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First search for dark-trident processes using the MicroBooNE detector1
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We present a first search for dark-trident scattering in a neutrino beam using a data set corre-71

sponding to 7.2× 1020 protons on target taken with the MicroBooNE detector at Fermilab. Proton72

interactions in the neutrino target at the Main Injector produce π0 and η mesons, which could decay73

into dark-matter (DM) particles mediated via a dark photon A′. A convolutional neural network74

is trained to identify interactions of the DM particles in the liquid-argon time projection chamber75

(LArTPC) exploiting its image-like reconstruction capability. In the absence of a DM signal, we pro-76

vide limits at the 90% confidence level on the squared kinematic mixing parameter ε2 as a function77

of the dark-photon mass in the range 10 ≤ MA′ ≤ 400 MeV. The limits cover previously uncon-78

strained parameter space for the production of fermion or scalar DM particles χ for two benchmark79

models with mass ratios Mχ/MA′ = 0.6 and 2 and for dark fine-structure constants 0.1 ≤ αD ≤ 1.80

A wealth of astronomical data at different scales pro-81

vide evidence for the existence of dark matter (DM): the82

motion of galaxies and the stars within them, gravita-83

tional lensing, the cosmic microwave background, and84

the large-scale structure of the universe [1]. The nature85

of dark matter, however, remains elusive. Non-baryonic86

particles predicted by dark-sector models are candidates87

for dark matter [2]. The search for their production at88

accelerators is a focus of the high-energy hadron collider89

program at the LHC [3] and of fixed-target experiments90

exposed to high-intensity beams [4].91

The dark-trident process has been proposed as a new92

way to search for low-mass dark-matter particles in neu-93

trino beams [5]. In this Letter, we report a first search94

for such dark tridents with the MicroBooNE liquid-argon95

time projection chamber (LArTPC) [6]. In the future,96

similar searches can be performed with the DUNE near97

detector [7] and the detectors of the Fermilab short-98

baseline program [8].99

A pair of DM particles, χχ̄, is produced in the dark-100

trident process through the decay of neutral π0 or η101

mesons, which was created by the interactions of the pro-102

tons and by secondary interactions in the neutrino target103

(Fig. 1a). The decays π0, η → γχχ̄ are mediated by a vir-104

tual, off-shell dark photon A′∗. The masses of the dark105

photon, MA′ , and of the dark fermion (or scalar), Mχ,106

are parameters of the model.107

The DM particle χ (or χ̄) then travels uninterrupted to108

the MicroBooNE detector where it could scatter off argon109

nuclei through the trident process χ + Ar → χ + Ar +110

A′ (see Fig. 1b). The dark photon A′ promptly decays111

FIG. 1. (a) A pair of DM particles, χχ̄, is produced in a π0 or
η0 decay; (b) in the dark-trident process, χ (or χ̄) scatters off
an argon nucleus to produce a dark photon A′ decaying into
an e+e− pair with a branching ratio of 1. The rate depends on
the kinematic mixing parameter ε and the dark fine-structure
constant αD.

inside the detector into an e+e− pair. The χ production112

rate depends on the kinematic mixing parameter ε and a113

dark fine-structure constant αD, which is defined in terms114

of the dark-photon gauge coupling gD as αD = g2D/(4π).115

We consider the mass ratios Mχ/MA′ = 0.6 and 2 in this116
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search as proposed in Ref. [5]. Since Mχ/MA′ > 0.5,117

the dark photons need to be off-shell to decay into χχ̄118

pairs, and, when on-shell, they will exclusively decay to119

e+e−. The signal rate therefore scales with ε4α3
D. Other120

recent experimental searches cover the mass range where121

A′ decays invisibly [9–11].122

We use data recorded with the MicroBooNE detec-123

tor [6] between 2015 and 2018. The detector’s LArTPC124

has an instrumented volume of 85 tonnes of liquid ar-125

gon inside a cryostat. Ionization charge drifts across an126

electric field of 273 V/cm and is read out by one charge127

collection and two induction planes forming the anode.128

The LArTPC was simultaneously exposed to the on-axis129

booster neutrino beam (BNB) [12] and the off-axis beam130

of neutrinos from the main injector (NuMI) [13]. Only131

NuMI data are used in this search, as the higher av-132

erage energy of the NuMI beam gives access to higher133

values of MA′ . The NuMI data used here correspond to134

7.2 × 1020 protons on target (POT), which were taken135

in two operating modes – forward horn current (FHC)136

with 2.2 × 1020 POT (Run 1) and reverse horn current137

(RHC) with 5.0 × 1020 POT (Run 3). This data set138

has previously been used to search for heavy neutral lep-139

tons [14, 15] and Higgs portal scalars [15, 16], and to140

measure neutrino cross sections [17, 18].141

We simulate the dark-trident process with a dedicated142

generator in three steps: the neutral meson flux in the143

beamline, the decay of the neutral mesons, and the scat-144

tering of the DM particles on argon. First, the kinemat-145

ics of the π0 and η mesons for both beam configurations,146

FHC and RHC, are obtained using the g4NuMI simula-147

tion [19], which is based on a full GEANT4 description of148

the beamline geometry. The full simulation results in149

a significantly higher meson rate compared to Ref. [5]150

since it includes mesons produced within the ≈ 1 m151

long graphite target by secondary interactions and within152

other beamline components.153

We then simulate the radiative decays π0, η0 → γχχ̄154

with BdNMC [20]. In addition to the scalar DM produc-155

tion supported by BdNMC, we added the option to generate156

fermions. We calculate the rate of the scattering process157

χ+Ar → χ+Ar+A′ inside the LArTPC as a function of158

the energy of the DM particle and the path traveled in-159

side the detector [21]. We compare our signal simulation160

to the calculations of Ref. [5] and find good agreement in161

the kinematics, e.g., the distribution of the e+e− opening162

angle as a function of the energy of each lepton. The cross163

section of the process shown in Fig. 1b is simulated us-164

ing GenExLight [21]. We find an agreement better than165

1% when comparing these cross sections to calculations166

obtained with MadGraph [22].167

We use a “beam-on” data sample to search for the168

dark-trident signal where the event triggers coincide with169

the arrival time of neutrinos from the NuMI beam. The170

background is modeled considering three contributions.171

Beam-on background events that are triggered by a cos-172

mic ray and not a neutrino interaction are modeled173

by a “beam-off” sample collected under identical trig-174

ger conditions but when no neutrino beam is present.175

The “beam-off” sample is scaled so that its normaliza-176

tion corresponds to the number of beam spills of the177

beam-on sample. Neutrino-induced background from the178

NuMI beam is modeled using a GENIE Monte Carlo sim-179

ulation [23] embedded in the LArSoft software frame-180

work [24]. The “in-cryostat ν” sample contains inter-181

actions of neutrinos with the argon inside the cryostat,182

and the “out-of-cryostat ν” sample describes interactions183

with the material surrounding the detector.184

We reconstruct neutrino interactions and cosmic rays185

within the argon with a chain of pattern-recognition al-186

gorithms, implemented using the Pandora software de-187

velopment kit [25, 26]. The algorithms use hits that are188

formed from the waveforms read out by the charge col-189

lection and the two induction planes. Collections of hits190

are reconstructed as a track, as expected for a minimum191

ionizing particle, or a shower, consistent with being an192

electron or photon conversion.193

TABLE I. Numbers of events that remain after preselection
normalized to POT for the data and the background model.

Sample Run 1 (FHC) Run 3 (RHC)
POT 2.2× 1020 5.0× 1020

Beam-off 2410 4826
In-cryostat ν 1262 2759
Out-of-cryostat ν 354 402
Sum of predictions 4026 7987
Beam-on (data) 4021 7684

194

195

We use the results of the Pandora reconstruction to196

select events that are consistent with the signal hypoth-197

esis. Dark-trident events are frequently reconstructed as198

a single shower due to the small opening angle of the199

e+e− pairs and, in a few cases, as two showers arising200

from a common vertex. Background processes that can201

mimic the signal topology are neutral current (NC) ν in-202

teractions with π0, η → γγ decays in the final state or203

with emission of single photons that are reconstructed as204

an e+e− pair. Each event is therefore required to have205

at least one vertex, at least one shower, and no tracks.206

The efficiency of this preselection for a DM signal lies207

in the range of (32–40)% for masses in the range (10–208

400) MeV. We find good agreement between the number209

of data events and the sum of the predictions for the210

background processes after this preselection (Table I).211

We use a convolutional neural network (CNN) based212

on the previous development of such algorithms in Micro-213

BooNE for multiple particle identification (MPID) for214

discriminating signal and background [27]. Convolu-215

tional neural networks (CNNs) are deep-learning net-216

works that are ideally suited for images reconstructed217

from LArTPC data [28–30]. The CNN architecture is218

based on a model for dense images with adaptations for219
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LArTPCs. Convolution filters of size 3 × 3 allow scan-220

ning of the information contained in showers. The output221

layer has two neurons that correspond to the probability222

for signal or background.223

We only consider images from the charge collection224

plane, as it has the best signal to noise ratio [27]. The225

size of each image in pixels corresponds to 3456 wires226

multiplied by 6048 time ticks. To improve processing227

time, we first compress the time axis by a factor of 6228

and then crop the images around the interaction vertex229

producing a region of interest (ROI) of 512× 512 pixels.230

After compression, each pixel has a resolution of ≈ 3 ×231

3 mm2.232
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FIG. 2. Distribution of the y coordinate of the reconstructed
vertices for the Run 3 data after preselection compared to the
background model. The positive direction of the y axis points
vertically upwards. The gray band represents the systematic
uncertainty in the background model.

We validate the agreement of the vertex reconstruc-233

tion by comparing data and the background model after234

the preselection (Fig. 2). The increase of beam-off events235

towards the top of the detector due to cosmic rays is re-236

produced by the background model. While we use the237

reconstructed vertices for the data and background sam-238

ples, the true vertex location is used for the training.239

This prevents the CNN from training on an ROI that240

does not contain the interaction of interest, which can241

occur when a vertex is reconstructed at a large distance242

from the true interaction vertex.243

For the training of the CNN we prepare a dedicated244

training data set. We use a single signal sample with the245

parameters αD = 0.1, MA′ = 50 MeV, and MA′/Mχ =246

0.6. As background samples we use cosmic rays simu-247

lated with CORSIKA [31] and ν interactions leading to π0
248

mesons simulated with GENIE [23]. In addition, we over-249

lay the hits of cosmic rays simulated with CORSIKA to the250

ν interaction background and the signal samples. A test251

set, comprising 10% of the events included in the training252

set, is used to evaluate the progress of the CNN training.253

The CNN model is trained during ≈ 10k iterations254
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FIG. 3. Comparison of the CNN signal score distribution
for Run 3 data with the background model after the prese-
lection. The gray band corresponds to the total systematic
uncertainty in the background. The signal distribution for
αD = 0.1, MA′ = 50 MeV, and MA′/Mχ = 0.6 is superim-
posed, scaled by an arbitrary factor.
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FIG. 4. A dark-trident candidate with a CNN score of 6.4,
within the ROI of 512×512 pixels (≈ 1.5×1.5 m2). A cosmic
ray crosses in the lower right-hand corner.

(≈ 5 epochs) with a batch size of 32 images and a learn-255

ing rate of 0.001 [28]. Dropout layers, regularization256

terms, and batch normalization are implemented dur-257

ing the CNN training to prevent overfitting. The train-258

ing progress is monitored with a Binary Cross Entropy259

(BCE) loss function and using the accuracy, which is de-260

fined as the fraction of correctly classified images over261

the total number of images processed by the CNN. As262

an additional figure of merit, we use the receiver operat-263

ing characteristic curve (ROC) to decide the number of264

training steps where the CNN model is frozen. Figure 3265

shows the discrimination between signal and background266

for CNN signal scores > 0.267

We use a single CNN model that has been optimized268
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FIG. 5. The 90% CL observed limits on ε2 as a function of MA′ for αD = 0.1 and αD = 1, and (a) Mχ/MA′ = 0.6 and
(b) Mχ/MA′ = 2, together with the 1 and 2 standard deviation bands around the median expected limits. We use a linear
interpolation between the mass points. A total of 13 mass values have been simulated for Mχ/MA′ = 0.6, equally spaced
between 10–100 MeV and between 100–400 MeV and a total of 19 mass values for Mχ/MA′ = 2, an additional 6 mass values
are added at higher MA. A table of the limits at each point is provided as supplementary material.
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FIG. 6. The 90% CL limits on ε2 as a function of MA′ for (a) scalar DM with αD = 1.0, Mχ/MA′ = 0.6; (b) fermion DM
with αD = 1.0, Mχ/MA′ = 0.6; and (c) for fermion DM with αD = 1.0, Mχ/MA′ = 2.0. The constraints provided by the
NA48/2 [32], BaBar [33], NA64 [34], and LHCb collaborations [35], and by beam dump experiments [36–38] are displayed as
shaded regions. The reinterpretations of LSND results [5, 39] and the unpublished FASER [40] limits are shown as dashed
lines. The two isolated contours at MA′ ≈ 200–300 MeV are also excluded by LHCb data. The upper limits on ε2 from Planck
data [41, 42] apply for fermion DM with Mχ/MA′ = 0.6.

(a) (b) (c)

with a benchmark signal point trained against the NC π0
269

and cosmic-ray background samples. The areas under the270

curve for the ROCs of the different signal points relative271

to the full background sample (see Table I) agree within272

(1–2)% with the benchmark CNN model.273

A data event with a high CNN signal score is shown274

in Fig. 4, where the shower points in the direction of the275

NuMI beam. By modifying the training events, we deter-276

mine that the CNN learns about the kinematics (angles,277

energies) of the scattering process through the number of278

pixels and the orientation of pixel clusters.279

We evaluate systematic uncertainties that could mod-280

ify the CNN score distributions for signal and back-281

ground. For the in-cryostat ν background, we consider282

the impact of the neutrino flux simulation (10–20)% [19],283

the neutrino-argon cross-section modeling (12–20)% [43],284

hadron interactions with argon (≈ 1%) [44], and de-285

tector modeling (≈ 30%) [45]. The beam-off sample is286

taken from data and therefore has no associated sys-287

tematic uncertainties other than statistical fluctuations.288

The impact of the normalization uncertainty on the out-289

of-cryostat sample and of the POT counting is negligi-290
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ble [15].291

The sum of the detector-related systematic uncertain-292

ties on the signal is in the range (10–20)%. A form fac-293

tor accounts for the spatial distribution of the argon nu-294

cleus in the χ-Ar scattering [5]. Recalculating the cross295

sections with different form factors [46, 47] yields un-296

certainties in the range (2–20)% in the mass range (10–297

200) MeV.298

The signal rate also depends on the NuMI π0 and η299

flux simulated by g4NuMI. We confirm that the ratio of300

π0 production relative to π± production in g4NuMI is con-301

sistent with expectations of isospin symmetry. We there-302

fore use the beam flux uncertainty of 22% determined303

for the charged meson flux [17], which includes hadron304

production and beam line modeling uncertainties.305

The CNN score distributions are found to be consis-306

tent with the background expectation and used to derive307

limits on the squared mixing parameter ε2 as a function308

of MA′ . The limit setting is done with the pyhf algo-309

rithm [48], which is an implementation of a statistical310

model to estimate confidence intervals [49]. Systematic311

uncertainties are treated through profile likelihood ratios.312

The results are validated with the modified frequentist313

CLs calculation of the COLLIE program [50]. The ob-314

served limits of Fig. 5 are shown at the 90% confidence315

level (CLs = 0.1) for several benchmark points. Since we316

use a single CNN model for all signal points, the CNN317

score distributions for background are highly correlated318

between the different mass hypotheses MA′ . All observed319

limits are therefore consistently within the 1 and 2 stan-320

dard deviation ranges around the median expected limit.321

In Fig. 6, we compare the results for a scalar dark mat-322

ter particle χ with existing constraints on dark-trident323

processes from rare pion decays measured by the NA48/2324

collaboration [32], beam dump experiments [36–38], and325

searches for promptly decaying dark photons into e+e−326

pairs by the BaBar [33], FASER [40], and NA64 [51] col-327

laborations. The limits obtained by the LHCb collabo-328

ration [35] apply for higher masses MA′ > 200 MeV. The329

most sensitive constraints are obtained for αD = 1 and330

Mχ/MA′ = 0.6.331

For the fermion model, we also compare to reinterpre-332

tations of LSND results [5, 39]. Cosmological constraints333

on χχ̄ annihilation in the early universe are obtained us-334

ing Planck measurements on the cosmic microwave back-335

ground [41, 42]. The χχ̄ annihilation cross section is336

only relevant for a fermion χ and Mχ/MA′ = 0.6. The337

cosmological data constrain ε2 from below, since the338

thermal relic dark-matter density becomes too small for339

larger ε2 [5].340

In summary, we apply convolutional neural networks to341

obtain first constraints on the production of dark matter342

in a liquid-argon detector exposed to a neutrino beam.343

We consider fermion and boson dark-matter particles χ344

produced in a dark-trident process with Mχ/MA′ = 0.6345

and Mχ/MA′ = 2, and dark fine-structure constants in346

the range 0.1 ≤ αD ≤ 1. The constraints in the plane of347

the squared kinematic mixing parameter ε2 and the dark-348

photon mass MA′ exclude previously unexplored regions349

of parameter space in the range 10 ≤ MA′ ≤ 400 MeV.350
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