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Abstract
As the key step of anomaly detection for multivariate time-series (MTS)
data, learning the relations among different variables has been explored by
many approaches. However, most of the existing approaches do not con-
sider the heterogeneity between variables, that is, different types of variables
(continuous numerical variables, discrete categorical variables or hybrid vari-
ables) may have different and distinctive edge distributions. In this paper,
we propose a novel semi-supervised anomaly detection framework based on a
heterogeneous feature network (HFN) for MTS. Specifically, we first combine
the embedding similarity subgraph generated by sensor embedding and the
feature value similarity subgraph generated by sensor values to construct a
time-series heterogeneous graph, which fully utilizes the rich heterogeneous
mutual information among variables. Then, a prediction model containing
nodes and channel attentions is jointly optimized to obtain better time-series
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representations. This approach fuses the state-of-the-art technologies of het-
erogeneous graph structure learning (HGSL) and representation learning.
Experiments conducted on four sensor datasets from real-world applications
demonstrate that our approach detects the anomalies more accurately than
those baseline approaches, thus providing a basis for the rapid positioning of
anomalies.
Keywords: Heterogeneous neural network; Anomaly detection;
Multi-sensor data; Multivariate time series; Deep learning

1. Introduction1

As information technology develops, an increasing number of industrial2

systems are exposed to the internet, posing serious risks to their ability to3

operate securely [1]. Continuous monitoring the operation data of the system4

and precisely and effectively identifying potential attacks or the evolution of5

the equipment condition by using this data is an effective technique to handle6

these challenges [2]. For instance, an operation and maintenance personnel in7

a large power plant can quickly identify abnormal sensor behavior using the8

precise intrusion detection systems, which are developed by massive amounts9

of data collected by the supervisory control and data acquisition (SCADA)10

system [3], providing them a possibility to prevent potential system failures11

before irreversible damage. However, these monitoring data always have com-12

plicated structures, high dimensionality, and hard labeling, making manual13

tasks difficult to handle. Therefore, it is vitally necessary to investigate the14

semi-supervised or unsupervised time-series anomaly detection approach by15

utilizing a sizable amount of complicated unlabeled data.16

Recently, deep learning technique has been applied successfully in vari-17

ous anomaly detection problems [4, 5, 6]. For high-dimensional MTS analy-18

sis, the temporal relations between different timestamps are considered first19

[7]. Because of their capability of capturing long-term dependency relations,20

recurrent neural network [8] and temporal convolutional network [9] were21

demonstrated to achieve better results on the time-series tasks involving sin-22

gle or multiple variables [10]. However, various sensors could be mutually23

coupled. The capacity of these approaches to detect abnormalities may be24

constrained by their modeling of solely temporal variables. Therefore, it is25

crucial to take into account both the temporal features of different times-26

tamps and potential correlations among these variables [11, 12]. Combining27
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the sequential network and the convolution neural network (CNN) is an ef-28

fective way to achieve this. Cross-correlation among high-dimensional data29

can be extracted by using the local perception capacity of the convolutional30

kernel [13]. However, CNN is primarily used to handle Euclid-space data,31

such as image [14]. There exist some limitations on the MTS with different32

attributes. In such cases, the graph neural network (GNN) has been success-33

fully applied into the modelling of MTS due to its good structure modelling34

capability between complex data; the most advanced results are achieved in35

[11, 15].36

With regards to the latent feature modeling of time-series data, the vari-37

able attributes from the data are generally seen as homogeneous in the most38

existing papers; that is, the data types are treated without distinction, such39

as use of the variational autoencoders [16] and generative adversarial net-40

works [17]. These methods model complex distribution from large-scale high-41

dimensional datasets. After the training is finished by using the dataset from42

normal conditions, the similar generative data are viewed as normality, while43

the dissimilar data are viewed as anomalies. However, there are still fewer44

works considering the heterogeneity of time-series data, although this kind45

of data are abundant in practical situations. For instance, in a large-scale46

water processing system [17], the information, such as flow, pressure and liq-47

uid level collected by the sensors in the intermediate process, is collected as48

the numeric continuous values. However, the signals, such as valve state and49

location collected by the sensors of the actuator, are generally the categor-50

ical discrete values. Inputting the mixed type of heterogeneous data into a51

deep learning network may cause the useful information to be ignored and52

therefore satisfied results cannot be obtained. The fundamental reason is53

that there are totally different edge distributions between the variables with54

different types [18, 19].55

To overcome the limitation of deep learning model in such circumstances,56

we propose a heterogeneous feature learning network for MTS, and study its57

abnormal detection capability with the extensive real-world datasets. The58

overall framework can be divided into three stages: 1) Heterogeneous graph59

structure learning (HGSL) stage for MTS. We fuse the sensor embedding60

vector similarity matrix and the feature value similarity matrix of different61

variable categories to model the heterogeneous structural information. More-62

over, we propose a category-based fixed-length approach to replace the widely63

used meta-path [20] for extracting heterogeneous relation subgraphs. 2) Het-64

erogeneous representation learning stage for MTS. We embed different kinds65
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of variables into vectors for fusion. Distinct from the previous heterogeneous66

graph attention network [21], we further expand the channel attention on the67

basis of node attention and semantic attention, so as to achieve a joint opti-68

mization training of node embedding representation with different types. 3)69

Abnormal detection and location stage. By analyzing the deviation between70

the predicted and real values, we calculate a condition score for each sensor,71

where the largest condition score is considered as the maximum abnormal72

probability.73

The major contributions of the paper are summarized as follows:74

• We propose a novel HGSL approach for MTS, which learns heteroge-75

neous graph structure information between sensor-embedding vectors76

and category-based feature value vectors simultaneously.77

• We propose a heterogeneous feature network (HFN) and apply it to78

MTS anomaly detection. Our approach successfully learned the dy-79

namic dependency among different variables and timestamps by uti-80

lizing two single-level attention mechanisms, namely attention-based81

node embedding and channel aggregation.82

• The extensive experiments indicate that HFN can detect the anomalies83

from real-world MTS datasets and is proved to outperform the most84

existing methods. Besides, we analyze the condition scores of MTS,85

demonstrating that the proposed method has the advantage of locating86

the anomalies.87

The rest of this paper is structured as follows. Section 1 describes the88

related work of MTS anomaly detection. Section 2 presents the structure89

and working principle of HFN-based MTS anomaly detection framework in90

detail. Section 3 show the performance of proposed method on three real-91

world MTS datasets. Finally, the conclusion and future improvements are92

given in Section 4.93

2. Related work94

MTS anomaly detection has extensive application prospects in the fields95

of industry, financial business, and the Internet of Things. As the key research96

problem in this paper, we firstly review the related work for MTS anomaly97

detection, which can generally be categorized as unsupervised, supervised,98
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and semi-supervised. We focus on studying data heterogeneity modeling of99

MTS, especially heterogeneity representation learning from time-series data,100

graph structure learning, and heterogeneous graph neural network.101

2.1. MTS anomaly detection102

MTS anomaly detection is typically regarded as an unsupervised learning103

problem [22], and algorithms based on clustering [23], such as fuzzy c-means104

[24], or spatiotemporal clustering [25], are frequently used. By grouping105

time-series data into various clusters, these techniques can identify anoma-106

lies by calculating the similarity or distance between the observed value [26]107

and the cluster center [27]. However, unsupervised detection methods usu-108

ally focus more on static data model development. In contrast, a supervised109

abnormal detection algorithm has a higher detection accuracy. Under the110

circumstance of high-quality labeling, the indicator accuracy can be approx-111

imate to 100% [28]. However, the supervised detection requires that the112

training set contains correctly both labeled positive and negative samples,113

which is often not easy. [29]. Fortunately, in the actual cases, we have a114

chance to obtain a large quantity of data under the normal conditions [17],115

making the semi-supervised abnormal detection attract wide attentions [30].116

In the latest work, Miryam et al. [31] proposes the methods to show the117

great advantages and extensive application prospects of the semi-supervised118

algorithm in MTS abnormal detection.119

2.2. Modeling for heterogeneous data120

The data heterogeneity has been widely concerned such as in the music121

recommendation system [32], academic network [33] and social platform [34].122

The heterogeneous learning method usually focuses on capturing and inte-123

grating couplings with multiple variable types at the same or different levels.124

To learn the embedding representation of heterogeneous data, the matrix de-125

composition method is traditionally adopted [35, 36]. However, it is usually126

very expensive and low-efficient in terms of the computation cost of decom-127

posing a large-scale matrix [37]. Moreover, the discretization of continuous128

features [38] or continuous data [39] are also a typical method; however this129

transformation may ignore the correlation between variables. To solve these130

challenges, heterogeneous graph embedding or heterogeneous graph repre-131

sentation learning [40] has been widely studied. Its main goal is to map the132

input data into low-dimensional space while simultaneously preserving the133

heterogeneous structure and semantic characteristics of the data [41]. For134
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instance, for the tasks of text classification, Wang et al. [21] proposed a het-135

erogeneous graph attention network (HAN), which aggregates the features136

of meta-path based neighbors through a hierarchical manner to generate the137

embedding representation of nodes. Fu et al. [42] proposed a meta-path ag-138

gregated graph neural network (MAGNN) by designing multiple candidate139

encoder functions to extract heterogeneous information from the meta-path.140

Wang et al. [43] combined the heterogeneous graph neural network with com-141

parison learning, and proposed a self-supervised heterogeneous graph neural142

network from both heterogeneous network and meta-path for learning node143

embedding representation. In the social or citation network, in order to cap-144

ture the dynamic performances of heterogeneous redgraphs, Hu et al. [44]145

proposed a heterogeneous graph transformer (HGT) by introducing a relative146

temporal encoding technique for solving the problem where the dynamic re-147

sult dependence is difficult to capture. Yang et al. [45] proposed a dynamic148

heterogeneous graph (DyHAN) utilizing structural heterogeneity and time149

revolution to learn node embedding. In addition, contrastive self-supervised150

learning has been widely employed to address the limitation of sparse la-151

bel information in the potential ability of heterogeneous graph neural net-152

work models for representation learning. For instance, the HGCL method153

proposed by Chen et al.[46] effectively utilizes the structural information154

of heterogeneous graphs to capture relationships between different types of155

nodes. Zhu et al.[47] combine heterogeneous graph contrastive learning with156

a structure-enhancement method, proposing the STENCIL method. This157

approach introduces a novel multi-view contrastive aggregation objective to158

adaptively distill information from each view. Furthermore, the method en-159

riches the local structural patterns of the underlying heterogeneous graph to160

better explore true and challenging negative examples in graph contrastive161

learning.Although the above methods have achieved significant success in162

their respective application domains, leveraging the structure of heteroge-163

neous graphs to enhance data representation capabilities and demonstrating164

outstanding performance through representation learning methods, their ap-165

plicability may be subject to domain specificity and might not necessarily be166

suitable for other areas such as multivariate time series anomaly detection.167

2.3. Graph structure learning168

MTS usually exists in the form of tabular data [48], lacking of predefined169

graph structure required for graph neural network [15], which constitutes the170

challenge for the modelling [49]. Hence, it is extremely vital to learn the links171
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between edges and refine the graph from the existing time-series data [50].172

The existing methods can mainly be divided into three categories: metric-173

based approaches usually implemented by using kernel function [51, 52], co-174

sine similarity [53, 54] or inner product [55] to calculate the similarity between175

nodes as edge weights. Neural networks-based approaches have generally uti-176

lized a complex deep neural network to model the edge weights of the given177

node features and representations. For instance, Luo et al. [56] proposed178

a multilayer perception-based graph structure optimization approach, where179

the edge number of a sparse graph is punished through parameterized net-180

work for pruning the edges that are unrelated to the tasks. Zhao et al. [11]181

proposed a graph structure learning approach with redan attention coeffi-182

cient, while Sun et al. [57] utilized a dot-product self-attention to model the183

dynamic connection relations between the nodes. Direct learning approaches,184

regarding adjacent matrix as a learnable parameter, make associative learn-185

ing together with the follow-up tasks for optimization. For instance, Gao et186

al. [58] proposed the graph learning neural networks (GLNNs) utilizing spec-187

tral graph theory for graph learning. However, these approaches mostly aim188

at learning isomorphic graph structure. To enable capture the heterogene-189

ity between the data efficiently, Zhao et al. [41] proposed a heterogeneous190

graph learning approach utilizing the fusion of feature similarity sub-graph,191

feature propagation graph and semantic graph, which successfully learns an192

appropriate graph structure for a heterogeneous graph neural network.193

3. Proposed Frameworks194

3.1. Problem statement195

Generally, we define heterogeneous MTS dataset as a time-series dataset196

with L variables, N different types of sensors, and T length, which is ex-197

pressed as X =
{
xN
1:T

}
, where N ∈ {type1, · · · , typen} denotes the set of data198

types. Note that the variable number contained in the specified categories199

may be larger than 1. For instance, for arbitrary data type typen, all time se-200

ries at the moment t can be denoted as xtypen

t ∈ {xtypeni
t , for i ∈ {0, · · · , d}},201

where d represents the number of time-series sequence in this category. In202

this paper, we adopt the sliding window-based model training approach. At203

the moment t, we sample a continuous subsequence with the length of ω as204

the model input, denoted as SN (t) =
[
xN
t−w+1, · · ·xN

t

]
. For the abnormal205

detection task, our target is to predict the value of all sensors xN
t+1 at the206
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moment t+ 1 by utilizing the input subsequence SN (t), and obtain the pre-207

dicted value x̂N
t+1. The mean square error (MSE) between the predicted208

value and practical value is used as loss to optimize the model. According209

to the usual semi-supervised abnormal detection methods, in the training210

stage, only the data collected from normal conditions are chosen. However,211

in the testing stage, the deviation between the predicted value and practical212

value is further used for calculating the condition scores of the data, while213

the scores of the corresponding data over the threshold are judged as the214

anomalies, otherwise normal.215

Specially, we divide time-series data into three data types, that is N ∈216

{C,CD,D}:217

• Continuous numerical variables C, where the value of data are taken218

from continuous real number, such as xCi
t ∈ R.219

• Discrete categorical variables D, where the value of data are taken from220

a limited set of values, such as xDi
t ∈ {0, 1, 2}.221

• Hybrid variables SCD
t which contain both numerical and categorical222

variables where the values of the element are taken from the above two223

categories.224

We construct a heterogeneous dynamic graph to model the above MTS.225

Different time-series variables are viewed as the node in the graph, while their226

connection relation is seen as the edge. This dynamic graph can be denoted as227

GSN (t) = (V , E), where V and E represent node and edge set respectively. We228

respectively extract categorical feature subgraph GSD(t), numerical feature229

subgraph GSC(t) , and categorical and numerical mixed subgraph GSCD(t) for230

learning heterogeneous information. For the arbitrary subgraph, its adjacent231

matrix is AN ∈ R|VN |×|VN |, where VN represents the node set with the specific232

type. If there exist connection relations between two arbitrary nodes in the233

subgraph, the corresponding element of adjacent matrix is 1. Noted that the234

final node embedding integrates the node embedding representations of three235

different subgraphs.236

3.2. Model Architecture237

Our HFN-based approach aims at learning the complex correlation be-238

tween different types of time-series data carried by the defined dynamic graph239
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Figure 1: Architecture of HFN-based MTS anomaly detection framework.

above. For each node, the potential temporal correlation is allowed to be240

considered with a sliding window along the dataset.241

Figure 1 shows the proposed HFN-based semi-supervised abnormal de-242

tection framework architecture. It can be seen that for a given MTS, we243

firstly learn a heterogeneous dynamic graph representing the structural in-244

formation between different variables (as shown in Figure 2), decomposing245

the time-series data into different graph structures. On this basis, the cat-246

egorical feature subgraph, the continuous numerical feature subgraph and247

the hybrid subgraph are extracted and then inputted into the HFN network248

based on graph attention function to learn the potential embedding repre-249

sentations of each sensor (as shown in Figure 3). Then we predict the future250

values of each sensor based on these embedding representations. Finally, the251

deviation between the predicted and practical values is used for measuring252

and locating the anomalies.253

3.3. Graph structure learning pipeline254

To learn the complex heterogeneous potential features between different255

types of sensors, a key process is how to map the variable correlation from256

MTS into the adjacent matrix of the graph. In the previous studies, all257

assumed that the constructed graph is the static isomorphic graph, thus re-258

sulting in the loss of some key information. For instance, the significance259

of variables exists great difference at the operating condition of full-load260

and partial-load of generating equipment [59]. Hence, as shown in Figure 2,261

we learn the potential heterogeneous graph structure of MTS from the per-262

spectives of global semantic correlation and local feature correlation. For263

the global semantic correlation, we introduce a learnable embedding vector264
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Figure 2: Structure learning of MTS heterogeneous dynamic graph.

for each variable, and denote it as ei ∈ R1×ω′ . For i ∈ {0, · · · , L}, where265

ω′ represents the dimension of embedding vector. This vector can be learned266

together with subsequent prediction network parameters. For the local fea-267

ture correlation, we calculate the potential structural information based on268

the feature values of the variables. We adopt a special mapping network269

to project different types of input feature vector SN (t) into a public space.270

Taking data type C as an example, the projected feature of the arbitrary271

variable xCi is denoted as fCi ∈ R1×ω′ :272

fCi = SELU
(
xCi •WC + bC

)
(1)

where xCi∈R1×ω is the subset of all continuous numerical variables. ω is273

the time length of input feature vector. WC∈Rω×ω
′

is learnable weight ma-274

trix, and bC∈R1×ω
′

is biasing. Similarly, we can calculate and obtain the275

projected feature representation fDi of the discrete categorical variables.276

3.4. Similarity Graphs277

The main task of graph structure learning is to learn an adjacent matrix278

representing the mutual connection between nodes in the graph. There-279

fore, we propose a learning approach based on aggregating cosine similar-280

ity. According to the embedding for the variables and the mapping of281

variable feature vectors, we obtain the global semantic embedding matrix282
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E∈{e1,· · ·eL} and local feature vector representation matrix FN∈{fN1 ,· · ·,fNL}.283

Clearly, these obtained matrices from different perspectives contain differ-284

ent information. Specifically, we first calculate cosine similarity between the285

elements in different matrixes to obtain their connection information. After286

obtaining the node embedding (NE) similarity matrix MEs∈RL×Land node287

feature (NF) similarity matrix MFs∈RL×L, we fuse them to obtain an aggre-288

gating similarity matrix, where the value represents the similarity between289

the arbitrary two nodes i and j and can be calculated as follows:290

MEs [i, j] =
ei • ej
ei × ej

(2)

MFs [i, j] =
fNi • fNj

fNi × fNj
(3)

MAs = MEs ◦W Es +MFs ◦W Fs (4)
where ◦ denotes Hadamard product between two matrixes. W Es∈RL×L291

and W Fs∈RL×L are learnable weight matrixes, which weigh the importance292

of different dimensions of the different similarity matrixes. In MAs , when293

the correlation coefficient is larger than a certain threshold, we consider that294

there exists a connected relation between nodes; otherwise, the connected295

relation does not exist. To obtain the optimal threshold, we define a learn-296

able parameter τ∈R for automatic choice, and obtain the adjacent matrix of297

aggregating similarity graph through learning, which is denoted as:298

Aij =

{
1 for MAs [i, j] ≥ τ
0 for MAs [i, j] < τ

(5)

In the heterogeneous dynamic graph, two objects can be connected through299

different semantic paths, which is called meta-path. However, the selec-300

tion of meta-path has a strong subjective meaning, which is difficult for301

complex MTS. Therefore, we propose a classifying-based fixed-length sam-302

pled method to replace meta-path for extracting heterogeneous relation sub-303

graphs. Specifically, we divide the aggregating similarity graph into the cor-304

responding classifying subgraphs, including discrete feature subgraph (DFS)305

GSD(t), continuous feature subgraph (CFS) GSC(t) and hybrid feature sub-306

graph (HFS) GSCD(t) according to data types. We further make a random307

mask operation for the neighboring matrix of the subgraph and obtain the308
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final neighboring matrix with different relations. The transformed heteroge-309

neous graph structure is A′
={AD, AC , ACD}. The random mask is conducive310

to exchange information between different similarity matrixes in the graph311

structure learning process, thus improving the accuracy of subsequent tasks312

and relieving the overfitting problem.313

3.5. Graph representation learning for MTS314

It can be seen from the learned heterogeneous graph structure that each315

type of subgraph contains different semantic properties. Hence, to aggregate316

the node information from different types, we introduce a graph attention-317

based node embedding network and an attention-based channel aggregating318

network to construct the HFN for MTS. The structure is shown in Figure 3.319

Specifically, the obtained three subgraphs AD, AC , ACD learned by graph320

structure learning are inputted into three independent graph attention net-321

works, to learn the importance of different types of nodes for the neighbors322

in the subgraphs. Moreover, the important neighboring information is aggre-323

gated to generate a new node embedding. As shown in Figure 3, taking the324

continuous numerical variable channel as an example, for the arbitrary node325

vCi and its neighboring node vCj in subgraph AC , we perform self-attention in326

the nodes. The attention coefficient representing their relation importance327

can be calculated as:328

ξij=att
(
W fCi ,W fCj ;AC

)
(6)

where fCi∈R1×ω
′

and fCj∈R1×ω
′

are mapped node feature vectors, W∈Rω
′′×ω

′
is329

shared weight matrix. ω
′ and ω

′′ are the calculated node feature vector di-330

mensions before and after the embedding. After obtaining the importance331

of subgraph-based node pairs, we normalize them via the SoftMax function332

and obtain weight coefficient αij:333

αij=softmax (σij)=
exp

(
δ
(−→a T [

W fCi ||W fCj
]))

∑
η∈NC

i
exp

(
δ
(−→a T [

W fCi ||W fCη
])) (7)

where δ is the activation function, and LeakyReLU function is usually334

adopted [55]. −→a ∈R2ω
′′

is the learnable weight vector, which denotes the335

information concatenation of the two nodes. Finally, the output of each336

node can be obtained through aggregating its neighboring nodes. Multi-337

head attention mechanism is proven to be beneficial in the learning process338
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of stabilizing self-attention [60]. To be convenient for training, we perform an339

average operation to aggregate the results handled by multi-head attention.340

After the graph attention-based nodes embed into the network, the implicit341

vector can be represented as:342

h
′C
i =σ

 1

H

H∑
h=1

∑
j∈NC

i

αh
ijW

hfCj

 (8)

where NC
i is the set of nodes i’s neighbors in the continuous subgraph. H denotes343

the number of multi-head attention mechanism head. According to the same344

computation method, we can obtain the node implicit vectors of discrete345

subgraph and mixed subgraph represented by h
′D
i and h

′CD
i .346

To address the node semantic importance of different types in the hetero-347

geneous graph, we put forward an attention-based multi-channel node em-348

bedding aggregating network. We can clearly see from Figure 3 that the node349

implicit vectors h
′C and h

′D singly from a continuous channel and discrete350

channel first are concatenated in feature dimension to obtain the global node351

implicit vector h
′′DC . The main purpose is to achieve the joint embedding352

representation learning of all nodes simultaneously. Then h
′′DC and the node353

implicit vector h
′CD from the mixed channel are sent to the multi-channel354

node embedding aggregating network for aggregating their heterogeneous355
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information. The aggregating network automatically learns the importance356

degree β of the embedding vectors between different channel node implicit357

vectors, which can be explained as the contribution of the node correlation358

due to the different types of variables. The final embedding vector is com-359

puted as follows:360

h=β
(
h

′C ||h′D
)
+(1−β)h

′CD (9)

where β∈R is a learnable parameter representing the importance degree361

of the embedding vectors between different channel node implicit vectors,362

and || is a concatenation operation.363

3.6. Prediction-based anomaly detection pipeline364

From the above node heterogeneous feature learning network, we obtain365

new embedding representations of all nodes. Finally, as shown in Figure 3,366

we input the embedding data fused with h and embedding vector E into the367

MLP layer to have the predicted value x̂N
t of all sensors at the moment t:368

x̂N
t =SeLU (f (h⊕E)) (10)

where f (·) is multiple layers of MLP output layer. SeLU is activation369

function, and ⊕ is addition operation.370

At the training stage, we adopt MSE as the loss function of the model:371

Lmse=
1

L

L∑
i

(
xN
t −x̂N

t

)2

(11)

After the training is finished, we apply the network to perform real-time372

abnormal detection tasks. By comparing the predicted and original values of373

the input, we calculate the condition scores of each sample in time-series data.374

We define the difference between the original value and predicted value as375

the condition scores. To eliminate the effect of different variable dimensions,376

we normalize the condition scores. Finally, the condition score is computed377

as follows:378

Scorei=

∣∣∣xNi
t −x̂Ni

t

∣∣∣−IQRi

µi+1
(12)

where IQRi denotes an interquartile range of the predicted value of the379

ith variable, µi is its median. To achieve the anomaly positioning, we take380

14



the largest value of Scorei as the condition score of overall record data at381

the moment t, as denoted by Score=max (Scorei). Finally, if the Score is382

larger than the threshold, this record is judged as an anomaly. However,383

because the threshold selection refers to complicated domain knowledge and384

the selection methods are various depending on the applications [61], this385

paper will not further explore the selection method for the threshold. The386

experiment in the subsequent section will report the optimal value of each387

evaluating metric (see details in Section 3.3).388

3.7. Training389

Following the application of the components introduced in the preceding390

sections, predictions for multivariate time series can be acquired. The fun-391

damental concept of our approach centers on maximizing the utilization of392

diverse sensor data types within the time series, enhancing prediction accu-393

racy, and identifying anomalies based on prediction errors. To accomplish394

this, we collaboratively optimize a heterogeneous feature network across mul-395

tiple channels to update the parameters of the entire network. Throughout396

the training process, the comprehensive forward propagation procedure is397

delineated in Algorithm 1.398

Algorithm 1 HFN training procedure
Input: Heterogeneous multivariate time series training dataset SN (t− 1) =[

xN
t−w, · · ·xN

t−1

]
, Batch Size B,Number of Epochs E

Output: Predicted values x̂N
t

1: for epoch=1:E do
2: Calculate the projected feature fCi and node embedding vector ei;
3: Calculate similarity matrix MEs , MFs and MAs with Eq. (2),Eq. (3)

and Eq. (4);
4: Calculate adjacent matrix AN with Eq. (5);
5: Extract subgraph features to obtain the node implicit vectors

h
′C
i ,h′D

i and h
′CD
i with Eq. (8);

6: Calculate the final embedding vector hwith Eq. (9);
7: Calculate the predicted value x̂N

t with Eq. (10);
8: Calculate the loss Lmse with Eq. (11);
9: Update parameters.

10: end for
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Table 1: Statistics of the datasets.

Items SWaT WADI WTD
Time series

(C/D)
51 (25/26) 123 (68/55) 37(31/6)

Training dataset 496800 784571 1000000
Testing dataset 449919 172803 940000
Anomaly Rate

(%)
11.97% 5.99% 20.64%

Sampling Rate 1Hz 1Hz 1Hz

4. Experiments399

We employ extensive experiments on two open and one private real-world400

datasets to answer the following research questions: (1) Whether the pro-401

posed model is more optimal than the baseline models? (2) How each com-402

ponent of the model affects the model? (3) How the proposed approach403

detects anomalies? (4) How the detection results locate anomalies?404

4.1. Benchmark datasets405

The selected three datasets contain two datasets (SWaT and WADI)406

based on water treatment simulator testbed and a real-world dataset from a407

large-scale wind farm (WTD). The statistical data of the datasets are given408

in Table 1:409

Secure Water Treatment (SWaT) Dataset [62]. This dataset was410

collected from a six-stage Secure Water Treatment (SWaT) testbed. SWaT411

represents a scaled-down version of a real-world industrial water treatment412

plant. It took 11 days for the data collection process, which ran with nor-413

mal operation mode during the first seven days, and constituted a training414

dataset. During the later four days, the testbed was implemented by inter-415

mittent network and physical attacks, which constituted the labeled testing416

dataset. The data were collected once every second, containing 51 time-417

series features, including 25 continuous features and 26 discrete categorical418

features. We chose this dataset for case study, and the primary sensors or419

actuators involved are shown in the Table 2 below.420

Water Distribution (WADI) Dataset [63]. This dataset was collected421

from a water distribution testbed (WADI). It took 16 days for the data422
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Table 2: Statistics of the datasets.

No. Name Type Description
1 FIT-401 Sensor (continuous) Flow transmitter to control the UV

dechlorinator.
2 UV-401 Actuator (discrete) Dechlorinator to remove the chlorine

from water.
3 FIT-504 Sensor (continuous) Flow meter, a RO re-circulation flow

meter.
4 P-501 Actuator (discrete) Pump to pump the dechlorinated

water to RO.
5 LIT-401 Sensor (continuous) Level transmitter to regulate the RO

feed water tank level.
6 LIT-101 Sensor (continuous) Level transmitter to regulate the raw

water tank level.
7 FIT-601 Sensor (continuous) Flow meter a UF backwash flow

meter.
8 AIT-504 Sensor (continuous) RO permeate conductivity analyzer

to measure the NaCl level.
9 AIT-201 Sensor (continuous) Conductivity analyzer to measure

the NaCl level.
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collection process. During the last two days, the attack was launched to the423

testbed with different intentions and time intervals, and the duration of the424

attack lasted between 1.5 to 30 minutes to acquire the abnormal operating425

data. The data were collected once every second, containing 123 time-series426

features, including 68 continuous features and 55 categorical features.427

Wind Turbine Dataset (WTD). This dataset was collected from a428

large-scale wind farm [64]. It lasted 1 to 2 years for the data collection429

process. At the training stage, there are no abnormal operating data since430

only the time-based maintenance process was arranged for the wind turbines,431

while at the testing stage, the abnormal operating data were detected in the432

repairing process. All data have been labeled by the experts. The data were433

collected once every 10 minutes, containing 37 time-series features, including434

31 continuous features and 6 categorical features.435

It is noteworthy that in this paper, the time scales of the time series436

datasets are uniform, with all datasets adhering to a fixed time scale of437

1 second. However, it is crucial to recognize that the time scale, or the438

sampling rate of the data, can impact the identification results in time series439

analysis. The uniformity in time scales across the datasets employed in the440

paper ensures the effective facilitation of direct comparisons between different441

methods.442

4.2. Baseline models443

We first compare the FHN model with the most advanced approaches in-444

cluding LSTM-VAE [65], USAD [66], MAD-GAN [17], graph network based445

MTAD-GAT [11] and GDN [54]. These approaches are extensively concerned446

with the cross-time and cross-sequence correlation of MTS. The approaches447

based on sequence reconstruction or prediction are used to learn the repre-448

sentations of the whole time series. Moreover, the anomalies are judged by449

the reconstructing or predicting errors.450

Furthermore, we compare the proposed approach with those classic shal-451

low anomaly detection approaches, including PCA [67], Isolation Forest (IF)452

[68] and LightGBM [69]. These shallow detection methods are regarded as453

the relatively direct abnormal detection methods, which usually can directly454

locate the outlier. Moreover, to complete the anomaly detection in tempo-455

rally related contexts has also attracted the interests of the researchers, such456

as LSTM-NDT [1]. The idea underlying this method is to model the tem-457

poral features of the data, predict the corresponding values, and then judge458
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whether the anomalies occur by comparing the deviation between the real459

value and the predicted value.460

In addition, we also conducted comparisons with the latest methods461

based on transformer and spatiotemporal graph approaches. These include:462

TranAD [70], an anomaly detection and diagnostic model based on deep463

transformer networks. It employs attention-based sequence encoders for464

rapid inference, possessing knowledge of broader temporal trends in the data;465

FuSAGNet [71], which combines sparse autoencoder and graph neural net-466

work. The latter predicts future time series behavior from sparse latent467

representations learned by the former, along with graph structures learned468

through recurrent feature embedding; MAD-SGCN [72], which effectively469

captures the spatiotemporal correlations of input sequences using long short-470

term memory networks (LSTMs) and spectral-based graph convolutional net-471

works (GCNs).472

4.3. Evaluation473

4.3.1. Metrics474

We select precision, recall and F1 as the evaluating metrics of the model,475

where Precision = TP
TP+FP

, Recall = TP
TP+FN

,F1 = 2×Precision×Recall
Precision+Recall

. TP ,476

FP and FN refer to true positives, false positives, and false negatives, re-477

spectively. These metrics are required to be obtained with a certain thresh-478

old. Hence, due to the different threshold selection methods among different479

tasks, there exist large differences in the metric values. Therefore, to avoid480

introducing additional hyperparameters, we report the evaluation metrics481

values when the optimal F1 value is obtained. The threshold value is deter-482

mined by traversing between the maximum and the minimum scores of the483

testing dataset.484

We calculate the condition scores that decide the abnormal degree of485

the overall dataset based on eq. (12). Noted that in unsupervised anomaly486

detection for MTS (USAD) [66] and temporal hierarchical one-class network487

(THOC) [73], the authors applied a specific evaluation method, called point488

adjust, making F1 value higher and close to 1. It has been proved that489

the capability of the model may be highly evaluated [74]. Hence, for the490

comparison, we apply the open-source code of USAD, and utilize the same491

parameters of the model in this paper to calculate the performance metrics492

without adjustment.493
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4.3.2. Setup494

We use Pytorch to achieve the HFN and its variants. Moreover, the model495

is trained on a server with Intel(R) Xeon(R) Gold 5218R CPU @ 2.1GHz and496

NVIDIA GeForce RTX 3090 graphics cards. We select Adam optimizer to497

train the model. Meanwhile, we adopt early stopping to relieve overfitting.498

The maximum training epoch is set to be 100. If the loss is less than 0.0001499

after 10 epochs, the training stops automatically and the optimal model is500

saved.501

The proposed HFN method and the compared baseline models have502

strived to maintain a similar level of complexity in parameter settings, en-503

suring a fair comparison. For classical anomaly detection models, including504

PCA and Isolation Forest, we have maintained the parameter settings at a505

relatively standard level. The ’contamination’ parameter for PCA has been506

set to 0.05. In Isolation Forest, we opted for 100 isolation trees, each trained507

using all features. In LightGBM, the ’num_boost_round’ parameter has508

been set to 1000 to ensure the model has a sufficient number of epochs for509

training.510

Regarding deep learning models, in LSTM-NDT, we employed a 4-layer511

LSTM network, with each layer having 128 hidden nodes. Similarly, in512

LSTM-VAE, a 4-layer LSTM network was used with 128 nodes in each hid-513

den layer and a latent space dimension of 32. The parameter settings for the514

DAGMM model align with those specified by the authors in the open-source515

code, utilizing a Gaussian Mixture Model composed of four individual Gaus-516

sian models. For the USAD model, a window length of 15 and a latent space517

dimension of 40 were set. In the MTAD-GAT model, a convolutional kernel518

size of 7 was chosen, and the hidden dimensions for the temporal and spatial519

graph attention networks were set to 150. The prediction and reconstruction520

networks comprise a 4-layer GRU network. The GDN model has a hidden521

layer dimension of 128, an output layer with 64 hidden nodes, and a graph522

network with 4 layers.523

Finally, for the proposed HFN method, we selected a structure with a524

hidden layer dimension of 64 and 4 layers in the graph network to ensure con-525

sistency with other deep learning models. This configuration aims to provide526

each model with similar capabilities in learning data representations, facili-527

tating a more equitable evaluation of their performance in anomaly detection528

tasks.529
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Table 3: Precision, recall and F1 values of HFN and all baseline methods on different
datasets.

Model SWaT WADI WTD
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

PCA 0.249 0.216 0.230 0.395 0.056 0.100 0.160 0.513 0.244
IF 0.951 0.588 0.727 0.299 0.158 0.207 0.278 0.953 0.430
LightGBM 0.783 0.666 0.719 0.989 0.153 0.270 0.237 0.602 0.340
LSTM-NDT 0.982 0.688 0.809 0.758 0.328 0.457 0.365 0.736 0.497
LSTM-VAE 0.962 0.599 0.740 0.878 0.145 0.250 0.165 0.550 0.254
DAGMM 0.470 0.666 0.551 0.544 0.267 0.360 0.164 0.242 0.195
OmniAnomaly 0.983 0.650 0.782 0.995 0.130 0.230 - - -
USAD 0.985 0.661 0.792 0.995 0.132 0.233 0.157 0.417 0.228
MAD-GAN 0.990 0.637 0.770 0.414 0.339 0.370 - - -
MTAD-GAT 0.991 0.633 0.772 0.988 0.153 0.265 0.128 0.397 0.193
GDN 0.994 0.681 0.810 0.975 0.402 0.570 0.385 0.937 0.546
TranAD 0.976 0.699 0.815 0.353 0.829 0.495 0.305 0.715 0.428
FuSAGNet 0.988 0.726 0.837 0.830 0.479 0.607 - - -
MAD-SGCN 0.986 0.690 0.823 0.564 0.399 0.552 0.416 0.688 0.518
HFN 0.973 0.758 0.852 0.827 0.413 0.551 0.505 0.837 0.630
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4.4. Experimental analysis530

The optimal metric values are shown in bold in Table 3. For the datasets531

SWaT and WADI, we refer to the results in USAD [66] and graph deviation532

network (GDN) [54]. For WTD dataset, to guarantee the objectivity of the533

results, we only report the metrics from the obtained open code approaches.534

4.4.1. Performance comparison of anomaly detection535

To demonstrate the performance of the proposed model, we evaluated536

the precision, recall, and F1 of all methods on the test set. We can ob-537

serve from Table 3 that HFN shows a good abnormal detection capability538

with remarkable performance improvements on SWaT and WTD. The im-539

provement range of the proposed approach is 5% to 14%, as compared with540

the optimal baseline models. The optimal baseline GDN outperforms our541

approach in terms of F1; however, our approach has a more optimal re-542

call rate. It is acceptable in real scenarios because we hope to detect more543

anomalies. In short, HFN outperforms the selected baselines in terms of544

the overall performances, because it not only concerns with the traditional545

spatial-temporal correlation, but also obtains its heterogeneous attributes546

from different types of data, making the model more robust. Moreover, we547

observe that prediction-based algorithms such as HFN, GDN and LSTM-548

NDT outperform the reconstruction-based algorithms such as LSTM-VAE549

and USAD on these datasets, indicating that the prediction-based models550

have an advantage in the streaming abnormal detection tasks with a single-551

timestamp value as the target. The temporal information is also very vital552

in the tasks for MTS abnormal detection. The results of LSTM-NDT show553

that HFN outperforms all baselines except GDN. The PCA result is dissat-554

isfactory, because it gives more attentions to the point anomalies without555

spatial-temporal correlation being considered.556

Specifically, among these abnormal detection approaches, GDN, MTAD-557

GAT and HFN adopt the graph attention network to capture the tem-558

poral and feature correlations. Therefore, these types of models achieve559

good results on all datasets. GDN approach recodes multidimensional data560

at each moment, and utilizes its strong structural learning capability of561

graph attention network to learn coupling relations between different sensors.562

However, it does not consider the heterogeneity of data. MTAD-GAT ap-563

proach also captures time-dimension information through an attention mech-564

anism. Although it considers the spatial-temporal correlation of MTS, it565

requires a configuration of hyper-parameters for fusing the prediction-based566
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and reconstruction-based condition scores, leading to the evident differences567

in results when this approach is applied to different datasets. Compared to568

the recently introduced transformer-based TranAD, as well as the spatial-569

temporal graph networks FuSAGNet and MAD-SGCN, HFN continues to570

exhibit superior performance on the SWaT and WTD datasets. However,571

the most recent experimental outcomes suggest that FuSAGNet achieved the572

top results on the WADI dataset. Nonetheless, our attempts to reproduce573

this outcome using the authors’ open-sourced code were unsuccessful.574

Furthermore, although we processed different types of data separately,575

our optimization efforts were predominantly concentrated on enhancing the576

network structure without introducing a significant increase in complexity.577

Consequently, the processing time did not exhibit a substantial increase when578

handling the same amount of data.579

4.4.2. Ablation experiment580

We utilize SWaT and WADI datasets to study the necessity of five com-581

ponents of our approach, namely, node embedding similarity matrix (NE),582

node feature similarity matrix (NF), discrete feature subgraph (DFS), contin-583

uous feature subgraph (CFS), and hybrid feature subgraph (HFS). As shown584

in Figure 4, we successively exclude the corresponding component from the585

experiments to observe its effect on the model performance. The key idea586

of our approach is to learn the potential steady representations from het-587

erogeneous MTS. Hence, first, we exclude NE or NF to study whether the588

heterogeneous information is learned. Second, we discuss the anomaly detec-589

tion performance when we only use HFS or DFS and CFS. Specifically:590

• Excluding NF (expressed as ”-NF”) degrades the overall performance591

of the approach and has a great influence on WADI dataset. This592

indicates that NF is in favor of feature extraction with high-dimensional593

dataset for the model; however, NF is not the key factor to determine594

the model performance.595

• Excluding NE (expressed as ”-NE”) degrades the performances clearly,596

which implies that NE has an evident advantage in the graph structure597

learning process.598

• Excluding DFS and CFS (expressed as ”-DFS” and ”-CFS”) degrades599

the model performance; however, the descend range of model perfor-600

mance is less than that of NE. This approach is actually degenerated601
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Figure 4: Effects of different HFN components on anomaly detection performance.

to the processing of isomorphic graphs, leading to the loss of heteroge-602

neous information.603

• Excluding HFS (expressed as ”-HFS”) degrades the model performance;604

however, it is superior to the cases when DFS and CFS are totally ex-605

cluded. This indicates that the interaction between different types of606

sensors in the hybrid subgraph plays a complementary role in extract-607

ing the follow-up HFN heterogeneous information.608

To sum up, it is necessary to extract heterogeneous structure information609

in the MTS datasets. The heterogeneous information can present different610

weights in the model according to the attention mechanism, which helps to611

improve the abnormal detection performance.612

4.4.3. Case study613

(1) Anomaly detection analysis614

Figure 5 shows the abnormal detection results on SWaT testing dataset,615

where Figure 5(a) represents the actual data anomalies on this dataset, in-616

cluding network and physical attacks directed at the Secure Water Treatment617

(SWaT) testbed within the continuous four days. The data are labeled as618

1 if the system is attacked at a certain timestamp; otherwise, it is labeled619

as 0. Figure 5(b) represents the results of HFN anomaly detection, where620
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Figure 5: SWaT dataset anomaly detection results.

the orange shadow represents the detected anomalies, the blue curve repre-621

sents the condition scores calculated as described in Section 3.6, and the red622

straight line represents the threshold when the optimal F1 is obtained on623

the testing dataset. It can be seen from Figure 5(b) that, aside from a few624

anomalies that are very difficult to distinguish possibly due to labeling errors,625

our approach accurately identifies the most anomalies. According to the in-626

structions provided by SWAT dataset [62], we select an attack case to further627

interpret the abnormal detection capability of HFN. As shown in Figure 5(a),628

the attack starts from 14:16:00 28/12/2015 to 14:28:00 28/12/2015 against629

FIT401, UV401 and P501, where FIT401 is the flow transmitter for mea-630

suring the flow of UV de-chlorinator, UV401 is de-chlorinator for removing631

chlorine from water, and P501 is pump actuator for pumping the dechlori-632

nated water to reverse osmosis. During the attack, as shown in Figure 6, the633

flow value (continuous value) of FIT401 is set twice to the value deviating634

from the normal mode. Meanwhile, the actuators UV401 and P501 (discrete635

value), which should be kept to an open state, are forcefully closed.636

25



Figure 6 shows the curves of actual and predicted values of attack-related637

sensors and actuators and the HFN anomaly detection results. In order to638

reduce the influence of data dimensions and accelerate the convergence of639

the model, we have standardized the values of the dataset by min-max nor-640

malization. It is worth noting that we used the same normalized parameters641

for both the training dataset and the testing dataset, which is why the nor-642

malized data of the testing data shown in Figure 6 has negative values. This643

was done to reduce the impact of testing data information leakage on the644

model performance. In the real water treatment process, the unit of the flow645

sensors values are gallons per minute (GPM), while the actuators have two646

conditions: 0 means turn on and - 1 means turn off.647

It can be seen from Figure 6(a), (c) and (d) that before the attack, the648

predicted values of HFN are consistent with the actual values, where the649

prediction for both continuous variables and discrete variables achieves good650

results. In the attack process, the flow variation arises from the prediction651

result of FIT401 and UV401 simultaneously. This is due to the interaction652

among these variables in the actual water treatment system. A larger devia-653

tion between the predicted value and the actual value would provide a better654

basis for abnormal detection. Note that although the experiment personnel655

did not launch the attack on FIT504 sensor in the attack process, we can see656

from Figure 6(b) and (d) that the value changes of FIT504 are still detected,657

which is due to being abnormally closed caused by the attack on P501. We658

can observe from the detection results in Figure 6(e) that the proposed ap-659

proach shows a good detection capability of such complex anomalies. These660

anomalies have been resulted from attacks to different types of sensors, in-661

cluding continuity, discreteness and their correlation, which represent real662

scenarios.663

(2) Anomaly localization analysis664

From the above analysis, we can see that our method can successfully665

detect the occurrence of anomalies. However, we cannot assume that all666

the variables in a real complicated system are of the same significance. In667

other words, the variables associated with a particular system component668

will be impacted to varying degrees of operation when that component is669

attacked or behaves abnormally. Therefore, it is necessary to locate vari-670

ables that have been strongly impacted by the attack, thus helping system671

maintenance personnel to rapidly find and solve the problems. We use the672

prediction error of each time-series sensor to represent the condition score of673

the sequence where the sensor with the maximum score times is considered674
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Figure 6: Abnormal detection case. The orange shadow represents the detected anomalies.
The blue curve denotes the actual value of sensor or actuator. The orange dotted line
represents the predicted value. The green and red curves in Fig. 6(e) represent condition
score and the threshold of the optimal F1, respectively.
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Figure 7: Maximum number of sensor scores in the abnormal dataset.

to have the possibility of the biggest anomalies. Figure 7 shows the number675

of times when the condition scores are above the threshold for different sen-676

sors within the attack period in the case analysis. It can be known from the677

figure that the sensors FIT504 and FIT401 have the maximum score times,678

which is consistent with the attacks where the experiment personnel made to679

the sensor FIT401 and pump actuator P501 during the tests. The turn-off680

attacks on P501 caused a sharp drop in the FIT504 flow values, as shown in681

Figure 6(d), since they are physically connected. On the contrary, we can682

also speculate which component of the system has been attacked or abnormal683

according to the maximum score times. In this case, during real operation684

and maintenance, particular attention should be paid to and checks should685

be made on the locations relating to FIT504, FIT401, and LIT401.686

4.5. Feasibility analysis687

To further illustrate how the heterogeneous relation in time series is688

learned and takes effect on the abnormal detection, we explain it through689

the similarity matrix before and after the anomalies due to the attacks. Fig-690

ure 8 and Figure 9 represent different similarity matrices before and after691

the attack on SWaT, respectively. Its similarity value range is [-1,1], and692
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Figure 8: Example of similarity subgraphs under normal conditions.

Figure 9: Example of similarity subgraphs under attack conditions.

the closer to 1, the stronger the similarity is. Overall, HFN aggregates the693

similarities of sensor signals from different perspectives to represent its het-694

erogeneous information. Embedding similarity matrix learns the structural695

information among different sensors globally from the training data. Hence,696

similar features are shown in Figure 8(b) and Figure 9(b) under abnormal697

and normal states. However, concerning the feature similarity, we can see698

clearly that there exist significant differences in feature similarity between699

Figure 8(a) and Figure 9(a) at different timestamps, because the data vary700

with time. Ignoring this part of information always degrades the abnormal701

detection performance.702

Specifically, as shown in Figure 8(a), before the attacks on FIT401, UV401703

and P501, the similarity values of FIT504 flow value and other continuous704

variable sensor values are close to 1. However, after the attack, we can see705

from Figure 9(a) that the similarity value varies to -0.75. The sudden change706

indicates that the sensor anomalies occur, while there are slight variations in707

the embedding similarity. After comparing the adjacent matrix before and708

after the attack in Figure 8(d) and Figure 9(d), we can find that the changes709

in feature similarity cause the changes in the connection relation to improve710

the ability of the algorithm in capturing dynamic feature correlation. This711

further demonstrates that HFN, by aggregating the global data learning-712
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based embedding similarity matrix and the feature similarity matrix at a713

specific timestamp, can better capture the normal and abnormal conditions714

in MTS.715

5. Conclusions716

In this paper, we propose a novel heterogeneous feature network for MTS717

anomaly detection. This approach is able to learn the complex heteroge-718

neous structural information and temporal information between MTS data.719

Therefore, it is suitable for abnormal detection in real scenarios where the720

dataset comprises continuous numerical variables and discrete categorical721

variables simultaneously. The extensive experiments indicate that our ap-722

proach outperforms the baseline models by assessing two open datasets from723

water treatment plants and a private dataset from a wind power plant. Par-724

ticularly noteworthy is its significant performance improvement on the SWaT725

and WTD-V2 datasets, where the F1 score increased by 5% and 14%, respec-726

tively, compared to the best baseline. Furthermore, our approach demon-727

strates a good abnormal interpretability and can help operation and main-728

tenance personnel rapidly discover and locate the anomalies.729

In the future, we will continue to explore various avenues to enhance730

the proposed algorithm. We plan to extend its capabilities by incorporat-731

ing more real and complex heterogeneous datasets, encompassing combined732

time series data and textual information. This expansion aims to boost the733

accuracy and practicality of the approach. While our method excels in di-734

verse data handling, potential challenges in computational efficiency may735

arise with larger datasets. Future efforts will be directed towards optimizing736

the algorithm for improved scalability, especially in scenarios involving more737

extensive network scales. Additionally, we aim to investigate the impact of738

varying sampling intervals on our method across different datasets, thereby739

broadening its applicability.740
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