
 
 

 

  

Abstract — Accurate characterization of radiation hotspots is a 
critical requirement for monitoring and decommissioning 
operations in the nuclear industry, particularly where the 
arrangement of contamination is complex, and the availability of 
ground-truth data is limited. This article develops a novel 
stochastic modelling approach that alleviates challenges often 
present in such operations. Initially, the experimentally derived 
angular responses of a collimated single detector apparatus at 
different energy regions (counts over radiation footprints) are 
expressed by two functions: the Fourier transform of a 
rectangular pulse (approximated by a sinc function) and a 
Moffat function. Subsequently, these are both framed within a 
Dynamic Linear Regression (DLR) model. The resulting 
Moffat/sinc-DLR models enhance the quality of the fit to 
experimental data, and improve the accuracy and resolution of 
radiation localization, thus showcasing the value of such 
methods for radiation characterization tasks. 

Index terms – radiation detector, source localization, sinc 
function, Moffat function, dynamic linear regression (DLR) 

I. INTRODUCTION 
obotic systems are of critical importance in the nuclear 
industry, because they reduce the need for manned entry 

into hazardous environments and reduce risks in controlled 
areas by removing or complementing the human presence [1]. 
Such robots are equipped with radiation sensing hardware that 
is appropriately defined based on the task at hand and robotic 
system requirements, including their size, core instruments, 
and the estimated radiation hazards in the area for which they 
are designed to operate. 

Single-detector systems, such as the equipment considered 
in this article, are compact and inexpensive, thus suitable for 
deployment via various small/medium sized expendable 
robots [2], [3], [4]. Depending on the configuration used, their 
signal output can be exploited to both navigate and 
characterize radioactive areas, e.g. path planning, source 
seeking and avoidance, source localization and identification, 
etc. [5], [6], [7]. Mission time constraints, for example due to 
the battery life of untethered robots, may mandate 
compromises in the data acquisition process. As a result, 
localization scans might be carried out with less spatial 
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granularity and/or shorter measurement times than ideal. 
Hence, in a similar manner to LIDAR data reconstruction via 
smoothing filters [8], and improving feedback control 
schemes through functions that represent e.g. sensor reading 
uncertainties [9], incorporating simple functions to explain 
radiation data obtained under such constraints, facilitates 
localization at a finer angular granularity, while also dealing 
with inherent noise from relatively low-count data. Such 
functions are subsequently valuable for analysis both on-line 
(e.g. radiation-seeking exploration) and offline (e.g. for 
obtaining improved insights about the dispersion of 
radioactivity within the space analyzed).  

The present article focuses on modelling data derived from 
single-detector localization scans, using time-series methods. 
It investigates modelling approaches that were proposed in 
the authors’ recent work using the sinc function as the 
transform method [10], [11], and compares these to new 
results arising from the use of a Moffat function [12], [13]. 

The instrumentation used in this research comprises a lead-
slit collimated gamma-ray detector, which is mounted on a 
custom pan-tilt gimbal to enable angular radiation scans of a 
given environment; and a RedPitaya Field Programmable 
Gate Array (FPGA) board, configured as a Multi-channel 
Analyzer (MCA). The hardware occupies a modest physical 
payload, such that it can be integrated with off-the-shelf 
mobile robotic platforms (here, the Clearpath Robotics Jackal 
shown in Fig. 1a). It is operated via the ubiquitous ROS 
(Robot Operating System) middleware [14], for the purpose 
of facilitating seamless communication with different robotic 
subsystems, and for interoperability. 

In the presence of ionizing radiation, the shape of the 
collimated detector’s experimental angular response is related 
inherently to collimation geometry, material, and thickness. 
Furthermore, it varies with different radiation energies. For 
the detector-collimator geometry used here, the angular 
responses can be broadly distinguished in two types. The first, 
as depicted by the red marks in Fig. 1b, corresponds to pan 
angle scan responses derived from energy bands below 200 
keV (denoted for simplicity as low). The second type, shown 
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as black marks in Fig. 1b, corresponds to those derived from 
energy bands above 200 keV (moderate-to-high). Due to 
greater attenuation, the former is a better-defined 
representation of source location and is thus the preferred 
response to be modelled in straightforward scenarios. 
However, the utilization of responses for higher energies 
might also be necessary when, for example, attempting to 
distinguish different but co-located radionuclides. 

The modelling results presented below are formulated 
based on two illustrative experimental datasets. The low-
energy angular responses have been modelled initially by the 
Moffat function, while the high-energy ones have been 
modelled by the sinc function. Subsequently, Dynamic Linear 
Regression (DLR) model estimation techniques [15] have 
been utilized, aiming to increase the overall accuracy of the 
simulated equivalent data. The following section II describes 
the data acquisition and processing steps, as well as the basis 
and DLR functions; section III presents the modelling results; 
section IV discusses the findings and further scheduled work; 
and section V provides the concluding remarks. 

 

   

 
 

Fig. 1: a) The radiation detection hardware mounted on a 
Clearpath Robotics Jackal platform; b) Exemplar experimental 

angular responses, presuming a symmetric horizontal scan with the 
radiation source located at the centroid of the scan path. 

II. METHODOLOGY 

A. Data collection and processing 
The two experimental datasets that are utilized in this paper 
were obtained as follows. The sources were positioned on a 
mounting board as depicted in Fig 2a and 2b. The collimated 
detector was placed at the midpoint of the board, at a distance 
of 30 cm. With the collimator fixed as a vertical slot, and the 
tilt angle set to 0o, a symmetric pan angle scan was carried out 
in 2o intervals (-90° to 90° with 2° intervals – Fig 2c). For 
each interval, a separate pulse height spectrum was obtained; 
91 spectral datasets per experiment. The data were treated 
with two common post-processing steps: 1) background 
subtraction to remove cosmic rays and signals that are not part 
of the actual data (e.g. intrinsic background depending on the 
detector); 2) gain-drift correction to adjust for variations in 
detection sensitivity due to angle differences. 

The treated spectral collection of each experiment are 
illustrated in Fig 2d and 2e. Maximum and minimum 
intensities are represented by yellow and blue colors, 
respectively. The x-axis represents the MCA channel number, 
and the y-axis represents the pan angle at which each 
spectrum was obtained. Each row is essentially a radiation 
spectrum and each column is an angular response at a 
particular energy channel. The latter concerns the extracted 
datasets utilized in this paper, with the low and high energy 
angular responses that were extracted highlighted in Fig 2d 
and 2e by red (left hand side) and black (right) dashed traces, 
respectively. 

B. Collimator function: Moffat 
The Moffat function is an empirical approximation that 
displays Lorentzian distribution characteristics (e.g. slow 
decrease to extremes and shaping parameters with similar 
effects). It is a point spread function (PSF) and is typically 
used in imaging applications [13]. The low-energy 
experimental angular response of a vertical-slot-collimated 
detector, derived from a horizontal scan along a radioactive 
source, is formulated on this basis as, 
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where 𝑦𝑦𝑚𝑚(𝜃𝜃) is the detector response (radiation counts) as a 
function of scan angle 𝜃𝜃, and 𝑚𝑚𝑎𝑎 to 𝑚𝑚𝑒𝑒 are fixed coefficients, 
i.e., 𝑚𝑚𝑎𝑎 is the trend, 𝑚𝑚𝑏𝑏 is the amplitude, 𝑚𝑚𝑐𝑐 determines the 
centroid position of the peak, 𝑚𝑚𝑑𝑑 controls the width of the 
curve, and 𝑚𝑚𝑒𝑒 determines the rate with which the amplitude 
decreases as the distance from the centroid increases. The 
additional parameters in the Moffat formulism can improve 
the consistency with which tails and wings of an angular 
response are reproduced and is thus more flexible than a 
Gaussian distribution for this application. 



 
 

 

 
Figure 2: a-b) Depictions of source placement in each experiment; 
c) Depiction of the gimbal scan action over the horizontal plane with 
zero tilt; d-e) Post-processed radiation spectra over different angles, 
presented as 2D images. The dashed columns represent the angular 
responses extracted for this paper. 

C. Collimator function: Sinc 
The high-energy experimental angular responses are best 
approximated in this work by a sinc function [10], [11], 
constructed observationally as: 
 

𝑦𝑦𝑠𝑠(𝜃𝜃) = 𝑠𝑠𝑎𝑎 + 𝑠𝑠𝑏𝑏 �
sin�𝑠𝑠𝑐𝑐(𝜃𝜃−𝑠𝑠𝑑𝑑)�
𝑠𝑠𝑐𝑐(𝜃𝜃−𝑠𝑠𝑑𝑑)
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where 𝑦𝑦𝑠𝑠(𝜃𝜃) is the detector response (radiation counts) as a 
function of scan angle 𝜃𝜃, and 𝑠𝑠𝑎𝑎 to 𝑠𝑠𝑑𝑑 are coefficients, i.e., 𝑠𝑠𝑎𝑎 
is the trend, 𝑠𝑠𝑏𝑏 is related to the amplitude, 𝑠𝑠𝑐𝑐  determines its 
width, and 𝑠𝑠𝑑𝑑 corresponds to the curve’s peak location. 

D. Moffat-DLR and sinc-DLR models 
The aim of utilizing a DLR model is to improve the overall fit 
of the angular response, so that situations where the source 
arrangement is not known might be characterized more 
effectively. Adapted from [15] for the present application: 
 

𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) = 𝑝𝑝1(𝑘𝑘)𝑥𝑥1(𝑘𝑘) +  𝑝𝑝2(𝑘𝑘)𝑥𝑥2(𝑘𝑘) +  𝑒𝑒(𝑘𝑘)  (3) 
 

where 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) is the simulation output for sample 𝑘𝑘, 𝑝𝑝1(𝑘𝑘) 
and 𝑝𝑝2(𝑘𝑘) are angle variant parameters, 𝑥𝑥1(𝑘𝑘) and 𝑥𝑥2(𝑘𝑘) are 
the associated regressors for the varying parameters, and 𝑒𝑒(𝑘𝑘) 
is Gaussian white noise. For both Moffat-DLR and sinc-DLR 

representations, the regressor 𝑥𝑥1(𝑘𝑘) is set to unity. For the 
Moffat-DLR model, regressor 𝑥𝑥2(k) is formed from the curve-

shaping part of Eq. 1, i.e., 𝑥𝑥2(𝑘𝑘) = �1 + �𝜃𝜃(𝑘𝑘)−𝑚𝑚𝑐𝑐
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the sinc-DLR case, 𝑥𝑥2(k) introduces the sinc component of 
Eq. 2, i.e., 𝑥𝑥2(𝑘𝑘) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑐𝑐(𝛩𝛩(𝑘𝑘) −𝑠𝑠𝑑𝑑))

𝑠𝑠𝑐𝑐(𝛩𝛩(𝑘𝑘)−𝑠𝑠𝑑𝑑)
. In both cases, an expected 

shape and peak location of the simulated response is imposed 
on the model, while the trend and slope in Eq. 3 are the time-
varying (in this case varying with angle) equivalents of 𝑚𝑚𝑎𝑎 
and 𝑚𝑚𝑏𝑏 in Eq. 1, and 𝑠𝑠𝑎𝑎 and 𝑠𝑠𝑏𝑏 in Eq. 2. The Moffat-DLR and 
sinc-DLR models are thus defined as follows: 

𝑦𝑦𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) = 𝑝𝑝1𝑚𝑚(𝑘𝑘) + 𝑝𝑝2𝑚𝑚(𝑘𝑘) �1 + �𝜃𝜃(𝑘𝑘)−𝑚𝑚𝑐𝑐
𝑚𝑚𝑑𝑑

�
2
�
−𝑚𝑚𝑒𝑒

+
 𝑒𝑒(𝑘𝑘) (4) 

 
𝑦𝑦𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) = 𝑝𝑝1𝑠𝑠(𝑘𝑘) +  𝑝𝑝2𝑠𝑠(𝑘𝑘) �𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑐𝑐(𝛩𝛩(𝑘𝑘) −𝑠𝑠𝑑𝑑))

𝑠𝑠𝑐𝑐(𝛩𝛩(𝑘𝑘)−𝑠𝑠𝑑𝑑)
� +  𝑒𝑒(𝑘𝑘)  (5) 

 
The angle-variant parameters are each represented by an 

Integrated Random Walk model, expressed in stochastic state 
space form for estimation purposes. The states (and hence 
parameters) are estimated using Kalman filtering and fixed-
interval smoothing algorithms, implemented in MATLAB via 
the CAPTAIN Toolbox [16]. 

III. MODEL ESTIMATION RESULTS 

A. Low energy angular responses 
Fig. 3a shows data from the single-source experiment (black 
circles), simulation outputs from Eqs. 1 (blue) and 4 (red), and 
the associated standard errors (SE). The coefficients of Eq. 1 
are calculated using the optimization toolbox in MATLAB, 
with parameter values estimated as follows: 𝑚𝑚𝑎𝑎 = 0.0063, 
𝑚𝑚𝑏𝑏 = 1, 𝑚𝑚𝑐𝑐 = 0.6394, 𝑚𝑚𝑑𝑑 = 25 and 𝑚𝑚𝑒𝑒 = 3.3306. 
  The metric for evaluating the simulation outputs is R2, since 
it focuses on a key point of interest here, i.e. how well each 
model explains the variance in the data. R2 for the Moffat 
simulation is 0.9928 while the Moffat-DLR equivalent is 
0.9988, suggesting a marginal improvement. This is evident 
by the corrected response in the regions between 20° to 40° 
and -20° to -40°. Figs. 3b-c show the Moffat-DLR parameters 
and standard errors. The trend parameter, 𝑝𝑝1𝑚𝑚(𝑘𝑘), exhibits 
negligible variation and uncertainty, whilst the slope 
parameter, 𝑝𝑝2𝑚𝑚(𝑘𝑘), is more consistent between circa 40° and 
-40° but exhibits large uncertainty outside these angles. 

Fig. 4 concerns results from the experiment with two 
radioactive sources. In this case, an individual Moffat 
function is modelled for each of the two peaks, while the 
Moffat-DLR model takes the following form: 

𝑦𝑦𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) = 𝑝𝑝1𝑚𝑚(𝑘𝑘) + 𝑝𝑝2𝑚𝑚(𝑘𝑘) �1 + �𝜃𝜃(𝑘𝑘)−𝑚𝑚𝑐𝑐
𝑚𝑚𝑑𝑑
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Figure 3: a) Experimental data and model fits from Moffat and 

Moffat-DLR models, and SEs; b) Eq. 4 trend parameter variation 
and SE; c) Eq. 4 slope parameter variation and SE. 

 
Fig. 4a displays the experimental data points, along with the 
individual results of the Moffat simulations, the Moffat-DLR 
output based on Eq. 6, and the standard errors for each 
simulation. The coefficients for each individual Moffat 
function are given in Table 1. Here, the coefficients for the 
second peak are denoted mf to mj, equivalent to  ma to m𝑒𝑒 for 
the first. The R2 value of the Moffat-DLR fit is 0.9944. 

Figs. 4b-d show the Moffat-DLR parameters and standard 
errors. The intercept in this instance exhibits a relatively high 
variability around the curve regions, while 𝑝𝑝2(𝑘𝑘) and 𝑝𝑝3(𝑘𝑘) 
display a linear decrease and increase, respectively. It is also 
overt that for each parameter, their estimated values show 
more certainty around their respective region of operation (i.e. 
baseline for intercept, left and right peak for the slopes). 

B. High-energy angular responses 
The high-energy angular responses are modelled here with a 
sinc function, and subsequently via sinc-DLR. Fig. 5a depicts 
the data and simulation outputs from Eqs. 2 and 5, and the 
standard errors. Using the MATLAB curve fitting toolbox, 
the coefficients of Eq. 2 are: 𝑠𝑠𝑎𝑎 = 0.1509, 𝑠𝑠𝑏𝑏 = 0.7748, 𝑠𝑠𝑐𝑐 =
0.0983, and 𝑠𝑠𝑑𝑑 = −0.5886. The R2 values for the sinc and 
sinc-DLR simulation are 0.9688 and 0.9988, respectively. 
The sinc-DLR response yields an improved fit to the data, 
including for the peak, baseline and side lobe regions. 

 

Figure 4: a) Experimental data, model fits from Moffat and Moffat-
DLR models, and SEs; b-d) Eq. 6 parameter variations and SEs. 

Figs. 5b-c, show the sinc-DLR parameters and standard 
errors. Parameter 𝑝𝑝1𝑠𝑠(𝑘𝑘) exhibits an arc-shaped trend with 
low SEs, while 𝑝𝑝2𝑠𝑠(𝑘𝑘) exhibits large uncertainty for estimated 
values on the extreme ends. 

For the two-source experiment, similar to Eq. 6, the sinc-
DLR model takes the following form: 

𝑦𝑦𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) = 𝑝𝑝1𝑠𝑠(𝑘𝑘) +  𝑝𝑝2𝑠𝑠(𝑘𝑘) �sin�𝑠𝑠𝑐𝑐(𝛩𝛩(𝑘𝑘)−𝑠𝑠𝑑𝑑)�
𝑠𝑠𝑐𝑐(𝛩𝛩(𝑘𝑘)−𝑠𝑠𝑑𝑑)

� +

 𝑝𝑝3𝑠𝑠(𝑘𝑘) �
sin�𝑠𝑠𝑔𝑔(𝛩𝛩(𝑘𝑘)−𝑠𝑠ℎ)�

𝑠𝑠𝑔𝑔(𝛩𝛩(𝑘𝑘)−𝑠𝑠ℎ)
� (7) 

Fig. 6a depicts the experimental angular responses, the 
individual sinc simulations based on Eq. 2, the sinc-DLR 
output based on Eq. 6, and the standard errors for each 
simulation. The color codes are consistent with the previous 
figures. The coefficients for each individual sinc function are 
given in Table 2. The individual model fits exhibit, as 
expected, a poor capture. However, by including information 
for both peaks on the structure of the sinc-DLR model, the 
resulting fit captures the variation of the experimentally-
derived radiation counts along the measurement space 
accurately (R2 = 0.9965). Finally, Figs. 6b-d depict the sinc-
DLR angle variant parameters and SEs, exhibiting a broadly 
similar behavior to that observed for the Moffat-DLR 
describing the low-energy angular responses. 



 
 

 

 
Figure 5: a) Experimental data and model fits from sinc and 

sinc-DLR models, and SEs; b) Eq. 5 trend parameter variation 
and SE; c) Eq.5 slope parameter variation and SE. 

 

Figure 6: a) Experimental data, model fits from sinc and sinc-DLR 
models, and SEs; b-d) Eq. 6 parameter variations and SEs. 

Moffat-1 𝑚𝑚𝑎𝑎 𝑚𝑚𝑏𝑏 𝑚𝑚𝑐𝑐 𝑚𝑚𝑑𝑑 𝑚𝑚𝑒𝑒 
0.1993 0.6212 -32.9555 25 6.7397 

Moffat-2 𝑚𝑚𝑓𝑓 𝑚𝑚𝑔𝑔 𝑚𝑚ℎ 𝑚𝑚𝑠𝑠 𝑚𝑚𝑗𝑗 
0.1593 0.8403 18.778 25 4.83 

Table 1: Individual Moffat function coefficients. 

 
sinc-1 𝑠𝑠𝑎𝑎 𝑠𝑠𝑏𝑏 𝑠𝑠𝑐𝑐  𝑠𝑠𝑑𝑑 

0.3898 0.3201 0.1163 -37.73 
sinc-2 𝑠𝑠𝑒𝑒  𝑠𝑠𝑓𝑓 𝑠𝑠𝑔𝑔 𝑠𝑠ℎ 

0.3469 0.5944 0.1102 23.19 

Table 2: Individual sinc function coefficients. 

IV. DISCUSSION 
Estimating models using time-series techniques applied to 
spatial data, as presented here, shows promise in robotic-
enabled radiation characterization tasks. Raw data have been 
processed within a time-series model estimation framework 
to improve source localization.  Casting the sinc and Moffat 

functions into the DLR model form, yields general 
improvements in fitting the experimental data. 

For example, in Fig. 3a, the Moffat-DLR model corrects 
the tail settling deviations observed by the Moffat function 
alone; and in Fig. 5a, the sinc-DLR hits all the data regions 
not captured accurately by the sinc function. For the other 
experiment, where two radiation sources are involved, both 
DLR models reproduce the experimental data more 
consistently, but the parameter standard errors are locally very 
large or small. While the sinc-DLR model in Fig. 6a captures 
all the data accurately, the Moffat-DLR output in Fig. 3a 
displays a deviation from the true amplitude of the peaks. In 
its current form, an attempt to improve the model fit such that 
the model would also explain the true amplitude of the peaks, 
results in overfitting and much larger standard errors in the 
parameters. 

 The broader merit of these functions is that, in addition to 
the localization capability, it is possible to utilize them for 
distinguishing complex features that are typical in real-world 
characterization scenarios, such as identifying a false 
response arising from radiation scattering (an analogy to this 
would be false localization due to a mirror in the field of view 
of a camera). 

In terms of the functions utilized within the DLR 
framework, it is observed that the curve-shaping parameters 
are fixed constant and hence the DLR model can only vary 
the scaling components to optimize the fit. A variation of this 
framework in which all parameters are allowed to vary could 
be useful, i.e., for minimizing the total number of parameters, 
since this approach would discard the need to include an 
additional sinc/Moffat component for each peak.  



 
 

 

Ongoing research by the authors involves investigating this 
and further options within the general DLR framework (e.g., 
choice of regressors, parametric efficiency with increasing 
peaks, use of other time-series models, etc.). 

Future research will also evaluate formal spatial 
autoregressive models that directly incorporate spatial 
dependencies due to collimation and radiation source 
geometries. 

V. CONCLUSIONS 
This article has presented results from modelling radiation 
detector spatial responses, combining sinc and Moffat 
components with a statistical DLR approach. The resulting 
Moffat/sinc-DLR models explain the experimental data 
satisfactorily and are thus appropriate to incorporate into 
radiation characterization tasks, particularly where the 
arrangement of contamination is complex, and the availability 
of ground-truth data is limited. Future articles will report on a 
systematic comparison with other modelling techniques, 
using data for a wider range of radiation scenarios. 
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