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Abstract

Emergent software systems are composed of elementary
building blocks, where many of those blocks have variations
available which are better or worse in different deployment
contexts. Genetic Improvement (GI) for source code has been
proposed for creating and curating collections of such blocks,
but the combination of new code synthesis with genetic mu-
tation and crossover results in large, complex search spaces.
A range of methods to aid such a search have been proposed,
with the particular notion of species having appeared in the
context of Genetic Algorithms (GAs) to identify individuals
with similar genotypes for controlling competition, encour-
aging the exploration of distant local optima, maintaining di-
versity and avoiding premature convergence. In this paper we
examine a species definition for GI for source code, a domain
which has specific features: genotype similarity is largely ir-
relevant; distance between individuals is undefined; and the
fitness landscape is extremely rugged. We propose a phe-
notypic species definition that captures an algorithm’s func-
tional phenotypic characteristics, while excluding its non-
functional phenotypic characteristics (and its particular rep-
resentation in source code). We introduce our proposal in a
GI for a hash table scenario, where species are characterised
by divergence in probability distributions.

Introduction
Genetic code improvement, inspired by genetic algorithms,
is the process of taking an existing piece of program code
and finding a better version through genetic search. The def-
inition of ‘better’ is context specific (such as performance
(calls-per-second), or energy consumption), and has been
approached in various ways from modifying machine code
directly to operating on abstract syntax trees of source code
(Petke et al., 2018). We focus on an abstract syntax tree ap-
proach, and apply GI to emergent software systems (Filho
and Porter, 2017). Emergent software is constructed from
a large pool of small building blocks, where many of those
blocks have implementation variants available (such as dif-
ferent sorting or scheduling algorithms). These systems
continuously learn which composition of building blocks
best suits each set of observed deployment conditions, and
can integrate new building block variants at any time. Ge-
netic improvement in this domain can be used to automati-
cally search for better building block variants for known de-

ployment conditions, and for new high-performance variants
when novel deployment conditions are encountered. Using
GI in this context can yield significant improvements (Mc-
Gowan et al., 2018), but because it is necessary to mix new
code synthesis with traditional mutation and crossover, this
represents a very large search space problem with large areas
of neutral drift (Miikkulainen and Forrest, 2021).

Existing research has attempted to overcome this through
methods to improve search space coverage. A popular and
effective approach, in systems with large amounts of source
material for crossover, has been novelty search (López-
López et al., 2018; Villanueva et al., 2020), however novelty
search is still limited in its usefulness for very large search
spaces (Cuccu and Gomez, 2011). The other method of-
ten used is to limit the search space size for GI by operat-
ing only in terms of large but known-to-be-functional code
blocks (Brownlee et al., 2019; Petke et al., 2014). This re-
duces the chance of a breaking change and smooths the fit-
ness landscape, but also limits the potential for creation of
new functionality – while this may work well for code repair
applications, it is likely to be less effective for optimisation.
A final approach is guided evolution, similar to that used for
agriculture in biological systems. This uses analysis of past
GI runs to predict good starting points for optimisation of
subsequent runs (Rainford and Porter, 2022).

We present a new approach to this domain with a novel
conception of species within a GI process for source code.
Our species concept is application-domain-specific for a
given building block, and provides a way to cheaply model
the diversity of a population in real-time. Through 894
experiments we observe clear speciation, and also observe
clear correlations between runs that had more species fluc-
tuation over time and those that finished with a significantly
better-performing individual: new species cause improve-
ments of 15% in performance, compared to improvements
of 3% within existing species. We also analyse the kinds
of transformations (mutations and/or crossovers) which are
more likely to lead to new species; in future work we may
be able to apply these observations to create a higher ratio of
runs with higher species turnover and better final outcomes.
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Related Work

The seminal paper by (Goldberg and Richardson, 1987) in-
troduced the notion of species formation in GA as niching
by fitness sharing. The aim was to subdivide the population
and thereby control competition between distant points in
the search space. This increased diversity in the population
and reduced premature convergence as a side effect. The
method requires a distance definition (either in the genotype
or phenotype space) d, a sharing function S, with fitness val-
ues of each individual adjusted by S(d) so that individuals
close to each other share their fitness values (and the propor-
tion of sharing decreases by distance). Apart from the fitness
sharing mechanism, species are not defined explicitly.

(Della Cioppa et al., 2007) later advanced an explicit, dy-
namic identification of species which builds on the above
work. This is a formal species definition based on proper-
ties of the individuals, rather than the less formal usage of
“species” as a synonym for sub-populations in a typically
cooperative co-evolutionary scenario where there is no ge-
netic interaction between species (John et al., 2022; Gao
et al., 2022; Rui L. Lopes and Almada-Lobo, 2020). Work
following this species definition in GAs has focused on the
genotypic definition whereby the inter-species distance is
based on the genomes which are evolved, rather than the
phenotypic properties of those individuals in context.

(Goldberg and Wang, 1997) proposed an adaptive nich-
ing method following their initial concept described above.
Here they employ two sub-populations, customers and busi-
nesses. Customers are associated with a business accord-
ing to some distance definition and businesses act as seeds
of a species. (Li et al., 2002) take this further, with evolv-
ing parallel sub-populations where individuals are vectors
of real numbers and species are defined by Euclidean dis-
tance and a species distance constant, σs. The Euclidean
distance is meant to characterise the similarity of individu-
als, whereas σs is the delimiter to separate species. Species
in this model are therefore clusters of individuals around a
species seed (the best-fitness individual in the group). This
approach supports conservation of species to offer a balance
between the otherwise contradicting elitism (conserve the
fittest) and diversity (conserve the different). There are many
other variants of Euclidean-based species definitions in dif-
ferent GAs (e.g., (Dong et al., 2011; Jelasity and Dombi,
1998; Raghuwanshi and Kakde, 2006; Wong et al., 2009));
as far as we are aware, however, there is no work to date on
species definitions for genetic improvement of source code.

While genotypic species definition has dominated GA re-
search, phenotypic definitions have been explored in artifi-
cial organisms (Dolson et al., 2020), including analysis on
the link between genotype lineages and phenotypic com-
plexity (Lenski et al., 2003). While artificial organisms are
built from more limited instruction sets than general-purpose
programming languages, they work in a similar way, sug-
gesting phenotypic species descriptions may apply to GI.

Methodology
GI in emergent software systems
Our genetic improvement method is aimed at emergent soft-
ware systems, a kind of software which is constructed from
a pool of small component building blocks, many of which
have implementation variation available (such as alterna-
tive sorting, cache replacement, or scheduling algorithms).
Emergent software systems continuously observe their de-
ployment environment characteristics and performance at
runtime, and continuously learn which composition(s) of
building block variants best suit each set of deployment
characteristics encountered (Filho and Porter, 2017). The
pool of available building blocks can be added to over
time, allowing better implementation variants (or better sub-
architectures) to be introduced or trialled. We deploy ge-
netic improvement for these kinds of systems to automate
the process of deriving new high-utility building block vari-
ants – variants which can otherwise be challenging and time-
consuming for human engineers to design and build.

We assume the workflow proposed by (Rainford and
Porter, 2022), in which a particular building block is iden-
tified for potential improvement in a live system, and a
function-call monitoring probe is injected at the interface
to that block. The probe captures function call parameter
values and return values, representing a trace of a sequence
of specific calls made on that building block over a period
of time. This sequence of calls represents the localised fin-
gerprint of the overall software system’s current deployment
environment conditions. This call sequence (with the same
parameter values) is replayed offline during a GI process, to
attempt to find a better candidate individual which processes
that sequence of calls more quickly than the current best im-
plementation variant. During the GI process, the original
return values captured in the call sequence are used to assert
functional correctness of the improved individual.

As observed by (McGowan et al., 2018), this applica-
tion of genetic improvement requires a mixture of novel
source code synthesis combined with traditional mutation
and crossover operations. This yields a particularly large
and rugged search space, prone to large areas of neutral drift
(Miikkulainen and Forrest, 2021).

Phenotypic speciation
There are over 30 alternative concepts of speciation in bi-
ology (Zachos, 2016), each with subtle differences. Con-
sequently, species is an often-overloaded term in computa-
tional biology, artificial life, or in our case, genetic improve-
ment. Our work targets diversity arising from evolutionary
adaptation to specific environmental conditions; our concep-
tion of species therefore somewhat resembles the notion of
ecospecies – a lineage which occupies an adaptive zone min-
imally different to that of any other lineage (Wilkins, 2009).

To demonstrate the differences in genotypes and pheno-
types specifically in the context of GI for source code, let us
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consider the following examples. The code fragments:

h = ((h << 5) + h) + key[c] (1)
and:

h = ((h << 5) - h) + key[c] (2)
are, by static analysis, very close to each other in their geno-
types (program text). Yet, their functional phenotypes are
different: one is the core of the Bernstein hash; the other is
the Kernighan-Ritchie hash. Let us then consider:

h = key[c] + 33 * h (3)
which resembles neither genotypes of the former fragments,
and would take a (highly unlikely) long chain of mutations
to reach. However, this example is the Bernstein hash func-
tion written in a different form. Are then fragments 1 and
3 identical in their phenotypes? They are identical in the
functional attributes of their phenotypes but they may have
different non-functional attributes such as speed or memory
use; they are variations of the same algorithm.

The genotypic definition of species assumes a strong and
smooth association between genotype and phenotype, that
individuals with very similar descriptions will have very
similar fitness. This assumption breaks easily when working
with source code, where even the smallest alterations – that
is otherwise a very small distance of individuals in terms of
genotype – may result dramatic changes in phenotype such
that it no longer compiles. This makes the genotypic de-
scription of species for GI a poor choice according to (van
Laar, 2021; Novozhilov et al., 2007).

We propose the use of phenotypic speciation to grasp
the subtle but intrinsic differences in a population, such as
those between the Bernstein and Kernighan-Ritchie algo-
rithms above, but also to detect the identity of the two Bern-
stein function versions. In contrast to the body of work on
genotype-oriented speciation, presented in the related work,
our phenotypic method is aimed at capturing how an imple-
mentation behaves rather than the fine details of how that
implementation is encoded. To gain our phenotypic species
definition we divide the phenotype of an individual into its
functional (the algorithm it represents) and non-functional
(how the algorithm is represented) attributes. The challenge
is then how to classify individuals into species by functional
phenotype so that the definition is selective (sensitive to the
smallest algorithmic changes), characteristic (a fingerprint-
like identification of individuals of a species), and insensi-
tive to implementation details while also being easily com-
putable. The particular definition of a phenotypic species
varies and depends on an algorithm’s domain; in this pa-
per we present a definition for classifying mapping functions
into species with probability divergence metrics.

By capturing functional phenotype in the right way we
can give less credence to neutral regions of search space,
where fitness variation is insignificant and may be composed
of individuals that are different implementations of the same
algorithm. Instead we may drive the search towards areas of
significant variance, an objective broadly similar to novelty
search (Doncieux et al., 2019). Our notion of species will
capture the meaningful diversity of a population.

Motivating example
We use a hash function as our specific example for experi-
mentation in this paper, which aligns our research with other
existing work in GI by (Rainford and Porter, 2022). A hash
function takes a text string and derives an integer from that
string which lies in the range {0 .. Hmax}. The deriva-
tion is deterministic, always yielding the same integer when
presented with the same string. Hash functions are used in
hash table software components, which have put() and
gett() functions to support rapid retrieval of data. The
put() function is given a text string as a key and an ar-
bitrary piece of data as a value, and uses a hash function to
determine which bucket to place that value into. The get()
function is provided only with the text string key, computes
the correct bucket for that key, then searches all of the keys
which were mapped to that bucket to find the matching one,
returning the associated data originally given via put().

More formally a hash function can be defined as h : S 7→
X , where X ⊂ N and S is a set of strings, albeit calculated
deterministically, its output can be considered as a random
variable. The probability P (h(s) = x), s ∈ S , is approxi-
mated by the relative frequencies of strings put into bucket

x as P (x) =
strings in bucket x

all strings stored in the hash table .
The divergence defined by Kullback and Leibler (1951)

is a statistical measure of how one probability distribution
differs from another. For discrete distributions it is:

DKL(P ∥ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(4)

where P and Q are discrete distributions over X . DKL is
non-negative, non-symmetrical DKL(P ∥ Q) ̸= DKL(Q ∥
P ) and DKL(P ∥ Q) = 0 if and only if distributions P and
Q are identical.

Given a hash table of n buckets and a hash function
h : S 7→ {1 . . . n}, Q is a uniform distribution over
{1 . . . n}, Q(x) = 1

n , then the Kullback-Leibler divergence
of P (h(s) = x) from Q(x) is

DKL(P ∥ Q) = log n+
∑

x∈{1...n}

P (x) logP (x) (5)

Note, that if Q is the uniform distribution then DKL(P ∥ Q)
is the same for all permutations of x ∈ X hence, if P and
R are discrete distributions over X and DKL(P ∥ Q) =
DKL(R ∥ Q) then it does not imply that P and R are iden-
tical. The behaviour of a hash table, however, is insensitive
to such permutations: all permutations of the same distribu-
tion would exhibit the same performance.

We define species by one particular functional attribute of
the phenotype: the calculated Kullback-Leibler divergence.
Two individuals are of the same species if their DKL val-
ues are identical, irrespective of their genotype and other at-
tributes of the phenotype. Individuals of the same species
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can have very different genotypes and other attributes of
their phenotypes. They are all better or worse realisations
of the same algorithm, that while determines the adaptive
zone the given lineage may occupy, does not overly restrict
the potential set of its attributes.

Speciation in practice

Our GI program starts off with an initial population com-
posed entirely of individuals carrying the exact same code
(this is our candidate software building block to attempt to
improve). The evolution repeats the (i) crossover, (ii) mu-
tation, (iii) fitness evaluation, and (iv) selection cycle, then
the new generation of selected individuals enter the next it-
eration. Fitness is associated with typically non-functional
attributes of the phenotype, hence the evaluation of the par-
ticular functional attribute and the classifying of species also
take place in the (iii) fitness evaluation step.

We measure fitness purely as execution speed of an indi-
vidual; this is tested by inserting and retrieving 1,000 ele-
ments of a certain training dataset into an empty hash table
of 100 buckets. Following the speed test, the final data distri-
bution in the hash table is established. We gain this informa-
tion from the automated insertion of a probe function to the
hash table with returns a measure of its data layout. We note
there is no probe effect associated with this function call, it
is a purely post-mortem examination and does not interfere
with the functionality or speed of the hash function.

The Kullback-Leibler divergence, which we use as our
species metric, is calculated from the received data, with
the resulting DKL recorded as an attribute of the pheno-
type. Both the data collection and the calculation of DKL

are of linear complexity and cause negligible delay in test-
ing an individual. Records of each individuals, including all
attributes of their phenotype and the species fingerprint, are
logged for offline analysis. At runtime the selection phase
ranks individuals by certain phenotype attributes (excluding
those attributes used to determine species).

To help demonstrate why our phenotypic species metric
for this application is useful, Figure 1 depicts a hypothetical
hash table of 10 buckets where 40 elements are placed by
some hash function. Figures 1a and 1b are permutations of
the same distributions, while 1c is significantly different and
Fig. 1d merely differs from Fig. 1b by a single element. If
Pi(h(s) = i) is estimated by the relative frequencies then
Pi values for, e.g., Fig. 1a are

{
5
40 ,

6
40 ,

2
40 , . . .

4
40

}
, n = 10,

the Kullback-Leibler divergence values DKL, as defined in
Eq. 5, are: 0.128, 0.128, 0.018, 0.157 for data layouts in
Fig. 1a-1d, respectively. As it can be seen, permutations of
the same distribution have the same divergence values other-
wise, the displacement of even a single element is detected
by DKL. If each bucket had the same number of elements, 4,
then DKL = log 10+10∗ 4

40 ∗log
4
40 = log 10−log 10 = 0,

the uniform distribution is correctly identified.

(a) (b)

(c) (d)

Figure 1: Examples of data distributions in a hash table

Generality
Finally, we note the species definition used in this paper is
clearly application-specific; nonetheless it can be adapted
to a larger class of optimisation problems. Hash functions
make a mapping between a set of strings (or other objects)
S and a set of natural numbers X = {1, 2, . . . n} ∈ N where
|S| ≫ |X | (such that that multiple elements of S may map
onto an element of X ). The actual elements of S mapped to
i ∈ X depend on the mapping function and can be treated as
a probability variable; the distance of its probability distri-
bution from a reference distribution Q is characteristic to the
mapping function. Our species classification method can be
directly applied to a broader scope of mapping-related prob-
lems, such as schedulers and cache eviction policies, and in
future we aim to extend phenotype-based speciation to other
classes of algorithms beyond mapping functions.

Evaluation
In our evaluation we aim to show the effect of phenotypic
species classification using the hash table example. We clas-
sify species at each generation and are then able to track the
appearance, lifetime, and extinction of species during the
GI run. We can also examine correlations between fitness
changes and species events, and the mutation and crossover
effects which tend to lead to species creation and extinction.

In this section we firstly examine species effects at a micro
level, in terms of individual GI runs, and secondly examine
species effects at a macro level to reveal the effects of speci-
ation volume and frequency. Our GI framework is written in
the Dana adaptive systems language (?), and is made avail-
able for replication of our results 1.

1https://doi.org/10.5281/zenodo.11477826
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Figure 2: Abundance of species in the first 40 generations.

The analysis for both evaluation elements is based on data
from 894 independent experiments in which we recorded
the creation, lifespan, and decline of species and their ef-
fect on the evolutionary process. The experiments evolve a
hash function against a training set of 1,000 words from an
Economist article, i.e., storing and retrieving these words in
a hash table of 100 buckets as fast as possible. Our popula-
tion size is 50 individuals and we continue the GI process for
200 generations. The mutation probability is 0.8, crossover
probability is 0.2; mutation subtypes Insert before, Insert af-
ter, Modify and Delete are weighted as 0.15, 0.15, 0.3, 0.3,
respectively; the weight function at selection is reciprocal
and the elite set is 2 individuals. The starting generation con-
sists of a homogeneous set of individuals for a multiplicative
hash function, and our fitness function is simply execution
time in µs, where smaller values represent better fitness.

Species in a single evolutionary process
While each individual experiment naturally has a somewhat
different outcome, it is useful to study single example exper-
iments at a micro level to show speciation effects in detail.
Figure 2 shows the progression of species for one such sin-
gle GI run, focusing on the first 40 generations. Each colour
represents a different species, with the y-axis showing the
number of individuals identified as a member of that species
within a given generation (generation number shown on the
x-axis). Novel species are always plotted at the top of the
volume, above all existing species. This graph shows how
our phenotypic species definition captures the introduction,
development, and extinction of species over time. Novel
species begin as a small fraction of the population, then if
successful can quickly dominate that population, before fur-
ther new species arrive. Some species are highly successful,
filling the volume, while others appear only briefly at the top
of the volume before disappearing. While not all runs have
such diversity of species (we cover macro-level statistics in
the following section), this behaviour suggests that we have
a useful way to analyse the characteristics of a GI run that is

Figure 3: Best fitness and abundance of species.

both computationally simple and problem-specific.
We next examine the correlation between new species and

fitness in more detail. Figure 3 shows the fitness of the best
individual of a species and the abundance of species; these
data are taken from the same specific GI run as above. On
this graph, the y-coordinate of the centre of each bubble
is the fitness of the best individual of that species; the ra-
dius of the bubble is proportional to the abundance of the
species in the population. Note the radius of the bubbles
does not imply anything about the fitness distribution of
other members of that species – indeed other individuals of
the same species may have far worse fitness. In generation 0
(henceforth gen. 0) the initial, multiplicative hash function
(species 0, henceforth sp. 0) has the best fitness value, albeit
three other species appeared during this generation’s muta-
tion step. Sp. 4 has the best performance in gen. 1, then
sp. 7 in gen. 2. Another significant improvement is visible
in gen. 4 by species 11 and then in gen. 6 by sp. 15. The
improvement in gen. 8 by sp. 15 is via a different implemen-
tation of intrinsically the same algorithm. This data demon-
strates that major improvements in fitness are the result of
new species (i.e., new distributions of elements in the hash
table), and not by variations of the same algorithm where the
hash table layout is the same. From gen. 20 onwards there
are many species close to the best fitness; once such a stage
is reached it may then be that minor implementation details
determine further fitness improvements.

Figure 3 also gives an insight into the dynamicity of
species from creation to extinction; apart from the best fit-
ness, it also shows the abundance of each species. The
multiplicative hash is not particularly good for the training
dataset, hence its initial high abundance quickly declines
and reaches extinction around gen. 10. Sp. 4 did not have
the chance to grow, on one hand sp. 0 is still present in
high abundance whereas sp. 7 appeared as a fitter alternative.
Sp. 15 was the next that could grow to a dominant position
around gen. 12. Interesting to notice a few other species in
the “shadow” of sp. 15 – they have very good fitness but still
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Figure 4: Best overall fitness and the diversity quantified by
the Shannon and Simpson indices.

not enough to compete with sp. 15 once it gained its mass.
From gen. 21 to gen. 39 there is a competition of species
with nearly the same fitness and abundance. Similarly to
best fitness, minor code tweaks may be decisive whether a
species can grow to dominance, e.g., in gen. 39.

The Shannon-index (Shannon, 1948) and Simpson-index
(Simpson, 1949) are common statistical methods to describe
biodiversity, which we can also apply to a GI process. The
Shannon-index describes the richness of the species land-
scape overall, while the Simpson-index gives more weight to
larger, dominant species. Figure 4 plots both indices against
the best individual’s fitness over the course of the GI run.
Here we confirm the above view that improvements in fit-
ness correlate with the introduction of new species, but we
also see that the increase in overall diversity of the species
landscape does not necessarily lead to fitness improvement.
Broadly speaking the former is evident in the first half of the
generations shown in the graph, while the latter is evident
in the second half. Between these two phases, around gen-
eration 16, a significant reduction is visible in both indices,
in alignment with the 4 species in Figure 3. After this gen-
eration, the latter phase of the graph shows a high number
of species, but most are single-individual groups with just a
few species having considerable mass (again see Figure 3).

Species in general aspects
In this section we present macro-level analyses across many
experiments, rather than focusing on any single one. For this
analysis we use the results of 894 experiments in total to give
a more comprehensive insight into the evolutionary process
above the level and details of individual experiments.

We first examine whether fitness improvements are gener-
ally caused by novel species appearing, or happen via mod-
ifications to existing species. Figure 5 summarises the rel-
ative improvements (individual vs parent fitness) in perfor-
mance in the moment when a best fitness was recorded dur-
ing an evolution, and categorises whether the best perfor-

Novel species Existing species
Mean 0.853 0.977

Median 0.849 0.991
Q1 0.825 0.984
Q3 0.936 0.996

Table 1: Relative fitness improvement by novel and existing
species when best fitness was recorded

Figure 5: Distribution of delta fitness (current fit-
ness/parent’s fitness, lower is better) when best fitness was
recorded: in case of new species vs no new species.

mance was an effect of a new species or not. The distribu-
tions for the novel species are shown in the left side of the
graph, and those for existing species on the right; the vertical
axis represents the relative change in fitness, e.g., 1 means
the current fitness is the same as that of the parent; lower
values are better improvements. Since the chart shows the
cases when best fitness was recorded, all relative improve-
ment values are smaller than 1. This graph shows two differ-
ent effects: firstly that there are more cases when a perfor-
mance improvement was achieved with no new species, at
5057 cases vs. 2813 cases. Of these no-new-species cases,
however, the improvement degree is far smaller: 75% of the
fitness changes are above 0.98 (≤2% improvement), with a
median of 0.99 (1% improvement), with a few cases in the
0.9-0.8 ranges, and very sporadically cases below this. Sec-
ondly, it shows that the relative improvement is far more sig-
nificant (Mann-Whitney U test, p-value 0) when at least one
more fit individual of a new species arrived: 75% of these
new-species cases are below 0.93 (≥7% improvement), 25%
are below 0.82 (≥18% improvement), the median of rel-
ative change is 0.84 (16% improvement), and there are a
large number of cases in the 0.7-0.8 range and around the
0.5 point. The distribution of these statistics is shown in
Table 1. This observation generalises the finding from our
analysis in Figure 3: considerable changes in performance
are almost always brought by the arrival of new species.

We next examine what causes novel species to appear.
6
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Figure 6: Number of species in an experiment

This analysis helps us to understand cause and effect in gen-
eral, and may also be useful in future work to help develop
steering mechanisms which are likely to provoke the intro-
duction of new species with higher probabilities.

Figure 8 summarises the set of transformations, their fre-
quencies and the proportion of cases where new species
were created. Each column of this graph is a stacked bar
with two colours: the blue column shows the total count of
each transformation, while the orange area shows how many
of these transformations yielded new species. In all cases
transformations can be composed of both a crossover and a
mutation; because classical GI approaches tend to perform
both actions within a single generation their effects are not
precisely separable. The three main types of mutations are
Deletion (D), Insertion (I) and Modification (M); their fur-
ther sub-types are encoded by the suffixes but in this presen-
tation these further details are not essential and their speci-
fies are omitted. The presence of crossover is indicated by
the x prefix. Our first observation is that crossover is gen-
erally more successful at creating new species. There are
also some types of mutations that appear unable (or at least
less frequently able, in the timeframe of these experiments)
to spawn new species. On the other hand a certain subcat-
egory of Inserts, in the centre area of the graph, is adept in
originating new species either with or without crossover.

The overall number of species in each GI experiment are
summarised in Figure 6 as a histogram. The lowest num-
ber of species start from 15 (in a singular case) whereas
on the other end of the range the highest numbers are well
above 100. While the distribution has a generally normative
shape it is also highly fluctuating, with the average number
of species being 71, the median 64 and in 50% of the exper-
iments the number of species is in the 47-87 range. There
is no observed correlation, however, between the number
of species by volume and the overall performance improve-
ment in the code for a given run; our analysis rather suggests
that having the right species turnover rate within a run has a
higher importance to improvement potential.

Finally, we analysed the temporal distribution of the
species, Figure 7 shows the number of species over gen-
erations across all macro-analysed runs, and for the entire
200 generations of each run (in contrast to the first 40 gener-
ations examined in our micro-analysis). The dark-shaded
blue box represents the 2nd and 3rd quartiles whereas the
grey bracket represent the non-outliers. The overall ten-
dency here is clear: there is a sudden rise in species richness
that decays around gen. 50; from gen. 100 the changes then
are minimal and from gen. 160 the diversity is negligible.

Discussion
In this section we discuss the potential uses of species, in-
cluding visual analysis of an evolutionary process; aid in
curating a library of high-utility genetic material; and active
steering of an evolutionary process to yield novel species.

First, species help with quick visual analysis of the evo-
lutionary process. We can clearly see how species come and
go over time, and how these events affect both best-fitness
and mean population fitness (the latter being a factor of the
relative volume of each species in a given population). Like-
wise we can clearly see how plateaus in best-fitness correlate
to a prolonged lack of novel species. We envision the GI pro-
cess in an ecosystem of individuals which are dynamically
grouped according to certain criteria, such as spatial sepa-
ration. Speciation represents an orthogonal approach where
individuals are grouped by functional attributes. All these
dynamic groups represent a higher abstraction above indi-
viduals and the evolutionary process could be investigated
and analysed as interacting sets of individuals, where speci-
ation and species is a dimension of the ecosystem.

Second, one of the general aims of GI for emergent soft-
ware is to create a repository of building block variants for
deployment upon detecting suitable conditions which corre-
late with high performance for those variants. This notion
of species can help with establishing a meaningful genetic
library of stored individuals which are known to be algo-
rithmically different (rather than tweaks to the fine details).
Using species metrics to identify and discriminate between
such individuals will help to offer a broader spectrum of
non-functional attributes when a candidate building block
is selected in an adaptation scenario. It may also help to
develop a library of genetic material for mixed high-utility
starting points of new GI runs: when considering a new im-
provement of an individual for a novel deployment environ-
ment, we can begin a GI process from a set of known-diverse
existing species. This may help to maximise the gene pool
diversity, encouraging both selection of the best species for
a novel environment and the formation of novel species as
combinations of diverse starting material.

Finally, perhaps the most intriguing challenge is to con-
sider how the evolutionary process can be steered by spe-
ciation. We will further investigate which kinds of trans-
formation, either by type or by location, in the source code
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Figure 7: Distribution of the number of species in each generation

Figure 8: Transform types (mutation and crossover), their overall number as blue bars, and the proportion of cases where new
species were created (orange bar) via these transforms.

of individuals can spawn new species and whether the non-
functional characteristics of the species can be implied. By
understanding how transformations lead to novel species and
to extinctions, we may then be able to ‘artificially’ induce
the formation of novel species by deploying these kinds of
transformations at the right times with higher probability.
Because we know that higher species novelty frequencies
tend to lead to better individuals, this may in turn enable
a level of control over the convergence of an evolutionary
algorithm towards desirable outcomes. We will also investi-
gate in more detail the co-existence of multiple species, and
the effects of richness, abundance and dominance. We sus-
pect that it is not the number of species and level of diversity
which is pivotal to the outcome of a GI process. Rather, we
suspect that the turnover of the species, the rate of change of
these metrics which will have the most effect.

Conclusion
We have introduced and investigated the notion of species
in GI for source code in emergent software scenarios, with
the aim of addressing some of the challenges in exploring
the search space. While the concept of species has existed
in GA and artificial life scenarios for some time, we are not

aware of it having been introduced to GI. Due to the specific
nature of GI, genotype-oriented definitions (as commonly
used in GA) of species are not applicable. We have there-
fore proposed a definition of species with the following key
features: (i) it is based on a selected functional aspect of phe-
notype; (ii) it discriminates upon the algorithmic essence of
source code; (iii) it provides a fingerprint-like identification
of similar individuals; and (iv) it is based on the divergence
of probabilistic distribution functions for a given representa-
tive problem in a general class of mapping functions.

We have shown that species can give information useful
to analysing an evolutionary process, including markers of
cause and effect. In future we intend to further investigate
species for GI, especially how it can be applied beyond anal-
ysis. One pathway is in curating a library of useful variations
with measurable diversity; another is in the use of species to
directly steer an evolutionary process via targeted mutation
interventions to drive towards novel loci of optima.
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