simple visual 

inspections are not available (e.g., high dimensional models).    
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• Predicting the likely effects different sample designs will have on uncertainty is 

an almost essential tool in adaptive sampling, as it serves as an evidence-based 

method for deciding which designs to implement in the next iteration. In 

general, this type of approach should be used over benchmarking methods that 

test the performance of a design after it has been implemented. It should be 

noted though, that predicting the likely effects of different sample designs can 

become computationally expensive when the initial model is complicated and 

one is relying on Monte Carlo methods.  

 

From a more holistic perspective, the case studies illustrate how the methods used to 

populate the proposed framework can help at different stages of the adaptive sampling 

cycle and when combined can offer a generalisable approach to adaptive sampling. A 

second key lesson is that a large component of adaptive sampling lies in experimenting 

with sample designs under uncertainty rather than trying to optimise sample designs 

based on limited information. A final lesson is that there is an interplay between 

managing uncertainty efficiently and generalisability which means that a lack of one 

places limits on the other. In other words, it can become difficult to manage uncertainty 

efficiently without a sufficient degree of generalisability. Likewise, there will naturally 

be a limitation in the kinds of MLTs, and methods of UQ one can employ (i.e., a lack of 

generalisability) if one cannot manage uncertainty efficiently for these methods.     

7.2 Research contributions 

The work in this thesis has made the following contributions towards a more cost-

effective way of managing uncertainty in machine learning techniques under design 

restrictions: 

The introduction of a strategic level framework for adaptive sampling that is 

agnostic to the choice of machine learning techniques and type of uncertainty 

quantification. 

 

One of the major insights from this thesis is that there are many viable approaches to 

machine learning and uncertainty quantification. The right combination of these 

methods will often be context-specific and contain many subjective choices (e.g. 

deciding which modelling assumptions are appropriate).  
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Considering this, this thesis produced a strategic-level framework for adaptive sampling 

that provides a way to manage trade-offs between sampling restrictions and uncertainty 

reduction without relying on specific forms of machine learning techniques or 

uncertainty quantification. The fact that the framework is agnostic to the choice of 

machine learning and uncertainty quantification approaches means that the framework 

can be applied without getting into the previous discussion over the most suitable 

methods. This property is especially useful for machine learning applications, where it 

can be hard to control or understand every process involved when compared to more 

traditional modelling. 

The development of tactical-level methods for the adaptive sampling framework 

 

With a framework adaptive sampling set at the strategic level, the thesis then proposed a 

series of methods that were designed to help users navigate the framework’s key stages 

at the tactical level. These methods were designed to help users answer key questions 

such as “How should uncertainty be quantified when new data becomes available?”, 

“Where are the best places to sample from under design restrictions?”, “How do I know 

when to stop sampling?”, and “How do I decide on a sample design given several viable 

candidates?”  Individually, these methods help overcome many of the key obstacles one 

is likely to face in adaptive sampling. Combined though, these methods offer a 

generalisable way of completing full iterations of the adaptive sampling cycle and form 

a strong foundation for future work. 

An illustration of how iterative and explorative approaches to sampling design can 

offer a consistent and flexible way of managing uncertainty efficiently.  

 

When trying to manage uncertainty efficiently, there is always a balancing act when 

deciding how reference data should be collected between the potential uncertainty 

reduction and staying within context-specific design restrictions. From the work in this 

thesis, it becomes clear that managing this balancing act can be challenging in practice 

because of uncertainty within the system itself (e.g. uncertainty in model choice, 

parameter values etc) and the fact that design restrictions do not always follow neatly 

defined objective functions.  

With the use of the case studies, this thesis has been able to show how the adaptive 

sampling framework can be used to provide an iterative and explorative approach to 
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sample design and has illustrated how this can be used to address these challenges. 

From this, one can see how the iterative component here helps the framework be 

consistent by building up to efficient sample designs with evidence from the previous 

iterations. With the explorative component, the framework can remain flexible to 

different forms of design restrictions.  

An illustration of the benefits of using Bayesian inference in adaptive sampling. 

 

Whilst not strictly necessary for the framework, this thesis has illustrated that using 

Bayesian inference brings many benefits in the context of adaptive sampling. This is 

because many adaptive sampling methods are easier to apply under Bayesian inference 

as it is naturally better suited to sequential sampling and propagating uncertainty with 

Monte Carlo methods. 

This result is important as differences between Bayesian and frequentist inference can 

seem trivial when reference samples are large, collected under a single phase and 

produce numerically similar outputs. However, the advantages of Bayesian inference 

become much more apparent when reference sampling is limited by design restrictions 

and using adaptive sampling. Ultimately these advantages should motivate any 

transition from frequentist to Bayesian inference when looking at adaptive sampling 

strategies.   
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7.3 Future work 

This section documents important areas of future work under four headings: further 

modelling and adaptive modelling (7.3.1), using alternative sample designs and 

reference data (7.3.2), improving methods for proposing and assessing sample designs 

(7.3.3), and quantitative evaluation of the framework (7.3.4). A summary of the scope 

of this thesis and how they relate to these topics for further exploration are summarised 

in Figure 7.1.
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Figure 7.1. A summary of the scope of this thesis (orange inner ring) and topics for further exploration are to be discussed in Section 7.3 (outer 

green ring). The inner ring provides a summary of the thesis by listing the properties of the case studies and the limitations of the framework.
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7.3.1 Further modelling and adaptive modelling 

Throughout the case studies in this thesis, there were a number of assumptions or 

restrictions placed on the modelling used to quantify uncertainty. Some examples of 

these assumptions and restrictions include using classification problems; using separate 

data sets for training the classifiers and UQ; assuming no spatial correlation for noise 

components in models; and knowing the bias in the initial sample designs. An obvious 

avenue for future work could consider more case studies where some of these 

assumptions or restrictions differ and improve upon the framework when necessary.  

 

However, simply applying the framework to new scenarios with different model 

structures may not be enough though, as one still needs to account for the possibility 

that there may be many plausible approaches for UQ in the adaptive sampling process. 

Much in the same way that adaptive sampling involves experimenting with different 

designs under uncertainty and balancing different trade-offs, the choice of models and 

method used to quantify uncertainty is also subject to uncertainty which may be updated 

as further data between sampling iterations arrives. Hence, future work may be better 

focused on the idea of combining adaptive sampling with adaptive modelling, where the 

models and UQ methods can also change between iterations.  

 

One option would be to consider a shortlist of models and see where they agree and 

where they disagree across a mapping. In this situation, areas with a large disagreement 

between models would be an indication that future sampling should target these areas. 

Furthermore, some models may be added and removed from the shortlist as more 

reference data becomes available. The generalisability of Monte Carlo methods would 

help in these situations, as the core methodology is the same across models. An 

alternative approach would combine shortlisted models into one model through an 

ensemble approach. For example, one could consider a weighted average of multiple 

models. Bayesian inference is naturally suited to this, as the weights can easily be 

included as another model parameter and hence considered in posterior distributions 

[378], which could act as a more automated (and less abrupt) way of adding and 

removing or adding models as more reference data are collected.  
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7.3.2 Using alternative sample designs and reference data 

In addition to the modelling and UQ assumptions, there were also assumptions within 

the sample designs and reference data used throughout the case studies. Three common 

properties were that (i) all designs were based on probabilistic sampling, (ii) sample 

designs could explicitly target areas in the mapped area and (iii) the reference data were 

assumed to be objective and fully deterministic. Since a large part of the adaptive 

sampling framework is focused on a generalisable approach, a natural area of future 

work would be to investigate how an adaptive sampling framework could make use of 

alternative sample designs and types of reference data. In particular, there are three 

noteworthy avenues for future work in adaptive sampling under alternative designs and 

reference data: making use of noisy reference data, making use of non-probabilistic 

sampling, and using adaptive sampling designs when explicit targeting is not available.    

 

Making use of noisy reference data  

 

In this thesis, the reference data were assumed to be objectively correct. Even in the 

domain of land cover mappings though, this assumption may not hold as uncertainty in 

reference data can arise from sources such as measurement errors in sensors, 

disagreements between expert assessments, or when relying on reference data that is not 

a ground-truth assessment due to practical restrictions (e.g. using aerial photography in 

place of physical visitations for inaccessible areas) [41], [379], [380], [381]. Providing 

that one can account for noise in reference data in UQ though, the framework should be 

able to handle these as it would involve the core processes with some additional sources 

of uncertainty under different model structures.  

Whilst one can account for noisy reference data with the framework in its current form, 

future work can still look towards how to best balance different levels of noise against 

sampling convenience when managing uncertainty. Typically, this would involve 

answering questions such as “Is it better to get more reference data with a moderate 

amount of noise or less data with a higher quality assurance?”. From the perspective of 

the adaptive sampling framework, one may well imagine a situation where cheaper 

methods of reference sampling may be better at reducing ontological and epistemic 

uncertainty at the cost of more aleatoric uncertainty due to additional noise. For land 
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cover mappings specifically, such dynamics become more relevant as using reference 

data from crowdsourcing becomes more popular [382], [383], [384].   

Making use of non-probabilistic sampling 

 

The sample designs in the case studies were all based on reducing uncertainty in 

parameter values under different forms of probabilistic sampling as this was the only 

viable means of reducing uncertainty due to the simplistic nature of the models and 

methods in UQ. As one looks towards more advanced modelling structures though, 

future work could consider using non-probabilistic designs in an adaptive sampling 

framework, which are generally easier and cheaper to apply.  

In particular, model structures where some of the predictors themselves are based on 

models (i.e. model chains) and models that take into account autocorrelations (e.g. 

spatial or temporal) are likely to benefit from adaptive sampling under non-probabilistic 

designs. In the case of model chaining, uncertainty can be reduced using direct 

measurements for the predictors instead of relying on the modelled values. For models 

with autocorrelation, having reference data from nearby instances (either spatially or 

temporally) can be enough to reduce uncertainty. For both examples, there is no 

requirement for reference data to be collected under probabilistic sampling.  

Looking at the adaptive sampling framework, there should not be a problem using the 

methods under non-probabilistic sample designs, as the principal idea of using Bayesian 

inference with Monte Carlo methods to experiment with sample designs does not 

require probabilistic sample designs. However, there are still likely to be interesting 

questions about how the framework can be used to strike an optimal balance between 

probabilistic and non-probabilistic sampling under hybrid approaches.    

 

Using adaptive sampling when explicit targeting is not available.  

 

Another feature common to the case studies was the ability to explicitly target areas in 

sample designs. In the Lagos case study, one could target areas by changing the sample 

sizes across the strata. In the woodland case study, targeted sampling was achieved by 

changing the inclusion probabilities across the predictive feature space. This luxury may 

not hold when looking to manage uncertainty under machine learning classifiers such as 
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insurance fraud [385], [386], [387], early fault detection [388], [389], [390], or hiring 

processes [391], [392] though.  

In these examples, one cannot target different subsets of the population in the same way 

they could in the land cover case studies as it may be impractical to revisit settled 

insurance claims, know if a fault would have been detected by a manual inspection at 

the time, or expect a previously rejected applicant to partake in a recruitment process for 

a position that may longer exist. In short, with the land cover mapping case studies, it is 

much easier to apply statements of the form “go collect reference data from these areas” 

when compared to other applications.  

 

Hence future work could investigate how the adaptive sampling framework can be 

applied when one cannot explicitly target areas of a population. This could involve 

prioritising the kinds of instances one collects reference data from as opposed to 

explicitly targeting areas. Essentially, this change in approach would take the previous 

“go collect reference data from these areas” statements to something more like “when 

an instance from this area comes along, make sure you collect some reference data for 

it”. 

7.3.3 Improving methods for proposing and assessing sample designs 

A recurring theme throughout the thesis is that a large component of adaptive sampling 

involves exploring and experimenting with different sample designs. This explorative 

approach to sample design works best when one has the means to propose suitable 

sample designs and the analytical tools to assess them before committing to the designs. 

Overall, the case studies have illustrated how the methods in the framework can be used 

to meet these goals. That said, there are still opportunities in future work to improve 

how sample designs are proposed and assessed. Three opportunities worth considering 

here are (i) overcoming computational challenges in Monte Carlo methods and 

Bayesian inference, (ii) improving the analytical tools in design assessment, and (iii), 

developing ways to automatically recommend good sample designs. 
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Overcoming the computational challenges in Monte Carlo methods and Bayesian 

inference 

 

One of the key strengths of the adaptive framework comes from the use of Bayesian 

inference and Monte Carlo methods which in turn makes the framework highly 

generalisable. However, the combination of Bayesian inference and Monte Carlo 

methods can be computationally expensive in large-scale applications, which in turn 

negatively impacts the ability to experiment with sample design and modelling 

possibilities. In other words, it becomes difficult to explore and experiment with 

different options when the assessment of each design takes a long time to compute.    

 

Consequently, anything that can help reduce the time it takes to assess sample designs 

(and potentially model choices) when using Monte Carlo methods will indirectly help 

improve the framework. There are several potential options here. The use of cloud 

computing has seen success in recent mapping applications at a more general level 

[393], [394], [395], [396], so folding the adaptive sampling framework into this is one 

option. Other options may look toward increasing computational power with 

neuromorphic computing [397], [398] or developing methods that make sampling from 

posterior distributions more efficient [399], [400], [401]. It is important to note though 

that these options are topics that are arguably areas of research in their own right. 

Hence, it may be best to view the computational challenges in Monte Carlo methods in 

Bayesian inference as related to, but separate from, the adaptive sampling framework. 

 

Improving the analytical tools in design assessment 

 

Under the case studies visualising the results in the design assessment phase was 

relatively straightforward. The first part of the Lagos case study focused on a point 

estimate (i.e. the total urbanised area) which made comparing the likely effects of 

further sampling under different designs possible through box plots. For the second part 

of the Lagos case study and the England case study, results could be viewed across the 

predictive feature space with 2 and 3-dimensional plots respectively and spatially across 

the mapped areas. This ability to visualise the assessments helped a lot when 

experimenting with different sample designs. However, the ability to view results across 

low-dimensional feature spaces or spatially may not hold across all applications. 
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With this in mind, future work could focus on improving the analytical tools for 

assessing different sample designs. This could involve developing visualisation tools 

and metrics that can handle models in higher dimensional settings. 

Developing ways to automatically recommend good sample designs.  

 

While exploring and experimenting with different sample designs can offer many 

advantages in adaptive sampling, finding suitable sample designs to begin with may not 

always be so easy. Given the previously discussed issues of computational costs and the 

potential difficulties in visualising results in higher dimensional settings, future work 

may consider ways of automatically generating good sample designs that can act as 

reasonable starting points for experimentation. These methods could be motivated by 

optimisation problems. For example, one may consider investigating how Bayesian 

optimisation techniques could help in generating sample designs when uncertainty is 

measured using entropy [402], [403]. Equally, one could take a less formal approach to 

make use of machine learning techniques (e.g. detecting clusters of high epistemic 

uncertainty for targeted sampling). Either way, one can see natural links between 

improving the analytical tools in design assessment and developing ways to 

automatically recommend good sample designs. 

7.3.4 Quantitative evaluation of the framework 

Much of the analysis in this thesis was deliberately qualitative. This was necessary 

because the focus of the thesis was on developing and evaluating a newly established 

framework that aimed to deal with the problem of managing uncertainty in machine 

learning at a more general level. In many ways, the framework was not ready for 

quantitative methods of analysis, as it still had to undergo refinement and be evaluated 

at a level that could not be easily tested using quantitative analysis. For example, there 

is no clear quantitative measure that captures how using a model’s predictors as a basis 

for targeted sampling can greatly simplify the process of quantifying uncertainty under 

iterative sampling.      

 

However, with the adaptive framework (and its qualitative benefits) more firmly 

established, a natural area for future work would be to evaluate the framework 

quantitatively using various performance metrics. Examples of performance metrics 
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here could include computational costs and running times; measures that capture the 

precision of estimates, total monetary savings etc. Ideally, any quantitative evaluation 

would be applied across a representative set of modelling scenarios, as this would align 

with the goal of creating a generalisable framework. 

7.4 Concluding remarks 

As techniques in machine learning are further developed and employed across more 

applications, the need to efficiently manage uncertainty under these methods only 

grows. Whilst there is a lot of work on managing uncertainty under more traditional 

modelling environments, bringing these methods into machine learning applications 

comes with many challenges as machine learning techniques often lack transparency 

and require large volumes of data to train.  

To overcome these challenges, this thesis has proposed an adaptive sampling 

framework that is agnostic to the choice of machine learning classification and quasi-

agnostic to the method of uncertainty quantification (i.e. the framework does not depend 

on specific forms of uncertainty quantification, but Bayesian inference comes highly 

recommended).  

The motivation for this was that by building sample designs iteratively and keeping the 

framework agnostic to the choice of machine learning techniques and the method of 

uncertainty quantification, one could offer a more consistent and generalisable way of 

managing uncertainty.  

Overall, the results from this thesis are promising. Whilst the thesis has focused on case 

studies in land cover mapping applications to evaluate the framework, the results and 

principles easily transfer to other applications. Consequently, the framework should 

benefit a wide variety of situations where there is a need to efficiently manage 

uncertainty in machine learning techniques due to design restrictions when sampling 

reference data.  
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