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When equating two test forms, the equated scores will be biased if the test

groups differ in ability. To adjust for the ability imbalance between none-

quivalent groups, a set of common items is often used. When no common items

are available, it has been suggested to use covariates correlated with the test

scores instead. In this article, we reduce the covariates to a propensity score

and equate the test forms with respect to this score. The propensity score is

incorporated within the kernel equating framework using poststratification and

chained equating. The methods are evaluated using real college admissions test

data and through a simulation study. The results show that propensity scores

give an increased equating precision in comparison with the equivalent groups

design and a smaller mean squared error than by using the covariates directly.

Practical implications are also discussed.

Keywords: kernel equating; background variables; nonequivalent groups; NEC design;

propensity scores

1. Introduction

Scores from different versions of a test can be compared only after equating

(González & Wiberg, 2017). Having items common to both versions and test

takers who took both versions are important factors in the choice of methods and

designs for equating. For example, the equivalent groups (EG) design requires

test groups that have identical distributions of ability. In the design with none-

quivalent groups with an anchor (NEAT), score adjustment is based on the items

common to the two versions. Since test groups in large-scale assessments could

not always be considered equivalent, the NEAT design is preferable in many

situations. Problems arise when the groups are not equivalent and there are no

common items, for example, the INVALSI test (INVALSI, 2013) and the Armed

Services Vocational Aptitude Battery (Quenette, Nicewander, & Thomasson,

2006). Background variables may be used as substitutes for the score on the

common items through a nonequivalent groups with covariates (NEC) design
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(Wiberg & Bränberg, 2015). In the NEC design there is no anchor test available,

so covariates that are correlated with the test scores are used instead. In Wiberg

and Bränberg (2015), the test takers are categorized through a number of cov-

ariates that correlate highly with the test scores as a way to replace anchor test

scores in a novel design built on poststratification equating (PSE). However, they

did not consider the possibility of using propensity scores (Rosenbaum & Rubin,

1983, 1984) nor did they examine the possibility of using a chained equating

(CE) approach within the NEC design. Their method also requires continuous

variables to be converted to categorical variables. A problem with their approach

is that the number of covariate categories quickly expands with an increasing

number of covariates, making the number of categories that have few or even no

observations, from one or both tests, to proliferate. We handle this problem by

using propensity scores instead of the covariates.

The general use of collateral information has been suggested several times in

equating research. Kolen (1990); Cook, Eignor, and Schmitt (1990); and Wright

and Dorans (1993) used covariates in matched sampling to adjust for differences

between the test groups. Liou, Cheng, and Li (2001) replaced the anchor test with

covariates, Bränberg and Wiberg (2011) incorporated covariates in linear equat-

ing, and Hsu, Wu, Yu, and Lee (2009) used covariates in item response theory

(IRT) true-score equating. This article differs from these papers by applying

propensity scores as a way to use collateral information to control for none-

quivalent groups.

To use propensity scores in test equating is not a new idea, and it was first

proposed by Livingston, Dorans, and Wright (1990). Since then, there have been

several suggestions on how to use it within equating. Yu, Livingston, Larkin, and

Bonett (2004) and Paek, Liu, and Oh (2006) used propensity scores to match

samples, and Sungworn (2009) used it to improve the traditional PSE. Later,

Moses, Deng, and Zhang (2010) used propensity scores to combine two anchor

test scores for use in PSE, and Powers (2010) used propensity scores within CE,

frequency estimation, IRT true-score equating, and IRT observed-score equating.

Recently, Longford (2015) proposed an equating method that made use of match-

ing with either inverse proportional weighting or matched pairs based on pro-

pensity scores, and Haberman (2015) used propensity scores to create

pseudoequivalent groups from nonequivalent groups. However, none of the

above mentioned studies used propensity scores within the kernel equating

framework as proposed here.

Motivated by the fact that kernel equating has become a well-established

framework for both theorists and practitioners, we apply a kernel equating esti-

mator that uses propensity scores within the NEC design and demonstrate both a

PSE approach and a CE approach with real and simulated test data. Several

studies have indicated that CE is less biased than PSE when there are large

differences in ability between the test groups (e.g., Livingston, Dorans, &

Wright, 1990; Wang, Lee, Brennan, & Kolen, 2006), but von Davier, Holland,
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and Thayer (2004a) showed that the two approaches under certain conditions are

equivalent. In this article, we compare CE and PSE under the NEC design.

Previous studies have also shown that the choice of equating transformation is

less important when the anchor test shows close resemblance to the overall test.

This result is of particular interest to investigate when covariates replace the

anchor, since covariates almost always are less correlated with the test scores

than the anchor test scores. The proposed approaches are empirically examined

using data from a college admission test and are compared to kernel equating

within the EG and the NEAT design. The choice of collateral information is

important, and the objective is to incorporate variables that both correlate highly

with the test scores and that can explain differences between the groups of test

takers. Other studies of the test used in the empirical illustration of this article

have shown that gender, education, and age correlate with the test scores (Brän-

berg, Henriksson, Nyquist, & Wedman, 1990), and in this article, both gender

and age were used together with the scores from a different part of the test. It

should though be noted that the logistics in collecting variables are commonly

limited.

The structure of this article is as follows: First, the NEC design is described in

general, followed by an introduction to propensity scores. Next, the kernel equat-

ing framework is presented, and two approaches for kernel equating using pro-

pensity scores are proposed. The proposed methods are then illustrated and

examined in an empirical illustration and a simulation study, which is followed

by some concluding remarks.

2. NEC Design

Equating nonequivalent test groups means having to adjust for two sources

of bias: differences in difficulty of the forms and differences in ability of the

test groups. A suitable equating transformation handles the former, but since

the latter is unobserved, some proxy for ability is needed. The most common

proxy is an anchor test, for which there exist several NEAT design equating

transformations. However, not all testing programs can include an anchor.

Instead, there might be other background information of the test takers avail-

able. This is the scenario of the NEC design, where the underlying assump-

tion is that if the test groups are equivalent conditionally on background

information, they will be only randomly different from each other in terms

of ability.

To formalize the NEC design, assume that we have a sample of size nP from a

population P and a sample of size nQ from another population Q. The sample from

P has been administered test form X, and the sample from Q has been administered

test form Y, where X and Y represent the same assessment test but contain dif-

ferent sets of items. For each test taker, an observation of either a score X if

administered test form X or a score Y if administered test form Y is registered.
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There are no common items available; however, a set of background variables

D ¼ ðD1; : : : ;DmÞ is observed for each test taker. The background variables are

referred to as covariates and have the purpose of controlling for differences in

ability between the test groups (Wiberg & Bränberg, 2015). The aim is to control

for all the confounding covariates, that is, those that affect both the treatment

assignment and the test scores. This will balance the covariate distribution in the

test groups, making them only randomly different from each other. In that sense,

covariates are used as a proxy for ability, just as an anchor might be.

2.1. Propensity Scores

The covariates within the NEC design will be used in a univariate composite

called the propensity score. For each test taker, the propensity score eðDÞ spe-

cifies the conditional probability of being assigned to a particular treatment (i.e.,

test form) given the covariate vector D (Rosenbaum & Rubin, 1983). Letting Z

denote a treatment variable equal to 1 if test form Y (the active treatment) is

administered and 0 if test form X (the control treatment) is administered, the

propensity score is defined as eðDÞ ¼ PrðZ ¼ 1jDÞ ¼ EðZjDÞ. We will use the

fact that the propensity score is a balancing score, meaning that if D contains

every confounder of the (X, Y) and Z relationship, it is sufficient to control for

e(D) to create covariate balance in the test groups. This will be formalized in the

next section in two slightly different ways, depending on whether it is PSE or CE

that is applied.

The propensity score for each test taker is unknown since the administration of

test forms is not randomized. It can be estimated in several ways, most commonly

using logistic regression. A practical guideline is to include every covariate in the

estimation model that is strongly correlated with the test scores. Once the esti-

mated propensity score is obtained, Rosenbaum and Rubin (1984) proposed

subdividing the vector of propensity scores into strata based on the percentiles.

This approach suggests that test takers with propensity scores falling into the

same stratum are equivalent with respect to ability. Thus, the number of strata

should be chosen such that the test groups are homogeneous within each stratum

in terms of covariate distribution.

3. Kernel Equating

Kernel equating aims to equate X to Y in the target population T. For the

nonequivalent groups designs, T is defined as a mixture of populations P and

Q, that is, T ¼ wPþ ð1� wÞQ, where 0 � w � 1. The equating procedure com-

prises the following five steps: (1) presmoothing, (2) estimation of the score

probabilities, (3) continuization, (4) equating, and (5) calculation of evaluation

measures (von Davier, Holland, & Thayer, 2004b, pp. 45–47; see also González

& Wiberg, 2017). Let the realizations of X and Y be denoted xj, j ¼ 1; : : : ; J , and
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yk, k ¼ 1; : : : ;K, respectively. Let rj ¼ PrðX ¼ xjjTÞ and sk ¼ PrðY ¼ yk jTÞ be

the respective probabilities of a randomly selected test taker in T scoring xj on test

form X and yk on test form Y. The cumulative distribution functions (CDFs) of X

and Y in T are denoted FðxÞ ¼ PrðX � xjTÞ and GðyÞ ¼ PrðY � yjTÞ,
respectively.

Kernel equating uses the equipercentile transformation to equate X to Y,

which states that an equivalent score y on form Y to a score x on form X is

given by

y ¼ jY ðxÞ ¼ G�1ðFðxÞÞ: ð1Þ

Since Fð�Þ and Gð�Þ need to be continuous for jð�Þ to be properly defined,

kernel equating implements a, usually Gaussian, kernel to continuize the score

CDFs. With this purpose, let r ¼ ðr1; : : : ; rJ Þt, Fð�Þ denote the standard normal

distribution function, mX ¼
P

jxjrj denote the mean of X in population T,

aX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

X=ðs2
X þ h2

X Þ
p

, s2
X denote the variance of X in T, and hX > 0 denote

a smoothing parameter. Using the Gaussian kernel, the continuized X score CDF

is defined as

FhX
ðx; rÞ ¼ Pr

�
X ðhX Þ � x

�
¼
X

j

rjF
x� aX xj � ð1� aX ÞmX

aX hX

� �
: ð2Þ

The continuization of the Y score distribution to obtain GhY
ðy; sÞ,

s ¼ ðs1; : : : ; sKÞt, is done similarly. The so-called bandwidths hX and hY can

be selected in several ways, for example, by double smoothing (Häggström &

Wiberg, 2014) or by minimizing a penalty function (von Davier, 2013; von

Davier et al., 2004b, p. 63). Thus, it is only the score probabilities that need to

be estimated for it to be possible to calculate the continuized CDFs, and thereby

form the equipercentile transformation given in Equation 1. For this purpose,

the estimated propensity scores will be used, as explained in the following

section.

In the final step of kernel equating, the estimated equating transformation is

evaluated. The most common evaluation measure is the standard error of equat-

ing (SEE), which in kernel equating is given by

SEEY ðxÞ ¼ jjJjY
JDFCjj; ð3Þ

where jj � jj denotes the Euclidean norm, JjY
is the Jacobian of the equating

transformation, JDF is the Jacobian of the design function mapping the esti-

mated score distributions into estimates of r and s, and C is a matrix related

to the covariance of the estimated score distributions. The explicit expres-

sions of the two Jacobian matrices for the estimators presented in this article

are very similar to those when using anchor scores, see Appendix B for the

details.
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4. Kernel Equating Using Propensity Scores

4.1. A PSE Approach

The first equating transformation of our proposal takes a PSE approach and is

abbreviated PSE NEC PS. In this approach, we define the distributions of X and Y

in T as

rj ¼ PrðX ¼ xjjTÞ ¼ wrPj þ ð1� wÞrQj; ð4Þ

and

sk ¼ PrðY ¼ yk jTÞ ¼ wsPk þ ð1� wÞsQk ; ð5Þ

where rPj ¼ PrðX ¼ xjjPÞ, rQj ¼ PrðX ¼ xjjQÞ, sPk ¼ PrðY ¼ yk jPÞ, and sQk ¼
PrðY ¼ yk jQÞ are the score distributions of X and Y in populations P and Q,

respectively. In order to define estimators of rj and sk, denote the stratified pro-

pensity score for strata l, l ¼ 1; : : : ; L, by eXlðDÞ for population P and eYlðDÞ for

population Q. The joint distributions of
�

X ; eXlðDÞ
�

and
�

Y ; eYlðDÞ
�

are denoted as

pjl ¼ PrðX ¼ xj; eXlðDÞ ¼ eXlðdÞjPÞ and qkl ¼ Pr
�

Y ¼ yk ; eYlðDÞ ¼ eYlðdÞjQ
�

,

respectively, where d denotes the observed value of D. The probabilities rPj and

sQk are estimated by

r̂Pj ¼
X

l

p̂jl and ŝQk ¼
X

l

q̂kl; ð6Þ

where p̂jl and q̂kl, for example, could be estimates from a presmoothing model

such as a log-linear model. By design, there is no data to estimate rQj and sPk

directly. To derive estimators of these quantities, we present the following PSE

NEC PS assumptions about the propensity score:

X ⊥ ZjeðDÞ; ðA:1Þ

Y ⊥ ZjeðDÞ; ðA:2Þ

0 < eðDÞ < 1; ðA:3Þ

where ⊥ denotes statistical independence. In causal inference, Assumptions A.1

and A.2 are known as the unconfoundedness assumption, and Assumption A.3 is

called the overlap assumption (Abadie & Imbens, 2006). Rosenbaum and Rubin

(1983) proved that A.1 and A.2 holds if D contains every confounding covariate.

Since they are untestable assumptions, the aim should be to include all measured

covariates in the propensity score estimation model that affects both treatment

and scores.

Assumptions A.1 and A.2 implies that the conditional distribution of X given

e(D) and Y given e(D) is the same in population P and Q, respectively. This

makes it possible to estimate the missing quantities in Equations 4 and 5 by
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r̂Qj ¼
X

l

p̂jlX
j

p̂jl

�
X

k

q̂kl

0
BB@

1
CCAand ŝPk ¼

X
l

q̂klX
k

q̂kl

�
X

j

p̂jl

0
BB@

1
CCA; ð7Þ

thus making every unknown term of rj and sk possible to estimate.

Once r̂j is calculated, it is plugged into Equation 2 to estimate FhX
. The CDF

GhY
is obtained analogously using ŝk . The PSE NEC PS equating transformation

that equates X to Y in population T is obtained by composing the equipercentile

transformation from F̂hX
and ĜhY

:

ĵY ðPSEÞðxÞ ¼ jY ðPSEÞðx; br;bsÞ ¼ G�1
hY

�
FhX
ðx;brÞ;bs� ¼ Ĝ

�1

hY

�
F̂hX
ðxÞ
�
: ð8Þ

4.2. A CE Approach

CE using propensity scores is referred to as CE NEC PS. This approach first

links X to eXlðDÞ in population P and then eYlðDÞ to Y in population Q. To make

this procedure valid as an observed-score equating method, we present a set of

assumptions underlying CE NEC PS. First, let H
�

eðdÞ
�
¼ Pr

�
eðDÞ � eðdÞjT

�
,

HP

�
eðdÞ

�
¼ Pr

�
eðDÞ � eðdÞjP

�
, HQ

�
eðdÞ

�
¼ Pr

�
eðDÞ � eðdÞjQ

�
, FPðxÞ ¼

PrðX � xjPÞ, and GQðyÞ ¼ PrðY � yjQÞ. The CE NEC PS assumptions are

H�1
P ðFPðxÞÞ ¼ H�1ðFðxÞÞ; ðB:1Þ

G�1
Q ðHQðeðdÞÞÞ ¼ G�1ðHðeðdÞÞÞ: ðB:2Þ

Assumptions B.1 and B.2 state that the links from X to eXlðDÞ and from eYlðDÞ
to Y are population invariant for any T of the form T ¼ wPþ ð1� wÞQ. From

Assumptions B.1 and B.2, it follows that

FðxÞ ¼ H
�

H�1
P

�
FPðxÞ

��
and

G�1ðyÞ ¼ G�1
Q

�
HQ

�
H�1ðyÞ

��
;

meaning that equipercentile transformation of Equation 1 can be formed by

G�1
�

FðxÞ
�
¼ G�1

Q

�
HQ

�
H�1

�
H
�

H�1
P

�
FPðxÞ

�����
¼ G�1

Q

�
HQ

�
H�1

P

�
FPðxÞ

���
:

The score probabilities needed for this approach are rp ¼ ðrP1; : : : ; rPJ Þt,
sQ ¼ ðsQ1; : : : ; sQKÞt, tP ¼ ðtP1; : : : ; tPLÞt, and tQ ¼ ðtQ1; : : : ; tQLÞt, where tPl ¼

Pr
�

eXlðDÞ ¼ eXlðdÞjP
�

and tQl ¼ Pr
�

eYlðDÞ ¼ eYlðdÞjQ
�

. The probabilities rPj
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and sQk are estimated by Equation 6, and the probabilities tPl and tQl by t̂Pl ¼P
j

p̂jl and t̂Ql ¼
P

k

q̂kl. These four sets of probabilities are used to estimate

FPð�Þ;GQð�Þ;HPð�Þ; and HQð�Þ using analogous versions of Equation 2. This

yields the estimated CDFs: FhP
ðx;brPÞ ¼ F̂hP

ðxÞ, GhQ
ðy;bsQÞ ¼ ĜhQ

ðyÞ,
HheXl

�
eXlðdÞ;btP

�
¼ ĤheXl

�
eXlðdÞ

�
, and HheYl

�
eYlðdÞ;bsQ

�
¼ ĤheYl

�
eYlðdÞ

�
.

With this notation introduced, it follows that the CE NEC PS estimator is

given by

ĵY ðCEÞðxÞ ¼ jY ðCEÞðx; r̂P; t̂P; t̂Q; ŝQÞ ¼ Ĝ
�1

hQ

�
ĤheYl

�
Ĥ
�1

heXl

�
F̂hP
ðxÞ
���

: ð9Þ

5. Empirical Illustration

Data from the Swedish Scholastic Assessment Test (SweSAT) for college

admissions were used to illustrate the suggested approaches for incorporating

propensity scores within the NEC design in kernel equating. The SweSAT is a

paper and pencil test with 160 multiple-choice binary-scored items. It consists of

a quantitative section of 80 items and a verbal section of 80 items that are equated

separately. The SweSAT is given twice a year and has only recently included an

anchor test. Previously, equating was based on a set of covariates, for details, see

Lyrén and Hambleton (2011). The empirical illustration was carried out in R (R

Core Development Team, 2016) with the kernel equating package kequate

(Andersson, Bränberg, & Wiberg, 2013).

Two consecutive administrations of the quantitative section were equated,

where the new test form X was equated to the old test form Y. The same raw

test score data material was used as in Wiberg and Bränberg (2015), and both test

forms were taken by 14,644 test takers. The sample was divided in half, and it

was made sure that the covariate distributions differed between the test groups.

The anchor test had not been implemented yet for the analyzed administrations,

so a 24-item anchor test was constructed through the selection of 12 items from

both test administrations. This was possible since the original data consisted of

test takers who had taken both forms. The within-form scores have means 39.34

and 43.32 and standard deviations 11.80 and 12.65. The empirical score distribu-

tions are illustrated in Appendix A.

The covariates used in the analysis were test scores from the verbal section

(with range 0–80), age, and gender, as explained in the introduction. When

equating the SweSAT using the whole covariate vector, that is, when eðDÞ ¼
D (referred to as raw covariates), the test scores from the verbal section of

SweSAT (Verb) were grouped into four strata: [0–30], [31–40], [41–50], and

[51–80]. This is in line with the grouping used in Wiberg and Bränberg (2015).

The variable Age was reported only after been categorized into the following
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strata: [0–20], [21–24], [25–29], [30–39], and 40 or older. The covariates Verb,

Age, and Gender together with the anchor scores are summarized in Table 1.

5.1. Equating SweSAT using Propensity Scores

PSE NEC PS and CE NEC PS were compared to PSE using the raw covariates

(referred to as PSE RAW COV), PSE and CE within a NEAT design (referred to

as PSE NEAT and CE NEAT, respectively), and to equating within the EG

design. Firstly, logistic regression was used to estimate the propensity scores

by predicting group membership for the test takers. The propensity score estima-

tion model included all covariates (with Verb not categorized) without higher

order terms or interactions. Figure 1 displays the histograms of the estimated

propensity scores in the two forms.

The estimated propensity scores from the fitted model were divided into strata

based on the percentiles. For our purpose, the estimation model was not assessed

in terms of goodness of fit but rather by checking the covariate balance in the

strata. A common balance measure is the absolute standardized mean difference

(ASMD), where a difference less than 0.1 is often regarded as a sign of balance

(Austin, 2008). The number of strata was set so that this was achieved for every

covariate for as large fraction of strata as possible. In our case, this resulted in 10

strata. The ranges of the ASMD for the covariates Verb, Age, and Gender were

[0.003, 0.386], [0.007, 0.258], and [0.005, 0.369], and the number of strata with

an ASMD below 0.1 were 5 of 10, 7 of 10, and 4 of 10, respectively. By

supplementing the propensity model with suitable interactions, the number of

large ASMDs could be reduced. See Appendix D for a table of all ASMDs. The

equating results were subject to a sensitivity analysis to make sure that the

equated scores were insensitive to a small change of the number of strata.

TABLE 1.

Summary of the Covariates Verb (Original Version), Age, and Gender Together With the

Anchor Test Used in the Empirical Illustration

Verb Age Gender Anchor

Correlation to Y 0.48 �0.14 0.26 0.81

Correlation to X 0.52 �0.13 0.28 0.81

Mean 43.91 (39.35) 1 (1) 0.42 (0.53) 12.17 (10.55)

Standard deviation 12.08 (11.56) 2 (2) 0.49 (0.50) 4.59 (4.64)

Note. Values within parentheses refer to form Y. The correlations for the variables Age and Gender

are the Spearman and point–biserial correlations, respectively. For Age, the last two rows present the

median and quartile deviation.
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Bivariate smoothing of the
�

X ; eXlðDÞ
�

and
�

Y ; eYlðDÞ
�

distributions was

conducted using log-linear models. For each data design considered, the best

model was chosen by evaluating the Bayesian information criterion (Schwarz,

1978). Candidate models with small alterations to the final models were also

considered but resulted in only small differences in terms of equated scores and

SEE. The included moments together with the chosen bandwidths are given in

Appendix C, described for each examined data collection design.

Using Equations 6 and 7, the marginal probabilities rPj, rQj, sQk , and sPk were

estimated. The weight w in Equations 4 and 5 was set to 0.5. The estimated

discrete score distributions of X and Y in the target distribution were continuized

using a Gaussian kernel and so were the distributions of eXlðDÞ and eYlðDÞ. The

bandwidths were selected by minimizing the penalty function given in von

Davier, Holland, and Thayer (2004b, p. 63).

5.2. Results of Empirical Illustration

In Figure 2, the difference between the equated scores and the raw scores

is plotted for every considered data collection design. All of the PSE

approaches are relatively close to each other in terms of equated scores,

CE NEC PS deviates from the overall pattern, and CE NEAT is system-

atically lower than PSE NEAT. The EG design results in very different

equated scores compared to those of the PSE methods. The overall largest

difference is between equating under the EG design and equating using the

CE NEC PS approach, with a maximum score difference of 7.55. The equa-

ted scores thus seem more affected by the choice of equating transformation

than the choice of instrument to balance the groups.

Figure 3 compares the SEE between the different designs. For most part of the

score scale, the differences in SEE are small. For the NEAT design

Propensity score

F
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qu
en

cy

0.2 0.4 0.6 0.8

0
10

0
30

0
50

0

PS form Y
PS form X

FIGURE 1. The distribution of the propensity scores for test form X (PS form X) and Y

(PS form Y). PS ¼ propensity scores.
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transformations, the performance is very similar. For the NEC designs, using the

raw covariates resulted in the smallest SEE for most of the scores, and CE NEC

PS performed somewhat worse in comparison with the other two NEC transfor-

mations. It is also evident that the NEC design transformations showed a greater
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CE NEC PS
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FIGURE 2. The difference between the equated and raw score, using PSE NEC RAW

COV, PSE NEC PS, CE NEC PS, NEAT PSE, NEAT CE, and the EG design. PSE ¼
poststratification equating; NEC ¼ nonequivalent groups with covariates; CE ¼ chained

equating; NEAT ¼ nonequivalent groups with an anchor; EG ¼ equivalent groups.
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stability in the tails in comparison with the EG and NEAT design transforma-

tions, with smaller SEE values for the lowest and highest scores. EG and CE NEC

PS are most dissimilar, with a maximum SEE difference of 1.22 seen in the lower

tail of the score scale.

6. Simulation Study

The finite sample properties of PSE NEC PS, CE NEC PS, and PSE NEC

RAW COV were examined through a simulation study. Background covariates

were used to define the treatment assignment and test scores on two forms X and

Y. In this way, the covariates acted as true confounders which made it possible to

evaluate the effectiveness of the suggested equating estimators in reducing the

bias induced by the covariates. Test scores were generated using the idea of

potential outcomes from causal analysis. This means that every test taker had

a score on each form: the potential outcome if taken form X and the potential

outcome if taken form Y. Both outcomes were generated for every test taker, and

the treatment assignment was used to define the actual observed score.

To make the comparisons as fair as possible, no presmoothing was conducted.

A Gaussian kernel was employed, and the bandwidth for the X score distribution

was the result of minimizing
P

j

�
r̂j � F̂ 0hX

ðxjÞ
�2

, where F̂ 0hX
denotes the deri-

vative of F̂hX
. The bandwidth for the Y score distribution was selected analo-

gously. A reference equating transformation was defined for each estimator,

symbolizing the true relationship between X and Y. These references were

formed in the same way as the estimators but used the potential scores on X and

Y instead. They are considered to represent the true equating transformations for

each respective setting since they involve no missing data. In this way, the

missing-data mechanisms of real test data are reflected in the simulation study.

This is also in line with the proposed evaluation technique for the NEAT design

suggested by Sinharay and Holland (2010).

The simulation study considered two setups to involve different sets of cov-

ariates. In the first setup, two continuous covariates were generated, and in the

second setup, two discrete covariates were generated. The R package kequate

(Andersson et al., 2013) was used to equate the test forms.

6.1. Simulation Design—Setup A

Data for 10,000 test takers were simulated for each replicate. Two uniformly

distributed random variables, D1;D2*Uð1; 5Þ, were generated and used as

background covariates. A treatment variable, Z, was generated as a sequence

of 10,000 Bernoulli trials with probability of receiving test form X given by

PrðZ ¼ 1jDÞ ¼ eðDÞ ¼ ð1þ expð3:5� 0:6D1 � 0:55D2ÞÞ�1: ð10Þ
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The propensity score was set so that about half of the test takers received form X

and half of them received form Y.

The potential test scores for every test taker on the two simulated test forms

were generated as

X ¼ �6þ 4D1 þ 5D2 þ EX ð11Þ

and

Y ¼ �9þ 3D1 þ 6D2 þ EY ; ð12Þ

where EX*Nð2; 1:5Þ and EY*Nð0; 1Þ. The covariates D1 and D2 act as a proxy

for ability and differ in their distributions between the test groups, making the

groups nonequivalent. The random noise terms EX and EY represent the differ-

ence in difficulty between the forms. The expressions for X and Y were set so that

the distributions of the scores mimicked real test data, with means 23 and 18 and

standard deviations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
683=12

p
� 7:54 and

ffiffiffiffiffi
61
p

� 7:75. Both X and Y were dis-

cretized by rounding each score to the nearest integer, and all scores above 40

were set to 40. This means that the discretized score variables are defined on the

interval [0, 40]. The variables X and Y are thus thought of as scores from test

forms containing 40 items each, scored as number of correct responses. The

correlation of X and Y was, both before and after discretizing, approximately

0.94. From now on, X and Y always refer to the integer value scores.

The observed score was defined as

U ¼ ZX þ ð1� ZÞY : ð13Þ

After the potential and observed scores had been generated, the covariates D1

and D2 were discretized by categorizing them into five categories of approximately

equal size delimited by percentiles of the scores. Two estimation models were set

up for the propensity score, where one used the discretized covariates and one did

not. In both cases, the propensity scores were estimated by the correctly specified

logistic regression models, and the estimates were divided into 20 categories based

on the percentiles. The number of categories was selected with the aim of balan-

cing the covariate distribution in the two samples, as measured by the ASMD.

With the data generation process described, each test taker had a potential test

score on both test forms given by Equations 11 and 12, an observed test score

indicating what administration the test taker actually took given by Equation 13,

an observed value on both covariates, and an observed value on the true propen-

sity score given by Equation 10.

6.2. Simulation Design—Setup B

Ten thousand test takers were generated for each replicate. Two background

random variables following the beta-binomial distribution were generated as
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D1;D2*Binð10; 000; pÞ, where p ¼ Betað3; 3Þ. Furthermore, a treatment vari-

able Z*BernðeðDÞÞ was generated for every test taker, where

eðDÞ ¼ PrðZ ¼ 1jDÞ ¼ ð1þ expð3:7� 0:25D1 � 0:12D2ÞÞ�1: ð14Þ

This meant that the test groups were of about equal size. The potential test scores

were defined as:

X ¼ �8þ D1 þ 1:5D2 þ EX ð15Þ

and

Y ¼ �5þ 1:2D1 þ 1:2D2 þ EY ; ð16Þ

where EX*Nð0; 1Þ and EY*Nð2; 1:5Þ: The distribution of the covariates D1 and

D2 differs between the test groups, and the random noise terms EX and EY represent

the difficulty of the forms. In this way, the score distributions imitated real test data.

The means of X and Y are 17 and 21, and the standard deviations are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
997=22

p
�

6:73 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1827=44

p
� 6:44. Both X and Y were discretized by rounding each score

to the nearest integer, and every score exceeding 40 was set to 40. After the dis-

cretization, the score variables are defined on the interval [0, 40]. As for Setup A,

the correlation of X and Y was both before and after discretizing approximately 0.94.

The test takers’ observed score was defined by Equation 13.

The covariates D1 and D2 were stratified into seven categories based on the

percentiles. The propensity score defined in Equation 14 was estimated using

both categorized and original continuous covariates for two separate models.

Both models were correctly specified, and the estimated probabilities were cate-

gorized into 20 strata based on the percentiles.

The data generating process of Setup B yielded for every test taker a potential

test score on the two forms by respective Equations 15 and 16, an observed test

score defined by Equation 13, an observed value on both covariates, and an

observed value on the true propensity score given by Equation 14.

6.3. Assessment of Precision

The three estimated equating transformations were evaluated in terms of

bias, root mean squared error (RMSE) and standard error (SE), as defined in

Wiberg and González (2016). Let ĵðgÞY ðxiÞ; i ¼ 1; : : : ; 40 denote the estimated

equated test score of 40 possible scores for the gth replication using PSE NEC

PS, CE NEC PS, or PSE NEC RAW COV. The methods are evaluated by the

following measures:

Bias ðĵY ðxiÞÞ ¼ 1

1; 000

X1;000

g¼1

ðĵðgÞY ðxiÞ � jY ðxiÞÞ;
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RMSE ðĵY ðxiÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1; 000

X1;000

g¼1

ðĵðgÞY ðxiÞ � jY ðxiÞÞ2
vuut ;

and

SE ðĵY ðxiÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1; 000� 1

X1;000

g¼1

�
ĵðgÞY ðxiÞ � �jðgÞY

�2

vuut ;

where jY ðxÞ is the true equating transformation and �jðgÞY ¼ 1
1;000

P1;000

g¼1

jðgÞY ðxiÞ. In

addition, the difference that matters (DTM; Dorans & Feigenbaum, 1994),

defined as a difference larger than half a raw score point, was used. Note,

however, that the DTM is presented not for the individual scores but for their

summaries.

6.4. Results—Setup A

In Figure 4, the biases and SEs of the estimators are illustrated. From the left-

hand panel, it is evident that all biases falls below �1 in the lower end of the

score scale, and end up less than �0.5 in the upper end. The bias is smaller when

the original continuous covariates are used instead of the categorized versions for

the PSE NEC PS approach. For CE NEC PS, the bias is smaller when categorized

covariates are used. For a large part of the score scale, PSE NEC PS using the
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FIGURE 4. The bias and SE for Setup A using PSE NEC RAW COV, PSE NEC PS, and CE

NEC PS. Both categorized and original continuous covariates are considered for the

propensity score methods. PSE ¼ poststratification equating; NEC ¼ nonequivalent

groups with covariates; CE ¼ chained equating; SE ¼ standard error.
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original covariates performs best. In fact, between scores 15 and 35, the PSE

NEC PS using original continuous covariates is practically bias free. However,

for the important upper score scale, CE NEC PS offers the smallest bias, both

when considering categorized and original covariates. The right-hand panel

illustrates only small differences between the estimators in terms of SE, with a

maximum difference of only about 0.1, observed for PSE NEC PS with original

covariates and CE NEC PS with categorized covariates. All SEs fall below 1, and

the PSE NEC RAW COV shows the overall best performance along the score

scale, and the CE NEC PS using categorized covariates the worst performance.

In the left-hand panel of Figure 5, the mean difference of each propensity

score–based equating transformation to the PSE NEC RAW COV is presented,

together with the DTM. It is only the two CE NEC PS approaches that deviate by

more than half a score point from the equated scores using PSE NEC RAW COV.

In the right-hand panel of Figure 5, the RMSE is presented. It varies between

approximately 1.5 in the lower end and about 0.5 in the upper end. Similarly, as

Figure 4 illustrated, PSE NEC PS using the original covariates shows the best

performance for a large part of the score scale, but for the top 10 scores, the CE

NEC PS approaches are the overall best equating transformations. The maximum

difference in RMSE is seen for PSE NEC PS and CE NEC PS with original

covariates, with a magnitude of about 0.5.
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FIGURE 5. Left panel: The difference between the mean of the 1,000 replicates for the

propensity score equating transformations to the mean of the PSE NEC RAW COV

transformation under Setup A. Dashed, horizontal lines represent the DTM. Both cate-

gorized and original continuous covariates are considered for the propensity score meth-

ods. Right panel: The RMSE under Setup A for PSE NEC RAW COV, PSE NEC PS, and

CE NEC PS, the two latter considering both categorized and original covariates. PSE ¼
poststratification equating; NEC ¼ nonequivalent groups with covariates; CE ¼ chained

equating; DTM ¼ difference that matters; RMSE ¼ root mean squared error.
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6.4. Results—Setup B

In Figure 6, the bias and SE are illustrated. In the left-hand panel, the biases fall

within approximately +1 along the score scale. Similar to Setup A, PSE NEC PS

using the original covariates performs best for a large part of the score scale, with a

negligible bias in the score range 10 to 30. It is evident that PSE NEC RAW COV

is better than the PSE NEC PS version that uses categorized covariates, which is

different from Setup A. Again, the CE NEC PS approaches offer among the

smallest biases for the top scores. The SEs in the right-hand panel of Figure 6

show that the equating estimators exhibit a very similar variation along the score

scale. Both the bias and SE reflect the fact that the test forms were difficult, with

few test takers getting top scores. This explains why the SE is approximately 1 for

the top scores in Setup B and only about 0.3 for the same scores in Setup A.

In the left-hand panel of Figure 7, the mean difference to PSE NEC RAW

COV is illustrated for each propensity score-based estimator. As in Setup A, it is

only the CE NEC PS approaches that crosses the DTM bounds for some part of

the score scale. In the right-hand panel, the RMSE is displayed. It varies between

approximately +1.3 from the lower to the upper end of the score scale. It is

similar to the RMSE of Setup A, meaning that PSE NEC PS using the original

covariates has the overall best performance for the mid-scores and that there are

only small differences for the top scores. As for Setup A, the maximum differ-

ence is seen for PSE NEC PS and CE NEC PS with original covariates, with a

magnitude of about 0.75.
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FIGURE 6. Left panel: The bias of the 1,000 replications for PSE NEC RAW COV, PSE

NEC PS, and CE NEC PS under Setup B. Both categorized and original covariates are

considered for the propensity score methods. Right panel: The SE under Setup B for PSE

NEC RAW COV, PSE NEC PS, and CE NEC PS. Both categorized and original covariates

are considered for the propensity score methods. PSE ¼ poststratification equating; NEC

¼ nonequivalent groups with covariates; CE ¼ chained equating; SE ¼ standard error.
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7. Conclusions

We examined propensity scores in kernel equating, motivated by test situa-

tions where the test groups are nonequivalent and there is no anchor test avail-

able. This article also extends the NEC design by giving expressions for CE. In

the empirical study, real admissions data from the SweSAT was used to exem-

plify how the PSE and CE approaches in the NEC design could be implemented

using propensity scores. The results of the empirical study showed that all PSE

approaches produced similar equated scores and that there was a clear difference

from using the propensity scores in a CE approach. The results of the suggested

methods were also clearly different from the results using an EG design and

generally more similar to the results using a NEAT design, which is the design

that the SweSAT uses today. In terms of SEE, the differences between the

evaluated estimators were generally small, but the NEC design estimators all

produced lower SEEs in the tails of the score distribution than the NEAT and EG

design counterparts. Even though PSE NEC RAW COV resulted in the overall

smallest SEEs, it was only by a small margin when considering the covariates

within a propensity score instead. It is furthermore reasonable to believe that not

all of the confounding covariates were observed which, if being available to

condition on, would have improved the propensity score–based methods. How-

ever, it is hard to draw any reliable conclusions from only this data set.
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FIGURE 7. Left panel: The difference between the mean of the 1,000 replicates for the

propensity score equating transformations to the mean of the PSE NEC RAW COV

transformation under Setup B. Dashed, horizontal lines represent the DTM. Both cate-

gorized and original covariates are considered for the propensity score methods. Right

panel: The RMSE under Set-up B for PSE NEC RAW COV, PSE NEC PS, and CE NEC PS,

the two latter considering both categorized and original covariates. PSE¼ poststratifica-

tion equating; NEC ¼ nonequivalent groups with covariates; CE ¼ chained equating;

DTM ¼ difference that matters; RMSE ¼ root mean squared error.
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This article also contributes with a simulation study, which evaluated and

compared the three NEC design estimators for two different setups. It was evi-

dent that the information lost by discretizing the covariates affected the propen-

sity score negatively for the PSE approach but positively for the CE approach.

The estimators all performed similarly in terms of SE, and the RMSE made clear

that they ordered themselves differently along the score scale. As an alternative

to these measures one could, for example, rank the estimators according to how

close they are to the true score and then average these ranks. Altogether, the

differences were small between the categorized and original covariates of the

novel equating approaches. This is important since some data sets only include

discretized/categorized versions of the covariates, for example, the covariate Age

in the SweSAT data.

In Setup B, discrete covariates were generated. The categorized covariates, as

in Setup A, had a negative impact on the estimated propensity score for PSE NEC

PS and a positive impact for CE NEC PS. It is also evident that the bias, SE, and

RMSE were larger than they were in Setup A, especially for the top scores. This

is likely due to sparse data, since two difficult forms were generated.

For both simulation setups, only the mean CE NEC PS function, for both

categorized and original continuous covariates, deviated by more than half a unit

from NEC PS RAW COV, which further indicates that the PSE approaches

within the NEC design produce very similar equating results.

This article has clarified the underlying assumptions of the NEC design,

expanded the ways that covariates can be used, and clearly stated the purpose

set up for them through Assumptions A.1–A.3 and B.1–B.2. With much of the

overall idea being borrowed from existing methods of the NEAT design, we have

made both methodological and empirical comparisons to the NEAT design to

point out differences. While the results of our study are promising, further studies

are needed to determine the applicability of the NEC design. One such study

could be to investigate how sets of covariates with different dependence struc-

tures affect the quality of the propensity score as a proxy for ability. Furthermore,

the novel approaches presented are based on untestable assumptions. This makes

them similar to the traditional PSE and CE approaches for nonequivalent groups

using anchor scores. This does not mean that it is not of great importance to

further evaluate the sensitivity of the results to the assumptions. Future studies

should therefore investigate how to assess the sensitivity of all the untestable

assumptions, including the model adopted here. It is also important to assess the

implication of model misspecification of the propensity score, to compare dif-

ferent ways of estimating the propensity score, and to investigate alternative uses

of the propensity score other than categorizing it. Lastly, the impact of pre-

smoothing for the two propensity score approaches should be studied, preferably

examining different real test data. Until these issues have been addressed, the

NEAT design will act as the gold standard when equating nonequivalent groups.
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Appendix A

Score Distributions of SweSAT

The test score distributions of the SweSAT data.

Appendix B

Presmoothing and Estimation of the Score Probabilities

Let nPjl and nQkl be the number of test takers in the sample from populations P and

Q with X ¼ xj and Y ¼ yk and with propensity score eXl and eYl, respectively. It is

assumed that the vectors nP ¼ ðnP11; : : : ; nPJLÞt and nQ ¼ ðnQ11; : : : ; nQKLÞt are

independent and that both follow a multinomial distribution, with pjl ¼ PðX ¼
xj; eXlðDÞ ¼ eXlðdÞjPÞ and qkl ¼ P

�
Y ¼ yk ; eYlðDÞ ¼ eYlðdÞjQ

�
denoting the

joint probabilities of the test scores and the categorized propensity scores for

population P and Q, respectively. To reduce sampling error and get a more stable

equating function, log-linear models can be used to fit the empirical joint distribu-

tions (Holland & Thayer, 2000), where all log-linear models should be based on

model fit indices and empirical examinations.

SEE

Letting P be the J � L matrix of probabilities pjl in population P and Q be the

K � L matrix of probabilities qkl in population Q, the Jacobian of the design

function bJDF is used to map probabilities in P and Q into r and s. Matrix C is

based on the covariance between the estimators of the probabilities in P and Q.

The mathematical definitions of these components for PSE NEC PS are similar to

those given in Wiberg and Bränberg (2015), although propensity scores are used
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FIGURE A1. The score distributions of the SweSAT data.

Wallin and Wiberg

409



instead of using covariates directly. Thus, the definition of the design function for

PSE NEC PS is excluded here, although it can be sent upon request.

Let vðPÞ ¼ ðp11; : : : ; pJLÞt and vðQÞ ¼ ðq11; : : : ; qKLÞt be vectorized ver-

sions of P and Q. Letting subscripts indicate the population in question, the

design function for CE is in general defined as:

rP

tP
tQ
sQ

0
BB@

1
CCA ¼ DFðP; QÞ ¼

MP

NP

� �
0

0
MQ

NQ

� �
0
BB@

1
CCA vðPÞ

vðQÞ

� �
;

where M is the ðJ � KJÞ matrix with K number of J � J -identity matrices IJ as

elements, and N is a ðK � KJÞ matrix containing zeros and ones. To determine

the SEE for CE NEC PS, the two links in Equations B1 and B2 can be viewed as

equating transformations from two single group designs, meaning that the Jaco-

bian of the equating transformation, JjY
ðxÞ, can be formed from two Jacobians

and the four sets of probabilities ðrP; tP; tQ ; and rQÞ. This Jacobian can be

expressed as:

JjY
ðxÞ ¼ ðj0Y ðeYlÞJjeXl

ðxÞ; JjY
ðeYlÞÞ;

where j0Y ðeYlÞ is the derivative of jY ðeYlÞwith respect to eYl, JeXl
is the Jacobian

of jeXl
, and JjY

is the Jacobian of jY .

We assume that P and Q are estimated independently using log-linear models

and maximum likelihood, and instead of searching for one C matrix as in Equa-

tion 3, we should find the covariances V of each of the two links in Equations B1

and B2. We thus find the following covariances:

Cov
r̂P

t̂P

� �
¼ VP Vt

P and Cov
ŝQ

t̂Q

� �
¼ VQ Vt

Q ; where

VP ¼
MP

NQ

� �
CP and VQ ¼

NQ

MQ

� �
CQ :

To obtain the SEE for CE NEC PS, we redefine Equation 3 as:

SEEY ðxÞ ¼ jjJjY
Vjj;

where

V ¼ VP 0

0 VQ

� �
:
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Appendix C

Table C1 specifies the considered presmoothing models for the empirical study.

The first row of the log-linear models specifies, for every scenario, the included

terms for the X scores, and the second row the included terms for the Y scores. Only

the highest power of the variables is explicitly stated, so, for example, X 3 means

that both X and X 2 are included. Colons refer to interactions between variables.

The bandwidths in the continuization step are also given for each model.

Appendix D

Absolute Standardized Mean Difference

TABLE C1.

Log-linear Models for the Four Different Scenarios (S) as well as Optimal Bandwidths for

CE ðhP; hQ; heXl
; and heYl

Þ, PSE ðhX and hY Þ, and EG Designs ðhX and hY Þ

S. No. Log-Linear Models hP hQ heXl
heYl

hX hY

1. X 3;PS5;X : PS;X 2 : PS;X : PS2

Y 3;PS5; Y : PS; Y 2 : PS; Y : PS2

.653 .673 .467 .487 .662 .663

2. X 5;V 2;A; G2;X : V ;X : G;X 2 : V ;X 2 : G

Y 5;V 2;A; G2; Y : V ; Y : G; Y 2 : V ; Y 2 : G

— — — — .661 .663

3. X 6;A4;X : A

Y 6;A4; Y : A; Y 2 : A; Y 2 : A2; Y : A2

.653 .673 .578 .593 .661 .662

4. X 6

Y 6

— — — — .653 .673

Note. S1¼ PSE NEC PS and CE NEC PS, S2¼ PSE NEC RAW COV, S3¼NEAT design (both PSE

and CE), S4¼ EG. CE¼ chained equating; PSE¼ poststratification equating; NEC¼ nonequivalent

groups with covariates; EG ¼ equivalent groups; NEAT ¼ nonequivalent groups with an anchor; PS

¼ propensity score; V ¼ verbal test score; A ¼ age; G ¼ gender.

TABLE D1.

The Absolute Mean Standardized Difference for Each Stratum and Covariate

Stratum Verb Gender Age

1 .252 .164 .258

2 .055 .314 .139

3 .014 .100 .040

4 .157 .005 .042

5 .189 .061 .007

6 .091 .027 .010

7 .386 .064 .118

8 .003 .118 .073

9 .224 .323 .080

10 .094 .369 .054
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