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Abstract

Laser Metal Wire Additive Manufacturing systems (LWAM), with coaxially mounted

lasers, are emerging onto the additive manufacturing market. They use relatively

fine wire feedstock and have high efficiency in terms of energy and deposition speeds

compared to other metal wire technologies, making a credible technology to fill

the gap between slower, precise metal powder technologies and faster, lower-fidelity

wire-arc technologies. Limited research is available for this technology. Commercial

slicing software, based on more forgiving polymers, is also limited in its ability to

accommodate more complex dynamics of metal wire additive manufacturing.

This thesis uses the Meltio M450 to investigate the relationship between laser

power, extrusion rate and head speed and the resulting track geometry and layer

quality. The research identifies the process parameters required to produce high-

quality tracks repeatedly. New insights are developed into the use of machine

learning to predict quality and geometry of beads, showing how these tools reduce

the need for experimental trials. Using Machine Learning to address uncertainty

in the prediction of track widths adds new insights to the application of machine

learning in the field of metal additive manufacturing.

A single-layer model is developed to predict layer height, adding to the existing

body of work by quantifying the effect of the number of tracks and track separation

on the resulting layer height. Experiments to measure interlayer temperature and

bulk heating during the deposition process are used with modelling to show a new
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method for using the base substrate temperature to infer interlayer temperatures

when interlayer pauses of sixty seconds or longer are used.

This thesis has developed novel methods for process optimisation, geometry

prediction and interlayer temperature control, which address some of the key

research gaps for coaxial LWAM and add to the body of knowledge in this area

to support improved slicing tools.
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Chapter 1

Introduction

There are many, commercially available, mature Direct Energy Deposition (DED)

technologies to produce metal components, which are comprehensively covered

in the literature. However, this is not the case for Laser Metal Wire Additive

Manufacturing (LWAM) systems with coaxially mounted lasers. These systems are

beginning to emerge commercially, but there is limited research available to support

this technology. Coaxial LWAM systems can use relatively fine wire feedstocks and

have a high efficiency in terms of energy absorption and deposition speeds compared

to other laser metal deposition technologies. Thus coaxial LWAM systems have the

potential to become established as a credible technology to fill the gap between the

slow but precise metal powder based technologies such as Powder Bed Fusion (PBF)

or the Laser Engineered Net Shaping (LENS) DED technology and the much faster,

high energy, lower fidelity, Wire Arc Additive Manufacturing (WAAM).

Coaxial LWAM technologies can produce fully dense, near-net-shaped compo-

nents, using a range of metal alloys, such as stainless steel, mild steel, tool steel,

Invar, 625 and 718 nickel and titanium 64. However, the published literature to

validate this is limited. As with all DED technologies, LWAM systems face the

same challenges in terms of characterising new materials, process quality assurance

and certification, repeatability and consistency of parts. Therefore, it is critical that

a body of research is developed to support these challenges.
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Chapter 1. Introduction

1.1 Research Aims

The main aims of this work are to firstly determine how fundamental process

parameters such as laser power, deposition head speed and extrusion rate are used

to produce repeatable tracks, layers and parts with low variability compared to the

planned part size and shape and, secondly, to develop models which can translate

these parameters into predicted bead geometries and layer thicknesses to support the

current gaps in both the literature and slicing tools with respect to this information.

Through this approach, it is intended that process parameters can be identified to

produce parts of consistent and repeatable high quality.

A key challenge to achieving a high-quality process, identified in the literature

for metal AM technologies, is understanding the accumulation of heat within the

deposited material and the effects that this has on the final part. The final aim

of this work is to measure the developing thermal field as a part is produced and

attempt to model it using off-the-shelf additive manufacturing modelling tools and

to investigate whether these models can be used as part of the planning activities

when producing a part using LWAM.

1.2 Thesis Structure

The thesis is organised into seven chapters, including the introductory chapter.

Chapter 2 - Literature Review

Provides a review of the relevant literature relating to this field and from this

identifies its key challenges and identifies knowledge gaps.

Chapter 3 - Experimental Methods

Describes the experimental techniques, methodologies and equipment config-

uration required to undertake the experimental programme.

Chapter 4 - Effect of Process Parameters on Single-Track Geometry

Defines what characteristics a high-quality track should have, its cross-

2



1.2. Thesis Structure

sectional shape, height and width. It identifies the optimal process parameters

and describes process windows for various fixed powers. The chapter

investigates whether Machine Learning tools can be used to reduce the

experimental work required to explore the process window across a wider range

of powers and to predict the quality and geometry of single tracks with high

accuracy.

Chapter 5 - Optimisation of Single and Multi-Layer Deposition

Develops the optimal single tracks characterised in Chapter 4 into a single-layer

model, investigating the effects of track spacing and the number of tracks used

on the resulting layer height. These layers are used to investigate the optimum

step height for multi-layer parts and the effects of different height increments

on the resulting part height in terms of overbuilding or underbuilding.

Chapter 6 - Measuring and Modelling the Thermal History

Investigates the interlayer temperatures of small cuboid samples. It describes

the general heating and cooling cycles of the part and the effect of the

substrate on this. The effect of a range of interlayer pauses on the reduction

of bulk heating and maintenance of consistent target interlayer temperatures

is investigated. This section models these experiments to establish whether an

off-the-shelf AM modelling tool can support the identification of an optimum

interlayer pause duration to achieve a target maximum interlayer temperature.

Chapter 7 - Conclusions and Further Work

Summarises the main conclusions from the work and provides suggestions for

future work.

3



Chapter 2

Literature Review

2.1 Laser Metal Wire Additive Manufacturing

Direct Energy Deposition (DED) is a family of metal AM technologies where a melt

pool is created by an energy source, typically an electrical arc or a laser, and metal

powder or wire feedstock is fed into the melt pool. The pool is moved to create a

weld bead or track, which is overlapped to create a layer in the shape of the part.

Subsequent layers are bonded to the layer below through remelting with the melt

pool. Figure 2.1 shows the range of technology types within DED.

Figure 2.1: Hierarchy of DED Printing Technologies.
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2.1. Laser Metal Wire Additive Manufacturing

Wire DED technologies are becoming increasingly popular because of the wide

availability of feedstocks, which are cheaper and easier to handle than powder.

The resultant parts typically require post-processing, such as heat treatment and

machining, but they have very low porosity, reduced waste material, and often have

equal or better material properties than the cast or forged equivalents (Shamsaei

et al., 2015).

The limitations of Laser Wire Additive Manufacturing (LWAM) compared to

PBF and conventional subtractive technologies in terms of accuracy are compensated

for by its speed, flexibility and versatile part geometries. The technology is

increasingly being adopted by many different sectors such as aerospace, nuclear,

automotive, rail and shipbuilding. The technology is suited to a wide range

of alloys, such as stainless steels, tool steels, alloy steels, titanium-based alloys,

cobalt-based alloys, nickel-based alloys, aluminium alloys, high-entropy alloys, inter-

metallics, shape memory alloys (SMAs), ceramics, composites and functionally

graded materials (Svetlizky et al., 2021).

Whilst both wire-based DED technologies, LWAM and Wire Arc Additive

Manufacturing (WAAM) differ in their mechanisms and applications. LWAM’s

laser-based technology offers higher precision and control over the melting process,

typically with shallower melting of the previous layer and less energy input, resulting

in a finer resolution and better surface finish of parts. WAAM uses an electric arc

as the energy source, which is more suited to large scale components, offering faster

deposition rates. However, WAAM typically requires more post-processing due to

its rougher surface finish and the potential for higher residual stress compared to

LWAM.

LWAM also has advantages over conventional casting, forging and subtractive

manufacturing methods. Without needing to meet the needs of the casting process,

the amount of material in the component can be reduced and performance can

be improved; it is therefore often possible to focus on optimising components

functionally. The process also removes the need for tooling and moulds but often

5



Chapter 2. Literature Review

requires further post-processing steps, such as heat treatments and machining to

net shape. The material properties of the LWAM parts, such as yield strength and

hardness, are often better than cast or wrought (Hatala et al., 2021). Through these

benefits, the technology allows new alloys to be used and designs can be produced

that would otherwise be too expensive using traditional manufacturing methods

(Bandyopadhyay et al., 2022). The process does have its own inefficiencies, it is

typical for many metal AM processes to use an iterative approach to achieve a

final design and optimal print parameters for the resulting part; the production of

components through LWAM is no exception to this and usually requires several print

iterations to create successful and repeatable parts (Greer et al., 2019).

Historically, LWAM has been mostly used for component prototyping, due to

the speed with which parts can be transferred from CAD models to the slicing

software used to transform the 3D model into the appropriate machine commands

and settings via G-code. However, now the technology is more focused on producing

production components, which range from relatively small parts such as brackets up

to very large-scale items weighing multiple tonnes. Svetlizky et al. (2021) suggests

that the DED market is expected to reach around $755 million by 2025. This has

been enhanced by the ability to integrate LWAM deposition heads into robotic arms

and inside Computerised Numerical Control (CNC) machining systems, known as

Hybrid Additive Manufacturing (Sefene, Hailu, and Tsegaw, 2022). This increases

speed and flexibility in terms of part geometry and machine usage, whilst taking

advantage of the benefits of better finishes from more conventional subtractive CNC

machining.

Whilst the technology is seeing substantial growth, it requires significant operator

knowledge and experience to deliver high-quality parts, most notably because AM

CAD software and slicing tools were developed for polymer printing processes

(Michel et al., 2019) and are yet to fully reflect the dynamic behaviours seen in

DED processes.
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2.2. Fundamentals of the LWAM Process

2.2 Fundamentals of the LWAM Process

The LWAM deposition process requires a planned and coordinated control of

multiple hardware elements. Central to this process is the laser, which provides

the energy source to generate a melt pool. Figure 2.2 shows a simplified schematic

of the equipment configuration for an LWAM system with coaxial lasers and Figure

2.3 a single laser system. At the same time, metal wire is extruded from a reel

into this pool via a nozzle, closely positioned next to a metal plate, which acts

as the print substrate. The lasers are arranged either radially or coaxially around

the nozzle. The substrate is mounted to a deposition bed within an environment

in which oxygen is displaced by an inert gas, which supports the stability of the

process and minimises oxidisation. The relative motion between the deposition bed

and the deposition head enables the formation of a weld track, known as a track.

Figure 2.2: Schematic of the LWAM coaxial laser deposition head and track being

deposited.
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Figure 2.3: Schematic of the LWAM single laser deposition head with side-fed wire

and track being deposited.

2.2.1 Benefits of Coaxial Laser Systems in LWAM

Developments of the practical applications of brighter lasers, which can use flexible

optics to precisely position them at the deposition head, have made it possible

for coaxial laser arrangements to be commercially practical (Motta, Demir, and

Previtali, 2018). F. Liu et al. (2022) show that coaxial lasers are advantageous over

the conventional radially arranged single beams for which most LWAM literature

has been focused.

Coaxial lasers support vertical wire feeding, eliminating the interference from

the wire in radial systems, which causes poorer substrate adhesion and material

properties found when depositing tracks in the direction of the wire feed. This

arrangement also creates a more uniform energy distribution, contrasting with the
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Gaussian profile of a single laser, producing much more uniform multi-directional

tracks. Figure 2.4 contrasts the energy distribution of a single laser with that of a

3-laser coaxial system. It shows that the coaxial laser energy distribution results in

more consistent energy across a wider melt pool but with a shallower penetration

into the substrate. This results in tracks which are well bonded to the substrate

at their edges and have a more uniform root (F. Liu et al., 2022). Conversely,

the Gaussian energy profile of a single laser source leads to a deeper melt pool at

the centre, creating a deeper root and therefore increased remelting between layers.

Figure 2.5 compares an etched track and root from (a) a three-laser system and

(b) from a single-laser system of equivalent energy. This profile is consistent with

the melt pool described in Figure 2.4, cross-sections of the track from a three-laser

system have a shallower melted depth and the bonding at the edges is enhanced

(F. Liu et al., 2022). The single-laser track shows a deeper melted depth caused by

the high energy concentration in the centre of the melt pool.

Figure 2.4: Comparison of energy distributions of (a) three-laser coaxial and (b)

single-laser systems. (F. Liu et al., 2022).
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Figure 2.5: Comparison of track cross section for (a) a three laser coaxial system

and (b) a single laser system (scale bars approximate) (F. Liu et al., 2022).

A more consistent distribution of energy across the melt pool produced by coaxial

lasers reduces the Marangoni effect, the fluid flow generated by gradients in surface

tension. Greater thermal gradients created by uneven heating exacerbate this effect

and can result in uneven spreading of the track, reducing the symmetry of the track

profile.

2.2.2 Process Dynamics During Track Deposition

The physical mechanisms that occur during the deposition process are complex;

however, the fundamental success of the manufacturing process is based on the

control of five main elements. These are laser power, extrusion rate, deposition

head speed, laser offset or working distance (the distance between the deposition

head and the substrate) and laser spot size (Roch, Tournier, and Lavernhe, 2023;

Amine, Newkirk, and Liou, 2014). These parameters must be carefully selected

and are typically tested experimentally to ensure that they are optimised for the

materials used. They are fundamental to creating a high-quality track.

Laser power and the focus of the beams, set through the offset height, must be

configured to ensure that there is sufficient energy to melt both the wire and the
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substrate, leaving them well bonded together, forming the track as the deposition

head moves. Insufficient energy results in ‘stubbing’, where poorly bonded tracks

and wire can be seen, conversely, where there is too much energy or the focus of

the beams is poor, the wire melts before it reaches the substrate in an effect called

‘balling’ or ‘dripping’ (Abuabiah et al., 2023). Examples of dripping and stubbing

compared to good tracks can be seen in Figure 2.6.

The parameters for head speed and extrusion rate have a close interdependency

and must be set together to ensure that wire is extruded at a rate that is as fast

or faster than the head speed. This relationship, the Wire Speed Factor (WSF)

(Caiazzo, 2018) or the Speed Ratio (Zapata et al., 2022), is the ratio of the extrusion

rate to the head speed and should always be greater than 1 to ensure that the

material is extruded at a speed higher than the deposition head moves across the

substrate. This relationship between extrusion rate and head speed is therefore

equivalent to the ratio between the cross-sectional area of the track and the cross-

section of the wire, because of the principle of conservation of volume. This is

expressed in Equation 2.1, where vf is the extrusion rate, vh is the head speed, At

the cross-sectional area of a track and Aw the cross-sectional area of a wire.

WSF =
Vf

Vh

=
At

Aw

(2.1)

Figure 2.6: Examples of good tracks, stubbing and dripping with stainless steel and

aluminimum (Zapata et al., 2022).
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This can be rearranged as shown in Equation 2.2. As the area of the wire is fixed,

it shows that if the extrusion rate is increased, it will increase the cross-section of

the track. Conversely an increase in head speed will reduce the cross-section of the

track.

Aw × Vf = At × Vh (2.2)

The geometry of a single track plays a significant role in determining the

smoothness of a deposited surface, the thickness of the layers, their consistency,

and the precision of the final part geometry (Xiong et al., 2014; Roch, Tournier,

and Lavernhe, 2023). Figure 2.7 shows the cross-section of a theoretical high-quality

track, taken normal to the length of the track. Figure 2.8 shows etched cross sections

of track profiles with different properties, the track with ‘unacceptable wettability’

has a contact angle greater than 90◦, resulting in poor bonding at the edges of

the track. The track with ‘acceptable wettability’ has a contact angle lower than

90◦. Wettability refers to the ability of the liquid metal to maintain contact with

the substrate. It is commonly quantified using the contact angle, the angle where

the track edge meets the solid surface, shown in Figure 2.7. High wettability is

indicated by a low contact angle, meaning that the liquid spreads more across the

surface, while low wettability is indicated by a high contact angle (Oliari, D’Oliveira,

and Schulz, 2017).
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Figure 2.7: Cross-section of theoretical high-quality track (Caiazzo, 2018).

Figure 2.8: Example track cross-sections showing contact angle greater than 90o

(Unacceptable Wettability) and less than 90o (Acceptable Wettability) for WSF of

1.2 and 1.0 (Oliari, D’Oliveira, and Schulz, 2017).

Although WSF and laser power have the most significant effect on the macro-

level quality of the deposited track, there are several other system parameters that

affect track quality. Careful substrate preparation is required, a clean, flat surface

with low reflectivity, to ensure a high-quality melt pool and good surface adhesion.

Substrate temperature control is also important; higher substrate temperatures

promote homogeneity throughout the build, support more effective remelting of

the substrate surface through Marangoni convection and increase the wettability of

the track, reducing the surface roughness (Froend et al., 2018). Higher temperature
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gradients between the melt pool and the substrate reduce the stability of the melt

pool and therefore reduce the range of optimal head speeds, extrusion rates and

laser powers available (Abadi et al., 2023).

It is imperative that an inert shielding gas is used to reduce oxidisation during

the deposition process, this is typically argon or nitrogen. Most technologies use a

flow of argon locally to the melt pool, however as the substrate is moved relative

to the deposition head to create a track, the deposited material can move outside

the local shielding and oxidise, a fully inert printing environment is often used to

address this (Leach et al., 2019). Oxidisation can lead to several defects, summarised

in Section 2.2.4 - Defects Occurring in the LWAM Process.

In single laser systems, the effectiveness of the track’s bonding to the substrate

and the subsequent quality of the deposited track are also affected by the laser angle

and wire feed angle (Syed, Pinkerton, and L. Li, 2005). This effect is negated by

a coaxial architecture. Despite a range of fundamental research for coaxial laser

systems, no research was found discussing the effects of the laser angle with this

arrangement.

Roch, Tournier, and Lavernhe (2023) investigated the effects of head rotation,

which is the angle of offset from normal to the substrate; they found variations

in the power density profile. Head rotation had a clear effect on the symmetry

of energy distribution across the melt pool. Symmetrical tracks were created by

symmetric power densities and asymmetrical tracks were created by asymmetric

densities. They also identified the importance of accurately establishing the height

of a deposited track, an inadequate estimate leads to an incorrect working distance,

which influences power density and, therefore, the uniformity of the track. Figure

2.9 shows the impact on the power density distribution with a three-laser system.

It shows the effect on the spread of the laser spot with varied z-axis offsets and the

resulting energy density.
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Figure 2.9: Effect of offset from the focal point for a three-laser coaxial LWAM

system (Roch, Tournier, and Lavernhe, 2023).

2.2.2.1 Visual Assessment of Single Tracks

Visual assessment of deposited single tracks is a common methodology for the initial

evaluation of track quality (Zapata et al., 2022; Oliari, D’Oliveira, and Schulz, 2017;

Motta, Demir, and Previtali, 2018; Abioye et al., 2017). It allows tracks to be

quickly classified and ruled out as candidates for further use due to obvious faults,

without the need for more costly and time-consuming processes such as microscopy

or sectioning, polishing and etching.

Visual assessment is typically performed by depositing short tracks of 40 mm - 50

mm and assessing the centre section of the track; Figure 2.10 shows a schematic of

how this is arranged on the substrate and the measurement region within the track.

Most assessments simplistically characterise tracks as either dripping, stubbing or
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good (Abioye et al., 2017). Motta, Demir, and Previtali (2018) extends this by

identifying a ’transition zone’ between tracks characterised as dripping and those

characterised as good, for tracks that do not exhibit dripping or stubbing, but begin

to show discontinuity or waviness and therefore are not of sufficient quality to be

considered a ’good deposition’

Oliari, D’Oliveira, and Schulz (2017) detail an important aspect of the evaluation,

the criticality of the contact angle of a track. A ’Good’ track has the profile of a

semi-ellipse and has a smooth transition to the substrate, a contact angle lower

than 90◦, shown in Figure 2.8. This image shows a cross-section of a track that

approximates a cylinder shape with a contact angle greater than 90◦, leaving the

sides of the track undercut. Oliari, D’Oliveira, and Schulz (2017) show that this can

be conducive to porosity in multi-track depositions and should be avoided.

Figure 2.10: Schematic of single track deposition arrangement for identification of

optimum print parameters (Zapata et al., 2022).
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2.2.2.2 Track Geometry Model

To fully define the track formation process, the geometry of the track must be

defined in terms of its height, width and contact angle, and how these relate to

the fundamental process parameters. Understanding track geometry is particularly

crucial for effective planning and modelling of track overlaps to form layers.

A track is described principally in terms of its cross-sectional profile, its overall

volume and length (Zapata et al., 2022). Track profiles can be described as parabolic

(Suryakumar et al., 2011; Roch, Tournier, and Lavernhe, 2023; Caiazzo and Alfieri,

2019), sinusoidal segments (Cao et al., 2011), Gaussian (Z. Li et al., 2023), or semi-

ellipse (Oliari, D’Oliveira, and Schulz, 2017; P. Kumar, Jain, and Mayur Sudhakar

Sawant, 2022). The literature describing these shapes are for a number of DED

technologies, however only Oliari, D’Oliveira, and Schulz (2017) uses a radial laser

LWAM system. Coaxial systems may well have a different cross-sectional profile

because of the change in dynamics caused by the wire feed direction and uniformity

of the melt pool. Other experimental conditions such as substrate temperature

and material properties could also affect the wettability of the track, resulting in

a different shape (M. Kumar, S. S. Kumar, and A. Sharma, 2021). Suryakumar

et al. (2011), who propose a parabolic cross-section illustrate the properties of the

cross-section well, Figure 2.11 shows this.

Figure 2.11: Suryakumar et al. (2011) description of a parabolic track cross-section.
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They describe the track as a symmetric parabola of the form y = a + cx2,

describing the geometric form of the parabola in terms of height, h, and width, w,

as shown in Equation 2.3.

y = h[1 − (
2

w
x)2] (2.3)

Further to this, Suryakumar et al. (2011) describe the cross-sectional area of the

parabola in terms of head speed, Vh, extrusion rate, Vf , and wire diameter, dw, which

is shown in Equation 2.4.The equivalent for a semi-ellipse is shown in Equation 2.5.

A =
2

3
hw =

2Vfd
2
w

3Vh

(2.4)

A =
πhw

4
=

πVfd
2
w

4Vh

(2.5)

Suryakumar et al. (2011) state that although height and width depend only

on the process parameters described in the previous section, definitively proving

their relationship to track height and width is too difficult to calculate, requiring

modelling of the complex phenomena which occur during the deposition process.

Phenomena which affect the final track geometry include surface tension (Marangoni

effect), cooling rates, viscosity and gravitational effects, which determine the wetting

and fluid flow of the track. Equation 2.2 describes the relationship between

extrusion rate and head speed on the track cross-sectional area. The relationship of

process parameters specifically to height and width must therefore be determined

experimentally (Zapata et al., 2022).

S. Liu, Brice, and X. Zhang (2021) showed experimentally that track width has a

strong relationship with head speed and laser power, increasing laser power increases

wetting and therefore the track width and increasing head speed reduces the width of

the track as the rate of material deposited per unit length is effectively reduced. For

track width however, laser power, laser spot size and extrusion rate were dominant;

consistent with the effect on width, increases in laser power reduce the height and
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increases in extrusion rate increased track height due to additional material being

deposited.

2.2.2.3 Describing Optimum Parameters with Process Windows

The relationship between process parameters and resulting track profiles are

commonly described using process windows. A process window defines the range of

process parameter combinations within which high-quality manufacturing outcomes

can be consistently achieved (Zapata et al., 2022). It outlines in graphical form

how the settings for variables such as laser power, extrusion rate, head speed etc

translate into track height and width and which combinations are considered to be

optimal. These process windows are typically populated through carefully designed

experiments, such as Design of Experiment (DOE) method, which isolate the effects

of changing different process variables and the resulting outcomes. The resultant

process windows provide invaluable guides to support engineers in selecting settings

that lead to quality or geometric outcomes, minimising trial and error. An example

of process windows for stainless steel and aluminium from a single laser LWAM

process can be seen in Figure 2.12. Where the overall process window of available

good parameter combinations grows with increases in laser power and typically there

are successful parameter combinations for all traverse speeds (head speeds) in the

range tested, but not for all wire speeds (extrusion rates).
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Figure 2.12: Example process windows describing wire speed (extrusion rate) and

traverse speed (head speed) effects on track quality for aluminum (a–c) and stainless

steel (d–f) (Zapata et al., 2022).

2.2.2.4 Optimisation of Process Parameters for High Quality Tracks

It is widely regarded that in metal DED there is a lack of repeatability and consis-

tency between builds, machines and processes (DebRoy et al., 2019; Cunningham

et al., 2018; Tapia and Elwany, 2014; C. Xia et al., 2020), which often manifests

itself in defects or dimensional inconsistencies. Integrated process control and

optimisation methodologies are considered key to overcoming this (DebRoy et al.,

2019; C. Xia et al., 2020; K. Zhu, Fuh, and Lin, 2021). Although significant research

on process optimisation and consistency has been published, the Vafadar et al. (2021)

review of metal additive manufacturing states that much more progress is required

to improve production efficiency. This is particularly the case for LWAM, which is
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behind its powder-based equivalent and WAAM (Svetlizky et al., 2021). Vafadar

et al. (2021) go on to state that the characterisation of the complex interactions of

different control parameters is still not well understood, particularly as the optimum

parameters change as a build progresses due to changes in geometry and bulk

heating.

Effective process optimisation is important to fully exploit the potential of the

technology, particularly with respect to the development of alloys that cannot be

used in other manufacturing methods, functionally graded materials and adaptive

control of microstructure. Process optimisation also increases the predictability of

the process, supporting manufacturing quality requirements, particularly when using

multiple machines, and is important for the overall efficiency of the wider end-to-end

manufacturing process.

Significant research has been carried out to characterise individual properties

of a built part (such as hardness, residual stress, porosity, etc.), usually for simple

geometries, summarised by Cunningham et al. (2018), Tapia and Elwany (2014),

O’Regan et al. (2016), and K. Zhu, Fuh, and Lin (2021). This limitation to simple

geometries such as cubes and thin walls is identified as a limiting factor in further

adoption of the technology within industry in the Thomas-Seale et al. (2018) review

from UK Industry perspective.

Considering multiple properties of complex parts and trade-offs to optimise them

is an important next stage to advancing the technology and improving its utility

(Tapia and Elwany, 2014). Machine learning tools are increasingly overcoming the

challenges of complexity and uncertainty, covered in the Machine Learning section

below.
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2.2.2.5 Key Equations Describing Process Dynamics

To fully describe the LWAM deposition process and support its optimisation, more

variables than power, head speed and extrusion rate are required. Summarised from

Mukherjee et al. (2017) and Dass and Moridi (2019), the equations which define the

mechanisms of the DED process are summarised in Equations 2.6 to 2.10.

Dimensionless Heat Input Equation 2.6 - the energy per unit length of material

used to deposit tracks, which directly affects cooling rates, solidification

parameters, shape and size of the fusion zone. High values improve the

strength of interlayer bonding, reducing overall defects. P is laser power,

Vh is head speed, PR and VR are laser power and head speed that provide the

lowest viable heat input per unit length. P/PR must be 1 or greater.

Q∗ =
P/Vh

PR/VR

(2.6)

Marangoni Number Equation 2.7 defines the magnitude of the surface tension

force relative to the viscous force in the melt pool and is a measure of the

strength of the convective transport of heat. High values improve interlayer

bonding and overall material properties, but are more likely to result in

asymmetrical track cross sections. µ is dynamic viscosity, α is thermal

diffusivity of the alloy, w the width of the melt pool, ∆T the difference between

the maximum temperature inside the pool and the solidus temperature of the

alloy and dγ/dT the sensitivity of the surface tension gradient with respect to

temperature.

Ma = − dγ

dT

w∆T

µα
(2.7)
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Fourier number Equation 2.8 is the ratio of the rate of diffusive heat transport

to the rate of heat storage. Critical in understanding the damage heat can

do to the component. A high number ensures rapid cooling, low thermal

distortion and a high temperature gradient between the melt pool liquid and

solidification outside it. Where α is the thermal diffusivity of the alloy, τ the

melt pool length/melt pool speed and L the length of the melt pool.

Fo =
ατ

L2
(2.8)

Dilution Equation 2.9 defines the dilution of a track with the surface on which it

is printed. Where x is the depth of the melt pool below the substrate level, h

is the height of the material deposited above the substrate level. A minimum

level is desirable to maximise bonding but minimise heat accumulation,

optimal values are considered to be between 10% and 30%. Low h indicates

low laser power or high extrusion rate; high x indicates high laser power or

low extrusion rates.

D =
x

h + x
(2.9)

Global Energy Density Equation 2.10, the Global Energy Density (GED), corre-

lates with the dilution and has a ‘goldilocks value’ for most processes. Lower

values of GED lead to less dilution, where lack of fusion defects are likely,

higher values of GED lead to high dilution where keyhole porosity may form.

Here P is the laser power, Vh the head speed and dl the laser spot diameter.

D =
P

Vhdl
(2.10)
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Wire Speed Factor Equation 2.1 is the ratio of the extrusion rate to the

deposition head speed, which must be greater than or equal to 1. Vf is the

extrusion rate and Vh the head speed.

These equations encapsulate the mathematical framework underpinning the

dynamics of the LWAM process. It consolidates critical behaviours that translate

from thermal dynamics of the process to physical properties of the component.

However, they cannot provide a definitive model of the process without further

experimental work and are dependent on the specific configuration of each deposition

system.

2.2.3 Geometry Control

Geometry control in LWAM ensures part accuracy and involves the precise

management of track and layer spacing, typically defined within the slicing software.

The arrangement of individual tracks, the gap between them, and the consistent

thickness of each layer directly affect the dimensional accuracy and mechanical

properties of the final part. Careful geometry control mitigates some of the causes

of porosity and reduces uneven surfaces and structural weaknesses, ensuring that

the resulting part remains within tolerance.

The path followed by the deposition head, with appropriate track spacing and

the subsequent z steps to form layers directly affect the achievement of flat layers

and prevents overbuild or underbuild in the z axis. The literature covers well the

optimisation of track deposition and layer formation (Suryakumar et al., 2011; M.

Kumar, S. S. Kumar, and A. Sharma, 2021; Cao et al., 2011; Caiazzo and Alfieri,

2019; Ding et al., 2015), however there are few papers that cover this for LWAM

technologies (Oliari, D’Oliveira, and Schulz, 2017; Huang et al., 2021; Ye et al.,

2017) and no papers were found for coaxial systems.

In general terms, the objective of geometry control parameters is to determine

track and layer separation that can be used by slicing tools to create machine
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instructions. Geometry planning and optimisation is first based on a high-quality

track, which is repeatedly overlapped to form a layer. The objective of the overlap is

to achieve the flattest possible layer, which ensures geometric consistency of the final

part. This minimises the probability of porosity through gaps between tracks and

reduces material wastage due to subsequent machining of overbuilt layers (Sefene,

Hailu, and Tsegaw, 2022; Suryakumar et al., 2011). The track, its optimal overlap

and the resulting surface are the ‘Layer Geometry Model’. This model is then

repeated in the Z plane with an optimal layer overlap, resulting in the ’Multi-Layer

Geometry Model’

The principles are common across the different models used in the literature,

despite the different technologies, a general model for simple track to layer to part

geometry can be described. The work of Oliari, D’Oliveira, and Schulz (2017),

which uses an LWAM process, and M. Kumar, S. S. Kumar, and A. Sharma (2021), a

WAAM process, form the basis of the following description of a single-layer geometry

model.

2.2.3.1 Single-Layer Geometry Model

To determine a layer model and experimentally prove it, the simplest layer geometry

is used, which is a small patch of tracks deposited in parallel straight lines. The

critical parameter that determines the layer geometry is the distance between the

centre points of each deposited track. As is the case with many aspects of this

field, there are a number of names for this, such as hatch spacing, overlap ratio,

overlapping coefficient and offset distance. They are referred to either as a physical

distance or, more typically, as a ratio of the track width. A ratio provides the benefit

of applying to any track dimensions that fit the same cross-section shape profile (e.g.

parabolic, semi-ellipse etc).

The Flat-Top Overlapping Model (FOM), shown in Figure 2.13 and Figure 2.14,

considers a single track with a height h and width w, and the centre-to-centre

distance d between adjacent tracks. When d is greater than the width of the tracks,
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there is no overlap between the tracks (image a, Figure 2.14). As d decreases,

the overlap between tracks increases, creating a valley, which reduces in depth as

d gets smaller (image b, Figure 2.14). This effect is caused by the accumulation

of additional material where the tracks overlap. At a certain point, the overlap

area equals the valley area above it, leading to an optimally flat surface (image c,

Figure 2.14). Beyond this point, a further reduction in d results in excessive overlap,

increased layer thickness, and a highly irregular surface (image d, Figure 2.14). The

optimal value for d is achieved when the overlapping area equals the valley area;

in practice, a perfectly flat surface is not achievable (Ding et al., 2015) due to a

combination of the effects of the deposition process.

Figure 2.13: Sketch of the Flat-Top Overlapping Model (Ding et al., 2015).

Figure 2.14: Cross-section sketch showing layer height and track pile up as centre

to centre distance decreases (Cao et al., 2011).
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In the FOM, the track profiles were represented as the sum of the two parabolas

at the point of overlap. This model does not accurately reflect the profile changes

that occur. An improved model, the Tangent Overlapping Model (TOM), suggests

that the overlapping volume forms a fillet in the valley between the parabolas, shown

in Figure 2.15.

TOM allows for a more nuanced description of the overlapping shape. Where d

is large, the volume of overlapped material is smaller than the volume of the valley,

leading to the formation of a concave fillet from the excess material (image c, Figure

2.15). Where d is optimal, these volumes equalise, transforming the fillet into a

straight line, but not creating a ’flat top’ (image b, Figure 2.15). Further reduction

in d causes a convex fillet to form, extending beyond the peaks of the parabolas

(image d, Figure 2.15).

The TOM model refines the Layer Geometry Model approach by introducing

the concept of a ”critical valley,” which accounts for the asymmetric nature of track

overlap and the varying track heights resulting from different centre distances. This

model provides a more accurate representation of the layer profile, Ding et al. (2015)

compared the optimum values for d for FOM (2/3) and TOM (0.738) and found that

the latter has a more consistent finish and lends itself to more stable multi-layer

builds. Different optimal values for d have been identified in the literature. Table

2.1 summarises these, expressed in terms of the proportion of the total width of the

track (d/w).
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Figure 2.15: Sketch of the Tangent Overlapping Model (Ding et al., 2015).

Paper Single Track Shape Offset

Oliari, D’Oliveira, and

Schulz (2017)
Semi-Ellipse 0.819

Suryakumar et al.

(2011)
Parabola 2/3

M. Kumar, S. S. Ku-

mar, and A. Sharma

(2021)

Parabola 2/3

Cao et al. (2011) Sine Function 2/π

Caiazzo and Alfieri

(2019)
Parabola 2/3

Ding et al. (2015) Parabola 0.738

Table 2.1: Summary of optimal values identified for d, the track centre-to-centre

distance
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Ding et al. (2015) also described in their model that as the number of tracks

in a layer, n, increases, so does the overall layer height, shown in Figure 2.16, and

it cannot be assumed that the layer height for n = 2 is the same for n = 8, the

thickness of the layer increases as more tracks are added. They did not go on to

quantify or mathematically describe this effect.

In practice, parts are much more complex than the simple square shapes used

in this model. Little is published in the literature about the effects of layer shapes

on layer height; Michel et al. (2019) suggests a modular path planning approach,

but this is to address part accuracy in the x-y plane. Adaptive planning of layer

height is covered, both in terms of adaptive layer thicknesses to meet the CAD model

(Y. Zhang et al., 2003), introducing planned ‘compensation layers’ to correct the

development of underbuild inaccuracies more effectively in process (Spranger et al.,

2018) or in-process monitoring and adaption (Xu et al., 2022). Experimentation,

similar to that which investigates the effects of the tool path on residual stress and

interlayer temperatures by Aliyev, Lee, and Ahn (2022) and Kim et al. (2021) would

add value to the layer models developed.

Figure 2.16: Sketch of layer height increasing with n - the number of tracks (Ding

et al., 2015).

2.2.3.2 Multi-Layer Geometry Model

Layers with known height, width and surface conditions can be repeated at known

intervals in the Z-plane to create three-dimensional parts. Once a layer is deposited,

the next layer is created by adjusting the deposition head height to increase the

distance between it and the previously deposited layer. The Z-step increment
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assumes that the previously deposited layer is flat and that the top of the layer

is the same distance from the deposition head as the laser offset for the first layer.

P. Kumar, Jain, and Mayur S Sawant (2020) assume this distance to be the layer

thickness, which is: tt = k − R. Where k is the height from the substrate of the

centre of the concave circular fillet formed between two adjacent tracks and R is

the radius of the concave circular fillet, which approximates the Root Mean Squared

(RMS) height of the layer; shown in Figure 2.17. Other studies such as M. Kumar,

S. S. Kumar, and A. Sharma (2021), Caiazzo and Alfieri (2019) and Ding et al.

(2015) used the height of the track. No comparative studies between the two values

could be found to quantify the effect on overall accuracy in terms of part height.

Figure 2.17: Sketch multi-track deposition illustrating the layer thickness tt (M.

Kumar, S. S. Kumar, and A. Sharma, 2021).
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In these studies, which do not include coaxial systems, the effects of the flatness

of single layers on the overall layer height are well investigated. Caiazzo and Alfieri

(2019) showed that an optimal centre distance for the flatness of the layer would

result in an under-build against the predicted total height of the part and higher

centre distances would increase this effect. Ding et al. (2015) showed similar effects,

shown in Figure 2.18 below (image a – closer tracks with overbuild; image b – optimal

value for a flat layer with slight underbuild). P. Kumar, Jain, and Mayur Sudhakar

Sawant (2022) support this, suggesting that while the accuracy of the prediction for

a single layer is strong, an accuracy of approximately 90% was possible due to the

effects of the unavoidable variability in the layer surface and reheating.

These studies show first that minimising the variability of the layer is important

for the consistency and flatness of the final part and that consistent use of the same

layer height over a multi-layer part is likely to result in geometric inaccuracies in

terms of the Z height of the part, which requires planning variable layer heights or

‘compensation layers’ or variable Z increments within the build process to correct

Figure 2.18: Data showing the effect of the flatness of a single layer on a multi-layer

build, creating (a) underbuild when suboptimal and (b) a consistent layer height

when optimal (Ding et al., 2015).
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for this (Y. Zhang et al., 2003; Spranger et al., 2018).

2.2.4 Defects Occurring in the LWAM Process

A lengthy dynamic deposition process such as LWAM allows many opportunities for

defects to occur. These can occur spontaneously during the deposition process or be

caused by decisions made during the preparation of the build, for example choosing

a part orientation that leads to an excessive overhang, poor track separation that

results in porosity, or poor management of the thermal properties of the part.

Defects have a significant effect on the cost of the build process as they are

often difficult to fix. Minimisation and identification of defects is particularly

important for quality management processes and supports the drive for repeatability.

Careful consideration is needed for each unique part and its end-to-end design and

production.

Characteristics such as overbuilding or underbuilding can also occur, which are

not strictly defects, but a poor build resulting in material waste and possible non-

conformance with the required part geometry. The following sections summarise the

main defects seen in LWAM processes.

2.2.4.1 Porosity in Multi-Layer Builds

Porosity is one of the most common defects in LWAM, characterised by the presence

of unintended voids or holes within the solid material. Porosity affects the density

and material properties and can lead to components with lower than desired

mechanical strength. Holes caused by porosity can create micro-cracks, bringing

lower tolerance to fatigue and reduced mechanical strength (B. Wu et al., 2018;

X. Chen et al., 2021).

Porosity can develop through gases trapped within the melt pool; these can

be created by contaminants on the wire feedstock such as grease or oxides, poorly

chosen process parameters, particularly laser power, which causes vaporisation of

the wire and keyholing, inclusions (particulate contaminants from the environment)

32



2.2. Fundamentals of the LWAM Process

or through poor path planning resulting in gaps between tracks (B. Wu et al., 2018;

Brennan, Keist, and Palmer, 2021). Figure 2.19 shows an example of porosity in an

LWAM thin wall component.

Mitigations to this include the use of clean, high purity feedstock, careful control

of the cleanliness of the substrate and the deposition environment, optimising the

process parameters for the material and sufficient shield gas (Tomar, Shiva, and

Nath, 2022). Post-process treatments such as Hot Isostatic Pressing (HIP) can heal

pores and the resulting micro-cracks (Brennan, Keist, and Palmer, 2021).

Figure 2.19: Example of pores from a poorly built thin wall part printed using the

Meltio M450 during intial experimental preparations.
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2.2.4.2 Cracks in Multi-Layer Builds

Cracks are fractures or separations in the material, which can severely compromise

the mechanical integrity and performance of the part. They are often caused by

thermal stresses due to rapid heating and cooling cycles, poor bonding between

layers, or porosity. In most cases, these are due to inappropriate process parameters

or poor control of the thermal field within the part. Thermal-metallurgical

interactions influencing the susceptibility to solidification cracking in LWAM include

steep thermal gradients, rapid cooling rates, material composition, molten pool

dynamics, gas evolution, strain and stress development and interlayer temperature

variations (Brennan, Keist, and Palmer, 2021). Figure 2.20 shows images of etched

parts containing cracks that have developed through stresses as the part cools.

Substrate pre-heating, controlling the cooling rate of the part, optimising process

parameters and thermal modelling of the process can help to reduce residual stresses

and prevent cracking.

Figure 2.20: Example of crack development in a multilayer WAAM component

(Tomar, Shiva, and Nath, 2022).
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2.2.4.3 Delamination

Delamination refers to the separation of adjacent layers within a printed part,

causing cracking and compromising the integrity of the part. It can result from

insufficient heat input to remelt previously deposited layers, leading to poor

interlayer bonding or from differences in thermal expansion between layers that

result in residual stress (B. Wu et al., 2018).

Once delamination has occurred, it cannot be repaired by post processing (B.

Wu et al., 2018). However, proper heat input, substrate preheating, maintaining

consistent temperature across layers, use of compatible materials in multi-material

deposition and appropriate layer thicknesses can help prevent delamination.

2.2.4.4 Distortion

Distortion is the warping or deformation of the part during or after the manufactur-

ing process, resulting in the part being geometrically out of tolerance. It is caused

by uneven heating and cooling, leading to thermal gradients and residual stresses.

Pauses for interlayer cooling, controlled cooling at the end of the deposition

process, and the use of simulation software to predict and compensate for thermal-

induced stresses are all effective mitigation (B. Wu et al., 2018). Post-process heat

treatments are considered to be effective at reducing residual stress.

2.2.4.5 Anisotropy

Anisotropy refers to different mechanical properties such as tensile strength and

ductility in different directions within the printed part. This phenomenon is due

to the layer-wise building process, directional cooling and solidification patterns,

resulting in columnar grains in the build direction (Tomar, Shiva, and Nath, 2022).

Interlayer rolling (X. Chen et al., 2021; B. Wu et al., 2018), post-process heat

treatments and controlled cooling can reduce anisotropy. Tomar, Shiva, and Nath

(2022) suggest mitigating the effects by design as much as possible, suggesting that
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part design could also consider adopting orthotropic models (Laghi et al., 2021) of

the material.

2.2.4.6 Oxidisation

Oxidisation is the reaction of the deposited material with oxygen in the surrounding

environment, typically either reacting with the melt pool or during the cooling of

the deposited material. This leads to deposits of oxides forming between the layers

and on the outer surface of the component, changing the properties of the material

and surface quality. Figure 2.21 shows an example of oxide between deposited layers

in an LWAM deposition process.

It is almost impossible to avoid oxidisation when producing components of any

scale using DED technologies (L. Zhang et al., 2022). Oxidisation can reduce the

performance of the material’s ductility and the oxides can provide the starting point

for cracks to form and propagate. Although some level of oxidisation is unavoidable,

there are a number of mitigations, such as using shield gases like argon to inert locally

around the melt pool, inerting the wider build environment and minimising the time

that the component is exposed to high temperatures by using techniques such as

passive or active interlayer cooling (B. Wu et al., 2018).

Figure 2.21: Example of oxide between the layers of a multilayer LWAM component,

confirmed using scanning electron microscope.
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2.3 Thermal Effects in LWAM

Understanding and managing the thermal conditions are vital for the success of the

LWAM process. The Heat-Affected Zone (HAZ), heating and cooling cycles, thermal

gradients, and melt pool dynamics are critical factors that influence mechanical

properties, consistency, residual stress, structural integrity and geometric accuracy

of the final component (Gurmesa and Lemu, 2023). There is significant research

into modelling the thermal field and its effects (Yan et al., 2018; Fetni et al., 2021;

Lu et al., 2019; Nalajam and Varadarajan, 2021; Srivastava et al., 2021; Z. Zhang,

Z. Liu, and D. Wu, 2021; Q. Zhu, Liub, and Yana, 2020; Denlinger et al., 2015;

Singh et al., 2021) for various wire-based DED technologies. These are summarised

with respect to the high-level themes associated with LWAM.

2.3.1 Melt Pool Geometry

The Key Equations section above defined the mechanism for creating successful

tracks and highlighted the importance of the thermal properties of the material

and the interconnected nature of the relationship between the process parameters.

A known cause of both anisotropy and deviation in the overall geometry of the

part is the effects of bulk heating developed as multiple layers accumulate. This is

compounded by the cyclical effects of reheating previously deposited layers (DebRoy

and Bhadeshia, 2021; Svetlizky et al., 2021; Yan et al., 2018). Mukherjee et al. (2017)

show that due to bulk heating, the melt pool width grows by 6mm over 6 layers of

thin wall deposition if all print parameters remain fixed. This growth in the melt

pool reduces its stability as well as reducing the concentration of energy around the

wire and the overall consistency of the resulting tracks and layers.

Shamsaei et al. (2015) summarises LENS research on melt pool shape control to

mitigate the effect of bulk heating. The research summarised in this paper found

that a consistent melt pool shape could be maintained by reducing the laser power as

the layers increase. The point to begin the power reduction and the rate depended on
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the alloy used, using this method they showed that the shape could be maintained

irrespective of extrusion rate and head speed. The appropriate head speed and

extrusion rate can then be selected to achieve a desired track geometry, constraining

the laser power to maintain the same Global Energy Density (GED) throughout the

build.

Power reduction alone will not be sufficient to control bulk heating; over a long

print, the reduction in power may result in requirements on head speed or feed rates

that cannot be supported because of the limitations of the process window. At this

point, other thermal management strategies can be employed, such as interlayer

pauses (or dwell time) (Nalajam and Varadarajan, 2021; Z. Zhang, Z. Liu, and

D. Wu, 2021; Denlinger et al., 2015; Singh et al., 2021). Refined through modelling

and experimentation for the particular part and process, interlayer cooling through

pauses or active cooling with forced air is used to achieve a consistent interlayer

temperature. This has been shown to support the consistency of the melt pool

throughout the deposition process, reducing the bulk heating of the part and residual

stresses (Singh et al., 2021). Interlayer pauses have also been shown to improve grain

refinement with some alloys, because of higher cooling rates and lower temperature

gradients. This can improve microhardness and compression strength due to the

finer grain structure (Singh et al., 2021). It is unclear, however, whether this also

reduces the overall anisotropy across the part.

Further fine control of melt pool size and GED may be possible with coaxial

LWAM systems. Roch, Tournier, and Lavernhe (2023) experimental and simulation

work have shown that for a three-laser coaxial system, the overall GED can be

affected by the focus of the laser spots, as the deposition surface moves further away

from the focal point of the lasers, the laser energy is spread further across a larger

spot. Deliberate defocussing could therefore reduce the GED.

An important driver for undertaking thermal modelling of the deposition process

is to understand the temperature field as the material is deposited. Lower

temperatures in previous layers increase the contact angle of the track deposited for
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the subsequent layer, resulting in a narrower but taller track, as more of the laser

energy is required to reheat the previous layer, reducing wetting (Oliari, D’Oliveira,

and Schulz, 2017), see Figure 2.8.

The Marangoni effect describes fluid motion driven by gradients in surface

tension, the scale of this effect is particularly dependent on temperature differences

across the melt pool. As the temperature increases, the surface tension decreases.

The centre of the melt pool, where it is hotter, will have a lower surface tension

compared to the relatively cooler edges. If the underlying layer is hot, the

temperature gradient within the molten pool is reduced, leading to a more uniform

surface tension. This results in a flatter, wider track as the fluid spreads more evenly

(Singh et al., 2021). A cooler layer has a steeper temperature gradient, causing more

pronounced fluid movement through the Marangoni effect. This leads to an uneven

distribution of the molten material, increasing the height of the track and the contact

angle of the track and reduces its ability to spread.

Singh et al. (2021) refer to cooler layers as reducing the ‘Deposition Efficiency’

of the process. The paper does not provide a specific definition of ’Deposition

Efficiency’, but is likely similar to ‘Manufacturing Efficiency’ in Cheng et al. (2023),

the efficiency of the process in terms of the speed of deposition, the rate of material

use and the overall energy required. The objective of this efficiency in these studies

appears to be speed. This efficiency is achieved by increasing the overall energy

used, which has been shown to have a strong correlation with the accumulation of

residual stress and anisotropy.

2.3.2 Residual Stress

Inconsistent heating and cooling cycles are a leading cause of residual stresses

and anisotropic properties (Gurmesa and Lemu, 2023). Residual stress is the

development of internal stresses in the component due to differential cooling rates

and phase transformations during the deposition process that remain after the

process completes. Very localised heating and rapid cooling generate thermal
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gradients that lead to the expansion and contraction of the material in an uneven

manner. This results in tensile and compressive stresses within different regions of

the part.

Should high levels of residual stress develop, the part can warp and, in severe

cases, crack propagation can occur. The result of these effects is poor geometric

accuracy, reduced fatigue life, structural reliability and suboptimal microstructure.

Y. Liu, J. Shi, and Y. Wang (2023) state in their review paper that residual stress

generated in DED processes is still a significant barrier for industrial use of AM for

high-performance, large metal parts.

Residual stress in LWAM can be comparatively less severe than in other DED

processes; this is due to lower heat input that leads to a reduced, more localised

heat affected zone (Bastola et al., 2023). This reduced heat input can result in

smaller thermal gradients and consequently lower residual stress. However, the

severity of residual stresses is highly dependent on the specific parameters of the

process, including head speed and extrusion rate, the alloy used and the specific

part geometry. Residual stress increases particularly with the number of layers, as

this inevitably results in the heat in the part growing (Aliyev, Lee, and Ahn, 2022;

Denlinger et al., 2015).

Residual stress is conventionally mitigated through in-process and post-processing

techniques. The process parameters can be planned to minimise excessive heating

and cooling cycles for instance during the deposition process (Bastola et al., 2023).

Post-process treatments are typically heat treatments, which are effective

in homogenising stress gradients and material properties across a component.

These homogenising effects also have the benefit of improving the consistency of

microstructures and the properties of the resulting material (Bastola et al., 2023).
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Figure 2.22: A range of tool path strategies used in LWAM (S.-G. Chen et al., 2022).

2.3.3 Temperature Management and Control

2.3.3.1 Thermal Control Using Toolpath Planning

The term ”toolpath” refers to the predetermined route that the deposition head

follows to create tracks in each layer as defined by the slicing software. There

are various strategies available to guide the deposition head that directly determine

where energy is applied during the deposition process. As a result, it directly impacts

the development and distribution of temperature across the build, affecting the

overall quality and properties of the final part. Figure 2.22 shows a range of infill

patterns from S.-G. Chen et al. (2022), who investigated the effects of different infill

patterns on the distortion of the overall part.

When successive layers are deposited, the toolpath creates overlapping heat

zones, causing higher temperatures in certain areas. This is especially true in

complex geometries, where the toolpath may require multiple passes over the same

region. Quickly repeated passes over the same region leads to localised areas of
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high temperature (Donghong Ding et al., 2014). By carefully designing the toolpath

to avoid excessive overlap or by incorporating pauses, this effect can be mitigated,

leading to more uniform layer temperatures and material properties.

Typical mitigations through toolpath design include choosing infill orientations

that create the longest possible tracks along the part to reduce the amount of time

that the melt pool spends in a particular area and evaluating the effects of different

infills for the specific geometry being produced (Petrat et al., 2018).

Kim et al. (2021) trialled several rectilinear deposition strategies for simple cubes

using a powder DED process. They showed that the heat distribution and residual

stresses were most uniform in the deposition patterns where each layer is printed

perpendicular to the previous one, with starting points at an opposite corner. They

found that alternating the direction of the deposition layers reduced the overall

residual stress in the part by 11% compared to repeating the same deposition

strategy over each layer.

Ghasempour, Afonso, and Torcato (2021) compared four deposition strategies

for a similar cube and showed that an ‘outside in’ contouring strategy significantly

reduced the overall peak temperature compared to rectilinear toolpaths. This is

because of the long travel time for the outer tracks, which have time to cool before

the subsequent tracks are laid next to them. Their longer profile and additional time

allow convection cooling to be maximised. This conclusion was reached in similar

work by Aliyev, Lee, and Ahn (2022). Ghasempour, Afonso, and Torcato (2021) also

supports the work of Kim et al. (2021) and Aliyev, Lee, and Ahn (2022), showing

that this deposition strategy reduces the bulk heat in the component and the overall

stress.

2.3.3.2 Thermal Control Using Interlayer Pauses

Interlayer pauses are a useful tool to control the temperature development within a

part. This is especially significant for smaller parts or narrow sections where high

temperatures can accumulate rapidly (Singh et al., 2021). Interlayer pauses enable
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consistent interlayer temperatures throughout the part. This reduces geometric

and microstructure variability and overall bulk heating. Yu et al. (2022) showed

interlayer pauses could reduce the melt pool temperature by approximately 200◦C

by reducing bulk heating.

For larger parts, an effective pause in deposition can occur naturally during the

deposition process, even without stopping. The size of the layers in the x-y plane

are large enough that there is minimal heat input across much of the layer’s surface

for extended periods. This can create the opposite issue to smaller parts, where

parts cool down too much and absorb too much of the melt pool heat during passes

of the laser on subsequent layers. Preheated substrates are typically used to address

this problem (Kim et al., 2021).

2.3.3.3 Thermal Control Using Process Parameters

In the Key Equations section, it was established that process parameters influence

the dynamics of the deposition process, such as the Marangoni effect, Fourier

and Peclet numbers. When material properties remain fixed, controlling process

parameters becomes the main way to influence the dynamics of the process.

The dynamic nature of the process and the non-uniform shape of ‘real life’ parts

means that the temperature of the part as it is built will be constantly changing.

Therefore, parameter and path planning with a slicing tool, working with Finite

Element Analysis (FEA) tools to determine the likely thermal behaviour of the

component during the deposition process is necessary to understand these heating

and cooling cycles and subsequently develop a dynamic set of process parameters to

influence this.

There are many publications (Svetlizky et al., 2021; Cunningham et al., 2018;

Yan et al., 2018) that investigate the need for adaptive process parameters to

accommodate the changing properties of the part as the build progresses. To

support this, a substantial amount of literature has been published covering process

characterisation for various metal AM technologies. Very little of this can be used
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directly for LWAM, and there is no clear approach that can be universally used to

develop adaptive process parameters and plan them for a built part. Significant

empirical testing for specific equipment is required to fully characterise a particular

process and the material used before it can be fully effective in manufacturing parts

(Feenstra, Molotnikov, and Birbilis, 2021).

Tapia and Elwany (2014) highlighted that most of the research on process

optimisation focused on simple tracks and geometries. Research has since moved on

to understanding the relationship between tracks and the macro-scale geometries of

a build (Oliari, D’Oliveira, and Schulz, 2017; C. Wang et al., 2020; Graf et al., 2018),

but there is still little published regarding how this can be translated to complex

parts. Most research recommends a modular approach towards breaking a part down

into sections which have similar characteristics, yet there is little that demonstrates

this in practice. Several papers which use Machine Learning techniques (Fetni et al.,

2021; Nalajam and Varadarajan, 2021; Z. Zhang, Z. Liu, and D. Wu, 2021) show

promise for modelling more complex geometries, as ML models can be applied to

conditions that they have not had direct training data for.

There is a general requirement to undertake a ’trial and error’ approach (Yan

et al., 2018; Ferro et al., 2020) to choose the most effective parameters and

defect mitigations, tailoring for individual parts. Equipment configuration, the part

geometry and the number of parts being produced at once all need to be considered.

There is an overriding requirement to remove or reduce the need for this approach,

both to improve the efficiency in terms of time and material costs but also to reduce

the skill requirement to produce a new part.
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2.4 Machine Learning

Machine Learning (ML) has been applied to many of the stages of the AM design

and production lifecycle (Grierson, Rennie, and Quayle, 2021) and is therefore a

large field. This review is limited in scope to how ML techniques have been used

to improve DED technologies and, specifically, how they have been used to support

the design and optimisation of the deposition process.

ML has many applications within AM and pervades AM research, with

applications throughout design and production processes (C. Wang et al., 2020).

ML is particularly valuable in metal AM because of its ability to cope with non-

linearity and outliers in data, its fast computation once trained and the ability to

interpret complex data without the need for accurate calibration of input parameters

(C. Wang et al., 2020; Mozaffar et al., 2018).

ML is particularly useful when assisting with modelling activities to reduce

the time required, current simulation methods take many hours and need to be

iteratively rerun for optimisation. ML can act as a complementary tool to reduce

the amount of simulation required.

Most ML applications within DED use Artificial Neural Networks (ANNs), which

are relatively ‘shallow’ compared to those used in more complex activities such as

image processing. ANNs are typically chosen because they can be trained and

perform accurately with relatively small datasets of tens or hundreds of data points

(Farias, Cruz Payão Filho, and Oliveira, 2021). ANNs are structured with multiple

layers of neurons or nodes which are typically structured as a set of input nodes on

the first layer, several hidden layers and an output layer. The connections between

the nodes in these layers are defined by weights that are adjusted during a training

activity to enhance the accuracy of the prediction. Figure 2.23 is an example of

an ANN architecture with a single hidden layer, showing the many connections and

variety of functions of each node.
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Figure 2.23: Example ANN with input, output and hidden layer nodes (Feenstra,

Molotnikov, and Birbilis, 2021).

Training a neural network involves using a training algorithm to input data

from a training dataset and modifying the weights between the nodes based

on the difference between the predicted output of the network and the actual

output, typically using backpropagation. This process allows the network to

minimise prediction errors. The network’s performance depends significantly on

its architecture: the number of layers and nodes, its transfer functions and the data

used to train it. The quality and quantity of training data are critical for neural

network performance. Large, well-curated datasets enhance model accuracy.

46



2.4. Machine Learning

2.4.1 Machine Learning for LWAM

A significant limitation for ML in this field is the comparatively small datasets

available to train ML models. There are several mitigations to this, such as using

modelled data to augment experimental data, transfer learning (X. Li et al., 2018),

data augmentation (Cui et al., 2020) and combining multiple AM methods in an

ensemble (Kshirsagar et al., 2019).

Svetlizky et al. (2021) highlight in their review of DED challenges that the link

between simulation, monitoring and control is still immature for AM technologies.

The ability to act during the build process, to preempt or rectify a defect is currently

limited. They highlight the impact that ML techniques are starting to have upon

this problem both in terms of process optimisation as well as monitoring and control.

ANNs can be used to model process windows, such as R. Sharma et al. (2023).

The Feenstra, Molotnikov, and Birbilis (2021) model can accurately predict track

geometries for a variety of DED powder alloys based on process parameters.

Extending these models to predict track geometry based on the number of tracks,

layers and temperature may support layer height prediction for more complex parts.

Wacker et al. (2021) show that these trained models can be applied to geometries

unused during the training process. Applying ML tools to more complex issues such

as these would begin to capitalise on the strengths of ML tools beyond processes

that can easily be modelled using conventional mathematical techniques.

2.4.2 Using Machine Learning for Geometry Prediction

Wacker et al. (2021) write that the current state of the art for ML in AM allows

for the prediction of deviation from the planned geometry due to residual stress

when using WAAM. Their approach achieved a 3% error rate in its predictions of

distortion for each layer deposited of thin walls. Their work also evaluated the

sensitivity of the training process to outliers in the training data by intentionally

introducing outliers and noise. This is particularly important for applications in this

field where repeatability and consistency in the process can be challenging.
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The novelty of this paper is the use of only the ML model and feedback within

the ANN architecture to predict distortion. Wacker et al. (2021) used a simple ANN

model with two hidden layers. The trained network is used recursively to predict

geometry distortion of subsequent layers of welding tracks printed on top of each

other. The data input to the model includes the process parameters for the layer

to be produced and feedback from the model’s prediction for the previous layer’s

geometry and distortion.

This approach allows the distortion of the entire build of the wall to be modelled

layer by layer. Once optimised, the feedback in the architecture can be replaced with

measured data to use the model for in-process monitoring, control and prediction.

An elegant use of the same model to address the gap between simulation, monitoring

and control identified in Svetlizky et al. (2021).

This approach demonstrates that a simple ANN design can be reliably used to

predict outcomes of distortions in tracks, considering previously deposited layers.

Currently this approach has not been attempted with anything more complicated

than thin walls and has yet to be used beyond simulation.

2.4.3 Machine Learning Conclusions

Machine Learning’s strength in handling non-linearity, outliers, its fast computation

once trained and ability to detect unforeseen relationships between variables lends

itself well to process optimisation tasks in DED. ANNs are commonly used in DED

research and offer accuracy with smaller datasets, which is a common challenge for

this field due to the lack of portability of data between experiments and the difficulty

in generating large volumes of experimental data. ML’s potential for real-time defect

rectification and process optimisation is emerging, with models predicting track

geometries and part distortions with significant accuracy. This approach shows

promise in bridging gaps in simulation, monitoring, and control in AM technologies.
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2.5 Knowledge gaps

2.5.1 Precision, Geometry Variability and Toolpaths

A key challenge for research in LWAM lies in the difficulty of replicating experiments

and directly comparing processes, primarily due to variations in system performance

and the inconsistencies of how these are described in the literature. This issue

becomes more complex for coaxial systems, as more variables are introduced

and the precision of laser calibration becomes increasingly critical. Detailed

documentation of system configurations, particularly laser calibration and actual

energy measurements for the system, is crucial for reliable comparisons and

advancements.

Furthermore, coaxial laser systems offer many benefits in this field due to their

precision, efficiency and tolerance of variability in geometry. However there is limited

research in this area. Studies mostly focus on single laser systems, leaving a gap

in understanding the intricacies of coaxial systems, including their impact on track

morphologies, melt pool dynamics, and overall thermal effects.

Research into toolpaths shows a departure from strategies traditionally employed

in polymer technologies. While there exists a reasonable amount of literature in this

area, it often leans towards simplistic approaches, again requiring combinations of

techniques such as zoning and contouring with speed and layer height correction

into a single process. A shift towards integrating multiple approaches is crucial for

supporting the transition to using the technology to create complex geometries with

high integrity.

2.5.2 Temperature Management Strategies

Research into temperature control strategies, such as forced air cooling and

interlayer pauses and incremental laser power reduction, is typically limited to

single techniques, however for complex components, combinations of approaches are

required. The application of much of the research described uses simple geometries,
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which are not representative of the shapes that these technologies will be applied

to.

Techniques for interlayer pauses are described within the literature and their use

to maintain consistent interlayer temperatures, which is now being integrated with

process parameter control. There is limited work published that combines modelling

techniques with experimental measurements of the effects of these results, or how

interlayer pauses can be applied to structures that are not monolithic. This is further

compounded by the little amount published covering the thermal modelling at a part

level of coaxial laser systems, which no doubt in part is because it is much harder to

model these systems given that there are currently no thermal modelling tools that

have prebuilt configurations to model the lasers.

2.5.3 Machine Learning for LWAM

The rapidly growing applications of Machine Learning offer much to assist with

optimisation, characterisation and control for LWAM, particularly for complex

geometries and real-time defect detection. Its ability to cope with limited data is a

strength, but it remains limited by data portability and calibration between different

experimental configurations. It is likely that ML has the potential to address this

issue, using information about the experimental equipment in its training alongside

the usual physical training parameters.
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Experimental Methods

The experimental methods outlined in this chapter describe the characterisation

of single-tracks, single-layers and multi-layer LWAM builds using the Meltio M450

with 316LSi stainless steel wire feedstock. The different deposition processes are

described and how they are run in terms of G-code machine commands. Subsequent

preparation and measurement using a range of geometric and thermal measurement

techniques are described.

3.1 Experimental Equipment - Meltio M450

All experimental work has been undertaken using the Meltio M450, a coaxial multi-

laser metal wire, LWAM commercial printer, intended for small to medium-sized

multi-metal part fabrication. The Meltio M450 is designed to print with two separate

metal wire feedstocks in one deposition process. Figure 3.1 shows an image of the

machine, Figure 3.2 a schematic sketch of the machine and Figure 3.3 a schematic

of the deposition head.
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Figure 3.1: Meltio M450 Laser Metal Wire printer (Meltio 2021).

Figure 3.2: A schematic of the Meltio M450 (Meltio 2021).
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Figure 3.3: Schematic of Meltio M450 Deposition Head (Meltio 2021).
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The deposition process is delivered through synchronised control of the print

bed and the fixed deposition head, which contains the laser source, wire feed and

inert gas supply to the melt pool. Six 200W, 976nm laser diodes provide the laser

energy source, fed via optical fibres into collimators coaxially arranged within the

deposition head around the feed nozzle. Wire reels are mounted in compartments

on either side of the control screen. The 1mm diameter wire is routed internally to

the extruder at the top of the deposition head and driven by the extruder through

the centre of the head to the nozzle above the print bed. Argon shield gas flows

through the deposition head into a collar around the nozzle to inert the melt pool.

A hotwire function can be used from 0 – 125A, which preheats the wire before it is

melted by the laser.

The print bed can be moved in x, y and z planes beneath the deposition head,

with the print substrate bolted to it. The print bed, collimators and laser diodes

are water cooled. Table 3.1 provides a summary of the machine’s specifications.
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Specification Value

Print Envelope (WxDxH) 145 x 168 x 390mm

Laser Type 6 x 200W direct diode lasers

Energy Distribution Gaussian (single laser)

Laser Wavelength 976nm

Total Laser Power 1200W

Hotwire 0 - 125A

Process Control
Closed-loop, laser and wire

modulation

Enclosure
Laser-safe, sealed, controlled

atmosphere

Interface USB, ethernet, wireless datalink

Cooling Active water-cooled

Wire Feedstock Diameter 0.8 – 1.2mm

Wire Feedstock Spool BS300

Oxygen sensor accuracy ±0.2%

Process control range 4.8V-5V

x and y axis tolerance (per

100mm of displacement)
0.2mm

z axis tolerance (per 100mm of

displacement)
0.1mm

Material extrusion tolerance ±5%

Inert gas system tolerance ±0.5l/min

Table 3.1: Meltio M450 Machine Specification.

A ‘process control’ function is provided to ensure continuity is maintained

between the wire and the substrate; this is achieved by monitoring the electrical

connection in the hotwire system. Should there be a break in continuity, the

controller increases the extrusion rate to attempt to regain a connection. Process

control and hotwire functionality has not been used in any experiment, as it would

not be possible to determine the extrusion rate used and whether it was consistent

throughout the process.
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3.1.1 Calibration of the Lasers

The six laser spots are calibrated to an overlapping circular arrangement, to ensure

the energy distribution across the melt pool is as uniform as possible and to maintain

a consistent shape of the melt pool whilst travelling in any direction. This shape was

empirically determined by the manufacturer to be most effective for the deposition

process.

A Meltio CMOS calibration camera is used to arrange the lasers at a predeter-

mined offset distance, which is the distance between the nozzle and the surface of the

substrate. Figure 3.4 shows an image taken with the calibration camera. It shows

the location for each laser spot (red circles), the profile created by the lasers (white

ring) and the wire fed into the centre of the spots (black circle). The arrangement of

the circles is set based on the wire diameter. The calibrated laser spot shown is for

a wire diameter of 1mm; each laser has a diameter of 1.13mm, creating a combined

diameter of 2.25mm for the entire spot.

Figure 3.4: Calibration of Meltio M450 lasers into circular configuration with wire

at the centre.
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Calibrating the lasers in this arrangement effectively sets the focal length beneath

the substrate’s surface. The focal length is the distance from the collimator lenses

to the point where the lasers converge into a single spot. For ease of measurement

by the operator, the focal point’s distance is measured from the deposition nozzle

to the substrate surface, which is called the offset distance.

The lasers are calibrated to an offset distance (h) of 6mm. When using 1mm

wire, the distance (d) between this offset distance and the focal point is 1.39mm,

Figure 3.5 illustrates this. The calibration of both the offset distance and the spot

alignment was verified before each experiment.

The conical shape formed by the lasers creates an extremely hot area for the

wire to pass through, which risks melting the wire prior to it reaching the substrate.

Ideally a melt pool is created at the substrate’s surface where the wire and substrate

are simultaneously melted. If the wire melts before reaching the substrate, because

the extrusion rate is too slow, it results in an accumulation of molten material above

the surface, leading to dripping. This effect constrains the minimum extrusion rate

achievable.

Figure 3.5: Focal length of the Meltio M450 lasers, showing the offset distance (h)

and distance (d) to the focal point (Meltio M450 Manual 2022).
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3.1.2 Print Environment – Inert Gas and Cooling

The system uses an external chiller to provide 14◦C chilled water, which cools the

build plate, collimators, laser diodes and bed motors. Void spaces between the build

chamber and the external case of the machine are ventilated with cooling fans, as

is the internal void within the door to cool the laser glass used in its window. The

build chamber has an air blower which is intended for cleaning the air through a

filter after builds are completed. The door fan and chamber blower inhibit the

machine’s ability to maintain a fully inert environment and increase the cooling rate

of completed components. Except for large muti-layer components, neither were

operated during experiments and were only used once the deposition process and

part cooling had completed.

An inert build chamber is used to minimise oxidation of the deposited surface.

Argon is fed locally to the melt pool via the deposition head collar with a flow rate

of 10 litres per minute. The chamber atmosphere is made inert by flooding the

chamber until the oxygen sensor has a reading of 0% (sensor accuracy ±0.2%).

3.1.3 Feedstock

The same wire feedstock was used throughout the experimental programme,

ensuring uniformity in the material properties for all deposition processes. Stainless

steel 316LSi wire was used with a diameter of 1mm, ±0.05mm with the chemical

composition described in Table 3.2 and material specification in Table 3.3.
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Element Weight Percent (%)

Fe Balance

C 0.02

Si 0.9

Mn 1.7

Cr 18.5

Ni 12

Mo 2.7

Table 3.2: Stainless Steel 316LSi Wire Feedstock Chemical Composition.

Wire Diameter 1.0mm

Spool Type BS300

Wire Coating Uncoated

Melting Point 1398ºC(1671K)

Table 3.3: Stainless Steel 316LSi Wire Feedstock specification.

3.2 Generation of Experimental G-code

G-code is a programming language, based on ISO 6983, that directs machine

operations and tool movements to create 3D printed objects layer by layer. Standard

G-code is modified by manufacturers to accommodate the specific functionality and

requirements of their additive manufacturing machines. These modifications ensure

that G-code effectively translates digital models into precise instructions suitable

for the machine, but these modifications prevent the G-code from being transferable

between machine types and manufacturers.

G-code is generated by a slicing tool, which is configured with the characteristics

of the machine, including its unique commands, track and layer geometries, track

and layer separation distance, head speeds, extrusion rates, etc. A CAD model is

first translated into a format compatible with the slicer (for example OBJ or STL
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file format), the slicer converts this model, using the predefined characteristics, into

a G-code file. This file, tailored to both the material and the machine, contains step-

by-step instructions for the machine, from its initiation, start and end locations of

moves, process parameters for each move and extrusion rates, to its finishing and

shut down instructions.

To ensure accurate control of the process parameters and to avoid any unknown

modification to the deposition process provided by the slicing software, the G-

code for all experiments was generated using bespoke code written using MatLab

R2022a for these experiments. The process flow charts for the G-code generated are

described in the following experimental sections and shown in Appendix A.
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3.3 Single-Track Experiments

The focus of the single-track experiments is to investigate which process parameter

combinations result in high-quality tracks and to define the process window for

optimal parameters, laser powers between 550W and 800W were used, head speeds

and extrusion rates were between 5mm/s and 25 mm/s in an all factor design. Single

tracks are the fundamental building blocks of parts, identifying process parameters

which produce a high-quality track is crucial. Flaws or inconsistencies due to poor

track quality can propagate through an entire part, compromising the mechanical

properties and overall reliability of the final part.

This experiment explores a range of combinations of extrusion rates and

head speeds for different laser powers, to determine which configurations lead to

consistently defect-free tracks. The tracks are initially visually assessed for obvious

signs of defects and subsequently analysed using a 3D laser scanning confocal

microscope to determine the height, width and consistency of tracks identified as

high-quality.

Tracks measuring 50mm in length were systematically deposited in two parallel

columns on a 316L stainless steel sheet, each track was spaced 6mm apart. To

minimise thermal influences on the track deposition process and distortion of the

sheet, each track deposition was separated by a three-minute pause. The sequence of

the tracks’ locations on the plate was randomised to further reduce the heat build-up

in the plate and to mitigate any potential biases arising from the order of printing.

Bespoke G-code was written to run the experiment ensuring that no modifications

were made by slicing software or the machine’s control systems which could result

in different process parameters than those in the experimental plan.

Sheets of 3mm thick 316L stainless steel were used for the print substrate with

dimensions of 200mm x 150mm, their chemical composition is described in Table 3.4.

Holes of 8mm diameter were drilled in the corners to secure them to the print bed.

Stainless steel sheets were chosen to ensure that that the substrate was compatible

with the weight limits of the microscope stage (described below).
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Element Weight Percent (%)

C ≤0.08

S ≤1.00

Mn ≤2.00

P ≤0.045

S ≤0.030

Cr 16-18

Ni 16.0-18.5

Mo 2.0-3.0

Table 3.4: Stainless Steel 316L Plate Chemical Composition.

The print surface of the substrates used in each experiment was prepared using

the following process:

1. Remove any residual material on plate’s print surface from previous prints

using a 40-grit zirconium dioxide flap disc on a hand grinder.

2. Inspect the plate’s print surface, ensuring it is flat and level.

3. Surface roughening and cleaning of the print surface by abrasive blasting, using

aluminium oxide media, between 60 and 80 grit, to achieve a uniform surface

finish.

4. Thorough cleaning of the entire plate using a light detergent, applied with a

hard plastic bristle brush to ensure removal of surface contaminants.

5. Rinse the entire plate with tap water.

6. Dry the plate using a lint-free cloth.

7. Wash the print surface with isopropyl alcohol, using a white, lint-free cloth.

The cloth is inspected to confirm that the print surface is clean.
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3.3.1 Single Track G-code Generation

The convention in the literature is to describe the process parameters in terms of

millimetres per second for head speed (Vh) and extrusion rate (Vf ) and Watts for the

laser power (P ). G-code instructions express head speed as millimetres per minute

(F ) and the extrusion rate is determined by the machine through defining the length

of material in millimetres to extrude (E) over the distance defined for a particular

track. The values for E and F are calculated as described in equations 3.1 and 3.2,

where l is the track length:

E =
Vf × l

Vh

(3.1)

F = Vh × 60 (3.2)

The flow chart for the generation of the G-code is shown in Figure A.1 of

Appendix A.

3.3.2 Measurement of Single Tracks

The 50mm tracks were measured in the centre section of the track to ensure the

assessment of the track was representative of a steady state deposition process,

Figure 3.6 shows the assessment region of the track.

In the Literature Review, visual assessment of deposited single tracks was

established as a commonly used method for initial evaluation of track quality due

to its efficiency. This step is necessary to filter out poor quality and failed tracks

to ensure only those which are of a high quality are measured. A ’high quality’

track is one which could be used for a multi-track deposition. These tracks are

uninterrupted and consistent along their length, characterised by a smooth surface

with a regular cross-section. Their edges are clean and straight along the length

of the track, securely bonded to the substrate with a contact angle well below 90◦.
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Tracks which meet this description are defined as ’Printable’ tracks and are likely

good candidates for multi-track and multi-layer deposition.

3.3.2.1 Optical and Laser Microscopy of Single Tracks

An Olympus LEXT OLS5000 SAF confocal optical 3D laser microscope was used

to measure the dimensions of the deposited tracks. The microscope provides high

accuracy, non-contact laser and optical measurements and high-resolution images.

Using confocal optics and a 405nm laser light source, it is capable of lateral x/y-axis

measurements up to a resolution of 0.02µm and z-axis vertical measurement accuracy

of up to 0.012µm, with a maximum field of view over the z-range of 5.1mm; it can

detect slopes up to 87.5◦ from horizontal. The controllable stage has a maximum

sample weight of 3 kilograms, which limits it to assessments of thin plates or samples

cut from the substrate.

The microscope incorporates a laser confocal optical system, which helps to

eliminate blur and enhance image contrast, this is particularly valuable for imaging

the highly reflective surface of stainless steel tracks. The short wavelength laser

Figure 3.6: Schematic diagram of single track deposition showing the assessment

region.
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allows for the detection of finer patterns and defects that would be missed by

conventional optical and red lasers, enabling high accuracy measurements even when

using low magnification lenses. All measurements made used the laser sensor data,

sampled with a resolution of one measurement every 2.5µm in the x and y axis.

Microscopy was used to assess single tracks printed on thin plates which had been

categorised as ‘Printable’. The experimental plan was designed to minimise bending

in the plate due to thermal stress, however a small amount of bend in the plate was

unavoidable. Each track was therefore imaged individually and then post processed

using the microscope’s analysis software to remove the bend from the data.

Tracks with contact angles close to 90◦ approached the limit of the microscope’s

87.5◦ slope detection; this high contact angle combined with the highly reflective

surface causes significant noise at the boundary between the substrate and the track.

Consequently, it is difficult to determine the shape of the track consistently where

this effect is seen. The track width was therefore measured at 5% of the track height

to avoid errors due to these effects.

Each track was imaged using the 5x magnification lens, which produces images of

2.5mm square, these were stitched together to create an image of a whole track. Five

measurements of the track were taken at random points in the assessment region

described in Figure 3.7. The following method was used to take the measurements

and analyse them.

1. Image tracks – the whole track was imaged both optically and using the

microscope’s laser, using a series of 2.5mm square images, stitched together

by the microscope’s analysis software.

2. Post Processing – The image was filtered to remove noise and skew, using the

automated analysis tool, which applies a low pass filter to remove the high

frequency noise generated by the reflective surface of the metal. The tool

detects the skew created by the bend in the plate and subtracts it from the

data.
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3. Cross-Section Measurements – Using the microscope’s analysis software, a

guideline was drawn parallel to the track to ensure that cross-sections were

taken perpendicular to the track’s edge. Figure 3.7 below illustrates this.

Five cross-sections were measured across the track and exported to a Comma

Separated Value (CSV) file.

4. Measure tracks – Cross-section CSV files were processed using code written in

MatLab R2022a. Each cross-section was measured for height by averaging the

20 highest height values, width was measured at 5% of this value, standard

deviations of height and width were calculated for the five measured values

and a mean contact angle calculated using a slope function, at the 5% height

measurement point.

3.3.3 Machine Learning

Supervised Learning algorithms were trained to generate predicted process windows

for printable tracks and to predict the track’s height, width and consistency. The

objective was to establish a reliable predictive model that could not only identify the

conditions under which printable tracks could be formed but also adapt to predicting

Figure 3.7: Schematic diagram of cross section measurements in the assessment

region of a single track.
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outcomes for extrusion rates and head speeds at other powers not validated through

experimentation.

A training dataset was developed through the accumulation of the experimental

data from the single-track experiments described above. Data describing the

classification of tracks as printable or not printable had 255 measurements in total

and 74 tracks were measured for height and width. The process parameters of laser

power, extrusion rate and head speed were used as training inputs, augmented by

power/extrusion rate, power/head speed, energy per unit length, Fourier number,

the heat required to melt the wire and the energy density.

MatLab R2022a was used to methodically identify a suitable network architec-

ture and its subsequent training and optimisation. This method aligns with the best

practice guidelines recommended by MatLab (MatLab, 2022). The training data was

split randomly to use 70% for training the network, 15% for validation of the training

and 15% to test the trained network. All of the Supervised Learning and Artificial

Neural Network (ANN) architectures available within MatLab (eg. Support Vector

Machines, Decision Trees, K Nearest Neighbours etc) were evaluated to determine

which could most accurately predict the responses to the inputs. Once the most

suitable architecture was identified, the network’s structure and hyperparameters

were refined to optimise it for this application.

MATLAB’s Classification Learner Interface was used for the initial identification

of the most suitable network architecture. This allows multiple network architectures

to be swiftly trained and compared using the same training data. A key development

in this phase was adopting two separate networks to deliver the overall functionality

of process windows and track geometry prediction. This was principally due to

the nature of the training data; tracks which were determined to not be printable

were not measured and therefore skewed the accuracy of the geometry prediction if

combined with predicting classification in one network. Two networks were trained,

the first to ascertain the classification of the track as printable and the second to

predict track geometry for those printable tracks.

67



Chapter 3. Experimental Methods

MatLab code was written to iteratively vary the hyperparameter settings and

compare the accuracy of the resulting trained models. Accuracy of the network was

further improved through using data augmentation, a technique where the existing

training data is duplicated and added back to the original dataset. This repetition

of the data doubles the training set, allowing the network to train on the same data

twice, improving its performance.
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3.4 Single-Layer Multi-Track Experiment

The single-layer experiments investigate the effects of overlap ratio on the quality of

single layers. To investigate this, different overlap ratios were explored for predefined

process parameters identified as high-quality tracks in the single-track experiments.

A series of 25mm x 25mm single layers were deposited onto sheets of 3mm thick

316L stainless steel, as described in the single-track section above. Each layer was

deposited in a single ‘out and back’ toolpath, shown in Figure 3.8. This approach

would deposit the entire layer in one continuous deposition process, representative

of a sliced layer from a part. The layers were subsequently analysed using a 3D laser

scanning confocal microscope to characterise their height and overall consistency.

3.4.1 Single-Layer G-code Generation

Generation of G-code instructions follows a similar approach to the single-track

experiments. The out and back toolpath required an additional value of E to be

calculated for the head move between the longer tracks. The number of tracks (n)

required to create a 25mm patch was dependent on the width of the track and the

overlap ratio. Equation 3.3 was used to calculate n, where l represents the length

and width of the square layer, wt the track width and d the overlap ratio. The flow

chart for the generation of the G-code is shown in Figure A.2 in Appendix A.

Figure 3.8: Toolpath for the ’out and back’ deposition of a single layer.
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n =
l − wt

d× wt

+ 1 (3.3)

3.4.2 Optical and Laser Microscopy of Single-Layers

The assessment of the single-layer samples used the same methodology as the single

tracks, using the LEXT OLS5000 microscope. The assessment region of the top

of the surface being 10mm in from the edge of the layer, as illustrated in Figure

3.9. The following measurements were taken of the randomly chosen cross-sections,

inside the measurement region:

Maximum Height mean height of the 20 highest peak values of each cross-section.

Average Height mean height of the entire cross-section.

Minimum Height mean height of the 20 lowest trough values of the entire cross-

section.

Standard Deviation The standard deviation of the entire cross-section.

Figure 3.9: Schematic diagram of cross-section measurements in the assessment

region of a single layer.
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3.5 Multi-layer Experiment

High-quality multi-layer parameters are crucial for ensuring the structural integrity

and geometric accuracy of the final part. This experiment extends the single layer

experiments by evaluating the effects of different z-step increments on the overall

part height, consistency and quality of the final part. The objective is to identify

z-axis increments that result in flat layers, with minimal overbuild or underbuild

and minimal porosity. The experiment uses the best quality layers identified in the

single-layer experiments.

Multi-layer blocks were deposited onto plates of 25mm thick, cold rolled 316L

stainless steel of dimension 200mm x 150mm, with chemical composition described

in Table 3.4. The print surface was prepared as described in the single-track section

above.

The blocks were formed with a series of 25mm x 25mm layers, using the same

‘out-and-back’ toolpath used in the single-layer experiments. The toolpath was

rotated by 90◦ on alternate layers. The blocks were repeated with 5, 10, 15 and

20 layers all using the same parameters to create a set. This was to investigate

the quality of the block as the build progressed. Each set investigated a particular

Z-height increment, calculated based on the track height used. Where samples were

removed from the plates, a bandsaw was used with a bimetal blade, with teeth made

of M42 high speed steel (8% cobalt, hardened to 67-69 Hardness Rockwell C).

3.5.1 Multi-Layer G-code Generation

Generation of G-code instructions follows a similar approach to the single-layer

experiments. With different toolpaths being created for the 90◦ rotations. The flow

chart for the generation of the G-code is shown in Figure A.3 of Appendix A.
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3.5.2 Laser Displacement Measurement of Multi-Layer Parts

The deposition of parts that are larger than a single layer generates too much heat

to use on 3mm thin plates, causing them to buckle, requiring the thick plates for

all multi-layer builds. Due to the weight limit of the microscope stage, thick plates

cannot be analysed using this method. To address this, a Micro-Epsilon optoNCDT

ILD1320-100 laser displacement sensor was installed within the deposition chamber

to accurately measure these parts, using the print bed as the stage to move the parts

under the sensor. An image of it mounted next to the deposition head can be seen

in Figure 3.10.

The ILD1320-100 is designed for industrial and laboratory applications, used for

process monitoring in glass and metal fabrication. It employs optical triangulation

with a 670nm laser diode. The sensor has a z-axis measuring range of 100mm, linear-

ity of less than ±100µm, and a measurement accuracy of 10µm. Test measurements

of tracks were made with both the displacement sensor and microscope to confirm

that measurements were within the 10µm range of accuracy.

Figure 3.10: Mounting arrangements for laser displacement sensor and infrared

thermal sensor in the build chamber.
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The optoNCDT 1320 is effective at measuring highly reflective surfaces despite

not operating in the blue range, due to its optical triangulation, narrow detector

apertures and signal processing. The sensor has a standoff where this range begins

of 50mm from the sensor’s lower surface, it can therefore measure surfaces up to

150mm away. The technology uses a laser source and a separate detector which

receives the reflected laser, see Figure 3.11. The arrangement makes it significantly

more accurate when the surface being measured travels in the direction normal to

the plane of the laser and its sensor.

G-code commands were used to position the part within the measurement range

of the sensor and then move the part at a fixed speed of 2mm/s past the sensor

to measure the cross-section, at a sample rate of 750Hz. The data was logged

using Micro-Epsilon’s SensorTOOL (v1.10.0.53) data logging software. Before

measurements were taken sensor data was output in CSV format and post processed

using bespoke code written in MatLab R2022a to perform the following steps:

Invert data - the sensor measures how far objects are away from it, making the

component appear upside down. The entire dataset is inverted to address this.

Remove skew - A straight line is plotted between the two ends of the scanned

cross-section, the slope of the line defining the skew on the plate. This line is

subtracted from the measured data to remove the skew.

Remove noise - as with the microscope data, some high frequency noise is present

in the measured data, which is removed with a moving mean filter, with a

window of 30 samples.

After processing, maximum height, average height, minimum height and standard

deviation were measured using the same assessment region criteria described above

for the single-layers.
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Figure 3.11: Effect of scanning direction on the optoNCDT 1320 laser displacement

sensor.

3.5.3 Etching of Multi-Layer Parts for Defect Identification

To examine the internal structure of multi-layer parts, components were cut, milled,

ground, polished and chemically etched. Tracks and small components were cut

across their vertical cross-section into small samples. Larger multi-layer blocks were

cut from the substrate and subsequently cut in half.

Samples were ground and polished using a multi-step procedure to successively

reduce the roughness of the cut surface to a scale consistent with the polishing media

used. Initially, the samples were ground with 800 and 1200 grit silicon carbide,

followed by polishing using a 3µm diamond suspension. Between each polishing

stage, the samples were cleaned with tap water to remove residual polishing media.

The samples were etched immediately after polishing to minimise oxidation of the

polished surface.

The etching was performed using Marble’s Reagent (4g of CuSO4, 20ml of

HCl, and 20ml of H2O), which is effective due to its ability to rapidly etch the

surface while simultaneously staining defects. The hydrochloric acid component

etches the surface, uncovering grain boundaries and microstructural details, while
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copper sulphate provides selective staining, particularly highlighting defects such

as porosities or inclusions. Samples were swabbed with reagent for a pre-defined

time and examined using microscopy to determine the optimum duration. This was

determined to be 30s. The samples were subsequently rinsed with distilled water

and dried with a lint free cloth. Images of each etched sample were then taken with

the LEXT OLS5000 SAF confocal microscope to identify defects and examine the

consistency of the parts, dilution of tracks and layers was measured through using

ImageJ with a calibration image to scale the measurements.
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3.6 Multi-Layer Thermal Measurement

The importance of understanding and controlling heat accumulation during the de-

position process was discussed in the Literature Review. It is particularly important

for achieving consistency of the part in terms of its geometry, microstructure and

geometric accuracy. In this experiment, the impact of interlayer pauses on the bulk

heating and how these can be used to control the part temperature are investigated.

Blocks of 20mm x 20mm layers were deposited on plates of 15mm thick cold rolled

316L stainless steel of dimension 114mm x 96mm, with the chemical composition

described in Table 3.4. The print surface was prepared as described in the single-

track section above.

Blocks were produced using process parameters, track and layer overlap ratios

and toolpaths established as optimal in previous chapters, with a range of interlayer

pauses from 30 to 150 s. The temperature of the block and plate was monitored

throughout the deposition process. A laser pyrometer is used to monitor the

underside of the plate and a thermocouple monitors the temperature under the

block. Each block is intermittently moved under an infrared temperature sensor

adjacent to the deposition head during pauses.

The plates were painted on the underside (non-print surface) with heat-resistant

matt black spray paint to increase the emissivity value of the surface. This also

improves the consistency of the finish compared to rough stainless steel, maximising

the reproducibility of the laser pyrometer readings.
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3.6.1 Multi-Layer Thermal Experiment G-code Generation

G-code was generated using the same principles as in the multi-layer experiment.

Additional code was added to move the block under the infrared sensor and wait for

the appropriate pause time, then move back to the deposition head. The z-height

of the print bed was adjusted to ensure that the top surface of the block was at a

consistent height under the infrared sensor. The flow chart for the generation of the

G-code is shown in Figure A.4 of Appendix A.

3.6.2 Temperature Monitoring of the Multi-Layer Process

The thermal modelling and experimentation required coordinated monitoring of the

temperature of the bottom of the build plate, inside the plate and the deposited

layer as it cools. To ensure that the data can be compared to the equivalent thermal

models, the measurements must be carefully synchronised and accurately positioned.

The Meltio M450’s print chamber is sealed to maintain an inert atmosphere and

to contain smoke and dust generated during deposition. This sealed environment

restricts cable access to sensors inside the chamber. Additionally, the limited space

in the chamber, mounting points and movement of the print bed and z-axis sensor

arm further constrain sensor installation. Three sensors were selected that could

accommodate these constraints: a Micro-Epsilon CSL-CF2 Laser Pyrometer, a

Calex PMU201 Infrared Temperature Sensor and a K-type thermocouple with a

Lascar EL-USB-TC-LCD data logger. The cables for the infrared and laser sensors

were routed through an existing cable penetration gland used for the chamber

lighting and the battery powered thermocouple data logger could be securely placed

at the bottom of the chamber.

The CSL-CF2 laser pyrometer was used to measure the underside of the

substrate, mounted on the deposition bed directly underneath the substrate. It is

designed for precise non-contact temperature measurements in a temperature range

of -50◦C to 975◦C, with an accuracy of ±1◦C or ±1%, with a response time of 150

ms. The sensor works well on a range of surfaces with a spectral range of 8 - 14µm
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and can be configured for a range of emissivity settings between 0.2 and 0.95. The

sensor uses two lasers which converge at the focal point of 150mm from the sensor,

measuring a 3mm diameter spot. To aid positioning of the sensor it has two 1mW,

635nm aiming lasers. Data were recorded using Micro-Epsilon’s Compact Connect

(v1.10.9) data logging software.

The emissivity of 316L stainless steel varies significantly with temperature and

oxidation (Valiorgue et al., 2011), to minimise this effect, heat resistant matt black

spray was applied to the underside of the substrate to reduce reflection and increase

the emissivity of the surface to the highest possible value. The maximum emissivity

value of 0.95 was used and calibrated through heating a sample to 240◦C which

was representative of the plate. The sensor’s measurements were validated with a

thermocouple attached to the sample’s surface.

The Calex PMU201 Infrared Temperature Sensor is a compact, non-contact

sensor. It measures surface temperatures ranging from -20◦C to 1000◦C, with a

response time of 125ms and an accuracy of ±1% or ±1◦C. The sensor has a spectral

range of 8 to 14µm and the emissivity range can be set between 0.2 and 1.0. The

sensor provides an average temperature across its spot, it has a spot diameter of

11.9mm at the sensor’s lens, the diameter increases by 1mm for every 20mm from

the lens. With an 8mm standoff the spot size was 12.3mm. This sensor was used for

measuring the temperature of the deposited layer, mounted next to the deposition

head (see Figure 3.10), the part was moved under the sensor by the print bed and

held there for the duration of the pre-planned pause prior to moving back to the

deposition head for the next layer. Data was logged using Calex Config (v1.17) data

logging tool.

Due to the nature of the use of this sensor for measuring interlayer temperature

and cooling, a paint treatment could not be used. An empirical value of the

emissivity of 0.24 was determined through heating a sample which was representative

of the surface immediately after deposition. The infrared sensor’s measurements

were validated with a K-type thermocouple attached to the sample’s surface.
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An inert chamber was used with a local flow of shielding gas to minimise oxidation

of the surface, the machine’s oxygen sensor had a reading of 0.0% (sensor accuracy

±0.2%). An inert chamber was not possible for builds larger than seven layers due

to the machine requiring cooling fans to be used for its glass window. Chamber

humidity was measured to be between 40% to 50% for all builds.

A K-type thermocouple with a Lascar EL-USB-TC-LCD datalogger was used for

measuring the temperature inside the substrate. The 3mm diameter thermocouple

with a stainless steel sheath was fitted into a drilled hole directly under the centre

of the deposited layers. The thermocouple provided a measurement range of -200◦C

to +1350◦C. The datalogger offered a resolution of 0.5◦C and an accuracy of ±1◦C,

measured at 1Hz.

Figure 3.12 shows the schematic arrangement of the sensors about the centre

line of the experiment, which was fixed at the centre of the plate. A mounting

arrangement was used to secure the substrate to the print bed whilst allowing for

sufficient room to mount the laser pyrometer underneath, accommodating its 150mm

focal distance.

The clocks for the sensors’ logging software were synchronised and logging was

initiated prior to the print process commencing. All sensors logged data during the

deposition process, however the infrared sensor’s data was only relevant whilst the

printed component was positioned underneath it during cooling pauses, travel time

to the sensor was an estimated 8s after layer completion. The Z height of the bed

was adjusted for each measurement to ensure that the top surface of the part as it

grew was always at the same distance from the sensor. A flowchart for the deposition

process for this experiment can be seen in Figure 3.13.
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Figure 3.12: Sketch showing the mounting arrangement for the build plate and

thermal sensors.
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Figure 3.13: Flow chart for the deposition and measurement process for multi-layer

thermal experiments.
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3.6.3 Thermal Modelling of Multi-Layer Deposition

The multi-layer experiments described above were simulated using Autodesk’s

Netfabb Local Simulation (2023.0, Solver Version 23.0.0.81). This was to investigate

whether the thermal fields observed through experimentation could be duplicated

through modelling and explore whether an off the shelf engineering tool could

support the identification of an optimum interlayer pause.

Netfabb Local Simulation is a finite element thermo-mechanical simulation tool,

specifically tailored for PBF and wire DED applications. It is intended to function

as a pre-build analysis and parameter optimisation tool specifically focused on

the development of thermal fields and the consequent mechanical stresses caused

and resulting deformation. Netfabb Local Simulation was chosen primarily for

its specialist tailoring for the LWAM process, in contrast to the more broader

capabilities of tools such as ANSYS. Netfabb has pre-constructed libraries of

material models including stainless steel and has predefined the physics of the

deposition process for a single laser LWAM process.

The software uses an ‘lsr’ file format, which is converted from a CAD model

of the part to be simulated. The file describes the power and angle of the laser

source, its direction, distance and speed for each track to be deposited; Table 3.5

summarises the file format. The tool uses a moving volumetric heat source with a

uniform profile to represent the laser energy source. Although this is a simplistic

model and not an accurate description of the laser energy distribution, it is sufficient

to support thermal modelling at a macro scale (Bayat et al., 2021), allowing quick

simulations to be run in a few hours with low processing requirements sufficient for

a PC.

The intention for the thermal modelling is to evaluate whether, at a macro

level, the thermal field created during the deposition process can be replicated and

the impact of pauses investigated. Cuboid blocks were simulated using the same

tool path, head speed and track dimensions as used in the multi-layer experiments

described above. The material properties were specified from Netfabb’s material
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library, summarised in Table 3.6, Table 3.7 summarises the configurable parameters

within the software and Figure 3.14 shows a screenshot of the tool with a 16 layer

block. Boundary conditions, key thermal equations and meshing functions were

fixed within the toolset fot all simulations (Autodesk, 2023).

Laser Power Point source laser power specified in Watts.

Laser Vector
X, Y, Z description of the laser source position relative to

the element being deposited.

Start Point X, Y, Z position of the start of the track.

End Point X, Y, Z position of the end of the track.

Laser Radius Radius of the laser spot in millimetres.

Laser Velocity Head speed of the track deposition in mm/s.

Start Time Time stamp for track deposition to begin.

Table 3.5: Netfabb Local Simulation LSR file format.

Temperature probes were located to extract modelling data aligned with the same

measurement points used with the thermal sensors during the multi-layer thermal

experiment. Figure 3.15 shows the location of these probes on a cross section of a

16-layer block simulation.

Netfabb Local Simulation uses an adaptive meshing method to define elements

for simulating a part. A finer mesh is used near the melt pool to accurately capture

high temperature gradients. As the laser moves away, the mesh is coarsened to

improve simulation efficiency. Autodesk recommends one or two elements per laser

radius in the laser path and at least two elements through the substrate thickness.

The tool also uses adaptive time steps to further improve simulation efficiency.

The simulation uses a solver with a cutback limit per time increment, adjusting

calculations as needed for convergence. In practice, this results in high numbers

of data points during heating cycles as material is deposited and fewer data points

during cooling cycles.

83



Chapter 3. Experimental Methods

Figure 3.14: Screenshot of Netfabb Local Simulation Software.
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Density 7.9 mg/m3

Conductivty 14 W/m K (20◦C)

20 W/m K (500◦C)

Emissivity 0.28 (24◦C)

0.66(949◦C)

Melting

Temperature
1420◦C

Specific Heat 464 W/m K (20◦C)

592 W/m K (1200◦C)

Table 3.6: Netfabb Stainless Steel 316L material specification.

Absorption efficiency 1% - 100%

Plate mounting
Simply Supported or

Cantilevered

Thermal Conditions

(plate and ambient

starting temperature)

0◦C - 1000◦C

Coefficient of convection 5 × 10−4 W/m2K - 200 W/m2K

Meshing elements
Elements per heat source 1 - 10

Fine layers below 1 - 10000

Adaptivity levels 1 - 6

Table 3.7: Netfabb configurable parameters.

Netfabb operates its simulation with a single coefficient of convection, h, which

is used throughout the simulation and does not vary for material or over time.

However, h varies quite significantly with temperature and as the size and surface

of the part change during the deposition process.
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Figure 3.15: Cross section image of 16 layer cuboid simulation in Netfabb Local

Simulation, showing location of temperature probes.
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Effect of Process Parameters on

Single-Track Geometry

The characterisation of process parameters into process windows is an important

first step towards understanding the macro-level dynamics of an LWAM deposition

process. The subsequent characterisation of the shape of the track’s cross-section

and describing its geometry in terms of height and width are key pieces of

information for developing a single-layer and multi-layer model. This approach

is key to ensuring a range of viable parameters are available for process planning,

supporting flexibility in terms of choosing different speeds for the overall deposition

of a layer, energy density and layer height. This is particularly important

when planning optimal process parameters for complex geometries with different

thicknesses and overhangs.

4.1 Exploration of the 800W Process Window

Characterising the deposition process requires significant amounts of material and

time for track measurement and analysis. Consequently, the experimental focus has

been on the 800W process window, using Meltio default parameters as a baseline.

The experiments in the subsequent chapters, which build on this initial work, adopt
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a reductive approach, narrowing the parameter range taken forward for single-layer

and multi-layer builds. Although tracks using different powers were produced during

this experimental phase, they were used to understand how the process window

varies with power and these tracks were not measured.

4.1.1 Initial Visual Assessment - Screening of Tracks

Tracks are first judged using a visual assessment before measuring their height

and width, only tracks that meet the initial assessment of being ’Printable’ are

measured. A categorisation has been developed for the assessment of the single-

track experiments; different terms have been deliberately chosen to those used in

the literature to not confuse them with other definitions. The terms used are:

Printable, Thin, Broken or No Track. Figure 4.1 shows example tracks for each of

these categories. The definitions for these categories are:

Printable A high-quality track, which could be used for multi-track deposition.

The track is uninterrupted and consistent along its length, characterised by a

smooth surface. Its edges are clean and straight along the length of the track

and is securely bonded to the substrate with a contact angle well below 90◦.

There are no visible ripples on the surface.

Thin A track which is not considered suitable for multi-track deposition but is still

well bonded to the substrate and consistent along its length. A ‘transition’

classification between ‘Printable’ and ‘Broken’ tracks, where the tracks are

beginning to show discontinuity or waviness due to dripping or stubbing. This

classification includes tracks that are undercut (contact angle above 90◦) and

exhibit a cylinder-like shape.

Broken Tracks which have clear inconsistencies throughout their length, typically

due to dripping or stubbing. Tracks may be partially bonded to the substrate

due to more extreme dripping or stubbing and tracks could be discontinuous

or could have sections of unmelted wire.
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4.1. Exploration of the 800W Process Window

No Track This refers to track parameters where no material has fused to the

substrate.

Figure 4.1: (a) Printable; (b) thin track with indications of stubbing; (c) broken

track with unmelted wire; (d) broken track with stubbing; (e) broken track with

dripping (all scale bars 10mm).
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4.1.2 Identification of 800W Process Window

The first stage to fully characterise the process window explored combinations of

extrusion rate and head speed across the machine’s usable range. Tracks were

created for parameter combinations between 5mm/s and 25mm/s in increments

of 0.5mm/s, for combinations with a Wire Speed Factor (WSF) of one or higher.

All combinations were repeated three times. The results of the track classification

across the process window can be seen in Figure 4.2 and an example plate of tracks

from this process can be seen in Figure 4.3. This image shows tracks across the

range of classifications, with Printable tracks marked with a tick and tracks with

other classifications marked with a cross.

Figure 4.4 expands on Figure 4.3, showing a successful track within the likely

process window (image a), away from this region, different characteristics are seen.

As the head speed increases (image b), the energy density decreases, resulting in

lower wire and substrate melting causing unfused wire and inconsistent bonding

with the substrate. As the head speed slows (image c) and the energy density

increases, unstable wavy tracks are formed from the excessive material in the melt

pool. When the extrusion rate is too slow (image d), the wire melts before it reaches

the substrate, creating balling, and when the extrusion rate is too high (image e),

above 15.5mm/s, there is insufficient energy to melt, resulting in stubbing.
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4.1. Exploration of the 800W Process Window

Figure 4.2: Classification of tracks printed to identify the 800W Process Window.
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Figure 4.3: Example plate of tracks created to explore the 800W Process Window.
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Figure 4.4: Examples of 800W track morphology in associated with different

approximate locations in the process window. Showing (a) a successful track, (b)

stubbing, (c) dripping and (d and e) balling.

The classification of the tracks shows that consistent tracks, which are bonded to

the substrate can be produced at all extrusion rates used within the range. Tracks

stop being classified as Printable at 15.5mm/s, as the volume of material becomes

too high, resulting in unacceptable contact angles and increased variability in track

height. Repeat tracks at 15.5mm/s extrusion rate vary between being classified as

Printable or Thin across the range of head speeds used, which is similarly the case for

tracks at 5.5mm/s head speed. This aligns with the ’transition zone’ (Motta, Demir,

and Previtali, 2018) between high-quality tracks and those that are considered poor.

These results underline the assertions regarding the energy efficiency of coaxial

LWAM systems versus the more conventional radial laser LWAM systems. The

process windows shown in Figure 2.8 of the Literature Review show process windows
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for tracks in the power range of 1200W - 2200W, which is significantly higher power

than that required for this system.

The process window for Printable tracks is generated from these data using

MATLAB R2022a. The dataset is algorithmically analysed to identify the boundary

that distinguishes between Printable and non-Printable parameter combinations. A

boundary function is used to create an outline around these high-quality repeatable

points, defining the process window for Printable tracks, shown in Figure 4.5, the

boundaries for this are summarised in Table 4.1. To ensure that the process window

covers only parameter combinations which reliably produce tracks that are Printable,

the boundary is drawn inside the transition zone where duplicate tracks can receive

different classifications.

Figure 4.5: Algorithmically derived 800W process window.
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Maximum Extrusion Rate 15.25mm/s

Minimum Extrusion Rate 7.5mm/s

Maximum Head Speed 13.6 mm/s

Minimum Head Speed 5.5mm/s

Maximum Wire Speed Factor 2.5

Minimum Wire Speed Factor 1

Table 4.1: 800W Process Window Boundaries.

4.1.3 Meltio M450 Default parameters

Meltio supply the M450 with a default combination of process parameters which

they have empirically identified to produce repeatable high-quality tracks in 316LSi

stainless steel. These are a laser power of 800W, head speed of 7.5mm/s and an

extrusion rate of 11.5mm/s, creating a WSF of 1.53. These parameters can provide

a useful baseline for the overall variability of the deposition process.

A set of six sample tracks were deposited using these parameters, to serve as

the baseline for the process. These tracks are used for the definition of a ‘Printable’

track during visual assessment and, since these parameters can successfully produce

multi-layer parts, define the level of acceptable variability of a track’s height and

width.

The six baseline tracks were deposited and measured for height and width;

Figure 4.6 shows an example of a 50mm single track and Figure 4.7 its etched cross-

section. Figure 4.8 shows example cross-sections of each of the tracks, taken using

the OLS5000 confocal laser microscope, their mean height and width summarised

in Table 4.2.
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Figure 4.6: Image of example track printed using Meltio’s default parameters (Vh

7.5mm/s and Vf 11.5mm/s).

Figure 4.7: Etched cross-section of track printed using Meltio’s default parameters,

flaws seen in the track are due to cutting.
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Figure 4.8: Example cross-section measurements of six tracks created with Metlio

Default Parameters.

97



Chapter 4. Effect of Process Parameters on Single-Track Geometry

Height

(mm)

Width

(mm) Height/Width

Track 1 0.823 1.950 0.42

Track 2 0.794 1.873 0.42

Track 3 0.783 2.070 0.38

Track 4 0.757 2.210 0.34

Track 5 0.789 1.985 0.40

Track 6 0.754 2.110 0.36

Mean 0.783 2.033

Standard Deviation 0.026 0.121

Coefficient of Variation (%) 3.27 5.96

Range 0.069
0.337

Range as % of Mean 8.81 16.58

Table 4.2: Height and width measurements of six tracks printed with Meltio’s default

parameters.

These data show that the height and width measurements for the tracks

are consistent as a set, with slightly less variability in height than in width

measurements. The top-down nature of the microscope measurements prevent

detection of undercutting at the track edges; however, all contact angles are well

below 90◦and visual assessment of the track did not identify any undercutting. The

contact angle of the etched cross-section is estimated to be 56◦, with a dilution

(Equation 2.9) of 38%. This level of dilution exceeds the suggested optimum of

between 10% and 30% (Dass and Moridi, 2019). The track geometry is comparable

to the tracks shown in F. Liu et al. (2022), who used a coaxial system, suggesting

that this geometry is acceptable for a coaxial laser energy source; the track is well

bonded to the substrate and the track height is sufficiently high to create a layer.
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The track dimensions are consistent across the set, but the cross-sections and track

images show variation in shape, deviating from a regular cross-section, which is

typical of the process and forms the baseline for acceptable track variability.

4.1.3.1 Isolating Individual Variables to Determine Track Geometry

To investigate the effects of varying the individual parameters, the extrusion rate

was fixed at 11.5mm/s and head speeds from the machine’s minimum of 5.5mm/s

up to 11.5mm/s were used, increasing in 1mm/s increments. Head speeds above

this were excluded to prevent broken tracks, as the WSF would fall below unity,

where the head is moving faster than the material extruded. Subsequently, the head

speed was fixed at 7.5mm/s and the extrusion rates varied from 7.5mm/s, to the

maximum extruder speed of 25mm/s

Dimensions for tracks classified as ‘Printable’ with fixed extrusion rate are plotted

in Figure 4.9 and summarised in Table 4.3; Printable tracks with fixed head speed

are plotted in Figure 4.10 and summarised in Table 4.4. Tracks printed with a fixed

head speed were classified as ‘Printable’ up to an extrusion rate of 15mm/s, and

beyond this speed, tracks were classified as ‘Thin’. As the WSF increased above

2, the additional material produced large variable tracks with high contact angles,

shown in image b of Figure 4.1.
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Figure 4.9: Track height and width measurements versus head speed, for a fixed

extrusion rate of 11.5mm/s.

Head

Speed

(mm/s)

WSF
Width

(mm)

Height

(mm)

Contact

Angle

(degrees)

5.5 2.09 2.22 0.95 39

7.5 1.53 2.19 0.74 54

9.5 1.21 2.00 0.60 50

11.5 1 1.81 0.55 50

Table 4.3: Track measurements for a fixed extrusion rate of 11.5mm/s.
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Figure 4.10: Track height and width measurements versus extrusion rate, for a fixed

head speed of 7.5mm/s.

Extrusion

Rate

(mm/s)

WSF
Width

(mm)

Height

(mm)

Contact

Angle

(degrees)

7.5 1 1.918 0.6 51

9.5 1.27 1.884 0.701 55

11.5 1.53 2.03 0.783 56

13.5 1.8 1.992 0.901 61

15.5 2.07 1.966 0.983 43

Table 4.4: Track measurements for a fixed head speed of 7.5mm/s.
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These data show that when other parameters remain constant, increasing the

head speed reduces the track height, whereas increasing the extrusion rate raises it,

resulting in high values of R2 shown in the linear fit lines. This is consistent with

the volume conservation described in Equation 2.2, a decreasing WSF results in

a decreased cross-sectional area. The relationship between the process parameters

and the track width is weaker. The maximum track width is limited by the laser

spot size, additional material from an increased extrusion rate cannot go wider than

the laser spot width making the track height grow. Decreasing the extrusion rate

reduces the volume of material deposited, which consequently reduces the amount

of material to melt, increases the heat in the melt pool and increasing wetting, as

shown by Oliari, D’Oliveira, and Schulz (2017), creating a wider and flatter track.

Therefore, changes in head speed have more of an effect on width, increasing head

speed narrows the size of the melt pool and as the energy density is reduced, a

narrower track is created.

This effect is also shown in the aspect ratio of the track (height/width) versus

head speed and extrusion rate, Figures 4.11 and 4.12 respectively. As the head speed

increases, the aspect ratio decreases. In contrast, as the extrusion rate increases,

the aspect ratio increases. The aspect ratio reflects the relative height of the track

compared to its width; a higher ratio implies a taller and narrower track. Therefore,

modifying the head speed changes the shape of the track, becoming wider relative

to its height as the speed increases and taller relative to its width as the extrusion

rate increases.
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Figure 4.11: Aspect ratio of track versus head speed, for a fixed extrusion rate

11.5mm/s.

Figure 4.12: Aspect ratio of track versus extrusion rate, for a fixed head speed of

7.5mm/s.
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To confirm these findings an experiment was conducted using a fixed WSF of 1.53

and first varying the extrusion rate and head speed combinations and, secondly using

the same head speed and extrusion rate, varying the laser power. The parameter

combinations and track measurements are summarised in Tables 4.5 and 4.6; these

data are plotted in Figures 4.13 and 4.14 for the varied head speed and extrusion

rate with a fixed WSF and Figures 4.15 and 4.16 for the Fixed WSF with varied

power.

Head

Speed

(mm/s)

Extrusion

Rate

(mm/s)

Height

(mm)

Width

(mm)

Area

(mm2)

Height /

Width

5.50 8.40 0.75 2.29 1.35 0.33

7.50 11.46 0.78 2.10 1.29 0.37

7.50 11.46 0.78 2.11 1.29 0.37

7.50 11.46 0.78 2.04 1.25 0.38

8.83 13.50 0.81 2.02 1.29 0.40

9.50 14.51 0.81 2.01 1.28 0.41

10.00 15.28 0.82 1.96 1.27 0.42

12.50 19.06 0.82 1.88 1.22 0.44

Table 4.5: Process parameters and measured track dimensions for a fixed WSF of

1.53 and fixed Power of 800W.
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Power
Height

(mm)

Width

(mm)

Area

(mm2)

Height/

Width

800 0.78 2.10 1.29 0.37

650 0.85 1.86 1.24 0.46

950 0.73 2.36 1.36 0.31

800 0.78 2.11 1.29 0.37

800 0.78 2.04 1.25 0.38

700 0.83 1.94 1.26 0.43

600 0.89 1.75 1.22 0.51

Table 4.6: Process parameters and measured track dimensions for a fixed extrusion

rate of 7.5mmm/s and extrusion rate of 11.5mm/s (WSF of 1.53) and varied powers.

Figure 4.13: Track height and width versus head speed for fixed WSF 800W tracks.
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Figure 4.14: Track cross-section area and height:width versus head speed for fixed

WSF 800W tracks.

Figure 4.15: Track height and width versus laser power for fixed WSF tracks.
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Figure 4.16: Track cross-section area and height:width versus laser power for fixed

WSF tracks.

By isolating the WSF and hence the mass flow into the tracks, these data support

the observations that increases in head speed reduce the track width and the overall

cross-sectional area of the track. As the laser power is increased, it can be seen to

have a significant effect on the track width as track wetting increases, consequently

reducing the height, supporting the observations made by Oliari, D’Oliveira, and

Schulz (2017).
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4.2 Numerical Model of Track Geometry

Track height and width for all Printable 800W tracks are plotted against WSF in

Figure 4.17. It supports the observations seen previously for fixed head speed and

extrusion rates, showing a strong relationship between increasing WSF and track

height and a much weaker relationship with track width. Figure 4.18 shows these

height data with the coefficients for the best-fit line, allowing the height, ht, to be

estimated from the WSF, described in Equation 4.1.

Figure 4.17: Track height and width versus WSF for all the Printable 800W tracks.
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Figure 4.18: Track height versus WSF with beset fit line for all the Printable 800W

tracks.

ht ≈ 0.38 ×WSF + 0.19 (4.1)

The relationship between WSF and the cross-sectional area of the track is shown

in Figure 4.19, which plots the height×width versus the WSF. This shows a linear

relationship between the two, the results aligning closely to a y = x line of equality,

represented in Equation 4.2. The calculation of the cross-sectional area of the track

is described in Equation 4.3, where x is the shape factor of the cross-section and d

the diameter of the wire, if it were a semi-ellipse x = π/4 or a parabola x = 2/3.

ht × wt =
vf
vh

(4.2)
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Figure 4.19: Height × Width versus WSF with fits for semi-ellipse and parabola

track shapes.

ht × wt ×
π

4
=

vf
vh

× x× d2 (4.3)

As the diameter of the wire is 1mm, d can be removed from the equation.

Therefore, this would imply that if the experimental data showed a semi-elliptical

shape for the track, a plot of height×width versus the WSF would align to a line of

equality for a semi-ellipse or to a line with a gradient of 1.18 for a parabolic shape.

Both fit lines are plotted in Figure 4.19 and show a fit to a semi-elliptical shape.

The two Equations 4.1 and 4.3 allow an approximation of the track height to

be made for the 800W process parameters, within the process window defined in

Figure 4.5. Figures 4.17, 4.18 and 4.19 show a number of tracks printed at a WSF

of 1 and 1.53 (Meltio baseline tracks), which should all have the same height and
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4.2. Numerical Model of Track Geometry

width results from these equations; however, the plots show various track geometries.

Tracks with a WSF of one have varied head speeds and extrusion rates and have

a spread of height measurements of 0.08mm and a spread of width measurements

of 0.39mm. When considering the R2 of 0.952 for the fit of the track height, most

of the variability shown therefore comes from the measurement of the track width.

Therefore, both sets of fixed WSF are within the range of the variability of the

baseline process (16. 6% of the measured value for width and 8.8% for height).

The causes of variability in the process remain unexplained and are particularly

associated with the width of the track, which reduces the overall accuracy of the

prediction of the geometry of the track. There are likely to be many sources causing

this variability and to characterise these further requires further research, as there is

little in the literature relevant to this process. Sources of this variability may include

measurement accuracy, varying energy density due to changes in head speed, plate

surface quality and temperature, machine tolerances, cooling rates, atmospheric

conditions, consistency of shielding gas flow, laser stability and health of the laser

system (Suryakumar et al., 2011; Zapata et al., 2022).

4.2.1 Determination of Cross-Section Shape

A description of the cross-sectional shape of the track is required to calculate its

cross-sectional area, allowing the optimal overlap of the tracks to be determined for

a single layer and the likely height of the layer to be predicted.

To determine which shape fits the experimental data more closely, the equivalents

of a semi-ellipse and parabola were calculated for all 800W tracks measured using

the height and width of the track. To compare the fit of each shape the Residual

Sum of Squares (RSS) was calculated. The equation for calculating RSS is shown in

Equation 4.4, where yCSA is the curve that describes the actual cross-sectional area

of the track and f(x) the parabola or semi-ellipse curve.

Tracks were characterised as either a semi-ellipse or parabola based on which had

the lower RSS value. The cross sections were also visually checked to confirm this.
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This resulted in 71% of the tracks being classified as a semi-ellipse. This supports

the results shown in Figure 4.19, where height× width align to a line of equality.

A sample of six of the track cross-sections compared to their equivalent semi-

ellipse and parabola is shown in Figure 4.20, the calculated RSS and subsequent

classifications are summarised in Table 4.7. The single-layer model developed in the

following chapter therefore assumes a semi-ellipse track cross-section.

RSS =
n∑

i=1

(yCSA,i − f(xi))
2 (4.4)

Figure 4.20: Example track cross-sections compared to their equivalent parabola

and semi-ellipse.
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Chapter 4. Effect of Process Parameters on Single-Track Geometry

4.3 Machine Learning Derived Process Window

Given the variability in the data, particularly with respect to track width measure-

ments and the experimental overhead in determining the process parameters for a

single laser power, Machine Learning (ML) tools were investigated. The objective

of this investigation was to determine whether these tools could be used to predict

process windows for a wider range of powers than those examined experimentally.

To support this objective, a limited number of additional tracks were also created

for 550W, 750W and 950W, their process windows shown in Figures 4.21, 4.22 and

4.23 and their boundaries summarised in Tables 4.8 and 4.9. These plots show that

as the laser power is reduced, the viable range of parameters decreases as a result of

the reduced energy density of the process. Counterintuitively, this window appears

to sit at higher extrusion rates but with decreasing head speeds, around a WSF

of two, rather than closer to a WSF of one where less material is being extruded

to melt. The data available for 950W was limited; however, at this power it is

possible to produce thin tracks, but very few that meet the definition of Printable;

consequently, no process window is drawn for this power.
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4.3. Machine Learning Derived Process Window

Figure 4.21: 550W track classification and process window.

Maximum Extrusion Rate 16.5mm/s

Minimum Extrusion Rate 14.5mm/s

Maximum Head Speed 9.5mm/s

Minimum Head Speed 5.4 mm/s

Maximum Wire Speed factor 2.75

Minimum Wire Speed factor 1.5

Table 4.8: 550W Process Window Boundaries.
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Figure 4.22: 750W track classification and process window.

Maximum Extrusion Rate 16.7mm/s

Minimum Extrusion Rate 12.2mm/s

Maximum Head Speed 11.1mm/s

Minimum Head Speed 5 mm/s

Maximum Wire Speed factor 3

Minimum Wire Speed factor 1.5

Table 4.9: 750W Process Window Boundaries.
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4.3. Machine Learning Derived Process Window

Figure 4.23: 950W track classification.

4.3.1 Machine Learning Prediction of Visual Track Assess-

ment

To predict the outcome of the visual assessment of the quality of the track, a

predictive classification ensemble was found to be the most accurate, showing

approximately 90% accuracy of its prediction of the validation data prior to

optimisation of hyperparameters. The performance of the architectures evaluated

at this initial stage is shown in Table 4.10. It is not possible to compare the fit or

appropriateness of this network architecture type with the literature, as this stage

of network architecture selection is typically omitted from published work. This is

likely because network architectures can have a wide variety of performance based

on the specifics of the data used in each case.

A Predictive Classification Ensemble is a supervised learning algorithm used

primarily for classification problems, making it particularly suitable for this kind

of classification. A classification ensemble is made up of a weighted combination of

multiple classification models, which increases predictive performance and flexibility.

Predictive Classification Ensemble work by identifying a hyperplane with the
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maximum possible margin that best separates data into classes (Machine Learning

with MATLAB 2022). The optimal configuration of hyperparameters is summarised

in Table 4.11, input data was normalised by the MatLab function but not scaled

(i.e. not scaled to have a mean of zero and a standard deviation of one).

Model Architecture
Accuracy

(Validation)

Optimisable Tree 90%

Bagged Trees 88%

Support Vector Machine 87%

Neural Network 86%

Fine Tree 85%

Medium Tree 85%

Fine KNN 85%

Cubic KNN 83%

Weighted KNN 83%

Optimisable

Discriminant
82%

Näıve Bayes 82%

Medium KNN 81%

Logistic Regression 80%

Coarse KNN 78%

Cosine KNN 78%

Logistic Regression

Kernel
78%

Coarse Tree 76%

Table 4.10: Comparison of the performance of ML network architectures for

prediction of visual track assessment.
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4.3. Machine Learning Derived Process Window

Model Property Value

MinParent 2

MinLeaf 1

MaxSplits 23

NVarToSample 10

MergeLeaves off

Prune off

Version 3

Method Tree

Type Classification

Nlearn 12

LearnRate 1

Default Score 0

Method Bag

Type Classification

NumObservations 121

Prior [0.5867,0.4132]

Cost [0,1;1,0]

ScoreTransform None

FitInfoDescription None

NumTrained 12

CombineWeights WeightedAverage

Fresample 1

Replace 1

Table 4.11: Optimised hyperparameters for Predictive Classification Ensemble

network.
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To further improve the accuracy of the training data, augmentation was

used to duplicate and add the original data set back onto itself. A training

algorithm was created to iteratively train networks with the above hyperparameter

configuration, while successively switching in and out different training parameters

to identify whether the full set of training data was optimum for accuracy. For

all iterations, head speed, extrusion rate and WSF were included as training

parameters, combinations of other key process information were changed in and

out and their accuracy compared, summarised in Table 4.12. It was found that

there was little difference for many of the combinations of training data in terms of

accuracy or fit; however, using no additional parameters or all of them was found

to reduce the accuracy of the network. The ID 6 combination was selected for the

final network as it contained the most parameters that characterise the material

properties, which is anticipated to make the network more portable should it be

used to predict the performance of other alloys, and it was also the best performing

combination of parameters for the track geometry network, reducing the complexity

of managing the dataset.

The network was trained using all the experimental data available, including

observations made with powers other than 800W, provided in Appendix B. However,

experimental data for the 750W tracks were excluded, to examine how accurately

the network could predict the outcome of tracks for which it had not been trained.

Figure 4.24 compares the process windows determined by the network with those

determined algorithmically from the experimental data, the window properties are

compared in Table 4.13.
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4.3. Machine Learning Derived Process Window

ID P
Vf

P
Vh

Energy

Per

Unit

Length

Fourier

No

Heat

to

Melt

Energy

Den-

sity

% Cor-

rect
R2

1 FALSE FALSE FALSE TRUE FALSE FALSE 0.981 0.920

2 TRUE FALSE TRUE FALSE TRUE FALSE 0.981 0.916

3 TRUE TRUE FALSE FALSE FALSE TRUE 0.981 0.916

4 TRUE TRUE TRUE FALSE FALSE FALSE 0.981 0.913

5 FALSE TRUE TRUE FALSE FALSE FALSE 0.981 0.910

6 FALSE TRUE TRUE TRUE TRUE TRUE 0.981 0.910

7 TRUE TRUE TRUE TRUE TRUE TRUE 0.962 0.836

8 FALSE FALSE FALSE FALSE FALSE FALSE 0.868 0.394

Table 4.12: Results from assessment of successively switching in and out different

training parameters on network accuracy.
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Figure 4.24: ML predicted process windows compared to those seen experimentally.

122



4.3. Machine Learning Derived Process Window

800W 750W 550W

Experiment ML Experiment ML Experiment ML

Maximum Extrusion Rate (mm/s) 15.6 16.8 16.8 16.9 16.5 16.8

Minimum Extrusion Rate (mm/s) 7.5 6.4 12.9 9.3 14.5 14.5

Maximum Head Speed (mm/s) 13.6 13.6 16.5 13.5 9.5 9.8

Minimum Head Speed (mm/s) 5.5 5 5 5 5.4 6.6

Maximum Wire Speed factor <2.5 2.2 3.1 2.2 <2.75 2.2

Minimum Wire Speed factor >1 1.1 1.5 1.1 >1.5 1.5

Table 4.13: Comparison of ML and experimental process window boundaries.

These data show that the model has predicted process windows for the 550W

and 800W data, showing that it is capable of interpreting the training data well.

The window predicted for 750W is more conservative in terms of the maximum

WSF, which comes from the maximum predicted extrusion rate with the lowest

anticipated head speed, the bottom right-hand corner of the process window. At

the other extreme, the ML process window predicts a lower minimum WSF than

seen experimentally in the bottom left corner of the window. Although the windows

do not completely align with the experimentally derived window, they overlap well

and are transitioning to a smaller window from 800W to the 550W and would serve

as a starting point to steer a reduced experimental investigation.

4.3.2 Machine Learning Prediction of Track Geometry

For predicting track geometry, a Cascade Forward Network architecture was iden-

tified as having the best performance during the initial comparison of architecture

types, with a Root Mean Square Error (RMSE) of 0.036 for the predictions of the

test data using an unoptimised network. The performance of the network compared

to the others assessed is summarised in Table 4.14.

A Cascade Forward Network is a form of feed forward artificial neural network

where each neuron has connections to every subsequent layer, creating a ”cascade”
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of information flow that includes not just the outputs from the previous layer but

also from all preceding layers. This structure extends the layer interaction within

the network, which can be particularly beneficial for capturing complex patterns in

data.

Custom code was written to iteratively explore both the number of layers and

the number of nodes in each layer. The networks were trained with one to four layers

and between one and twenty nodes in each layer. Three architectures had similar

performance: a three-layer network with 3, 10 and 7 nodes in its layers or a two-layer

network with layers containing 4 and 16 nodes or 9 and 11 nodes. Although they

had similar accuracies, the two-layer network of 9 and 11 nodes was used, as simpler

networks are less prone to overfitting and hence better at generalisation.

A range of transfer functions can be used for each of the layers, the default

hyperbolic tangent sigmoid functions in the first hidden layer and a linear transfer

function for the second proved to be most effective. Training was limited to 200

epochs, which defines how many times the learning algorithm will work through the

entire training dataset, allowing sufficient training for the network to converge to

an optimal set of weights for each node. The network performed more accurately

without scaling or normalisation, but the training data were augmented in the same

manner as the track quality prediction network, providing a training data set of

148 measurements. As with the visual assessment network, a training algorithm

was created to iteratively train networks, switching in and out different training

parameters to identify whether the entire set of training data was optimum; the

five highest performing combinations are summarised in Table 4.15, the highest

performing combination was used.
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4.3. Machine Learning Derived Process Window

Model Architecture RMSE

Cascade Forward

Network
0.035

Quadratic SVM 0.036

Exponential GPR 0.038

Matern 5/2 GPR 0.038

Narrow Neural Network 0.038

Rational Quadratic

Gaussian Process

Regression (GPR)

0.039

Coarse Gaussian SVM 0.042

Cubic SVM 0.047

Fine Tree 0.054

Medium Tree 0.054

Boosted Trees 0.055

Bagged Trees 0.056

Medium Gaussian SVM 0.079

Narrow Neural Network 0.084

Coarse Tree 0.088

Medium Neural Network 0.107

Fine Gaussian SVM 0.109

Linear SVM 0.127

SVM Kernel 0.159

Wide Neural Network 0.237

Fine Tree 0.605

Linear Regression 11.61

Table 4.14: Comparison of the performance of ML network architectures for

geometry prediction.
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Track geometry measurements taken for 800W Printable tracks were used to

train the, the data is provided in Appendix C. To test the network, 15% of

the experimental data was randomly selected and removed from the training and

validation data. These test data were used to assess the accuracy of the ML trained

network. The predicted height and widths for the same test data were calculated

using Equations 4.1 and 4.3, which were calculated from the line fit polynomials

taken from the experimental results. The results of the predictions, ordered by

WSF are shown in Table 4.16 and Figure 4.25.

The polynomial-based prediction of height shows a good fit, with a slightly

better performance than the ML model. The accuracy of the width prediction

is much weaker, discussed in the previous section, the variability of the data is

not well accounted for in the polynomial; the ML model is able to overcome this

limitation and predict the width of the tracks with much higher accuracy. This

is likely because of the model’s ability to make additional inferences between the

process parameters and the track dimensions through the additional dimensionality

created by the network’s data processing. Therefore, it can infer connections between

training data and responses that have not been detected in the analysis to create

the polynomial.

The literature review found little published on the strength of ML tools to

reduce the effects of process variation in this discipline, or to support the process

characterisation of coaxial systems. This result shows a useful application of ML

tools to provide insight and additional accuracy when characterising the process

window, mitigating the effects of process variation and the experimental burden of

characterising it.
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Figure 4.25: Comparison of ML predicted track height and width accuracy versus

experimentally derived polynomial.
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4.4 Conclusions

The study has evaluated the process parameters at 800W and how they can create

high-quality tracks. It has established a process window to determine successful

combinations of parameters and an equation to estimate track height and width.

The experimental data supports a semi-elliptical cross-sectional shape, which can

be used when creating a single-layer model for this process. These conclusions add

to the limited research published on track geometry models for coaxial systems.

A strong correlation is observed between the process parameters and the height

of the track compared to the width, with a greater variability in the measured track

width. The factors that determine this variability are not fully understood and could

be further characterised. To counteract this, the development of an ML network for

the prediction of track width improved the accuracy of the prediction. Although

substantial research has been published regarding ML applications within this field,

this work adds new insight into its benefits for mitigating the causes of process

variability when predicting track geometries.

It was shown that the ML model could be used to interpolate the experimental

results, supporting the need to reduce the experimental time and cost, by

streamlining the characterisation process. A continuation of the application of the

tool with the methods seen above could reduce the volume of experiments and

measurements by providing information about the likely process windows, reducing

the range of parameter combinations to explore.
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Chapter 5

Optimisation of Single and

Multi-Layer Deposition

The optimal 800W process parameters and the macro-level dynamics identified for

track deposition allow the development of a single-layer model. A single-layer model

supports parameter planning when slicing CAD models into multi-layer builds by

allowing layer heights to be accurately predicted, optimising geometric accuracy

and limiting the likelihood of pores. This single-layer model can form the basis

for identifying the optimum multi-layer process parameters, particularly the Z-axis

increment, to ensure that layers are predictable and consistent.

5.1 Optimisation of Single Layer Deposition

5.1.1 Effect of Track Separation on Layer Height

Layers were printed for a range of combinations of track parameters from within

the 800W process window. The tracks were selected to represent a range of track

geometries by choosing a variety of height-to-width ratios (HWR). The combinations

used are summarised in Table 5.1. The literature suggests an optimal track

separation x (the overlap ratio of the track width, see Equation 5.1) of between
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x = 2/3 and x = 0.7 of the track width (Ding et al., 2015). However track shape

is affected by many variables and the available literature uses different deposition

methods (WAAM, single laser etc.), which will therefore result different shaped cross

sections to the Meltio M450. These values for x can therefore only be used as a guide.

Layers were created with values for x of 0.5, 2/3, π/4 and 0.9 of the measured track

widths for each track type.

Figure 5.1 shows an example of a plate with some of these layers. It is clear from

this image that as the separation of the tracks increases, the ridges on the surface

become more pronounced as the individual tracks become more apparent.

ID
Head Speed

(mm/s)

Extrusion Rate

(mm/s)
WSF

Track Width

(mm)

Track Height

(mm)
Height/Width

1 5.50 15.50 2.82 2.20 1.07 0.49

2 7.50 11.50 1.53 2.18 0.74 0.34

3 7.50 13.50 1.80 1.95 0.91 0.47

4 7.50 15.50 2.07 1.99 1.04 0.52

5 8.21 12.31 1.50 1.91 0.73 0.38

6 9.50 17.50 1.84 2.01 0.86 0.43

7 11.50 15.50 1.35 1.81 0.73 0.41

8 12.31 12.31 1.00 1.94 0.53 0.27

9 13.50 17.50 1.30 1.04 0.15 0.15

10 13.50 22.50 1.67 1.64 0.77 0.47

Table 5.1: Combinations of track parameters and their dimensions used for single-

layer experiment.
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Figure 5.1: Example of plate with single-layer samples, with a range of track settings

and track spacings.

Measurements of the height of the layer, hl, its standard deviation and the width

of the layer, wl, are shown in Table 5.2 for setting IDs 2, 6 and 10; Figures 5.2, 5.4

and 5.5 show their measured cross sections and Figure 5.3 the etched cross sections

for setting ID 2.
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x No. Tracks
Mean hl

(mm)

Max hl

(mm)

Min hl

(mm)

Std. Dev.

(Height)

wl

(mm)

ID 2- Vf 11.5mm/s, Vh 7.5mm/s, ht 0.74mm, wt 2.18

0.5 24 1.17 1.33 0.96 0.074 25.03

2/3 19 0.84 1.04 0.55 0.138 25.13

π/4 16 0.66 0.91 0.38 0.183 25.46

0.9 14 0.51 0.71 0.19 0.288 26.31

ID 6- Vf 17.5mm/s, Vh 9.5mm/s, ht 0.86mm, wt 2.01

0.5 25 1.43 1.68 1.23 0.064 26.35

2/3 19 1.09 1.26 0.83 0.074 25.67

π/4 16 0.88 1.06 0.61 0.119 26.66

0.9 14 0.7 0.98 0.27 0.201 26.22

ID 10- Vf 22.5mm/s, Vh 13.5mm/s, ht 0.77mm, wt 1.64

0.5 30 1.57 1.88 1.31 0.069 26.55

2/3 23 1.11 1.31 0.85 0.094 25.56

π/4 20 0.93 1.14 0.66 0.113 26.01

0.9 17 0.81 1.16 0.32 0.228 27.09

Table 5.2: Measurements of the layer height, its standard deviation and layer width,

for track setting IDs 2, 6 and 10.
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Figure 5.2: Measured layer height cross sections for track parameter setting ID 2.
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Figure 5.3: Etched layer cross sections for track parameter ID 2, with a scale bar of

5mm.
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Figure 5.4: Measured layer height cross sections for track parameter setting ID 6.
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Figure 5.5: Measured layer height cross sections for track parameter setting ID 10.
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These data show that the stepover with the lowest layer height variability, seen

by visual inspection and in the calculated standard deviation, is x = 0.5. This seems

sensible, as the tracks become spaced further apart, the individual tracks become

more pronounced, increasing the variability of the surface. The etched cross sections

of the layers show a clean flat layer for x = 0.5, with tracks that are consistent and

regular in their overlap and remelting. The etches show the layer surface and the

layer overlaps becoming increasingly irregular as the track separation increases.

The etches would also suggest that the penetration depth is deeper for the higher

stepover values, approximately 8% for x = 0.5, 13% for x = 2/3, 22% for x =

π/4 and 31% for x = 0.9. This effect is caused by less remelting of each of the

previously deposited tracks. As the track separation distance increases, more of

the substrate is melted, resulting in more dilution into the substrate. This reduced

level of dilution into the substrate would suggest that a greater proportion of the

laser energy remains in the deposited layer, which could reduce bulk heating in a

multi-layer build. However, the reduction in dilution in the previous layer increases

the need for the layers to be flat, and the reduced remelting may not remove the

waviness of the surface, resulting in interlayer porosity.

Tracks that remelt less of the previous layer may result in better outcomes

due to fewer reheating cycles of deposited material and slower bulk heating of the

component, as more of the laser energy is likely to remain in the deposited layer.

However, wider spaced tracks may result in greater tolerance of surface variability

due to additional remelting of the previous layer and potentially better bonding

between the layers. The convention in the literature is to optimise the process

to achieve the flattest possible surface and no link was identified in the literature

between stepover and dilution with the previous layer. This effect may only become

evident with the relatively low powers and dilution levels achieved with a coaxial

LWAM system.

The ratio of layer height to track height versus track stepover is shown in Figure

5.6; it shows that as the track separation increases, the mean layer height decreases
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and the ratio to track height eventually goes below 1 as the individual tracks become

more distinct. The error bars show that the standard deviation increases with

increasing stepover distances.

Figure 5.6: The ratio of layer height to track height versus track stepover distance

for all layers in Table 5.1.
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The increase in standard deviation with the stepover can be seen in Figure 5.7,

the standard deviations have been normalised by dividing the standard deviation by

its mean layer height. As the tracks are spaced further apart, the additional material

created by the overlapped tracks is reduced and the created valley cannot be bridged,

revealing more of the surface of the individual tracks. This increases the variability

in the height of the layer’s surface and reduces the mean layer height. These results

support the literature that, whilst it is not possible to achieve a perfectly flat surface

(Ding et al., 2015), there is an optimal separation of tracks where material from the

overlapping tracks is equivalent to the valley space created between them (Cao

et al., 2011). The optimal track separation for this process is lower than the values

identified in the literature; however, the published work in this area is for WAAM-

based technologies, which result in tracks with a different height to width profile.

Figure 5.7: Normalised standard deviation versus stepover as a percentage of track

width for all layers in Table 5.1.
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5.1.2 Impact of Track Count on Layer Thickness

The review of the literature identified that some single-layer models show a

relationship between the height of the layer and the number of tracks used within

the layer (Ding et al., 2015; Cao et al., 2011). To evaluate this effect, layers were

created with a range of track numbers; all tracks used a fixed stepover of x = 0.5,

the lowest surface variability identified above. Layers were created using 2, 4, 8 and

20 tracks for three different extrusion rate and head speed combinations. The track

settings and the resulting layer measurements are shown in Table 5.3, and an image

of the plate produced is shown in Figure 5.8.

These data show that there is a clear relationship between the mean height of

the layer and the number of tracks used to create the layer, the height increasing

with the number of tracks in the layer. These results support the models developed

by Ding et al. (2015) and Cao et al. (2011); however, their models did not quantify

this effect or evaluate it experimentally.

Vh Vh WSF
Track Height

ht (mm)

Track Width

wt (mm)
No. Tracks

Mean

hl (mm)

Max

hl (mm)

Min

hl (mm)

Std. Dev.

(hl)

1 0.60 0.60 - 0.02

2 0.78 0.78 - 0.16

4 0.78 0.81 - 0.22

8 0.85 0.91 0.79 0.06

7.5 7.5 1 0.60 1.92

20 0.90 0.95 0.64 0.05

1 0.79 0.79 - 0.01

2 0.96 0.96 - 0.09

4 1.09 1.19 - 0.04

8 1.12 1.21 1.07 0.04

7.5 11.5 1.53 0.74 2.18

20 1.17 1.23 0.96 0.05

1 0.98 0.98 - 0.01

2 1.25 1.25 - 0.08

4 1.41 1.41 - 0.09

8 1.51 1.56 1.27 0.04

7.5 15.5 2.07 0.98 1.97

20 1.51 1.58 1.13 0.04

Table 5.3: Track settings and the resulting layer measurements to determine the

effect of the number of tracks on the resulting layer height.
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Figure 5.8: Example of plate with single-layer samples to investigate effect of the

number of tracks on layer height.
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5.1.3 Development of a Single-Layer Model

To create a mathematical description of the layer, a simple model can be used to

predict the height of the layer based on the overlap between tracks, their dimensions

and cross-section shape. A single-layer model estimates the layer height based on the

track height, track width and separation distance of the tracks. These parameters

are illustrated in Figure 5.9 and show the additional material in the overlaps that

fill the valleys between the tracks.

The separation distance between the tracks is described in Equation 5.1.

Sometimes referred to as stepover, x is the proportion of the width of the track,

wt, used to determine the distance between the tracks, d.

d = x× wt (5.1)

The width of the layer, wl, is a function of the width of the overlapping tracks.

This is described in Equation 5.2, where n is the number of tracks in the layer,

assuming that the tracks are consistent along their length and separation and meet

the criteria defined as ‘printable’.

wl = (n− 1)xwt + wt (5.2)

The cross-sectional area of the layer can be determined by first considering the

cross-sectional area of a track, assuming that this shape is a semi-ellipse, the cross-

sectional area of the track, At, can be described as shown in Equation 5.3.

At =
π

4
htwt (5.3)

The cross-sectional area of the layer, Equation 5.4, is expressed in terms of

Equations 5.3 and 5.2.

n
π

4
htwt = (n− 1)xhlwt + (

π

4
hlwt) (5.4)
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Figure 5.9: Illustration of key parameters to describe the single-layer model.

Equation 5.4 can be simplified and rearranged to describe the ratio of layer height

to track height as shown in Equation 5.5.

hl

ht

=
nπ

4((n− 1)x + π
4

(5.5)

There are three different conditions where the ratio of layer height to track

height differs in result according to Equation 5.5, where x > π/4, x < π/4 and

x = π/4, these are illustrated in Figures 5.10 and 5.11. These conditions underscore

the sensitivity of layer height to three key things: stepover distance, the number of

tracks deposited and the height of the track:

x > π/4: The mean layer height remains below the track height, regardless of the

number of tracks in the layer, as the track separation is too great for the

overlapped material to fill the valleys between the tracks.

x = π/4: The layer is equal to the height of the track regardless of the number of

tracks in the layer.

x < π/4: The height of the layer exceeds the height of the track, due to the

additional material in the overlapped tracks. The difference in layer height

increases significantly for layers with fewer than eight tracks.
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Figure 5.10: hl/ht for x < π/4 , where track height is unity.

Figure 5.11: hl/ht for x > π/4 , where track height is unity.

Equation 5.5 suggests that as the track overlap increases, the additional material

in the overlapped region is greater than the volume of the valley between the tracks,

which creates a layer height greater than the individual track height, consistent with

Ding et al. (2015) and Cao et al. (2011). This means that the closer the tracks are

to each other, the greater the difference between the track height and the layer

height. The optimal stepover, x = 0.5, is the condition in which the overlapping

area between adjacent tracks just counterbalances the valley area, resulting in a

surface that is as flat as possible.

Figure 5.12 shows the comparison of the predicted hl/ht values versus the
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Figure 5.12: Comparison of the predicted hl/ht values versus the experimental

measurements made for the single-layers.

experimental measurements made for single layers. Noting that there is a high degree

of variability in the surface, particularly for layers with higher track separation, the

plot and the fit of the data (R2 of 0.885) suggest that the model is effective in

predicting layer heights across the range and the data support an assumption of a

semi-elliptical shape for the track.

Although the accuracy of layer height prediction is varied, it is an expected

outcome due to measuring the height of a surface with variable height. In addition to

this, as with the measurement of single-track widths, there are other dynamics which

may affect the layer height that have not been identified such as surface plate quality,

drift in calibration and thermal distortions. The Z-score of statistical significance,

Equation 5.6, was calculated for the height measurements taken, determining how
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many standard deviations the predicted layer height is from the mean height. The Z

scores for the ‘effect of stepover experiments’ are summarised in Table 5.4 and for the

second experiment, the ‘track count effect on layer height’ in Table 5.5. The Z value

suggests that the predictions are well within the range of two standard deviations

of the observed heights, which implies that the model is close to the observed data.

Z =
hl(predicted) − hl(measured)

σmeasured

(5.6)

x No. Tracks
Mean

hl (mm)

Max

hl (mm)

Std. Dev.

(hl)

Predicted

hl (mm)
Z Score

ID 2 - Vf 11.5mm/s, Vh 7.5mm/s, ht 0.74mm, wt 2.18mm

0.5 24 1.17 1.33 0.074 1.14 -0.41

2/3 19 0.84 1.04 0.138 0.86 0.14

π/4 16 0.66 0.91 0.183 0.74 0.44

0.9 14 0.51 0.71 0.288 0.65 0.49

ID 6 - Vf 17.5mm/s, Vh 9.5mm/s, ht 0.86mm, wt 2.01mm

0.5 25 1.43 1.68 0.064 1.32 -1.72

2/3 19 1.09 1.26 0.074 1 -1.22

π/4 16 0.88 1.06 0.119 0.86 -0.17

0.9 14 0.7 0.98 0.201 0.76 0.3

ID 10 - Vf 22.5mm/s, Vh 13.5mm/s, ht 0.77mm, wt 1.64mm

0.5 30 1.57 1.88 0.069 1.19 -5.5

2/3 23 1.11 1.31 0.094 0.9 -2.23

π/4 20 0.93 1.14 0.113 0.77 -1.42

0.9 17 0.81 1.16 0.228 0.68 -0.57

Table 5.4: Summary of the Z scores for the ‘effect of stepover experiments’.
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The layers created for the stepover distance experiment are plotted in Figure

5.13, showing the hl/ht ratio versus the number of tracks in the layer, as well as the

prediction from Equation 5.5. This experiment investigated layers with a relatively

large number of tracks in the layer, where the model suggests that there is little

variability in the layer height for the number of tracks deposited, the plot suggests

that the prediction of the height of the layer works well, showing the experimental

data following the behaviour described in the three separate conditions for x > π/4,

x < π/4 and x = π/4.

The layers created for the experiment investigating the effect of the number of

tracks on the height of the layer are plotted in Figure 5.14. This shows that the

experimental results fit closely to Equation 5.5, the data having a low Z-score of

statistical significance, typically well below 0.7.

Figure 5.13: hl/ht versus the number of tracks compared to single layer model for

stepover distance experiment.
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Figure 5.14: hl/ht versus the number of tracks layer compared to single layer model

for number of tracks in layer experiment.

Equation 5.6 describes the height of the layer well and is supported by the

experimental data. This information is key for planning multi-layer builds, allowing

layer heights to be estimated for different parameter combinations and track

numbers. This knowledge alone would be sufficient to calculate the thickness of

a single layer for the purposes of cladding and can support the development of a

multi-layer model.

Understanding this behaviour is particularly important for this process, as most

real parts have a range of track numbers throughout the layer due to features such

as curves, thin walls and holes. It is also common to use perimeters in LWAM

parts to improve surface finish, effectively creating a separate layer of up to three

tracks wide. Without understanding the dynamics of how layer height is affected

by the number of tracks, it is likely that the overall layer will become uneven. On

a multi-layer build, this could result in an underbuilt part in some areas.
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5.1.4 Proving the Single-Layer Model

A ‘model proving’ layer was created to evaluate the model and demonstrate the

potential variability in the height of the layer throughout a build. A four-pronged

‘E’ shape was deposited with a varied number of tracks in each prong of the ‘E’.

This shape was chosen as a simple model that is representative of the range of track

numbers that could be deposited across a typical layer of a part.

Using the parameters of Track ID 2 from Table 5.1, the layer consisted of 2, 4,

6, 8 and 50 tracks, its toolpath is shown in Figure 5.15. The expectation should be

that as the number of tracks in each part of the ‘E’ increases, so does the height

of the layer. The measurements of layer height are summarised in Table 5.6, and

the plots of the measured cross sections are shown in Figure 5.16 for the 50-track

section and Figure 5.17 for the 2-8-track section.

Figure 5.15: Toolpath for the four pronged ’E’ used to prove the single layer model.
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No.

Tracks

Predicted

hl (mm)

Measured

hl (mm)

2 0.90 0.73

4 1.02 1.02

6 1.06 1.05

8 1.08 1.12

50 1.15 1.11

Table 5.6: Summary of layer height measurements from the model proving ’E’.

Figure 5.16: Cross section height measurements of the 50-track body of the model

proving ’E’.

Figure 5.17: Cross section height measurements of the 8, 6, 4 and 2-track sections

of the model proving ’E’.
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The experimental results agree with the model; predicted height calculations

suggested that the measured range in layer heights would be approximately 0.24mm,

the results suggest that the range of heights was larger than this at 0.39mm, which

is between a half and a third of the expected layer height.

Current slicing tools assume that for a fixed extrusion rate, head speed and

stepover, the layer height remains constant and does not take the number of tracks

as a factor affecting this. Similarly, beyond showing this behaviour to occur, it is

not well described in the literature. Propagated over several layers, there is a risk of

inconsistencies in height, which will cause changes to the calibrated laser spot size

as the deposition head passes, further increasing inconsistencies in the deposition

process.
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5.2 Multi-Layer Deposition and Optimum Z-Axis

Increments

The development of a repeatable and predictable multi-layer deposition method is

based on the single-layer model, consistent with P. Kumar, Jain, and Mayur Sud-

hakar Sawant (2022), Caiazzo and Alfieri (2019), and F. Liu et al. (2022). These

papers predict layer height solely as a function of track stepover distance and track

shape. For coaxial systems, there is an additional, more significant variable affecting

multi-layer deposition, the Z-axis increment of the deposition head. Incorrect

increments of this distance can result in the laser spot becoming defocussed, which

could potentially cause the wire to melt before it reaches the previously deposited

layer, if the head is too high, or create a ring of laser spots too wide to form a melt

pool, if too low.

5.2.1 Optimisation of Z Axis Step Increments

Cubes were created using the layer parameters in Table 5.7. The assumption for

depositing this set of cubes was to increment the Z-axis for each layer a distance

equal to the expected layer height of 1.2mm. This layer was identified as the flattest

(lowest standard deviation of height measurements) and likely to be the most stable

in a multi-layer build.

155



Chapter 5. Optimisation of Single and Multi-Layer Deposition

Head Speed (Vh) 7.5mm/s

Extrusion Rate (Vf) 11.5mm/s

Track Height (ht) 0.78mm

Track Width(wt) 2.03mm

Track stepover (d)
0.5.wt

(1mm)

Mean Layer

Height (hl(mean))
1.2mm

Maximum Layer Height 1.33mm

Layer Height

Standard Deviation
0.074mm

Z increment 1.2mm

Table 5.7: Single-layer parameters used to create multi-layer cubes.

Figure 5.18 shows the height profiles taken with the laser displacement sensor

and Table 5.8 summarises the height measurements. The predicted heights were

calculated assuming a layer height of 1.2 mm, based on the initial layer. The

overbuild is expressed as a percentage of one layer, allowing an assessment of the

total height of the part in relation to each deposited layer. This approach is useful

for evaluating the feasibility of using part height prediction in build planning. The

overbuild calculation is described in Equation 5.7.

Overbuild =
Zmean − Zpredicted

hl(mean)

(5.7)

156



5.2. Multi-Layer Deposition and Optimum Z-Axis Increments

Figure 5.18: Displacement sensor scan of 1.2mm Z height increment cubes.

No.

Layers

Zmax

(mm)

Zmin

(mm)

Zmean

(mm)
Std. Dev.

Predicted

Height

Z (mm)

Overbuild

(% layer)

Offset

Distance

(mm)

5 6.88 6.25 6.59 0.012 6.0 49% 5.41

10 13.50 12.80 13.06 0.010 12.0 88% 4.94

12 15.86 15.26 15.55 0.009 14.4 96% 4.85

15 19.58 19.07 19.38 0.004 18.0 115% 4.62

20 26.43 24.30 25.73 0.008 24.0 144% 4.27

Table 5.8: Summary of the height measurements for displacement sensor scan of

1.2mm Z increment cubes.

The results indicate an increase in the average layer height as the number of

layers increases, as shown in the increasing overbuild values. This trend is likely

due to the increase in Z that exceeds the thickness of the previously deposited layer.

Consequently, the laser focal point, which should be below the surface of the previous

layer, will move closer to the top surface. This is indicated by the increasing offset

distance, the lasers are calibrated to a distance of 6mm. This reduces dilution due to
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the increased depth of the melt pool, consistent with Figure 2.9 showing the effects

of increasing offset distance and reduced energy density. This effect of the offset

distance on the laser spot calibration is shown in Figures 5.19 and 5.20.

Figure 5.19: Effect of changes to the offset distance on the laser spot focus due to

overbuild and underbuild.
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Figure 5.20: Effect of changes to the offset distance on the focal point due to

overbuild and underbuild.

The variability of the peak-to-peak height of the surface decreases as the number

of layers increases, seen in the reducing standard deviations and visible in the first

column of cubes shown in Figure 5.21. The causes for this have not been identified,

the flatness of the surface can be improved by the increase in wetting caused by the
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increase in the temperature of the part as the number of layers increases (Mukherjee

et al., 2017).

To further investigate the effect of the increase in Z on the average layer height,

cubes were created for increments of Z steps of 1mm, 1.1mm, 1.3mm and 1.4mm.

During the experimental work, it was identified that 1.4mm increments were too

large to produce successful cubes. During layers 1 – 3, the Z-step increments were too

large, defocusing the lasers to the extent that they caused burning on the substrate,

illustrated in Figure 5.22. By layer 12, the offset distance was very low, risking a

collision with the nozzle. This caused the experiment to be terminated early and

the 1.4mm increments were removed from the experimental data. This experiment

also resulted in the 15 layer cube for 1.3mm increments not being completed for the

same reason; the available data for 11 layers is used. Cross-section measurements

for 1mm, 1.1mm and 1.3mm cubes are shown in Figure 5.23 and summarised in

Table 5.9.
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Figure 5.21: Annotated example of experimental plate containing multi-layer Z-

increment test samples.

Figure 5.22: Example of laser burns on the substrate due to severely defocused laser.

161



Chapter 5. Optimisation of Single and Multi-Layer Deposition

 

 

(a) 1.0mm 

 

(b) 1.1mm 

 

(c)1.3mm 

 

  

 

Figure 5.23: Cross-section height measurements for (a) 1mm, (b) 1.1mm and (c)

1.3mm cubes.
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Z-step

(mm)

No.

Layers

Zmax

(mm)

Zmin

(mm)

Zmean

(mm)

Std.

Dev.

Predicted

Part

Height (mm)

Overbuild

(% of layer)

Offset

Distance

(mm)

1.0 5 6.85 5.91 6.31 0.033 6 26% 5.69

1.0 10 12.05 11.56 11.85 0.009 12 -12% 6.15

1.0 11 13.25 12.68 12.93 0.011 13.2 -23% 6.27

1.0 12 14.76 13.37 13.99 0.016 14.4 -34% 6.41

1.0 20 23.32 21.70 22.41 0.016 24 -132% 7.59

1.1 5 6.86 5.94 6.48 0.037 6 40% 5.52

1.1 10 13.23 11.65 12.49 0.026 12 41% 5.51

1.1 15 18.29 17.16 17.81 0.008 18 -16% 6.19

1.1 20 23.59 22.68 23.10 0.009 24 -75% 6.9

1.3 5 6.72 6.09 6.42 0.023 6 35% 5.58

1.3 10 13.71 12.91 13.23 0.018 12 103% 4.77

1.3 11 15.84 14.37 14.82 0.024 13.2 135% 4.38

1.3 20 27.43 26.83 27.18 0.002 24 265% 2.82

Table 5.9: Summary of cross-section height measurements for 1mm, 1.1mm and

1.3mm cubes.
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These data support the observations made with the 1.2mm increment, showing

that increases in Z-step greater than 1.2mm result in overbuilding. The cubes for the

1.4mm Z increment were not measured, but the reason for abandoning the build of

these was due to excessive overbuild of the part and poor layer adhesion, which can

be seen in the right column of Figure 5.21, which supports the overbuild theory. The

increments of 1.0mm and 1.1mm exhibit the opposite effect, which is likely because

the focal point is moving deeper into the previously deposited layer, increasing the

size of the laser spot and, therefore, the width of the track, reducing the layer height,

as shown in Figure 5.19. It was confirmed that the expected total material volumes

were conserved, meaning that the resulting over or underbuilds will cause a slight

decrease or increase in the width of the cuboid. In all cases, the variability of the

surface peak-to-peak height can be seen to be reducing with increasing layer height.

The increase in layer height follows a linear trend as the number of deposited

layers increases at a consistent rate, the growth in layer thickness being proportional

to the Z offset, shown in Figure 5.24.
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Figure 5.24: Relationship of part height to the number of layers deposited, showing

a linear trend.

This allows a best-fit line to be derived to estimate the increase in height of the

part, based on the Z for the conditions described in Table 5.1. This is shown in

Equation 5.8, where hpart is the height of the cube measured at nl number of layers

high and Zs is the Z-step increment used.

hpart = nl × 1.08 × Zs (5.8)

This best-fit line has an R2 of 0.993, showing a strong fit to the data, shown in

Figure 5.25. Using this polynomial results in an accuracy of prediction for the height

of the part within approximately 10 % of a layer, or 0.12mm. Such a result is more

accurate than what is seen in the literature, but is not a general rule for any part or

set of process parameters. However, it establishes an important relationship between
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the focus of a coaxial laser system and the resulting multi-track layer thickness,

which is not described in the literature.

If the Z-step is greater than or equal to the thickness of the first layer, there

will be a growth in the layer thickness as the laser spot becomes smaller, remelting

less of the layer below resulting in thicker layers; if the Z-step is less than the

deposited layer thickness, the layer thickness reduces as the laser defocuses and

grows, creating wider lower tracks which overlap more. A value for the Z-step can

be selected that minimises the level of overbuilding or underbuilding as the height

of the layer increases, summarised in Table 5.10. Understanding this mechanism

in the change of the mean layer height also allows it to be factored into the build

planning and corrected for during slicing of the part.

Figure 5.25: Predicted versus measured cube height using best fit line derived from

experimental data.

166



5.3. Conclusion

Z Step Layer Height Part Width Laser Spot Size

Equal to layer one height Equal to layer one height As planned Calibrated spot

Greater than layer one height Increasing Decreasing Decreasing

Less than layer one height Decreasing Increasing Increasing

Table 5.10: Summary of Z offset effects on layer height, part width and laser spot

size.

5.3 Conclusion

This study establishes the influence of track height, stepover distance, and track

number on layer height. A predictive model for single-layer height was developed,

supporting the need for process planning and optimisation, which is currently

oversimplistic in slicing software and has limited coverage in the literature for this

deposition method. The effect of the size of the Z-step was investigated, highlighting

the impact of incorrect estimation of layer thickness on the offset of the head and

consequently the size of the laser spot, increasing the height of the final part.
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Chapter 6

Measuring and Modelling the

Thermal History

Managing the thermal conditions throughout the deposition process of a multi-layer

build is particularly important for the successful fabrication of LWAM components.

Heating and cooling cycles and the resulting thermal gradients and melt pool

behaviour are key determinants of the consistency of the resulting mechanical

properties and residual stresses within the component.

Consistent interlayer temperatures during the deposition process are key to

supporting uniform temperature gradients and consistent track geometries (Dass

and Moridi, 2019; B. Wu et al., 2018). Interlayer pauses serve as a common approach

to controlling the thermal field, particularly for managing the temperature of the

layer immediately prior to the deposition of the subsequent layer. Modelling can

support the achievement of optimal interlayer temperatures by reducing the range

of experiments required, helping to predict layer temperatures, which are inherently

challenging to measure.

There is no definitive consensus on a single objective value for interlayer

temperatures for 316L stainless steel; the ideal temperature range appears to fall

between 180◦C and 300◦C. However, there is a consensus that controlling the

temperature within these limits is beneficial to the final quality of the printed part
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in terms of improving the uniformity of shape and microstructure (Yadollahi et al.,

2015). Datasheets for 316L stainless steel recommend using an objective maximum

interlayer temperature of 200◦C (ArcelorMittal Industeel, 2016), which is used as a

target for this work.

6.1 Impact of Emissivity on Measurement of the

Layer Temperature

The emissivity of 316L stainless steel varies significantly with temperature, surface

morphology and particularly oxidation of the surface (Valiorgue et al., 2011). When

very shiny, it can be approximately 0.25 (Al Zubaidi et al., 2019) and when heavily

oxidised, it can reach 0.8 (D. Shi et al., 2015). Consequently, this can have a

significant effect on the accuracy of temperature measurements and their fit to

modelling data.

Figure 6.1 shows four examples of surface oxidation on the samples produced.

It shows the first layer deposited in an inert environment, with a low emissivity of

0.25, image b shows a range of colours from light straw to regions of blue, indicating

that the surface temperature was in the range of 290◦C to 540◦C ( Labanowski and

G lowacka, 2011). Image C shows a range of red and brown colouring at 20 layers

with short pauses between layers, suggesting a more consistent surface temperature,

which reached 390 - 450◦C. These estimated temperatures are indicative of the

consistency of surface temperature, as the heat tint colours are highly dependent

on the atmospheric oxygen content, the time at that temperature, and the surface

finish ( Labanowski and G lowacka, 2011). These images show the range of oxidation

that can be seen during and after the deposition process, which can significantly

affect the emissivity (D. Shi et al., 2015).

Knowing the emissivity for each layer as the build progresses is challenging, and

corrections are required to the data throughout the experimental process as the

emissivity changes. To minimise changes in emissivity, seven-layer sample cuboids
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Figure 6.1: Surface oxidation for different numbers of layer depositions, (a) 1 layer

(inert chamber), (b) 5 layers (inert chamber), (c) 20 layers – 30 second interlayer

pause (local inert gas supply), (d) 20 layers – 150 second pause (local inert gas

supply).

were printed in a fully inert chamber to minimise oxidation, the reading of the

chamber oxygen sensor was maintained at 0.0% (sensor accuracy ±0.2%) using

constant argon flow into the chamber. The small layer size ensured that the surface

could be quickly deposited and moved to the infrared temperature sensor prior to

oxidation. The sensor emissivity was calibrated to 0.25 and subsequently corrected

in MatLab to align the infrared temperature measurements with the pyrometer

sensor data measured on the substrate’s base.

End-to-end alignment of sensor data is not possible because of the constant flux

in the emissivity values, and the sensors only measure the same temperatures when

thermal equilibrium is reached in the Z axis of the part. A point in time must
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be selected on the cooling curves of the top and bottom sensors to calibrate the

readings of the deposited layer. The data are aligned by assuming that the top of

the deposited layer and the bottom of the plate measurement reach equilibrium and

the plots align for a period.

Figure 6.2 shows an example of a single heating and cooling cycle taken from

a sixteen-layer experiment with a 150 second interlayer pause. The pyrometer and

thermocouple measure the increasing heat in the substrate as the layer is deposited,

the pyrometer measures a lower temperature because of the increased distance from

the layer and the effects of convective cooling on the surface of the substrate. The

infrared sensor shows a vertical increase in temperature as the layer moves under the

sensor approximately 8 seconds after the layer deposition is complete. Therefore,

the data recorded are not the peak layer temperature.

Figure 6.2: Plot of a single heating and cooling cycle, showing internal

substrate (thermocouple), substrate base (pyrometer) and deposited layer (infrared)

temperature.
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Heating of the substrate continues after the deposition of the layer finishes. The

alignment in terms of the time that the pyrometer peak is reached and the infrared

sensor measurement begins varies throughout the experiments as a result of the

rate of heating of the substrate, which is influenced by both the number of layers

deposited and the duration of the pause used.

The layer cools during the pause period, and the cooling rate of the infrared

sensor eventually matches that of the pyrometer as the part reaches thermal

equilibrium on the Z axis. At this point, both sensors must be measuring the

same temperatures as well as the same rate of cooling, and this point in the curves

is chosen as the point to align their temperatures. The temperature of the infrared

sensor appears to spike as the part is moved away for the next layer deposition and

the substrate continues to cool until the next layer begins.

As the alignment point between the curves can only be for one point in time,

a cooling curve must be selected from the measured layers to align the whole plot.

Figure 6.3 shows the infrared data measurements aligned with each of the first four

cooling curves of the pyrometer sensor of a seven-layer build. Table 6.1 details how

close each aligned curve is to the other cooling curves, indicating the accuracy of

alignment to each of the cooling curves. This indicates that the cooling curves for

the second and third layers are aligned more closely across the whole experiment.

Aligning at any point in the plot will mean that the other cooling curves do not

fit quite as well, and the selection of the curve to align should minimise this

difference. Consequently, the alignment for layer three was chosen for the seven-

layer experimental data and layer five for the sixteen-layer data. To perform the

data, the measured values were multiplied by a constant value to align the plots,

which was consistently between 1.18 and 1.25.
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 6.3: Closer examination of infrared data alignment for the first four cooling

curves.

Layer

No.

L1

Aligned

(◦C)

L2

Aligned

(◦C)

L3

Aligned

(◦C)

L4

Aligned

(◦C)

End of

Cooling

Aligned (◦C)

1 0 -10.8 -10.7 -12.1 20.6

2 12.6 0 1.1 -5.5 -11.

3 10.5 1. 0 -5.9 -10.9

4 16.1 4.8 5.8 0 -4.9

Table 6.1: Alignment of cooling curves to neighbouring curve, to infer fit of the plot.
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6.1.1 Interlayer Temperature Development

During the Deposition Process

To measure the overall heating and cooling of the deposition process, two sets of

16-layer cuboids were deposited, one with 150-second pauses between layers and the

other with 30-second pauses. Figures 6.4, 6.5 and 6.6 show the sensor data recorded

for these experiments. The sixteen-layer experiments were completed with local

inert gas only, due to temperature limits on the laser glass in the Meltio M450’s

door. This requires the use of the door fan, which operates inside the door cavity,

but causes some extra airflow through the chamber, resulting in an average oxygen

content in the chamber of approximately 17%.

Consequently, this causes increased oxidation of the part, particularly on the

higher layers. Therefore, infrared sensor measurements of the deposited surface are

treated as indicative. The correction of these data to layer five shows that the

data align closely at the very beginning and at the end of the final cooling curve,

suggesting good general alignment. Layers 3, 7, 11 and 13 were not measured with

the infrared sensor, as their height was measured after these layers were deposited.
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Chapter 6. Measuring and Modelling the Thermal History

The experiment with a 150-second pause shows rapid substrate heating post-

deposition, observed via thermocouple and pyrometer data. The cooling time allows

the newly deposited layer to reach a temperature close to the bottom surface as

equilibrium is reached on the Z-axis.

The heating and cooling cycles can be seen for each individual layer, but an

equilibrium is reached around layer six, where the mean temperature of the substrate

remains around approximately 200◦C. This is likely to be the point where the

conduction of heat to the substrate becomes less effective and the heat is mostly

radiated into the chamber. Above layer eight, the rate of cooling observed by the

two sensors begins to differ, which would support this observation.

From layer three, the temperatures of the upper layer and the base of the

substrate are within five degrees of each other within 30 to 40 seconds of the layer

finishing. This is within the measurement error between the sensors of approximately

7◦C. This would indicate that a pause shorter than 30 seconds would not result in

an equilibrium between the base and the deposited layer, suggesting more severe

temperature gradients across the deposited layer and in the Z-axis between the layer

and the base of the substrate. Pauses longer than 30 seconds result in temperature

and cooling rates aligning, suggesting that the base can be used to imply the layer

temperature.

The deposited layer reaching the same temperature as the base before adding the

next layer is an indicator of thermal equilibrium on the Z-axis of the part and the

substrate. The consistency of the thermal gradient throughout the build reduces

residual stresses and a uniform temperature distribution helps achieve consistent

microstructural properties across layers (Yu et al., 2022).

The data for the 30 second pause between layers show that the bulk heating of

the substrate is much greater, with significantly reduced time for cooling between

layers, the substrate temperature reaching approximately 300◦C, the layer did not

have time to cool to an equilibrium with the plate surface in the time between layers.

This analysis shows that the surface temperature of the deposited layer and
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the substrate base temperature are sufficient to estimate the interlayer temperature

during the deposition process. Therefore, measurements were not taken with the

thermocouple for subsequent experiments. This adjustment also simplifies the

experimental configuration without sacrificing the quality or relevance of the thermal

data collected.

6.1.2 Measurement of the Interlayer Temperature

Cuboids of 20mm x 20mm dimensions, consisting of seven layers were deposited in

an inert chamber with pauses of 30, 60 and 90 seconds. This shape was chosen,

as it was considered to be representative of a smaller section within a build, where

temperatures build more rapidly and Singh et al. (2021) suggest interlayer pauses

are particularly effective.

The results are plotted in Figures 6.7, 6.8 and 6.9, the pyrometer data measuring

the substrate base temperature for each cuboid are overlaid in Figure 6.10. The

inert chamber environment and the reduced number of layers allow for a confident

interpretation of the temperature measurements from the infrared sensor. These

data support the observation that 30 second pauses do not provide sufficient time

for the substrate and the deposited layer temperatures to reach equilibrium before

the deposition of the subsequent layer.

The estimated interlayer temperature increases between each deposited layer for

all pause lengths, for short pauses it cannot be determined because the plots do not

reach an equilibrium state, it must however be higher than the base temperature,

making it unacceptably high compared to the objective interlayer temperature of

200◦C. Short pauses of this order could have utility in increasing the part and

substrate up to this limit in the first few deposited layers.

Interlayer temperatures can be estimated for longer pauses, for the 60 second

pause experiment an estimated interlayer temperature of 90◦C at the start of layer

2 and 170◦C at the start of layer 7. The 90 second pause data show a narrower

range of interlayer temperatures, with 80◦C predicted for layer 2 starting and 150◦C
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for layer 7. Longer pauses also appear to reduce bulk heating, resulting in a lower

mean substrate temperature, compared to shorter pauses.

Figure 6.7: The sensor data recorded for 7-layer cuboid with 30-second pauses

between layers.

Figure 6.8: The sensor data recorded for 7-layer cuboid with 60-second pauses

between layers.
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Figure 6.9: The sensor data recorded for 7-layer cuboid with 90-second pauses

between layers.

Figure 6.10: The pyrometer base temperature data recorded for 7-layer cuboids with

30, 60 and 90-second pauses between layers overlaid together.
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6.2 Modelling the Interlayer Temperature During

Deposition

The interlayer pauses described above were modelled using Netfabb Local Simulation

to investigate the effectiveness of an off-the-shelf AM thermal modelling tool for

the prediction of the part temperatures developed during the deposition process.

Through this, further insight into the deposition process can be gained by modelling

the heat flow in the deposited part, supporting the identification of optimum

interlayer pause times for this case.

6.2.1 Configuring Netfabb Local Simulation

The adaptive meshing and h values must be set to meet the simulation requirements.

To determine the effect of different meshing configurations, a series of simulations

were run and compared to identify the optimum configuration.

The mesh is defined with three parameters: the number of elements per heat

source radius, the number of fine layers below the heat source radius and the

number of adaptivity levels, which specifies how many times the mesh size can

be incremented. Autodesk recommends one or two elements per heat source radius,

and one element per heat source radius was selected to avoid convergence problems.

Five fine layers below the source were selected to ensure sufficient detailed modelling

of the deposited layers. The accuracy of one, two and four refinement levels was

compared, Figure 6.11 shows the meshing for a five-layer 20mm x 20mm cuboid

with these different refinement levels. It was found that with one refinement level,

the computational time was several hours, with two levels this was reduced by 25%

and with four levels it was reduced by almost 50%.

Figure 6.12 shows a comparison of the temperature probe readings taken from

the bottom face of the print substrate for each of the meshes shown in Figure 6.11.

It shows that with four levels of refinement, the peak temperature is significantly

lower than the other two simulations. However, there is little else to discriminate
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Figure 6.11: The meshing for a five layer, 20mm x 20mm cuboid with (a) one, (b)

two and (c) four refinement levels.

between two and one refinement level; therefore, two refinement levels were selected

to capitalise on the reduced modelling time. The effects of adaptive time steps can

also be seen in the cooling curves: the heating phase, during the deposition process,

showing a thick line of data points, with few generated during the cooling phase.

Netfabb has a simplistic representation of the melt pool and the deposition of

the track within the model. Despite the capability to define multiple voxels within

a single-track width, the laser spot size cannot exceed the track width, and tracks

are deposited discretely in parallel with no stepover or remelting. The simulation

was therefore configured to deposit the same number of tracks as the experiment

and the same total energy was deposited for the layer. However, the tracks and

laser spot were 1mm wide, rather than the 2mm wide overlapped tracks seen in the

experiment, effectively doubling the energy density in the melt pool.
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Figure 6.12: Comparison of the cooling curves for one, two and four refinement

levels.

Although these constraints are particularly limiting when trying to model the

discrete dynamics of track deposition and melt pool formation, processes that are

crucial to understanding the microstructural evolution and mechanical properties of

the deposited material. For the purposes of evaluating the cooling phase after the

deposition of a complete layer, these constraints can be considered acceptable, as

the total number of passes of the deposition head and the total energy density for

the layer are equivalent to the experiment; meaning that the layer can be treated

as a ’slab’ model, which makes it possible to approximate the thermal history of

the deposited layer and observe the cooling phase immediately after the layer is

complete. This results in the temperature probe measurements in the layers during

the deposition of the layer not being representative or comparable to the measured

data, but the base temperature measurements can be used.

The tool was configured with the predefined material parameters for 316L
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stainless steel from the Netfabb material library, described in Table 3.6. The

constraints in track size and the improved absorption efficiency of coaxial laser

systems result in the simulation absorption efficiency being set to 100%. To

determine the most appropriate value of the thermal coefficient, h, which is a fixed

global value for the whole simulation, a simulation of a 20mm x 20mm 16-layer

cuboid was run with a variety of values for h, 15, 23 and 50 W/(m2K) . Figure 6.13

shows a plot of the temperature measurements taken from a probe on the bottom

of the substrate, plotted against experimental data taken using the laser pyrometer

aligned to the same point on the physical plate.

Due to the limitation of a global h value throughout the process, any chosen value

is a compromise, either fitting well with the rapid cooling phase seen immediately

after the layer deposition of the layer is complete for 50 W/(m2K), seen in the

cooling rates of the first few layers shown in Figure 6.13. Alternatively, bulk heating

of the component can be well simulated, as seen with the other two curves. The

main objective of the modelling was to understand the minimum layer temperature

reached before the deposition of the next layer. The value of 23 W/(m2K) is

more closely aligned with the bulk heating and cooling, particularly the minimum

temperature reached, which was the value chosen for all simulations; this value fits

within the expected thermal conductivity of stainless steel in air, typically 10 – 40

W/(m2K) (Lienhard, 2011).
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Figure 6.13: Comparison of the effects of different values of the thermal coefficient,

h, on simulated heating and cooling cycles.
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6.2.2 General Model of Part Cooling

Modelling has concentrated on the seven-layer models produced in an inert chamber,

where infrared sensor data are most accurate. To investigate the general cooling

mechanisms within the component, some initial modelling of the 16-layer process

with 150 second pauses was carried out.

Figure 6.14 shows screenshots of the steps modelled immediately after the final

layer is deposited, due to the reduced number of data points generated by adaptive

time steps during the cooling cycle, this figure is indicative of the resolution of the

data available to describe the cooling. The melt pool can be seen immediately after

the deposition of the last layer on the cuboid (image a), revealing a melt pool at

approximately 8000◦C, which is likely to be much higher than the actual melt pool

temperature. This is caused by the limitations of the model, which create a much

narrower melt pool than is seen in the system.

Thirty seconds later, the temperature gradient remains, the corner is reduced

to 630◦C and most of the part is above 500◦C (image b), which approximates the

infrared sensor (Figure 6.4). The temperature gradient on the Z-axis between the

top of the layer and the base is shown to be approximately 250◦C, consistent with the

experimental data, which shows a range at this point of 236◦C. The base temperature

is still rising at this point. By 90 seconds, the temperature across the surface

becomes uniform at approximately 350◦C and the substrate below the part continues

to heat up; the temperature gradient between the part and the substrate provides

effective cooling. The gradient in the Z-axis between the top surface and the base

is approximately 50◦C, which was measured experimentally at 46◦C.

Six minutes later, the top surface begins to cool faster than the core, as heat

is drawn into the substrate and dissipated through radiation into the chamber’s

atmosphere. At this stage, most of the plate maintains a uniform temperature

within a range of 10◦C. By nine minutes, the temperature of the plate below the

part exceeds that of the part itself, showing the continued, higher rate of cooling

enabled by conduction of heat into the larger volume substrate and cooling from the
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top of the part to the chamber atmosphere. This behaviour aligns with experimental

data, where infrared sensor measurements of the final deposited surface fall below

the temperatures recorded by a pyrometer on the substrate’s underside. At this

point, the relatively uniform temperature across the substrate negates the rapid

cooling of the part through the substrate.
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Chapter 6. Measuring and Modelling the Thermal History

6.2.3 Modelling the Seven Layer Deposition Process

The simulations of seven-layer cuboids with 90, 60 and 30-second pauses are shown

in Figures 6.15, 6.16, 6.17, 6.18, 6.19 and 6.20 respectively. The simulations were

created to replicate the physical experiments but continued to sixteen layers, which

was not possible with the restrictions of the machine. The data shown from these

models use the measurement point on the substrate aligned with the pyrometer

data, using this as the indicator of interlayer temperature, discussed above.
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6.2. Modelling the Interlayer Temperature During Deposition

Figure 6.15: 90 second pause, modelled substrate temperature with matching

pyrometer and infrared measurements.

Figure 6.16: 90 Second Pause, modelled substrate temperature to 16 layers and

200◦C objective interlayer temperature.
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Figure 6.17: 60 second pause, modelled substrate temperature with matching

pyrometer and infrared measurements.

Figure 6.18: 60 Second Pause, modelled substrate temperature to 16 layers and

200◦C objective interlayer temperature.
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6.2. Modelling the Interlayer Temperature During Deposition

Figure 6.19: 30 second pause, modelled substrate temperature with matching

pyrometer and infrared measurements.

Figure 6.20: 30 Second Pause, modelled substrate temperature to 16 layers and

200◦C objective interlayer temperature.
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From these data, it can be seen that the model performs well in predicting

the heating and cooling of the substrate, closely matching the heating and cooling

cycles. The minimum temperatures seen in each cooling cycle have a typical

variance of approximately 10◦C. In all cases, the model predicted a slightly

higher temperature than that seen in the experimental data, which could not be

corrected by adjustments to the value for h. The fit of the cooling rates decreases

with increasing layer height, which is likely due to the changing value of h due

to increased convectional cooling through the greater surface area of the part.

This is compounded by the changing emissivity, which increases with increasing

temperature.

Figure 6.21 shows a comparison of the sixteen-layer pyrometer data and its

equivalent modelled data. The minimum base temperature and therefore the inferred

interlayer temperature are still within 13◦C of the temperatures seen experimentally,

despite the decreasing fit to the cooling rates. This characteristic is acceptable for

a study of interlayer temperatures, since the important feature of the model is the

estimated minimum interlayer temperatures rather than the time synchronisation.
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6.2. Modelling the Interlayer Temperature During Deposition

Figure 6.21: Comparison of modelled sixteen-layer build, 30 second pause base

temperature data to the equivalent pyrometer data.

The predictions for the interlayer temperatures of the seven-layer process, when

continued to sixteen layers, indicate that, with a 90-second pause, temperatures

consistently fall around 20◦C below the targeted 200◦C maximum interlayer

temperature threshold, once the bulk heating of the substrate stabilises from the

eighth layer onwards. In contrast, the interlayer temperatures with 60-second pauses

remain approximately 10◦C above this threshold. Although the error margin of the

model is about the same range, it suggests that the interlayer temperature could

exceed the 200◦C limit.

A pause time of 75 seconds between these two is likely to reach the objective

temperature without exceeding it. Figure 6.22 shows the predicted substrate

temperature for a 75-second pause, and Figure 6.23 shows the predicted substrate

base temperatures for each of the pauses modelled or measured experimentally.
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Figure 6.22: Predicted heating and cooling cycles for 75 second interlayer pause with

target 200◦C line.

Figure 6.23: The predicted and measured substrate base temperatures for all pauses.

Figure 6.23 shows that base temperatures increase uniformly and that the models

slightly overpredict interlayer temperatures across the range of pauses. Given the

accumulated error across the experimental and modelled data, this gap in the order

of approximately 10◦C falls within these errors which, when combined, are in the
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6.2. Modelling the Interlayer Temperature During Deposition

range of 13 to 20◦C. The curves flatten between layers eight and ten as the substrate

and part reach thermal equilibrium.

From these data, it can be concluded that the duration of the pause has a clear

effect on the rate at which the interlayer temperature increases. For pauses above

thirty seconds, these data can be used to infer the interlayer temperature; it was seen

in the experimental data that equilibrium in the Z-axis is reached in this time frame.

Should the interlayer temperature target be changed, the duration of the pause can

be adjusted to achieve it. This knowledge can be used to print a raft beneath a part

to overcome the ramp-up in interlayer temperatures before the relatively steady

state is reached for the deposition of the part at around layer five, allowing the

component to benefit from the consistency of the part temperature.

These results and conclusions are also consistent with the work of Yu et al.

(2022), who investigated the effects of interlayer pauses and power reduction for

the deposition of thin walls in DED powder. Their work showed that interlayer

pauses to maintain consistent deposition temperatures for each layer resulted in

improved uniformity of the cross-sectional shape, finer microstructure, and higher

microhardness. To do this, pauses were used in conjunction with incremental

reductions in laser power to level off the interlayer temperatures to a ’steady state’

in a lower layer, increasing the uniformity of the wall’s properties. Combining the

effects of pauses with reductions in power would be a useful next step.

This approach of using the base temperature to infer the interlayer temperature,

in conjunction with interlayer pauses, was not found in the literature. While only

proven in this limited case, it may scale to other more complex parts and offers

a more practical method of monitoring in process temperatures of the part. This

work could particularly benefit from the research published in this area regarding

the enhancement of thermal modelling with machine learning techniques to speed

up the adaptation of simulations to different part geometries, such as Mozaffar et al.

(2018) and Le et al. (2023) .

Farias, Cruz Payão Filho, and Oliveira (2021) determined the interlayer
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temperature for single-track thin walls, with a simple ANN architecture. The

developed network had an accuracy similar to that of the equivalent FEA model.

Due to the speed of the trained model, it could be used to determine the interlayer

temperature for a range of pause times not modelled and to quickly determine the

effect of varying other process parameters on the overall temperature of the wall,

saving many hours of simulation time.

6.3 Conclusions

These results can improve the understanding of thermal management in the

LWAM deposition process and broader conclusions can be drawn for more general

applications. For this geometry and process parameters, pauses of less than

30 seconds between layers lead to an increase in interlayer temperatures, which

exacerbates thermal gradients and reduces the consistency of the geometry and

microstructure of the component. Although the specific threshold of thirty seconds

may vary depending on the type of part, this incremental heating scenario is likely

to occur in other geometries. Toolpath durations are typically longer than thirty

seconds for single layers in most parts; however, specific scenarios, such as infill

patterns and perimeters of thin sections, or where the starting point for a layer is at

the same point as where the previous layer was completed, pauses may fall within

this timeframe. General rules of minimum time limits for layers are sometimes used

to mitigate this, a more nuanced approach through calculating the interlayer pause

times for different sections of the layer to achieve a more consistent temperature

across the layer, an extension of Michel et al. (2019), would improve on this.

This work also confirms the value of a more constrained, simplistic modelling

tool such as Netfabb Local Simulation to offer insights into the deposition process,

which can be used to improve the quality and consistency of the final part.
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Chapter 7

Conclusions and Further Work

7.1 Novelty and Key Conclusions

This thesis has determined how fundamental process parameters of extrusion rate,

head speed and laser power can be controlled to create high quality single-tracks

for a novel, coaxial LWAM System. It has shown how they can be used effectively

to create multi-track layers and how the layer height can be predicted. It has

established the relationships between the extrusion rate and head speed and the

resulting track heights and widths, which can be described with process windows.

It has described for the first time how layer deposition can result in overbuilding

due to defocussing of the lasers and how this can be estimated to aid its mitigation

during build planning.

The heating and cooling cycles for the deposited layers were investigated

experimentally, and the effects of interlayer pauses on the resulting steady-state

mean temperature due to bulk heating were described. This was modelled using

Netfabb Local Simulation to identify an optimal pause duration to achieve a

target maximum interlayer temperature of 200 ◦C for the cuboids produced in the

experimental stage. Key conclusions and novel contributions to the field include:

Chapter 4 - Effect of Process Parameters on Single-Track Geometry

This chapter developed a refined definition for high-quality tracks for LWAM systems

199



Chapter 7. Conclusions and Further Work

and the process parameter ranges that could be used to create such tracks with this

experimental configuration. The relationship between changes in extrusion rate

and head speed on the resulting cross section was defined, and the principles were

demonstrated to be consistent with the literature for other DED technologies. A

Cascade Forward Neural Network was shown to be more accurate in predicting

the width of tracks than polynomials derived from experimental results. It was

shown that Machine Learning can be used to address the uncertainty in track width

measurements in this process, even when the causes of this uncertainty are not fully

characterised.

Chapter 5 - Optimisation of Single and Multi-Layer Deposition

This chapter developed a simple mathematical single-layer model to predict layer

height as a function of the number of tracks, the stepover between tracks, and

the track height. It quantified the effect of the number of tracks in a layer on the

resulting layer height, which has not been described mathematically in the literature.

It was also identified in this work that the stepover of the track affects the dilution

and remelting between layers. It was shown that inaccurate layer height prediction

and the resulting Z-axis increments can result in defocused lasers, a characteristic

specific to LWAM. This results in melt pools that create track widths and overlaps

that differ from the planned layer, leading to layers that are thicker or thinner than

planned. This adds to the limited published work on LWAM coaxial systems, which

has focused on thin-wall parts. These characteristics are poorly captured in slicing

tools, which can result in suboptimal parts if not addressed.

Chapter 6 - Measuring and Modelling the Thermal History

This chapter adds to the limited material published on the thermal behaviour (part

heating and cooling) of coaxial LWAM systems. It shows that for interlayer pauses

of 60 seconds or more, the base temperature could be used to infer the interlayer

temperature for small cuboids because the part and substrate reach a thermal

equilibrium in the Z-axis plane. The work characterises the bulk heating and the
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mean temperature of the steady-state conditions once cooling from the substrate

becomes minimal.

7.2 Contributions to the Knowledge Gaps

7.2.1 Precision, Tolerance Variability and Toolpaths

Knowledge gaps associated with precision, tolerance to geometry variability and

toolpaths addressed in a number of chapters. Firstly, through describing how

extrusion rates, laser power and head speed settings can be used to predict track

cross-sectional shape, height and width. Secondly, through the single-layer model,

describing mathematically how the number of tracks and their separation translate

into layer thickness, an effect not well characterised in the current literature. Finally,

this was addressed through the exploration of overbuilding due to defocussing of

the laser. It was shown that this could be a cause of overbuilding, which is not

documented in the current literature or captured in slicing tools, which assume a

fixed Z-step. In the discussion, it was highlighted that this effect can be planned

for and corrected with varied Z increments and corrective layers. However, within

limits, the deposition process is tolerant of this effect, because of the advantages of

the melt pool being created with multiple lasers.

7.2.2 Temperature Management Strategies

Methods for managing the bulk heating and maximum interlyer temperatures were

investigated and modelled and it was shown that pauses could be used to change

the level of bulk heating in the test components and substrate and could be used to

stay below an objective maximum interlayer temperature. For consistent interlayer

temperatures, rafts should be used prior to the deposition of the part; the discussion

linked the outcomes of this work to Yu et al. (2022), which could be implemented

in this context to use shorter pauses and incremental power reductions to achieve
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steady-state interlayer temperatures at a lower level in the build.

7.2.3 Machine Learning for LWAM

ML techniques were investigated, showing a similar accuracy to polynomials

and process windows to predict whether printable tracks would be produced for

combinations of head speed and extrusion rate using a Predictive Classification

Ensemble architecture. It was also shown that Cascade Forward Neural Networks

could be used to address the uncertainty in width measurements to create accurate

track width predictions, even when the causes of the uncertainty are not fully

characterised.

7.3 Recommended Further Work

The following were identified through the course of the research as opportunities for

further investigation.

Variability of track width - It was identified that it is challenging to fully isolate

and characterise the causes of variability in the consistency of track width.

However, as technology develops with tighter tolerances, finer feature sizes

and smaller wire diameters, determining and controlling these causes will be

increasingly important.

Fully characterise other powers - The research focused primarily on process

windows for 800W, the knowledge and machine learning tools developed can

be used to efficiently identify optimum process parameter combinations over

a wider range of powers. Using the Machine Learning tools to improve the

efficiency of this characterisation would add valuable insights into the current

body of published work. The training parameters used for the ML models were

selected to ensure that they could support characterising other alloys without

a full experimental investigation, which can now be explored.
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7.3. Recommended Further Work

Machine Learning for thermal modelling - A body of work was identified

regarding how thermal modelling data can produce highly accurate and flexible

tools for modelling the thermal field, reducing the time taken once trained to a

few seconds. It is suggested that ANN models are flexible enough to adapt to

new conditions and part geometries due to their ability to infer outcomes

beyond those for which they have been trained. This could augment the

limits of a tool such as Netfabb Local Simulation by using training data from

experimental results and more complex thermal models, as well as to help to

overcome the time and computing resource burden of modelling new parts and

processes.

Track stepover and dilution - Building on the identified link between track

separation within a layer and the resulting dilution between layers. The

process may be tolerant to higher surface variability due to increased dilution.

Creating parts with a wider range of track separations and investigating the

relative tolerance to increased surface height variability and the resulting

porosity could result in layers that require fewer tracks.

Adaptive and corrective layers - Use a range of Z-step sizes for different layers

in the same deposition process to investigate whether the overbuilding of

the part can be planned and corrected by intermittently using a different

layer thickness or Z-step. The insights from the single-layer model could be

used to investigate whether a complex layer shape could be produced with

a consistent thickness by varying process parameters, number of tracks and

track separation.

Adaptive interlayer pauses and power control - Research was identified by

Yu et al. (2022) which showed that a combination of interlayer pauses and

incremental reductions in laser power, as the layer height increases, achieved

a steady state temperature at a lower layer number than the work here. This

research could develop the Yu et al. (2022) powder DED thin wall research to
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solid multilayer parts to achieve the desired consistent interlayer temperatures

earlier in the build.

Substrate temperature of more complex builds - The results here using the

substrate base temperature to infer the interlayer temperature could be

evaluated for its effectiveness with more complex layer shapes where different

thermal dynamics are likely and therefore, more complex thermal gradients

across the layer. It is also an important next step to further develop the

insights into heating and cooling cycles developed here through in-process

measurement techniques into measurement systems that can be used in routine

part production.
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Appendix A

G-code Generation Flow Charts
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Appendix A. G-code Generation Flow Charts

Figure A.1: Flow chart for the generation of the G-code for single-track experiments.
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Figure A.2: Flow chart for the generation of the G-code for single-layer experiments.
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Appendix A. G-code Generation Flow Charts

Figure A.3: Flow chart for the generation of the G-code for multi-layer experiments.
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Figure A.4: Flow chart for the generation of the G-code for multi-layer thermal

experiments.
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Appendix B

Machine Learning Training Data

for Prediction of Visual Track

Assessment
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Appendix B. ML Training Data - Visual Track Assessment
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Appendix B. ML Training Data - Visual Track Assessment

P
o
w
e
r

V
h

V
f

W
S
F

P
U

P
V

P
ri
n
ta
b
le

E
P
L

F
o
u
ri
e
r

H
T
M

E
n
e
rg

y
D
e
n
si
ty

80
0

7.
5

11
.5

1.
53

69
.5

7
10

6.
67

Y
10

6.
66

7
0.

09
6

6.
10

1
20

09
05

64
80

8

80
0

7.
5

11
.5

1.
53

69
.5

7
10

6.
67

Y
10

6.
66

7
0.

09
6

6.
10

1
20

09
05

64
80

8

80
0

9.
5

9.
5

1.
00

84
.2

1
84

.2
1

Y
84

.2
11

0.
07

6
7.

38
5

15
86

09
72

21
7

80
0

11
.5

11
.5

1.
00

69
.5

7
69

.5
7

Y
69

.5
65

0.
06

3
6.

10
1

13
10

25
42

26
6

80
0

11
.5

13
.5

1.
17

59
.2

6
69

.5
7

Y
69

.5
65

0.
06

3
5.

19
7

13
10

25
42

26
6

80
0

19
.5

23
.5

1.
21

34
.0

4
41

.0
3

N
41

.0
26

0.
03

7
2.

98
5

77
27

14
03

11

80
0

7.
5

15
.5

2.
07

51
.6

1
10

6.
67

Y
10

6.
66

7
0.

09
6

4.
52

6
20

09
05

64
80

8

80
0

9.
5

9.
5

1.
00

84
.2

1
84

.2
1

Y
84

.2
11

0.
07

6
7.

38
5

15
86

09
72

21
7

80
0

9.
5

13
.5

1.
42

59
.2

6
84

.2
1

Y
84

.2
11

0.
07

6
5.

19
7

15
86

09
72

21
7

80
0

9.
5

15
.5

1.
63

51
.6

1
84

.2
1

Y
84

.2
11

0.
07

6
4.

52
6

15
86

09
72

21
7

80
0

15
.5

17
.5

1.
13

45
.7

1
51

.6
1

N
51

.6
13

0.
04

7
4.

00
9

97
21

24
10

36

80
0

5.
5

15
.5

2.
82

51
.6

1
14

5.
45

Y
14

5.
45

5
0.

13
1

4.
52

6
27

39
62

24
73

9

80
0

9.
5

17
.5

1.
84

45
.7

1
84

.2
1

Y
84

.2
11

0.
07

6
4.

00
9

15
86

09
72

21
7

80
0

9.
5

11
.5

1.
21

69
.5

7
84

.2
1

Y
84

.2
11

0.
07

6
6.

10
1

15
86

09
72

21
7

80
0

11
.5

19
.5

1.
70

41
.0

3
69

.5
7

Y
69

.5
65

0.
06

3
3.

59
8

13
10

25
42

26
6

80
0

5.
0

7.
5

1.
50

10
6.

67
16

0.
00

Y
16

0.
00

0
0.

14
4

9.
35

4
30

13
58

47
21

3

80
0

6.
3

8.
8

1.
40

91
.4

3
12

8.
00

Y
12

8.
00

0
0.

11
6

8.
01

8
24

10
86

77
77

0

214



P
o
w
e
r

V
h

V
f

W
S
F

P
U

P
V

P
ri
n
ta
b
le

E
P
L

F
o
u
ri
e
r

H
T
M

E
n
e
rg

y
D
e
n
si
ty

80
0

5.
0

10
.0

2.
00

80
.0

0
16

0.
00

Y
16

0.
00

0
0.

14
4

7.
01

6
30

13
58

47
21

3

80
0

7.
5

10
.0

1.
33

80
.0

0
10

6.
67

Y
10

6.
66

7
0.

09
6

7.
01

6
20

09
05

64
80

8

80
0

10
.0

10
.0

1.
00

80
.0

0
80

.0
0

Y
80

.0
00

0.
07

2
7.

01
6

15
06

79
23

60
6

80
0

7.
5

11
.0

1.
47

72
.7

3
10

6.
67

Y
10

6.
66

7
0.

09
6

6.
37

8
20

09
05

64
80

8

80
0

7.
5

12
.5

1.
67

64
.0

0
10

6.
67

Y
10

6.
66

7
0.

09
6

5.
61

3
20

09
05

64
80

8

80
0

10
.0

12
.5

1.
25

64
.0

0
80

.0
0

Y
80

.0
00

0.
07

2
5.

61
3

15
06

79
23

60
6

80
0

5.
0

12
.5

2.
50

64
.0

0
16

0.
00

Y
16

0.
00

0
0.

14
4

5.
61

3
30

13
58

47
21

3

80
0

5.
0

15
.0

3.
00

53
.3

3
16

0.
00

Y
16

0.
00

0
0.

14
4

4.
67

7
30

13
58

47
21

3

80
0

7.
5

15
.0

2.
00

53
.3

3
10

6.
67

Y
10

6.
66

7
0.

09
6

4.
67

7
20

09
05

64
80

8

80
0

10
.0

15
.0

1.
50

53
.3

3
80

.0
0

Y
80

.0
00

0.
07

2
4.

67
7

15
06

79
23

60
6

80
0

12
.5

15
.0

1.
20

53
.3

3
64

.0
0

Y
64

.0
00

0.
05

8
4.

67
7

12
05

43
38

88
5

80
0

15
.0

15
.0

1.
00

53
.3

3
53

.3
3

N
53

.3
33

0.
04

8
4.

67
7

10
04

52
82

40
4

80
0

12
.5

17
.5

1.
40

45
.7

1
64

.0
0

Y
64

.0
00

0.
05

8
4.

00
9

12
05

43
38

88
5

80
0

15
.0

17
.5

1.
17

45
.7

1
53

.3
3

Y
53

.3
33

0.
04

8
4.

00
9

10
04

52
82

40
4

80
0

7.
5

17
.5

2.
33

45
.7

1
10

6.
67

Y
10

6.
66

7
0.

09
6

4.
00

9
20

09
05

64
80

8

80
0

10
.0

20
.0

2.
00

40
.0

0
80

.0
0

Y
80

.0
00

0.
07

2
3.

50
8

15
06

79
23

60
6

80
0

15
.0

20
.0

1.
33

40
.0

0
53

.3
3

Y
53

.3
33

0.
04

8
3.

50
8

10
04

52
82

40
4

215



Appendix B. ML Training Data - Visual Track Assessment

P
o
w
e
r

V
h

V
f

W
S
F

P
U

P
V

P
ri
n
ta
b
le

E
P
L

F
o
u
ri
e
r

H
T
M

E
n
e
rg

y
D
e
n
si
ty

80
0

17
.5

20
.0

1.
14

40
.0

0
45

.7
1

N
45

.7
14

0.
04

1
3.

50
8

86
10

24
20

61

75
0

5.
0

7.
5

1.
50

10
0.

00
15

0.
00

N
15

0.
00

0
0.

14
4

8.
77

0
28

25
23

56
76

2

75
0

6.
3

8.
8

1.
40

85
.7

1
12

0.
00

N
12

0.
00

0
0.

11
6

7.
51

7
22

60
18

85
40

9

75
0

5.
0

10
.0

2.
00

75
.0

0
15

0.
00

Y
15

0.
00

0
0.

14
4

6.
57

7
28

25
23

56
76

2

75
0

7.
5

10
.0

1.
33

75
.0

0
10

0.
00

Y
10

0.
00

0
0.

09
6

6.
57

7
18

83
49

04
50

8

75
0

10
.0

10
.0

1.
00

75
.0

0
75

.0
0

Y
75

.0
00

0.
07

2
6.

57
7

14
12

61
78

38
1

75
0

7.
5

11
.0

1.
47

68
.1

8
10

0.
00

Y
10

0.
00

0
0.

09
6

5.
97

9
18

83
49

04
50

8

75
0

7.
5

12
.5

1.
67

60
.0

0
10

0.
00

Y
10

0.
00

0
0.

09
6

5.
26

2
18

83
49

04
50

8

75
0

10
.0

12
.5

1.
25

60
.0

0
75

.0
0

Y
75

.0
00

0.
07

2
5.

26
2

14
12

61
78

38
1

75
0

5.
0

12
.5

2.
50

60
.0

0
15

0.
00

N
15

0.
00

0
0.

14
4

5.
26

2
28

25
23

56
76

2

75
0

5.
0

15
.0

3.
00

50
.0

0
15

0.
00

N
15

0.
00

0
0.

14
4

4.
38

5
28

25
23

56
76

2

75
0

7.
5

15
.0

2.
00

50
.0

0
10

0.
00

Y
10

0.
00

0
0.

09
6

4.
38

5
18

83
49

04
50

8

75
0

10
.0

15
.0

1.
50

50
.0

0
75

.0
0

Y
75

.0
00

0.
07

2
4.

38
5

14
12

61
78

38
1

75
0

12
.5

15
.0

1.
20

50
.0

0
60

.0
0

Y
60

.0
00

0.
05

8
4.

38
5

11
30

09
42

70
5

75
0

15
.0

15
.0

1.
00

50
.0

0
50

.0
0

Y
50

.0
00

0.
04

8
4.

38
5

94
17

45
22

54

75
0

12
.5

17
.5

1.
40

42
.8

6
60

.0
0

Y
60

.0
00

0.
05

8
3.

75
8

11
30

09
42

70
5

75
0

15
.0

17
.5

1.
17

42
.8

6
50

.0
0

Y
50

.0
00

0.
04

8
3.

75
8

94
17

45
22

54

216



P
o
w
e
r

V
h

V
f

W
S
F

P
U

P
V

P
ri
n
ta
b
le

E
P
L

F
o
u
ri
e
r

H
T
M

E
n
e
rg

y
D
e
n
si
ty

75
0

7.
5

17
.5

2.
33

42
.8

6
10

0.
00

N
10

0.
00

0
0.

09
6

3.
75

8
18

83
49

04
50

8

75
0

10
.0

20
.0

2.
00

37
.5

0
75

.0
0

Y
75

.0
00

0.
07

2
3.

28
9

14
12

61
78

38
1

75
0

15
.0

20
.0

1.
33

37
.5

0
50

.0
0

Y
50

.0
00

0.
04

8
3.

28
9

94
17

45
22

54

75
0

17
.5

20
.0

1.
14

37
.5

0
42

.8
6

Y
42

.8
57

0.
04

1
3.

28
9

80
72

10
19

32

85
0

5.
0

7.
5

1.
50

11
3.

33
17

0.
00

Y
17

0.
00

0
0.

14
4

9.
93

9
32

01
93

37
66

3

85
0

6.
3

8.
8

1.
40

97
.1

4
13

6.
00

Y
13

6.
00

0
0.

11
6

8.
51

9
25

61
54

70
13

1

85
0

5.
0

10
.0

2.
00

85
.0

0
17

0.
00

N
17

0.
00

0
0.

14
4

7.
45

4
32

01
93

37
66

3

85
0

7.
5

10
.0

1.
33

85
.0

0
11

3.
33

Y
11

3.
33

3
0.

09
6

7.
45

4
21

34
62

25
10

9

85
0

10
.0

10
.0

1.
00

85
.0

0
85

.0
0

Y
85

.0
00

0.
07

2
7.

45
4

16
00

96
68

83
2

85
0

7.
5

11
.0

1.
47

77
.2

7
11

3.
33

Y
11

3.
33

3
0.

09
6

6.
77

7
21

34
62

25
10

9

85
0

7.
5

12
.5

1.
67

68
.0

0
11

3.
33

Y
11

3.
33

3
0.

09
6

5.
96

3
21

34
62

25
10

9

85
0

10
.0

12
.5

1.
25

68
.0

0
85

.0
0

Y
85

.0
00

0.
07

2
5.

96
3

16
00

96
68

83
2

85
0

5.
0

12
.5

2.
50

68
.0

0
17

0.
00

N
17

0.
00

0
0.

14
4

5.
96

3
32

01
93

37
66

3

85
0

5.
0

15
.0

3.
00

56
.6

7
17

0.
00

N
17

0.
00

0
0.

14
4

4.
97

0
32

01
93

37
66

3

85
0

7.
5

15
.0

2.
00

56
.6

7
11

3.
33

Y
11

3.
33

3
0.

09
6

4.
97

0
21

34
62

25
10

9

85
0

10
.0

15
.0

1.
50

56
.6

7
85

.0
0

Y
85

.0
00

0.
07

2
4.

97
0

16
00

96
68

83
2

85
0

12
.5

15
.0

1.
20

56
.6

7
68

.0
0

Y
68

.0
00

0.
05

8
4.

97
0

12
80

77
35

06
5

217



Appendix B. ML Training Data - Visual Track Assessment

P
o
w
e
r

V
h

V
f

W
S
F

P
U

P
V

P
ri
n
ta
b
le

E
P
L

F
o
u
ri
e
r

H
T
M

E
n
e
rg

y
D
e
n
si
ty

85
0

15
.0

15
.0

1.
00

56
.6

7
56

.6
7

N
56

.6
67

0.
04

8
4.

97
0

10
67

31
12

55
4

85
0

12
.5

17
.5

1.
40

48
.5

7
68

.0
0

Y
68

.0
00

0.
05

8
4.

26
0

12
80

77
35

06
5

85
0

15
.0

17
.5

1.
17

48
.5

7
56

.6
7

Y
56

.6
67

0.
04

8
4.

26
0

10
67

31
12

55
4

85
0

7.
5

17
.5

2.
33

48
.5

7
11

3.
33

Y
11

3.
33

3
0.

09
6

4.
26

0
21

34
62

25
10

9

85
0

10
.0

20
.0

2.
00

42
.5

0
85

.0
0

N
85

.0
00

0.
07

2
3.

72
7

16
00

96
68

83
2

85
0

15
.0

20
.0

1.
33

42
.5

0
56

.6
7

N
56

.6
67

0.
04

8
3.

72
7

10
67

31
12

55
4

85
0

17
.5

20
.0

1.
14

42
.5

0
48

.5
7

N
48

.5
71

0.
04

1
3.

72
7

91
48

38
21

90

80
0

5.
0

7.
5

1.
50

10
6.

67
16

0.
00

Y
16

0.
00

0
0.

14
4

9.
35

4
30

13
58

47
21

3

80
0

6.
3

8.
8

1.
40

91
.4

3
12

8.
00

Y
12

8.
00

0
0.

11
6

8.
01

8
24

10
86

77
77

0

80
0

5.
0

10
.0

2.
00

80
.0

0
16

0.
00

Y
16

0.
00

0
0.

14
4

7.
01

6
30

13
58

47
21

3

80
0

7.
5

10
.0

1.
33

80
.0

0
10

6.
67

Y
10

6.
66

7
0.

09
6

7.
01

6
20

09
05

64
80

8

80
0

10
.0

10
.0

1.
00

80
.0

0
80

.0
0

N
80

.0
00

0.
07

2
7.

01
6

15
06

79
23

60
6

80
0

7.
5

11
.0

1.
47

72
.7

3
10

6.
67

Y
10

6.
66

7
0.

09
6

6.
37

8
20

09
05

64
80

8

80
0

7.
5

12
.5

1.
67

64
.0

0
10

6.
67

Y
10

6.
66

7
0.

09
6

5.
61

3
20

09
05

64
80

8

80
0

10
.0

12
.5

1.
25

64
.0

0
80

.0
0

Y
80

.0
00

0.
07

2
5.

61
3

15
06

79
23

60
6

80
0

5.
0

12
.5

2.
50

64
.0

0
16

0.
00

Y
16

0.
00

0
0.

14
4

5.
61

3
30

13
58

47
21

3

80
0

5.
0

15
.0

3.
00

53
.3

3
16

0.
00

Y
16

0.
00

0
0.

14
4

4.
67

7
30

13
58

47
21

3

218



P
o
w
e
r

V
h

V
f

W
S
F

P
U

P
V

P
ri
n
ta
b
le

E
P
L

F
o
u
ri
e
r

H
T
M

E
n
e
rg

y
D
e
n
si
ty

80
0

7.
5

15
.0

2.
00

53
.3

3
10

6.
67

Y
10

6.
66

7
0.

09
6

4.
67

7
20

09
05

64
80

8

80
0

10
.0

15
.0

1.
50

53
.3

3
80

.0
0

Y
80

.0
00

0.
07

2
4.

67
7

15
06

79
23

60
6

80
0

12
.5

15
.0

1.
20

53
.3

3
64

.0
0

Y
64

.0
00

0.
05

8
4.

67
7

12
05

43
38

88
5

80
0

15
.0

15
.0

1.
00

53
.3

3
53

.3
3

N
53

.3
33

0.
04

8
4.

67
7

10
04

52
82

40
4

80
0

12
.5

17
.5

1.
40

45
.7

1
64

.0
0

Y
64

.0
00

0.
05

8
4.

00
9

12
05

43
38

88
5

80
0

15
.0

17
.5

1.
17

45
.7

1
53

.3
3

Y
53

.3
33

0.
04

8
4.

00
9

10
04

52
82

40
4

80
0

7.
5

17
.5

2.
33

45
.7

1
10

6.
67

Y
10

6.
66

7
0.

09
6

4.
00

9
20

09
05

64
80

8

80
0

10
.0

20
.0

2.
00

40
.0

0
80

.0
0

Y
80

.0
00

0.
07

2
3.

50
8

15
06

79
23

60
6

80
0

15
.0

20
.0

1.
33

40
.0

0
53

.3
3

Y
53

.3
33

0.
04

8
3.

50
8

10
04

52
82

40
4

80
0

17
.5

20
.0

1.
14

40
.0

0
45

.7
1

N
45

.7
14

0.
04

1
3.

50
8

86
10

24
20

61

65
0

5.
0

7.
5

1.
50

86
.6

7
13

0.
00

N
13

0.
00

0
0.

14
4

7.
60

0
24

48
53

75
86

0

65
0

6.
3

8.
8

1.
40

74
.2

9
10

4.
00

N
10

4.
00

0
0.

11
6

6.
51

5
19

58
83

00
68

8

65
0

5.
0

10
.0

2.
00

65
.0

0
13

0.
00

Y
13

0.
00

0
0.

14
4

5.
70

0
24

48
53

75
86

0

65
0

7.
5

10
.0

1.
33

65
.0

0
86

.6
7

N
86

.6
67

0.
09

6
5.

70
0

16
32

35
83

90
7

65
0

10
.0

10
.0

1.
00

65
.0

0
65

.0
0

N
65

.0
00

0.
07

2
5.

70
0

12
24

26
87

93
0

65
0

7.
5

11
.0

1.
47

59
.0

9
86

.6
7

N
86

.6
67

0.
09

6
5.

18
2

16
32

35
83

90
7

65
0

7.
5

12
.5

1.
67

52
.0

0
86

.6
7

Y
86

.6
67

0.
09

6
4.

56
0

16
32

35
83

90
7

219



Appendix B. ML Training Data - Visual Track Assessment
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Appendix B. ML Training Data - Visual Track Assessment
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Appendix C

Machine Learning Training Data

for Prediction of Track Height and

Width
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Appendix C. ML Training Data - Track Height and Width
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Appendix C. ML Training Data - Track Height and Width
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