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Abstract—A control theory approach to the management of
blood clotting speed using the anticoagulant warfarin is inves-
tigated. Proportional Integral (PI) and Proportional-Integral-
Plus (PIP) controllers are developed for models identified from
patient data. These are used to estimate treatment decisions
subject to stochastic disturbances, model uncertainty and missed
observations, the latter representing missed clinic appointments.
The focus is on the relative performance of various integral-
of-error (IOE) forms, which are used to track the target
International Normalised Ratio (INR) at steady state. These
are adapted in novel ways to handle the missed observations.
Preliminary Monte Carlo simulations suggest that forward
difference, mean and trapezoidal IOE forms with modified
pole assignment, could lead to more desirable outcomes than
the standard case, but the differences are relatively small and
more research is required into scenarios leading to set point
deviations.

Index Terms—Adaptive Treatment; Anticoagulation; Missing
Measurements; Integral-of-Error; Proportional Integral (PI).

I. INTRODUCTION

Using control theory to determine medical treatments for
individual patients is appealing, as it provides a systematic
way of achieving desired performance in the presence of
uncertainty, external disturbances and noise [1]. The question
of determining individually tailored treatments has also been
considered in the biostatistical literature, where the problem
is cast as an optimal dynamic treatment problem [2–4].
However, the biostatistical literature in this area generally
focuses on modelling, estimation and inference, as opposed
to control.

Algorithms from control theory have been applied to
various medical treatments. These include, for example,
proportional-integral (PI) and proportional-integral-derivative
(PID) control of blood glucose levels by adjusting insulin
inputs [5] and for anaesthetic drug delivery [6], among other
areas [1] .

In this article, we consider control of blood clotting speed
using warfarin. Simplified pharmacodynamic models for the
dose response have been developed using methods from both
control theory [7] and biostatistics [8], whilst recent work
involving two of the present authors has used these to develop
new control theory approaches to dose guidance [9–11]. More
generally, there is extensive research into anticoagulation
dosage, with selected examples including [12–17].

The controlled variable is the International Normalised Ra-
tio (INR), a standardised measure with high values indicating

long clotting times [18]. Warfarin is a commonly prescribed
anticoagulant globally, with a relatively narrow therapeutic
range (2–3 INR) and high degree of inter-patient dose vari-
ability, making it a difficult drug to manage, despite being
approved for human use since 1954 [19]. In fact, warfarin
ranks third on the list of drugs for hospital admission due
to adverse effects, with the main side effect being bleeding,
which can result in fatalities [20]. Current treatment regimens
utilise dose guiding algorithms, however, there is still large
inter-patient variability due to genetic and clinical factors,
with roughly 30% to 60% of variability being unexplainable.
This is further complicated by irregular clinic recordings and
missed appointments to measure INR and adjust dosage.

In control theory, it is often assumed that observations and
inputs occur at fixed intervals, i.e. uniform sampling intervals.
However, in practice, medical treatments are rarely measured
and applied at such fixed times. Appointment times may be
irregular, planned visits may not be adhered to, and individ-
uals may drop out from trials [21]. Indeed, the warfarin data
alluded to below are not uniformly sampled. Wilson et al. [9]
used proportional-integral-plus (PIP) and model-predictive
control (MPC) to investigate warfarin control when data are
missing. For PIP control, an integral-of-error (IOE) term [22]
was used to ensure steady state tracking of the target INR in
the presence of model uncertainty and disturbances, whilst a
new trapezoidal IOE form was introduced to handle missed
appointments but not fully investigated.

The present work builds on [9] by investigating a wider
range of possible IOE states, including forward and back-
ward difference forms, and shows that the trapezoidal case
requires an update to the control gain calculation that was
not previously addressed. The simulations are based on
straightforward linear difference equation models, with the
focus on preliminary investigations of the new IOE forms,
rather than model inference. Whilst [9] was limited to the
simplest first order model, the present research is expanded
to consider a second order model that might be a better
representation of real patients (however, model identification
is not directly considered in this article). PIP control is
selected for analysis, since this provides a convenient frame-
work to investigate the proposed IOE forms [23]. Control
performance is evaluated for Monte Carlo simulations subject
to stochastic disturbances, model mismatch and missed clinic
appointments.



The remainder of the paper is structured as follows:
section II provides the methodology; sections III and IV
develop the various new IOE forms and revised pole as-
signment algorithm, and show how these are adapted to
handle missing data; finally, the simulation results and dis-
cussion/conclusions are presented in sections V and VI
respectively.

II. METHODS

Data from 152 patients with chronic conditions under
warfarin anticoagulation treatment were used to develop the
models. Available covariates include age and sex, with the
mean age of patients 84 and range of ages 75–97. The data
were recorded in Newcastle upon Tyne, UK between 1995–
2013. Treatment periods for each patient varied from 186 to
5925 days. The gaps between visits were not regular: 67%
of observations were within 15% of either 7, 14, 21 or 28
days, with 27% of intervals in excess of 32 days.

These data were used to estimate a model as detailed
by [1]. The first order structure was initially chosen as it
is simple, but provides a reasonable description of the data,

y(k) = −a1y(k − 1) + b1u(k − 1) + ε (1)

where the output y(k) is log(INR) and the input u(k) is dose
(mg). Based on a typical patient and obtained using the lm
function in R, a1 = −0.4, b1 = 0.25 and ε ∼ N(0, σ2)
with σ = 0.25. By contrast, Avery et al. [10] estimate the
following second order model from similar data,

y(k) = −a1y(k−1)−a2y(k−2)+b1u(k−1)+b2u(k−2)+ε
(2)

For a typical patient, a1 = 0.2608, a2 = −0.0901, b1 =
0.1917, b2 = 0.0158 and σ = 0.21. Model identification is
not the focus here, hence both models are utilised to inves-
tigate the relative performance of the new IOE forms (with
patient variability investigated via Monte Carlo simulation).

A. Open loop control

The theoretical dose required to achieve the set point is
obtained from the steady state gain of the model (1) or (2),
i.e. u(k) = ((1 + a1)/b1)d(k) or u(k) = ((1 + a1 +
a2)/(b1 + b2))d(k). Here, d(k) is the target value for INR.
Such open-loop control design is sensitive to modelling errors
and disturbances, but provides a baseline for comparison
purposes.

B. Integral of error

The integral action in PI, PID or PIP design ensures steady
state tracking of the set point d (type 1 servomechanism).
An integral-of-error (IOE) term is introduced, conventionally
defined as q =

∫
(d− y)dt [22] or, in discrete-time,

q(k) = q(k − 1) + d(k)− y(k) (3)

PIP control is usually developed within a non-minimum state
space framework, in which q(k) represents a state [23].
Since pole assignment is utilised in this article, for brevity
the control designs are instead obtained by straightforward
algebra.

C. Closed-loop PI and PIP control

For the model (1), the PIP controller reduces to PI form,

u(k) = −f0y(k) + kIq(k) (4)

where f0 and kI are the proportional and integral gains.
Substituting (3) and (4) into (1), and equating with the desired
response y(k) = −p1y(k − 1)− p2y(k − 2) + kIb1d(k − 1)
where p1 and p2 are coefficients chosen by the designer (e.g.
via closed-loop poles on the unit circle), yields,

f0 = (−a1 − p2)/b1 ; kI = (1 + p1 + p2)/b1 (5)

The incremental form, used for updating the dose when there
is a new observation, is obtained by substituting (3) into (4),

u(k) = u(k−1)−f0(y(k)−y(k−1))+kI(d(k)−y(k)) (6)

Equivalent results for the second order model (2) are omitted
for brevity, but yield the PIP incremental form [23],

u(k) = u(k−1)−f0(y(k)−y(k−1))−f1(y(k−1)−y(k−2))

− g1(u(k − 1)− u(k − 2)) + kI(d(k)− y(k)) (7)

where the control gains k = [f0, f1, g1, kI ] are obtained by
equating the closed-loop system with y(k) = −p1y(k−1)−
p2y(k − 2) − p3y(k − 3) − p4y(k − 4) + kI(b1d(k − 1) +
b2d(k − 2)) in which p = [p1, p2, p3, p4] are coefficients.
For example, a deadbeat response, analogous to the model
inversion used in regret-regression methods for adaptive
treatment [8], is obtained using pi = 0,∀i. This is equivalent
to setting all the poles to the origin of the complex z–plane.

D. Initialisation

In a clinical setting, the initial dose is usually based on
age and other factors [18]. However, in many engineering
applications, the controller (6) or (7) is initialised for k = 1
by assuming y(0) = u(0) = 0. When y(0) ̸= 0, an alternative
approach is required to avoid an initial ‘kick’ in the response.
The present work adapts II-A e.g. u(0) = (1 + a1)d(0)/b1.
For k > 0, the controller determines adjustments to the initial
dose on the basis of the observations in the usual manner.
In the following, it is assumed that k = 0 is not a missed
observation (conceptually, this is the first clinic visit and
hence first measurement, data point, and prescribed warfarin
dose).

E. Simulation study

For each Monte-Carlo realisation, the plant is given by (1)
or (2), with the model coefficients varied via standard de-
viations of 0.01. Data are simulated as missing completely
at random (MCAR) [1], such that for each sample the
probability that the output was missing was a defined value
(e.g. 50%). The effect of deterministic load, measurement
noise, and random walk disturbances, with various standard
deviations, were investigated. The desired INR yd(k) was
log(2.5) then log(3.5). These are the normal targets for
patients with occasional and recurrent deep vein thrombosis
respectively [18], while the increase mimics a change in the
diagnosis. The metrics were based on 1000 simulations for
each scenario.



III. INTEGRAL-OF-ERROR FORMS

Various IOE forms are proposed for handling missing data.
In the present section, these all reduce to the standard IOE (3)
when data are available. To illustrate the concept, consider the
evolution of q(k) from initial q(0) over samples k = 1 → 4
with k = 2 missing. The simplest approach is to ignore the
missed sample in the control loop and, for the next attended
clinic appointment, update q(3) in the standard manner,

q(1) = q(0) + d(1)− y(1)

q(3) = q(1) + d(3)− y(3)

q(4) = q(3) + d(4)− y(4)

Generalising for multiple missed samples,

q(k) = q(k −N) + d(k)− y(k) (8)

where N is the number of samples since the previous
observation. For notational brevity, a time index for N is
omitted, with its value at each sample being determined
by context. In the example above, for which there is no
observation at k = 2, then N = 2 for the calculation of
q(3). When data are not missing, as for q(4), then N = 1
and equation (8) reduces to (3). For the first order model, the
controller (6) becomes,

u(k) = u(k−N)−f0(y(k)−y(k−N))+kI(d(k)−y(k)) (9)

Equation (7) is revised in a similar manner.

A. Backward difference IOE

For the same k = 1 → 4 example, a second approach is
to update q(2) using the previous output value as a surrogate
for the missed observation, i.e. q(2) = q(1)+d(2)−y(1) and
q(3) = q(2) + d(3) − y(3). We will call this the backward
difference approximation. Instead of updating the control
loop for the missed sample, an equivalent is to express q(3)
as a direct update to q(1) at the next clinic appointment, i.e.,

q(3) = q(1) + d(2)− y(1) + d(3)− y(3) (10)

Generalising for multiple missed samples yields,

q(k) = q(k−N)+

k∑
i=k−N+1

d(i)− (N−1)y(k−N)−y(k) (11)

To illustrate for the first order model, the incremental form
is,

u(k) = u(k −N)− f0(y(k)− y(k −N))

+ kI

(
k∑

i=k−N+1

d(i)− (N − 1)y(k −N)− y(k)

)
(12)

Although q(2) is stated above, this is only to derive the
general form. The controller (12) is updated when there is a
clinic visit. For the present example, at samples 1 (N = 1),
3 (N = 2) and 4 (N = 1). Conceptually, the new form
provides an estimate of the total sum of errors, hence might
be an improved approximation of the IOE when there are
missing observations.

B. Backward difference IOE variation

A variation of the above approach is obtained by using
d(1) instead of d(2) in the estimation of q(2), hence,

q(3) = q(1) + d(1) + d(3)− y(1)− y(3) (13)

Equations (10) and (13) are similar, but use different set
points to handle the missed sample. Although not normally
the case for warfarin, this might be significant when the set
point changes. Generalising for multiple missed samples,

q(k) = q(k −N) + (N − 1) (d(k −N)− y(k −N))

+ d(k)− y(k) (14)

C. Forward difference IOE and variation

Here, q(2) is updated using the next available observation
y(3) as a surrogate for the missing y(2),

q(2) = q(1) + d(2)− y(3) (15)

We call this the forward difference approximation. In prac-
tice, the IOE cannot be updated until the measurement is
taken at the next clinic appointment. Hence, substituting q(2)
into q(3), yields an equivalent practical implementation form,

q(3) = q(1) + d(2)− y(3) + d(3)− y(3) (16)

Generalising for multiple missed samples,

q(k) = q(k −N) +

k∑
i=k−N+1

d(i)−Ny(k) (17)

A variation of equation (15) is to utilise d(3) instead of d(2),
hence q(3) = q(1) + 2 (d(3)− y(3)). Generalising yields,

q(k) = q(k −N) +N (d(k)− y(k)) (18)

D. Initialisation based on set point or output

This approach is based on the controller initialisation step
discussed in section II-D. It does not involve the IOE, but is
included here for comparison purposes. The control input at
the first clinic appointment following missed observations is
given by e.g. for the first order case u(k) = (1+a1)d(k)/b1,
otherwise (6) is used. Instead of d(k), an alternative is to use
the latest observation, i.e. u(k) = (1 + a1)y(k)/b1.

E. Initialisation of IOE

At the first clinic appointment following any missed ob-
servations, the IOE is initialised by rearranging the control
algorithm. Using (1), (4) and the earlier k = 1 → 4 illustra-
tion, q(2) = (u(k) + f0d(2))/kI , and substituting q(2) into
q(3) as usual yields q(3) = (u(1)+f0d(2))/kI+d(3)−y(3).
A switch is required to determine q(k) in the general case,

q(k) =

{
p(k) if N > 1

q(k − 1) + d(k)− y(k) otherwise
(19)

where p(k) = (u(k −N) + f0d(k − 1))/kI + d(k)− y(k).



F. Mean IOE

For the k = 1 → 4 example with y(2) missing, q(2) =
q(1)+d(2)−0.5 (y(1) + y(3)) i.e. using the mean of the next
available y(3) and previous y(1) measurements. Generalising
for multiple missed samples, q(k) =

q(k−N)+

k∑
i=k−N+1

d(i)−0.5(N−1)y(k−N)−0.5(N+1)y(k)

(20)

Note that equation (20) correctly reduces to the conventional
IOE (3) for not missing samples (i.e. with N = 1).

IV. TRAPEZOIDAL WITH POLE ASSIGNMENT

Here, the trapezoidal IOE given by equation (3) of Wilson
et al. [9] is utilised at every control sample k, i.e.,

q(k) = q(k−1)+0.5(d(k)−y(k)+d(k−1)−y(k−1)) (21)

With, for example, y(2) missing, both q(2) and q(3) now
require substitutions for the missed observation. One option is
to adapt the trapezoidal IOE (21) with forward and backward
approximations for q(2) and q(3) respectively, i.e.,

q(2) = q(1) + 0.5 (d(1)− y(1) + d(3)− y(3)) (22)
q(3) = q(2) + 0.5 (d(1)− y(1) + d(3)− y(3)) (23)

In a similar manner to the earlier examples, q(2) cannot be
updated in the control loop until the measurement y(3) is
taken, hence q(3) is equivalently obtained by substituting (22)
into (23). The same result is obtained directly using (21) and,
for the same k = 1 → 4 example considered earlier, yields
the following IOE forms at each clinic visit,

q(1) = q(0) + 0.5 (d(0)− y(0) + d(1)− y(1))

q(3) = q(1) + d(1)− y(1) + d(3)− y(3) (24)
q(4) = q(3) + 0.5 (d(3)− y(3) + d(4)− y(4))

In other words, the PI controller investigated by Wilson et
al. [9], implicitly utilised the trapezoidal definition (21) for
most control samples and the backward difference varia-
tion (13) for any missed samples. Generalising for multiple
missing observations, the general form of the IOE is,

q(k) = q(k−N)+0.5N(d(k)−y(k)+d(k−N)−y(k−N))
(25)

Wilson et al. [9] only considered the simpler model (1) and
utilised existing computational methods in the CAPTAIN
toolbox [24] to solve the linear quadratic control problem.
Although this pragmatic approach worked well in practice,
it ignores the different state space model associated with
using (21) instead of (3), and the different closed-loop differ-
ence equation (or equivalent transfer function) subsequently
obtained. By contrast, the present work algebraically solves
pole assignment to obtain revised control gains.

For the case of the first order plant (1), the new propor-
tional gain f0 = (−a1 + 0.5(1 + d1 + d2) − d2)/b1, which
differs from that shown by equations (5) in section II-C,
whilst kI is unchanged. For the plant (2), the solution is

concisely expressed in matrix form, i.e. k = Σ(p−r), where
r = [a1 − 1, a2 − a1,−a2, 0]

T and,

Σ−1 =


b1 0 1 0.5b1

b2 − b1 b1 a1 − 1 0.5(b1 + b2)
−b2 b2 − b1 a2 − a1 0.5b2
0 −b2 −a2 0

 (26)

which is obtained in a similar manner to Appendix E of
reference [23], adapted here for the new trapezoidal IOE
state. Again, f0 differs from that obtained in section II-C.

V. SIMULATION RESULTS

Fig. 1 uses the example of deadbeat to show that pole
assignment based on (26) yields the correct design re-
sponse, y(k) = 0.5kI(d(k − 1) − d(k − 2)), whereas
the uncorrected algorithm yields an oscillatory response
in this extreme case. By contrast, the following examples
are based poles of (0.6579, 0.4042) for the model (1) and
(0.72, 0.47,−0.1955, 0) for (2). These are the closed-loop
poles obtained from a linear quadratic optimal design ap-
proach as described by [9], solved here by pole assignment.

The IOE states presented in section III all reduce to the
standard form (3) for the case that N = 1, hence when there
are no missed observations, the response of the associated PI
and PIP controllers are identical. By contrast, the approach
proposed in section IV utilises (21) ∀k hence the response
differs slightly from (3). In practice, simulations for a range
of scenarios suggest that (3) and (21) yield very similar
performance in terms of the robustness to modelling errors
and disturbances, when there are no missing data.

Hence, returning to the motivation for the introduction
both of the trapezoidal form (21), and the variations of (3)
effective in the case of missed observations, Table I and Fig. 2
show the results from an illustrative simulation scenario, for
selected controllers applied to the model (1), with a high level
of missed observations, subject to a random walk load dis-
turbance and additive white noise with variance σ2 = 0.25.
The metrics in Table I are: percentage of samples for which
the output was within 0.5 INR of the target; mean absolute
error between target and output; and variances of the error
and input.

Fig. 2 shows one closed-loop realisation associated with
the results in Table I, demonstrating the high level of noise
involved in these simulations (consistent with patient data
and the associated noise variance estimates). The trapezoidal
case is highlighted in blue for illustrative purposes. Finally,
Table II and Fig. 3 show similar results for the model (2),
albeit for a different simulation scenario.

For the results presented in this article, the differences
between the various IOE forms are rather small, and might
not be significant in practical terms, whilst the open-loop
and initialise approaches generally yield much poorer per-
formance. Given the challenging nature of warfarin control,
any improvement might be welcomed and, in many cases,
the forward difference (16), mean (20) and trapezoidal (21)
IOE forms appear to yield the most promising results.



Fig. 1. Response of the second order plant (2) with trapezoidal IOE (21) for
the original and corrected values of f0. Upper: unit step set point, deadbeat
design theoretical response, and outputs. Lower: control inputs.

Fig. 2. Illustrative realisation from the results summarised in Table I. Upper:
set point (step 2-3 INR at k = 50) and outputs from each controller. Lower:
control inputs. Legend highlights response of one particular controller, i.e.
based on trapezoidal IOE (21) with corrected f0. Control samples with
observations are shown with * (50% MCAR in this scenario).

Fig. 3. Illustrative realisation from the results summarised in Table II.
Similar legend to Fig. 2, except 20% MCAR in this scenario.

TABLE I
MONTE CARLO SIMULATION RESULTS FOR THE MODEL (1).

Controller % ±0.5 target MAE var(e) var(u)
Open (II-A) 27.53 1.82 5.07 0.16
Standard (3) 63.29 0.47 0.35 0.74
Backward (11) 62.44 0.51 0.51 0.96
Forward (16) 65.50 0.49 0.92 1.02
Mean (20) 66.77 0.46 0.42 0.94
Initialise (III-D) 35.21 1.33 2.96 0.39
Trapezoidal (21) 64.31 0.49 0.46 0.96
Trapezoidal new f0 66.61 0.46 0.42 0.93

TABLE II
MONTE CARLO SIMULATION RESULTS FOR THE MODEL (2).

Controller % ±0.3 target MAE var(e) var(u)
Open (II-A) 32.27 0.62 0.16 0.28
Standard (3) 73.57 0.25 0.12 0.41
Backward (11) 73.78 0.22 0.10 0.43
Forward (16) 76.21 0.21 0.08 0.41
Mean (20) 77.18 0.20 0.08 0.41
Initialise (III-D) 39.83 0.50 0.15 0.32
Trapezoidal (21) 75.67 0.21 0.09 0.41
Trapezoidal new f0 76.75 0.20 0.08 0.40

VI. CONCLUSIONS

Linear models for the response of INR to warfarin dose
were used to investigate IOE forms. These were adapted to
handle missing data, representing missed clinic appointments.
The performance of controllers based on each IOE was
evaluated by simulation. The models used were based on
a ‘typical’ patient developed from retrospective data. For
individual dose guidance, generalised models could be es-
tablished for segregated patient groups, with the model sub-
sequently updated for patient specific measurements at each
clinic appointment. In combination with feedback control,
this could help determine the maintenance dose more quickly
and robustly than the trial-and-error approach commonly
used. Preliminary results are discussed above but require
further research [25]. Beyond warfarin, the novel IOE forms
developed in this article may have value in other applications
with missing observations.

The trapezoidal IOE (21) implicitly weights the latest and
previous measurements. The authors are investigating the
optimisation of these weightings e.g. in comparison to equa-
tion (24) using q(3) = q(1)+d(2)+d(3)−β1y(1)−β2y(3)
where β1 and β2 are coefficients. There are methods in the
literature for using the model or interpolation for missing
observations and these will be considered, as will the appli-
cation of different IOE forms to MPC design [9]. Finally,
in addition to the biostatistical approaches cited in section I,
machine learning algorithms are recently being investigated
for warfarin [26, 27] and should be compared.

The controllers in this article are based on somewhat
arbitrary design criteria, i.e. closed-loop pole positions. Fol-
lowing further research, we envision that clinicians could
alter the criteria to obtain the desired response speed and
robustness depending on the patient’s previous response to
warfarin. The patient could be classified as ‘predictable’ (low



mismatch variance, which allows the use of faster controllers)
or ‘unpredictable’ (high mismatch variance, so a slower,
more robust controller might be appropriate). Priority can
be given to keeping the dose variance low by maintaining
the response within a wider range, or aggressively aiming
for a narrow range with greater dose adjustments, aligning
with existing clinical guidance for slow loading and rapid
initiation regimens.
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