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ABSTRACT This paper summarises the results obtalned from a stochastic sensitivity study in the area 
of global carbon cycle modelling In parhcular it outlines how Monte Carlo Slrnulation (MCS) tech- 
niques and associated Generalised Sensitivity Analysis (GSA) have been applied to a modified box- 
diffusion model Using pararnetnc and input uncertainty measures denved from independent sources, 
the analysis shows that the model produces an  ensemble response for atmosphenc CO2 whose mean 
evolution is reasonably consistent with that observed over the industrial penod (1765 to 1990) How- 
ever, the situation is more ambiguous in relation to the amplitude distribution of the stochastic realisa- 
tions here,  there is a larger than expected vanance ansing from the assumed uncertainty, although this 
may be due  to unavoidable lunitations in the assumptions about parametenc uncertainty used in the 
MCS analysis The analysis also shows that the a pnon model response is less consistent with I3C mea- 
surements and not at  all consistent with the I4C observations, while GSA suggests that, from over 20 
model parameters, only a small number have a statistically significant effect on the model response in 
1990 In addition, the results from MCS, using the IPCC (Intergovernmental Panel on Climate Change) 
Scenano IS92a inputs, demonstrate that the uncerta~nties in the projections of the CO2 concentrations 
using this model are significantly higher than those suggested so far using deterministic methods 
Finally, the advantages and disadvantages of the stochastic methodology are discussed 

KEY WORDS: Stochastlc modelling . Uncertainty analysis . Sensitivity analysis . Monte Carlo Simula- 
tion . Global carbon cycle model . Future carbon dioxide concentrations 

1. INTRODUCTION 

In the past few years, there has been widespread 
concern over the possibility of climate change arising 
from the observed increase in the atmospheric concen- 
trations of the greenhouse gases, particularly carbon 
dioxide. This has stimulated a growing body of 
research on the global carbon cycle; and many com- 
puter-based mathematical models have been con- 
structed in an  attempt to explain the dynamics of 
global carbon balance and,  in particular, to assess the 
effects of projected fossil fuel usage and land-use 
changes into the next millennium. Paradoxically, while 
the inherent uncertainty in such analysis is often 
acknowledged, most of these models have been com- 
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pletely deterministic in nature, usually with a fairly 
large and complex nonlinear structure characterised 
by a relatively large number of unknown parameters. 

Conventionally, a deterministic, physically-based 
mathematical model of t h s  type is based on the currently 
accepted theoretical paradigms in the field of clunate sci- 
ence; and the parameters in the model, which normally 
have a perceived physical interpretation, are  either 
estimated directly from laboratory or point source data; 
obtained by optimisation, so that the model matches the 
observed time series data to some acceptable degree; or 
determined by a combination of these methods. In this 
context, model optirnisation may be formal (e.g. Enting & 
Lassey 1993) or based on some less objective 'calibration' 
procedure which involves 'tuning' the parameters within 
physically justifiable bounds until a reasonable match to 
the observed data is obtained. 

Clearly, the less formal approaches leave much to 
subjective judgement and are  difficult to fully justify in 
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statistical terms; while the formal optimisation meth- 
ods normally encounter difficulties because of the 
inherent model complexity. In particular, as pointed 
out above, the models tend to contain a relatively large 
number of parameters, usually more than can be esti- 
mated unambiguously from the limited observational 
time series. Typically, this 'over-parameterisation' has 
deleterious effects: the model can be fitted to the data 
but the associated statistics reveal that many of the 
parameter estimates are highly correlated and so sta- 
tistically ill-defined. As a result, it is often necessary to 
modify the optimisation procedure in some manner: for 
example, by constraining certain 'well known' para- 
meters to assumed known values and only optimising a 
subset of parameters, the estimates of which are then 
much better defined. This 'constrained optimisation' 
approach has been used, for example, to estimate 
parameters in the modified box-diffusion model of Ent- 
ing & Lassey (1993), where 21 parameters were con- 
strained at their a prion' assumed values and the 
remaining 9 were optimised. 

Constrained optimisation is a useful, pragmatic way 
of alleviating the statistical problems of large model 
parameter estimation but its limitations are obvious. 
The alternative approach is to reduce the size and 
complexity of the model to better match the informa- 
tion content of the data. Not surprisingly, however, this 
is often frowned upon by global climate modellers, 
since they believe the resulting reduced-order model 
then provides an inadequate representation of the 
physical system, which they perceive to be inherently 
more complex. 

There seems to be no complete solution to this mod- 
elling dilemma and so the pragmatic approaches to 
model building used by climate modellers seem rea- 
sonably justified. In effect, they seek to achieve an 
acceptable compromise between the scientific credi- 
bility of the model and its justification in statistical 
terms. But, whatever the model size and the method 
used to calibrate the model, the parameters I-emain 
uncertain because of the basic stochastic nature of the 
global carbon cycle system. There will always be some 
d.ebate about the most appropriate form of the model. 
Moreover, since i.t is impossible to conduct carefully 
planned experiments at the global scale, the observa- 
tional and laboratory data will never be sufficient to 
determine the appropriate global scale parameter val- 
ues with any high degree of precision. In addition, the 
model inputs are rarely known exactly and it seems 
reasonable that they should also be considered in sto- 
chastic terms. 

Attempts to quantify the effects of these kinds of un- 
certainty in global carbon cycle models have been 
made (e.g. Enting & Pearman 1987, Wigley & Raper 
1992, Enting & Lassey 1993, Schimel et al. 1995) but, so 

far, it would appear that the consequences of uncer- 
tainty have been evaluated, almost entirely, by fairly 
rudimentary methods of deterministic sensitivity 
analysis. In particular, there appears to have been little 
research on the effect that stochastic influences, such as 
those arising from uncertain inputs and model parame- 
ters, might have on the model outputs and predictions. 
Two exceptions are the work of Gardner & Trabalka 
(1985), who used Monte Carlo Simulation (MCS) to in- 
vestigate such stochastic effects in the Oak Ridge Na- 
tional Laboratory's World Carbon Cycle Model; and 
Dowlatabadi & Kandlikar (1995), who used it in relation 
to the ICAM-2 integrated assessment model, which in- 
corporates a simple global carbon cycle model. 

In this paper, we follow the example of Gardner Pc 
Trabalka but use a rather different approach to MCS 
analysis that has been developed previously within the 
context of environmental water quality studies (see 
e.g. Young 1983). In this approach, MCS and the asso- 
ciated method of stochastic Generalised Sensitivity 
Analysis (GSA) involve repeated solution of the simu- 
lation model, each time randomly selecting any uncer- 
tain parameters or input time series in line with their 
assumed levels of uncertainty, as defined by specified 
probability distribution functions (pdf's). MCS analysis 
of this general kind has been used quite successfully in 
many disciplines, including control and systems engi- 
neering (e.g. Spear 1970), macroeconomics (e.g.  
Young et al. 1973), hydrology (e.g. Whitehead & Young 
1979, Spear & Hornberger 1980, Young 1983) and ecol- 
ogy (Scavia 1993). Provided a suitably powerful com- 
puting facility is available, the analysis can be used in 
the study of reasonably large sets of nonlinear differ- 
ential equations whose stochastic-dynamic behaviour 
cannot be studied analytically. For instance, the results 
reported in the present paper have been obtained 
using a powerful parallel computer in order to signifi- 
cantly reduce the total computation time required for 
the MCS analysis. 

The MCS and GSA methodology used here is also 
considered in a companion paper (Young et al. 1996), 
which concentrates on methodological issues and dis- 
cusses this analysis as part of a broader approach to 
model building and assessment which aims to inte- 
grate the construction of physically-based and data- 
based (or statistical) mathematical models into a more 
rigorous, unified Data-Based Mechanistic (DBM) mod- 
elling framework (see later). Through the use of this 
DBM modelling approach, it is believed that the over- 
all modelling process will be enhanced and that the 
assumptions built into the physically-based model will 
be more systematically and rigorously evaluated. In 
other words, the main intention of the MCS analysis, 
and the other techniques for model evaluation dis- 
cussed by Young et al. (1996), is not to criticise the 
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model under investigation as a means of representing 
the actual global carbon cycle dynamics, but rather to 
provide an additional means of evaluating the model in 
this role. 

More specifically, and within this wider context, the 
MCS/GSA analysis is intended: 

(1) to show how the assumed uncertainly in the para- 
meters and inputs propagates through the model and 
affects the model responses; 

(2) to indicate which parameters are most significant 
in affecting these model responses and hence direct 
future research into reducing the uncertainties in these 
parameters; 

(3) on the basis of (2) and associated 'stochastic opti- 
misation' studies, to suggest the subset of parameters 
which are likely to be of most importance in subse- 
quent statistical model optimisation studies; and 
finally, 

(4) to determine to what extent any nonlineanties in 
the model are being activated and so evaluated in the 
simulation analysis. 

Of course, these factors are only being considered 
over the range of responses represented by the MCS 
ensemble and it is important that this is taken into 
account when considering the results in relation to any 
particular use of the model. However, the nature of the 
ensemble is, to a large extent, under the control of the 
analyst and it will normally include model responses 
over both the historical past, where observational data 
are available, as well as future periods of interest in 
global climate change studies, where the model is 
being utilised in a purely predictive manner. Thus, for 
example, if the analyst restricts the ensemble to the 
historical period, then the results obtained under (4), 
above, will reveal to what extent the nonlinearity 
assumed in the model is being evaluated in relation to 
the observational data (for example in any model opti- 
misation studies based on these same data). If it is not 
being activated at all, then great care must be taken 
when using the optimised model in a predictive mode, 
since the unvalidated nonlinearity may become active 
and so seriously affect the predicted responses. 

In the present paper, the MCS and GSA aspects of 
this overall modelling procedure are applied to a well 
known global carbon cycle model: namely, one of the 
latest versions' of the modified box-diffusion model 
described by Enting & Lassey (1993; hereinafter 
referred to as the EL model). The original form of this 
model, developed by Oeschger et  al. (1975) is well 
established in its potential ability to model the move- 
ment of carbon throughout the environment on time 

scales from years to centuries. The modifications made 
by Enting and Lassey have sought to build on this and 
improve the model's agreement with observations. Pri- 
marily, the methodology proposed in this paper and 
applied to the EL model is intended to precede the 
model optimisation or 'calibration' phase in the model 
development, although a similarly motivated approach 
can be utilised later to evaluate further the predictive 
ability of the optimised model. 

The paper is divided into 7 sections: Section 2 
describes the main details of the EL model, whilst Sec- 
tion 3 details how MCS, GSA and other stochastic 
techniques are applied to the model. Section 4 dis- 
cusses an important aspect of the MCS analysis; 
namely the selection of the a prior1 pdf's associated 
with the model parameters. Finally, Section 5 presents 
the results of the analysis; Section 6 highlights the lim- 
itations of the study; and Section 7 concludes with a 
general discussion on the issues raised in the paper, 
including consideration of the results in the context of 
anthropogenic climate change. 

It should be noted that, in addition to the MCS/GSA 
analysis considered here, the model evaluation frame- 
work of Young et al. (1996) uses 2 other, associated 
n~ethodological tools to evaluate the EL model and the 
global carbon cycle. The first of these, Dominant Mode 
Analysis (DMA), exploits new procedures for com- 
bined model order reduction and linearisation to iden- 
tify the small number of dominant dynamic modes that 
most influence the dynamic behaviour of the EL model. 
We consider this approach briefly in Section 4, where a 
reduced order version of the EL model is utilised as an 
example to illustrate factors affecting the selection of 
the parameter pdf's for MCS analysis. The second 
method constructs a model directly from observational 
time series data, again utilising the DBM modelling 
techniques mentioned previously (see e.g. Young & 
Minchin 1991, Young & Lees 1992, Young & Beven 
1994), to derive a minimally parameterised model 
which adequately explains the observational data. 
Like MCS, these additional methodological tools help 
to simplify the perceived complexity of the large simu- 
lation models and they have been used very effectively 
in our study. These results provide valuable additional 
insight into the nature of the EL model and supplement 
the results provided in the present paper. 

2. THE ENTING-LASSEY MODEL 

A systems block diagram of the EL modified box- 
diffusion model of the alobal carbon cvcle is shown in ., 

we do not include recent modifications to the Fig. 1. It is a typical, deterministic, nonlinear simula- 

deforestation module which were ~ntroduced subsequent to tion model based on well established physical and bio- 
completion of the analysis reported here logical principles, which reflects the current scientific 
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phere and the terrestrial biosphere is 
assumed in the model to be zero, i.e. at equi- 
librium, for all natural biospheric changes. 

The air-sea exchange is presumed to be 
proportional to Apco2, the difference between 
the CO2 partial pressures of the atmosphere 
and the ocean surface (or 'mixed') layer, thus 
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Fig 1. The Enting-Lassey model 
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thinking on the mechanisms of carbon balance in the 
global environment. The model attempts to explain the 
movement of total carbon, and its 2 minor isotopes, I3C 
and 14C, throughout the global environment on time 
scales of decades to centuries. 14C is included in the 
model to take advantage of the atmospheric nuclear 
weapons testing in the 1950s and 60s: in effect, this 
acted as an  unplanned, global-scale tracer experiment 
and the subsequent measurements of its concentration 
changes have been used in the calibration of global 
carbon cycle models (Enting 1982). I3C is also used as 
a tracer to help calibrate the model. 

In the EL model, the global environment is assumed 
to be composed of 3 main compartments: the atmos- 
phere, the ocean, and the terrestrial biosphere. The 
ocean and the terrestrial biosphere are assumed to 
exchange large amounts of carbon with the atmos- 
phere, but little with each other; and these exchanges 
are assumed to be in equilibrium before the start of the 
human industrial period (taken to be 1765; IPCC 1990). 
After this time, however, an input, mainly due to fossil 
fuel combustion, enters the atmosphere and is dissi- 
pated throughout the system, although much remains 
in the atmosphere. A further input of "'C 1s introduced 
as the result of the nuclear weapons testing mentioned 
above. 

In order to model the carbon fluxes with a reasonable 
degree of detail, the EL model is further divided into 
23 boxes as shown in Fig. 1: the fossil fuel input is con- 
sidered to enter the troposphere, whilst the nuclear 
weapons-derived I4C enters the stratosphere. The net 

exchange coefficient. Calculation of the sur- 
face layer partial pressure is complicated by 
the fact that much of its carbon is suspended 
in ionic form and does not contribute to this 
partial pressure. This 'buffering' action limits 
the rate at which the ocean can take up 
anthropogenic CO2. 

The deep ocean is modelled by 18 boxes of 
equal depth. These represent a discrete 
approximation to a l-dimensional diffusion 
process, which is believed to be a good rep- 
resentation of the 3-dimensional ocean circu- 

lation and is based on observations of 14C penetration 
in the ocean (Oeschger et al. 1975). Ocean diffusion is 
expressed thus, 

where t is time, c is the concentration of carbon, and 
K is the vertical diffusion coefficient in the direction 
given by the distance parameter, z (in this case, verti- 
cally). 

Enting & Lassey have made a number of modifica- 
tions and additions to Oeschger's original model. In 
this study, we have chosen 5 of these (which are con- 
sidered as more speculative), to evaluate by MCS/GSA 
analysis: 

(1) downward flux of carbon in the ocean due to 
organic detrital movement; 

(2) downward flux of carbon in the ocean due to in- 
organic (carbonate) detrital movement; 

(3) a nonlinear relation between the buffer factor and 
the surface layer partial pressure, rather than using a 
constant value; 

(4) a flux (based on observed data) from the old bio- 
sphere to the troposphere to account for land-use 
changes, e.g. deforestation; 

(5) a flux from the troposphere to the old biosphere to 
account for an uptake in carbon due to accelerated 
plant growth at higher CO2 levels, i.e. the CO2 fertili- 
sation effect. 

Thus, 25 = 32 versions of the EL model, which we 
denote E l  to E32, were considered in our study. 
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More detailed descriptions of the model in its basic 
and modified forms can be found in Enting & Lassey 
(1993) and Parkinson (1995), to which the interested 
reader is directed for further information. 

3. MONTE CARLO SIMULATION OF THE ENTING- 
LASSEY MODEL 

In all its forms, the EL model is composed of nonlin- 
ear, deterministic differential and partial differential 
equations. Such a deterministic formulation can be 
converted into stochastic form by assuming that the 
model parameters and inputs are uncertain and can be 
described by assumed pdf's. Although these pdf's can 
be of any form, Gaussian normal or uniform distnbu- 
tions are most often used because of their generality 
and simplicity. However, even in these simple cases, 
the complexity of the associated Fokker-Planck equa- 
tions virtually rules out any analytical study of the 
model's stochastic behaviour and resort must be made 
to alternative, approximate numerical methods, such 
as stochastic MCS analysis (see e.g. Young et al. 1996). 
Here, the model is solved repeatedly (sometimes sev- 
eral thousand times) over a user-specified time inter- 
val, with each simulation run (or 'stochastic realisa- 
tion') based on parameter values and inputs that are 
randomly selected from the a prior1 assumed pdf's. In 
this manner, a whole ensemble of model realisations is 
generated, which cumulatively reflect the uncertainty 
in the model response arising from the assumed uncer- 
tainty in the model parameters or inputs.' 

MCS analysis is a very flexible tool and can be used 
in a number of different ways that prove useful in the 
study of the EL model: 

(1) to produce sample distribution functions (histo- 
grams) which provide an estimate of the uncertainty in 
the model response arising from the assumed uncer- 
tainty in the model inputs and parameters (an example 
is given in Fig. 2); 

(2) to construct cumulative frequency distribution 
(cfd) curves that can be statistically compared with 
those of the observations in order to assess how well 
the model agrees with the measured reality in proba- 
bilistic terms; 

(3) to study the effect of modifications made to the 
model by statistically comparing the cfd curves associ- 

'MCS analysis can be made more efficient, in the sense of 
reducing in the requlred number of random realisations, by 
exploiting elegant devices such as Latin Hypercube Sam- 
pling (see e.g. Dowlatabadi & Kandlikar 1995). However, 
with modern fast computers, particularly parallel processing 
ones such as that used in the present study, such efficiency 
savings are not essential 

Atmospheric C@ Concentration (ppmv) 

Fig. 2. Typical histogram for atmospheric CO2 concentration 
produced by Monte Carlo Simulation of the Enting-Lassey 
model. The Gaussian approximation is shown by the solid line 

ated with the ensemble response before and after 
modification; 

(4) to carry out GSA (see Spear & Hornberger 1980, 
Young 1983, Spear 1993) in order to indicate those 
model parameters which are statistically most signifi- 
cant in producing a specified type of model behaviour; 

(5) to adjust the pdf's of the 'significant' parameters, 
as found in (4), to produce a model response which cor- 
responds better to the observations ('Stochastic Model 
Optimisation'). 

The significance of any differences between 2 cfd 
curves, as required in methods (2), (3) and (4), can be 
evaluated statistically; for example, by considering 
Kolmogorov-Smirnov (K-S) statistics (see below). In 
this study, methods (l), (3 ) ,  (4)  and (5) are used and 
their application to the EL model is outlined below. 
Method (2) is not used due to a lack of adequate data; 
hence only a visual comparison is carried out between 
the model response and observations (see Section 5.1). 

The first steps in the practical application of MCS are 
to define: (a) those model state variables which are of 
primary interest; (b) the time period over which the 
model is to be simulated; (c) the specific points in time, 
or a time period, over which the state variables are to 
be studied; and (d) the initial or boundary conditions. 
In the present evaluation of the EL model, 3 state vari- 
ables are considered in detail: atmospheric CO2 con- 
centration, p,; atmospheric 13C depletion, &l3; and 
atmospheric 14C enhancement, 4 1 4 .  The model is sim- 
ulated over the industrial period 1765 to 1990 and the 
state variables are studied at  the following points in 
time: p, at  1990; A , ' ~  at 1989; and &,l3 at 1978. The 
choice of these dates is dictated by the availability of 
suitable data but is otherwise of no critical importance 
to the present, rather general, investigation. Concern- 
ing the initial conditions, the model is assumed to be in 
equilibrium at the start of the simulation period, with 
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Table 1 (a) Summary of Enting-Lassey parametric uncertainties. Numbered following Enting & Lassey (1993). For a fuller dis- 
cussion of the values, with references, see Parkinson (1995). Some parameters are only involved in one of the 5 modifications, not 
in the default version of the model, and are indicated thus: ODF, organix detrital flux; IDF, inorganic detrital flux; NLBF, non- 
linear buffer factor; LUC, land-use changes; CF, CO2 fertilisation. (b)  Uncertainties in the lnputs used in the Entlng-Lassey 

model 

(a) Enting-Lassey parametric uncertainties 
Index/Symbol Description Mean Units Sources 

1 K  Eddy diffusion coefficient 5400 m2 yr-' Enting & Lassey (1993) 

yr Bolin (1986), Merlivat et al. (1991) 
Unitless Bolin (1986) 
m01 l-' Bolin (1986) 

Air-sea exchange time 11 
Buffer factor (constant) 10 
Ref. concentration of carbon in 0.00207 
mixed layer 
Inorganic detrital flux (IDF] 2 5 
Pre-industrial atmos. COz 275 
concentration 
Stratospheric turnover time 6.0 

Gt C yr-' Martin et al. (1987), Broecker (1974) 
ppmv Bolin (1986) 

yr Bolln (19861, Enting & Lassey (1993) 
'L Enting & Lassey (1993) 
O r  Enting & Lassey (1993) 

kg yr-' Enting & Lassey (1993) 

Pre-industrial atmos. I3C depletion -6.5 
I3C depletion of inorganic detritus (IDF) 0 
14C production rate from cosmic rays 6.0 

11 ( N )  Pre-industrial size of young biosphere 100 
12 (N,,),, Pre-industrial size of old biosphere 1750 
13 PN Net primary product~on 100 

Gt C 
Emanuel et al. (1981), Enting & 

G t c  I Pearman (1983), Bolin (19861, 
G t  C Houghton (1993) 

Yr Turnover time for old biosphere 40 
Organic detrital flux (ODF) 5 0 
I3C depletion of organic detritus (ODF) -24 
Non-linear buffer factor (term l ;  NLBF) 59.56 
Non-linear buffer factor (term 2; NLBF) 0 
Non-linear buffer factor (term 3; NLBF) 4558.0 
Relative response limit (CF) 2.1 
Fraction of old biosphere involved 0.7 
in CO2 fertilisation (CF) 
Compensation point of C-3 plants (CF) 80 
Fractionat~on of 13C (atmosphere to 0.982 
biosphere) 
Fractionation of 13C [atmosphere to 0.99795 
ocean) 
Fractionation of I3C (ocean to 0.99005 
atmosphere) 
Mixed layer depth 100 
Total ocean depth 3730 
Remineralisation factor (IDF) -0.858 
Non-linear buffer factor (term 0; NLBF) 9 36 
Ref. value of CO2 partial pressure 290 
in mixed layer 
Reference concentration of carbon 0 002089 
in the mixed layer for non-linear 
buffer factor (NLBF) 

Gt C yr-l Martin et al. (1987) 
1C Enting & Lassey (1993) 

Unitless Bacastow (1981) 
Unitless Bacastow (1981) 
Unitless 
Unitless Allen et al. (1987) 
Unitless Enting & Lassey (1993) 

ppmv Allen et al. (1987) 
Unitless Enting & Pearman (1983) 

Unitless Siegenthaler & Munnich (1981) 

Unitless Siegenthaler & Munnich (1981) 

Hoffert et  al. (1980) 
Enting & Pearman (1983) 
Martin et al. (1987) 
Bacastow (1981) 
Bolin (1986) 

m 
m 

Unitless 
Unitless 

PPmv 

Bacastow (1981) 

m2 Enting & Pearman (1983) 35 G,, Surface area of the ocean 3.61 X l0l4 

(b) Uncertainties in inputs 
Anthropogenic effect Time period 

Fossil fuel (total carbon) 1840-1859 
1860-1949 
1950-1990 

Foss11 fuel (I3C) 1840-1990 

Nuclear explosions ("C) 1945-1976 

Land-use changes 1765-1849 
1850-1990 

Uncertainty (? 1 SD) Sources 

*25% Marland & Boden (1991), Keeling (1973) 
* 2 0 9'0 
*15% 

*0.25% Enting & Pearman (1983) 

*50% Enting (1982) 

+50% Houghton (1993) 
+30% 
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the amounts of carbon in the atmosphere and the bio- 
sphere taken from observations; whilst those for the 
ocean are calculated by integrating the model equa- 
tions until the ocean comes into equilibrium with the 
rest of the system. 

The next step in MCS analysis is to construct the 
pdf's for the parameters and inputs of the model. Dur- 
ing each MCS realisation, the random selections of the 
parameter and input values are treated differently. For 
the parameters, the value is chosen at the start of the 
realisation and held constant during the realisation; 
whilst for the inputs, the value is chosen randomly at 
each time step during each realisation. This is because 
the parameters are considered to be constant during 
the whole realisation; whereas the inputs are assumed 
to be time series that vary continuously in a stochastic 
manner over the specified simulation interval. Nor- 
mally, this means that they are defined either as: deter- 
ministic or measured inputs, to which random noise 
with a specified pdf is added (this is the approach used 
here); or as time series generated by models such as a 
Autoregressive (AR), Autoregressive Integrated Mov- 
ing Average (ARIMA), or Transfer Function (TF) mod- 
els with deterministic and stochastic inputs. Such time 
series models are obtained usually from the analysis of 
the available observational data, using statistical 
methods of identification and parameter estimation 
(see e.g. Box & Jenkins 1970, Young 1984). In all these 
cases, however, the basic stochastic inputs that drive 
the time series models are zero mean, serially uncorre- 
lated random variables ('white noise') with specified 
pdf's. 

Table 1 summarises the means and standard devia- 
tions (under a Gaussian pdf assumption) of the para- 
meters and inputs used in the MCS analysis. It is 
important to realise that all the model parameters and 
inputs are expressed in stochastic form in order to 
carry out a complete analysis. Note also that these sta- 
tistical measures are derived as objectively as possible 
from independent sources, i.e. they are a priori values. 
Model parameter estimation (sometimes termed 
'model optirnisation', 'calibration' or 'fitting'), i.e. the 
systematic adjustment of the parameter values so that 
the model is in better agreement with observations 
(see later), is not carried out until it has been estab- 
lished whether the a prionmodel structure is a reason- 
able representation of the 'real world'. 

The number of stochastic realisations, n, needed for 
the MCS analysis is defined by the K-S statistic, i.e. 

where K, (for a confidence level a)  is read from statis- 
tical tables, and d is the level of difference allowed 
between 2 cfd curves before it is considered 'signifi- 

cant' (see e.g. Spear 1970). For the EL model, the dif- 
ference is considered significant if the means or stan- 
dard deviations of histograms from 2 CO2 responses 
are different by more than 5% of the change in the 
mean CO2 level over the simulation period. Since the 
change of the mean level over the simulation period is 
approximately 80 ppmv, therefore, the cfd curves must 
differ by more than 4 ppmv for significance. In this 
situation, we find that 160 realisations are needed in 
order to detect a 'significant' difference. (For full 
details of this methodology, see e.g. Parkinson 1995.) 

GSA is a special, Monte Carlo-based method which 
provides a means for objectively determining which of 
the model parameters have the most significant effect 
on a particular aspect of the model behaviour over the 
specified simulation period. Here, a range of 'accept- 
able' behaviour is first defined for each model output. 
Then, if any of the outputs from a given realisation fall 
outside their respective ranges, this realisation and the 
model parameters which produced it are considered as 
'unacceptable' representations of the system. In this 
manner, the parameter values which lead to such 
unacceptable behaviour are classified as part of the 
'not behaviour' (B) set; whilst those which result in 
acceptable response characteristics are classified as 
part of the 'behaviour' (B) set. Thus, the results from n 
realisations produces nb values for each parameter in 
the B set and (n - nb) values in the B set. For each para- 
meter, K-S statistics are then used to find if there is a 
significant difference between the values in the B and 
B parameter sets (an example is given in Fig. 3) .  This 
information is valuable in many ways; for instance, it 

Atmospheric C& Conccnrra~ion (ppmv) 

Fig. 3. Typical example of Kolmogorov-Srnirnov statistics 
applied to the results of Monte Carlo Simulation. The solid 
line and dashed line show the cfd curves obtained from 2 ver- 
sions of the Enting-Lassey model, whilst the dot-dashed line 
shows the magnitude of the difference between these 2 
curves. Since this difference never exceeds the level of sig- 
nificance (dotted line), the 2 versions are said to be 'not 
significantly different'. The curves could equally be from 
(a) a model and observations, or (b) 2 parameter sets, one of 

'acceptable behaviour' and the other not-see Section 3 
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reveals those parameters which are most important in 
defining the specified behavioural pattern, and steps 
can be taken to reduce the uncertainties associated 
with these most sensitive parameters. It can also sug- 
gest those (normally few) physical mechanisms in the 
simulation model that are most important in defining 
given behavioural phenomena and, conversely, those 
aspects of the model which appear to play little part in 
defining such behaviour. 

The bands of acceptable behaviour are defined with 
reference to the observational record. Initially, in the 
case of the EL model, the 95 % confidence limits asso- 
ciated with the observed atmospheric CO2 concentra- 
tions (see Table 2) were used in this regard. However, 
it was found that these bands are so narrow compared 
with the range of uncertainty generated from the MCS 
that very few realisations exhibited the behaviour, i.e. 
nb was quite close to zero. Statistical analysis of such 
small sample sizes is naturally unreliable and so some 
way is needed to increase the number of acceptable 
realisations. One approach is to increase the width of 
one or more of the acceptability bands and, in this case, 
a 5-fold increase in all the bands yields usable results. 
While this is a fairly crude adjustment, it still allows for 
discrimination between parameters which have a rela- 
tively large effect on the model and those that do not. 
More rigorous enlargement of the 'behaviour space' 
can be achieved using more complex 'parameter space 
adjustment' techniques (see e.g. Keesman 1990 and 
Keesman & van Straten 1990) but these were not 
utilised in the present preliminary study. 

Finally, Stochastic Model Optimisation can be car- 
ried out using MCS. We propose this as a first stage in 
model optirnisation and fitting, to be carried out only 
after the efficacy of the model structure has been con- 
firmed. It is achieved by systematically adjusting the 
complete pdf's (i.e. the means and variances in the 
Gaussian case considered here) of the statistically sig- 
nificant parameters, as indicated by the GSA, to pro- 
duce a model which yields the highest number of 
acceptable behaviour (B) realisations. For simplicity, in 
this paper, only the means of the pdf's for the most sig- 
nificant parameters have been utilised for optimisa- 
tion, with the variances kept constant. However, this 
still yields interesting results and suggests strongly 
that certain of the a prioriassumptions about important 
parameter values should be investigated. 

4. SELECTION OF PARAMETERIC UNCERTAINTY 
LEVELS IN MCS 

One of the most difficult and challenging aspects of 
MCS analysis applied to large deterministic models is 
the selection of the uncertainty levels, particularly the 

definition of pdf's for the model parameters. In this sec- 
tion, we discuss the issues involved in this process and 
seek to justify the approximations utilised in the paper 
to circumvent these difficulties. Bearing in mind the 
possible effects of these approximations, we also stress 
that the results of the subsequent MCS analysis must 
be considered carefully, taking into full account the 
points raised in this section. 

The distributions should reflect the combined uncer- 
tainty associated with the system, as perceived by the 
scientific community, and we have obtained them as 
objectively as possible from many sources, such as 
published observations, calculations from independent 
modelling exercises, and the opinions of experts in the 
field (these sources are indicated in Table 1; full details 
are given in Parkinson 1995). However, since there is 
no truly objective method for carrying out this aspect of 
the analysis, certain assumptions have to be made 
about the nature of the pdf's. Some research workers in 
the area (e.g. Oeschger et al. 1975, Siegenthaler & 
Oeschger 1987, and subsequent studies used as a basis 
for IPCC 1996) have suggested that there is a high 
degree of correlation between several parameters, 
most notably the vertical diffusion coefficient K and 
the gas exchange coefficient K. However, these papers 
only provide very limited information in this regard 
and certainly do not allow for the specification of a 
complete covariance matrix of the type required for 
MCS under the assumption that the model parameters 
come from a multivariate Gaussian distribution. More- 
over, it should be noted that these previous studies 
have used box-diffusion models similar to that consid- 
ered here and so their results are not independent 
sources within the requirements of our study. In partic- 
ular, since we are intending to assess the suitability of 
the a priori model structure, we would run the risk of 
using circular arguments. 

With these observations in mind, we have reluctantly 
assumed that the parameters each come from indepen- 
dent Gaussian distributions defined by the mean val- 
ues and variances obtained in the manner described 
above (although any other distribution could have 
been used, and a uniform distribution might be better 
justified in certain circumstances). In MCS terms, this 
means that the parameter values for each stochastic 
realisation are drawn at random from a multivariate 
Gaussian distribution defined by the vector of mean 
parameter values and an  associated, purely diagonal, 
covariance matrix with the assumed variances on the 
diagonal, and zero covariance elements. 

This assumption of statistical independence is, of 
course, a potentially limiting one, since the computed 
uncerta~nties in the MCS analysis will yield different 
results from those obtained if the parameters had non- 
zero covariances. However, these are only initial 
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assumptions and, if better data and other independent 
information become available, they can be adjusted as 
necessary. Moreover, in an attempt to address this 
potential problem, we have considered the effect on 
the MCS results of reducing the a priori variances 
associated with the independent parametric pdf's. Our 
reasoning in this regard is based on the fact that the 
assumption of statistical independence is equivalent to 
considering a probability ellipsoid in the associated 
parameter hyper-space, whose axes are aligned with 
the axes of the space, and whose major and minor 
diameters are dependent upon the assumed variances 
of the individual parameters. If the parameters are not 
independent, however, this ellipsoid becomes both dif- 
ferently oriented and shaped because of the non-zero 
covariances. In particular, the existence of relatively 
large covariance elements can result in an ellipsoid 
with large differences between the major and minor 
diameters and, in the limit, the parameters concerned 
become linearly dependent and lie on a hyper plane. A 
simple illustrative example is discussed in Appendix 1. 

Although it is impossible to evaluate directly how 
valid this approximate approach to pdf selection may 
be in the case of the full EL model, we have been able 
to investigate its consequences in relation to the 
reduced-order differential equation model approxima- 
tion to the EL model, as obtained by the DMA men- 
tioned in the 'Introduction' (see Young & Parkinson 
1996, Young et al. 1996). These references show that 
this fourth order, linear differential equation approxi- 
mation (3 dominant modes plus an integrator to 
account for mass conservation), which is obtained by 
referring only to the unit impulse response of the EL 
model, yields an atmospheric CO2 response to the fos- 
sil fuel input record which is almost identical (99.99% 
of the response explained) to that of the full nonlinear 
EL model over the whole of  the historical period, 
1840 to 1990. Just as importantly for our present pur- 
poses, since DMA is based on statistical estimation, it 
yields the estimates of the reduced-order model para- 
meters and their associated covariance matrix. Conse- 
quently, it is possible to compare the results obtained 
from MCS analysis applied to the reduced-order model 
using both this full covariance matrix and its diagonal 
approximation. 

The reduced-order differential equation model has 
7 parameters and the off-diagonal elements of the 7 X 

7 dimensional covariance matrix are relatively quite 
large, with the 2-dimensional projections of the associ- 
ated probability ellipsoid indicating high levels of cor- 
relation between the estimates. Despite this, however, 
the MCS results obtained using the purely diagonal 
approximation to the covariance matrix, with no reduc- 
tion in magnitude, produce a lower variance ensemble 
of atmospheric CO2 responses than those obtained 

using the full matrix above. On average, over a simula- 
tion period between 1840 and 2100, the standard devi- 
ation of the ensemble about the mean response is 60 O/u 
of that in the full matrix case (varying from approxi- 
mately 100 % between 1840 and 1940 to 30 % between 
2090 and 2100). In other words, the diagonal approxi- 
matlon, which assumes independence in the paramet- 
ric uncertainties, actually underestimates how the 
effects of this uncertainty propagate through the 
system. 

Although the full EL model may well not behave in a 
similar manner to the reduced order model in MCS 
analysis, these results show that utilising a diagonal 
approximation to the covariance matrix does not nec- 
essarily amplify the effects of parametric uncertainty. 
In particular, it cannot be assumed that such an 
approximation will result in more volatile and sensitive 
ensemble MCS responses than would have been 
obtained if the full covariance matrix had been known 
and employed. For this reason, we believe that our 
approximate approach can be justified, particularly 
since we also present the results obtained with a 
reduction in the magnitude of the elements in the diag- 
onal approximation of the covariance matrix (i.e. a 
reduction in the assumed uncertainties of the model 
parameters) and issue strong caveats about the inter- 
pretation of the results. 

5. RESULTS FROM THE MONTE CARLO 
SIMULATION ANALYSIS 

This section presents the results of the uncertainty 
and sensitivity analysis for the EL model. In Sub- 
sections 5.1 and 5.2, the comparative results from a 
number of different versions are discussed but, 
because the sensitivity analysis is very time consum- 
ing, the remaining Sub-sections 5.3 to 5.5 are con- 
cerned only with version E29 (described below). This 
version was selected for these more detailed studies 
since its total carbon response matches the indepen- 
dent observations better than any of the other versions. 
In addition to the analysis outlined in Section 3, Sub- 
section 5.5 presents some 'predictive' results obtained 
by simulating the model into the future using an IPCC 
scenario, and then compares the resulting uncertainty 
with that found in alternative deterministic studies. It 
should be noted that, following normal convention, the 
uncertainties in all the results presented here relate to 
the 95 % confidence limits (+2 standard  deviation^).^ 

3Note that this is not the same as the presentation of parame- 
ter and input uncertainties (Table l), which quote 66% con- 
fidence limits (*l standard deviation) following Enting & 
Lassey (1993) and Enting & Pearman (1983) 
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Fig. 4. Evolution of the stochastic uncertainty of the 3 outputs 
of Enting-Lassey model version E29. Statistical comparison is 
carried out at  last point on the graph. The mean variation is 
shown as  a full line and the dashed lines are the 95% confi- 
dence limits. Crosses are  observational data: in (a), the obser- 
vational data are from Friedli et al. (1986) and Enting & 
Lassey (1993); in (b),  from Friedli et al. (1.986) and Enting & 

Pearrnan (1983); In ( c ) ,  from Enting & Lassey (1993) 

5.1. Stochastic simulation results 

Simulating the EL model over the industrial period 
yields the graphs similar to those presented in Fig. 4.  
While these show the evolution of the stochastic uncer- 
tainty for model version E29 alone, the results for all 
the other model versions a re  qualitatively very similar. 
Observational data are also shown on these graphs as 

Table 2. Comparison of the MCS results of Enting-Lassey 
model versions E19 and E29, to observat~ons. Date given as 

year and decimal fraction of year 

Output Date Model response Observed 
(with 95 % conf.) response 
E19 E29 (with 95 % conf.) 

crosses, for comparison. Table 2 compares the MCS 
results of model versions E19 (which includes the 
organic and inorganic detrital fluxes, and CO2 fertilisa- 
tion) and E29 (which includes both the detrital fluxes, 
CO2 fertilisation, and land-use changes) with the 
observations at  the end of the simulation period. The 
E19 model results a re  shown here because its 13c 
response is closest to the observations; whilst, in the 
case of the E29 model, the total carbon response 
matches the observations very well. However, none of 
the model versions yield results that are very similar to 
the observed 14C m e a s ~ r e m e n t s . ~  

The most obvious thing to note about the results in 
Table 2 and the associated results obtained with other 
model versions is the much smaller level of uncertainty 
in the observed values compared with that generated 
by the MCS analysis. For p, and the MCS uncer- 
tainty is about 20 times larger than that in the observa- 
tions; whilst for &l3, the factor is about 6. This compar- 
ison must be treated with caution, however, since the 
model is sensitive to the uncertainty in the parameters 
which define the pre-industrial levels of total carbon, 
'v and I4C (see Section 5 . 3 1 ~  and these are rather 
more uncertain than the present day levels. Neverthe- 
less the discrepancy is still very large and it seems 
unlikely that this is the only reason for the major dif- 
ferences revealed in Table 2. 

There is clearly a large difference between the sto- 
chastic model results for I4C enhancement and the 
appropriate observations. The major problem appears 
to lie in the assumed mean parameter values. These 
are based on published values but they are rather dif- 
ferent from those obtained by Enting & Lassey (1993), 
which are estimated using constrained numerical opti- 
misation of the parameters in the model (see comments 

41t IS interesting to note that the budgeting of I4C in global 
carbon cycle models is currently a controversial area (see 
e.g. Hessheirner et al. 1994) 

'The pre-industrial levels of total carbon and are defined 
explicitly; that for '''C is calculated using other parameters, 
e .g .  I4C production rate 
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in the 'Introduction'). In order to maintain objectivity, 
however, we did not use these latter values, since they 
related specifically to exercises in model optimisation 
applied to the model under study, i.e. an assumption 
has been made that the a priori model structure is 
valid. Rather, we wished here to investigate the sto- 
chastic behaviour of the model using those parameter 
values which were considered by scientists to be most 
appropriate from a purely physical standpoint. This, 
we believe, is the major role of MCS in simulation 
model evaluation. 

Following a request by I. G. Enting, however, we 
repeated the analysis using the EL constrained optimi- 
sation parameters (i.e. estimated means for cosmic ray 
production of I4C of 5.2 kg yr-l rather than 6.5 kg yr-l; 
and a conversion factor for nuclear weapons input of 
2.8 kg kt-' rather than 4.5 kg kt-l). Not surprisingly, 
this yields figures for A , ' ~  of 188 + 3 6 9 % ~  that are much 
closer to the observed but still retain the significantly 
higher 95 % confidence interval observed in the previ- 
ous simulation exercises. While these results confirm 
the efficacy of the Enting & Lassey constrained para- 
meter optimisation, they also suggest that more consid- 
eration should be given to the reasons for the differ- 
ences between the optimised parameter values and the 
prior published values (see the later discussion in Sec- 
tion ? on the problems of scale in defining environ- 
mental model parameter v a l ~ e s ) . ~  

5.2. Statistical comparison of modified versions of 
the EL model 

Statistical comparison between the MCS results of 
all 32 versions of the EL model show that neither of 
the oceanic detrital fluxes has any significant effect on 
p, and &,l3; but together they have an effect on the 
level of Inclusion of a nonlinearly varying buffer 
factor, as opposed to a constant value, has a signifi- 
cant effect on &l3, but not the other 2 outputs. Finally, 
land-use changes and CO2 fertilisation, both individu- 
ally and in combination, make a significant difference 
to p, and &,l3, but not to Clearly, since all modifi- 
cations have a statistically significant effect on at least 
one of the outputs, we cannot reject any as being 
redundant. 

"t is interesting to note that recent work, published while the 
present paper was being reviewed (Lassey et al. 1996), uses 
the EL model with mean parameter values (particularly for 
the eddy diffusion coefficient K and stratospheric turnover 
time 7,,) based on more recent observations. This produces 
significantly better agreement with 14C observations and 
tends to confirm our comments 

At this point, it is interesting to consider why the 3 
outputs are affected significantly by different model 
modifications. Many of the reasons for this are appar- 
ent from considering the basic assumptions behind the 
EL model, and thus will not come as a surprise to 
global carbon cycle modellers: 

(1) The inclusion of the oceanic detrital fluxes acts 
to Increase the flow of carbon from the ocean's sur- 
face layers to the deep layers. Together, they have a 
significant effect on the level of I4C in the atmos- 
phere, but not on the levels of total carbon or I3C. It is 
likely that this is due to the changes that these fluxes 
would cause in the pre-industrial level of I4C, which is 
not fixed, unlike the pre-industrial levels of the other 
2 outputs. 

(2) The adjustment of the buffer factor from a con- 
stant to a nonlinear relation causes a reduction in the 
air-to-sea flux with increasing atmospheric levels. The 
main reason why this study found only &,l3 to be signif- 
icantly affected is because the other outputs were not 
perturbed far enough away from their equilibrium 
points: larger perturbations to the model would lead to 
the nonlinearity having a larger (and eventually signif- 
icant) effect. The greater uncertainty in p, and A , ' ~  
probably helped to contribute to masking any differ- 
ences. 

(3) Land-use changes constitute an input of carbon to 
the atmosphere, whereas CO2 fertilisation acts as an  
output. In combination, they nearly cancel each other 
out; nevertheless, individually or together, they still 
have a significant effect on the atmospheric levels of 
total carbon and I3C. The fact that the 14C level is not 
significantly affected is because the atmospheric box 
has the same '"/C ratio as the biosphere, which is 
deliberate and is based on observations. 

Obviously, many of the reasons for the presence or 
absence of a significant effect of a given modification 
on the outputs are intended and so, in this case, the 
statistical comparison of model versions has yielded lit- 
tle new information. Nevertheless, we have shown 
how this methodology can be used to clarify how a 
model is operating. 

It is also important to point out here that the signifi- 
cance or otherwise of a modification depends on the 
choice of the outputs, simulation period and the point 
during the simulation at  which analysis is carried out. 
Further, various modifications made to global carbon 
cycle models are carried out because of their perceived 
importance in determining future effects; conse- 
quently, if there is a lack of significant information on 
these effects in past observations, then they will be 
rejected by an analysis such as ours. Nevertheless, if 
this analysis is carried out carefully, it can help in 
deciding whether there is sufficient justification for the 
inclusion of a given modification. 
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Table 3. Significant parameters of EL model version E29, 
found using GSA 

Significant parameters K-S result 

W '"C production rate from cosmic rays 0.325 
(Sal3),, Pre-industnal atmos, 13C depletion 0.297 
( N o )  Pre-industr~al size of old biosphere 0.295 
( p )  Pre-industnal atmos. CO2 level 0.226 
PN Net primary production 0.214 
ram Air-sea exchange time 0.191 

- 

5.3. GSA and the evaluation of 'significant' model 
parameters 

The results of the GSA analysis applied to EL version 
E29 are summarised in Table 3. In testing for 'signifi- 
cant' parameters, the K-S statistics assign a value 
between 0 and 1 to each parameter: the higher the 
value, the more significant the parameter is in deter- 
mining whether the model response is 'acceptable'. 
The level of statistical significance in this case is 0.161. 
As can be seen, the 14C production rate from cosmic 
rays, o, is the most significant parameter. This is not 
surprising since, as pointed out in Section 5.1, its value 
makes a considerable difference as to whether the 14C 
model response is close to the observed level or not. 
The significance of the pre-industrial levels of CO2 
and I3C are also to be expected since their uncertain- 
ties are much wider than the present day levels used 
for comparison, and so variation in their values would 
change the model response noticeably. However, the 
presence of the other 3 parameters [the pre-industrial 
size of the old biosphere, (No),,; the net primary pro- 
duction, PN; and the air-sea exchange time, z,,] is not 
so obvious. Again, it is likely that their significance is 
due to their comparatively high levels of uncertainty, 
but it is also possible that the processes they represent 
are more important in determining atmospheric CO2 
levels than other parts of the model. This shows the 
potver of this method in picking up less obvious 
sources of model sensitivity. 

5.4. Stochastic Model Optimisation 

Approximate stochastic optimisation of EL version 
E29 is carried out by varying the means of the pdf's of 
the 6 most 'significant' parameters found using GSA 
(Table 3) .  Parameter interaction was suspected be- 
tween (p,),, and (6,'3)pi, the pre-industrial levels of total 
carbon and I3C in the atmosphere; and also between 
(NJPi, the pre-industrial size of the old biosphere, and 
PN, net primary production. The former interaction is 

C-13 Deplerion (%o) 
v-- 

-7 -- 240 Carbon Dioxidc (ppmv) 

Fig. 5. Variation of the probability of acceptable behaviour 
with the means of the pdf's of (p,),,, the pre-industrial atmos- 
pheric CO2 concentration, and (tiat3),,, the pre-industrial 
atmospheric I3C depletion, for Enting-Lassey model version 

E29. (Default values shown by dashed lines) 

confirmed, whilst the latter is denied by the application 
of analysis of variance (ANOVA) t e ~ t i n g . ~  By plotting 
graphs of the variation of the means of the pdf's versus 
the probability of behaviour [see, for example, Fig. 5 
which shows a surface plot of (6,13)pi and (p&], it is 
found that a relatively high probability of acceptable 
behaviour is obtained by using the default means of 
parameters (p,),,, o and PN. However, T,, (No)pi and 
(S,'3)pi need to be adjusted quite considerably (by 
around 2 standard deviations) to yield optimum (or 
even near optimum) results. Parameter mean values 
that produce the approximately optimum (or near op- 
timum) model in this stochastic sense are given in 
Table 4. 

Also shown in Table 4 ,  for comparison, are the 
results of the deterministic, constrained 'least squares' 
model optimisation carried out by Enting & Lassey 
(1993). As can be seen, there is some difference 
between the 2 sets of results. In part, however, this is 
due to the differences in default values used by the 2 
methods. For example, in the case of (pJpi, there is 
very little change between the default and optimal 
means in both cases; and for z,,,, the changes are of 
similar magnitude. The differences are more marked 
in the cases of (Sat3),, and o, which again emphasises 
our earlier conclusion that the model is somewhat 
questionable in its ability to model the minor isotopes 
of carbon. Comparison for the parameters (No)pi and PN 

?If the output distributions and parameters distributions are 
Gaussian, as found with these models. ANOVA tests can be 
carried out to discover any interactions between significant 
parameters. If any distribution is not Gaussian, interaction 
can only be surmised 
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Table 4. Comparison of the results of stochastic model optimisation (this paper) with deterministic 'least squares' optinlisation 
(Enting & Lassey 1993) for the Enting-Lassey model 

Parameter Units Constrained stochastic Constrained least squares 
model optimisation model optimisat~on 

Optimal meand Default mean Optimal mean Default mean 
- 

(PJp, PPmv 275 (270-295) 275 285.3 285 
(LIJ)pi YW -6 1 (< -6.2) -6 5 -6.41 -6.5 
=*m Y r  7.0 (6.5-8.5) 11 0 8.58 12 
o kg yr-l 3.0 (2.6-4.6; 5.9-6.1) 6.0 5.15 6 

(No)pl Gt C 2600 (2250-2800) 1750 b 1400 

PN Gt C yr.' 180 (85-105; 175-195) 100 b 100 

*Figures in parentheses show the ranges of values of parameter means whose probabilities were greater than 80% of the 
optimal value. bThese parameters were fixed during the deterministic model opt~rnisation 

is rather academic since these parameters are frozen at 
the a priori assumed values in the constrained optimi- 
sation. However, the comparatively large changes 
which lead to the optimal values in the unconstrained 
stochastic case considered here rather call into ques- 
tion Enting & Lassey's decision to constrain them. 

To summarise, the probability of acceptable behaviour 
in model version E29 is approximately doubled by ad- 
justing the means of the pdf's associated with several of 
the significant parameters. Moreover, to achieve this 
high level of probability, relatively large changes, of 
around 2 standard deviations (i.e. to the edge of the 95 % 
confidence interval), need to be made to certain of these 
parameters. Comparison of these results with those ob- 
tained using deterministic optinlisation reveal some sirn- 
ilarities, with the main differences being due to para- 
meters concerned with the minor isotopes. These results 
again serve to emphasise the possible shortcon~ings of 

Year 

Fig. 6. Evolution of stochastic uncertainty of atn~ospheric car- 
bon dioxide concentration of Enting-Lassey model version 
E29 forced by IPCC scenario IS92a. Dashed lines are  uncer- 
tainty bands (95% confidence limits) of the original sirnula- 
tion. Dot-dashed lines are the 95% confidence limits of the 
simulation with parametric and input uncertainties halved 
and constrained to the observed CO, level in 1990 [method 

(3) -see Sechon 4.51 

E29 in its modelling of I3C and 14C. It must be remem- 
bered, however, that the stochastic model optinlisation 
used here is still quite crude and so conclusions based on 
it are fairly speculative at this stage. 

5.5. Uncertainty in future projections of CO2 levels 

The final set of MCS results are obtained by extend- 
ing the time period of interest up to the year 2100 in 
order to provide data pertaining to the debate on 
anthropogenic climate change. Extra model inputs for 
fossil fuel and land-use changes during this time span 
are based on the IPCC scenario IS92a (IPCC 1992). It 
must be emphasised that version E29 is used with its 
original, a priori, pdf's, rather than either the optimised 
values discussed in the previous Section 5.4 or those of 
Enting & Lassey. This is in line with our previous con- 
centration on the a priori parameter values considered 
by scientists to be most appropriate from a purely 
physical standpoint, but it is also because the model 
incorporating the adjusted values has not been vali- 
dated against independent data. 

Fig. 6 shows the stochastic evolution of the atmos- 
pheric CO, concentration, p,, produced by E29 
between 1990 and 2100.' The dashed lines show the 
uncertainty (95% confidence limits) in the evolution, 
which grows steadily throughout the simulation period 
from 351 i 43 ppmv in 1990 to 664 +. 144 ppmv in 2100. 
Since the assumption of parametric independence is 

'In this study, it is assumed that there is an uncertainty of 
25% in converting a political scenario, such as IS92a, into 
yearly fossil fuel emissions and of 50 % in converting it into 
land-use change flux. However, the simulation was re- 
peated with zero uncertainty on these 2 inputs between 
1990 and 2100, and no significant reduction in the output 
uncertainty occurred 
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potentially controversial and may (but does not neces- 
sarily; see earlier discussion in Section 4) lead to over- 
estimation of this future uncertainty, the MCS was also 
carried out a further 3 times under different conditions: 
(1) with parametric and input uncertainties reduced by 
an arbitrary factor of two9; (2) with each realisation 
constrained to the uncertainty in the observed CO2 
level in 1990 (353 + 2 ppmv); and (3), with a combina- 
tion of both (1) and (2). Simulation (3), which grows 
from 353 * 2 ppmv in 1990 to 669 * 48 ppmv in 2100, is 
shown by the dot-dashed lines in Fig. 6. Of the three, 
this method naturally produces the output evolution 
with lowest level of uncertainty. 

Finally, in Table 5, the results of the above 4 stochas- 
tic simulations are compared with those from 3 deter- 
ministic modelling exercises, including those of IPCC 
(1995)1°. It is clear that the uncertainty produced by the 
MCS analysis is much larger than that arising from the 
deterministic methods; in particular, the level of output 
uncertainty generated by using the original parametric 
and input uncertainties is between 5 and 10 times 
larger. Even when we consider the stochastic simula- 
tion with the narrowest output uncertainty (method 3). 
which will probably attract the least criticism from 
global carbon cycle modellers, these bands are still 
50% wider than the widest of the deterministic results. 
It is likely that this difference would be larger still if the 
stochastic methodology was to be applied to a range of 
global carbon cycle models, as in the deterministic 
IPCC simulation studies. 

6. LIMITATIONS OF THE ANALYSIS 

Evaluating the effects of uncertainty on a fairly com- 
plex, deterministic simulation model is beset with 
many difficulties and it is important that the limitations 
of the analysis carried out in this paper should be taken 
fully into account when evaluating the results pre- 
sented in previous sections. In this regard, the follow- 
ing points should be noted. 

(1) In the absence of independent evidence to the 
contrary, the assumed probability distribution func- 

'A consequence of this is that the uncertainty (66'Yo confi- 
dence limits) of the pre-industrial level of CO2, (p,),, is thus 
reduced from 275 & 15 ppmv to 275 * 7.5 ppmv which is 
closer to the uncertainty discussed in Schimel et al. (1995)- 
a value published too late to be considered explicitly by this 
analysis 

''The uncertainty in each of the deterministic exercises is due 
to the following: Schimel et al. (1995), variation between dif- 
ferent models; Wigley & Raper (1992), variation in one 
model due to different assumptions about feedbacks; Enting 
& Lassey (1993), parameter uncertainty constrained by 
observations 

Table 5. Comparison of the uncertainty in future CO2 levels 
(in ppmv) due to IPCC scenario JS92a between 3 determinis- 
tic modelling exercises (Wigley & Raper 1992, Enting & 
Lassey 1993, Schimel et al. 1995) and the stochastic methods 

used in this paper 

Year Uncertainty in Source 
atmospheric CO2 
Range Extent 

2050 494 to 510 16 Sch~mel et a1 (1995)" 
520 to 550 30 Wigley & Raper (1992) 
491 * 86 172 This paper, orig. simulation 
487 * 44 88 This paper, method (1) 
497 * 37 74 This paper, method (2) 
494 r 22 44 This paper, method (3) 

2100 667 to 719 52 Schimel et al. (1995)d 
740 to 800 60 Wigley & Raper (1992) 
615 to 683 68 Enting & Lassey (1993) 
664 + 144 288 This paper. orig. simulation 
658 * 71 142 This paper, method (1) 
674 * 84 168 This paper, method (2) 
669 * 48 96 This paper, method (3)  

dThe results presented in this paper are derived from 
Enting et al. (1994) 

tions of the parameters and inputs are taken to be 
independent and Gaussian. These may well be flawed 
assumptions but it is difficult to use any others, given 
the possibility of circularity in selecting parametric val- 
ues, as mentioned in Section 4. If new information 
were to become available, modifications to the analysis 
would be required. The choice of the means and stan- 
dard deviations of the assumed probability distribution 
functions is also somewhat subjective; other re- 
searchers in this field may have rather different ideas 
of these values. If any of these possibilities are con- 
firmed, then it is likely that the uncertainty associated 
with the Monte Carlo realisations could be different to 
that obtained in the present study. 

(2) The definition of 'significance' associated with 
the MCS analysis is somewhat subjective; and again, 
other researchers may disagree with that used in the 
present paper 

(3) For convenience in the present initial study, the 
model response has only been studied at one point 
during a 225 yr period. This may be unrepresentative, 
and so it would be better to consider several different 
years during the simulation; or, ideally, to evaluate the 
stochastic response at every annual step. 

(4) Only 3 model variables have been considered as 
outputs; many more could be chosen and studied 
(including, perhaps, the model's eigenvalues); and 
such analysis may well yield other interesting results. 

(5) The GSA has suffered from the large difference 
between the uncertainty in the model results and that 
in the observations. We chose to handle this by increas- 
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ing the width of the uncertainty bands on the data; on 
the other hand, it might have been better to reduce the 
uncertainty levels on the parameters, given the rather 
subjective nature of their specification and the potential 
problems of scale mentioned above. Improvement in 
the GSA analysis might also be achieved by using a 
more robust method, such as the 'set-membership' 
technique of Keesman & van Straten (1990). 

We do not believe that these various limitations sen-  
ously affect the general conclusions derived from the 
analysis reported here, provided our caveats are  
heeded carefully. Neither do they lessen the useful- 
ness of the stochastic simulation approach, especially 
since the emphasis of most other studies in this area 
includes only deterministic sensitivity analysis, which 
is clearly less flexible and of more limited value than 
the stochastic alternative considered here. In many 
ways, our initial results are illustrative of what can be 
achieved by MCS/GSA analysis and a more detailed 
investigation of the EL and other global models is a 
logical next step, together with some refinement of the 
analysis in the light of the current results. 

7. DISCUSSION AND CONCLUSIONS 

With the advent of modern fast computers, MCS 
analysis now provides a simple and practical method 
for quantifying the effects of stochastic uncertainty in 
reasonably large and complex, nonlinear simulation 
models. The study of global carbon cycle modelling 
carried out in this paper has involved the application of 
such MCS analysis, and other methods of dynamic 
model evaluation, to scientifically acceptable models 
of global energy balance and the global carbon cycle 
(Parkinson 1995). A companion paper (Young et  al. 
1996) has concentrated on the methodological aspects 
of the study and its place within a framework of model 
building, which includes data-based modelling; while 
the present paper outlines the initial results obtained 
from the MCS studies, which have been concerned 
with the well known Enting-Lassey modified box-dif- 
fusion model of the global carbon cycle (Enting & 
Lassey 1993). 

Although the main aim of this research has been to 
suggest and investigate a general MCS approach to 
evaluating the effects of uncertainty in global carbon 
cycle models, the results obtained from its application 
to the EL model have also provided interesting addi- 
tional insight into the nature of this model and its 
potential utility in global climate studies. We have 
found that, whilst the EL model appears to simulate the 
movement of total carbon quite well using fixed para- 
meter values, it is characterised by a relatively high 
degree of inherent sensitivity to uncertainty in some of 

the parameter values. This tends to confirm the earlier 
results of Gardner & Trabalka (1985) using a different 
global carbon cycle model. 

In addi t~on,  the results of stochastic s~mulation pro- 
jections up to the year 2100 yield a much wider uncer- 
tainty range than those obtained from deterministic 
modelling exercises using the same input scenarios. 
Even when the parametric and input uncertainties a re  
reduced by a factor of 2 (to account for possible corre- 
lation between parameters, a s  discussed in Section 4)  
and the simulation is constrained to produce the 
observed CO2 level in 1990, the stochastic output 
uncertainty is still 50 % higher than the highest compa- 
rable estimate found using deterministic methods. 
While this level might be reduced if the EL model is 
constrained using the full CO2 history, it could be  
increased if the stochastic analysis were to be applied 
to other global carbon cycle models currently consid- 
ered realistic (and used to produce the uncertainty 
estimate in Schimel et al. 1995). We believe that these 
results should at least be taken into account when 
evaluating such projections for policy purposes. 

One reason why the EL model is sensitive to para- 
metric uncertainty a t  the levels used in our MCS analy- 
sis could be that the parameter values are  based on 
indirect observations a t  different scales to that on 
which the model is based-mainly local or regional 
field studies and/or laboratory measurements. It is cer- 
tainly not obvious that parameters obtained at  these 
smaller scales are  completely relevant to those used a t  
a much larger scale, as in global simulation studies, 
and this may lead to incorrect estimation of the uncer- 
tainties involved at this larger scale. This probably 
accounts, at  least in part, for the differences in the a 
priori assumed values for the parameters in the EL 
model and those obtained by model optimisation, 
whether deterministic (as in Enting & Lassey 1993) or 
stochastic (as in the present paper). We believe that 
this question of scale in global simulation modelling 
(or, indeed, in most other areas of environmental mod- 
elling) is most important, particularly with regard to 
the specification of parameter values. Certainly, it is 
deserving of much greater attention than it has 
received heretofore, given the importance of mecha- 
nistic simulation models in environmental research. 

In the paper, MCS has also been used to evaluate 
whether the addition of extra complexity to the model 
makes a statistically significant difference to the model 
response. In this case, all 5 of the modifications sug- 
gested by Enting & Lassey, and considered in the pre- 
sent study, affect at  least 1 of the outputs significantly, 
and so none a re  rejected a s  being redundant. On the 
other hand, it is important to note the results obtained 
when GSA is applied to the EL model version E29, 
whose response is closest to the observed CO2 levels. 
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These show that, from over 20 parameters, only a few 
appear to have a statistically significant effect on the 
model output, implying that a reduction in the uncer- 
tainty of these significant parameters should be a prior- 
ity for improving the stochastic nature and reljability of 
the EL model. In particular, since the significance of the 
pre-industrial level of atmospheric CO2 in the present 
EL model concurs with a similar result obtained by 
Gardner & Trabalka (1985) using a different global car- 
bon cycle model and a somewhat different type of sto- 
chastic sensitivity analysis, it is clear that this parameter 
is deserving of still greater attention in future studies. 

These GSA results suggest that, while the EL model 
is a quite complex, high order set of nonlinear differ- 
ential equations defined by a relatively large number 
of parameters, its dynamic behaviour is influenced 
mainly by a much smaller number of 'important' para- 
meters. In addition, all of the MCS ensemble responses 
generated in our study have approximately Gaussian 
amplitude distributions and, since the parametric and 
input uncertainties are also Gaussian, this indicates 
that the nonlinear elements of the model are not being 
excited to any great extent. Such simplifying conjec- 
tures are supported by the results obtained from the 
novel dominant mode analysis reported in Young et al. 
(1996), where the whole topic of reduced-order models 
and domlnant mode behaviour is discussed in greater 
detail. These results suggest that the model behaviour 
is characterised by only a small number of dominant, 
linear dynamic modes, and that much of the inherent 
complexity of the simulation, including nonlinearity, is 
having only a small effect on the main model outputs 
over the historic period, where the model has been 
optimised in relation to observational data. 

If they are confirmed by later, more detailed analy- 
ses, these model simplification results may have impor- 
tant implications for the interpretation of the long term 
predictions obtained from the EL and other similar 
models (e.g.  the prediction of the future atmospheric 
CO2 concentrations well into the next century). For 
instance, if the nonlinearities in the model have not 
been activated sufficiently over the historical period, as 
our results suggest, then the constrained optimisation 
results obtained by fitting the model to data over this 
same historical period cannot be considered com- 
pletely satisfactory in this regard. Consequently, any 
model predictions that are affected to any appreciable 
degree by these estimated nonlinearities must be seri- 
ously questioned before the predictions are utilised for 
other purposes. More generally, the implications of the 
uncertaint~es associated with all the parameters in the 
model, including those that are assumed known in the 
constrained optimisation exercises, must also be evalu- 
ated very carefully. In particular, their effect on the 
model predictions need.s to be acknowledged and 

investigated fully before the policy implications of the 
predictive results can be properly evaluated. 

Finally, it is important to stress that the above con- 
clusions are based only on a preliminary study of the 
EL model. A great deal more analysis could be per- 
formed, following discussion of these initial results 
with experts on global carbon cycle modelling. It is felt 
that such further studies are essential before any 
firmer conclusions can be reached. In this regard, we 
hope that the results presented in this paper will help 
to stimulate further research on the effects of uncer- 
tainty in global climate models. 

Appendix 1. Covanance matrices and probab~lity ellipsoids 

Consider 2 Gaussian distributions with the same mean 
vector a, = [ l 0  20jTbut the following, different, covariance 
matrices 

Since C, is diagonal, the parameter values drawn from this 
distribution are statistically independent; whereas in the 
case of CNl, the parameters are correlated because of the 
significant off-diagonal elements. In this case, by reducing 
the variances (i.e. the diagonal elements) in C, by a factor 
of 10, i t  is possible to approximately inscribe the resulting 
smaller probability ellipse (in this 2-parameter space) 
withln the ellipse defined by C, , ,  so reducing the uncer- 
tainty in the region of the mean values to levels which are 
comparable with those defined by CN/ in this same central 
region. 

In relat~on to the variance reduction exercises in the MCS 
analysis carried out in this paper, note the following com- 
ments: 

(1) If the variance reduction reasonably achieves its objec- 
tive, then the uncertainty injected into the system could be 
less than the actual, since parts of the 'true' hyper-ellip- 
soid are then not explored in the MCS analysis. In other 
words, the analysis in this situation might even be conser- 
vative and so underestimate the effects of uncertainty 
(see, for instance, the example in the main text where 
underestimation occurs even w~thout variance reduction) 

(2) Although the region explored by the MCS is smaller if 
the variances are reduced, this exploration is still carried 
out under the assumption that the parameters are inde- 
pendent, which could possibly amplify the effects of 
uncertainty in this smaller reglon. 

(3) The situation may well not be as bad as that in the sim- 
ple example above, where the off-diagonal elements in 
CNI have been selected so that the parameters are highly 
correlated and the matrix is very near to singularity (which 
occurs when these elements are set to about 1.2649 and 
the 2 parameters become linearly dependent). If the off- 
diagonal elements are chosen as unity rather than 1.25, for 
example, then the 2 distributions cover quite similar 
regions of th(? parameter space. Of course, comment (2) 
still applies in this situation, so that the level of irnprove- 
ment will be a function of the unknown covanances and so 
is difficult to assess. 
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