Enhancing the self-sensing and energy storage capabilities of cementitious composites through marine sand doping

Thamer Almotlaqa,b, Bo Huangc*, Mohamed Saafia*, Jianqiao Yea

aSchool of Engineering, Lancaster University, Lancaster, LA1 4YR, UK
bCivil Engineering department, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
cSchool of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China

Abstract

In this paper, for the first time, we investigate the inherent ionic conductivity of seawater-based cementitious composites containing marine sand aggregates, when air cured over 28 days with the objective of uncovering new functionalities. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and density functional theory (DFT) were employed to elucidate the ionic conduction mechanisms in this material system and characterize its stress self-sensing and electrochemical charge retention capabilities. The results revealed that the marine aggregates are not ionic conductive materials; however, they facilitate improved electrochemical response through enhanced formation of highly ion-exchanging calcium-silicate-hydrate (C-S-H) phases, coupled with integrated porous channels that enable sustained ion mobility despite drying. This synergistic ion transport yielded a bulk ionic resistivity around 25 k\(\Omega\).cm at room temperature, which lies in typical ranges seen in solid-state electrolytes for battery systems. Controlled compressive loading indicates appreciable self-sensing capacity at low-stress levels, suggesting applicability to detect the onset of mechanical damage. Negligible charge leakage upon 28 days of curing further demonstrates the electrical energy storage potential of the sea-based cement. By harnessing locally available seawater and marine sand resources to develop ionic conductive cementitious composites, this work provides the framework to optimize durable multifunctionality for sensing and electrical energy storage in reinforced concrete infrastructure. This in return improves the sustainability and energy efficiency of the built environment.

* Corresponding authors. Email address: m.saafi@lancaster.ac.uk (M.Saafi), t.almotlaq@lancaster.ac.uk (T. Almotlaq) bohuang@hnust.edu.cn (B. Huang),
Concrete is the most widely used manmade material with an annual production exceeding 25 billion tons globally [1]. The development of multifunctional concretes that exhibit electrical conductivity alongside mechanical properties, opens the door to various sustainable and smart infrastructure applications [2–4]. These applications include self-sensing for structural health monitoring [5,6], thermal and electrical energy storage [7,8], electromagnetic interference shielding [9], and road deicing [10]. However, conventional cementitious composites exhibit inherently high electrical resistivity [11,12]. To introduce electrical conductivity, highly conductive nanomaterials such as carbon nanofibers [13], carbon nanotubes [14], and graphene nanoplatelets [15] are incorporated into cementitious matrices. The significant difference in chemical properties, however, presents challenges in achieving efficient production of cementitious composites, often leading to non-uniform dispersion, agglomeration, and poor interfacial bonding between the matrix and conductive fillers [16]. Another major obstacle to the widespread utilization of conductive additives in concretes is their high costs and energy-intensive production methods, leading to increased embodied carbon in concrete. The global annual production of advanced nano-additives remains low [17]. Scaling up manufacturing processes for these materials for applications in construction requires high-temperature reactors, leading to high energy consumption and carbon dioxide (CO₂) emissions. As a result, the addition of conductive fillers to concrete is expected to increase the overall CO₂ footprint compared to plain concrete. The high electrical conductivity achieved by incorporating conductive additives is typically measured under saturated conditions, and it tends to decrease significantly as the cementitious materials undergo moisture loss. Recent studies have shown a significant drop in the electrical conductivity of conductive cementitious composites, ranging from 60-80%, after standard air curing following an initial 28-day moist curing period [18-21]. The initial high conductivity
during moist curing comes from the ionic species in the pore solution. However, as cementitious composites undergo hydration and subsequent air exposure, internal moisture content decreases over time. This reduces the pore solution crucial for ion mobility. In the absence of enough protons (H⁺) and hydroxyl (OH⁻) ions from water, the primary charge transport shifts to electron tunneling mode, requiring direct contacts between adjacent conductive fillers [22, 23]. However, the complete loss of moisture increases the tunneling distances between the disconnected conductive fillers, leading to the loss of efficient conductive networks [22, 23]. This limitation poses a challenge in concrete structures where consistent conductivity is essential for self-sensing, energy storage, or electromagnetic shielding functionalities.

The challenges mentioned above highlight the need for alternative cementitious systems that exhibit inherent stable functionality over time, unaffected by moisture loss and without relying on added conductive fillers.

Recent studies have explored the use of seawater in place of regular fresh water to produce cementitious materials. Experimental results demonstrated that the microstructure and mechanical performance of seawater-blended composites exhibit notable improvements over those of traditional counterparts. This arises from the accelerated precipitation of additional calcium-silicate-hydrate (C-S-H) gel phases that refine pores and densify the cement matrix because of the abundant ions in the seawater [24, 25]. This approach aligns well with sustainable construction principles, as leveraging seawater eliminates usage of limited freshwater reserves for concrete production [26].

In this paper, we argue that cementitious composites synthesized with seawater and marine sand aggregates, when air cured, can demonstrate stable ionic conductivity that can be exploited for low-stress self-sensing and electrical energy storage functionalities. To substantiate this premise, we first electrochemically characterize cement pastes with seawater
(C-SW) and those also supplemented with sea sand (C-SW-SS) to quantify and compare their ionic conductivity and elucidate the underlying conduction mechanisms for the purpose of evaluating the effects of additional sea sand on ion the transport properties. Controlled mechanical loading tests are then performed on the C-SW-SS composite to assess its self-sensing capacity through measured variations in electrical impedance with applied compressive stress. Cyclic voltammetry (CV) studies further probe the ability of the C-SW-SS composite to retain electrochemical charges for potential energy storage.

2. Methodology

2.1. Materials and sample preparation

Ordinary Portland cement (OPC) consisting of CEM 1 was used as a binder. Sea sand (SS) and seawater (SW), collected from the Lancashire coast, UK, were used as fillers and mixing liquid. The chemical composition of OPC is given in Table 1 whereas the ionic compounds found in the seawater are given Table 2 [27]. The SW/OPC and SS/OPC ratios were 0.5 and 3, respectively. Cement pastes were prepared to cast 48 cubes (40 mm x 40 mm x 40 mm) for electrochemical characterization: 24 cubes made of OPC, SW and SS (C-SW-SS) and 24 cubes made of OPC and SW (C-SW) were used for comparison purposes. The C-SW and C-SW-SS mix proportions are given in Table 3.

Additionally, 12 C-SW-SS prisms (40 mm x 40 mm x 160 mm) and 12 C-SW-SS plates (5 mm x 25 mm x 80 mm) plates were used for piezoresistive and electrochemical charge retention characterization, respectively.

After wet mixing, the pastes were poured into the cube and prism molds and two electrodes were inserted for electrochemical and piezoresistive characterization. Two stainless steel electrodes were embedded in the cubes with a distance of 35 mm and a contact area of 900 mm² and two stainless steel electrodes were embedded into the prisms with a distance between them of 120 mm and a contact area of 900 mm². After 24 hours for curing, the prisms and the
cubes were demolded and left to cure in air at room temperature until electrochemical impedance spectroscopy (EIS) and piezoresistive characterization. To prepare the C-SW-SS plates, the pastes were sandwiched between two porous carbon felt electrodes and left to cure in air at room temperature until cyclic voltammetry (CV) characterization. This commercially available carbon felt is commonly used in electrochemical capacitors and batteries due to its high specific surface area and electrically conductive framework. It stores charge electrostatically via reversible ion adsorption at the electrode-electrolyte interface within its intricately interconnected pore structure.

Table 1: Chemical composition of OPC.	Table 2: Chemical compounds of seawater.		
Chemical Element	By mass (%)	Compound	Amount (mg/L)
SiO₂	20.38	Na⁺	12200
Al₂O₃	5.4	K⁺	500
Fe₂O₃	2.82	Ca²⁺	430
CaO	63.04	Mg²⁺	1110
MgO	1.74	Cl⁻	16550
Loss of ignition	1.66	SO₄²⁻	2220

| Table 3: Mix proportions of mortars |
Ingredient (g/L)	C-SW	C-SW-SS
OPC	720	720
SW	360	360
SS	-	1080
W/C	0.5	0.5

2.2. Microstructure and EIS characterization of C-SW and C-SW-SS composites

Scanning Electron Microscopy (SEM) fitted with an X-ray Energy Dispersive Spectrometer (EDS) (JSM-7800F) was employed to quantify the morphology and elemental mapping in the sea sand and cementitious composites at 28 days of air curing. The EIS method was utilized to study the electrochemical behavior of the C-SW and C-SW-SS composites. The Potentiostat (Gamry Interface 1010E) was used to conduct EIS measurements by applying a sinusoidal voltage of 10 mV with a frequency scan in the range of 0.1 Hz to 1 MHz through the two stainless steel mesh electrodes using the two-probe method shown in Fig. 1a.
The EIS results were analyzed using Gamry software™ to unveil the primary mechanisms governing the electrical conduction and ion transport within the cementitious composites. The bulk ionic electrical resistance of the C-SW and C-SW-SS cubes was calculated following the method described in [28]. In this approach, the bulk electrical resistance was determined from the Bode plot of the impedance modulus $\log|Z|$ and phase, as illustrated in Fig. 1b. In this figure, the bottom rectangle demonstrates the phase plateauing near zero in the high-frequency range, while the top rectangle shows $\log|Z|$ values in this frequency range where the phase is plateauing near zero. In this frequency range, the cementitious composites exhibit resistive behavior, and their bulk ionic resistance can be calculated from the average $\log|Z|$ values as $R (\Omega) = 10^{\log|Z|} [28]$.

2.3. Characterization of multifunctionality of C-SW-SS composite

Figure 2a illustrates the experimental setup used to characterize the piezoresistive behavior of the C-SW-SS prisms subjected to a monotonic compressive load from 0 to 20 kN with a displacement rate of 0.05 mm/min. At each load step, the impedance of the prisms was measured using the Gamry Potentiostat, following the same procedure as in the aforementioned EIS characterization. And the change in the real impedance as a function of the compressive stress was established.
The electrochemical charge retention capability of C-SW-SS was further elucidated through cyclic voltammetry characterization, utilizing the setup depicted in Fig. 2b. In this test, an electrical current was passed through the sample via the carbon felt electrodes while the voltage was swept between -1 V and +1 V by employing scan rates ranging from 50 to 300 mV/s. The shape of the resulting current vs voltage spectra was examined to assess the C-SW-SS composite's ability to retain charge. These spectra offer crucial visual insights into determining whether the C-SW-SS demonstrates promising electrochemical charge storage behavior for use in batteries and capacitors. Elliptical, rectangular, and leaf-like CV shapes serve as indicators of charge-retaining capability.

Figure 2. Characterization of multifunctional properties of C-SW-SS. a) self-stress sensing, b) electrochemical charge retention capacity.

2.4. Computed band structure analysis of sea sand

Utilizing an open-source density functional theory (DFT) computations [29], the electronic structure properties were explored for the alkali metal minerals inherently present in the sea sand compositions. Calculated band gap energies exceeding 2 eV coupled with ion migration activation barriers more than 1 eV indicate non-ionic-conductive materials. Consequently, the inherent ionic conductivity of the sea sand is negligible.

3. Experimental Results

3.1. Crystal structure and electronic properties of sea sand
To elucidate whether the sea sand particles contribute to the overall ionic conductivity of the C-SW-SS cement composite, their morphology, crystal structure, and electronic properties were determined. Figure 3 displays the SEM and EDX elemental analysis, while Fig. 4 presents EDX elemental mapping, all conducted in the same location on the sea sand particle. As demonstrated in Figures 3a-b, the sea sand exhibits a porous and spongy texture, marked by countless uniformly distributed tiny openings. The surface resembles a sponge, featuring numerous pores that are somewhat interconnected, creating a highly porous structure. These openings enhance the sand's ability to interact with sea water, allowing for efficient absorption and release. This observation aligns seamlessly with the conclusions drawn from prior studies, highlighting the sea sand's inherent porous nature with a pore volume surpassing 30% [30, 31]. This prevailing characteristic of porosity in the sea sand is expected to contribute to ion diffusion within the C-SW-SS composite. The EDX elemental analysis of the sea sand (inset in Fig. 3d) is presented in Fig. 3e.

Sea sand and ordinary sand exhibit distinct chemical compositions. The sea sand is primarily composed of approximately 21% silica (Si), 20.8% carbon (C), 2.4% aluminum (Al), and 52.3% oxygen (O). In contrast, ordinary sand, with its well-established composition, consists predominantly of around 53% silica (Si) and 45% oxygen (O), with traces of calcium (Ca) and aluminum (Al) comprising about 2%. Notably, the sea sand contains ionic species such as potassium (K⁺), sodium (Na⁺), and magnesium (Mg²⁺), with concentrations of 1%, 0.8%, and 0.2%, respectively. Additionally, calcium (Ca) is present in both ionic and covalently bound forms in sea sand, with a concentration of 0.5%. Conversely, ordinary sand does not contain ionic species like the sea sand. Elemental mapping images illustrating the distribution of K⁺, Na⁺, Mg²⁺ and Ca are provided in Figs. 4a-d. It is evident that, except for Ca, all other ionic species exhibit a uniform distribution within the SS particle.
Figure 3. SEM and EDX elemental analysis of sea sand. a) SEM image, b) SEM image showing sea sand exhibiting a porous and spongy texture, c) EDX spectrum of the sea sand shown in inset d).

Further XRD analysis was conducted to investigate the mineralogical composition of the sea sand. The XRD spectrum presented in Fig. 5 reveals the predominant minerals as quartz (SiO$_2$), leucite (KAlSi$_2$O$_6$), albite (NaAlSi$_3$O$_8$), calcite (CaCO$_3$), garnet (Al$_2$Fe$_3$(SiO$_4$)$_3$), and traces of dolomite (CaMg(CO$_3$)$_2$) and rutile (TiO$_2$). Additionally, carbon (C) was detected in the sample. Of particular interest among the identified minerals are the K and Na-bearing minerals (KAlSi$_2$O$_6$ and NaAlSi$_3$O$_8$), as they have the potential to contribute to the overall ionic conductivity of the C-SW-SS composite due to the presence of K$^+$ and Na$^+$ ions. The activation energy (E_a) of these K$^+$ and Na$^+$-bearing minerals can provide insights into whether they exhibit ionic conducting or insulating properties. Activation energy (E_a) represents the energy barrier that ions must overcome to move between sites. Typically, the activation energy of ionic conductors falls within the range of 0.1-1 eV [32].
As illustrated in Figs. 5b-c, the structure of the KAlSi₂O₆ and NaAlSi₃O₈ minerals, characterized by a $[SiO_4/AlO_4]$ tectosilicate 3D network, was employed for the computation of their energy band structure using DFT.

The energy band structure diagram of sea sand is depicted in Fig. 6. This diagram illustrates the distribution of energy levels for electrons in the crystalline phase of sea sand. Essentially, it provides insights into the behavior of electrons and their mobility within the sea sand, determining whether it exhibits ionic conductivity or behaves as an insulator.

The energy band structure diagram of sea sand, as shown in Fig. 6, is divided into three main bands. The valence band, represented by the bottom section of the energy band diagram, is the highest occupied energy band in the ground state of sea sand. In this band, electrons are tightly bound to individual atoms and are not free to move throughout its crystal phases. On the other hand, the conduction band, represented by the top section of the band energy diagram, is the lowest unoccupied energy band where electrons are free to move throughout the crystal phases of sea sand, contributing to ionic conduction.
The energy band gap (E_g) is defined as the energy between the top of the valence band and the bottom of the conduction band. This energy is required for electrons to transition from the valence band to the conduction band, enabling the formation of current. The calculated energy band gap (E_g) is 4.75 eV and 4.45 eV for KAlSi$_2$O$_6$ and NaAlSi$_3$O$_8$, respectively. These high band gaps indicate a low propensity for ionic conductivity in these minerals due to the substantial energy barrier that ions must overcome to transition from the valence band to the conduction band and contribute to ionic conduction. Consequently, their contribution to the overall ionic conductivity of the C-SW-SS composite is negligible.

Figure 5. Crystal structure of sea sand. a) XRD spectrum of the SS particles, b) lattice structure of KAlSi$_2$O$_6$ (leucite), c) lattice structure of NaAlSi$_3$O$_8$ (albite).

As depicted in Fig. 6, the density of states in the valence band significantly exceeds that in the conduction band for both minerals, confirming that the conduction mechanism is primarily controlled by the hopping of K$^+$ and Na$^+$ ions. The activation energy (E_a) for both minerals can be determined using the equation $E_a = 0.5E_g$, where E_g represents the band gap in electron volts (eV). The calculated activation energy (E_a) for KAlSi$_2$O$_6$ and NaAlSi$_3$O$_8$ is 2.38 eV and 2.23 eV, respectively. These values are high and further confirm that the inherent ionic conductivity of the sea sand is low, resulting in a minimal contribution to the overall ionic conductivity of the C-SW-SS composite.
The elevated E_a values can be attributed to the lattice structure of KAlSi$_2$O$_6$ and NaAlSi$_3$O$_8$. These minerals exhibit highly ordered crystalline structures comprising rigid [AlSi$_2$O$_6$] and [AlSi$_3$O$_8$] units connected by strong and stable covalent bonds. Consequently, the lattices offer limited interstitial sites for K$^+$ and Na$^+$ ions to occupy and provide few pathways for migration between these sites due to the rigid Si-O and Al-O bonds [33]. In this case, the migration of cations necessitates high thermal energy to 'hop' between interstitial sites.

3.2. Synergy between cement, seawater and sea sand during hydration

Figure 7a shows a typical SEM image of the C-SW composite at 28 days. As depicted, the microstructure of the C-SW composite is mainly composed of C-S-H with some ettringite and calcium hydroxide (Ca(OH)$_2$) phases. C-SW composites are known to exhibit more C-S-H phases than normal cementitious materials [34-36]. This is due to the synergy effect between OPC and the ionic species in seawater.
The high ion concentrations in the seawater tend to accelerate the early dissolution of the calcium silicate phases in the cement by disrupting their interatomic bonding. This generates additional Ca\(^{2+}\) and silicate species in the pore solution, enabling greater nucleation and growth of C-S-H phases [37]. Among the various cationic species present in seawater Mg\(^{2+}\) ions provide benefits for the C-S-H formation. The Mg\(^{2+}\) ions adsorb onto the surface of C-S-H particles and interact with silicate, thus inhibiting crystallization and silicate polymerization of C-S-H [38]. This generates disordered and porous C-S-H gel structures that can accommodate high ion loading for ion exchange with the sea water. The high Cl\(^{-}\) ions participate in charge balancing and develops the pore solution ionic strength needed for dissolution of the calcium-silicate phases and precipitation of more C-S-H and other hydration products [39]. They also promote substitution into C-S-H interlayers and absorption onto the particle surfaces to counter cationic sites. The SO\(_4^{2-}\) anions are well known to allow the formation of ettringite in early hydration which retains aluminum in the paste while releasing additional calcium for C-S-H formation. Figure 7c depicts EDX elemental analysis of C-S-H in the C-SW composite. As seen in this figure, the detected principle ionic species in the C-SW composite are Na\(^{+}\), K\(^{+}\), Mg\(^{2+}\) and Cl\(^{-}\) at concentrations of 0.6, 0.4, 0.4 and 0.3%, respectively.

As shown in Fig. 8a, the addition of sea sand increases the concentration of C-S-H phases. The SiO\(_2\) rich sea sand provides additional reactive silica that undergoes pozzolanic reactions with Ca(OH)$_2$ formed during the hydration to generate supplementary C-S-H phases. The detected
principle ionic species in the C-SW-SS composite are also Na\(^{+}\), K\(^{+}\), Mg\(^{2+}\) and Cl\(^{-}\) at concentrations of 0.7, 0.4, 0.6 and 1.2%, respectively.

As depicted in Figs. 9 and 10, the uniform distribution of Na\(^{+}\), K\(^{+}\), Cl\(^{-}\), and Mg\(^{2+}\) ions revealed by EDX elemental mapping in both composites implies that these ions are well-dispersed within the C-S-H gel networks. The concentration of the detected ionic species is due to the synergy between the sea water and C-S-H during hydration.

Figure 9. EDX element maps in C-SW. a) K element map, b) Cl element map, c) Na element map, d) Mg element map.

C-S-H phases in cementitious materials typically possess an intrinsic ion exchange capacity due to the presence of charged surface sites and interlayer spaces. The negatively charged silicate groups on C-S-H surfaces enable exchange with cations, while anion exchange occurs concurrently to balance charges. In this case, the Na\(^{+}\) and K\(^{+}\) cations from the sea water directly
exchange with Ca\(^{2+}\) in the C-S-H interlayer sites, whereas the Cl\(^{-}\) anions from the seawater exchange with hydroxide (OH\(^{-}\)) groups in the C-S-H interlayers and those bound to silicate groups at the structure surface and within chain sites to maintain charge neutrality. The divalent Mg\(^{2+}\) cations do not readily exchange with Ca\(^{2+}\) in C-S-H due to charge and size mismatch. As discussed above, the Mg\(^{2+}\) ions predominately play a role in stabilizing the C-S-H structure and hindering its crystallization. This helps maintain high surface area for ion exchange sites.

![Element maps in C-SW-SS](image)

Figure 10. Element maps in C-SW-SS. a) K element map, b) Cl element map, c) Na element map, d) Mg element map.

The addition of the sea sand into the C-SW-SS composite enhanced the ion exchange mechanism, thereby increasing the concentration of Na\(^{+}\), Mg\(^{2+}\) and Cl\(^{-}\). We hypothesize that this is due to the intrinsic porosity and surface roughness characteristics of the granular sea sand particles that provide additional interfacial surface area between the aqueous seawater solution and the C-S-H gel phases within the cement matrix. We believe that the rough surface and intrinsic porosity of the sea sand expose more charged sites on the silica that can interact with
ions in the sea water solution. This provides increased cation and anion binding capacity. The pores in the sea sand allow seawater to penetrate deeper and interact with more C-S-H surface area that would otherwise be inaccessible, bringing more ions into contact with the C-S-H phases. The sea sand porosity also allows localization of seawater ions near the C-S-H surfaces. This creates a concentration gradient that drives the thermodynamically favorable ion exchange at the interfaces. Thus, the enlarged seawater-C-S-H interfacial region created by the porous sea sand enables more individual cation exchange and anion binding reactions to occur by making more exchange sites available to more ions via enhanced accessibility and concentrator gradients.

For the C-SW composite, the observed ion concentrations (Na\(^+\), Mg\(^{2+}\) and Cl\(^-\)) are lower than those in the C-SW-SS composite. This is due to the inefficiency of the direct ion exchange between the seawater ions and the C-S-H phases. Although Na\(^+\), Mg\(^{2+}\) and Cl\(^-\) ions are abundantly present in the sea water, their efficient exchange with the inherent Ca\(^{2+}\) ions in the C-S-H gels is restricted. We hypothesize that these mobile cations and anions first need to diffuse through the pore solution before interacting with the C-S-H surfaces. This long-range migration limits the population of monovalent and divalent ions that can be incorporated into the C-S-H structure. Unlike Na\(^+\), Mg\(^{2+}\), and Cl\(^-\), the K\(^+\) concentrations remained equal between the C-SW (0.4-wt\%) and the C-SW-SS (0.4-wt\%) composites. This is likely because the K\(^+\) content in seawater itself is far lower compared to the other ions. Thus, the K\(^+\) ion exchange sites on the sea sand surface area become saturated faster as its overall lower concentration restricts additional uptake. As such, the limited K\(^+\) quantity in the seawater ions source curtails extra incorporation, despite the enhanced ion exchange capacity enabled by the added sea sand.

3.3. Impedance response of C-SW and C-SW-SS composites

The Bode plots of the real impedances for the composites are presented in Fig. 11. As illustrated, the impedance response of the C-SW composite exhibits distinct characteristics.
compared to the C-SW-SS. At 7 days, the impedance of the C-SW composite is controlled by
the relatively large and interconnected capillary pores and the nanoscale C-S-H morphology
within the bulk cement matrix. At lower frequencies, the impedance of the C-SW composite is
dominated by the large capillary pores whereas at higher frequencies, the impedance is
governed by the nanoscale C-S-H pores. At higher frequencies, the rapid alternating current
forces the ions to only flow through the shortest available C-S-H pores and channels. This
restricts the ion motion to small gel pores with short diffusion pathways which results in lower
real impedance. At lower frequencies, the ions have sufficient time to migrate through larger
pores and channels as the alternating current changes slowly. This allows access to more
tortuous pathways around the hydration products. The longer pathway length increases both
the ionic resistance and thus the real impedance.

At early age (7 days), the real impedance at low frequencies is initially low due to ion
conduction through the tortuous but interconnected capillary pores. As the curing progresses
(14 and 28 days), the large capillary pores get filled in by a dense C-S-H network composed of
segmented C-S-H gels. The segments within the C-S-H network act as diffusion barriers,
hindering the movement of ions between the segments which increases the ionic resistance of
the C-SW composite. This causes the real impedance at low frequencies to increase at later
curing ages as the C-S-H phases become dominant. At 14 and 28 days, the impedance response
of the C-SW composite at higher frequencies becomes similar to the impedance behavior at 7
days, where the small C-S-H gel pores controlled its response.
In contrast, the C-SW-SS composite displays significantly lower overall impedance values, reflecting a more ionically conductive system. The inclusion of the sea sand particles in the cement paste provides an interconnected network of pores. The size of these sea sand pores formed between the crystalline silicate grains are typically much larger compared to the nanometer-scale C-S-H gel pores. This significant difference in pore size and continuity results in substantially increased ion mobility through the sea sand pore network compared to the highly disconnected C-S-H gel pores in the C-SW composite.

Figure 12 depicts the Bode plots of the imaginary impedances. As shown in Fig. 12a, the C-SW displays high imaginary impedance values at low frequencies owing to significant resistive losses associated with the electrical double layer polarization at the pore-ion interface. The alternating current field at low frequencies allows sufficient time for migration and accumulation of ions and dipolar water molecules from the bulk pore solution onto the negatively charged C-S-H gel pore surfaces. The alignment and stacking of these adsorbed ions and oriented water dipoles forms a stern layer at the interface thereby hindering ionic mobility.
The energy dissipated in establishing this polarized layer through charge separation manifests as resistive losses which increases the imaginary impedance components. As the frequency increases, the rapid alternation of the applied electric field provides inadequate time for the sustained ion migration and water dipole reorientation needed to maintain the polarized stern layer. Therefore, the magnitude of interfacial polarization and associated with the resistive losses decreases significantly with increasing frequency above 10 Hz, as evidenced by the rapid reduction in the imaginary impedance. Additionally, at higher frequencies the alternating current is constrained to surface regions and smaller intrinsic gel pores rather than penetrating deeper into the microstructure. This reduces its interactions with the pore fluid, further decreasing the resistive losses. The peaks in the imaginary impedances observed at intermediate frequencies around 10-40 kHz after 14 and 28 days of curing may suggest dielectric relaxation processes involving the redistribution of ions incorporated into the C-S-H nanostructure in response to the alternating field. The increasing imaginary impedance at lower frequencies with curing age is due to the progressive restrictions in ionic migration pathways as hydration proceeds. The formation of disconnected C-S-H nanopores over time hinders ion motion under the slowly alternating current. This causes growing phase lags as ions are not able to keep pace with the changing AC signal due to transport limitations in the segmented C-S-H network. This leads to larger imaginary impedance values.
The C-SW-SS composite, however, exhibits remarkably lower imaginary impedance values over the entire frequency spectrum owing to the abundant ions in C-S-H and interconnected sea sand pores (Fig. 12b). The high ionic content and continuity of pores allows charge carriers to migrate with ease, thereby lowering the impedance values compared to the C-SW-SS composite. Importantly, the imaginary impedance response of the C-SW-SS composite remains low even after 28 days of air curing, with negligible changes compared to 7 days. This indicates the C-SW-SS composite maintained its interconnected pores which preserve ion mobility pathways. This can allow the composite material to hold electrical charges which can function as a solid-state electrolyte for large-scale electrochemical energy storage applications in supercapacitors and batteries.

3.4. Phase response of C-SW and C-SW-SS composites

The Bode plots of the phase angles of the cementitious composites are shown in Fig. 13. The phase angle represents the relative contribution of the resistive and capacitive components controlling the overall impedance of the cementitious composites. As depicted in Fig. 13a, for the C-SW composite, at low frequencies, the high negative phase angles indicate the response is dominated by the resistive losses through the bulk cementitious composite and the interconnected capillary pores. As the frequency increases, the decreasing phase angle suggests a transition to more capacitive effects, presumably from the electrical double layer formation at the pore surfaces. The peak phase angle of -5 degrees at 300 Hz at 7, 14 and 28 days suggests a resonance point where the resistive and capacitive impedance components equalize. Beyond the peak frequency, the reduction in the phase angles indicates a transition to capacitive effects becoming more influential than the resistive losses in controlling the impedance. This capacitive response arises from the formation of electrical double layers by migration and accumulation of ions and oriented water dipoles at the pore-fluid interface. The slope of the phase angle decreases with frequency at later curing ages implies that as the curing age
increases, the continued hydration refines pores, increasing capacitive effects compared to the initial resistive pore network. As can be seen in Fig. 13b, the C-SS-SW composite displays a peak phase angle at a higher frequency around 1 kHz owing to the pervasive conductive sea sand pore network which dominates the resistive response over a wider frequency band. The interconnected sea sand pores facilitate substantial ion motion, necessitating higher frequencies for capacitive effects to become prominent.

Figure 13. Bode plots of phase angle. a) C-SW, b) C-SW-SS.

The frequency at which the phase angle reaches a maximum indicates the relaxation time constant of the system. This relaxation time represents the time taken for ions to diffuse and redistribute in response to the alternating field and can be calculated using the following equation:

\[t = \frac{l^2}{2D} \]

where \(l \) is the diffusion distance for the ionic species and \(D \) is the diffusion coefficient of the ionic species. The C-SW composite shows a peak phase angle at around 300 Hz for all curing ages. This implies an ionic diffusion time constant on the order of milliseconds. For the C-SW-SS composite, the peak occurs at a higher frequency of \(~1\) kHz for all curing ages. This suggests a faster ionic diffusion time in the microseconds range. The ubiquitous conductive sea sand
pores allow easier ion motion, thereby reducing the diffusion time constant compared to the C-SW composite.

3.5. Electrochemical behavior of C-SW and C-SW-SS composites

As shown in Fig. 14, the Nyquist response of the C-SW composite displays characteristically semicircles in the high frequency region, indicating substantial polarization resistance to ionic flow through its microstructure. This stems from the discontinuous nature of the intrinsic C-S-H gel nanopores which severely impedes ion mobility and increases impedance. Although the diameter of the semicircle increases with curing age as more nanostructured C-S-H forms, the fundamental morphology restricts ion diffusion. This increases the semicircle size, reflecting greater polarization resistance as hydration progresses.

The pronounced low frequency Warburg-type tail signifies diffusion-limited ion transfer likely through the larger capillary pores between the unhydrated cement grains. As the hydration proceeds, this tail grows due to increased diffusion length scales caused by accumulation of nanostructured C-S-H on the pore surfaces. The evolution from initially facile diffusion through interconnected capillary pores to obstructed conduction highlights the C-SW composite’s poor ionic diffusivity.

Figure 14. Nyquist plots for C-SW and C-SW-SS composites at 14 and 28 days.
The C-SW-SS composite, however, exhibits remarkably different Nyquist plots owing to its higher ion concentrations and ubiquitous interconnected sea sand pores transporting the ionic species. The micrometer-sized sea sand pores allow ion motion with minimal impediments, significantly reducing polarization resistance compared to the C-SW composite. As a result, the C-SW-SS composite displays a pronounced Hook response in the high frequency region which attributed to capacitive effects from the pervasive ionic movement through its conductive pore network. The lack of a low frequency resistive tail indicates substantially higher ionic diffusivity compared to the C-SW composite. The ease of ion migration through the interconnected sea sand pores is evidenced by the dominating Hook response that persists through all curing ages.

The diffusion coefficient D of the ionic species in Eq. (1) can be described by the following equation [40]:

$$D = \frac{R^2 T^2}{2 n^4 F^4 A^2 C^2 \sigma^2}$$

(2)

where R is the gas constant, T is the absolute temperature, n is the number of the electrons per molecule involved in the charge transfer process, F is the Faraday constant; A is the surface area of the electrodes; C is the concentration of the ionic species in the cementitious composite and σ is the Warburg diffusion coefficient. As shown in Eq. (2), the diffusion coefficient D is controlled by the Warburg diffusion coefficient σ. When σ increases, the diffusion process in the composite becomes slower, and when σ decreases, the diffusion process in the composite becomes faster. In the low frequency region, the relationship between the Warburg diffusion coefficient σ, the charge transfer f_{ct} and the real impedance Z' is given by the following equation [41]:

$$Z' = f_{ct} + \sigma \omega^{-1/2}$$

(3)
where \(\omega \) is the angular frequency. Figure 15 plots the real impedance \(Z' \) versus the inverse square root of the angular frequency \((\omega^{-1/2}) \) and the slopes of the fitted linear lines are the Warburg diffusion coefficients \(\sigma \) which are given in the figure. The effect of curing age on the Warburg diffusion coefficient \(\sigma \) is shown in Fig. 16.

![Figure 15. Warburg diffusion coefficient vs \(\omega^{-1/2} \). a) C-SW, b) C-SW-SS.](image)

As shown in Fig. 16, the Warburg diffusion coefficient \(\sigma \) increased with curing age. This means the diffusion of the ionic species slows down as the curing process progresses due to loss of moisture. However, the C-SW-SS composite exhibited much lower Warburg diffusion coefficients \(\sigma \) than the C-SW composite. The values at which the fitted linear lines cross the impedance axis (i.e., \(Z' \)) represent the charge transfer resistance \(R_{ct} \). The variation of \(R_{ct} \) as a function of curing age is given in Fig. 17. The figure indicates that \(R_{ct} \) of the composites exhibits an increasing trend with curing age similar to that of the Warburg diffusion coefficient \(\sigma \). Figure 17 also shows that the \(R_{ct} \) values of the C-SW-SS composite are much lower than those of the C-SW composite. This again confirms that the sea sand promotes diffusion of ions which in turn reduces \(R_{ct} \).
3.6. Analysis of ion accumulation in C-S-H and the influence of anions and cations on electrical properties

The incorporation of exchanging ions into the C-S-H gel pores provides a reservoir of mobile ions along with native Ca2+ ions (Fig. 18b). These species migrate and accumulate at the negatively charged C-S-H surfaces under an applied field. As shown in Fig. 18c, the combined accumulation of both native and exchanged ions enables the development of an electrical...
double layer (EDL) structure within the intrinsic C-S-H pores where the rigidly bound ions are in the compact layer (Stern layer) and the mobile ions are in the diffuse layer. In this case, the exchanged Na\(^+\) and K\(^+\) cations and especially the native divalent Ca\(^{2+}\) are accumulated in the compact/stern layer of the C-S-H electrical double layer (EDL), while the exchanged Cl\(^-\) anions are distributed in the diffuse layer. This creates a high concentration of positive charge at the C-S-H surface and an associated strong positive electric potential.

Figure 18. a) typical SEM image of C-S-H gel in C-SW-SS, b) sketch of typical C-S-H molecule structure acting like ionic sponge, c) C-S-H with ions treated as an electrical double layer.

As shown in Fig. 18c, the separation of charge between the cation and negative C-S-H pore surface sets up an electric field \(E(x)\) that causes the potential \(\psi(x)\) to decay with distance from the surface according to the following equation [42]:

\[
\psi(x) = \psi_0 \exp \left[\frac{-xe^2}{\varepsilon k_B T} \sum \eta_{\pm} q_{\pm} \right]
\]

(4)

where \(\psi(x)\) is the electrical potential at a distance \(x\) from the charged C-S-H pore surface, \(\psi_0\) is the potential at the C-S-H pore surface, \((x = 0)\), \(\eta_+\) is the concentration of cations (Na\(^+\), K\(^+\) and Ca\(^{2+}\)), \(\eta_-\) is the concentration of anions (Cl\(^-\)), \(q_+\) is the cation charge number, \(q_-\) is the anion charge number, \(e\) is the electron charge, \(\varepsilon\) is the permittivity, \(k_B\) is the Boltzmann constant and \(T\) is the temperature.

The EDL electrical field \(E(x)\) decay is given by the following equation:

\[
E(x) = \frac{d\psi(x)}{dx} = \psi_0 \left(\frac{e^2}{\varepsilon k_B T} \right) \left(\sum \eta_{\pm} q_{\pm} \right) \exp \left[\frac{-xe^2}{\varepsilon k_B T} \sum \eta_{\pm} q_{\pm} \right]
\]

(5)
The electrical potential ψ_0 (at $x = 0$) and the electrical field E_0 (at $x = 0$) at the C-S-H surface are given by the following equations:

$$\psi_0 = \left(\frac{2RT}{F}\right) \sinh^{-1}\left(\frac{\sigma}{F \sum e\eta_+ q_+}\right) \quad (6)$$

$$E_0 = \psi_0 \left(\frac{e^2}{\varepsilon k_B T}\right) \left(\sum \eta_+ q_+\right) \quad (7)$$

Where F is the Faraday's constant, R is the ideal gas constant and σ is the surface charge density.

From the above equations we can see that the formation of ψ_0 and E_0 in the C-S-H EDL is driven primarily by the accumulation of cations near the negatively charged C-S-H surface. The cations Na+, K+, and especially the divalent Ca²⁺, are electrostatically attracted to the stern layer. This creates a high concentration of positive charge at the C-S-H surface which in return produces strong surface potential ψ_0 and electrical field E_0. The Cl⁻ anions in the pore solution diffuse layer balance the cation accumulation and form the negatively charged diffuse layer. The Cl⁻ anions have a smaller effect on the potential due to their -1 charge. The higher +2 charge of Ca²⁺ ions results in a greater buildup of positive surface charge density (σ) compared to Na⁺ and K⁺. The Ca²⁺ ions thus make the strongest contribution to the formation of ψ_0 and E_0 near the C-S-H surface. In this case, the combined effects of Ca²⁺, Na⁺ and K⁺ dominate and lead to large ψ_0 and E_0 values which overcome the reducing effects of Cl⁻ ions.

The charge separation at the C-S-H surface creates a substantial electric field E_0 promoting efficient electromigration of ions through the interconnected pores. The ionic conductivity of the cementitious composites under the surface electrical field due to the accumulation of cations is described by the following equation [32]:

$$\sigma_{ion} = \sigma_0 \exp\left(\frac{eq_+E_0}{k_B T}\right) \quad (8)$$

where σ_0 is the ionic conductivity without electric field (just diffusion). Equation (8) indicates that the ionic conductivity of the cementitious composites is strongly dependent on the
The concentration of cations and the surface electrical field \((E_0) \). The higher the cation concentration in the compact EDL and \(E_0 \), the higher the ionic conductivity. The enhanced ion exchange capacity in C-SW-SS promotes greater accumulation of cations on the C-S-H pore surfaces. The higher cation concentration generates a stronger sustained electric field \(E_0 \). This higher field provides the force necessary to maintain continuous ion motion within the confined C-S-H layers. The increased field-driven ion transport enabled by the cation accumulation resulting from the superior ion exchange kinetics directly improves the overall ionic conductivity of the C-SW-SS composite compared to the C-SW composite.

3.7. Summary of conduction mechanisms in C-SW-SS and C-SW composites

During the hydration process of the C-SW-SS composite, the first major conduction mechanism is ion exchange between the seawater ions and the C-S-H gel phases. In the fully hydrated state, the C-S-H gel phases have undergone extensive ion exchange with the seawater ions, facilitated by the porous sea sand network. This results in a high concentration of mobile charge carriers such Na\(^+\), K\(^+\), Mg\(^{2+}\), Cl\(^-\), and native Ca\(^{2+}\) incorporated within the C-S-H structure. With the C-S-H gel network saturated with these mobile ions after the ion exchange process, the primary conduction mechanism transitions from ion exchange to ionic diffusion and migration within the C-S-H phases. This second mechanism, governed by diffusion and migration processes, becomes the dominant pathway for ionic conduction in the fully hydrated state.

The ionic diffusion process involves the random movement of incorporated ions driven by concentration gradients within the C-S-H gel network. The ions effectively "hop" between available sites within the disordered and less densified C-S-H structure facilitated by the sea sand particles. Concurrently, the migration mechanism relies on the movement of ions due to electric potential gradients. The charged ions experience electrostatic forces, driving their movement through the C-S-H gel network and contributing to overall ionic conductivity. This
migration process also involves a "hopping" mechanism, where ions hop between charged sites within the C-S-H structure, influenced by the electric field.

The porosity, tortuosity, and microstructural characteristics of the C-S-H gel, significantly influenced by the sea sand particles, are crucial factors determining the efficiency of ionic conduction via diffusion and migration mechanisms. The interconnected pore structure created by the sea sand particles provides low-resistance pathways for the diffusion and migration of incorporated ions within the C-S-H gel network, enhancing overall ionic conductivity. These pathways facilitate efficient ion transport by reducing energy barriers and increasing the mobility of charge carriers through enhanced diffusion, hopping processes, and electric field-driven migration. Furthermore, the rough surfaces and intrinsic porosity of the sea sand particles contribute to a more disordered, less densified, and higher surface area C-S-H microstructure in the C-SW-SS composite. This disordered microstructure, with lower tortuosity, further facilitates efficient ionic mobility by reducing energy barriers for ion diffusion and migration, optimizing the ionic conduction pathways involving hopping processes and electric field-driven migration.

In contrast, despite the presence of mobile ions within the C-SW C-S-H gel phases from the initial ion exchange with seawater, the lack of an interconnected porous network and the higher tortuosity of the C-S-H microstructure impede efficient ion transport via diffusion and migration mechanisms in the fully hydrated state. The absence of sea sand particles in the C-SW system results in a denser and more closely packed C-S-H gel structure, increasing energy barriers for ion diffusion and migration processes. The limited porosity and higher tortuosity restrict the movement of ions, hindering their ability to "hop" between available sites within the C-S-H network and limiting pathways for electric field-driven migration, diminishing the efficiency of these conduction mechanisms.

3.8. Ionic resistivity of C-SW and C-SW-SS composites
The ionic conductivity σ_{ion} of the cementitious composites is intrinsically linked to their ionic resistivity ρ_{ion} through the relationship $\sigma_{ion} = \frac{1}{\rho_{ion}}$. Enhancing the ionic conductivity therefore requires reducing the ionic resistivity by facilitating ion transport through the cementitious composites.

The ionic resistivity of the C-SW and C-SW-SS composites was calculated using the equation $\rho_{ion} = \frac{R_{ion} A}{L}$, where A is the electrode contact area, L is the distance between the two electrodes and R_{ion} is the ionic resistance. The ionic resistance of the cementitious composites was calculated according to the methodology described in the experimental section. Figure 19 shows the effect of air curing age on the ionic resistivity of the cementitious composites. As shown, the effect of curing on the ionic resistivity is similar to that on R_{ct}. At 28 days, the room ionic resistivity of the C-SW-SS composite is about 25 kΩ.cm. This is about six times lower than the ionic resistivity of the C-SW composite, which is around 165 kΩ.cm. The improved ionic conductivity of the C-SW-SS composite places it in the range of solid-state electrolytes currently used in energy storage technologies, which typically exhibit room temperature ionic resistivities between 6 MΩ.cm and 0.3 kΩ.cm [43].

The 28-day resistivity of C-SW and C-SW-SS composites was compared with that of conventionally moist-cured cementitious composites, both plain and conductively doped, prepared with distilled water as per literature findings. As shown in Fig. 20, the comparison shows that, in general, despite air curing, the C-SW-SS composite outperformed the moist-cured ordinary cementitious composites with and without conductive additives in terms of lower ionic resistivity. Additionally, the C-SW composites exhibited lower ionic resistivity compared to the moist-cured plain ordinary cementitious composites.
The superior performance of the C-SW-SS composites compared to plain conventional cementitious composites is attributed to the synergistic effects of sea water and porous sea sand, facilitating ion transport and exchange mechanisms within the composite matrix. In conventional cement composites with conductive fillers, the ionic conduction occurs primarily through the cement pore solution and relies on the formation of conductive pathways through the random dispersion of filler particles. However, the inherent tortuosity and discontinuity of these pathways, as well as the presence of resistive gaps between the filler particles, impede efficient ionic transport, leading to higher overall ionic resistivity.
3.9. Multifunctional capabilities of the C-SW-SS composite

Figure 21a shows the effect of the applied compressive load on the change in the bode plot of the real impedance of the C-SW-SS composite. The applied compressive load was converted to compressive stress and plotted against the change in the real impedance at a frequency of 2 kHz as depicted in Fig. 21b. From this figure, we can see that the change in the real impedance decreased significantly when the applied compressive stress is increased from 0 to 4 MPa. This decrease then slowed down and became constant at stresses higher than 4 MPa.

In the unstressed state, the ion conduction occurs via the inherent nanometer-scale pores-like channels within the C-SW-SS composite. The compressive stress reduces the hopping distance for ionic transport between the existing pores in composite. In this case, the pores are deformed which brings the pore networks in closer proximity, thereby shortening the distances between

<table>
<thead>
<tr>
<th></th>
<th>G: Graphene</th>
<th>CB: Carbon black</th>
<th>GNF: Graphite nanofibers</th>
<th>CNT: Carbon nanotubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistivity (kΩ.cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 20: Comparison of ionic resistivity among C-SW, C-SW-SS, and conventional cementitious composites.

<table>
<thead>
<tr>
<th></th>
<th>[44]</th>
<th>[44]</th>
<th>[44]</th>
<th>[45]</th>
<th>[46]</th>
<th>[46]</th>
<th>[47]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-SW-SS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain OPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC+1% GNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC+1% G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC+0.5% CNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain OPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC+1.2% CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain OPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
pores. This lowers the activation energy for the conductive ion transport which reduces the real impedance. This results in decrease in the measured real impedance between 0 to 4 MPa compression. At higher compressive stresses, the change in the real impedance somewhat becomes constant. This is because the change in the overall porosity and tortuosity stabilizes, resulting in a consistent ion diffusion mechanism and no further change in the impedance. In this state, the combination of intrinsic pores facilitates efficient ion transport under compressive loading, resulting in a constant real impedance.

Figure 21b indicates that the stress sensitivity factor (i.e., stress gauge factor), K_z decreases with increasing compressive stress. This means the C-SW-SS composite is sensitive to low levels of mechanical stress. This high responsiveness contrasts with traditional conductive cement-based sensors which require larger strains before measurable signals. As such, the C-SW-SS composite demonstrates promising capacity for continuous structural health monitoring of concrete elements. Typical service stresses remain below material limits but can accumulate damage over time. The C-SW-SS’s exceptional sensitivity in the low mechanical stress level enables detection of emerging deterioration thereby avoiding catastrophic failure through early intervention.

Figure 21. Response of the C-SW-SS to compressive stress. a) effect of compressive load on the Bode plot of the change in the real impedance, b) compressive stress vs change in the real impedance.
Figure 22 illustrates typical CV curves for the C-SW-SS composite at both 7 and 28 days air curing using various scan rates. It is important to note that at lower scan rates and after 28 days, unexpected noise in the CV curves was captured by the Gamry EIS system. However, this noise has no discernible effect on the overall cyclic voltammetry response of the cementitious composites. At the scan rate of 50 mV/s (Fig. 21a), the CV curve has a parallelogram like-shape between -1 V and + 1V, indicating EDL capacitance as the primary charge storage mechanism. The cations and anions within the C-SW-SS composite migrate and accumulate at the polarized electrodes to balance surface charges in the EDL. As the scan rate increases to 100 mV/s and beyond, the CV curves become angled leaf-like shapes as diffusion outpaces reactions. The main cations-based charge carriers in the EDL include Ca$^{2+}$, Na$^+$ and K$^+$. These cations are concentrated in the compact Stern layer on the negatively charged C-S-H phases, paired with mobile Cl$^-$ anions diffusing in the porous channels. The sea sand particles provide interconnected void spaces enabling ion penetration into the cement bulk. As such, when the voltage increases, more EDL layers form which result in higher capacitive current response, forming angled leaf-like CV shapes.

As illustrated in Fig. 22, the CV signature shapes remain somewhat unchanged even after 28 days of air curing when compared to the results observed after 7 days, demonstrating the electrochemical charge retention capacity of the C-SW-SS composite. The maintained CV shapes over repeated voltage cycling, even in low moisture conditions, confirms durable and reversible ion storage properties. The electrochemical charge retention ability of the C-SW-SS composite shows its potential as a novel solid state electrolyte material for cement-based electrical energy storage in concrete structures.
Figure 22. CV curves for the C-SW-SS composite at 7 and 28 days air curing using different scan rates. a) 50 mV/s, b) 100 mV/s, c) 200 mV/s, d) 300 mV/s.

Conclusions

For the first time, this paper investigates the electrochemical properties and multifunctional capabilities of a cementitious composite made with seawater and sea sand. The following conclusions are drawn:

1. The experimental characterization coupled with DFT simulations demonstrated that, while the sea sand contains ionic K+ and Na+-bearing minerals, the activation energy barriers for these minerals are quite high, approximately 2.38 eV and 2.23 eV, respectively, rendering them less favorable for ionic conduction. Consequently, their contribution to the overall ionic conductivity of C-SW-SS is considered negligible.
2. The C-SW-SS composite exhibited higher C-S-H content compared to C-SW due to the positive effects of the sea sand on the cement hydration kinetics in the presence of sea water.

3. The amplified ion exchange between C-S-H and seawater, facilitated by the sea sand, resulted in C-SW-SS containing more Na+, Mg2+, and Cl- ions compared to C-SW, with increases of approximately 17%, 50%, and 300%, respectively.

4. The enhanced ion exchange significantly reduced the ionic resistivity of C-SW-SS compared to C-SW, decreasing it from 165 kΩ·cm to 25 kΩ·cm. The C-SW-SS composite outperformed moist-cured conventional plain and conductively doped cementitious composites in terms of ionic resistivity. This improvement resulted in a higher ionic conductivity, placing it on par with solid-state electrolytes.

5. The C-SW-SS composite demonstrated exceptional sensitivity to low mechanical stress levels. This makes it uniquely suitable as a self-sensing structural health monitoring material to detect damage onset.

6. The C-SW-SS composite also exhibited promising electrochemical charge retention when cured in air for 28 days, highlighting potential for energy storage applications in concrete structures.

7. This work on C-SW-SS sets the stage for developing multifunctional cementitious composites for integration into sustainable and intelligent built environment.

8. Further research can build on these results by exploring compositional optimizations, small doping with conductive constituents, and processing methods to improve the ionic conductivity several folds higher towards industry needs.

9. With conductivity enhancement, the C-SW-SS composite can find broader applications in dams, roadways and buildings that simultaneously monitor their own structural health and store electrical energy through embedded cement cells.
Further investigations are necessary to comprehensively understand the impact of humidity variations on the self-sensing capabilities of the cementitious composite, as the ionic conduction mechanisms and microstructural features may be susceptible to moisture-induced changes. This could be crucial for ensuring long-term stability and reliability of the self-sensing performance in various environmental conditions.

Acknowledgement

The authors express their gratitude to Jouf University, Saudi Arabia, and the UK Royal Society (Grant No: IEC\NSFC\191350) for the invaluable financial support that enabled the execution of this research at Lancaster University.

References

