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Abstract 

This study presents a temporal co-registration method 

combining electromagnetic articulography (EMA) and 

electroencephalography (EEG) to capture the neural planning 

and execution phases of speech with high precision. Traditional 

EEG alignment based on acoustic vocal onset is often 

inaccurate due to the variable lag between articulatory and 

acoustic onsets. Our approach synchronizes EMA-derived 

speech kinematics with EEG data, addressing these challenges. 

We also examined the interaction between EMA and EEG 

systems, focusing on the integrity of EMA signals in the 

presence of EEG equipment and the electromagnetic influence 

of EMA on EEG signal quality. The method achieved a mean 

alignment delay of 2.7 ms (SD = 0.4 ms), enabling detailed 

analysis of pre-articulatory brain activities. Additionally, our 

evaluations confirmed the robustness of EMA signals and EEG 

event-related potentials, supporting the method's precision, 

feasibility, and reliability for speech planning research. 

Index Terms: EMA, EEG, Co-Registration, Synchronization, 

Motor Speech Planning, Neural Data Alignment, Articulation 

1. Introduction 

Exploring the neural underpinnings of speech requires precise 

methods to capture the intricacies of motor planning and 

execution. The integration of electromagnetic articulography 

(EMA) and electroencephalography (EEG) offers a promising 

approach to speech motor control research by providing a 

method for synchronizing speech movement data with neural 

activity. This temporal co-registration is particularly useful to 

gain a better understanding of the timing and coordination of 

neural events that precede speech articulation. Prior research on 

speech planning has predominantly relied on the acoustic signal 

at vocal onset as a benchmark, which is fraught with challenges 

in directly pinpointing articulatory onset, as noted in several 

studies [1,2,3,4]. This conventional approach often falls short 

in accuracy, marred by the articulatory-acoustic interval (AAI), 

i.e., the lag between the commencement of articulatory motion 

and the emergence of sound [5,6]. This gap can obscure the 

authentic timing of speech planning and execution, potentially 

skewing our comprehension of speech motor planning 

mechanisms. Notably, the differentiation between articulatory 

and acoustic onsets becomes especially pronounced with 

voiceless stop consonants, like /t/ and /k/, where EMA's 

capability to detect the tongue's movement towards the alveolar 

ridge or velum precedes the acoustic signal significantly. 

EMA's refined detection contrasts sharply with acoustic 

analysis, which only recognizes the onset at the actual sound 

production after the articulatory action concludes. This 

distinction is pivotal since the AAI for stops may extend up to 

about 100 ms beyond that for non-stop phonemes [5]. 

Furthermore, the variability of AAIs, influenced by factors like 

speech rate, phonetic context, speaker's native language, 

dialect, and individual differences, introduces additional layers 

to accurately measuring speech events. The quest for greater 

precision in synchronizing neural data with the intricate 

dynamics of speech articulation has led to innovative 

approaches. Fargier et al. [7] pointed out the shortcomings of 

using acoustic energy onset for EEG data synchronization, 

hinting at the superior accuracy potentially offered by 

monitoring muscular activity. Despite this, as Van der Linden 

et al. [8] discovered, the complexity of speech tasks complicates 

the use of electromyography (EMG), due to the multiplicity of 

EMG bursts that can obfuscate the definitive moment of 

articulatory onset. Similarly, while Jouen et al. [9] suggested 

EEG microstates as an alternative, this method does not provide 

the direct measurement of articulatory movements that is 

possible with electromagnetic articulography (EMA). EMA's 

capability to precisely track speech movements at a high 

temporal resolution (above 1 kHz) uniquely positions it to 

accurately capture the onset of articulation, thereby addressing 

the identified gaps and providing a more reliable basis for 

synchronization with EEG data.  
While recent advancements in magnetoencephalography 

(MEG) compatible systems, such as MASK 

(Magnetoarticulography for an Assessment of Speech 

Kinematics) [10,11,12], have expanded our capabilities for 

tracking orofacial kinematics in combination with neural data, 

their utility is hampered by accessibility and cost concerns. In 

contrast, EMA systems, particularly the Carstens AG501, have 

demonstrated superior accuracy and practicality for research 



purposes. With a positional accuracy of up to 0.3 mm RMS, 

significantly outperforming MASK's up to 2 mm variability 

[13,14,15], and ensuring within 1 mm accuracy for head 

movement correction [15] (surpassing MASK's 5 mm criterion 

[16]), EMA systems offer unparalleled precision in articulatory 

onset detection.  
However, integrating EMA with EEG introduces specific 

challenges, notably the contamination of EEG signals by 

muscle artifacts during overt speech production. Our study thus 

focuses on pre-articulatory EEG signals, which are minimally 

affected by these artifacts. This approach allows for a more 

transparent investigation into the neural underpinnings of 

speech planning, circumventing the distortions introduced by 

physical speech movements. Moreover, recent advancements in 

the field suggest promising methodologies for managing such 

interference, offering avenues for future exploration of EEG 

data during the entire speech production process [17,18]. In 

addition to muscle artifacts, electromagnetic interference from 

the EMA system on EEG recordings (see, for example, [19,20]) 

and potential distortion of EMA signals by the metal 

components of the EEG electrodes pose further challenges. 

These issues stem primarily from electromagnetic fields (EMF) 

generated by EMA systems, leading to noise and artifacts in 

EEG data through inductive or capacitive coupling. This 

coupling can induce currents or alter EEG setup properties, 

impacting recording accuracy and reliability. Even with non-

ferromagnetic materials for electrodes to minimize interference, 

EEG's inherent electrical currents may interact with the EMA's 

magnetic field. These interactions may create magnetic fields 

around EEG wires, potentially interfering with EMA tracking 

and causing data distortions. 

This paper presents the synchronization of the Carstens AG501 

EMA and BioSemi ActiveTwo EEG systems, assessing the 

impact of EMA's electromagnetic field on EEG quality and the 

influence of EEG equipment on EMA signals. By integrating 

these technologies, we aim to provide a robust method for 

examining neural-motor coordination in speech, improving 

speech planning and execution analysis. 

2. Methods 

2.1 Apparatus and Setup  

EMA data were recorded using a Carstens AG501 system 

(Carstens Medizinelektronik GmbH, Bovenden, Germany) 

featuring an array of 24 sensors for recording spatial 

coordinates and directional angles in three-dimensional space. 

The system offers high spatial resolution with approximately 

0.3 mm precision and can track sensor movements at a sampling 

rate of up to 1250 Hz. We employed a BioSemi ActiveTwo 

EEG system (BioSemi BV, Amsterdam, Netherlands) equipped 

with 64 channels for EEG recordings, using a matching 

temporal resolution for EMA–EEG signal alignment. 

 

2.2 Synchronization Procedures for EMA and EEG 
To ensure precise synchronization between the EMA and EEG 

data, we used an Arduino Nano ESP32 microcontroller board. 

The device was programmed to emit a 1 ms trigger pulse to the 

EEG system's trigger input at both the start (T_active signal 

going low) and end (T_active signal going high) of each EMA 

data collection sweep. The effectiveness of this synchronization 

method was measured using an oscilloscope. 
 

2.3 Assessing EEG Equipment's Impact on EMA Signals 
We examined whether the presence and operational state of 

EEG equipment within the electromagnetic field could 

significantly affect the EMA signal characteristics. Following 

the method described in Kirkham et al. [21], three distinct 

calibration conditions were recorded three times (i.e., a total of 

nine sessions with three sets of 24 sensors) and compared: (1) 

without EEG equipment in the electromagnetic field, (2) with 

EEG equipment inactive (off), and (3) with EEG equipment 

active (on). For each calibration session (1–3), the same 24 

sensors were mounted once on a circular disk (referred to as 

'circal'), which was then subjected to a series of predetermined 

rotations, which allowed for the comparison of theoretical and 

actual sensor positions. Secured in magazines corresponding to 

designated channels, positional data, and signal strength 

measurements were recorded using Carsten’s calibration 

software Cs5cal. The sensor measurements consisted of spatial 

coordinates (x, y, z), directional angles (phi, theta), and the root 

mean square (RMS) differences between expected and 

measured transmitter amplitudes. During the calibration 

procedure, sensor movements in each condition were recorded 

for approximately five minutes and forty-nine seconds. 
 

2.4 Evaluating EMA Interference in EEG Signals 
To evaluate the impact of EMA system interference on EEG 

signal quality, we conducted a two-phase experiment, with all 

EEG data recorded at a sampling frequency of 2048 Hz. 

Initially, we measured baseline noise levels by submerging an 

EEG cap and electrodes in a water bucket positioned beneath 

the EMA system, replicating the electrical properties of the 

human head but without the biological signals. This setup 

allowed for a clear assessment of EMA-induced noise on EEG 

recordings by comparing conditions with the EMA system's 

magnetic field turned off and then on, thus establishing a 

controlled baseline for electromagnetic interference. 

Subsequently, we examined the real-world implications of this 

interference by recording EEG data from a 30-year-old female 

participant. The participant was instructed to produce 180 

trisyllabic sequences at a normal speech rate (e.g., /tatata/ and 

/takupi/) displayed on a computer screen. These recordings 

were conducted under identical conditions to the initial test – 

both with the EMA system's magnetic field inactive (serving as 

a control) and active – to directly assess the EMA's influence 

on the integrity of EEG signals in a practical speech production 

context. 
 

2.5 EMA Data Analysis 
To determine if the presence and operational state of the EEG 

equipment within the electromagnetic field could significantly 

affect the EMA signal characteristics, we computed two 

metrics. These include (1) the peak-to-peak variation (Δ), which 

corresponds to the difference between the minimum and 

maximum z-coordinate for each channel during calibration 

sessions, and (2) the standard deviation (σ) of the latter 

measure. Lower figures for both Δ and σ indicate higher 

calibration accuracy, with a standard deviation threshold not 

exceeding 0.25 mm, which is recommended for accurate 

calibration [13,21]. For each of these metrics, we conducted a 

Bayesian mixed-effects model to compare the condition 

without EEG recordings to the condition with the EEG system 

inactive and with the EEG system active, respectively. The 

models had random intercepts and random slopes for the 



contrasts involving condition. Set was included as a covariate, 

but we do not report the results for this variable. The following 

priors were used for Δz and σz, respectively: N(0.5,0.25) / 

N(0.15,0.1) for the intercept and N(0,0.5) / N(0,0.1) for 

differences between conditions. Bayes Factors were computed 

for each contrast using these and more constraining priors. 
A 3D visualization of sensor coil trajectories in each condition 

is displayed in Fig. 1. 

 
Figure 1: EMA sensor calibration and measured trajectories 

for all 24 sensors of the Carstens AG501 under varying 

conditions. A: Standard calibration setup with sensors on a 

rotating ‘circal’ disk. B: Baseline calibration without EEG 

interference. C: With EEG equipment inactive (off) in the 

electromagnetic field. D: With EEG equipment active (on) in 

the electromagnetic field. 

 

2.6 EEG Data Analysis 
For the analysis of baseline noise data collected during the first 

experimental phase, we performed an advanced frequency 

analysis. This procedure involved surveying the EEG frequency 

spectrum from 0 to 1024 Hz, in increments of 200 Hz. Cluster-

mass statistics via permutation methods for repeated measures 

ANOVA were employed to scrutinize any differences in the 

EEG signal with the EMA system turned on and off. This 

analysis was conducted using the permuco4brain R package 

[22]. For the analysis of data obtained from the second 

experimental phase involving a human participant, the Cartool 

Software [23] was utilized for post-acquisition analysis. An 

initial frequency analysis of the unfiltered EEG signal, recorded 

over a duration of 10 seconds with a high cut-off at 130 Hz and 

without a notch filter, disclosed no frequency discrepancies 

between the EMA system being active and inactive. This 

finding aligns with our expectations, considering the 

oscillations of the magnetic field generated by the EMA system 

occur between 9 and 16 kHz – frequencies well beyond the 

EEG's typical operational range below 50 Hz [23]. Stimulus-

aligned epochs – focusing on the time windows preceding 

articulation, from the presentation of the stimulus to about 700 

ms – were extracted and band-pass filtered between 0.1 Hz and 

30 Hz. A notch filter at 50 Hz was also applied. Employing a 

fixed 700-ms window for EEG analysis, rather than aligning 

with the variable timing of articulatory onset, provided a 

controlled framework essential for more accurately assessing 

the impact of the EMA's magnetic field on EEG signal integrity. 

Epochs were visually checked and accepted only in the absence 

of artifacts, i.e., eyeblinks, motor artifacts, or significant 

amplitude variations. Accepted epochs were recalculated 

against the average reference. To determine if there were 

differences in the electrical signal coming from the brain 

between EMA being active and inactive, analyses of amplitude 

and topography of our interest were carried out. Since only one 

subject was recorded with EEG, both analyses of amplitude and 

topography were made on single-trial event-related potentials 

(ERPs) (65 epochs per condition) instead of one participant’s 

averaged ERPs. Single-trial methods have been proven to be 

reliable and effective since they preserve the variability of the 

EEG dataset. 

3. Results 

3.1 Temporal Alignment and Synchronization Accuracy 
Measurements of the alignment and synchronization between 

the EMA and EEG data streams revealed high precision. An 

average delay of 2.7 ms with a standard deviation (SD) of 0.4 

ms was measured between the T_active signal going low and 

the trigger pulse being sent to the EEG. Precision in this context 

is reflected by the SD. The smaller the SD (relative to the mean 

delay), the more precise the synchronization between the EMA 

and EEG signals 
 

3.2 Effects of EEG Equipment on EMA Signal Integrity 
Table 1 shows the mean and standard deviation for each metric 

across conditions. As can be seen, the figures are highly similar 

across conditions. The results of the statistical models are 

presented in Table 2. Estimates are similar across conditions, 

and the 95 % credible intervals for the comparisons of interest 

all include zero. Bayes Factors for Δz are all below 0.3. They 

provide moderate to strong evidence in favor of the hypothesis 

that there are no differences between conditions. Bayes Factors 

for σz are about 0.04, providing evidence in favor of the null 

hypothesis. 
 

Table 1: Mean values and standard deviations (SD) for peak-

to-peak variation (∆z) and standard deviation of z-coordinates 

(σz) across calibration sessions under three conditions: No 

EEG equipment, EEG equipment inactive, and EEG 

equipment active in the EMA field. Data are presented as 

mean (SD) values across 24 sensors from three separate runs 

per condition. 

Condition ∆z (SD) σz (SD) 
No EEG 0.562 (0.090) 0.137 (0.029) 
With inactive EEG 0.562 (0.090) 0.139 (0.030) 
With active EEG 0.565 (0.086) 0.138 (0.030) 

 

Table 2: Results of the mixed-effects model for ∆z and σz 

(estimates and 95 % credible intervals). Sliding contrasts were 

used such that the intercept represents the grand mean, the 

first estimate for Condition the difference between inactive 

EEG and no EEG, and the second estimate the difference 

between active EEG and no EEG. 

∆z β Cr.Int 
Intercept 0.58 [ 0.550 , 0.610] 
Inactive vs. no EEG 0.0001 [-0.024 , 0.024] 
Active vs. no EEG 0.003 [-0.021 , 0.027] 

 

σz β Cr.Int 
Intercept 0.14 [0.13 , 0.15] 
Inactive vs. no EEG -0.0019 [-0.0096 , 0.0061] 
Active vs. no EEG 0.0018 [0.0062 , 0.0099] 



3.3 Impact of EMA on EEG Signal Quality 

Our initial phase analysis employing comprehensive cluster-

mass statistics found no significant differences in EEG signal 

characteristics when comparing the EMA system's active and 

inactive states across the tested frequency spectrum (0 to 1024 

Hz, p > 0.05). This result was confirmed using the cluster mass 

method and the threshold-free cluster enhancement (TFCE) 

statistic [24], indicating no discernible interference from the 

EMA's magnetic field within the evaluated frequency range. In 

the participant-based phase, point-wise ERP waveform analysis 

revealed only one left frontal electrode showing significant 

differences in amplitude (p < 0.01) within a time window from 

10 to 46 ms post-stimulus (see Fig. 2 A).  

 

 

Figure 2: Waveform and topographic analysis of EMA influence 

on EEG signals. A: Results of waveform analyses across all 

time points and electrodes, where darker areas represent 

significant amplitude differences (p < 0.01) when EMA is active 

(on) versus inactive (off). B: Sample waveforms from Fp1 and 

Cz electrodes, with time windows marked to show periods of 

statistically significant amplitude variation (p < 0.01) between 

active and inactive EMA states. C: Results from Topographic 

Analysis of Variance (TANOVA), illustrating significant 

differences in spatial EEG patterns (p < 0.05) between states of 

EMA activation. Areas of topographic dissimilarity are 

indicated in deeper yellow. 
 

Differences in amplitude on the mentioned electrode could be 

due to signal artifacts that might have required interpolation 

(not performed here). The remaining electrodes did not reveal 

differences in the ERP amplitudes in the analyzed time window 

– from the stimulus to 700 ms. Concerning the topographies, 

the topographic analysis of variance (TANOVA, [25]) 

comparing the global dissimilarity between EMA being active 

and inactive revealed a relatively brief time window (from 324 

to 338 ms) in which the ERPs map topographies differed (p < 

0.05; see Fig. 2 C). However, in this kind of analysis, a time-

period criterion of at least 20 ms is generally considered since 

topographical differences across conditions could be due to a 

transitional topography changing from one spatial 

configuration to another [2]. Therefore, applying a temporal 

criterion of 20 ms in this context would lead us to conclude that 

no discernible topographic differences exist between states of 

EMA activation. Taken together, results on the ERP amplitudes 

and topographies show that the magnetic field generated by the 

EMA does not cause an interference in those particular 

analyses. 

4. Discussion 

This study introduces a precise method for synchronizing EMA 

and EEG, significantly enhancing the temporal co-registration 

of articulatory and neural data in speech motor planning 

research. Our technique addresses the variability in the AAI, a 

major challenge in traditional EEG alignment with vocal onset 

that can obscure speech planning and execution timing. 

Notably, we achieved unprecedented synchronization 

precision, aligning EMA and EEG signals with an average 

delay of 2.7 ms and a standard deviation of 0.4 ms. This level 

of precision, essential for analyzing the variation in AAI across 

phonemes and other factors, allows for a more nuanced 

examination of neural planning and articulatory dynamics. The 

methodological advancements presented here mitigate previous 

inaccuracies encountered with acoustic cue-based 

methodologies, providing direct measurements of articulatory 

movement and neural activity with minimal interference. The 

demonstrated robustness of EMA signals and unaffected EEG 

event-related potentials, even amidst EMA's electromagnetic 

field, underline the reliability of our co-registration technique. 

Consequently, this research not only validates EMA-EEG co-

registration for studying the intricate relationship between 

neural planning and speech execution but also sets the stage for 

further investigative paths. 
In clinical applications, although this study does not explore 

specific interventions, the enhanced precision in synchronizing 

articulatory and neural data could inform the development of 

diagnostic tools and therapeutic strategies for speech disorders. 

Accurate temporal co-registration may improve our 

understanding of neural deviations in speech pathologies, 

guiding targeted rehabilitation techniques. Future clinical 

research is needed to translate these advancements into 

practical tools and interventions. Integrating this approach in 

scenarios involving overt speech and managing motion artifacts 

in EEG signals remains challenging and will require innovative 

solutions to extend the methodology, providing deeper insights 

into neural planning and motor execution during active speech 

tasks. 

In summary, this study offers a new toolkit for articulatory and 

neural data synchronization, achieving remarkable precision 

and reliability in temporal co-registration. These findings not 

only enhance the accuracy of speech motor planning research 

but also encourage further exploration of the complex neural 

mechanisms underlying speech articulation. Future research 

should aim to apply these techniques in more dynamic speech 

scenarios to fully understand the implications of our 

methodology for speech science and potential clinical 

applications. 
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