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Abstract

Bringing a treatment to market is a long and expensive process. One key element of

this is the length of late phase clinical trials. As a result, there is growing interest in

platform trials that allow for the addition of new treatment arms as the trial progresses,

as well as being able to stop treatments part way through the trial. The interest in

platform trial designs has been further magnified by their use during the COVID-19

pandemic which also revealed how few specialised statistical tools have been developed

for the design of platform trials. This work aims to study how to design and analyse

platform trials.

This thesis focuses on three main topics. The first topic is how to allow for additional

arms in a multi-arm multi-stage platform trial. This topic introduces two methods

for designing a multi-arm multi-stage platform trial that allows for the addition of

preplanned treatments. The first approach focuses on the addition of treatments at

interim analyses and stopping the trial when the first effective treatment is found. The

second focuses on the addition of treatments at any point within the trial and stopping

the trial only when the conclusion is reached on all treatment arms. For both approaches

stopping boundaries are found at the interim stages to control the type I error across

the entire trial. The methods are then studied for a motivating example and compared

to alternative approaches.

The thesis goes on to consider the effects of changing the control treatment when

a superior treatment is found within a platform trial. We will show analytically and
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numerically that retaining the old information can be detrimental to the power of the

study if the same boundaries are used. We further extend this to prove when there is

guaranteed to be no benefit in keeping the old data for a multi-arm multi-stage trial

with no later arms added.

Finally, we study how to design multi-arm multi-stage platform trials where no

control treatment exists. The focus of the design being on controlling the type I error

and power of the entire study for all pair-wise comparisons. In a motivating trial in

sepsis, the design of the proposed approach is evaluated against alternative approaches.

For this example it is shown that the proposed method results in the lowest required

maximum and expected sample size when controlling the errors at the desired level

compared to the alternative approaches. We finish this thesis by summarising the main

contributions of the work along with proposing future directions to explore.
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Chapter 1

Introduction

1.1 Introduction to clinical trials

Clinical trials play a fundamental role in evaluating the safety and efficacy of medical

interventions. These trials are conducted in order to test if new medical treatments can

improve the health and quality of patients’ lives. Turner (2010) split the drug develop-

ment process into 3 sections: drug discovery and design, non-clinical development and

clinical development. Drug discovery and design focuses on the identification of poten-

tial candidates for novel pharmaceutical drugs. It is the process of finding compounds,

molecules, or biological targets that have the potential to treat a specific disease (Zhou

and Zhong, 2017). The objective of non-clinical development is to find one or more

of these compounds, molecules, or biological targets, which has sufficient evidence of

biological effect on a disease, as well as sufficient safety and drug-like properties so that

it can be entered into human testing (Mohs and Greig, 2017). Finally clinical devel-

opment is a stage during which potential new medications are rigorously tested using

clinical trials in humans to assess their safety, efficacy, and optimal dosing regimens

(Turner, 2010). Improving the clinical development stage is the focus of this thesis.

Some of the ideas and concepts used in modern trials have been first used millenni-

1
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ums ago. As discussed in Bhatt (2010) the first record of a trial was written in the Book

of Daniel in The Bible. This experiment was conducted by the King Nebuchadnezzar

in order to test whether to allow his people to eat vegetables along with his believed

better diet of meat and drinking only wine. The king allowed the participants of the

trial to eat only vegetables and drink only water for 10 days. After the 10 days the

vegetarians appeared better nourished, so the king permitted vegetables in their diet.

This may be one of the first times where an open, human experiment guided a decision

about public health (Bhatt, 2010).

It was not until 1747 that physician James Lind conducted the first documented

controlled clinical trial. In this trial he was searching for a treatment for scurvy. The

trial had 12 patients which he split into 6 groups, each with a different diet (Blass, 2015).

After a week the patients’ scurvy symptoms were studied. The group given oranges

and lemons showed a reduction in their scurvy symptoms whereas the condition of the

remaining patients remained unchanged. It took a further 50 years before the British

Navy made lemon juice a compulsory part of the diet, but this was primarily due to

the high cost of lemons and oranges at that time (Bhatt, 2010).

190 years later the first double blind controlled trial was conducted by the Medical

Research Council (MRC) UK in 1943-4 to investigate patulin treatment for the common

cold (Bhatt, 2010). Around this time the first randomized control trial (RCT) was also

conducted by the MRC in 1946 on streptomycin in pulmonary tuberculosis (Crofton and

Mitchison, 1948). By the late 20th century, RCTs were seen as the standard method

for comparing treatments in medicine (Bondemark and Ruf, 2015). Since then there

have been many trials conducted investigating different medical interventions with over

2.5 million having been conducted by 2015 (Bondemark and Ruf, 2015).

Human clinical trials are often classified into 1 of 4 phases of testing and develop-

ment. Phase I is generally done to establish safety and tolerability in healthy volunteers

or in patients (Sedgwick, 2014). Phase II trials, also referred to as explanatory trials,
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are within the target population and are used to determine the treatments’ efficacy

and adverse effects at different dosages. Within these trials a control treatment is

commonly used to compare the active treatments against. The control treatment is

normally either the current standard of care or a placebo. Phase III trials, also referred

to as confirmatory trials, establish the effectiveness compared to a control treatment,

and safety of the treatment and studies any long-term adverse effects (Jennison and

Turnbull, 1999). The evidence from this phase of development can then be used to

license the treatment. The final phase, phase IV trials, are trials conducted once the

treatment has been licensed and are done to determine general risks, rare events, and

benefits (Sedgwick, 2014). During this work the focus is on phase II and phase III trials

where traditional superiority RCTs have been commonly used.

1.2 Randomised control trials (RCTs)

When designing a traditional RCT, where one active treatment is compared to a control

treatment, the probability of rejecting the null hypothesis (H01), for the active treatment

(treatment 1) compared to the control treatment (treatment 0), is used to define the

errors of the trial. The one sided null hypothesis in a traditional RCT is:

H01 : ψ1 ≤ ψ0

where ψ1 is the treatment effect of the active treatment and ψ0 is the effect of the

control. The two sided null hypothesis (H01) is:

H01 : ψ1 = ψ0

There are many papers which discuss which should be used (Fisher, 1991; Enkin, 1994;

Owen, 2007). For Chapters 2, 3 and 4 the focus will be on one sided null hypotheses as
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we are focused on testing if a new treatment is superior to the control treatment and

we are less interested in proving that the control is superior to the active treatment.

However in Chapter 5 the focus is on the two sided null hypothesis as both treatments

are of equal interest.

Throughout this work the assumption is that the outcome of each patient is inde-

pendent and normally distributed with known variance σ2. This leads to Xk,i which

is the outcome of the ith patient on treatment k, so Xk,i ∼ N(µk, σ
2), with k = 0 for

the control treatment. When testing the null hypothesis, one can use the following

standardised test statistic (Z),

Z =
X̄1 − X̄0

σ
√
n−1

1 + n−1
0

,

where X̄1 is the observed mean of the patients on the active treatment and X̄0 is the

observed mean of the patients on the control, so X̄1 =
∑n1
i=1X1,i

n1
and X̄0 =

∑n0
i=1X0,i

n0
,

with n1, n0 being the number of patients on active and control treatments respectively.

Therefore under the global null (when µ1 = µ0) Z ∼ N(0, 1).

There are two types of errors one must balance when considering the null hypothesis.

The first error is the type I error (α). This is the probability of rejecting the null

hypothesis when it is true (Akobeng, 2016). If this error happens it can result in

either a treatment being taken forward to a more expensive phase III trial or worse, a

treatment found at a phase III trial then being taken to market. This can result in a

new treatment which is worse than the current treatment becoming the new standard

of care. The second error is the type II error (β). It is the probability that the null

hypothesis is not rejected when the null hypothesis is not true (Akobeng, 2016). This

means that a treatment which works is not taken forward to further testing or is not

brought to the market. These two errors are the focus for both Phase II and Phase III

trials.

These two types of error are used to find the critical values and sample size required
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for the trial. The critical value provides the rule as to whether there is enough evidence

to reject the null hypothesis, so this is the point (u) which the test statistics needs to be

greater than, Z > u to reject the null hypothesis in a one sided test. Therefore, this is

chosen to control the type I error at the desired level α. The sample size is then found

to control the type II error at the desired level β. One minus the type II error (1−β) is

also known as the power of the study in a traditional RCT. The sample size is found for

a clinically relevant effect θ? often set as the minimum effect that is of interest between

the active and control arm.

A large issue faced by modern clinical trials is that currently bringing a new treat-

ment to market is a long and expensive process, costing up to 2.8 billion dollars with

novel treatments taking between 10-15 years to bring to the market (Dimasi et al.,

2003; Mullard, 2018; Wouters et al., 2020), which can often end in failure (Kola and

Landis, 2004; Wong et al., 2019). This has motivated research into how to reduce time

and cost in clinical trials. One such approach is the use of interim analyses.

1.3 Interim analyses

Interim analyses are an approach used in clinical trials that incorporate what is learnt

during the course of a clinical trial in order to make further decisions about the trial

(Kumar and Chakraborty, 2016; Whitehead et al., 2001). Interim analyses can be

performed, for example, to test for futility, safety, and efficacy (Chin and Lee, 2008).

Throughout this work the focus is on using interim analyses to test for both futility

and efficacy.

After each interim analysis a new stage of the trial begins. The maximum number

of stages equals the maximum number of analyses and is defined as J . At given interim

j = 1, . . . , J the number of patients on each treatment k is denoted by nk,j with k = 0

for the control and k = 1 for the active treatment. We define rj as the ratio of patients
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at each interim j on the active treatment, compared to the number of patients on this

treatment at the first interim.

Interim analyses used in this work allow the treatments in the trial to be prematurely

terminated for futility. This can help avoid unnecessary exposure of participants to

ineffective or harmful treatments, while also conserving patients that could be redirected

to more promising treatments. This stopping is done when the test statistic of interest

falls below the lower boundary (lj) for stage j, with j = 1, . . . , J . The lower stopping

boundary (lJ) for the final analysis, stage J , is set to be equal to the critical value at

the final analysis to ensure the trial can stop with a decision on the active treatment of

interest. Interim analyses for futility can result in a reduction in the expected sample

size of a trial (Pocock, 1977; Todd et al., 2001; Wason et al., 2016; Walter et al., 2020). In

Figure 1.3.1 the lower stopping boundaries can be seen for different boundaries shapes

(Pocock, 1977; O’Brien and Fleming, 1979; Whitehead, 1997) which are defined in

Equation (1.3.1). In the example if the test statistic falls below these lower boundaries

at a given stage it will be in the futility zone so the active treatment will stop.
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Figure 1.3.1: Illustration of three types of binding stopping boundary shapes for a one
sided test in a 3 stage example, with equal allocation ratio between the active and
control arm and equal allocation ratio per stage. Stopping is done for both futility
and efficacy using the Equation 1.3.1, with the asymmetric boundary shapes, so having
equal upper and lower boundaries at the final stage with lJ = uJ .

When designing a trial in which interim analyses for futility are going to be used one

must consider if binding or non-binding stopping boundaries are going to be used when

calculating the type I error of the trial. Binding stopping rules means that stopping

is mandatory if the criterion is met, i.e. the test statistic goes below the stopping

boundary. Non-binding stopping rules means that the investigator can freely decide

if they wants to stop the trial given that the criterion is met (Li et al., 2020). There

are pros and cons to both types and both are used in practice. Binding stopping rules

often result in lower upper stopping boundaries as there is the guarantee that poorly

performing treatments will stop earlier, therefore, removing the chance that they could

incorrectly be found superior at a later stage. This can reduce the maximum and

expected sample size required for the trial. The binding stopping rules removes the

freedom for the clinicians to choose not to stop the trial. This could be negative

if there is a potentially positive secondary outcome or positive subgroup in the trial

which clinicians would like to investigate further.
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Non-binding stopping rules allow for more flexibility for the clinicians which removes

the potential issue discussed and allows the clinicians to react quickly to unpredicted

results or trends (Bretz et al., 2009; Souhami, 1994). However often this can come with

an increased sample size which increases the cost and time of the trial. Additionally, as

argued by Schüler et al. (2017), using non-binding boundaries means that quantifying

the performance properties of the trial is impossible as the study progress is not pre-

dictable from the observed effect at the interims. Due to this final point the focus of the

majority of this work will be on binding stopping rules however non-binding stopping

rules will also be considered and mentioned explicitly in each instance.

Stopping boundaries can be used to allow a treatment to stop early for efficacy. This

happens when the test statistic goes above a given upper boundary (uj) for stage j.

Depending on the objective of the trial, once a treatment efficacy has been found to

be greater than that of the control, either the entire trial can stop (Magirr et al.,

2012) or that treatment can stop being tested (Urach and Posch, 2016; Serra et al.,

2022). This is highly dependent on the focus of the trial; whether the aim is to find an

effective treatment, or to find all effective treatments, and if the trial is testing multiple

treatments or not. Once again stopping treatments for efficacy can reduce the expected

sample size and duration of the trial (Pocock, 1977; Meurer and Tolles, 2021; Jennison

and Turnbull, 1999). In Figure 1.3.1 the upper stopping boundaries can be seen for

different boundaries shapes. If the test statistic falls above these upper boundaries at

a given stage it will be in the superiority zone so the active treatment will stop. If the

test statistic falls between the upper boundaries and the lower boundaries, so in the

continuation zone at a given stage, it will continue onto the next stage.

When designing a clinical trial one needs to choose the stopping boundaries. This

can be done using pre-specified boundary shapes, (Kumar and Chakraborty, 2016),

such as Pocock (Pocock, 1977), O’Brien and Fleming (O’Brien and Fleming, 1979),

and the triangular boundaries (Whitehead, 1997). A large advantage of using pre-
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specified boundary shapes such as these is there is a unique solution that will control

the desired type I error. These three boundary shapes are illustrated in Figure 1.3.1 for

a 3 stage trial comparing one control arm against one active arm with one sided type I

error control at 2.5%. The boundaries shapes are the following:

Pocock: uj = a and lj = −a,

O’Brien & Fleming: uj =
a
√
rj

and lj = − a
√
rj
,

Triangular test: uj =
a(1 + (rj/rJ))

√
rj

and lj =
−a(1− 3(rj/rJ))

√
rj

,

(1.3.1)

where a is the scaler of interest. The scaler a is the single value that needs to be

found to ensure that the given boundaries give the type I error control of desire across

the entire trial. As the value of a increases then so does the control of the type I

error for that given boundary shape. In this work we are mainly considering one

sided null hypotheses. In this case we set lJ = uJ to ensure that the boundaries

meet at the final stage. As can be seen in Figure 1.3.1 when considering one sided

boundaries the bounds are asymmetric. Additionally for multiple examples through

out this work as suggested in Magirr et al. (2012) for one sided tests the standard

Pocock and O’Brien and Fleming lower boundaries can be too conservative, so we set

lj = 0 for j = 1, . . . J−1. When using the Pocock and O’Brien and Fleming boundaries

for a two sided test the boundaries are symmetric and if the test statistic goes below

the lower boundary then that null hypothesis can be rejected for inferiority.

The Pocock boundaries are one of the simplest to understand and implement as

they do not change throughout the trial. The O’Brien and Fleming boundaries require

very strong evidence that there is a treatment difference for the trial to be stopped at

the beginning of the trial, but as a result the boundaries are the lowest for efficacy for

the final analysis, so often produce the smallest maximum sample size (Jennison and

Turnbull, 1999). The triangular stopping boundaries are non symmetric which greatly
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increases the chance of being able to stop early for efficacy and futility, so often result

in the smallest expected sample size (Wason and Jaki, 2012).

Using pre-specified boundaries shapes can greatly reduce the computation involved

compared to finding the optimal boundaries (Wason and Jaki, 2012). A boundary is

optimal if it results in the minimum expected sample size for a given treatment effect.

However the optimal boundary will only be optimal for one given trial outcome not all,

as it is impossible to know the treatment effect before running the trial, one may still

find that one of the other boundaries shapes can perform better (Wason et al., 2016).

Another approach is to use an alpha-spending function which specifies how much of the

type I error is spent at each interim stage (Demets and Lan, 1994; Meurer and Tolles,

2021; Blenkinsop et al., 2019).

Interim analyses are not the perfect solution for every trial and do come with some

drawbacks. One drawback is that if the treatment stops early then information with

regards to secondary outcomes, long term effects and safety events may be less precisely

estimated (Korn and Freidlin, 2017; Meurer and Tolles, 2021). Stopping a trial early

for success, even during a preplanned interim analysis, may introduce some positive

bias in the estimate of the treatment effect, but the magnitude of that bias is generally

small and often considered not to be clinically important at the design stage, however,

the bias should be considered at the analysis of the trial and adjusted for (Meurer and

Tolles, 2021; Viele et al., 2016; Robertson et al., 2023a,b). A trial with interim analyses

typically requires a larger maximum sample size compared to fixed trial designs (Mehta

and Pocock, 2011). One may also see very little or no savings in expected sample size if

the primary outcome takes a long time to observe compared to the speed of recruiting

patients to the trial (Wason et al., 2019). One also needs to consider the additional

cost of running the interim analyses from cleaning the data to the analysis costs (Bretz

et al., 2009). Overall interim analyses are often seen as a good way to reduce both the

time and cost of a clinical trial (Pocock, 1977; Todd et al., 2001; Wason et al., 2016).
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1.4 Multi-arm studies

Another way of potentially reducing the cost and time before a clinical intervention can

be brought to market is to test multiple treatments at once. This is not a new idea with

physician James Lind conducting the first documented multi-arm study in 1747. Multi-

arm studies can have multiple potential benefits including: shared trial infrastructure;

the possibility to use a shared control group; less administrative and logistical effort

than setting up separate trials and enhanced recruitment (Burnett et al., 2020; Meurer

et al., 2012). This results in useful therapies potentially being identified faster while

reducing cost and time (Cohen et al., 2015). However they do come with multiple

additional complications which must be considered.

One of these is the fact there are now multiple hypotheses to be considered. The

one sided null hypotheses (H0k) for each experimental treatment, k, is that it is worse

than, or equal to, the control treatment given in Equation (1.4.1).

H01 : µ1 ≤ µ0, H02 : µ2 ≤ µ0, ..., H0K : µK ≤ µ0, (1.4.1)

where µ1, . . . , µK are the mean responses on K experimental treatments and µ0 is the

mean response of the control. The two sided null hypotheses for each experimental

treatment k is that it is equal to the control treatment given in Equation (1.4.2).

H01 : µ1 = µ0,H02 : µ2 = µ0, ...,H0K : µK = µ0. (1.4.2)

These multiple null hypotheses then change how one can view the type I error and the

power of the trial.
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1.4.1 Multiple test corrections for type I error

In multi-arm trials, the presence of multiple treatments increases the likelihood of false

positives, where the null hypothesis is incorrectly rejected. Given Q independent tests

for which the null-hypotheses are true, then the probability of a false-positive is:

1− (1− α)Q,

where α is the type I error of each test. For example, if there is a 5% significance level

for five independent true null hypotheses, the total chance of getting a false positive is

23%. In a multi-arm setting, the pairwise error rate (PWER) is introduced to control

the error of each hypothesis (Sydes et al., 2009; Choodari-Oskooei et al., 2020). Bratton

et al. (2016) define PWER as the probability of wrongly rejecting the null hypothesis

for a particular experimental arm. When controlling the PWER, as the number of arms

increases the likelihood of obtaining a false positive in the study also increases.

To address this issue, researchers may consider employing a multiple-testing proce-

dure, which involves adjusting the significance level for each hypothesis test to control

the probability of type I errors. A multiple-testing procedure is defined as a statistical

method of adjusting the significance level used for testing each hypothesis so that the

chance of making a type I error is controlled (Wason et al., 2014). Some early examples

of procedures can be found in Fleming (1982).

There are numerous characteristics associated with multiple-testing procedures.

Among them, one of the most strict is the strong control of the family-wise error

rate (FWER). The FWER is the probability of making at least one type I error, and

achieving strong control implies that the maximum FWER possible is limited to a

predetermined level α (Wason et al., 2014). For instance, if there are five true null

hypotheses, the probability of rejecting any of them while maintaining a 5% FWER

control would be less than or equal to 0.05. Strong control of the family-wise error rate
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is defined in Jaki (2014) as

P (reject at least one true H0k, k = 1, . . . , K) ≤ α.

Weak control of FWER shares similarities with strong control but only ensures control

over the maximum possible FWER when all the null hypotheses are true, referred to

as the global null hypothesis (where µ0 = µ1 = . . . = µK).

Another procedure discussed in the literature is the false discovery rate (FDR)

(Robertson et al., 2023c; Wason and Robertson, 2021; Cui et al., 2023). FDR is the

expected proportion of true null hypotheses that are rejected (Wason et al., 2014). The

FDR allows for the rejection of true null hypotheses as long as the expected proportion

of rejections remains below or equal to the target level. As a result a procedure that

controls the FWER will also control the FDR at the same level. FDR is less frequently

used as compared to FWER.

The use of multiple-testing procedures is a topic extensively discussed in literature

with ongoing debate regarding whether this should be done and if it should, then

how (Rothman, 1990; Molloy et al., 2022; Wason et al., 2014, 2016; Howard et al.,

2018; Freidlin et al., 2008; Proschan and Waclawiw, 2000; Proschan and Follmann,

1995; Nguyen et al., 2023). Wason et al. (2016) argues that some platform trials differ

significantly in their design construction compared to conducting multiple individual

trials. They argue that FWER provides the maximum probability of recommending an

ineffective treatment. In this paper they go on to recommend that FWER is controlled

in confirmatory trials and reported in exploratory trials.

The use of multiple testing corrections is also of great importance to regulatory

bodies. The European Medicines Agency (EMA) guidance on multiplicity states that

control of the family-wise type I error in the strong sense is a minimal prerequisite

for any confirmatory claims (EMEA, 2002). Additionally EMA (2016) states that

control of the study-wise type I error is a minimal prerequisite for confirmatory claims.
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Food and Drug Administration (FDA) guidance on adaptive designs states that in

confirmatory trials a multiple testing approach should be used to control the type I error

probability across the multiple doses evaluated (FDA, 2019) and the FDA discusses

when multiplicity is likely to be an issue in FDA (2018). In conclusion, there is a

real need for approaches which can control the FWER since this can be the regulatory

requirement when running a multi-arm study.

Multiple testing corrections can also be of interest when considering trials in which

there is no control treatment. There are several scenarios where one may be interested

in conducting a trial with no control, for instance when multiple treatments are already

established as the standard of care for a condition and the objective of the trial is to

determine if any treatment is superior or inferior to any of the others (Briffa et al.,

2021; Califf et al., 2016). Another use is in trials where no control treatment currently

exists for a specific disease in a given population, either due to a lack of resources to use

the accepted standard of care, or if it is an emerging infectious disease so no standard

of care has been established (Magaret et al., 2016). When considering this type of trial

in which one is testing K active treatments one now has η =
∑K−1

k=1 k number of null

hypotheses which are

H1,2 : µ1 = µ2,H1,3 : µ1 = µ3, ...,HK−1,K : µK−1 = µK ,

where Hk,k? is the null hypothesis that treatment k and treatment k? have equal treat-

ment effect. In the work of Tukey (1949); Kramer (1956) they find the critical value

required to control the FWER for a multi-arm study. In the work of Whitehead (1997);

Whitehead and Brunier (1990) they allow for interim analyses and find highly effective

boundaries to reduce the expected sample size of a trial whilst still controlling the type

I error of the trial (Whitehead and Todd, 2004). Their work focuses on the case when

there are two active treatment arms with no control. In Chapter 5 we will extend this

work to design a multi-arm multi-stage trial with no control treatment in which the
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FWER is controlled.

1.4.2 Powering multi-arm studies

As with type I error control, there are multiple different ways of powering a multi-

arm study. The way the study is powered should depend on the research question of

interest and the level of resources available. In a trial design where the trial will stop

once a clinically relevant treatment is found, such as in Chapter 2, a commonly used

approach, for powering the study is the power under the least favourable configuration

(LFC) (Magirr et al., 2012; Wason and Jaki, 2012).

The power under the LFC is defined as the probability that without loss of generality,

H01 is rejected and treatment 1 is recommended given that µ1−µ0 = θ? and µk−µ0 = θ0

for k = 2, . . . K, where θ0 is the highest uninteresting treatment effect and is given by the

clinicians (Jaki, 2014). The power under the LFC is useful as it controls the probability

that a treatment that has a clinically relevant effect is found if one exists.

If, however, one is planning on continuing the study after a superior treatment is

found, such as in Chapter 3, there are further ways of considering power. One may

be interested in ensuring that at least one treatment with a clinically relevant effect is

taken forward from the study. This can be split into two types of power discussed in

the literature. The first is the disjunctive power (Urach and Posch, 2016; Choodari-

Oskooei et al., 2020; Hamasaki et al., 2021). Disjunctive power is the probability of

taking at least one treatment forward. The second is the pairwise power which is the

probability of taking forward a given treatment which has a clinically relevant effect

(Choodari-Oskooei et al., 2020; Royston et al., 2011). Pairwise power is the probability

of taking forward a treatment given it has a clinically relevant effect ignoring if any

others are taken forward or not.

Another way of thinking of powering a study is the probability of taking forward all

the treatments which have a clinically relevant effect. This is known as the conjunctive
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power of a study (Urach and Posch, 2016; Choodari-Oskooei et al., 2020; Hamasaki

et al., 2021; Serra et al., 2022).

Furthermore in a couple of studies there has been a change of control treatment

midway through the trial (Sydes et al., 2012; Horby et al., 2021). However there is very

little literature around the power of interest for these studies and if there is benefit in

changing the control treatment compared to starting a new trial. Therefore in Chapter

4 we study this topic when one assumes that the stopping boundaries are fixed and when

an active treatment is found superior it then becomes the new control treatment.

1.5 Additional arms

In order to reduce the total cost and time to bring a treatment to market one may

wish to include upcoming treatments into an ongoing trial, instead of setting up a new

study. This is because during the multiple years it can take for a trial to run it is

not uncommon for new promising treatments to emerge and become ready to join the

current phase later (Choodari-Oskooei et al., 2020). It may therefore be advantageous

to add these into an ongoing study. These advantages include, the possibility to use a

shared control group; less administrative and logistical effort than setting up separate

trials and enhanced recruitment (Burnett et al., 2020; Meurer et al., 2012). Additionally,

unlike traditional multi-arm studies this allows more flexibility since all the arms do

not need to be ready at once.

When adding treatments to a trial one needs to consider how the additional treat-

ments are going to be powered and how the type I error of the trial is going to be

controlled. Treatments can be added in either a pre-planned or an unplanned manner

(Bennett and Mander, 2020; Choodari-Oskooei et al., 2020; Burnett et al., 2020). In

a pre-planned trial it is known that additional treatments are to be added to the trial

and the trial is designed given the treatments are added as planned. In an unplanned
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trial it is not known that further treatments are going to be added, therefore the de-

sign of the trial is adjusted ad-hoc to allow for the addition of the treatments. Adding

treatments in an unplanned manner allows for more flexibility, however, this does come

with further issues. This includes that both current and later treatments can become

underpowered due to the limited amount of resources for the trial. If one wants to

reduce this then further funding is needed to allow for the additional patients required.

Further to this, it is very difficult, and in some cases impossible, to ensure that the type

I error is evenly shared across all the treatments. Additionally, as argued by Posch and

Proschan (2012) unplanned adaptations will always question the confirmatory nature of

a clinical trial, especially if complete blinding is not possible, due to interim analyses for

example. Therefore, Posch and Proschan (2012) argue unplanned adaptations should

be considered only when deemed absolutely necessary.

In contrast, the pre-planned addition of treatments does not have the same level of

flexibility but it does allow the entire trial to be designed at the design phase. This

allows the clinicians, regulator and funder to be aware of the potential sample size and

stopping boundaries required for the trial as well as the potential duration. This also

removes some of the potential issues with blinding as the design is pre-defined when no

results are available.

Another key factor to consider when adding additional arms is if concurrent controls

or non-concurrent controls are going to be used in the analysis for the new treatment.

Concurrent controls refer to control patients that are randomised at the same time as

the experimental arm. This means they are recruited once the additional treatment is

added. Whereas non-concurrent controls refer to patients recruited before the additional

treatment is added (Roig et al., 2023). Using non-concurrent controls can improve the

efficiency of trials as it can result in more power or a lower sample size, since there are

more control patients that the additional treatment can be compared to (Roig et al.,

2022). However, using non-concurrent controls can result in bias in the estimates due
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to potential unknown time trends. These time trends can be caused by the baseline

profile and standard of care for a patient group evolving over time, which can happen

in trials with long recruitment periods (Jiang et al., 2020). They could also include

seasonal time trends, such as for hay-fever, where the patient outcomes will be highly

dependent on the time of the year. As a result of these time trends the average patient

outcome can change as the trial progresses. There have been multiple approaches to

cope with time trends (Lee and Wason, 2020; Marschner and Schou, 2022; Saville et al.,

2022; Wang et al., 2022). The issue is mainly caused by the unknown nature of the time

trends and as discussed in Lee and Wason (2020) if strict control of errors is needed

then only concurrent controls should be used.

1.6 Platform trials

Platform trials are a type of clinical trial where multiple interventions can be evaluated

simultaneously with a single master protocol (Park et al., 2020). A master protocol is a

type of trial design that aims to answer multiple questions for therapies either individ-

ually or in combination and/or multiple diseases in parallel under a single overarching

comprehensive protocol. As a result there is no need to develop individual protocols

for every sub-study (Lu et al., 2021; Hirakawa et al., 2018). Platform trials can include

having multiple treatments, multiple stages and the ability to add additional arms.

Therefore, the term platform trial encompasses everything from multi-arm multi-stage

(MAMS) trials (Magirr et al., 2012; Royston et al., 2003) to trials where an additional

arm is added later in a RCT (Bennett and Mander, 2020; Choodari-Oskooei et al.,

2020).

The use and interest in platform trials has increased over the past few years. In a

large part due to their use in the COVID-19 pandemic (Stallard et al., 2020; Lee et al.,

2021). Platform trials were used due to their ability to add additional treatments, have
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multiple interim analyses and compare multiple treatments at once. Vanderbeek et al.

(2022) identified 58 COVID-19 platform trials globally registered between January 2020

and May 2021. This is compared to the work by Park et al. (2019) which identified a

total of 16 platform trials initiated between 2001 and 2019. Some of the platform trials

in the UK for COVID-19 are AGILE (Griffiths et al., 2021), RECOVERY (Horby et al.,

2021), REMAP-CAP (Angus et al., 2020), PRINCIPLE (Cake et al., 2022). There is

now a growing interest in using platform trials in other treatment areas (Roustit et al.,

2023; Collignon, 2022).

When designing a platform trial an important factor to consider is the statistical

framework for the trial. There are multiple different types of platform trial designs;

some of which have a frequentist framework and others have a Bayesian framework

(Pallmann et al., 2018). Bayesian approaches tend to only be used in exploratory trials

as discussed in Magaret et al. (2016). This has however been changing in recent years

with a lot of the COVID-19 trials using a Bayesian framework. However, regulators have

tended to prefer a frequentist approach for phase III trials because of its long history

and better understood statistical properties (Ventz and Trippa, 2015; Cao et al., 2023).

The frequentist framework will be the focus of this work.

Additionally when designing platform trials, as discussed in Section 1.4.1, there can

still be the need for multiple testing procedures. Currently there are no methods for

controlling the FWER in a preplanned manner in MAMS studies where additional arms

are added. Therefore in this thesis in Chapters 2 and 3 methods are presented to design

MAMS trials where additional arms are added in which FWER is controlled.

1.7 Outline of Thesis

This thesis focuses on 3 main topics. The first, covered in Chapters 2 and 3, is the

design of platform trials with multiple arms and stages in which treatments can be
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added later in a preplanned manner. The second area, studied in Chapter 4, is the

effect of changing the control treatment within a platform trial and whether retaining

the data pre change is beneficial for powering the study. The final topic, discussed in

Chapter 5, is how to design multi-arm multi-stage platform trials in which there is no

control treatment. Notation is defined within each chapter and is self contained within

that given chapter. A summary of each chapter is given below.

Chapter 2: A multi-arm multi-stage platform design that allows pre-

planned addition of arms while controlling the family-wise error. This chapter

presents a multi-stage design that allows additional arms to be added in a platform trial

in a pre-planned fashion, while still controlling the family-wise error rate. Treatments

can stop the trial at interim analyses for either lack of benefit/futility or for superiority.

A method is given to compute the sample size required to achieve a desired level of

power and we show how the distribution of the sample size and the expected sample

size can be found. A motivating trial is presented which focuses on two settings, with

the first being a set number of stages per active treatment arm and the second being a

set total number of stages, with treatments that are added later getting fewer stages.

Through this example we show that the proposed method results in a smaller sample

size while still controlling the errors compared to running multiple separate trials.

Chapter 3: A preplanned multi-stage platform trial for discovering multi-

ple superior treatments with control of FWER and power. This chapter builds

on the work of Chapter 2 to introduce a multi-stage design that enables the addition

of new treatment arms, at any point, in a pre-planned manner within a platform trial,

while still maintaining control over the family-wise error rate. This chapter focuses

on finding the required sample size to achieve a desired level of statistical power when

treatments are continued to be tested even after a superior treatment has already been

found. This may be of interest if there are other sponsors treatments which are also

superior to the current control or multiple doses being tested. The calculations to de-
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termine the expected sample size is given. A motivating trial is presented in which the

sample size of different configurations is studied. Additionally the approach is compared

to running multiple separate trials and it is shown that in many scenarios if family-wise

error rate control is needed there may not be benefit in using a platform trial when

comparing the sample size of the trial.

Chapter 4: Platform trials in which the control group treatment changes.

In this chapter we consider platform trials where, if a treatment is found to be superior

to the control, it will become the new standard of care (and the control in the platform).

The remaining treatments are then tested against this new control. In such a setting,

one can either keep the information on both the new standard of care and the other

active treatments before the control is changed, or one could discard this information

when testing for benefit of the remaining treatments. We will show analytically and

numerically that retaining the information collected before the change in control can

be detrimental to the power of the study. Specifically, we consider the overall power,

the probability that the active treatment with the greatest treatment effect is found

during the trial. We also consider the conditional power of the active treatments and

the probability a given treatment can be found superior against the current control.

We prove when, in a multi-arm multi-stage trial where no arms are added, retaining

the information is detrimental to both overall and conditional power of the remaining

treatments. This loss of power is studied for a motivating example. We then discuss

the effect on platform trials in which arms are added later. On the basis of these

observations we discuss different aspects to consider when deciding whether to run a

continuous platform trial or whether one may be better running a new trial.

Chapter 5: A multi-arm multi-stage design for trials with no control arm

and all pairwise testing. This chapter focuses on designing MAMS trials where no

control treatment exists. This may be because there are multiple treatments already

established as the standard treatment options or when no treatment currently exists for
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a severe disease, so it would be unethical to withhold a potentially helpful treatment.

In the proposed design, interim analyses allow for early treatment termination during

the trial when a treatment performs notably worse than its competitors, and for the

entire trial to stop early if all remaining treatments are showing similar performance.

All pairwise comparisons between each treatment arm are conducted allowing for the

identification of statistically significant differences between treatments and facilitating

the early termination of less effective ones. The proposed design controls the family-

wise error rate (FWER) for all pairwise comparisons and the necessary conditions when

control in the strong sense is guaranteed are provided. The FWER and power are

used to calculate both the stopping boundaries and the sample size required. Analytic

solutions to compute the expected sample size are also derived. A trial motivated by

a study conducted into sepsis, where there was no control treatment, is shown. The

method proposed here is compared to multiple different approaches. It is shown, for

the trial studied, that the proposed method yields the lowest required maximum and

expected sample size when controlling the FWER and power at the desired levels.

Chapter 6: Conclusions and Further work. This chapter gives an overview of

the work presented in this thesis and summarises the main contributions. Moreover,

this chapter proposes future directions to explore to extend and advance this work

further.



Chapter 2

A multi-arm multi-stage platform

design that allows pre-planned

addition of arms while controlling

the family-wise error

2.1 Introduction

Clinical trials take many years to run and during this time it is not uncommon for new

promising treatments to emerge that warrant evaluation. It may be advantageous to

include these treatments into an ongoing trial, due to the shared trial infrastructure and

the possibility to use a shared control group. This can result in useful therapies being

identified faster while reducing cost and time (Cohen et al., 2015). The trial potentially

requires less administrative and logistical effort than setting up separate trials, so can

noticeably speed up the development process (Burnett et al., 2020). The addition

of more arms may also enhance the recruitment, as patients have a higher chance of

receiving an experimental treatment, therefore, making them potentially more likely

23
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to join a trial (Meurer et al., 2012). Furthermore due to the multiple phases of drug

development there are often treatments which are looking promising for a phase III trial

but are not yet ready to be tested as they are still in the earlier phases of development,

whereas there may be other treatments which are ready to start at phase III (Choodari-

Oskooei et al., 2020). Therefore the ability to design a pre-planned trial for which these

treatments can be added is of great interest.

Recently, several approaches to adding treatment arms have been proposed which

aim to help tackle this issue. Bennett and Mander (2020) and Choodari-Oskooei et al.

(2020) propose approaches which extend the Dunnett test (Dunnett, 1955) to allow for

unplanned additional arms to be included into multi-arm trials while still controlling the

family wise error rates (FWER). This methodology does not incorporate the possibility

of interim analyses.

Interim analyses are a further way to potentially improve the efficiency of design

of a clinical trial (Pocock, 1977; Todd et al., 2001; Wason et al., 2016). They allow

for ineffective treatments to be dropped for futility (or lack of benefit) earlier, as well

as allowing the trial to stop early if a superior treatment is found. Both of these

can result in the reduction of the expected sample size and costs of a trial. Multi-

arm multi-stage (MAMS) design (Magirr et al., 2012; Royston et al., 2003) allows for

several treatments to be evaluated within one study and incorporate interim analyses

for efficiency, but does not allow for additional arms to be added throughout the trial.

Burnett et al. (2020) developed an approach that builds on Hommel (2001) which

extends Bauer and Kohne (1994) work, to incorporate unplanned additional treatment

arms to be added to a trial already in progress using the conditional error principle

(Proschan and Hunsberger, 1995), to allow for modifications during the course of a

trial. The unplanned nature of the adaptation, however, means that type I error and

power for different arms may be different. As a result, the additional treatments can

be underpowered.
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In this work, we provide an analytical method for adding of treatments to a multi-

arm multi-stage (MAMS) trial in a pre-planned manner, while still controlling the

statistical errors. The design assumes that, at the design stage, it is known that new

treatments will be added to the trial after its initiation. Additionally we assume we

know when the treatments are going to be added. This can happen for example in

a pharmaceutical company when another treatment is looking promising but is in a

earlier stage of development and is not yet ready to be evaluated in the planned trial

but can be added later on. The order in which treatments are added is flexible as long

as they are added at the predefined time, one can assume the same variance per active

treatment and they all have the same clinically relevant effect of interest. It is assumed

that interim futility stopping boundaries are adhered to for the design with binding

boundaries. In addition we discuss how to construct a design with non-binding futility

bounds. Unlike the currently developed approaches, the approach proposed allows for

a trial with multiple stages and multiple arms to be designed, so that pre-planned

additional treatments can be added to the trial while still controlling the family wise

error rate (FWER) in the strong sense (Dmitrienko et al., 2009) and achieve suitable

power for the trial. As a result the required sample sizes and other characteristics

can be presented to funders, clinicians and regulators at the design stage of the trial.

Additionally strong control of FWER can be a regulatory requirement when designing

a trial in which additional arms are going to be added. There do however exist other

type of error controls, such as pairwise error rate (PWER) and the false discovery rate,

that one may want to consider. (Wason et al., 2014; Choodari-Oskooei et al., 2020; Cui

et al., 2023; Robertson et al., 2023c)

We focus our investigation on two settings: (i) each active treatment has the same

number of stages; (ii) there is a fixed total number of stages. Using these two settings,

and motivated by a recent platform trial, FLAIR, (Howard et al., 2021) that had a treat-

ment arm added during the trial we demonstrate how one could design a clinical trial
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with the proposed methodology. We derive the stopping boundaries, the sample sizes

and the expected sample sizes for trials based on some of the operating characteristics

of FLAIR, and study the effect on errors when deviating from the planned additions.

These two settings are compared to running separate trials, using the MAMS design

by Magirr et al. (2012), using the original trial design without adjusting for additional

treatments and using a platform design that controls the PWER at a specified level.

2.2 Method

2.2.1 Setting

Consider a clinical trial with up to K experimental arms that will be tested against one

common control arm with K? experimental arms starting at the beginning of the trial,

where K? ≥ 1, and K − K? arms being added later. The primary outcome of each

patient is independent and normally distributed with known variance σ2. In total, the

control treatment is recruited for a maximum of J0 stages with there being a maximum

of J0− 1 interim analyses, with an analysis taking place at the end of each stage. Each

of the active treatments can have any number of stages (provided it is pre-specified and

their total number is less than or equal to J0 − 1) which coincide with the analysis for

the other treatments. Each additional treatment can be added at any of the interim

analyses as long as this is pre-planned at the design stage of the trial development.

When comparing the control to the active treatments only the concurrent controls are

used in the comparisons. This means only participants recruited to the control arm at

the same time as the active arm are used in the comparisons. Throughout this work we

assume there are no time trends across the trial. The effect of time trends are discussed

in Section 2.5 and in the Supporting Information (Section A.11).

The null hypotheses of interest are H01 : µ1 ≤ µ0, H02 : µ2 ≤ µ0, ..., H0K : µK ≤ µ0,

where µ1, . . . , µK are the mean responses on the K experimental treatments and µ0
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is the mean response of the control group. The global null hypothesis, µ0 = µ1 =

µ2 = . . . = µK is denoted by HG. Each of the K hypotheses is potentially tested

at a series of analyses indexed by j = 1, . . . , Jk where Jk is the maximum number of

analyses for a given treatment k = 1, . . . , K. Let J denote the maximum number of

planned analyses of any of the active treatments, J = maxk=1,...K(Jk). Let s(k) be the

stage before treatment k is added to the trial and define the vector of adding times

by S = (s(1), . . . , s(K)). Therefore for treatments that start at the beginning of the

trial s(k) = 0. We denote the ratio of patients recruited to treatment k by the end of

its jth stage by rk,j and denote nk,j as the number of patients recruited to treatment

k by the end of its jth stage with k = 0 denoting the control treatment. Additionally

nk,0 = 0 for all k = 0, 1, . . . , K. The number of patients recruited to the first stage

of treatment k is defined as nk therefore nk,1 = nk. The relationship between rk,j and

nk,j is nk,j = n0
rk,j
r0,1

. This allows the ratio to be chosen before the required sample size

is known. The total sample size of a trial is denoted by N , where the maximum total

planned sample size, max(N) =
∑K

k=0 nk,Jk . At analysis j for treatment k, to test H0k

it is assumed that responses, Xk,i, from patients i = 1, . . . , nk,j are observed, as well as

the responses X0,i from patients i = n0,s(k) + 1, . . . , n0,s(k)+j, which are the outcomes of

the patients allocated to the control which have been recruited since treatment k has

been added into the trial up to the jth analysis of treatment k. The test statistics

Zk,j =
n−1
k,j

∑nk,j
i=1 Xk,i − (n0,s(k)+j − n0,s(k))

−1
∑n0,s(k)+j

i=n0,s(k)+1 X0,i

σ
√

(nk,j)−1 + (n0,s(k)+j − n0,s(k))−1
,

are used to test hypothesis H0k. Upper and lower stopping boundaries, Uk =

(uk,1, . . . , uk,Jk) and Lk = (lk,1, . . . , lk,Jk), are used for the decision-making. The bound-

aries uk,1 and lk,1 are used at the first analysis of treatment k once it has entered the

trial. The decision-making is done as follows. If Zk,j > uk,j then H0k is rejected and the

trial stops with the conclusion that treatment k is superior to control. If Zk,j < lk,j then
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treatment k is dropped from all subsequent stages of the trial. If the Z statistics for all

the treatments fall below their lower boundary, the trial stops for futility. Treatment

k and control continues to its next stage j + 1 if neither of these conditions are met,

so lk,j ≤ Zk,j ≤ uk,j. The boundaries are found to control the family wise error rate

(FWER) in the strong sense at a specified desired level α which is defined as

P (reject at least one true H0k under any null configuation, k = 1, . . . , K) ≤ α.

While this work constructs a general procedure of adding, we additionally focus on

two special cases - see Figure 2.2.1. Setting 1 is the case that each active treatment

is planned to have the same number of stages regardless of when it is added. Under

Setting 1 we add the additional constraint of fixed sample allocation ratio across all the

treatments and stages. This therefore avoids any change in allocation ratio between the

control and other treatments. Setting 2 is the case with a set total number of stages

with the later a treatment is added the fewer stages are planned for it. It is worth

noting that Setting 2 strict error rate control cannot be guaranteed if there are time

trends due to changes in the allocation ratio throughout the design, which is shown in

the Supporting Information (Section A.11). Therefore this is an advantage of Setting

1, which has no change in allocation ratio. Note in Setting 1, J1 = . . . = JK = J and

J0 = max(S) + J and in Setting 2, J0 = J and Jk = J − s(k).

2.2.2 Strong control of FWER

Following the method of Dunnett (1955), one can exploit the correlation between the

test statistics arising from the common control responses. This description follows

Magirr et al. (2012). For any vector of constants Θ = (θ1, . . . , θK) and k = 1, . . . , K,
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Setting 1

Control

Treatment 1

Treatment 2

Setting 2

Control

Treatment 1

Treatment 2

Figure 2.2.1: Examples of the two settings for a two active arm setting with J0 = 3
and Treatment 2 being added at stage 1. For Setting 1, both active treatments get 2
interim analyses, and for Setting 2, Treatment 2 is added after one stage and, hence,
has one fewer stage. The grey represents areas of possible shared control group. The
dashed black line represents an interim analysis.

j = 1, . . . , Jk, letting Ik,j = σ2(n−1
k,j + (n0,j+s(k) − n0,s(k))

−1), define the events,

Ak,j(θk) =[Zk,j < lk,j + (µk − µ0 − θk)I1/2
k,j ],

Bk,j(θk) =[lk,j + (µk − µ0 − θk)I1/2
k,j < Zk,j < uk,j + (µk − µ0 − θk)I1/2

k,j ].

If µk − µ0 = θk for k = 1, . . . , K, the event that H01, . . . , H0K all fail to be rejected is

equivalent to

R̄K(Θ) =
⋂

k∈{m1,...,mK}

(
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ak,j(θk)

])
,

with the convention that
⋂0
i=1 = Ω where Ω is the whole sample space, m1 ∈ {1, . . . , K}

and mk ∈ {1, . . . , K}\{m1, . . . ,mk−1}. Therefore {m1, . . . ,mK} = {1, . . . , K}, so each

mk denotes one of the K treatments. The notation mk is used to reflect the fact that the

timing in which each treatment is added affects the FWER so all possible orders of the

treatments need to be considered. The events Ak,j(θk) and Bk,i(θk) can be rearranged
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so the following holds

P (R̄K(Θ)) =

∫ ∞
−∞

. . .

∫ ∞
−∞

[
K∏
k=1

(
Jk∑
j=1

Φj(Lk,j(θk), Uk,j(θk),Σk,j)

)]
dΦ(t1) . . . dΦ(tJ0),

(2.2.1)

where

tj =

∑n0,j

i=n0,(j−1)+1(X0,i − µ0)

σ
√
n0,j − n0,(j−1)

. (2.2.2)

Note that tj is the standardized average deviation of control observations to the true

mean and, unlike Zk,j does not compare treatment means. Here Φ(·) denotes the

standard normal distribution function, and Φj(Lk,j(θk), Uk,j(θk),Σk,j) denotes the result

of integrating the j-dimensional normal density with mean zero and correlation matrix,

Σk,j with the (i, i?)th element (i ≤ i?) of Σk,j is
√

rk,i
rk,i?

. This gives the correlation

matrix structure, for treatment k up to its jth stage as,

Σk,j =



1
√

rk,1
rk,2

. . .
√

rk,1
rk,j√

rk,1
rk,2

1 . . .
√

rk,2
rk,j

...
...

. . .
...√

rk,1
rk,j

√
rk,2
rk,j

. . . 1


.

Similar correlation matrices can be seen for other settings (Magirr et al., 2012; Urach

and Posch, 2016; Stallard and Todd, 2003; Serra et al., 2022). The integration is over

the region defined by a vector of lower limits Lk,j(θk) = (lk,1(θk), . . . lk,j−1(θk),−∞),
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and upper limits, Uk,j(θk) = (uk,1(θk), . . . uk,j−1(θk), lk,j(θk)), where

lk,j(θk) =lk,j

√
1 +

rk,j
r0,s(k)+j − r0,s(k)

+

√
rk,j

r0,s(k)+j − r0,s(k)

(
j∑
i=1

ts(k)+i

√
r0,s(k)+i − r0,s(k)+(i−1)

)
−
θk
√
nk,j

σ
,

uk,j(θk) =uk,j

√
1 +

rk,j
r0,s(k)+j − r0,s(k)

+

√
rk,j

r0,s(k)+j − r0,s(k)

(
j∑
i=1

ts(k)+i

√
r0,s(k)+i − r0,s(k)+(i−1)

)
−
θk
√
nk,j

σ
.

Note that, in contrast to Magirr et al. (2012), the proposed approach accounts for

the fact that treatments can be added at different points and hence lk,j(θk) and uk,j(θk)

depend on s(k). It also allows for different stopping boundaries per treatment: Ak,j(θk)

and Bk,j(θk) depend on lk,j and uk,j and there are different maximum numbers of stages

per treatment. Then, one can obtain the following result.

Theorem 2.2.1. For any Θ, under the conditions above, P (reject at least one true H0k|

Θ) ≤ P (reject at least one true H0k|HG).

The proof of Theorem 2.2.1 is given in the Supporting Information (Section A.1).

It follows from Theorem 2.2.1 that the FWER is maximized under the global null

hypothesis.

Corollary 2.2.2. Setting Θ = 0 and finding P (R̄K(Θ)) such that P (R̄K(Θ)) = 1− α

controls FWER in the strong sense at level α.

Proof. Under the global null hypothesis µ0 = µk for all k ∈ 1, . . . K so that Θ =

(0, . . . , 0) = 0. Using Theorem 2.2.1 FWER is controlled in the strong sense at level α

if P (R̄K(0)) = 1− α.

As a result of Corollary 2.2.2, the stopping boundaries under the global null hy-

pothesis, which result in P (R̄K(0)) = 1−α, will guarantee strong control of FWER at

level α.
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As mentioned above, the proposed methodology allows for different critical bound-

aries to be used for each treatment k as seen in Equation (2.2.1). To find the boundaries

one can use the boundary functions Lk = fk(ak) and Uk = gk(ak) to reduce the num-

ber of unknowns, where fk and gk are the functions for the shape of the upper and

lower boundaries respectively and ak are scalar parameters specific to each active treat-

ment. To allow for different shape stopping boundaries for each treatment fk and gk

can depend on k. Examples of boundary functions include the O’Brien and Flemming

boundaries (O’Brien and Fleming, 1979), Pocock boundaries (Pocock, 1977), and tri-

angular boundaries (Whitehead, 1997). One can use a single parameter a to find the

boundaries so fk = fk′ , gk = gk′ and ak = ak′ which is similar to the method presented

in Magirr et al. (2012), with the advantage of there being an equal number of unknowns

to equations. However, using the same boundaries for each treatment arm, regardless

of when it was added, can result in different probabilities of dropping each treatment

which might be undesirable. It may be of interest in having different stopping boundary

shapes for each treatment, as the same shape for each treatment may not be optimal

as the trial may need greater sample size compared to a design with different stopping

boundary shapes as seen in the Supporting Information (Section A.8). This requires

using Lk = fk(ak) and Uk = gk(ak) which results in K scaler parameters to be found,

a = (a1, . . . , aK).

One way to calculate ak for all k = 1, . . . , K, is to introduce the requirements

on the pairwise error rate (PWER) being the same for all active treatments, where

PWER is the probability of rejecting the null hypothesis H0k incorrectly. The PWER

for treatment k is the maximum type I error for that given treatment. The PWER

denoted by α?k for treatment k is

α?k = 1−
Jk∑
j=1

Φ(U?
k,j, L

?
k,j, Σ̈k,j), (2.2.3)
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with L?k,j = (lk,1, . . . , lk,j−1,−∞), U?
k,j = (uk,1, . . . , uk,j−1, lk,j), and covariance matrix

Σ̈k,j. The (i, i?)th element (i ≤ i?) of Σ̈k,j is

(√
r−1
k,i + (r0,s(k)+i − r0,s(k))−1

√
r−1
k,i? + (r0,s(k)+i? − r0,s(k))−1

)−1(
1

rk,i?
+

1

r0,s(k)+i? − r0,s(k)

)
.

A more explicit version of this equation can be seen in the Supporting Information

(Section A.3). To ensure equal PWER across all the treatments and ensure FWER is

controlled the iterative approach in Algorithm 1 is proposed. This approach yields the

desired properties as with each iteration we update every ak so that PWER is equal for

all the active treatments and then using step H we ensure that the FWER is controlled

by using Corollary 2.2.2.

For the case of non-binding boundaries, Algorithm 1 with the boundaries for futility

set to minus infinity for all the stages, fk(ak) = −∞ for all ak and fk for k = 1, . . . , K,

when calculating the FWER can be used. The sample size can then be found using the

resulting upper boundaries and the non-binding futility bounds.

Algorithm 1 Iterative approach to compute the stopping boundaries

0 Begin by assuming a = (a1, a1, . . . , a1) and find a1 such that a controls FWER
at a specified level, α, using Equation (2.2.1) with Θ = 0. Then repeat the
following iterative steps (Step 1 to Step H) until each element of a no longer
changes between iterations within some small ε:

1 Find a2 such that α?2 = α?1.

...

H-1 Find aK such that α?K = α?1.

H Find the scalar parameter a′ such that a = a′(a1, a2, . . . , aK) results in Equation
(2.2.1) with Θ = 0 equalling α. Now the updated value for ak is a′ak.
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2.2.3 Power and sample size for each treatment

We assume that any given treatment k′, is recommended when (i) its test statistic

crossed the corresponding upper boundary, and (ii) its test statistic is the largest one,

where k′ = 1, . . . , K. The sample size is found such that the probability of rejecting

H0k′ achieves power 1 − β when µk′ − µ0 = θ′ and µk − µ0 = θ0 for k 6= k′ where θ′ is

the clinically interesting treatment effect and θ0 is the highest uninteresting treatment

effect. This setting is known as the least favourable configuration for treatment k′

(which is denoted as LFCk′ Thall et al., 1988; Magirr et al., 2012). The aim of the trial

design is to find the required sample size to ensure that the power under the LFCk is

found to be greater than or equal to a pre-specified level (1− β) for all k = 1, . . . , K.

Let Πk′,J ′ , denote the probability that under the LFCk′ , no null hypotheses are

rejected before the J ′th analysis for treatment k′, with treatment k′ not being stopped

for futility at any of these analyses, and at analysis J ′, H0.k′ being rejected and treatment

k′ being recommended, where J ′ = 1, . . . , Jk′ . The power for rejecting treatment k′ is

then given by Πk′,1 + Πk′,2 . . . + Πk′,Jk′
. To obtain Πk′,J ′ , we find the probability that

H0k′ is not rejected before analysis J ′ and treatment k′ is not dropped for futility before

analysis J ′. We also need to find the event that H0k′ is rejected at analysis J ′. Finally

we need the probability that H0k is not rejected before analysis J ′ for treatment k′

for all k ∈ 1, . . . , k′ − 1, k′ + 1, . . . K. Once these are found one can find Πk′,J ′ . The

equations for these steps to calculate Πk′,J ′ are given in the Appendix.

To ensure that all the experimental treatments achieve the pre-specified power under

the corresponding LFCk′ , the sample size must be found in order for Πk′,1 + Πk′,2 . . .+

Πk′,Jk′
≥ 1 − β for all k′. This therefore leads to Algorithm 2 which should be used

for Setting 1. This algorithm ensures equal allocation for all the treatments, therefore,

rk,j = rk′,j for all k, k′ = 0, . . . , K and j = 1, ..., J and additionally for the control

treatment rk,j = r0,s(k)+j − r0,s(k) for all k = 1, . . . , K. As a result n1 = nk for all

k = 0, . . . , K. When using Algorithm 2 one will use integer values of n1. One finds n1
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so that Πk,1 + Πk,2 . . .+ Πk,Jk ≥ 1−β for all k = 1, . . . , K. This ensures that the power

for every treatment is at least 1 − β. The value of a only needs to be calculated once

as the allocation ratio is fixed, so the original boundaries calculated will always control

the FWER, throughout the algorithm.

Algorithm 2 An approach to compute the sample size for Setting 1

1 Begin by setting nk = 1 for all k,∈ 0, . . . , K, then calculate a using Algorithm 1.

2 Increase n1 by 1, and set nk = n1 for all k ∈ 0, . . . , K, until Πk,1 +Πk,2 . . .+Πk,J ≥
1− β for k = 1, . . . , K.

If one wishes to have equal power for each treatment as we do for Setting 2 then

one needs to use an iterative approach. This is due to treatments potentially starting

at different times and having different number of stages, each treatment may require

a different number of patients to achieve the same power. As changing the sample

size of one treatment affects the power of another, an iterative approach is proposed

to calculate the required sample size per treatment per stage. Specifically, to have all

the treatments controlled at the same specified power, 1 − β under their LFCk′ , one

needs to define n = (n0, . . . , nK), then by assuming each nk can take any real value,

use Algorithm 3. The allocation ratios are adjusted at the final step of the algorithm

to allow the control to have the same number of patients recruited to it as the active

treatment with the highest recruitment rate for that given stage. The boundaries are

now recalculated in order to control the FWER as the allocation ratio has changed.

The allocation ratios are pre-defined at the end of the algorithm so are independent

of the data collected in the trial. These alterations during the algorithm ensure that

the power and FWER is controlled. Once n is found using this Algorithm 3, round up

each value of n to its nearest integer, then recalculate a with these new values for n to

account for the fact that the ratios have now also changed between treatments.
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Algorithm 3 Iterative approach to compute the sample size which is used for Setting
2

0 Begin by assuming nk = 1 for all k,∈ 0, . . . , K then calculate a using Algorithm 1.
Find n1 such that Π1,1 + Π1,2 . . .+ Π1,J1 = 1−β with nk = n1 for all k ∈ 0, . . . , K
and update n. Then repeat the following iterative steps (Step 1 to Step H+1)
until each element of n no longer changes between iterations within some small ε:

1 Find n1 such that Π1,1 + Π1,2 . . .+ Π1,J1 = 1− β.

2 Find n2 such that Π2,1 + Π2,2 . . .+ Π2,J2 = 1− β.

...

H Find nK such that ΠK,1 + ΠK,2 . . .+ ΠK,JK = 1− β.

H+1 Find r0,1, . . . r0,J0 , r1,1, . . . , rk,Jk and n0 based on n1, . . . , nK , then recalculate a
using Algorithm 1.

2.2.4 Sample size distribution and Expected sample size

The distribution of the sample size and expected sample size can both be calculated by

finding the probability of every possible outcome of the trial denoted by PJ̃ ,Q. Define

J̃ = (j̃(1), . . . , j̃(K)) with j̃(k) = 1, . . . , Jk as the point in which treatment k would

finish being tested, ignoring the possibility that the trial has already stopped early as

a different treatment is found which is superior to the control. This is done in order to

remove the dependence between each active arm. We define Q = (q(1), . . . , q(K)) with

q(k) = ∞ if treatment k goes below the lower stopping boundary at point j̃(k) and

q(k) = 1, if treatment k goes above the upper stopping boundary at point j̃(k). Due to

ignoring the possibility of the trial already stopping early, every active treatment will

either stop for futility or efficacy therefore q(k) can only take one of two values. We

find

PJ̃ ,Q =

∫ ∞
−∞

. . .

∫ ∞
−∞

K∏
k=1

[
1{q(k) = 1}Φ(L+

k,j̃(k)
(θk), U

+
k,j̃(k)

(θk),Σk,j̃(k))

+ 1{q(k) =∞}Φ(Lk,j̃(k)(θk), Uk,j̃(k)(θk),Σk,j̃(k))

]
dΦ(t1), . . . , dΦ(tmax(J̃+S)),



CHAPTER 2. PLATFORM DESIGN FOR FWER CONTROL 37

where U+
k,j = (uk,1(θk), . . . uk,j−1(θk),∞) and L+

k,j = (lk,1(θk), . . . lk,j−1(θk), uk,j(θk)) and

where 1{·} is an indicator function. The PJ̃ ,Q are then associated with their given total

sample size NJ̃ ,Q for that given J̃ and Q.

NJ̃ ,Q =

( K∑
k=1

nk,max(min(j̃(k)+s(k),(J̃+S)◦Q)−s(k),0)

)
+ n0,min(max(J̃+S),(J̃+S)◦Q),

where ◦ is the scalar product therefore min((J̃+S)◦Q) = mink=1,...,K((j̃(k)+s(k))q(k)).

To obtain the sample size distribution each value of J̃ and Q which result in the same

value of NJ̃ ,Q is associated with its corresponding PJ̃ ,Q. This set of PJ̃ ,Q is then summed

together to give the probability of the realisation of this sample size. To find the sample

size distribution for each active arm one can associate nk,max(min(j̃(k)+s(k),(J̃+S)◦Q)−s(k),0)

with its corresponding PJ̃ ,Q, and this can similarly be done for the control treatment.

The expected sample size for N for a given Θ, E(N |Θ), can be found by summing up

every possible combination of J̃ and Q,

E(N |Θ) =

Jk∑
j̃(k)=1

k=1,2,...,K

∑
q(k)∈{1,∞}
k=1,2,...,K

PJ̃ ,QNJ̃ ,Q.

2.3 Numerical Evaluations

2.3.1 Motivating trial

In recent years, there have been several platform trials conducted and their use ap-

pears to be increasing since the COVID-19 pandemic (Stallard et al., 2020). One

recent platform trial example is FLAIR (Howard et al., 2021). It is a randomised,

controlled, open-label, confirmatory trial in chronic lymphocyte leukaemia. When de-

signing FLAIR there was the plan to add an active treatment during the trial as well

as an interim analysis halfway through the planned sample size for each treatment. In

the actual trial, two additional arms were added, one being an additional control arm.
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Due to the nature of adding both additional experimental and control, the design for

the original study focused on the pairwise type I error.

Motivated by the FLAIR study to assume a realistic trial setting that could be of

use in practice, we now design a hypothetical trial that matched some of the FLAIR’s

aspects but aims at the FWER control. Specifically, we assume that one active and

a control arm begin the trial and one additional active treatment arm is planned to

be added mid-trial, and apply the proposed methodology to control the FWER in the

strong sense. One may argue that controlling FWER in this setting is essential as

the trial aimed to test different combinations of treatments with the same common

compound for all the active treatments (Wason et al., 2014), as in FLAIR the active

treatments were Ibrutinib with Rituimab and Ibrutinib with Venetoclax with the orginal

control being a combination of Fludarabine, Cyclophophamide and Rituxumab (Howard

et al., 2021).

Based on the planned effect given in FLAIR, we assume the interesting treatment

difference to be θ′ = − log(0.69), σ = 1, and the uninteresting treatment effect to be

θ0 = − log(0.99). Note that the original trial used the time-to-event endpoint and 0.69

corresponds to the clinically interesting hazard ratio (HR) between the experimental

and control. Given the proposed methodology, we use the normal approximation on

the log HR. Therefore unlike FLAIR our hypothetical trial will look at continuous end-

points. The desired power in FLAIR was 80%, while the type-I error of each treatment

comparison was 2.5% (one-sided). While still targeting the same power, we will use a

more stringent target of 2.5% FWER (one-sided). In line with FLAIR, we use a total

number of stages for both settings to be three. Therefore, in Setting 1, treatments 1

and 2 will both have two stages, whereas, in Setting 2, Treatment 1 will have three

stages and Treatment 2 will have two (see Figure 2.2.1). The interims are equally

spaced for the active treatments across all stages so rk,j = j for k > 0. Informed by

the recruitment to FLAIR, we assume a constant recruitment rate of 21 patients per
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month.

The operating characteristics that will be studied for both methods include the

FWER and power under LFCk. These two are studied to ensure that the trial design

meets the required error control. Other operating characteristics stated include the

maximum number of stages per active treatment arm, denoted by NSk, as well as the

number of patients per arm per stage. Also shown for each setting is the maximum

sample size and duration until the trial is complete as well as the expected sample size

and duration. The duration of the trial is denoted by T . These values are found in

order to compare the different designs.

2.3.2 Design assumptions and parameters for the two consid-

ered settings

Using the methodology in Section 2.2, we will now design two hypothetical trials in-

formed by the FLAIR trial, one using Setting 1 and one using Setting 2. It is assumed

that it is known when the additional treatment will be added, at the end of the first

stage of testing treatment 1. Section 2.4 investigates the case if this assumption is

violated. We assume the same variance and clinically relevant effect of interest for all

the treatments as done, in FLAIR. We make the assumption of no time trends which

is important for Setting 2 due to the allocation ratio changing, with the effect of time

trends shown in the Supporting Information (Section A.11). Additionally, for the re-

sults presented in this chapter, we assume binding boundaries. The qualitatively similar

results for non-binding boundaries are provided in the Supporting Information (Section

A.4).

For both settings each stage for a given active arm has the same number of patients,

so for treatment 2 there is the same number of patients for stage 1 and stage 2. For both

settings triangular stopping boundaries are used (Whitehead, 1997; Wason and Jaki,

2012). For Setting 1 using Algorithm 2 and Algorithm 1, with α = 0.025, 1− β = 0.8,
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θ′ = − log(0.69) and θ0 = − log(0.99), which has two stages for each active treatment,

the following stopping boundaries and sample size are obtained,

U =

2.501 2.358

2.501 2.358

 , L =

0.834 2.358

0.834 2.358

 ,

n1,1 n1,2

n2,1 n2,2

 =

78 156

78 156

 ,

(
n0,1 n0,2 n0,3

)
=

(
78 156 234

)
.

Therefore the maximum sample size is 156+156+234=546. For Setting 2 using the

same parameters as above but with the first active treatment having 3 stages and the

second, which is added later, having 2 stages, using Algorithm 3 and Algorithm 1, the

stopping boundaries and sample size are

U =

2.776 2.453 2.404

− 2.496 2.353

 , L =

0 1.472 2.404

− 0.832 2.353

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

46 92 138

− 77 154

 ,

(
n0,1 n0,2 n0,3

)
=

(
46 123 200

)
.

This results in the maximum sample size of 492. The boundaries for Setting 1 and

Setting 2, along with the sample sizes, are summarised in the first two rows of Table

2.3.2. In Setting 2 there is a change in the allocation ratio for treatment 1 to control

from the first stage to the second and third stage. This change is from 1:1 allocation

for the first stage to 1:1.67 allocation for the last 2 stages, for treatment 1 compare to

the control. The calculations were carried out using R (R Core Team, 2021) with the

method given here having the multivariate normal probabilities being calculated using

the package mvtnorm (Genz et al., 2021) and the outer integrals being calculated using

the quadrature rule with the packages gtools (Warnes et al., 2021) and statmod (Smyth

et al., 2021). Code is available at https://github.com/pgreenstreet/platform-design-with-
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addition-of-arms. Additionally some of the comparison results were obtained using the

R package MAMS (Jaki et al., 2019).

2.3.3 Competing designs

We compare the proposed designs to four alternative methods. All of these are in the

frequentist framework. For brevity, the main focus of the competing designs comparison

will be on the Setting 2 (with the results for Setting 1 provided in the Supporting

Information (Section A.5)). All the competing designs will use the triangular stopping

boundaries as is also used for both Setting 1 and Setting 2. (Whitehead, 1997; Wason

and Jaki, 2012)

The first competing approach is to evaluate each active treatment in completely

separate trials. In line with Setting 2, the first study uses a 3-stage design and the

second uses a 2-stage design. This approach will be referred to as “Separate trials”.

These two trials are run completely separately from one another as can be seen in Table

S4 of the Supporting Information and the allocation ratio in each of these trials is 1

to 1. As a result of them being completely separate trials there is the need to recruit

two sets of control groups, one for each active treatment. Two variations on running

separate trials are studied. The first controls the FWER across both trials using α′,

the error rate for each trial, chosen so that (1 − α′)2 = 0.975. This results in a type I

error for each trial of 1.26%. The second variation does not control the FWER across

the two trials.

The second competing design is the MAMS approach proposed by Magirr et al.

(2012). We will refer to this approach as “MAMS trial”. Note, that under this MAMS

approach, the trial cannot start until all treatments are ready. As this approach requires

equal numbers of stages per treatment, both the results for running a 2 stage and 3

stage trial are presented.

The third competing method uses the same design parameters as originally planned
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for the 2-arm 3-stage trial and then also uses them for the additional treatment. This

approach will be referred to as the “Naive MAMS” as it does not adjust the design

parameters for the added arm. This will also demonstrate the effect of not adjusting a

design for additional arms. We provide the results for both the same maximum sample

size as originally planned, and for the same sample size per arm per stage, nk,j.

The fourth approach is to use a platform trial design that controls the PWER

at 2.5%. This approach will be referred to as the “PWER Platform”. To calculate

the sample size and stopping boundaries for this design one can use Algorithm 2 for

Setting 1 and Algorithm 3 for Setting 2 to find the sample size under the LFC. However

now using an alternative algorithm to find a which is in the Supporting Information

(Section A.15), which only calculates the PWER for each treatment and not the FWER

of the entire trial. In addition a second variation is studied which uses the Bonferroni

correction (Bonferroni, 1936; Choodari-Oskooei et al., 2020) to calculate the PWER

level for each arm, which is known as “Bonferroni Platform”, so the PWER error rate

for each treatment is α/2 = 0.0125.

2.3.4 Results

All the results can be seen in Table 2.3.1. For all the designs the triangular shaped

stopping boundaries are used (Whitehead, 1997; Wason and Jaki, 2012). The first two

rows of Table 2.3.1 shows the proposed design under Setting 1 and 2, respectively with

the Supporting Information (Section A.8) containing the results of using other stopping

boundary shapes. As seen in Table 2.3.1 for Setting 1 the expected sample size varies

between approximately 288.2 and 405.3. The maximum duration of the trial is 26.0

months, and the expected duration varies between 13.7 and 19.3 months. For Setting

2 the expected sample size is between 296.6 and 347.8 depending on the configuration.

This results in a maximum duration of 23.4 months and the expected duration varies

between 14.1-16.8 months.
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Table 2.3.1: Operating characteristics of the proposed design under two settings and
competing approaches: Running trials separate (“Separate Trials”), MAMS design by
Magirr et al. (2012) (“MAMS”), using a “naive” MAMS approach and using a platform
design based on PWER control along with a Bonferroni adjusted version for the FLAIR
trial.

FWER PWER1 LFC1 NS1 max(N) E(N |HG) E(N |LFC1) E(N |LFC2)
PWER2 LFC2 NS2 max(T ) E(T |HG) E(T |LFC1) E(T |LFC2)

Setting 1 0.025 0.013 0.812 2 546 356.2 288.2 405.3
0.013 0.804 2 (26.0) (17.0) (13.7) (19.3)

Setting 2 0.025 0.013 0.802 3 492 303.3 296.6 347.8
0.013 0.803 2 (23.4) (14.4) (14.1) (16.8)

Separate trials 0.025 0.013 0.801 3 626 349.1 405.0 400.6
FWER control 0.013 0.805 2 (29.8) (16.6) (19.3) (19.1)
Separate trials 0.049 0.025 0.807 3 536 302.2 340.1 336.1

no FWER control 0.025 0.803 2 (25.5) (14.4) (16.2) (16.0)
MAMS trial 0.025 0.013 0.804 2 456 280.7 309.8 309.8

2 Stage 0.013 0.804 2 (26.1) (17.7) (19.1) (19.1)
MAMS trial 0.025 0.013 0.805 3 477 258.0 289.4 289.4

3 stage 0.013 0.805 3 (27.1) (16.7) (18.2) (18.2)
Naive MAMS 0.044 0.025 0.804 3 368 219.0 217.3 239.7

same nk,j 0.021 0.564 2 (17.5) (10.4) (10.3) (11.4)
Naive MAMS 0.044 0.025 0.716 3 276 177.2 178.2 190.8
same max(N) 0.021 0.408 2 (13.1) (8.4) (8.5) (9.1)

PWER 0.048 0.025 0.802 3 424 263.8 243.6 291.7
Platform 0.025 0.800 2 (20.2) (12.6) (11.6) (13.9)

Bonferroni 0.024 0.013 0.807 3 496 305.7 299.3 351.1
Platform 0.013 0.800 2 (23.6) (14.6) (14.3) ( 16.7)

Key: E(N |HG), E(N |LFCk), E(T |HG), E(T |LFCk) is the expected sample size and
trial duration under the null and under the LFC for treatment k, respectively.
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Table 2.3.2: The stopping boundaries and sample size of the proposed design under
two settings and competing approaches: Running trials separate (“Separate Trials”),
MAMS design by Magirr et al. (2012) (“MAMS”), using a “naive” MAMS approach
and using a platform design based on PWER control along with a Bonferroni adjusted
version for the FLAIR trial.(

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

) (
l1,1 l1,2 l1,3
l2,1 l2,2 l2,3

) (
n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

) (
n0,1 n0,2 n0,3

)
Setting 1

(
2.501 2.358 −
2.501 2.358 −

) (
0.834 2.358 −
0.834 2.358 −

) (
78 156 −
78 156 −

) (
78 156 234

)
Setting 2

(
2.776 2.453 2.404
2.496 2.353 −

) (
0 1.472 2.404

0.832 2.353 −

) (
46 92 138
77 154 −

) (
46 123 200

)
Separate trial 1

(
2.787 2.463 2.413
− − −

) (
0 1.478 2.413
− − −

) (
53 106 159
− − −

) (
53 106 159

)
FWER control
Separate trial 2

(
2.508 2.364 −
− − −

) (
0.836 2.364 −
− − −

) (
77 154 −
− − −

) (
77 154 −

)
FWER control
Separate trial 1

(
2.480 2.192 2.148
− − −

) (
0 1.315 2.148
− − −

) (
46 92 138
− − −

) (
46 92 138

)
no FWER control
Separate trial 2

(
2.222 2.095 −
− − −

) (
0.741 2.095 −
− − −

) (
65 130 −
− − −

) (
65 130 −

)
no FWER control

MAMS trial
(

2.482 2.340 −
2.482 2.340 −

) (
0.827 2.340 −
0.827 2.340 −

) (
76 152 −
76 152 −

) (
76 152 −

)
2 stage

MAMS trial
(

2.760 2.439 2.390
2.760 2.439 2.390

) (
0 1.464 2.390
0 1.464 2.390

) (
53 106 159
53 106 159

) (
53 106 159

)
3 stage

Naive MAMS
(

2.480 2.192 2.148
2.192 2.148 −

) (
0 1.315 2.148

1.315 2.148 −

) (
46 92 138
46 92 −

) (
46 92 138

)
same nk,j

Naive MAMS
(

2.480 2.192 2.148
2.192 2.148 −

) (
0 1.315 2.148

1.315 2.148 −

) (
46 76 106
31 62 −

) (
46 77 108

)
same max(N)

PWER
(

2.480 2.192 2.148
2.221 2.095 −

) (
0 1.315 2.148

0.741 2.095 −

) (
40 80 120
66 132 −

) (
40 106 172

)
Platform

Bonferroni
(

2.789 2.465 2.416
2.510 2.367 −

) (
0 1.479 2.416

0.837 2.367 −

) (
47 94 141
77 154 −

) (
47 124 201

)
Platform

Comparing the sample size and trial duration for the proposed designs under Set-

ting 1 and 2, under most configurations Setting 2 has lower expected sample sizes, and

requires nearly 50 fewer patients in the maximum sample size to achieve 80% power

while controlling the FWER at 2.5%. This also translates into the shorter duration.

Setting 1 has advantages over Setting 2 under the case when Treatment 1 is superior,

and Treatment 2 has the uninteresting effect. However, the difference in the expected

sample size is around 9 patients and the difference in the expected duration is 0.4

months. For this reason, we will focus on the comparisons with Setting 2 with the

results for Setting 1 provided in the Supporting Information.

The next two rows of Table 2.3.1 show the operating characteristics of running two

separate trials. To match the setting of the FLAIR (and Setting 2), it is assumed that



CHAPTER 2. PLATFORM DESIGN FOR FWER CONTROL 45

the first treatment has three stages while the second has two. The stopping boundaries

and sample size for the separate trials when FWER is controlled are for the first trial,

U =

(
2.787 2.463 2.413

)
, L =

(
0 1.478 2.413

)
,(

n1,1 n1,2 n1,3

)
=

(
53 106 159

)
,

(
n0,1 n0,2 n0,3

)
=

(
53 106 159

)
.

For the second trial,

U =

(
2.508 2.364

)
, L =

(
0.836 2.364

)
,(

n1,1 n1,2

)
=

(
77 154

)
,

(
n0,1 n0,2

)
=

(
77 154

)
.

Therefore the maximum sample size across both trials is 159+159+154+154=626. The

boundaries for separate trials with FWER control and the other competing approaches

along with the sample sizes are summarised in Table 2.3.2. As both trials are completely

separate, each needs their own control group. Under the FWER across these separate

trials controlled, the maximum and expected sample sizes are noticeably larger - with

the difference of 134 patients required to achieve 80% power. Running two separate

trials with the FWER controlled also increases the maximum duration by 6 months, and

the expected duration by 2-5 months, on average, depending on the configuration. The

expected sample size is largest under the least favourable configuration for treatment 1

as both trials are run, as the trials are completely separate. This can be further seen in

the Supporting Information (Section A.7) which gives a breakdown of the probability

each active treatment stops for futility or efficacy at each stage. Furthermore in Table

S4 of the Supporting Information (Section A.7) the probability of stopping at each

stage for the case (Case 1) when treatment 1 has the clinically relevant effect and

treatment 2 has an uninteresting effect is presented. In Table S4 of the Supporting

Information (Section A.7), probability of stopping at each stage for the case (Case 2)



CHAPTER 2. PLATFORM DESIGN FOR FWER CONTROL 46

when treatment 1 has the uninteresting effect and treatment 2 has a clinically relevant

effect. This explains why Case 1 has a larger average sample size compared to Case 2

as is shown in Table 2.3.1 as it can be seen that it takes on average more patients for

a decision to happen in Case 1.

The stopping boundaries and sample size for the separate trials when FWER is not

controlled are for the first trial,

U =

(
2.480 2.192 2.148

)
, L =

(
0 1.315 2.148

)
,(

n1,1 n1,2 n1,3

)
=

(
46 92 138

)
,

(
n0,1 n0,2 n0,3

)
=

(
46 92 138

)
.

For the second trial,

U =

(
2.222 2.095

)
, L =

(
0.741 2.095

)
,(

n1,1 n1,2

)
=

(
65 130

)
,

(
n0,1 n0,2

)
=

(
65 130

)
.

Under two trials not controlling the FWER, the advantage of the proposed design under

Setting 2 still persists. As once again two control groups are needed as there are two

completely separate trials. Two separate trials would require 44 more patients, and the

expected sample size are only nearly 11 patients lower under LFC2 which results in less

than 1 month in recruitment time. Comparing this to the expected sample size under

LFC1 which is around 44 patients lower for Setting 2 which results in a saving in time

of over 2 months.

The second competing method is the MAMS approach proposed by Magirr et al.

(2012) that requires all treatments to start at the same time, and uses the critical values

controlling the FWER, and the sample size achieving 80% power. We consider both 2-

and 3-stage variants for a fairer comparison. The stopping boundaries and sample size
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for the MAMS trial with 2 stages are,

U =

2.482 2.340

2.482 2.340

 , L =

0.827 2.340

0.827 2.340

 ,

n1,1 n1,2

n2,1 n2,2

 =

76 152

76 152

 ,

(
n0,1 n0,2

)
=

(
76 152

)
.

The stopping boundaries and sample size for the MAMS trial with 3 stages are,

U =

2.760 2.439 2.390

2.760 2.439 2.390

 , L =

0 1.464 2.390

0 1.464 2.390

 ,

n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

 =

53 106 159

53 106 159

 ,

(
n0,1 n0,2 n0,3

)
=

(
53 106 159

)
.

The duration until the trial finishes for both includes the time before the trial would be

able to start. This is calculated by assuming that Treatment 2 is ready when planned

for Setting 2 and then calculating the time before this treatment is added. Therefore,

this is the time for the first 92 patients to be recruited - 4.4 months. Under this MAMS

design, the maximum sample size is lower than for the proposed one under Setting 2 (36

and 15 patients for the 2- and 3-stage designs, respectively). The maximum duration,

however, is increased by 3-4 months. The expected duration is also increased for all the

configurations studied with an increase of between 1.4-5 months.

The next comparison method of naively using the original design for a 2 arm 3 stage

trial is shown. The original design is to have 46 patients per arm per stage which results

in 276 patients. Therefore when nk,j is kept the same this results in a maximum sample

size of 368. The stopping boundaries and sample size for the Naive MAMS with the



CHAPTER 2. PLATFORM DESIGN FOR FWER CONTROL 48

same nk,j trial are,

U =

2.480 2.192 2.148

− 2.192 2.148

 , L =

0 1.315 2.148

− 1.315 2.148

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

46 92 138

− 46 92

 ,

(
n0,1 n0,2 n0,3

)
=

(
46 92 138

)
.

For this approach the FWER is inflated by over 75%. The power under LFC1 is

still above the desired level however under LFC2 the power decreases to 56.4% so is

well below the target of 80%. This large decrease is in part caused from the second

treatment only being studied for 2 stages compared to the 3 stages of the first. For the

naive approach where the maximum sample size remains the same there is a change in

sample size for the first treatment’s 2nd and 3rd stages to accommodate the addition of

the new treatment. As a result there is 46 patients on Treatment 1 at stage 1 then this

decreases to 30 for Treatment 1’s final two stages. In order to keep max(N) = 276 then

n2 was set to equal 31 patients. Therefore the stopping boundaries and sample size for

the Naive MAMS with the same max(N) trial with 2 stages are,

U =

2.480 2.192 2.148

− 2.192 2.148

 , L =

0 1.315 2.148

− 1.315 2.148

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

46 76 106

− 31 62

 ,

(
n0,1 n0,2 n0,3

)
=

(
46 77 108

)
.

In this case the FWER is inflated by over 75% and neither the power under the LFC1

or LFC2 is controlled at the desired level. The drop in power for the LFC2 between

Setting 2 and this naive approach is over 35% which is a dramatic loss in power. This

poor result is to be predicted for this naive approach as it does not have bounds designed

to control FWER or the required number of patients to get the desired power for either
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treatment.

The final comparison is a platform design approach with control of the PWER. Two

versions are presented: one without adjustment and one using a Bonferroni correction.

Operating characteristics are shown in Table 2.3.1 and the stopping boundaries and

sample size for the unadjusted PWER platform are,

U =

2.480 2.192 2.148

− 2.221 2.095

 , L =

0 1.315 2.148

− 0.741 2.095

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

40 80 120

− 66 132

 ,

(
n0,1 n0,2 n0,3

)
=

(
40 106 172

)
.

Therefore the maximum sample size is 120 + 132 + 172 = 424. This approach yields

smaller sample size compared to Setting 2 with a decrease of 68 patients for the maxi-

mum sample size. However this approach does not control the FWER, which is inflated

by over 90%. In contrast the stopping boundaries and sample size for the platform

with Bonferroni adjustment, which Choodari-Oskooei et al. (2020) shows gives good

approximation for the FWER, are,

U =

2.789 2.465 2.416

− 2.510 2.367

 , L =

0 1.479 2.416

− 0.837 2.367

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

47 94 141

− 77 154

 ,

(
n0,1 n0,2 n0,3

)
=

(
47 124 201

)
.

Therefore the maximum sample size is 141 + 154 + 201 = 496. Overall the Bonforroni

correction yields similar results to that of Setting 2. However overall as this is not an

exact approach it has resulted in a slightly more conservative control of FWER, and

an increase in sample size: 4 patients for the maximum sample size and 2.4 to 3.3 for
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the expected sample size under the global null and under the LFC for treatment 2,

respectively. Additionally the proposed approach can be used to prove to regulators

that the FWER is controlled in the strong sense.

The results of other common stopping boundary shapes and combinations of these

can be seen in the Supporting Information (Section A.8) for Setting 1 and Setting 2.

In the Supporting Information (Section A.8) the results for the Pocock boundaries

(Pocock, 1977) and the O’Brien and Flemming boundaries (O’Brien and Fleming, 1979)

are given. It can be seen that the O’Brien and Flemming boundaries result in a smaller

maximum sample size, compared to the triangular boundaries and the Pocock results in

very similar sample size to the triangular boundaries. However both boundary shapes

often require a larger expected sample size under all the configurations studied, com-

pared to the triangular boundaries. These results are similar to the MAMS case when

all the arms start at once (Magirr et al., 2012). In the Supporting Information (Sec-

tion A.6) the p-values associated with the stopping boundaries for all the results above

are given. Also in the Supporting Information (Section A.5) the comparison results to

Setting 1 can be seen when using the triangular stopping boundaries. Additionally, the

probability that each arm stops for futility and efficacy at each one of it stages, under

the null and the alternative hypotheses for all the results in Table 2.3.1 are given in Sec-

tion A.7 of the Supporting Information. These tables show how likely each treatment is

to stop under each configuration, therefore, helps to explain the expected sample sizes

given in Table 2.3.1.

Overall this section has shown how the methods proposed in this chapter could work

in order to design a clinical trial in which an additional treatment is added later. In

addition, competing frequentist approaches are studied to see how they compare. It

can be seen that there is benefit to using the method proposed here compared to using

these other methods either with regards to sample size, trial duration or error control.

In addition to this section, in the Supporting Information, Setting 1 is studied if
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one chooses to not have an equal allocation ratio. Therefore one can use the algorithm

for Setting 2 which allows for multiple changes in allocation ratio. The results using

Algorithm 3 for Setting 1 can be seen in the Supporting Information (Section A.9).

However this does introduce the potential issue of time trends which is studied in more

detail for Setting 2 in the Supporting Information (Section A.9). For both Setting 1 and

2 binding stopping rules have been used and have been for the competing approaches

(Li et al., 2020). However in the Supporting Information (Section A.4) we also consider

the effect of using non-binding stopping rules for our two settings. This shows very

similar results with the non-binding stopping boundaries resulting in a small increase

in sample size for Setting 2 with one additional patient needed per arm per stage and

the same sample size for Setting 1.

2.3.5 Sample Size Distribution

The distribution of the total sample size and the sample size of each treatment for

Setting 2 under the global null is given in Figure 2.3.1. Analogous results for Setting 1

can be seen in the Supporting Information (Section A.10) along with the expression for

the probability mass function for the total sample size for Setting 2. The design under

Setting 2 results in the interquartile range of 246 to 292 and median of 292 under the

global null for the total sample size. These figures can be used by the trial team and

given to funders and regulators to help with the communication of how many patients

are likely to be required for the trial.

2.4 Robustness to deviations in the planned adding

In the FLAIR trial, the second active treatment was not added until about three quar-

ters of the way through the recruitment for the first treatment. In this section, the effect

of adding the treatments earlier or later than planned (i.e. at the first interim for the
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Figure 2.3.1: Cumulative distribution functions (CDF) of the number of patients needed
for the trial in Setting 2, under the global null, of the total sample size and for each arm
individually. For example the probability that treatment 1 has stopped by the time it
has had 92 patients recruited to it is 94.2%.

considered example) will be studied using simulations. We consider three approaches

of how a treatment could be added later or earlier to a trial. In all approaches the total

maximum sample size is fixed to be the same. Below, we focus on Setting 2, and similar

results for Setting 1 are given in the Supporting Information (Section A.12).

Approach 1 is to change the timing of the interim analysis for Treatment 1 so it

is conducted when Treatment 2 is added. Once the second active treatment is added,

the allocation ratio for Treatment 1 to control changes as in the original proposed

design. The patients remaining from the total sample size are then shared out across

the phases with respect to the pre-set allocation ratio between each treatment. The

pre-set stopping boundaries are used. Approach 2 follows Approach 1, but instead of

keeping the original boundaries the bounds are recalculated using Algorithm 1 with

the allocation ratios of each treatment at the time the additional treatment is actually

added. Approach 3 keeps the timing of the interim analysis for Treatment 1 unchanged,

and, at this point, the allocation ratio changes.
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The effect of adding the second active treatment to the trial after only recruiting 1

patient to the control, up to recruiting 189 patients to the control, is studied. With the

first treatment receiving the correct number of patients based on its recruitment rate

relative to the controls recruitment rate. i.e 1 patient will have also been recruited to

Treatment 1 before Treatment 2 is added in the earliest example.

Figure 3 shows the resulting FWER, Power and PWER for different times when the

new treatment is added based on 10 million simulations for each case. Figure 2.4.1a

shows how the FWER varies for each one of the approaches with Approach 2 having the

least variation and Approach 1 having the most variation in FWER under the global

null. The maximum inflation happens for Approach 3 of an increase in FWER under

the global null to 2.54% when the second treatment is added after 100 patients are

recruited to the control. For Approach 1 the FWER increases until the planned adding

time and then decreases. Approach 2 stays constantly around the planned FWER and

for Approach 3 the FWER starts below 2.5% and increases until 100 patients, before

starting to decrease. In Figure 2.4.1c the PWER for each treatment can be seen. This

shows which of the treatments has the largest increase or decrease in PWER under each

approach. For example, treatment 1 PWER drops a lot more than treatment 2 under

the first approach.

The changing FWER for Approach 1 and 3 are caused by two opposing forces. The

first of which is when Treatment 1 is added earlier there is a decrease in correlation

between the first interim for Treatment 1 and the rest of its analyses, this is caused by a

decrease in
√
r1,1/r1,2 and

√
r1,1/r1,3. The second, is there is an increase in correlation

between the Z-statistics for Treatment 1 and 2 as there is now an increased number

of shared control patients. These two opposing forces make it difficult to predict what

effect any change will have on the FWER without running the calculations or using

simulations. In order to guarantee that the FWER is controlled therefore either the

second treatment needs to be added when it was planned to be or recalculate the
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Figure 2.4.1: The effect of adding the treatment later or earlier than planned with
respect to the number of patients recruited to the control treatment using three different
approaches for Setting 2 on FWER, power and PWER. With sub-figure (a) showing
the FWER under the global null, in sub-figure (b) showing the power under the LFC
for Treatment 1 and the power under the LFC for Treatment 2, and in sub-figure (c)
showing the PWER for Treatment 1 and the PWER for Treatment 2.
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stopping boundaries for each point as done in Approach 2. This is therefore a potential

shortcoming of Approach 1 and Approach 3. However one could still use Approach 1

and 3 but now adjust the significance level of the test to ensure that under the worst

case the FWER is still controlled.

Considering the power, for all the considered approaches the later the additional

arm is added the lower the power for this arm is. For Approaches 1 and 2, the power

for the Treatment 1 increases the later the additional arm is added whereas the power

remains almost constant for Approach 3. One issue therefore with Approaches 1 and

2 is that power for all the treatments under the LFC is no longer controlled unless

the treatment is added at the preplanned time. However, when using Approach 3,

the power is controlled for both treatments when the treatment is added earlier as

well as the FWER being controlled. This is not always the case as can be seen in

the Supporting Information (Section A.13) which provides an example with higher

uninteresting treatment effect. Higher θ0 results in a greatly increased chance of taking

Treatment 2 forward before the second analysis for Treatment 1 due to θ0 effect on

the sample size of the second active treatment. This reiterates why using the pre-

planned design and assessing the impact of deviations of the plan are crucial. One

potential solution to this problem of controlling the errors when adding the treatment at

a different time to when it was planned is to recalculate all design parameters (including

the sample size).

This section has highlighted how robust this method is to change with regards to

inflation of FWER. However it has also shown the importance of using the original

plan in order to control power under the LFC. Therefore it is important when using

this design to try to ensure that the additional treatment will be ready for the pre-

planned addition time to achieve the pre-planned power for each treatment. One key

point is that if the new treatment is not added to the trial at all, the design will

still guarantee control of FWER and power for the treatments already in the trial.
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This is because the bounds are designed to control FWER across all the hypotheses

therefore by not adding a treatment and therefore removing a hypothesis this reduces

the FWER maximum value. In the Supporting Information (Section A.14) we provide

a simulation study looking at the effect of not adding the second treatment for both

Setting 1 and Setting 2. This shows for the motivating example that the FWER and

power are controlled if the additional arm is not added, however the bounds are highly

conservative for the FWER. Furthermore by using the original plan this removes the

bias potentially caused by changing when the additional treatments are added, in order

to benefit treatments already in the trial.

2.5 Discussion

In this chapter, a general design for adding additional treatments in a pre-planned

manner is developed and explored. This design ensures strong control of the FWER

and power under the least favourable configuration and allows for interim analyses under

the assumption of no time trends. Both sample size distribution and expected sample

size can be calculated. Iterative approaches are given to allow for multiple stopping

boundary shapes and to allow for different numbers of patients on each treatment

depending on when the treatment is added to the trial. Two different designs based

on FLAIR for two special cases of our setting are presented. These designs are then

further explored where the effect of adding treatments later or earlier than planned is

studied and the effect of not adding a treatment is also discussed.

Overall the method proposed here, which builds on the work of Magirr et al. (2012),

has shown that running a platform trial where treatments are added at later points

can result in a considerably more favourable design to running completely separate

trials with respect to maximum and expected sample size. This approach has shown

that it can be worthwhile starting a trial earlier with the available treatments and
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then planning to add treatments later, compared to waiting until all are ready then

beginning the trial with respect to the time it takes before the trial concludes. This

is true both when there is either a constant or increasing recruitment rate. When

there is an increasing recruitment rate the time taken to recruit the additional patients

for our approach, compared to the MAMS approach, requires less time per patient as

these patients will be recruited at the fastest rate within the trial, whereas the relative

wait time before the MAMS trial can start does not change. Also shown is that if

one only controls the PWER at the desired level within a platform design then this

will likely require fewer patients, however, the FWER will not be controlled at the

desired level. Furthermore if one instead uses a Bonferroni correction with PWER

control then this will result in a slightly conservative design so potentially requiring

more patients, however this can offer a good approximation (Choodari-Oskooei et al.,

2020), for calculating the stopping boundaries required to control the FWER at the

desired level. However our proposed approach can be used to prove that the FWER is

controlled in the strong sense at the desired level which can be a regulatory requirement,

(EMEA, 2002; EMA, 2016; FDA, 2019, 2018), unlike the Bonferroni correction which

is overly conservative.

In Section 2.3.4 it was seen that using Setting 2 compared to Setting 1 can be

potentially beneficial with regards to the trials sample size and duration. This makes

intuitive sense as this results in increased correlation between the test statistics as there

are more shared controls which results in a reduction in the FWER of the trial for the

given boundaries. This is likely also caused in part by the ability to change the allocation

ratio for Setting 2, so for treatment 1 against control, in the motivating example, this

brings it closer to the optimal allocation ratio for a multi-arm study (Dunnett, 1964).

Additionally the requirement for Setting 1 to have consistent allocation ratio results in

the earlier treatment being over-powered compared to Setting 2.

Section 2.4 demonstrated how robust our method is to changes in when the treat-
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ment is added especially when it comes to FWER with only minimum inflation at any

point. This is especially important as in reality it can be very difficult in practice to

add the arms when initially planned. This can be caused by multiple reasons such

as delays in development of the additional treatment or unpredicted recruitment rates.

Therefore one could use our method and if need be add the additional treatment a little

later then planned. However if there is no space for even small inflation in FWER then

one could use Approach 2 described in Section 2.4. Due to already planning on having

an additional treatment using our approach there will be a less detrimental effect on

power due to the larger planned maximum sample size and the fact the design already

has stopping boundaries that account for the addition of treatments. Also discussed

was that if the new treatment is not added to the trial at all, the design will still guar-

antee control of FWER and power for the treatments already in the trial and in the

Supporting Information (Section A.14) there is a simulation study looking at the effect

of not adding the second treatment for both Setting 1 and Setting 2.

In this chapter it has been assumed that the total number of arms and the timing

of adding to the trial is known. Whereas this may not be the case. However this can

happen for example in a pharmaceutical company when another treatment is looking

promising but is in a earlier stage of development but there are other treatments ready

to start being tested. Similar to the Naive MAMS seen in Section 2.3 if one would add

more arms than planned there would be loss in power for each arm and inflation in

FWER.

Throughout this chapter only concurrent controls are used, as it has been argued

that “if strict error rate control is required then non-concurrent control data should

not be used” (Lee and Wason, 2020). However if one does wish to use non-concurrent

controls one could look into using a regression model approach (Lee and Wason, 2020)

or a network meta-analysis approach (Marschner and Schou, 2022). One could also look

into other approaches which are no longer fully contained in the frequentist framework
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(Saville et al., 2022; Wang et al., 2022).

When using Setting 2 one also needs to be careful to consider if there are any time

trends across the trial (Roig et al., 2022) as time trends can result in strict error rate

control no longer being guaranteed. This is because of the change in allocation ratio

between the control and the active treatments. This is the same issue faced by any trial

design in which there is a change in the allocation ratio (Roig et al., 2024). The effect

of both a linear and step function time trend are studied in the Supporting Information

(Section A.11). As shown here this can cause an inflation in FWER and a loss in

power, so time trends can be highly detrimental. However in addition in this section

we explore a model based approach for tackling this. Further to this we discuss the

potential issues with this model approach for unknown time trends therefore suggest

that one could instead use Setting 1 where there is no change in allocation ratio. An

additional method one could also consider is using the weighted approach (Burnett

et al., 2020).

In this chapter we assumed that an interim analysis is conducted at the time that

a new treatment is added. This not only simplifies calculations, but is also sensible as

if a new treatment is being added to the trial then the other treatments in the trial

may as well also be studied at this point. This has two benefits, the first is there is the

opportunity for a treatment to be declared superior to the control before recruitment

of the new treatment starts. The second is it allows the study of all the patients on the

control treatment from before the additional treatment is added, so potentially making

it easier at later stages to know which controls are concurrent. In this work boundary

functions were used, however, one can follow the ideas in Magirr et al. (2012) to use

spending functions as well.

PWER was used in order to calculate a1, a2, . . . , aK in order to share the FWER out

among the treatments. This was used as it ensures the highest possible probability of

rejecting a null hypothesis is the same for all treatments. However there are a multitude
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of different ways the FWER could be shared such as having: the probability of rejecting

a null hypothesis under the global null the same; or the probability that a treatment

is taken forward to the next phase the same. One may also want to consider one of

these approaches. To do this the same iterative approach as given in Section 2.2.2

with a different Equation (2.2.3) can be used. In addition to this one may also want

to consider controlling a less strict error measure, such as just the false discovery rate

(FDR) of the trial (Wason et al., 2014). This can be done in the same framework as

given in Algorithm 1, now replacing FWER for FDR control.

In Section 2.2 we find sample size under the least favourable configuration, because

in this work the focus was on the trial stopping once a treatment is found superior.

As a result one wants to ensure that the treatment taken forward has a clinically

relevant effect (Magirr et al., 2012). However if one is going to continue to look at the

remaining treatments after one is taken forward then one instead may wish to consider

the conjunctive, disjunctive or pairwise power (Serra et al., 2022; Urach and Posch,

2016; Choodari-Oskooei et al., 2020; Royston et al., 2011).

When calculating the expected sample size every possible outcome of the trial was

enumerated resulting in a very computationally costly procedure. In Section A.2 of the

Supporting Information a more efficient approach is provided for the computation of

the expected sample size. The cost of this efficiency is that the algorithm does not yield

the full sample size distribution in addition to the expected sample size.

An area for further research is deciding whether to wait for all the treatments to

be ready or to start the trial with the ability to add preplanned treatments later. A

lot of factors need to be considered when choosing this such as: recruitment time,

recruitment cost, time left before all the treatments are ready, and the cost of delaying

development of existing treatments. Therefore an area for further research from this

chapter is looking at how a decision framework, such as the one discussed in Lee et al.

(2019), could be used.
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Some of the potential limitations with this approach are that it assumes normally

distributed data. By using asymptotic normality as discussed in Jaki and Magirr (2013),

other endpoints can also be used, this would include time-to-event endpoints which were

used in the original FLAIR trial (Howard et al., 2021). Another area is the fact it is

assumed that the common variance is known. However using an ad hoc approach such

as the one in Magirr et al. (2012) can also be used to transform individual test statistics

to combat this issue.

2.6 Appendix

2.6.1 How to calculate Πk′,J ′

To obtain Πk′,J ′ , we find the probability that H0k′ is not rejected before analysis J ′

and treatment k′ is not dropped for futility before analysis J ′ assuming t1, . . . , ts(k′)+J ′

and vJ ′ are known, where t is defined in Equation (2.2.2) and vJ ′ =
X̄k′,J′−µk′

σ√
nk′,J′

, with

t1, . . . , ts(k′)+J ′ and vJ ′ and then integrate over every possible value as can be seen

below. This probability is ΦJ ′−1(L̃k′,J ′−1(θ′), Ũk′,J ′−1(θ′), Σ̃k′,J ′−1), where L̃k′,J ′−1(θ) =

(l̃k′,1(θ), . . . l̃k′,J ′−1(θ)) and Ũk′,J ′−1(θ) = (ũk′,1(θ), . . . ũk′,J ′−1(θ)). The (i, i?)th element

(i ≤ i?) of the correlation matrix Σ̃k′,j is

√
rk′,i(rk′,J′−rk′,i? )

rk′,i? (rk′,J′−rk′,i)
and

l̃k′,j(θ) =

√
rk′,J ′

rk′,J ′ − rk′,j

(
lk′,j(θ)− vJ ′

√
rk′,j
rk′,J ′

)
,

ũk′,j(θ) =

√
rk′,J ′

rk′,J ′ − rk′,j

(
uk′,j(θ)− vJ ′

√
rk′,j
rk′,J ′

)
.
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The event that H0k′ is rejected at analysis J ′ assuming that t1, . . . , ts(k′)+J ′ and vJ ′ are

known and where 1{·} is an indicator function, is

ξJ ′ =1{ vJ ′√
nk′,J ′

−
∑J ′

i=1 ts(k′)+i
√
n0,s(k′)+i − n0,s(k′)+i−1

n0,s(k′)+J − n0,s(k′)
+
θ′

σ

> uJ ′
√
n−1
k′,J ′ + (n0,s(k′)+J ′ − n0,s(k′))−1},

The probability that H0k is not rejected before analysis J ′ for treatment k′ for all

k ∈ 1, . . . , k − 1, k + 1, . . . K assuming t1, . . . , ts(k′)+J ′ and vJ ′ are known is

γk,J ′ =1{s(k′) + J ′ − s(k) > 0}
[min(Jk,s(k

′)+J ′−s(k))∑
j=1

1{s(k′) + J ′ > s(k) + j}Φ(Lk,j(θ0), Uk,j(θ0),Σk,j)

+ 1{s(f) + J ′ = s(k) + j}Φ(Lk,j(θ0), U̇k,j(θ0),Σk,j)

]
+ 1{s(k′) + J ′ − s(k) ≤ 0},

where U̇k,j(θ0) = (uk,1(θ0), . . . uk,j−1(θ0), u̇k,j(θ0)), with

u̇k,j(θ0) = max

[
uk,s(k′)−s(k)+J ′(θ0),

√
nk,s(k′)−s(k)+J ′

√
nk′,J ′

vY +
nk,s(k′)−s(k)+J ′(θ

′ − θ0)

σ

]
.

One can then find Πk′,J ′ as

Πk′,J ′ =

∫ ∞
−∞

. . .

∫ ∞
−∞

Φ(L̃k′,J ′−1(θ′), Ũk′,J ′−1(θ′), Σ̃k′,J ′−1)

(
K∏

k=1,k 6=k′
γk,J ′)(ξJ ′) dΦ(t1) . . . dΦ(ts(k′)+J ′) dΦ(vJ ′).



Chapter 3

A preplanned multi-stage platform

trial for discovering multiple

superior treatments with control of

FWER and power

3.1 Introduction

Platform trials are a type of trial design which can aim to reduce the amount of time and

cost of clinical trials and in recent years there has been an increase in the utilization of

such trials, including during the COVID-19 pandemic (Stallard et al., 2020; Lee et al.,

2021). Clinical trials take many years to run and can cost billions of dollars (Mullard,

2018). During this time it is not uncommon for new promising treatments to emerge and

become ready to join the current phase later (Choodari-Oskooei et al., 2020). Therefore

it may be advantageous to include these treatments into an ongoing trial. This can have

multiple potential benefits including: shared trial infrastructure; the possibility to use

a shared control group; less administrative and logistical effort than setting up separate

63
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trials and enhance the recruitment (Burnett et al., 2020; Meurer et al., 2012). This

results in useful therapies potentially being identified faster while reducing cost and

time (Cohen et al., 2015).

There is an ongoing discussion about how to add new treatments to clinical trials

(Cohen et al., 2015; Lee et al., 2021) in both a pre-planned and in an unplanned manor

(Chapter 2) (Burnett et al., 2020). In both Bennett and Mander (2020); Choodari-

Oskooei et al. (2020) approaches are proposed which extend the Dunnett test (Dun-

nett, 1955) to allow for unplanned additional arms to be included into multi-arm trials

while still controlling the family-wise error rate (FWER). This methodology does not

incorporate the possibility of interim analyses.

FWER is often considered to be one of the strongest types of type I error control

in a multi-arm trial (Wason et al., 2016). There are other approaches one may wish

to consider such as pairwise error rate (PWER) and the false discovery rate (FDR)

(Robertson et al., 2023c; Cui et al., 2023; Bratton et al., 2016; Choodari-Oskooei et al.,

2020). However as discussed in Wason et al. (2014) there are scenarios where FWER

is seen as the recommended error control, and it can be a regulatory requirement.

One may wish to include interim analyses as they allow for ineffective treatments

to be dropped for futility earlier and allow treatments to stop early if they are found

superior to the control. Therefore potentially improving the efficiency of design of a

clinical trial by decreasing the expected sample sizes and costs of a trial (Pocock, 1977;

Todd et al., 2001; Wason et al., 2016). Multi-arm multi-stage (MAMS) designs (Magirr

et al., 2012; Royston et al., 2003) allow interim analyses while still allowing several

treatments to be evaluated within one study, but do not allow for additional arms to

be added throughout the trial. Burnett et al. (2020) have developed an approach that

builds on Hommel (2001) to incorporate unplanned additional treatment arms to be

added to a trial already in progress using the conditional error principle (Proschan

and Hunsberger, 1995). This allows for modifications during the course of a trial.
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However due to the unplanned nature of the adaptation, later treatments can be greatly

underpowered compared to arms which begin the trial.

Chapter 2 proposed a preplanned approach to adding additional arms in which

interim analyses can be conducted and multiple arms can be evaluated with some arms

being added at later time points. In this work the trial was powered assuming that

only one treatment may be taken forward. However as discussed in the work by Urach

and Posch (2016); Serra et al. (2022) this may not always be the case. For example

one may be interested in lower doses; or multiple treatments from different sponsors;

or interested if another treatment has preferable secondary outcomes if it also meets

the primary outcome. Furthermore in Chapter 2 treatment arms can only be added

when an interim analysis happens, this can greatly restrict when arms can join the trial

resulting in potentially large time periods that a new treatment is available before an

interim is conducted so able to join the trial.

In this work, we provide an analytical method for adding of treatments at any point

to a multi-arm multi-stage trial in a pre-planned manner, while still controlling the

statistical errors. This work will focus on trials in which one is interested in continuing

to investigate the other treatments even after a superior treatment has been found. In

addition multiple types of power will be considered, and will prove that the conjunctive

power of the study is at its lowest for a given sample size when all the active treatments

have a clinically relevant effect, where the conjunctive power is the probability of finding

all the active treatments with a clinically relevant effect. The methodology discussed

here can be used to create multiple designs for each point the additional treatments

may be added into the trial. This is due to the model flexibility, as the additional arms

do not need to be added when an interim happens, resulting in new active arms being

able to be added faster into the platform trial.

This work will focus predominantly on the case where one has equal allocation ratio

across all the active treatments and the same number of interim analyses per treatment
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with the same boundary shape. This is to help mitigate issues with time trends (Altman

and Royston, 1988; Getz and Campo, 2017) when changing allocation ratio mid trial

(Proschan and Evans, 2020; Roig et al., 2024). However the proposed methodology is

general and therefore can be implemented for when there is not equal allocation ratio

across all the active treatments, however one needs to be cautious of potential time

trend effects.

We begin this work by analytically calculating the FWER and power of the study

and use these to calculate both the stopping boundaries and sample size. Then in

Section 3.2.4 the equations for sample size distribution and expected sample size are

given. A trial example of FLAIR (Howard et al., 2021), in Section 3.3, is used to

motivate a hypothetical trial of interest. The sample size and stopping boundaries are

found for multiple types of power control and the effect of different treatment effects is

studied. Then the trial designs are then compared to running multiple separate trials.

Finally in Section 3.4 there is a discussion of the chapter and this introduces areas for

further research.

3.2 Methodology

3.2.1 Setting

In the clinical trial design considered in this work K experimental arms effectiveness

is compared to a common control arm. The trial has K? treatments starting at the

beginning of the trial, and the remaining K−K? treatments being added at later points

into the platform. The primary outcome measured for each patient is assumed to be

independent, continuous, and follows a normal distribution with a known variance (σ2).

The points at which each active treatment arm is added are predetermined, but can

be set to any point within the trial. Each of the K treatments is potentially tested

at a series of analyses indexed by j = 1, . . . , Jk where Jk is the maximum number of
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analyses for a given treatment k = 1, . . . , K. Let n(k) denote the number of patients

recruited to the control treatment before treatment k is added to the platform trial and

define the vector of adding times by n(K) = (n(1), . . . , n(K)). Therefore for treatments

that start at the beginning of the trial n(k) = 0. We also denote nk,j as the number

of patients recruited to treatment k by the end of it’s jth stage and define n0,k,j as

the total number of patients recruited to the control at the end of treatment k’s jth

stage. We define nk = nk,1 as the number recruited to the first stage of treatment k,

k = 1, . . . , K. Similarly we define rk,j and r0,k,j as the ratio of patients recruited to

treatment k and the control by treatment k’s jth stage, respectively. Also r(k) denotes

the ratio of patients recruited to the control before treatment k is added to the trial.

For example if a trial was planned to have equal number of patients per stage and a

treatment (k′) was added at the first interim then r(k′) = 1 and at the first stage for

k′, r0,k′,1 = 2. The total sample size of a trial is denoted by N . The maximum total

planned sample size is max(N) =
∑K

k=1 nk,Jk + maxk∈1,...,K(n0,k,Jk).

Throughout the trial, the control arm is recruited and maintained for the entire

duration. The comparisons between the control arm and the active treatment arms are

based on concurrent controls, meaning that only participants recruited to the control

arm at the same time as the corresponding active arm are used in the comparisons.

Work on the use of non-concurrent controls include Lee and Wason (2020); Marschner

and Schou (2022).

The null hypotheses of interest are H01 : µ1 ≤ µ0, H02 : µ2 ≤ µ0, ..., H0K : µK ≤ µ0,

where µ1, . . . , µK are the mean responses on the K experimental treatments and µ0 is

the mean response of the control group. The global null hypothesis, µ0 = µ1 = µ2 =

. . . = µK is denoted by HG. At analysis j for treatment k, to test H0k it is assumed that

responses, Xk,i, from patients i = 1, . . . , nk,j are observed, as well as the responses X0,i

from patients i = n(k) + 1, . . . , n0,k,j. These are the outcomes of the patients allocated

to the control which have been recruited since treatment k has been added into the
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trial up to the jth analysis of treatment k. The null hypotheses are tested using the

test statistics

Zk,j =
n−1
k,j

∑nk,j
i=1 Xk,i − (n0,k,j − n(k))−1

∑n0,k,j

i=n(k)+1X0,i

σ
√

(nk,j)−1 + (n0,k,j − n(k))−1
.

The decision-making for the trial is made by the upper and lower stopping bound-

aries, denoted as Uk = (uk,1, . . . , uk,Jk) and Lk = (lk,1, . . . , lk,Jk). These boundaries are

utilized to determine whether to continue or halt a treatment arm, or even the whole

trial, at various stages. The decision-making process is as follows: if the test statistic

for treatment k at stage j exceeds the upper boundary uk,j, the null hypothesis H0k

is rejected, and the treatment is stopped with the conclusion that it is superior to the

control. Conversely, if Zk,j falls below the lower boundary lk,j, treatment k is stopped

for futility for all subsequent stages of the trial. If neither the superiority nor futility

conditions are met, lk,j ≤ Zk,j ≤ uk,j, treatment k proceeds to its next stage j + 1. If

all the active treatments are stopped then the trial stops. These bounds are found to

control the type I error of desire for the trial. In this work we consider the family-wise

error rate (FWER) as the type I error control of focus as discussed in Section 3.2.2.

3.2.2 Family-wise error rate (FWER)

The FWER in the strong sense is a way of defining the type I error of a trial with

multiple hypotheses and is defined as

P (reject at least one true H0k under any null configuation, k = 1, . . . , K) ≤ α.

where α is the desired level of control for the FWER. As proven in Chapter 2 which

builds on Magirr et al. (2012), one can show that the FWER is controlled in the strong

sense under the global null, as given in the Supporting Information (Section B.1). The

FWER under the global null hypothesis is equal to
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1−
Jk∑
jk=1

k=1,2,...,K

Φ(Ljk(0),Ujk(0),Σjk). (3.2.1)

Here Φ(·) denotes the multivariate standard normal distribution function, and jk =

(j1, . . . , jK). With jk one can define the vector of upper and lower limits from the

multivariate standard normal distribution function as Ujk(0) = (U1,j1(0), . . . , UK,jK (0))

and Ljk(0) = (L1,j1(0), . . . , LK,jK (0)) where Uk,jk(0) = (uk,1, . . . , lk,jk) and Lk,jk(0) =

(lk,1, . . . ,−∞) respectively. Uk,jk(0) and Lk,jk(0) represent the upper and lower limits

for treatment k given jk for the multivariate standard normal distribution function.

The correlation matrix Σjk complete correlation structure is

Σjk =



ρ(1,1),(1,1) ρ(1,1),(1,2) . . . ρ(1,1),(1,j1) ρ(1,1),(2,1) . . . ρ(1,1),(K,jk)

ρ(1,2),(1,1) ρ(1,2),(1,2) . . . ρ(1,2),(1,j1) ρ(1,2),(2,1) . . . ρ(1,2),(K,jk)

...
...

. . .
...

...
. . .

...

ρ(1,j1),(1,1) ρ(1,j1),(1,2) . . . ρ(1,j1),(1,j1) ρ(1,j1),(2,1) . . . ρ(1,j1),(K,jk)

ρ(2,1),(1,1) ρ(2,1),(1,2) . . . ρ(2,1),(1,j1) ρ(2,1),(2,1) . . . ρ(2,1),(K,jk)

...
...

. . .
...

...
. . .

...

ρ(K,jk),(1,1) ρ(K,jk),(1,2) . . . ρ(K,jk),(1,j1) ρ(K,jk),(2,1) . . . ρ(K,jk),(K,jk)



.

(3.2.2)

where ρ(k,j),(k?,j?) equals one of the following: If k = k? and j = j? then ρ(k,j),(k?,j?) = 1;

If k = k? and j < j? then

ρ(k,j),(k?,j?) =

(√
r−1
k,j + (r0,k,j − r(k))−1

√
r−1
k,j? + (r0,k,j? − r(k))−1

)−1

(
1

rk,j?
+

1

r0,k,j? − r(k)

)
;
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and if k 6= k? where n(k) < n(k?) then

ρ(k,j),(k?,j?) = max

[
0,

(√
r−1
k,j + (r0,k,j − r(k))−1

√
r−1
k?,j? + (r0,k?,j? − r(k?))−1

)−1

(
min[r0,k,j − r(k?), r0,k?,j? − r(k?))

[r0,k,j − r(k)][r0,k?,j? − r(k?)]

)]
.

As seen here if treatment k? is added to the platform trial after the jth stage for

treatment k then the correlation equals 0 as there is no shared controls. The proposed

methodology allows for different critical boundaries to be used for each treatment k as

shown in Equation (3.2.1).

If it is assumed that there is equal number of stages per treatment and equal alloca-

tion across all the active treatments then, as a result, if one is using the same stopping

boundary shape one can simply just calculate the FWER. This is because it results

in equal pairwise error rate (PWER) for each treatment (Chapter 2) (Bratton et al.,

2016; Choodari-Oskooei et al., 2020). This removes the potential issue of time trends

with changing allocation ratios. Therefore to find the boundaries one can use a single

scalar parameter a with the functions Lk = f(a) and Uk = g(a) where f and g are the

functions for the shape of the upper and lower boundaries respectively. This is similar

to the method presented in Magirr et al. (2012). Therefore the results in Section 3.3

of this chapter will be based on the design of Setting 1 from Chapter 2. Setting 2 has

not been considered in this section. As discussed in Chapter 2, there can be issues with

time trends for Setting 2 and it is not clear how to define how many stages a treatment

has, given it can be added halfway through a stage of the first treatment. However the

methodology in Chapter 3 can be applied to Setting 2 from Chapter 2.
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3.2.3 Power

When designing a multi-arm trial in which all treatments get tested until they are

stopped for futility or superiority, regardless of the other treatments, different definitions

of power could be considered. The power of a study is focused on the probability that

the trial results in some or all of the treatments going forward. The sample size of the

study is then found to ensure that the chosen power is greater than or equal to some

chosen value 1− β.

One may be interested in ensuring that at least one treatment is taken forward

from the study. This can be split into two types of power discussed in the literature.

The first is the disjunctive power (Urach and Posch, 2016; Choodari-Oskooei et al.,

2020; Hamasaki et al., 2021) which is the probability of taking at least one treatment

forward. The second is the pairwise power which is the probability of taking forward

a given treatment which has a clinically relevant effect (Choodari-Oskooei et al., 2020;

Royston et al., 2011).

Another way of thinking of powering a study is the probability of taking forward all

the treatments which have a clinically relevant effect. This is known as the conjunctive

power of a study (Urach and Posch, 2016; Choodari-Oskooei et al., 2020; Hamasaki

et al., 2021; Serra et al., 2022). For the conjunctive power we prove that it is lowest

when all the treatments have the clinically relevant effect.

Pairwise power

The pairwise power of a treatment is independent of other active treatments. This is

because the other active treatments effect has no influence on the treatment of interest

as these are independent. Therefore we only need to consider the probability that the

treatment of interest with a clinically relevant effect is found superior to the control.

The pairwise power for treatment k (Ppw,k) with the clinically relevant effect θ′ is:
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Ppw,k =

Jk∑
j=1

Φ(U+
k,j(θ

′), L+
k,j(θ

′), Σ̈k,j), (3.2.3)

with

L+
k,j(θk) = (lk,1 −

θk√
Ik,1

, . . . , lk,j−1 −
θk√
Ik,j−1

, uk,j −
θk√
Ik,j−1

) (3.2.4)

U+
k,j(θk) = (uk,1 −

θk√
Ik,j−1

, . . . , uk,j−1 −
θk√
Ik,j−1

,∞). (3.2.5)

and Ik,j = σ2(n−1
k,j + (n0,k,j − n(k))−1). The (i, i?)th element (i ≤ i?) of the covariance

matrix Σ̈k,j is

(√
r−1
k,i + (r0,k,i − r(k))−1

√
r−1
k,i? + (r0,k,i? − r(k))−1

)−1(
1

rk,i?
+

1

r0,k,i? − r(k)

)
.

One can then design the trial so that the pairwise power for each treatment k (Ppw,k)

is greater than or equal to some chosen 1− β for every treatment. If one has an equal

number of stages per treatment and equal allocation across all the active treatments

with the same stopping boundaries, this ensures that pairwise power is equal for each

treatment so nk = nk? for all k, k? ∈ 1, . . . , K. Therefore we define n = nk for all

k ∈ 1, . . . , K. To ensure pairwise power is controlled, keep increasing n until Ppw ≥ 1−β

where Ppw = Ppw,k for all k ∈ 1, . . . , K.

If one is designing a trial in which there is a set number of patients allocated to the

control before an active treatment k is added, so n(k) is predefined before calculating

the boundaries and sample size, one needs to use an approach such as the Algorithm

below. This is because when the sample size increases there is no increase in n(k) for

all k. This results in a change in the allocation ratio between r(k) and r0,k,j for each

j. Therefore requiring the bounds to be recalculated for the given r(k). If one focus is

on the new arms being added after a set percentage of the way through the trial this

issue no longer persists, as the allocation ratio stays the same so the bounds can be
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calculated ones.

Algorithm 4 Iterative approach to compute the n for the pairwise power with prede-
fined n(K)

0 Begin by assuming n(K) = (0, 0, . . . , 0) and find the stopping boundaries to

control the FWER. Now calculate n such that the pairwise power is greater then

or equal to a pre-specified (1− β). Then repeat the following iterative steps until

the pairwise power, given the true n(K), is greater than (1− β):

1 Find the stopping boundaries to control the FWER for the true predefined n(K)

given the current n.

2 Calculate Ppw for the given boundaries.

3 If Ppw ≥ 1− β then stop, else increase n by 1 and repeat steps 1-3.

Disjunctive power

The disjunctive power is the probability of taking at least one treatment forward. There-

fore it can be calculated in a very similar way to the FWER, as done in Section 3.2.2 and

the Supporting Information (Section B.1), as here we want the probability of rejecting

any null hypotheses H01, . . . , H0K . Therefore if µk−µ0 = θk for k = 1, . . . , K, the event

that H01, . . . , H0K all fail to be rejected is equivalent to R̄K(Θ). The disjunctive power

(Pd) for given Θ = (θ1, . . . , θK) is:

Pd = 1− P (R̄K(Θ)) = 1−
Jk∑
jk=1

k=1,2,...,K

Φ(L+
jk

(Θ),U+
jk

(Θ),Σjk)

where U+
jk

(Θ) = (U+
1,j1

(θ1), . . . , U+
K,jK

(θK)) and L+
jk

(Θ) = (L+
1,j1

(θ1), . . . , L+
K,jK

(θK))

with U+
k,jk

(θk) and L+
k,jk

(θk) defined in Equation (3.2.5) and Equation (3.2.4), respec-

tively. The correlation matrix Σjk is the same as that given for FWER in Equation
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(3.2.2).

When one has an equal number of stages and equal allocation to find the sample

size one needs to increase n until Pd = 1 − β. If one is in the case of fixed n(k) then

one can use Algorithm 4, now replacing pairwise power for disjunctive power.

Conjunctive power

The conjunctive power is defined as the probability of taking forward all the treatments

which have a clinically relevant effect. We begin by proving when the conjunctive power

is at its lowest. We define the events

Bk,j(θk) =[lk,j + (µk − µ0 − θk)I1/2
k,j < Zk,j < uk,j + (µk − µ0 − θk)I1/2

k,j ],

Ck,j(θk) =[Zk,j > uk,j + (µk − µ0 − θk)I1/2
k,j ],

where Bk,j(θk) defines the event that treatment k continues to the next stage and

Ck,j(θk) defines the event that treatment k is found superior to the control at stage j.

If µk − µ0 = θk for k = 1, . . . , K, the event that H01, . . . , H0K are all rejected (W̄K(Θ))

is equivalent to

W̄K(Θ) =
⋂

k∈{m1,...,mK}

(
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ck,j(θk)

])
,

where Θ = {θ1, θ2, . . . , θK}.

Theorem 3.2.1. For any Θ, P (reject all H0k for which θk ≥ θ′|Θ) ≥ P (reject all

H0k for which θk ≥ θ′|(µ1 = µ2 = . . . = µK = µ0 + θ′)).

Proof. For any εk < 0,

Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk + εk)

)
∩ Ck,j(θk + εk)

]
⊆

Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ck,j(θk)

]
.
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Take any

w = (Zk,1, . . . , Zk,J) ∈
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk + εk)

)
∩ Ck,j(θk + εk)

]
.

For some q ∈ {1, . . . , Jk}, for which Zk,q ∈ Ck,q(θk + εk) and Zk,j ∈ Bk,j(θk + εk)

for j = 1, . . . , q − 1. Zk,q ∈ Ck,q(θk + εk) implies that Zk,q ∈ Ck,q(θk). Furthermore

Zk,q ∈ Bk,q(θk + εk) implies that Zk,q ∈ Bk,q(θk) ∪ Ck,q(θk) for some j = 1, . . . , q − 1.

Therefore,

w ∈
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ck,j(θk)

]
.

Next suppose for any m1, . . . ,mK where m1 ∈ {1, . . . , K} and mk ∈ {1, . . . , K}

\{m1, . . . ,mk−1} with θm1 , . . . , θml ≥ θ′ and θml+1
, . . . , θmK < θ′. Let Θl = (θm1 , . . . , θml).

Then

P (reject all H0k for which θk ≥ θ′|Θ) = P (W̄l(Θl))

≥ P (W̄l(Θ
′))

≥ P (W̄k(Θ
′))

= P (reject all H0k for which θk ≥ θ′|HPG).

where Θ′ = (θ′, . . . , θ′).

It follows from Theorem 3.2.1 that the conjunctive power (PC) is minimised when

all treatments have the smallest interesting treatment effect. In order to ensure the

conjunctive power is greater than level 1 − β we rearrange the events Bk,j(θk) and

Ck,i(θk) to find

PC = P (W̄l(Θ
′)) =

Jk∑
jk=1

k=1,2,...,K

Φ(L+
jk

(Θ′),U+
jk

(Θ′),Σjk),
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where U+
jk

(Θ′) = (U+
1,j1

(θ′), . . . , U+
K,jK

(θ′)) and L+
jk

(Θ′) = (L+
1,j1

(θ′), . . . , L+
K,jK

(θ′)) with

U+
k,jk

(θk) and L+
k,jk

(θk) defined in Equation (3.2.5) and Equation (3.2.4), respectively.

The correlation matrix Σjk is the same as that given for FWER in Equation (3.2.2).

When one has equal an number of stages and equal allocation to find the sample

size one needs to increase n until PC = 1 − β. If one is in the case of fixed n(k) then

one can use Algorithm 4, now replacing pairwise power for conjunctive power.

3.2.4 Sample size distribution and Expected sample size

The determination of sample size distribution and expected sample size involves cal-

culating the probability for each outcome of the trial, denoted as Qjk,qk
. Here, qk =

(q1, . . . , qK) is defined, where qk = 0 indicates that treatment k falls below the lower

stopping boundary at point jk, and qk = 1 indicates that treatment k exceeds the up-

per stopping boundary at point jk. Therefore qk can only take one of two values as it

defined only at the point where treatment k stops in the trial, so treatment k has fallen

below the lower stopping boundary or above the upper stopping boundary. We find

Qjk,qk
=Φ(L̃jk,qk

(Θ), Ũjk,qk
(Θ),Σjk),

with jk one can define L̃jk,qk
(Θ) = (L̃1,j1,q1(θ1), . . . , L̃K,jK ,qK (θK)) and Ũ(Θ)jk,qk

=

(Ũ1,j1,q1(θ1), . . . , ŨK,jK ,qK (θK)) where

L̃k,j,qk(θk) =(lk,1 −
θk√
Ik,1

, . . . , lk,j−1 −
θk√
Ik,j−1

, [1(qk = 0)(−∞) + uk,jk ]−
θk√
Ik,j

),

Ũk,j,qk(θk) =(uk,1 −
θk√
Ik,1

, . . . , uk,j−1 −
θk√
Ik,j−1

, [1(qk = 1)(∞) + lk,jk ]−
θk√
Ik,j

),
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respectively. The Pjk,qk
are associated with their given total sample size Njk,qk

for that

given jk and qk.

Njk,qk
=

( K∑
k=1

nk,jk

)
+ max

k∈1,...K
(n0,k,jk),

This shows that the control treatment continues being recruited to until, at the

earliest, the last active treatment to be added has had at least one analysis. To obtain

the sample size distribution, as similarly done in Chapter 2, we group all the values

of jk and qk that gives the same value of Njk,qk
with its corresponding Qjk,qk

. This

set of Qjk,qk
is then summed together to give the probability of the realisation of this

sample size. To calculate the sample size distribution for each active arm, group nk,jk

with its corresponding Qjk,qk
and this can similarly be done for the control treatment.

The expected sample size for a given Θ, denoted as E(N |Θ), is obtained by summing

all possible combinations of jk and qk,

E(N |Θ) =

Jk∑
jk=1

k=1,2,...,K

∑
qk∈{1,∞}
k=1,2,...,K

Qjk,qk
Njk,qk

. (3.2.6)

The expected sample size for multiple different treatment effects (Θ = {θ1, . . . , θK})

can then be found using Equation (3.2.6).

3.3 Motivating trial example

3.3.1 Setting

One example of a platform trial is FLAIR, which focused on chronic lymphocyte

leukemia (Howard et al., 2021). FLAIR initially planned to incorporate an additional

active treatment arm and conduct an interim analysis midway through the intended

sample size for each treatment. During the actual trial, two extra arms were introduced,



CHAPTER 3. PLATFORM TRIAL FOR MULTIPLE TREATMENTS 78

including an additional control arm. The original trial design primarily addressed the

pairwise type I error due to the inclusion of both additional experimental and control

arms.

Following Chapter 2, a hypothetical trial that mirrors some aspects of FLAIR will

be studied. In this hypothetical trial the family-wise error rate (FWER) in the strong

sense will be controlled. Controlling the FWER may be seen as crucial in this scenario,

as the trial aims to assess various combinations of treatments involving a common

compound for all active treatments (Wason et al., 2014). There is an initial active

treatment arm, a control arm, and a planned addition of one more active treatment

arm during the trial. We apply the proposed methodology to ensure FWER control

and consider the conjunctive power and pairwise power.

The pairwise power is the main focus of the simulation study rather than the dis-

junctive power, as a potential drawback of disjunctive power is it is highly dependent

on the treatment effect of all the treatments in the study, even the ones without a

clinically relevant effect. For example assume one treatment has a clinically relevant

effect and the rest have effect equal to the control treatment, then the disjunctive power

will keep increasing the more treatments that are added, if one keeps the same bounds,

even though the probability of taking the correct treatment forward does not increase.

Equally the minimum the disjunctive power can be equal to the pairwise power. This

is when only one treatment has a clinically relevant effect and the rest have an extreme

negative effect. A further advantage of the pairwise power is it gives the probability

of the treatment with the greatest treatment effect being found, assuming that this

treatment has effect equal to the clinically relevant effect.

Considering the planned effect size from FLAIR, we assume an interesting treatment

difference of θ′ = − log(0.69) and a standard deviation of σ = 1. It should be noted that

while FLAIR used a time-to-event endpoint with 0.69 representing the clinically relevant

hazard ratio between the experimental and control groups, our hypothetical trial will
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focus on continuous endpoints using a normal approximation of time-to-event endpoints

as discussed in Jaki and Magirr (2013). The desired power is 80%. We will maintain

the same power level as FLAIR while targeting a one-sided FWER of 2.5%. The active

treatment arms interim analysis will be conducted midway through its recruitment and

1:1 allocation will be used between the control and the active treatments as done in

FLAIR (Hillmen et al., 2023).

The difference between a design which controls the pairwise power and the conjunc-

tive power will be studied in Section 3.3.2. Additionally, for both pairwise power and

the conjunctive power, the number of patients per arm per stage, the maximum sample

size, the expected sample size and the disjunctive power will be studied. In Section

3.3.3 the effect of different numbers of patients recruited to the control before the sec-

ond treatment is added (n(2)) will be studied with the focus being on expected sample

size and maximum sample size of the trial. The designs will be compared to running

two completely separate independent trials for each of the 2 active treatments. When

running two trials there would be less expectation to control the FWER across the two

trials. Therefore along with the fair comparison of type I error control of 2.5% across

the multiple separate studies, the setting of having pairwise error rate being controlled

for each at 2.5% will be shown. In Section 3.3.4 the effect of using a more liberal FWER

control compared to type I error control for the separate trials is studied for trials with

3 and 4 active arms.

3.3.2 Comparing the two types of power

We will consider the effect of adding the second treatment halfway through recruitment

of the first active treatment, both for ensuring pairwise power and conjunctive power

are at 80%. The binding triangular stopping boundaries will be used (Whitehead, 1997;

Wason and Jaki, 2012; Li et al., 2020). The stopping boundaries are the same regardless

of if one is controlling pairwise power or conjunctive power as r(2) = r1,1 for both. The
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stopping boundaries are given in Table 3.3.1 and are equal for both designs.

In Table 3.3.1 the sample size when ensuring that the pairwise power is greater than

80% is given. Both active treatments will have up to 152 patients recruited to them and

the control treatment can have up to 228 patients. This is due to 76 patients already

being recruited to the control before the second treatment is added. The maximum

sample size for the pairwise power design is therefore max(N) = 152+152+228 = 532.

Additionally in Table 3.3.1 the sample size when ensuring that the conjunctive power

is greater than 80% is given. The maximum sample size now is max(N) = 192 + 192 +

288 = 672. The calculations were carried out using R (R Core Team, 2021) with the

method given here having the multivariate normal probabilities being calculated using

the packages mvtnorm (Genz et al., 2021) and gtools (Warnes et al., 2021). Code is

available at https://github.com/pgreenstreet/Platform trial multiple superior.

Table 3.3.1: The stopping boundaries and sample size of the proposed designs, for both
control of pairwise power and of conjunctive power.

Design
U =

U1

U2

 L =

L1

L2


n1,1 n1,2

n2,1 n2,2


n0,1,1 n0,1,2

n0,2,1 n0,2,2


n(1)

n(2)

 max(N)
controlling

Pairwise

2.501 2.358

2.501 2.358


0.834 2.358

0.834 2.358


76 152

76 152


 76 152

152 228


 0

76

 532
power

Conjunctive

2.501 2.358

2.501 2.358


0.834 2.358

0.834 2.358


96 192

96 192


 96 192

192 288


 0

96

 672
power

Based on the two designs in Table 3.3.1, in Table 3.3.2 the conjunctive power,

pairwise power and disjunctive power for different values of θ1 and θ2 are given along

with the expected sample size. The values of θ1 and θ2 are chosen to study the effects

under the global null, when treatments have a clinically relevant effect and when one

of the active treatments performs considerably worst than the rest. Table 3.3.2 shows

when θ1 and θ2 equals the clinically relevant effect θ′ under the design for pairwise

power, that the pairwise power of both treatments is 80.0%; the conjunctive power is

66.0%; the disjunctive power is 94.1%; and the expected sample size is 420.6. This
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highlights the fact that when controlling the pairwise power that if both treatments

have a clinically relevant effect there is a large chance (44%) that one may miss at least

one of the two treatments.

When studying the design in which conjunctive power is controlled one can now see

that the pairwise power and disjunctive power is much greater compared to the pairwise

power design. This comes with a large increase in both expected and maximum sample

size, for example the maximum sample size has increased by 140 patients.

As seen for the design for conjunctive power section of Table 3.3.2 the disjunctive

power when treatment 1 and 2 have effect θ′, 0, respectively, does not equal the disjunc-

tive power of treatment 1 and 2 when the effect is 0, θ′. This is also the case for the

disjunctive power when treatment 1 and 2 have effect θ′, θ′/2, respectively, as this does

not equal the disjunctive power of treatment 1 and 2 when the effect is θ′/2, θ′. This

is because the outcome of treatment 1’s test statistic has a larger effect on treatment 2

than the other-way round. For example treatment 1 first stage is always independent

of treatment 2. However for treatment 2 its first stage is only independent of treatment

1 if treatment 1 stops after its first stage. Therefore Σjk 6= Σj?k
when jk = (1, 2) and

j?k = (2, 1), where Σ is defined in Equation 3.2.2. However as can be seen this difference

in the cases studied is very small.

Table 3.3.2 shows when there is only one treatment with a clinically relevant effect

the conjunctive power equals the pairwise power of that treatment. When neither

treatment has a clinically relevant effect the conjunctive power equals 100%, as there

are no treatments with a clinically relevant effect that need to be found. As a result

the trial has already resulted in all the clinically relevant treatments being declared i.e

0 treatments.

The expected sample size is greatly dependent on which treatment has the clinically

relevant effect and which does not. For example when studying the design with pairwise

power control the expected sample size when the treatment effect is θ′, 0, is 372.7. This
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is compared to 396.6 when the treatment effect is 0, θ′ for treatment 1 and 2 respectively.

This difference is because the probability of treatment k stopping after the first stage

is higher when θk = 0 compared to θk = θ′. Therefore when the second treatment has

effect 0 it is more likely that the trial will stop after the second stage of the trial. This

reduces the amount of patients on average being recruited to the control treatment.

A similar effect can be seen when one treatment has effect θ′ and the other has effect

θ′/2, however, now it is the treatment with θ′/2 that requires more patients on average,

therefore, when the later treatment has effect θ′/2 the expected sample size is greater.

In Table 3.3.2 it can be seen that the pairwise power for the treatment with a

clinically relevant effect is equal to the disjunctive power when the other treatment has

an extremely negative treatment effect compared to the control. This is as there is no

longer a chance that the other treatment can be taken forward. Therefore θ1 = −∞

θ2 = θ′ or θ1 = θ′ θ2 = −∞, is the point when the pairwise, disjunctive and conjunctive

power are all equal. When one treatment has effect θ′ and the other has effect equal to

the control the disjunctive power is greater than the pairwise power, as there is still a

chance that the other treatment may be taken forward. In Table 3.3.2 it is shown that

when both treatments have effect 0 the disjunctive power is equal to the FWER for the

trial. In addition when a treatment has effect 0 this results in the pairwise power for

that treatment equalling the PWER.

In the Supporting Information (Section B.2) results for using both O’Brien and

Fleming (O’Brien and Fleming, 1979) and Pocock boundaries (Pocock, 1977) are shown,

with the futility boundary equal to 0 (Magirr et al., 2012). Additionally the results for

using non-binding triangular stopping boundaries are shown in the Supporting Infor-

mation (Section B.3). Overall Table 3.3.1 and Table 3.3.2 have shown that the choice

of type of power to control may be highly dependent on the sample size available, as if

the design ensures conjunctive power of level 1− β it will ensures pairwise power of at

least 1−β but the opposite does not hold. However the sample size for a trial designed
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Table 3.3.2: Operating characteristics of the proposed designs under different values of
θ1 and θ2, for both control of pairwise power and of conjunctive power.

Design for pairwise power
Treatment effect Pairwise power Conjunctive power Disjunctive power Expected sample size
θ1 θ2 PPW,1 PPW,2 PC PD E(N |θ1, θ2)
θ′ θ′ 0.800 0.800 0.660 0.941 420.6
θ′ θ′/2 0.800 0.238 0.800 0.831 424.1
θ′ 0 0.800 0.013 0.800 0.802 372.7
θ′ −∞ 0.800 0 0.800 0.800 342.9
θ′/2 θ′ 0.238 0.800 0.800 0.831 422.4

0 θ′ 0.013 0.800 0.800 0.802 396.6
0 0 0.013 0.013 1 0.025 348.7
−∞ θ′ 0 0.800 0.800 0.800 381.7

Design for conjunctive power
Treatment effect Pairwise power Conjunctive power Disjunctive power Expected sample size
θ1 θ2 PPW,1 PPW,2 PC PD E(N |θ1, θ2)
θ′ θ′ 0.890 0.890 0.801 0.979 508.1
θ′ θ′/2 0.890 0.301 0.890 0.911 533.3
θ′ 0 0.890 0.013 0.890 0.890 463.0
θ′ −∞ 0.890 0 0.890 0.890 425.4
θ′/2 θ′ 0.301 0.890 0.890 0.910 520.7

0 θ′ 0.013 0.890 0.890 0.891 485.6
0 0 0.013 0.013 1 0.025 440.5
−∞ θ′ 0 0.890 0.890 0.890 466.7

for pairwise power will be less than that of a design for conjunctive power.

3.3.3 Comparison with running separate trials

This section studies the effect on maximum and expected sample size depending on

when the additional treatment arm is added to the platform trial. The examples for

both conjunctive power and pairwise power are compared to running two separate trials.

There are two settings for separate trials which are considered. Setting 1 is when the

type I error across both the trials is set to be 2.5%, therefore, the type I error for each

is 1−
√

1− 0.025 = 1.26%. For Setting 2 the type I error of each trial is controlled at

2.5%. For the separate trials which are compared to the pairwise power, the power level

for each is set to 80%. This results in the following sample size and stopping boundaries
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for the two trials for Setting 1,

U1 =

(
2.508 2.364

)
, L1 =

(
0.836 2.364

)
.

(
n1,1 n1,2

)
=

(
77 154

)
.

with n0,1,1 = n1,1, n0,1,2 = n1,2 and n(1) = 0. Setting 2 gives:

U1 =

(
2.222 2.095

)
, L1 =

(
0.741 2.095

)
.

(
n1,1 n1,2

)
=

(
65 130

)
.

with n0,1,1 = n1,1, n0,1,2 = n1,2 and n(1) = 0. For comparison with the conjunctive power

designs the probability of finding both treatments across the two trials is set to 80%.

The required power for each trial is therefore
√

1− β = 0.894. The boundaries remain

the same for both settings as the type I error remains the same. The new sample size for

Setting 1 is

(
n1,1 n1,2

)
=

(
98 196

)
and for Setting 2 is

(
n1,1 n1,2

)
=

(
85 170

)
.

Figure 3.3.1 gives the maximum sample size and the expected sample size under

different θ1, θ2 depending on when the second treatment is added, for the pairwise

power control of 80%. Figure 3.3.2 gives similar results however the focus now is on

control of the conjunctive power at 80%.

As indicated in Figure 3.3.1, when controlling the pairwise power, if the second active

treatment is introduced at the beginning of the trial, the total sample size required is

456, whereas if it is added at the end of recruitment for treatment 1, the total sample

size becomes 616. This increase in sample size is attributable to two factors. Firstly,

there is a necessity to increase the number of patients recruited to the control group

until treatment 2 has completed the trial. Secondly, the decrease in correlation between

the two treatments results in an enlargement of the boundaries to maintain control over

the family-wise error rate. It is this secondary factor which causes the small jumps in

maximum sample size seen in Figures 3.3.1 and 3.3.2.

In Figure 3.3.1 when comparing the platform designs with pairwise power control,

to running two separate trials it can be seen that, for the case that the pairwise error
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for each trial is 2.5%, once the second treatment is added after 64 patients have been

recruited to the control (n(2) ≥ 64) the maximum sample size of running the platform

design is greater than or equal to that of running two separate trials, which is 520

patients. However when controlling the error across both separate trials the maximum

sample size is now the same as when adding the second treatment at the end of recruit-

ment for the first treatment in the platform design so 616. For Setting 1 it can be seen

that the expected sample size for separate trials can be better than that of the platform

design. In the case of θ1 = −∞ and θ2 = −θ′ then once n(2) ≥ 81 the expected sample

size of running the platform design is greater than that of running two separate trials.

This is because in the platform approach the control cannot stop until each treatment

has finished testing, whereas in the separate trial case each control group will stop as

soon as either treatment is dropped. For Setting 1 there are some cases studied which

cannot be seen in Figure 3.3.1. These are θ1 = θ′, θ2 = θ′ and if θ1 = θ′, θ2 = 0 as

both these are at the point n(2) ≥ 117 which matches that of θ1 = θ′, θ2 = −∞. When

studying the expected sample size of the Setting 2 compared to the platform designs it

can be seen that if θ1 = −∞ and θ2 = −θ′ then once n(2) ≥ 15 the expected sample

size of running the platform design is greater than that of running two separate trials.

The expected sample size for two separate trials when θ1 = −∞ and θ2 = θ′ is 319.5.

When controlling the conjunctive power, as in Figure 3.3.2, if the second active

treatment is introduced at the beginning of the trial, the total sample size required is

558, whereas if it is added at the end of recruitment for treatment 1, the total sample

size becomes 784. Once again the maximum sample size for Setting 1 equals that of

when treatment 2 is added after treatment 1 finished recruitment, so 784 patients. In

Figure 3.3.2, when n(2) ≥ 104 the maximum sample size of running the platform design

is greater than, or equal to, that of running two separate trials under Setting 2, which

is 680 patients. Similar as seen in Figure 3.3.1 there is some lines which overlap for

Setting 1 in Figure 3.3.2 as n(2) = 143 is the point for both θ1 = θ′, θ2 = θ′ and θ1 = θ′,
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Figure 3.3.1: Both panels give the maximum sample size and the expected sample size
under different θ1, θ2 depending on the value n(2), for the pairwise power control of 80%.
Left panel: dash vertical lines correspond to the points where the maximum/expected
sample size of the trial is now greater than running two separate trials with type I error
control across both trials set to 2.5%. Right panel: dash vertical lines correspond to
the points where the maximum/expected sample size of the trial is now greater than
running two separate trials with type I error control for each trial set to 2.5%.

θ2 = −∞, also n(2) = 121 is the point for both θ1 = 0, θ2 = θ′ and θ1 = 0, θ2 = 0.

When n(2) ≥ 104 for Setting 1, and n(2) ≥ 39 for Setting 2, the expected sample size

of running the platform design is greater than that of running two separate trials when

θ1 = −∞ and θ2 = θ′. The expected sample size for running two separate trials when

θ1 = −∞ and θ2 = θ′ is 475.3 and 403.8 for Setting 1 and Setting 2 respectively.

Overall Figures 3.3.1 and 3.3.2 have shown there maybe times that there is no

benefit to running a platform trial with regards to sample size, depending on when the

later treatment is added to the trial. This issue is further emphasised when there is

not the expectation to control the type I error across all the individual trials as seen in

Setting 2.
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Figure 3.3.2: The maximum sample size and the expected sample size under different
θ1, θ2 depending on the value n(2), for the conjunctive power control of 80%. Left panel:
dash vertical lines correspond to the points where the maximum/expected sample size
of the trial is now greater than running two separate trials under Setting 1. Right panel:
dash vertical lines correspond to the points where the maximum/expected sample size
of the trial is now greater than running two separate trials under Setting 2.

3.3.4 Comparison with running separate trials under different

controls of type I error

When designing a multi-arm trial one may find that the expected control of the FWER

is less than that of the type I error control for an individual trial, as seen in the TAILoR

trial for example (Pushpakom et al., 2015, 2020). Therefore in Table 3.3.3 we consider

the effect of allowing FWER control of 5% one sided compared to 2.5% type I error

for the individual trials with the corresponding plots in the Supporting Information

(Section B.4) for the 2 stage and 3 stage example trials which are in the same style as

seen in Figures 3.3.1 and 3.3.2. In this table the same design parameters were used as

above, however, now the number of active arms has increased in the hypothetical trial

to 3 or 4, and the number of stages is now either 1, 2 or 3. In Table 3.3.3 the focus

is on controlling the power at the desired 80% level with the pairwise power being the

focus for the top half and conjunctive power for the bottom half. When controlling the

conjunctive power the power for each separate trial is (1− β)1/k. In these hypothetical

trials it is assumed that each one of the arms is added sequentially, with an equal gap
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between each one. Therefore in the 3 active arm case if the second arm is added after

20 patients have been recruited to the control then the third arm will be added after a

total of 40 patients have been recruited to the control.

In Table 3.3.3 the first 2 columns give the number of active arms and stages for the

platform trial, respectively. The third column gives the sample size per stage of the

individual trials. This has been chosen as this number will remain constant throughout,

as it is unaffected by the timing of when the next arm is ready, due to each trial being

completely separate from the others. The remaining columns show when there is no

benefit with regards to the maximum and expected sample size of conducting a platform

trial compared to running separate trials, with respect n(k) − n(k − 1). The value of

n(k)− n(k − 1) = n(2) as the first treatment is added at the beginning of the trial. In

the Supporting Information (Section B.4) the plots for the 2 stage and 3 stage example

trials as given in Table 3.3.3 are shown.

Using Table 3.3.3, for the 3 active arm, 2 stage example each separate trial has

n1,1 = 65 and n1,2 = 130. The total maximum sample size of running these 3 separate

trials is therefore 780. Once the second treatment is planned to be added after 105

patients recruited to the control, (therefore 210 recruited to the control before treatment

3), there is no benefit in using the platform design with respect to maximum sample

size. For the expected sample size four different configurations of the treatment effects

are studied. The first (Θ1) assumes all the treatments have the clinically relevant effect,

so θk = θ′ for k = 1, . . . , K. The second (Θ2) assumes only the first treatment has a

clinically relevant effect and the rest have effect equal to that of the control treatment,

so θ1 = θ′, θk = 0 for k = 2, . . . , K. The third (Θ3) assumes only the last treatment

has a clinically relevant effect and the rest equal the control, so θK = θ′, θk = 0 for

k = 1, . . . , K − 1. The fourth configuration (Θ4) assumes all the treatments have effect

equal to that of the control treatment, so the global null, so θk = 0 for k = 1, . . . , K.

For the expected sample size for the 4 treatment effect configurations studied here there
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is no benefit in using a platform trial after potentially just 62 patients if Θ3 is true, this

does rise to 73 if Θ1 is true, if the focus is on expected sample size.

Table 3.3.3 shows that the maximum sample size of running separate trials increases

with an increase in number of stages or arms. This is also the case when running the

proposed platform trial design. As can be seen with respect to maximum sample size

the more stages the trial has the later a treatment can be added before the maximum

sample size becomes worst than running separate trials. For example, when pairwise

power is controlled, a 1 stage 3 arm trial with regards to maximum sample size one

should use separate trials after 90 patients this is compared to 114 patients for a 3 arm

3 stage trial.

If the focus is on the expected sample size, then for the examples studied here,

increasing the number of stages results in a decrease time before one would switch to

separate trials. For example when controlling the conjunctive power, for the 4 arm trial,

it can be seen that the expected sample size under the global null for running separate

trials becomes less than that of running the platform trial when n(2) = 140 for 1 stage

case compared to n(2) = 99 for the 3 stage version. This is because the ability to have

interim analyses saves more patients for separate trials with respect to expected sample

size. This is because in separate trials when a treatment is stopped earlier either for

futility or superiority the control treatment also stops. Therefore in this 4 arm example

there are 4 sets of control treatments which can stop early compared to only 1 set for

the platform design. Additionally for the platform trial the control can only stop once

all the active treatments have stopped. This is why the expected sample size under

Θ2 is less then that of Θ3, as if the final treatment has a clinically relevant effect then

it will on average have more stages than a treatment with effect equal to that of the

control for the configuration studied here.

This section has therefore shown that there are periods in which using a platform

trial can be beneficial with regards to sample size if one can used a more liberal type I
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Table 3.3.3: The comparison of using the proposed platform design with FWER of 5%
one sided against running separate trials with type I error control of each at 2.5% one
sided, for different numbers of arms and stages.

Design for pairwise power
Active arms Stages Separate trial minn(2)(max(Ns) minn(2)(E(Ns|Θ) ≤ E(N |Θ))

K J (n1,1, . . . , n1,J) ≤ max(N)) Θ1 Θ2 Θ3 Θ4

3 1 115 90 90 90 90 90
3 2 (65, 130) 105 73 72 62 66
3 3 (46, 92, 138) 114 68 67 55 60
4 1 115 79 79 79 79 79
4 2 (65, 130) 94 61 62 54 59
4 3 (46, 92, 138) 103 59 58 49 55

Design for conjunctive power
Active arms Stages Separate trial minn(2)(max(Ns) minn(2)(E(Ns|Θ) ≤ E(N |Θ))

K J (n1,1, . . . , n1,J) ≤ max(N)) Θ1 Θ2 Θ3 Θ4

3 1 (171) 143 143 143 143 143
3 2 (97, 194) 166 107 109 101 106
3 3 (68, 136, 204) 174 98 99 92 98
4 1 (185) 140 140 140 140 140
4 2 (105, 210) 167 102 109 103 109
4 3 (74, 148, 222) 182 93 99 93 99

Key: Ns is the sample size of running K separate trials, Θ1: θk = θ′ for k = 1, . . . , K;
Θ2: θ1 = θ′, θk = 0 for k = 2, . . . , K ; Θ3: θK = θ′, θk = 0 for k = 1, . . . , K − 1; Θ4:

θk = 0 for k = 1, . . . , K.

error control compared to that used for individual trials. However this has also shown

that if treatments are added late into the trial there may not be benefit, so highlighting

the importance of considering which trial design should be use.

3.4 Discussion

This chapter has built on the work of Chapter 2 to show how one can control the

FWER for a trial in which the treatments can be preplanned to be added at any

point. This work has then studied the different approaches for powering the trial

in which the trial will continue even if a superior treatment is found. This chapter

shows how the expected sample size and sample size distribution can be found. Finally

a hypothetical trial, motivated by FLAIR (Howard et al., 2021) is discussed. This
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section evaluates the pairwise and conjunctive power when the second active treatment

is added halfway through recruitment for the first active treatment. We investigate the

operating characteristics for multiple values of θ1 and θ2. Then the section goes on to

study the effect of adding the later treatments at different points in the platform design

and compares these trial designs to running separate trials.

The designs flexibility to incorporate the addition of treatments at any point during

a trial allows for the creation of multiple designs that depend on when the treatments

are introduced. This approach works effectively until the completion of the initial stage

for the treatment that initiated the trial. Up to this point, the treatments can be added

when they become available, and the boundaries can be set accordingly. However, if the

treatments are not ready until after the first analysis, two options can be pursued to

avoid bias resulting from knowledge of the first stage results. Firstly, one can choose not

to plan for the addition of the treatments and conduct separate trials. As demonstrated

in Section 3.3, this approach may require fewer patients overall. Alternatively, one can

predefine the times at which the treatments will be added and utilize the corresponding

bounds. A drawback here is that if the treatments are not ready by the predefined

points, they cannot be added. Nevertheless, for the remaining treatments, the control

of family-wise error rate will be maintained. Due to the bounds being designed to

control FWER across all the hypotheses, therefore, by not adding a treatment and so

removing a hypothesis this reduces the maximum value of the FWER.

This chapter has highlighted a potential issue of increased expected and maximum

sample size when requiring strong control of family-wise error rate for a platform trial

in which an arm is added later. If one would run two completely separate trials the

FWER across the trials would likely not be expected. As a result there is a lot of

time where there is no benefit to the platform trial design with regards to maximum

or expected sample size as was shown in Figure 3.3.1 and in Figure 3.3.2 for Setting

2. This point has been further emphasised in Table 3.3.3 which shows that even with



CHAPTER 3. PLATFORM TRIAL FOR MULTIPLE TREATMENTS 92

a more liberal FWER control compared to the type I error control off each individual

trial there are still many points where one may be better of running separate trials with

respect to sample size. This work therefore reiterates the importance of the discussions

around type I error control in platform trials (Molloy et al., 2022; Wason et al., 2014,

2016; Howard et al., 2018; Proschan and Waclawiw, 2000; Proschan and Follmann, 1995;

Nguyen et al., 2023).

If one instead wants to control the pairwise error, as done for example in STAM-

PEDE (Sydes et al., 2009), one can use Equation (3.2.3), now replacing θ′ with 0. An

additional advantage of using the PWER, if controlling the pairwise power, is that the

stopping boundaries and the sample size required for each active arm are independent

of when the arm is added. Therefore the only change will be how many patients need

to be recruited to the control. However one may find the PWER in a platform trial

insufficient for error control (Wason et al., 2014; Molloy et al., 2022) and may not meet

the regulators requirements.

Building upon this research, a study could be conducted to investigate the impact

of having different numbers of stages and stopping boundaries while maintaining equal

power and type I error for each treatment, utilizing the approach described in Section

3.2. However, such an investigation would likely require multiple changes in the alloca-

tion ratio, resulting in potential issues with time trends. One could therefore examine

methods to handle these time trends, as explored in Lee and Wason (2020); Marschner

and Schou (2022); Roig et al. (2024) and Chapter 2. Furthermore a change in allo-

cation ratio between treatments can result in different PWER and pairwise power for

each treatment if using the same boundaries for each treatment therefore one could use

an iterative approach such as that discussed in Chapter 2. Equally one could study the

effect of using non-concurrent controls, but once again this can face a large issue with

time trends. The main issue with these time trends is that they are unknown. However

one could look into incorporating approaches to reduce the bias potentially caused (Lee
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and Wason, 2020; Marschner and Schou, 2022; Wang et al., 2022; Saville et al., 2022).

In Section 3.3.4 it was assumed for the multi-arm trials that each treatment was

added after an equal number of control treatments were recruited so n(k)− n(k− 1) =

n(2) for k = 2, . . . , K. This may however not be the case. One may therefore wish to

consider the effect of having multiple treatments beginning the study and then adding

additional treatments later. The methodology presented in Section 3.2 allows for these

changes. However when it comes to the comparison designs there are now multiple

options that can be chosen. As done in Section 3.3.4 one could use separate trials for

each comparison, however one could consider using multiple MAMS trials where all

treatments begin at once, or a mix of the two. Further points to be considered here

is how one can evenly share the power across all these trial types, especially if the

focus is on conjunctive power, and also how the type I error should be defined for each

comparison trial.

Furthermore, this work could be expanded to incorporate adaptive boundaries that

adjust once a treatment is deemed effective, as discussed in Urach and Posch (2016) for

the case of multi-arm multi-stage (MAMS) trials. However, such an adaptation would

result in a less pre-planned design so potential further complications in understanding

for the clinicians, the trial statisticians and the patients. Additionally, determining

the point at which the conjunctive power is at its lowest may no longer be feasible,

as dropping each arm would lead to lower bounds for the remaining treatments, thus

affecting the conjunctive power assessment. This adaptive approach will likely result

in uneven distribution of errors across the treatments added at different points. If one

was to then adjust for this one may encounter issues with time trends as the allocation

ratio may need to change mid trial.

This chapter has given a general formulation for designing a preplanned platform

trial with a normal continuous endpoint, and using the work of Jaki and Magirr (2013)

one could apply this methodology to other endpoint such as time-to-event used in
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FLAIR (Howard et al., 2021). When using this approach one should be aware of com-

putational issues from calculating high dimensional multivariate normal distributions,

if one has a large number of arms and stages in the trial design. If this is an issue then

one can restrict to only adding arms at the interims so one can utilise the method of

Dunnett (1955) as discussed in Magirr et al. (2012) and in Chapter 2.



Chapter 4

Design of platform trials with a

change in the control treatment arm

4.1 Introduction

Clinical trials take many years and are very costly to run (Mullard, 2018) which has

therefore lead to multiple developments in methodology on how to efficiently design

them (Pallmann et al., 2018). One of these developments has been the idea of platform

trials in which multiple treatments are tested against a common control group (Urach

and Posch, 2016; Royston et al., 2003; Wason and Jaki, 2012; Bennett and Mander,

2020). Platform trials can be advantageous due to having a shared trial infrastructure

and shared control groups (Burnett et al., 2020). The interest in these types of trials

has increased since the beginning of the COVID-19 pandemic (Lee et al., 2021; Stallard

et al., 2020), as platform trials can result in therapies being identified faster while

reducing cost and time (Cohen et al., 2015).

One additional ability one may want from a platform trial’s design is to be able to

change the control group to a beneficial new treatment found within the trial. A change

of control has happened in multiple platform trials such as STAMPEDE (Sydes et al.,

95
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2012) and RECOVERY (Horby et al., 2021). When changing the control group one

may think of using all the data collected to calculate the future test statistics. There

is little work currently investigating whether keeping the data collected prior to the

change of the control group treatment is the most efficient approach. If one keeps the

data prior to the change of the control group then one will keep all the data from the

trial for both the active treatment of interest and the control treatment where they

have been recruited concurrently. In this chapter we will consider two settings: (i) We

keep all the concurrent data from before the change in control; (ii) We do not keep any

of the data prior to the control changing.

This work will focus on multi-arm multi-stage trials (MAMS) in which additional

treatments can be planned to be added at multiple points during the trial. Multi-

arm trials allow for multiple treatments to be compared at once against a common

control treatment. Multi-stage trials have interim analyses which allow for ineffective

treatments to be dropped for futility (or lack of benefit) earlier. As a result interim

analyses can improve a trial’s operating characteristics (Pocock, 1977; Todd et al.,

2001). They can also allow treatments to stop early if a superior treatment is found,

however, in the case studied here, the first time this happens this superior treatment

will become the new control.

We will focus our investigation on two types of power: (i) Conditional power of a

treatment - the probability a given treatment can be found superior against the current

control. (ii) Overall power of the trial - the probability that the active treatment with

the greatest treatment effect is found during the trial.

In Section 4.2 we introduce the notation, the null hypotheses of interest and discuss

type I error. Section 4.3 studies the conditional power for a general design, where

treatments can be added at different points in a preplanned manner. Then Section 4.3

gives theorems to when keeping the old data is guaranteed to be detrimental in MAMS

trials where all the treatments begin at the same time. In Section 4.4 we give the
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formulation for the overall power along with its definition and give theorems to when

keeping the old data is guaranteed to be detrimental. A motivating example is then

studied in Section 4.5 for both the case when arms begin the trial at the same time

and also when one starts later. Finally we discuss the considerations one needs to make

when deciding whether to use the pre-change data or not.

4.2 Notation and type I error control

Consider a clinical trial with up to K experimental arms that will be tested against

one common control arm. The primary outcome on each patient is independent and

normally distributed with known variance σ2. Each active treatment is tested at J

analyses with J − 1 interim analyses. Let nk,j denote the number of patients recruited

to treatment k by the end of its jth stage assuming that recruitment of this arm had

begun at the start. For this chapter the focus will be on equal sample size and allocation

ratio for each treatments and equally spaced interim analyses for all treatments, as

this ensures equal pairwise error for each treatment without needing to have multiple

boundary shapes (Chapter 2). Therefore, the number of patients recruited between

interim analyses is equal i.e. nk,j − nk,j? = nk?,j − nk?,j? for all k, k? = 0, . . . , K and

j, j? = 0, . . . , J . Let nk,0 define the number of patients already recruited to an active

treatment that started the trial before treatment k enters the trial. We have k′nk′,j′

denoting the current control treatment at point nk′,j′ , where j′ is the stage for treatment

k′ where it became the control, with k′ = 0, . . . , K and j′ = 0, . . . , J . Therefore nk′,j′

denotes the number of patients recruited prior to treatment k′ becoming control at its

j′ th stage. For simplicity we drop the subscript from k′nk′,j′ as the focus of this work

will be on only changing the control group once, with, k′ = 0 at the beginning of the

trial.

The null hypotheses of interest are Hk′1 : µ1 ≤ µk′ , Hk′2 : µ2 ≤ µk′ , ..., Hk′K : µK ≤
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µk′ , where µ1, . . . , µK are the mean responses on the K experimental treatments and µk′

is the mean response of the current control group with µ0 being the mean response of

the initial control. Each of the K hypotheses is potentially tested at a series of analyses

indexed by j = j̈k,k′,j′ + 1, . . . , J where j̈k,k′,j′ is the last stage for k before k′ became

the control. When all the treatments begin at once then j̈k,k′,j′ = j′ as each interim for

each treatment happens at the same time. However if treatments are added at different

points this may not be the case. For example in a 3 arm trial if treatment 1 becomes

the control at its first stage and treatment 2 is not added until after treatment 1’s first

analysis then j̈2,1,1 = 0. At analysis j for treatment k, to test Hk′k it is assumed that

responses, Xk,i and Xk′,i′ , from patients i = nk,0, . . . , nk,j and i′ = nk′,0, . . . , nk,j are

observed respectively. These hypotheses are tested at given analysis j using the test

statistic:

Zk,k′,j =

∑nk,j
i=max(nk,0,nk′,0)+1 Xk,i −

∑nk,j
i=max(nk,0,nk′,0)+1Xk′,i

σ
√

2(nk,j −max(nk,0, nk′,0))
.

In order to ensure only concurrent controls are used we have max(nk,0, nk′,0). If only

the data post the change in the control is used the test statistics are:

Z?
k,k′,j,j′ =

∑nk,j
i=max(nk,0,nk′,0,nk′,j′ )+1Xk,i −

∑nk,j
i=max(nk,0,nk′,0,nk′,j′ )+1 Xk′,i

σ
√

2(nk,j −max(nk,0, nk′,0, nk′,j′))
,

where max(nk,0, nk′,0, nk′,j′) includes the point at which the control changes and

only if nk,0, nk′,0 ≤ nk′,j′ will Z?
k,k′,j,j′ 6= Zk,k′,j. These test statistics are used to test

Hk′k. Upper and lower stopping boundaries, U = (u1, . . . , uJ) and L = (l1, . . . , lJ), are

used for the decision-making as follows. If Zk,k′,j > uj then Hk′k is rejected and the

conclusion that treatment k is superior to the current control is made. If Zk,k′,j < lj then

treatment k is dropped from all subsequent stages of the trial. If the Z statistics for all

the treatments fall below their lower boundary, the trial stops for futility. Treatment k

and control continues to its next stage if lj ≤ Zk,k′,j ≤ uj. If the post change data is only
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used the same rules apply now replacing Zk,k′,j with Z?
k,k′,j,j′ . If multiple treatments

exceed their given upper boundary at the same time point, for example treatments k1

and k2 where k1, k2 = 1, . . . K, then one finds Zk1,k2,j and if this is negative then one

takes forward treatment k2 as the new control treatment and otherwise k1 is taken.

These upper and lower stopping boundaries are group-sequential bounds which are

pre-defined in order to control the original type I error control aimed for in the original

trial. Therefore for example they could be aiming to control the pairwise error rate

(PWER) (Wason et al., 2014; Choodari-Oskooei et al., 2020), the family-wise error

rate (FWER) (Burnett et al., 2020; Magirr et al., 2012) or the false discovery rate

(FDR) (Robertson et al., 2023c; Cui et al., 2023). Typically when continuing to use the

same boundary as already pre-defined there is no longer a guarantee this will control

the type I error of interest after the change. This is because the original bounds were

not designed for this.

4.3 Conditional power

The conditional power for a given treatment k? is the probability that given treatment

k′ is the new standard of care after its j′th stage that treatment k? is found superior to

the new control k′, when tested for treatment k? remaining analyses. The conditional

part of conditional power can be split into 3 events. Event 1 (E1
k?,k′,j′) is the event that

treatment k′ becomes the control at its j′th stage. Event 2 (E2
k?,k′,j′) is that treatment

k? is still in the trial when treatment k′ becomes the control. Event 3 (E3
k?,k′,j′) is

that none of the other k treatments become the control. The detailed formulations for

E1
k?,k′,j′ , E

2
k?,k′,j′ , E

3
k?,k′,j′ are given in the Appendix 4.7.1. The conditional power is

therefore defined as:

Definition 4.3.1. The conditional power for treatment k∗ for given k′ and j′ is

P (reject Hk′k?|E1
k?,k′,j′ ∩ E2

k?,k′,j′ ∩ E3
k?,k′,j′).
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From Definition 4.3.1 the conditional power is the probability we reject Hk′k? given

that at j′ stage for treatment k′ it became the control and treatment k? is still being

tested. Figure 4.3.1 shows the difference in the data included in the calculation of

the conditional power based on the motivating example discussed in Section 4.5. The

motivating example has 2 stages and 4 arms to begin the trial. In this figure it is

assumed that treatment 3 has stopped for futility after the first stage and treatment 1

has become the new control at this stage. Therefore the conditional power of interest is

that treatment 2 is found superior to treatment 1, the new control. The area highlighted

in blue represents the data used if all the data is retained. This therefore covers the

whole length of the trial. Whereas the area in pink is if only the data post the change

in control is used therefore only covers the second stage of the trial.

Treatment 1 becomes the new control

Orginal Control

Treatment 1/ 
 New Control

Treatment 2

Treatment 3

Figure 4.3.1: Illustration of the difference in area of data used for conditional power
when comparing using all the data to only the data post change. The area highlighted
in blue represents the data used if all the data is retained. The area in pink represents
the data if only the data post the change in control is used.

In order to equate the conditional power one can use the conditional probability

definition to remove the need to calculate any highly truncated normal distributions.

The conditional power is:
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
0 if nk?,J ≤ nk′,j′

P (E1
k?,k′,j′∩E

2
k?,k′,j′∩E

3
k?,k′,j′∩E

4
k?,k′,j′ )

P (E1
k?,k′,j′∩E

2
k?,k′,j′∩E

3
k?,k′,j′ )

if nk?,J > nk′,j′

.

where E4
k′,k?,j′ is the event that we reject Hk′k? within the rest of the trial. The formula-

tions for E1
k?,k′,j′ , E

2
k?,k′,j′ , E

3
k?,k′,j′ and E4

k?,k′,j′ are given in the Appendix 4.7.1. This can

be calculated using multivariate normal distributions as discussed for the motivating

example in Section 4.5, using the mean of each test statistic Zk,k′,j,

(µk − µk′)
√

(nk,j −max(nk,0, nk′,0))

σ
√

2
,

and the correlation matrix, Σ. The correlation matrix can be split into multiple values,

ψ(k1,k′1,j1),(k2,k′2,j2), that depend on the correlation between Zk1,k′1,j1 and Zk2,k′2,j2 , and

ψ(k1,k′1,j1),(k2,k′2,j2) equals,



0 for k1 6= k2, k
′
2 & k′1 6= k2, k

′
2

max(0,nk1,j1−max(nk1,0,nk′1,0
,nk′2,0

))

2
√

(nk1,j1−max(nk1,0,nk′1,0
))(nk1,j2−max(nk1,0,nk′2,0

))
for k1 = k2 & k′1 6= k′2 & nk1,j1 ≤ nk2,j2

−
max(0,nk1,j1−max(nk1,0,nk2,0,nk′1,0

))

2
√

(nk1,j1−max(nk1,0,nk′1,0
))(nk2,j2−max(nk2,0,nk1,0))

for k1 = k′2 & k′1 6= k2 & nk1,j1 ≤ nk2,j2

max(0,nk1,j1−max(nk1,0,nk2,0,nk′1,0
))

2
√

(nk1,j1−max(nk1,0,nk′1,0
))(nk2,j2−max(nk2,0,nk′1,0

))
for k1 6= k2 & k′1 = k′2 & nk1,j1 ≤ nk2,j2√

nk1,j1−max(nk1,0,nk′1,0
)

nk1,j2−max(nk1,0,nk′1,0
)

for k1 = k2 & k′1 = k′2 & nk1,j1 ≤ nk2,j2 .

It is worth noting that one does not need to consider the case that k2 = k′1 when

nk1,j1 < nk2,j2 as it is not possible for a treatment to go from being a control back to

being an active treatment.

In the case of only considering the data post changing the control, the test statistics

before the change are now independent of the test statistics post the change. Therefore
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one only needs the event that we reject Hk′k within the rest of the trial. For the case

where only the post change data is used we define this as E?4
k?,k′,j′ . If treatment k?

joins the trial after treatment k′ becomes the control then E4
k?,k′,j′ = E?4

k?,k′,j′ as there

is no data pre the change that is shared. The formulations for E?4
k?,k′,j′ is given in the

Appendix 4.7.1. The conditional power in this case is:


0 if nk,J ≤ nk′,j′

P (E?4
k?,k′,j′) if nk,J > nk′,j′

.

Once again this can be calculated using multivariate normal distributions as discussed

for the motivating example in Section 4.5 using the mean of each test statistic Zk,k′,j,

(µk − µk′)
√

(nk,j −max(nk,0, nk′,0, nk′,j′))

σ
√

2
;

and the correlation matrix which can be split into multiple ψi,i? that depend on the

correlation between Z?
k,k′,j1,j′

and Z?
k,k′,j2,j′

, and equals,

ψi,i? =

{√
nk,j1−max(nk,0,nk′,j′ )

nk,j2−max(nk,0,nk′,j′ )
for j1 ≤ j2.

When all the treatments begin at once this simplifies the equations as now nk,0 = 0 for

all k = 0, . . . K. Additionally as shown below one can now prove when it is guaranteed

that there is no benefit to retaining the information pre change in control treatment

when considering conditional power and using the predefined boundaries. These can

not be proven for when treatments are added later however as shown in Section 4.5

there can still be a negative effect from keeping the data pre the change in the control

treatment.
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4.3.1 When all the treatments start at the beginning of the

trial

When all treatments begin at the same time, it can be proven that for many cases there

can never be benefit to retaining the information pre change in control treatment when

considering conditional power and using the predefined boundaries. The first theorem

(Theorem 4.3.2) states that if there is only one stage left and the upper boundary is

positive, then keeping the historic data is detrimental to the conditional power.

Theorem 4.3.2. If a treatment k′ becomes the control group treatment at stage J − 1

(E1
k?,k′,J−1 ∩ E3

k′,k′,J−1) and uJ ≥ 0 then the conditional power for treatment k? when

retaining the data before the control changed is less than or equal to the conditional

power for treatment k? when not retaining the pre-change data.

The proof of Theorem 4.3.2 is given in Appendix 4.7.2. Theorem 4.3.2 uses the

fact that the active treatment of interest must have been found worse than the new

control group. If this was not the case, then the active treatment of interest would

be the new control. Therefore, by keeping the pre change data one is disadvantaging

the active treatment as one retains the fact that the active treatment has so far been

found worse than the new control treatment. This theorem can be further extended.

First in Theorem 4.3.3 which states that if there are multiple stages of the trial left

and both the upper and lower boundaries are greater than or equal to 0 then retaining

the pre change data is detrimental to the conditional power. The second extension is

Theorem 4.3.4 which states that if there are multiple stages of the trial left and the

upper boundaries are positive and there is no lower boundaries then retaining the pre

change data is detrimental to the conditional power.

Theorem 4.3.3. If a treatment k′ becomes the new control group treatment at stage j′

(E1
k?,k′,j′ ∩ E3

k′,k′,j′) and uj ≥ 0 and lj ≥ 0 for all j = (j′ + 1) . . . J then the conditional

power for treatment k? when retaining the data before the control changed is less than
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or equal to the conditional power for treatment k? when not retaining the pre-change

data.

Theorem 4.3.4. If a treatment k′ becomes the new control group treatment at stage j′

(E1
k?,k′,j′∩E3

k′,k′,j′) and uj ≥ 0 and there are no lower boundaries for all j = (j′+1) . . . J

then the conditional power for treatment k? when retaining the data before the control

changed is less than or equal to the conditional power for treatment k? when not retaining

the pre-change data.

The proof for Theorem 4.3.3 is given in the Appendix 4.7.2. The proof for Theo-

rem 4.3.4, which is similar to the proof of Theorem 4.3.3, is given in the Supporting

Information (Section C.1). Furthermore as we will show in the Supporting Information

(Section C.6) even if lj < 0 for some j = (j′ + 1) . . . J then one will find that retaining

the old information is likely detrimental for the conditional power. However in Sup-

porting Information (Section C.7) it is shown that there are cases when lj < 0 where

keeping the old data can be beneficial for conditional power.

4.4 Overall power

Overall power of a treatment gives the probability that during the trial the active

treatment with the greatest positive treatment effect is either taken forward as the new

control or is declared superior compared to a new control, if the control has already

changed. Therefore overall power can be thought of as two main parts: either the

correct treatment becomes the new control first, or another treatment becomes the new

control and subsequently this treatment is found to be better than this new control.

This gives the overall power definition as:

Definition 4.4.1. The overall power for the treatment k? which has the greatest treat-
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ment effect, µk? ≥ µk∀k = 1, . . . , K, equals

P (
J⋃

j?=1

[E1
k?,k?,j? ∩ E3

k?,k?,j? ] ∪
⋃

k′∈{1,...,K}/k?

J⋃
j′=1

[E1
k′,k?,j′ ∩ E2

k′,k?,j′ ∩ E3
k′,k?,j′ ∩ E4

k′,k?,j′ ]).

Due to the multiple disjoint sets within Definition 4.4.1, the overall power can be

split into multiple, easy to compute, parts. The first of these is the probability that at

each interim j?, treatment k? becomes the control (Ξk?,j?) and this equals:

Ξk?,j? = P (E1
k?,k?,j? ∩ E3

k?,k?,j?). (4.4.1)

The probability another treatment becomes the new control and then this treatment

is found to be better then the new control (Ωk?,k′,j′) can be split into every possible k′

and j′.

Ωk?,k′,j′ =


0 if nk,J ≤ nk′,j′

P (E1
k′,k?,j′ ∩ E2

k′,k?,j′ ∩ E3
k′,k?,j′ ∩ E4

k′,k?,j′) if nk,J > nk′,j′

. (4.4.2)

Combining Equation (4.4.1) and Equation (4.4.2) the overall power is:

J∑
j?=1

Ξk?,j? +
∑

k′∈{1,...,K}/k?

J∑
j′=1

Ωk′,k?,j′ .

When we consider only using the data post change in control the probability another

treatment becomes the new control and then this treatment is found to be better then

the new control (Ω?
k?,k′,j′) becomes:

Ω?
k?,k′,j′ =


0 if nk,J ≤ nk′,j′

P (E1
k?,k′,j′ ∩ E2

k?,k′,j′ ∩ E3
k?,k′,j′)P (E?4

k?,k′,j′) if nk,J < nk′,j′

.
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This is due to the independence of event 4 with the rest of the events. Therefore the

overall power is:
J∑

j?=1

Ξk?,j? +
∑

k′∈{1,...,K}/k?

J∑
j′=1

Ω?
k?,k′,j′ .

As shown below one can now prove when it is guaranteed that there is no benefit to re-

taining the information pre change in control treatment when considering overall power

and using the predefined boundaries. These can not be proven for when treatments are

added later, however as shown in Section 4.5 there can still be a negative effect from

keeping the data pre the change in the control treatment.

4.4.1 When all the treatments start at the beginning of the

trial

In the scenario where all the treatments begin at once, from Theorem 4.3.3 and Theorem

4.3.4 for the conditional power, one can prove similar results for the overall power.

Theorem 4.4.2. If uj ≥ 0 and lj ≥ 0 for all j = 1, . . . , J then the overall power when

retaining the data before the control changed is less than or equal to the overall power

when not retaining the pre-change data.

Theorem 4.4.3. If uj ≥ 0 and there are no lower boundaries for all j = 1, . . . , J then

the overall power when retaining the data before the control changed is less than or equal

to the overall power when not retaining the pre-change data.

The proof for Theorem 4.4.2 and Theorem 4.4.3 is given in Appendix 4.7.3. Fur-

thermore as is shown in Supporting Information (Section C.6) even if lj < 0 for any

j = 1, . . . , J then there are cases that retaining information pre the change in the con-

trol group is detrimental for the overall power. This is shown in the example in the

Supporting Information (Section C.6) as the difference in conditional power between

keeping and discarding the pre change data is negative, therefore, so will the overall

power.
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4.5 Motivating trial example

We consider the motivating trial of TAILoR (Pushpakom et al., 2020). The TAILoR

trial was a 4 arm trial which studied the effect of different doses of a treatment on HIV.

The study had 1 interim analysis. We are going to use the operating characteristics from

this study to see the effects on overall and conditional power if the control was changed

mid trial if a treatment was found superior. In the original design the family-wise error

rate (FWER) (Pushpakom et al., 2015) was controlled at 5% one sided for a normal

continuous endpoint and there was a planned 90% power. The trial was planned to have

equal allocation across stages. In addition the clinically relevant effect of θ1 = 0.545

and uninteresting effect θ0 = 0.178 assuming the variance σ2 = 1 was used.

Triangular stopping boundaries will be used (Whitehead, 1997) as recommended in

Wason and Jaki (2012). Additionally in the Supporting Information (Section C.6) the

O’Brien and Fleming boundaries (O’Brien and Fleming, 1979) for the 3 stage example

are found to have a very similar pattern in the difference in conditional power as seen for

the triangular boundaries, however one should ensure that they investigate the effect

of different boundary shapes for their given trial design. The stopping boundaries

when all the treatments start at once will be calculated using the approach given in

Magirr et al. (2012) to control FWER for the design before the change in control. In

addition we will consider the design if one of the treatments was added at the end of

the first stage. Therefore the stopping boundaries will be found using the approach

given in Chapter 2 to control FWER for the design before the change in control. The

calculations of the power will be done using Chapter 3 in-order to control the pairwise

power for each treatment. This is chosen as it is similar to that used in the original

trial but is designed for trials which continues after a treatment is taken forward. The

calculations were carried out using R (R Core Team, 2021) with the method given

here having the multivariate normal probabilities being calculated using the package

mvtnorm (Genz et al., 2021); the upper and lower boundaries when all the treatments
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Figure 4.5.1: Illustration of the motivating trial. Figure 4.5.1a illustrates when all
treatments start at the beginning and Figure 4.5.1b illustrates when one treatment
starts at the end of the first stage.

start at once were found using MAMS (Jaki et al., 2019) and the code was parallelised

using packages doParallel (Daniel et al., 2022a) and foreach (Daniel et al., 2022b).

The code is available at https://github.com/pgreenstreet/change control platform.

This section will be split into two parts: the first case (Case 1) will look at the case

when all treatments start at the beginning; the second (Case 2) will look at the case

where one of the treatments is added a stage later. Case 1 and Case 2 are depicted in

Figure 4.5.1a and Figure 4.5.1b respectively.

4.5.1 Case 1: All treatments start at the same time

Using the approach by Magirr et al. (2012) the triangular upper and lower stopping

boundaries are found to be

U =


2.330 2.197

2.330 2.197

2.330 2.197

 , L =


0.777 2.197

0.777 2.197

0.777 2.197

 .

Using Chapter 3 the maximum sample size is 344 based on 43 patients per arm per

stage to ensure pairwise power of 90%. Due to each treatment getting the same number
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of treatments per stage we define n = nk,1 for all k = 0, 1, 2, 3 therefore the number

of patients recruited at the second stage for a treatment which runs for both stages is

n + n = 2n. This subsection begins by discussing the formulation of the equations for

both conditional power and overall power. After this we then study the results of the

conditional power and overall power under different treatment effects and compare the

effect of using all available data compared to only using the data post change.

Conditional power

There is only one place in the trial where the conditional power is not zero as there

is only one interim analysis in the study and all the treatments begin at the same

point. This happens when a treatment becomes the new control at the first stage. We

define the treatment of interest as k?, define the new control as k′ and define the other

treatment in the study as k1. The conditional power for treatment k? when treatment

k′ becomes the new control at stage 1 is:

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1 ∩ E4

k?,k′,1)

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1)

. (4.5.1)

When calculating Equation (4.5.1) one can take advantage of the fact that all the

treatments start at the same time. Therefore, Zk,k′,j′ < 0∪Zk,0,j′ < uj′ can be simplified

to Zk,k′,j′ < 0. This is because testing Zk,0,j′ > uj′ and Zk,k′,j′ < 0 is equivalent to testing

Zk,k′,j′ = Zk,0,j′−Zk′,0,j′ < 0 and Zk′,0,j′ > uj′ for treatment k′ to be taken forward when

all the treatments start at the same point. When we only retain the new information

the conditional power is

P (E?4
k?,k′,1). (4.5.2)

In the Supporting Information (Section C.2) the formulations used to calculate Equation

(4.5.2) and Equation (4.5.1) are given.
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Overall power

To calculate overall power in addition to the calculations above one needs the probability

the treatment of interest k? becomes the control at stage 1 or stage 2 of the trial. The

two other arms in this case are defined as k1 and k2. Due to all the arms starting

at the same point this simplifies the calculation of both Ξk,1 and Ξk,2. The complete

formulation for Ξk,1 and Ξk,2 is given in the Supporting Information (Section C.3).

Using the calculations for the conditional power one can find both Ωk?,k′,1 and Ω?
k?,k′,1.

The overall power for treatment k? when the old information is retained is

2∑
j?=1

Ξk?,j? +
∑

k′∈{1,2,3}/k?
Ωk?,k′,1.

When only new data is used the overall power is

2∑
j?=1

Ξk?,j? +
∑

k′∈{1,2,3}/k?
Ω?
k?,k′,1.

Results

In Figure 4.5.2 the difference between conditional power when retaining all the old data

and not retaining the data can be seen. The conditional power for treatment 2 when

treatment 1 is the new control after the first stage is studied. The y-axis gives the

treatment effect of treatment 2 compared to the original control treatment. The x-axis

gives effect of treatment 1 compared to the original control treatment. The colour as

given on the scale, to the right of the figure, defines the difference in conditional power

between retaining the information pre the change and not. The effect of different values

of µ3 is very small, as it has very little effect on the probability that treatment 2 is

found superior to treatment 1 in the final stage. Therefore we will focus on the results

for when µ3 − µ0 = 0. However in the supporting information the effect of µ3 − µ0

having an uninteresting treatment effect is shown.
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As shown in the Supporting Information (Section C.4), for the conditional power

when all the data is retained, if the difference between µ2 and µ1 is greater than 1,

the probability that treatment 2 is found superior to the treatment 1 is at least 88.9%.

When µ2 is less then µ1 the probability of incorrectly taking treatment 2 forward is at

worst 0.01%. This is in comparison to when only the data post the change is retained.

Now when the difference between µ2 and µ1 is greater than 0.760 we have conditional

power of above 90%. When µ2 is less than µ1 the probability of incorrectly taking

treatment 2 forward is at worst 1.15%. The figures illustrating the conditional power

for these can be seen in the Supporting Information (Section C.4).

The difference between conditional power when retaining all the old data and not

retaining the data can be seen in Figure 4.5.2 when µ3−µ0 = 0. As can be seen in Figure

4.5.2 when µ2− µ1 is around 0.5 then the loss in conditional power is maximised. This

can be greater than 50%. However as this difference becomes a lot more extreme the

loss becomes close to 0. This is because at this point either approach has almost a 100%

chance of finding treatment 2 superior to treatment 1. In the Supporting Information

(Section C.5) we study the effect on conditional power of different possible values of

Z(1,0),1 and Z(2,0),1 for one of these points, µ1 = −0.25 and µ2 = 0.75. Here we can

ignore the value of Z(3,0),1 as this does not influence the probabilities as shown in the

proof to Theorem 1 in Appendix 4.7.2. It is shown here that even in this case where

there is on average very little benefit in only retaining the new information there are

potential values of Z(1,0),1 and Z(2,0),1 where there is large benefit in only using the new

data. However the probability of these Z values happening is very small for the given µ1

and µ2. When µ2−µ1 < 0 the difference in conditional power is small. This is because

for both approaches the probability that treatment 2 is found superior to treatment 1

when in fact it is not is small.

The overall power is very similar between retaining the data or not as shown in

Figure 4.5.3. Once again the focus being µ3 − µ0 equal to zero. However in the Sup-
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Figure 4.5.2: The difference in conditional power between keeping the data pre change
and not, for treatment 2 given that treatment 1 has gone forward at the first stage.

porting Information (Section C.4) the results are also shown when µ3 − µ0 = 0.178

and µ3 − µ0 = −0.178. This is along with the figures illustrating the overall power for

when the data is retained or not. The y-axis gives the treatment effect of treatment 2

compared to the original control and the x-axis gives effect of treatment 1 compared to

the original control. The colour as given on the scale to the right defines the difference

in overall power at that given point.

The maximum difference in overall power is 1.7%. This is compared to a maximum

change of 52.6% for the difference in conditional power. This is because when calculating

the overall power most of the time the correct treatment will be taken forward compared

to the original control instead of one of the other treatments, however, when studying

the conditional power this is not considered. Therefore when calculating the overall

power the probability of a mistake is taken into account. This effect can be seen in

Figure 4.5.4. This figure gives the probability of the treatment which does not have

the greatest treatment effect becoming the control at the first stage. This shows that

in many of the areas, where the difference in conditional power was at its greatest, it is

unlikely that treatment 1 or 3 would have been taken forward instead of treatment 2.
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Figure 4.5.3: The difference in overall power between keeping the data pre change and
not.

The decrease in the difference in overall power when µ1 is very similar to µ2 is caused

by the fact that when the arms are almost equal the conditional power is very small for

both. As when keeping the pre change data and not keeping the pre change data, it is

very unlikely, given we have taken one treatment forward, that we are then able to find

the other treatment is superior. Therefore, the difference in overall power is also very

small. Additionally, the symmetry is caused by the fact that at the point µ1 = µ2 we

now switch which treatment is of interest, as we focus on the treatment which has the

greatest treatment effect.

4.5.2 Case 2: A treatment added later

This subsection will study the case where one of the treatments is added a stage later

as shown in Figure 4.5.1b. Using the approach by Chapter 2 the triangular stopping
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Figure 4.5.4: The probability of the treatment which does not have the greatest treat-
ment effect becoming the control at the first stage.

boundaries are found to be

U =


2.358 2.223

2.358 2.223

2.358 2.223

 , L =


0.786 2.223

0.786 2.223

0.786 2.223

 .

Based on 43 patients per arm per stage the maximum sample size is now 387 in order to

control the pairwise power at 90% (Chapter 3). This addition accounts for the patients

which would need to be added for the later treatment as seen in Figure 4.5.1b. As each

treatment gets the same number of treatments per stage we define n = nk,1 − nk,0 =

nk,2 − nk,1 for all k = 0, 1, 2, 3.

We begin this subsection by discussing the equations for both conditional power

and overall power. For both of these we will split the calculations into two. The first is

for the treatments which begin the trial. The second is for the treatment which joins

after 1 stage. For brevity only an explanation of the calculation required is given below,

however, in the Supporting Information (Section C.9) the equations required are given.

After this we then study the results of the conditional power and overall power under
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different treatment effects and compare the effect of using all available data compared

to only using the data post change.

Conditional power

The only non-zero conditional power for the 2 treatments that start the trial are if a

treatment becomes the control at the first stage. Therefore the conditional power when

old data is retained is very similar to the one given in Subsection 4.5.1, however now

the 3rd treatment is no longer considered, as it is unable to become the control at stage

1 as it is yet to be tested. When considering the conditional power when only new

data is retained then Equation (4.5.2) is used as once again the conditional power is

independent of the other continuing treatments.

The conditional power for treatment 3 is non-zero in two cases. The first is when the

new control has been declared at the first stage of the trial - so at the point treatment

3 begins. In this case the conditional power is the same if the old data is retained or

not. This is because only concurrent controls are used, therefore there is no difference

between the two as no old data is available. One can therefore take advantage of the

fact that event E4
k?,k′,1 is independent of E1

k?,k′,1, E2
k?,k′,1 and E3

k?,k′,1. The conditional

power given that treatment 1 or 2 becomes the control at its second stage is more

numerically complex. However one can still use the fact that treatment 1 and 2 start at

the same time therefore, Zk1,k′,j′ < 0 ∪ Zk1,0,j′ < uj′ can be simplified to Zk1,k′,j′ < 0 in

this case. The complete equations for these can be seen in the Supporting Information

(Section C.9).

Overall power

Calculating Ξk,1 and Ξk,2 for the treatments that start at the beginning of the trial is

very similar to the calculations given in Subsection 4.5.1. However for Ξk,1 one only

needs to consider the other treatment that began the trial at the beginning. Similar
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for Ξk,2 one only needs to consider the first stage for treatment 3. Therefore the overall

power for treatment k? given it is treatment 1 or 2 is

2∑
j?=1

Ξk?,j? + Ωk?,k′={1,2}/k?,1.

If the third treatment is the superior treatment then one needs to calculate Ξk,1

and Ξk,2 accounting for the fact this treatment has been added at a later stage. One

needs to include, all the possible outcomes for the other treatments that ensures that

treatment 3 is taken forward first. As a result this requires 9 integrals and 4 integrals

for Ξk,1 and Ξk,2, respectively. The reason for the reduction in integrals for the second

is if treatment 3 becomes the new control at its second stage then this guarantees that

the other treatments have gone below their lower boundaries at some point, where as

this is not the case for Ξk,1. This can be seen clearly in the equations given in the

Supporting Information (Section C.9). The overall power for treatment k? given it is

treatment 3 is
2∑

j?=1

Ξk?,j? +
∑

k′∈{1,2}

2∑
j′=1

Ωk?,k′,j′ .

Results

In this section the main focus will be on the conditional and overall power of treatment

3. This is because as shown in the Supporting Information (Section C.10) the results

for the conditional and overall power for the earlier treatments are almost identical to

the case when all the treatments start at the same time as seen in Section 4.5.1. For the

conditional power we are going to therefore focus on the case that treatment 1 becomes

the new control at its second stage and treatment 2 has treatment effect equal to that

of the original control. This is the focus as if treatment 1 becomes the control at its first

stage there is no difference between the conditional power for treatment 3 if old data is

retained or not. This is as the same data will be used in both cases, as only concurrent
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Figure 4.5.5: The difference in conditional power for treatment 3 given that treatment
1 has gone forward at the second stage (Figure 4.5.5a) and the overall power (Figure
4.5.5b) when treatment 3 starts after the first stage.

data is used. The difference in conditional power can be seen in Figure 4.5.5.

As can be seen here once again there is no benefit found in keeping the historic

data. This is because, as detailed in the proof to Theorem 4.3.2, it is still unlikely

that Equation (4.7.1) is true given that treatment k′ became the control. However it is

worth noting that the difference in power is less than it was for the case when all the

treatments started at once with the maximum difference being 39.8%.

When we consider the difference in overall power we once again see that keeping the

old data is detrimental as shown in Figure 4.5.5. However as seen in the case when all

treatments start at the same time the effect of keeping the old data is a lot less for the

overall power compared to the conditional power. Figure 4.5.5 is no longer symmetric

as the treatment effect of treatment 3 has no effect on the difference for treatment 1.

This is because at the first opportunity treatment 3 could be taken forward, treatment

1 will be at its final analysis as discussed in Section 4.5.2.

Through this section it has been shown that for an example, even for the later

arm, there is no benefit in keeping the data. However this is not always true. When

considering the case when there is only one analysis for each treatment there is more
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likely to be benefit from keeping the old data for the later treatment as can be seen in

the Supporting Information (Section C.11).

4.6 Discussion

In this chapter we have studied the effect of keeping or discarding the data post a

change in control in a platform study, with the focus being on the power of the study.

This work has shown that in many cases one is likely to be better off not retaining the

data, when using the same stopping boundaries. This is because the active treatment

of interest is likely to have been found worse than the new control treatment as it

has not become the new control itself. Therefore in this case it would be potentially

beneficial to start a new trial. This would also give time for decisions with regards to

which treatments should be compared to the new control. There are likely to be more

benefits in starting a new trial, including being able to adjust the research question,

the target population, and the treatment dose as well as many more. However these

would involve creating a new protocol and setting up a new trial which may be more

administrative and logistical work compared to continuing the trial.

In Section 4.3 and Section 4.4 it was shown for many cases when all arms start at the

same time one can prove that the overall and conditional power will be lower by retaining

the old data. However even in scenarios where one can not prove that the power will be

lost by retaining the old data it has been shown in the Supporting Information (Section

C.6) that one is still likely better off not retaining the previous data. This section looks

at the effect of using the symmetric boundary shape of O’Brien and Fleming (O’Brien

and Fleming, 1979) for a 3 stage example using the same operating characteristics as

given in the motivating example of TAILor (Pushpakom et al., 2015). However in the

Supporting Information (Section C.7) there is an example when all arms start at once

where keeping the old data can be beneficial. In Section 4.5 it was shown that the loss
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in conditional power can be very large when old data is retained. It was shown that for

overall power the loss is less than that for conditional power, but there is still a loss in

overall power.

This work has shown that when adding additional treatments later, that depending

on the boundary shapes, there may not be benefit in keeping the historic data for the

later treatments as well as the ones which start the trial. However in this case it is not

ensured that keeping the old data will be detrimental as is shown in the Supporting

Information (Section C.11) for an example where each treatment gets one analysis.

Equal allocation ratio between arms has been used in this work. This has been done

for simplicity, so the pairwise error is equal for every treatment before the change in

control, one could consider extending this work to consider different allocation ratios

for each treatment and one could also extend this work to consider changing the control

and a change in allocation ratio. However one needs to be aware of the effect of time

trends as discussed in Roig et al. (2024) and Chapter 2 and one may wish to use a

modelling approach (Lee and Wason, 2020). Additionally, throughout this work only

concurrent data has be used. For work on non-concurrent controls see recent work by

Lee and Wason (2020); Marschner and Schou (2022); Saville et al. (2022); Wang et al.

(2022) however once again one needs to be aware of the effect of time trends.

Furthermore in this work we have looked at an ideal example where the trial has

equal allocation as planned. However in reality the probability of having equal allocation

is very slim depending on the treatment allocation method. Therefore we have also

considered the effect of using simple random allocation. This therefore means criteria

of Theorem 4.3.3 or Theorem 4.3.4 are no longer met. We have investigated this for

three cases. We studied the number of times out of 100,000,000 simulations that keeping

the data has resulted in the treatment of interest being taken forward when this would

not have been the case using only the new data. This probability is still very small

(0.0006% in the example studied) relative to the probability that discarding the old
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data has resulted in the treatment of interest being taken forward when this would not

have been the case using all the data. This can be seen in the Supporting Information

(Section C.8).

Overall this chapter has highlighted the importance of considering what to do if

you change control during a platform trial to one which has been found superior to the

control. Therefore one should consider whether to continue the current trial or stop

and start a new trial with the new control.

4.7 Appendix

4.7.1 Formulation of the events for calculating the conditional

power and overall

The event E1
k?,k′,j′ which is the event that treatment k′ becomes the control at it’s j′th

stage equals,

E1
k?,k′,j′ =

j′−1⋂
i=1

(li ≤ Zk′,0,i ≤ ui) ∩ Zk′,0,j′ ≥ uj′ .

The event E2
k?,k′,j′ which is that treatment k? is still in the trial when treatment k′

becomes the control equals,

E2
k?,k′,j′ =(nk?,1 > nk′,j′) ∪ (nk?,1 ≤ nk′,j′) ∩

{[
(nk?,j̈k?,k′,j′ < nk′,j′)∩

j̈k?,k′,j′⋂
i=1

(li ≤ Zk?,0,i ≤ ui)

]
∪
[
(nk?,j̈k?,k′,j′ = nk′,j′)

j̈k?,k′,j′−1⋂
i=1

(li ≤ Zk′,0,i ≤ ui)∩

(lj̈k?,k′,j′ ≤ Zk?,0,j̈k?,k′,j′ ) ∩ [(Zk?,0,j̈k?,k′,j′ ≤ uj̈k?,k′,j′ ) ∪ (Zk?,k,j̈k?,k′,j′ ≤ 0)]
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The event E3
k?,k′,j′ which is that none of the other k treatments become the control is

E3
k?,k′,j′ =

⋂
k∈(1...K)/k?,k′

(
(nk,1 > nk′,j′) ∪ (nk,1 ≤ nk′,j′)∩

{[ j̈k,k′,j′−1⋃
i=1

i−1⋂
i?=1

(li? ≤ Zk,0,i? ≤ ui?) ∩ (Zk,0,i ≤ li)

]
∪
([

(nk,j̈k,k′,j′ < nk′,j′)

∩
j̈k,k′,j′−1⋂

i=1

(li ≤ Zk,0,i ≤ ui) ∩ (Zk,0,j̈k,k′,j′ ≤ uj̈k,k′,j′ )

]
∪
[
(nk,j̈k,k′,j′ = nk′,j′)∩

j̈k,k′,j′−1⋂
i=1

(li ≤ Zk,0,i ≤ ui) ∩ [(Zk,0,j̈k,k′,j′ ≤ uj̈k,k′,j′ ) ∪ (Zk,k′,j̈k,k′,j′ < 0)]

])})
.

The event E4
k′,k?,j′ which is the event that we reject Hk′k within the rest of the trial

equals,

E4
k?,k′,j′ =

J⋃
i=j̈k?,k′,j′+1

i−1⋂
i?=j̈k?,k′,j′+1

(li? ≤ Zk?,k′,i? ≤ ui?) ∩ (ui < Zk?,k′,i).

The event E?4
k?,k′,j′ which is the event that we reject Hk′k within the rest of the trial

when not retaining the information post the change in control treatment equals,

E?4
k?,k′,j′ =

J⋃
i=j̈k?,k′,j′+1

i−1⋂
i?=j̈k?,k′,j′+1

(li? ≤ Z?
k?,k′,i?,j′ ≤ ui?) ∩ (ui < Z?

k?,k′,i,j′).

4.7.2 Proof of Theorem 4.3.2 and Theorem 4.3.3

The proof of Theorem 4.3.2 is:

Proof. Define Ẑk,k′,j′ , where Ẑk,k′,j′ equals Zk,k′,j at nk′,j′ , so:

Ẑk,k′,j′ =

∑nk′,j′

i=max(nk,0,nk′,0)+1Xk,i −
∑nk′,j′

i=max(nk,0,nk′,0)+1 Xk′,i

σ
√

2(nk′,j′ −max(nk,0, nk′,0))
.
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Therefore,

Zk,k′,j =
Ẑk,k′,j′

√
nk′,j′ −max(nk,0, nk′,0) + Z?

k,k′,j,j′

√
nk,j − nk′,j′)√

(nk,j −max(nk,0, nk′,0))
.

The same boundaries U and L ,as predefined for the trial, are used so if the old data is

kept one can rearrange Zk,k′,j > uj to be:

Z?
k,k′,j,j′ >

uj
√

(nk,j −max(nk,0, nk′,0))− Ẑk,k′,j′
√
nk′,j′ −max(nk,0, nk′,0)

√
nk,j − nk′,j′

,

compared to Z?
k,k′,j,j′ > uj for only new data. There is only increased chance of going

above uj when keeping the historic data if:

Ẑk,k′,j′ >
uj[
√

(nk,j −max(nk,0, nk′,0))−√nk,j − nk′,j′ ]√
nk′,j′ −max(nk,0, nk′,0)

. (4.7.1)

For an increased chance of rejecting the null hypothesis Hk,k′ at the next stage if pre

change data is kept compared to discarding it one requires Ẑk,k′,j′ to be positive if uj

is positive. Using Equation (4.7.1) if all treatments are added at the same point it is

worth keeping the historic data if:

Ẑk,k′,j′ >
uj[
√
nk,j −

√
nk,j − nk′,j′ ]

√
nk′,j′

≥ 0.

However Ẑk,k′,j′ < 0 as treatment k′ is the new control not treatment k∗.

The proof of Theorem 4.3.3 is:

Proof. Define the following:

Bk?,j(δ1,j, δ2,j) =[(δ2,jlj + δ1,j) < Z?
k?,k′,j < (δ2,juj + δ1,j)]

Ck?,j(δ1,j, δ2,j) =[(δ2,juj + δ1,j) < Z?
k?,k′,j].
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From Definition 4.3.1 the conditional power equals:

R(δ1,j, δ2,j) =
J⋃

j=j′+1

[ j−1⋂
i=j′+1

(Bk?,i(δ1,i, δ2,i)) ∩ Ck?,j(δ1,j, δ2,j)

]
.

When no data is taken δ1,j = 0 and δ2,j = 1. However when old data is taken forward

δ1,j =
−Ẑk,k′,j′

√
nk′,j′√

nk,j−nk,j′
and δ2,j =

√
nk,j√

nk,j−nk,j′
. Therefore when old data is retained δ1,j ≥ 0

and δ2,j ≥ 1 as Ẑk,k′,j′ < 0.

Then under the assumption uj ≥ 0 and lj ≥ 0 for all j = (j′ + 1) . . . J . For any

ε1,j ≥ 0 and ε2,j ≥ 0 let

w = (Z?
k?,k′,j′+1, . . . , Z

?
k?,k′,J) ∈

J⋃
j=j′+1

[ j−1⋂
i=j′+1

(Bk?,i(δ1,i + ε1,i, δ2,i + ε2,i))

∩ Ck?,j(δ1,j + ε1,j, δ2,j + ε2,j)

]
,

for some q ∈ {j′+ 1, . . . , J} for which Z?
k?,k′,q ∈ Ck?,q(δ1,q + ε1,q, δ2,q + ε2,q) and Z?

k?,k′,h ∈

Bk?,h(δ1,h + ε1,h, δ2,h + ε2,h) for h = j′ + 1, . . . q − 1. Z?
k?,k′,q ∈ Ck?,q(δ1,q + ε1,q, δ2,q + ε2,q)

implies that Z?
k?,k′,q ∈ Ck?,q(δ1,q, δ2,q). Furthermore Z?

k?,k′,q ∈ Bk?,q(δ1,q + ε1,q, δ2,q + ε2,q)

implies that Z?
k?,k′,q ∈ Bk?,q(δ1,q, δ2,q) ∪ Ck?,q(δ1,q, δ2,q) for some h = j′ + 1, . . . q − 1.

Therefore,

w = (Z?
k?,k′,j′+1, . . . , Z

?
k?,k′,J) ∈

J⋃
j=j′+1

[ j−1⋂
i=j′+1

(Bk?,i(δ1,i, δ2,i)) ∩ Ck?,j(δ1,j, δ2,j)

]
.

As a result P (R(0, 1)) ≥ P (R(
−Ẑk,k′,j′

√
nk′,j′√

nk,j−nk,j′
,

√
nk,j√

nk,j−nk,j′
)).

4.7.3 Proof of Theorem 4.4.2 and Theorem 4.4.3

The proof of both Theorem 4.4.2 and Theorem 4.4.3 is:

Proof. Let the treatment with the greatest positive treatment effect be treatment k?.
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Then one can write the conditional power of treatment k if no pre change data is kept

as:

P (E1
k?,k′,j′ ∩ E2

k?,k′,j′ ∩ E3
k?,k′,j′)P (E?4

k?,k′,j′)

P (E1
k?,k′,j′ ∩ E2

k?,k′,j′ ∩ E3
k?,k′,j′)

.

From Theorem 4.3.3 when uj ≥ 0 and lj ≥ 0 for all j = 1 . . . J is true we know for a

given k′ and j′

P (E1
k?,k′,j′ ∩ E2

k?,k′,j′ ∩ E3
k?,k′,j′ ∩ E4

k?,k′,j′) ≤ P (E1
k?,k′,j′ ∩ E2

k?,k′,j′ ∩ E3
k?,k′,j′)P (E?4

k?,k′,j′).

Additionally this is known for when uj ≥ 0 and there are no lower boundaries for

all j = 1 . . . J from Theorem 4.3.4. This is true for every k′ ∈ {1, . . . , K}/k∗ and

j′ ∈ 1, . . . , J , so

J∑
j?=1

Ξk?,j? +
∑

k′∈{1,...,K}/k?

J∑
j′=1

Ωk?,k′,j′ ≤
J∑

j?=1

Ξk?,j? +
∑

k′∈{1,...,K}/k?

J∑
j′=1

Ω?
k?,k′,j′ .



Chapter 5

A multi-arm multi-stage design for

trials with no control arm and all

pairwise testing

5.1 Introduction

Multi-arm multi-stage trials have become increasingly popular due to their potential to

reduce the duration and large cost of clinical trials (Stallard et al., 2020; Lee et al., 2021;

Noor et al., 2022; Mullard, 2018). Multi-arm studies can have multiple potential ben-

efits including: shared trial infrastructure; the possibility to use a shared control arm;

less administrative and logistical effort than setting up separate trials and enhanced

recruitment (Burnett et al., 2020; Meurer et al., 2012). Interim analyses can greatly

improve the efficiency of a clinical trial and help avoid unnecessary exposure of partici-

pants to ineffective or harmful treatments, while also conserving patients that could be

redirected to more promising treatments (Pocock, 1977; Todd et al., 2001; Wason et al.,

2016). This results in useful therapies potentially being identified faster while reducing

cost and time (Cohen et al., 2015). After each interim analysis happens a new stage of

125
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the trial begins, therefore the number of stages of a trial equals the number of analyses

including the final analysis. Traditionally multi-arm multi-stage (MAMS) trials involve

comparing the active treatments to a common control treatment at predefined interim

stages (Wason and Jaki, 2012; Royston et al., 2003; Urach and Posch, 2016; Serra et al.,

2022). The work of Magirr et al. (2012) extended the multi-arm setting with common

control treatment of Dunnett (1955) to allow for a MAMS design in which the type I

error of the entire trial is controlled.

In this manuscript we will focus on designing multi-arm multi-stage trials where no

control treatment is available. Specifically we are extending the work of Tukey (1949)

to allow for interim analyses whilst still controlling the type I error of the entire trial.

There are several scenarios where control treatments are absent, for instance when mul-

tiple treatments are already established as the standard of care for a condition and the

objective of the trial is to determine if any treatment(s) is/are superior or inferior to

any of the others (Briffa et al., 2021; Califf et al., 2016). Such investigations are partic-

ularly important as in many medical specialities, less than 20% of recommendations in

contemporary clinical practice guidelines are supported by high quality evidence (Briffa

et al., 2021; Institute of Medicine, 2015; Califf et al., 2016). Another situation where

such trials are useful is where no treatment currently exists for a specific severe dis-

ease in a given population where it would be unethical to give patients a placebo, so

withholding a potentially beneficial treatment. There may be no treatment currently

used due to either a lack of resources to use the accepted standard of care, or if it is an

emerging infectious disease so no standard of care has been established (Magaret et al.,

2016).

Magaret et al. (2016) propose an approach for how one can conduct all pairwise

comparisons for a multi-arm study with no control treatment in sepsis where the trial

has interim analyses. This trial was motivated from the Ebola outbreak (Magaret

et al., 2016). When conducting pairwise comparisons, all the null hypotheses, that two
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treatments are equal, are tested for every pair of treatments within the multi-arm study.

In the proposal by Magaret et al. (2016) a treatment is dropped, at an interim analysis,

if it is found to be statistically significantly worse than at least one other treatment in

the trial and if all remaining treatments are found to be similar then the trial stops. In

Magaret et al. (2016) the calculations of the rules to drop treatments or stop the trial

early was done using a simulation based approach which did not guarantee the type I

error of the entire trial. Their work was then considered in Whitehead et al. (2020), this

work proposed a different design based on using the double triangular stopping rules

(Whitehead, 1997; Whitehead and Brunier, 1990; Whitehead and Todd, 2004) to define

when treatments would stop in the trial. In Whitehead et al. (2020) the boundaries

were not adjusted to account for the multiplicity of the design and therefore the control

of the power and type I error of the trial were not guaranteed. The boundaries were

set to control the type I error for each pairwise comparison and the model was not

then adjusted to account for the fact that the trial can only stop earlier if all remaining

treatments are found to be similar.

An alternative to conducting an all pairwise approach is to use a screened selection

design such as the one discussed in Wu et al. (2022). In this design there is no control

treatment and the treatments are ranked against each other and decisions are made

based on a drop the loser design or pick-the-winner design (Hills and Burnett, 2011;

Simon et al., 1985). For this type of design it is not possible to control the probability

of wrongly declaring one treatment better than another when in fact they have equal

treatment effect. Consequently Wu et al. (2022) propose using such a design for phase

II screening. Therefore it is less applicable for late phase trials which are the focus of

this work.

In this work all pairwise comparisons are made to compare the multiple treatment

arms to one another and interim analyses allow for early termination of treatments

found to be inferior to others and can lead to the early termination of the entire trial
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if all remaining treatments are deemed similar. In this work we focus on guaranteeing

family-wise error rate (FWER) control, where FWER is the probability of rejecting any

true null hypotheses across the entire trial. FWER is considered a robust and strong

type of error control in multi-arm trials (Wason et al., 2016) and in certain scenarios,

it is recommended or even required by regulatory authorities (Wason et al., 2014).

Additionally this work presents an analytical approach to finding the required sample

size which guarantees the probability of finding the clinically relevant treatment.

The upcoming section will formally introduce the motivating example and give its

key characteristics. This motivating example is then used throughout the following

methodology section as a working example to help explain the concepts introduced for

the proposed multi-arm multi-stage all pairwise (MAMSAP) design. In Section 5.3,

the FWER is formally defined and design consideration for FWER control in strong

sense are given, along with the methodology for calculating power of the trial along

with an algorithm to reduce the computational burden. The design for the motivating

example using the MAMSAP design is presented in Section 4.5 and is compared to

other analytical approaches, such as running separate trials and the Whitehead et al.

(2020) approach. Finally, the paper will conclude with a discussion.

5.2 Motivating example

We are motivated by the design for a trial in sepsis as discussed in both Magaret et al.

(2016) and Whitehead et al. (2020). In this setting guidelines exist on how to treat

patients with sepsis (Dünser et al., 2012; Hopewell et al., 2013), however there is no

current standard of care treatment, so a multi-arm all pairwise trial was suggested.

In both Magaret et al. (2016) and Whitehead et al. (2020) the binary outcome of

mortality of patients after 28 days is used as the primary endpoint, however Whitehead

et al. (2020) use the normal approximation of the binary outcome (Jaki and Magirr,
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2013). The design specification used in both Magaret et al. (2016) and Whitehead et al.

(2020) is a 4 arm design with equal number of patients per treatment per stage.

For the running example used within the methodology section we use a trial de-

sign motivated by Magaret et al. (2016) and Whitehead et al. (2020). We consider a

trial with 4 arms and 3 stages per treatment arm with equal numbers of patients per

treatment per stage. For the trial of interest we use the same design configuration as

discussed in Whitehead et al. (2020) of a normal approximation of the binary treat-

ment effect difference with a clinically relevant effect (θ′) of log(1.5) with variance (V )

of V(k,k?),j = (n−1
k,j+n

−1
k?,j)

−1 where nk,j denotes the number of patients recruited to treat-

ment k by the end of stage j. Similarly we define rk,j as the ratio of patients recruited

to treatment k by the end of stage j compared to the number of patients recruited

to treatment 1 by the end of stage 1, so r1,1 = 1. The realized sample size of a trial

is denoted by N with the maximum planned sample size being max(N) =
∑K

k=1 nk,J

where K is the number of treatments in the trial and where J is the maximum number

of analyses for the trial. As discussed in Whitehead et al. (2020) we also use the double

triangular stopping boundaries; the type I error control of 5% two sided and power of

90%. Section 5.3 will present a method that allows for any predefined number of stages

and arms, any predefined boundary shape and allows for unequal sample size between

each treatment group, with the motivating running example being used alongside, to

help explain some of the key ideas.

5.3 Methodology

5.3.1 Setting

Let K be the number of treatments for the trial with the primary outcome measured

for each patient being assumed to be independent. Let Hk,k? define the null hypothesis

for treatment k with treatment k?, where k 6= k? and k, k? = 1, . . . , K. The set of null
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hypotheses for an all pairwise comparison trial are the following:

H1,2 : ψ1 = ψ2, . . . ,H1,K : ψ1 = ψK , H2,3 : ψ2 = ψ3,

. . . , HK−1,K : ψK−1 = ψK ,

where ψ1, . . . , ψK are the treatment effect of the K experimental treatments. The

number of null hypotheses equals η =
∑K−1

k=1 k =
(
K
2

)
and let G be the complete set of

indices for each hypothesis G = {(1, 2), . . . , (K − 1, K)}. The global null hypothesis is

when all the null hypotheses are true, ψ1 = ψ2 = . . . = ψK .

Example 5.1. For the motivating example the set of null hypotheses for an all pairwise

comparison is H1,2, H1,3, H1,4, H2,3, H2,4, H3,4 with η = 6 and G = {(1, 2), (1, 3), (1, 4),

(2, 3), (2, 4), (3, 4)}.

At each analysis the null hypothesis for each pairwise comparison in the trial is

tested until at least one of the treatments in that hypothesis has stopped, then that

null hypothesis is not tested for the rest of the trial. The null hypotheses are tested

using the test statistics

Z(k,k?),j =
ψ̄k,j − ψ̄k?,j√

V(k,k?),j

,

where ψ̄k̇,j is the treatment effect of the observed patients on that given treatment

k̇ = k, k? up to the end of stage j and V(k,k?),j is the variance of the the difference in ψ.

It is assumed that Z(k,k?),j follows a normal distribution Z(k,k?),j ∼ (ψ̄k,j−ψ̄k?,j, V(k,k?),j).

Note that these are the same test statistics as used for the Tukey test (Tukey, 1949;

Kramer, 1956). The decision-making for the trial is made using outer upper and lower

stopping boundaries and inner upper and lower stopping boundaries. The outer bound-

aries are used to test if there is a statistically significant difference between two treat-

ments, so if there is then the inferior treatment is dropped from the trial. The inner

boundaries are used to test if all the remaining treatments are similar enough to stop

the trial early. As done in Magaret et al. (2016) and Whitehead et al. (2020) at each
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interim analysis in the trial there will be an order of testing. The first is to test if

any treatments are performing statistically significantly worse than another treatment,

so the test statistic goes above the outer upper boundary or below the outer lower

boundary. If this is true the inferior treatment is dropped from the trial. The second

step is to test if all the remaining treatments are performing similarly at that given

stage. If one only has one treatment remaining then this is true. It is also true if all

the remaining test statistics are within the inner upper and lower boundaries. If the

remaining treatments are not deemed to be performing similarly then the remaining

treatments continue to be recruited.

The outer upper boundaries are denoted as U = (u1, . . . , uJ) and the outer lower

boundaries are denoted as L = (−u1, . . . ,−uJ), where uj is the upper outer bound-

ary at stage j, j = 1, . . . , J . The outer upper and lower boundaries are symmetric as

significant differences in both direction are equally important. The inner upper bound-

aries and lower boundaries are also symmetric and denoted as U? = (u?1, . . . , u
?
J) and

L? = (−u?1, . . . ,−u?J), respectively, where u?j is the upper inner boundary at stage j.

For stages where one is not testing if the remaining treatments are similar enough to

stop the trial early then u?j = 0. Additional relationships with the boundaries are,

0 ≤ u?j ≤ uj and 0 ≤ u?J = uJ .

Similar to Whitehead et al. (2020) the outer upper and lower boundaries are used for

the decision making as follows: If Z(k,k?),j > uj then treatment k is declared superior

to treatment k? and treatment k? is dropped from the trial. If Z(k,k?),j < −uj then

treatment k? is declared superior to treatment k and treatment k is dropped from the

trial. For the inner upper and lower boundaries if −u?j < Z(k,k?),j < u?j for all treatments

that have not been dropped by stage j, then the trial stops with the conclusion that

the remaining treatments are similar. If at least 2 treatments exist, k, k?, that have

not been dropped by stage j and −uj < Z(k,k?),j < −u?j or u?j < Z(k,k?),j < uj then all

treatments that have not been dropped by stage j continue to the next stage.
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In this work both binding and non-binding boundaries will be considered when cal-

culating the FWER. In the context of this design binding rules require trial termination

if all treatments are found to be similar at a given stage, while non-binding rules grant

the trial team the flexibility to decide whether to continue or stop the trial. Binding

and non-binding boundaries both require that a treatment is dropped if it is found

inferior to another treatment. In other words, the outer bounds are always binding

while the inner bounds will be considered to be binding or non-binding. Both types

of stopping rules have their merits and drawbacks (Li et al., 2020; Bretz et al., 2009;

Souhami, 1994; Schüler et al., 2017), with binding rules offering a likely more efficient

and a clearer design whereas non-binding rules provide more flexibility to investigators.

Example 5.2. Based on the motivating example the boundary shape when using dou-

ble triangular boundaries (Whitehead, 1997; Whitehead and Brunier, 1990) are given

in Figure 5.3.1 to control the FWER of the trial for binding boundaries. Shown in this

figure are both the outer and inner boundaries, as well as the different areas for which

each test statistic could fall. The horizontal lines represent the area that one would

reject the null hypothesis. The solid area being where the hypothesis is unable to be

rejected but the hypothesis will continue being studied. If all remaining test statistics

are in the vertical lined area then the trial stops for all remaining treatments being

similar.

5.3.2 Family-wise error rate (FWER)

In an all pairwise trial the type I error for each comparison is the probability that the

null hypothesis for that comparison is wrongly rejected at any stage during the trial,

when the null hypothesis is true. The FWER is the probability of making any type I

errors across all the comparisons at any stage of the trial. Therefore the FWER in the
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Figure 5.3.1: The boundary shape when using the binding double triangular boundaries
for the 3 stage motivating example.

strong sense is defined as:

P (reject at least one true Hk,k? under any null configuation,k, k? = 1, . . . , K

given k 6= k?) ≤ α,

where α is the desired level of control. In the strong sense means that the FWER

is controlled under any null configuration of treatment effects, whereas in the weak

sense means that the FWER is only guaranteed to be controlled under the global null

configuration (Wason et al., 2014). To calculate the FWER we define the following

events

b(k,k?),j = {−uj < Z(k,k?),j < uj},

c(k,k?),j = {−u?j < Z(k,k?),j < u?j},

where b(k,k?),j is the event the test statistic testing treatment k against treatment k?

is within the outer boundaries at stage j and c(k,k?),j is the event the test statistic is



CHAPTER 5. A MULTI-ARM MULTI-STAGE ALL PAIRWISE DESIGN 134

within the inner boundaries at stage j.

We define Tβ,j as the set of indices of true null hypotheses being tested at stage

j = 1, . . . , J . Therefore Tβ,j is given before any treatments are dropped for inferiority

at given stage j. We define Tγ,j as the set of indices of hypotheses being tested after

dropping any treatments found to be inferior to any other treatments by the end of

stage j. Therefore Tγ,j is given after any treatments are dropped at stage j but also

includes any remaining null hypotheses even if they are not true null hypotheses. We

define at the final stage J that Tγ,J = Tβ,J as at the final stage, with respect to type I

error, one only cares about the set of indices of true null hypotheses being tested with

regards to type I error as the trial will end at this given stage.

Example 5.3. Imagine for the motivating example that at the beginning of testing

at stage 2 treatments 1, 2 and 3 are still being tested and ψ1 = ψ2 6= ψ3. Then

Tβ,j = {(1, 2)}. If no treatments are found inferior to any other treatments at this stage,

i.e all test statistics are within the outer boundaries, then Tγ,j = {(1, 2), (1, 3), (2, 3)}

if however treatment 1 is found inferior to either treatment 2 or 3 at stage 2 then

Tγ,j = {(2, 3)}.

We denote the set of Tβ,j, for every j = 1, ..., J , as Tβ = {Tβ,1, . . . , Tβ,J} and

similarly denote the set of Tγ,j, for every j = 1, ..., J , as Tγ = {Tγ,1, . . . , Tγ,J}. In

addition we define CTγ,j ,j as the event that all the test statistics for stage j in the set

indexed in Tγ,j are within the inner boundaries and BHβ ,j as the event that all the

test statistics for stage j in the set indexed in Tβ,j are within the outer boundaries.

Therefore,

BTβ,j ,j =
⋂

h∈Tβ,j

b(h),j,

CTγ,j ,j =
⋂

h∈Tγ,j

c(h),j.
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Example 5.4. Based on Example 5.3, assuming no test statistics are outside the upper

boundary at stage 2, then CTγ,2,2 = c(1,2),2 ∩ c(1,3),2 ∩ c(2,3),2.

Additionally we define DTβ,j ,Tγ,j ,j = BTβ,j ,j/CTγ,j ,j, so DTβ,j ,Tγ,j ,j defines the event

that all the test statistics testing the true null hypotheses are within the outer bound-

aries, but at least one of the test statistics still being tested, at the end of stage j, is

outside the inner boundaries.

Example 5.5. Based on Example 5.3, assuming no treatments are dropped at the

second stage, then DTβ,2,Tγ,2,2 = (b(1,2),2)/(c(1,2),2 ∩ c(1,3),2 ∩ c(2,3)) = (b(1,2),2/c(1,2),2) ∪

(b(1,2),2/c(1,3),2) ∪ (b(1,2),2/c(2,3),2).

FWER for non-binding inner stopping rules

When using non-binding stopping rules the calculation of the FWER does not account

for the possibility that the trial could stop early for all treatments being found similar.

In general, the FWER is at its greatest if one does not account for the inner boundaries

stopping rules. Therefore the event (R′Tβ) where no true null hypotheses are rejected

under any given Tβ = {Tβ,1, . . . , Tβ,J} for a trial with J stages when using non-binding

stopping rules equals:

R′Tβ =
J⋂
j=1

BTβ,j ,j.

Under the global null hypothesis Tβ,j = G so that the event that no true null hypotheses

are rejected simplifies to

R′G =
J⋂
j=1

BG,j,

where G is a multiset containing only the element G with multiplicity J , so G =

〈G, . . . , G〉. The FWER under the global null therefore equals 1− P (R′G).

Theorem 5.3.1. The probability of rejecting any true null hypotheses is maximized

under the global null hypothesis when non-binding stopping rules are used.
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Proof. We begin by defining T ?β = Tβ,1 therefore Tβ,j ⊆ T ?β and we define T?
β as a

multiset containing only the element T ?β with multiplicity J , so T?
β = 〈T ?β , . . . , T ?β 〉, so

R′Tβ =
J⋂
j=1

BTβ,j ,j =
J⋂
j=1

⋂
h∈Tβ,j

bh,j ⊇
J⋂
j=1

⋂
h∈T ?β

bh,j =
J⋂
j=1

BT ?β ,j
= R′T?β .

Then as T ?β ⊆ G,

R′T?β =
J⋂
j=1

BT ?β ,j
=

J⋂
j=1

⋂
h∈T ?β

bh,j ⊇
J⋂
j=1

⋂
h∈G

bh,j =
J⋂
j=1

BG,j = R′G.

Therefore,

1− P (R′Tβ) ≤ 1− P (R′G).

Theorem 5.3.1 shows that for the non-binding stopping boundaries, the FWER is

maximised under the global null hypothesis, so that if FWER control is at level α under

the global null hypothesis then this implies FWER control in the strong sense at level

α.

Example 5.6. When considering the motivating example the FWER when using non-

binding boundaries is maximised under the global null and this equals,

1− P

(
R′G

)
= 1− P

(
4⋂
j=1

BG,j

)

= 1−

(
4⋂
j=1

(
b(1,2),j ∩ b(1,3),j ∩ b(1,4),j ∩ b(2,3),j ∩ b(2,4),j ∩ b(3,4),j

))
.

To compute the FWER under the global null one can use the multivariate normal

distribution. Details on how the probability can be computed for non-binding and

binding boundaries are given in the Supporting Information (Section D.1).

To find the boundaries one needs to find a single scalar parameter a with the func-
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tions U?
k = f(a) and Uk = g(a) where f and g are the functions for the shape of the

inner and outer upper boundaries respectively, so that the FWER is controlled under

the global null. This is similar to the method presented in Magirr et al. (2012), Chap-

ter 2 and Chapter 3. For the double triangular boundaries each outer and inner upper

boundary are found using the following functions:

uj =
a(1 + (rj/rJ))

√
rj

and u?j = max

(
0,
−a(1− 3(rj/rJ))

√
rj

)
.

FWER for binding stopping rules

When using binding boundaries one can now use the fact that the trial is guaranteed

to stop early if all the test statistics of the remaining treatments are within the inner

boundaries, along with being able to drop treatments found inferior to other treatments.

When using binding stopping rules the event that no true null hypotheses are rejected

under any given set of indices Tβ and Tγ (RTβ ,Tγ ) equals

RTβ ,Tγ =
J⋃
j=1

(
[BTβ,j ,j ∩ CTγ,j ,j] ∩

j−1⋂
i=1

(DTB,i,Tγ,i,i)

)
.

The FWER for given Tβ and Tγ is therefore 1 − P (RTβ ,Tγ ). Similar to the case of

the non-binding boundaries, this equation can also be simplified when under the global

null. Now Tγ,j = Tβ,j = G as none of the test statistics can be stopped early from

being found inferior compared to another treatment without this being a type I error.

One can now use the fact that CG,j ⊆ BG,j, and define DG,G,j = BG,j − CG,j, as the

difference of two sets where the latter set is a subset of the former. Therefore, when

using binding stopping rules the event that no treatments are found superior to any

other treatment under the global null equals

RG,G =
J⋃
j=1

(
CG,j ∩

j−1⋂
i=1

(DG,G,i)

)
=

J⋃
j=1

(
CG,j ∩

j−1⋂
i=1

(BG,i − CG,i)
)
.
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The FWER under the global null equals 1−P (RG,G). For binding boundaries, however,

it is not always true that controlling the FWER under the global null will result in strong

control of the FWER.

Example 5.7. Consider a new trial design with 3 arms and 2 stages with an equal

number of patients per arm per stage, where the treatment effect of interest is normally

distributed. If u1 =∞ and u?1 = 2.2 then the final boundary needs to be u2 = 1.558 to

control the FWER under the global null hypothesis at a 2-sided level of 5%. If there are

10 patients per arm per stage, then if ψ1 + 5 = ψ2 = ψ3, and V(k,k?),j = (n−1
k,j + n−1

k?,j)
−1

then the FWER under this configuration is 11.9%. This is because when ψ1 + 5 =

ψ2 = ψ3 the trial will almost never stop at the first stage, as Z(1,2),1 and Z(1,3),1 will

be, with high probability, less than −2.2, and it is not possible to drop a treatment for

being inferior as u1 =∞. Therefore at the final stage the probability of declaring that

ψ2 6= ψ3 is 11.9% with the boundary of u2 = 1.558.

While we can not ensure FWER control in the strong sense being implied by control

under the global null hypothesis, we can determine if this is indeed the case for a specific

setting. This test involves comparing the FWER under the global null to a finite set of

alternative configurations assuming the use of non-binding boundaries. The finite set

of alternatives is a reduced set of all possible indices T ?β excluding the empty set and

full set. The complete set of indices T ?β is defined as S which equals S = {S1, . . . , SI}

where each Si is a unique T ?β for all i = 1, . . . , I, where the number of sets of null

hypotheses I equals the Bell number minus 2 (Bell, 1938), Bell(K) − 2. Additionally

we define S′ = {S ′1, . . . , S ′I′} with S′ ⊆ S such that Si ⊆ {S ′1, . . . , S ′I′} for all i = 1, . . . I.

The number of sets, I ′, in S′ is the Stirling number of the second kind (Graham et al.,

1989), Stirling(K, 2).

Example 5.8. Consider the motivating example of 4 arms. In this case S has Bell(4)−
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2 = 13 elements with

S =

{
{(1, 2)}, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(3, 4)},

{(1, 2), (1, 3), (2, 3)}, {(1, 2), (1, 4), (2, 4)}, {(1, 3), (1, 4), (3, 4)}, {(2, 3), (2, 4), (3, 4)},

{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}

}
.

The reduced set, S′, has Stirling(4, 2) = 7 elements with

S′ =

{
{(1, 2), (1, 3), (2, 3)}, {(1, 2), (1, 4), (2, 4)}, {(1, 3), (1, 4), (3, 4)},

{(2, 3), (2, 4), (3, 4)}, {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}

}
.

(5.3.1)

As can be seen, every element within S is a subset of an element within S′.

Theorem 5.3.2 uses the finite set S′ to test if the FWER is controlled in the strong

sense under the global null hypothesis for binding boundaries. One tests every possible

set of null hypotheses excluding the global null hypothesis for non-binding boundaries.

As shown below, if every possible set can be shown to have lower FWER than the

FWER under the global null hypothesis for the binding boundaries then the FWER

is controlled in the strong sense under the global null hypothesis for the given binding

boundary. This is based on the fact that the FWER for binding boundaries is less than

that of non-binding boundaries as proven in Theorem 5.3.2 and as stated in Theorem

5.3.3.

Theorem 5.3.2. If the FWER for binding stopping rules under the global null hypoth-

esis is greater than or equal to 1− P
(⋂J

j=1BS′
i′ ,j

)
for all S ′i′ ∈ S′ then the FWER for

the binding boundaries is controlled in the strong sense under the global null hypothesis.

Proof. The event of not rejecting any set of true null hypothesis for any TB and Tγ
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equals:

RTβ ,Tγ =
J⋃
j=1

(
[BTβ,j ,j ∩ CTγ,j ,j] ∩

j−1⋂
i=1

(DTβ,i,Tγ,i,i)

)
⊇

J⋂
j=1

BTβ,j ,j ⊇
J⋂
j=1

BT ?β ,j
(5.3.2)

For T ?β to be a set of true null hypotheses implies T ?β ∈ S so that T ?β ⊆ {S ′1, . . . , S ′I′}.

Therefore if

1− P
( J⋂
j=1

BS′
i′ ,j

)
≤ 1− P

( J⋂
j=1

RG,G

)
(5.3.3)

for all i′ = 1, . . . , I ′ it follows that for any set of possible true null hypotheses,

J⋂
j=1

BT ?B ,j
=

J⋂
j=1

⋂
h∈Tβ,j

bh,j ⊇
J⋂
j=1

⋂
h∈Si

bh,j =
J⋂
j=1

BTSi ,j
⊇

J⋂
j=1

⋂
h∈S′

i′

bh,j =
J⋂
j=1

BTS′
i′
,j

as Si ⊆ S ′i′ for some i ∈ 1, . . . , I and some i′ ∈ 1, . . . , I ′. If Equation (5.3.3) holds for

all T ?β ∈ S then:

1− P
(
RTβ ,Tγ

)
≤ 1− P

(
RG,G

)
.

To check if the boundaries that control the FWER under the global null hypothesis

also control the FWER in the strong sense then one needs to check that for the chosen

boundaries that P (RG,G) ≤ P

(⋂J
j=1BS′

i′ ,j

)
for all S ′i′ in S′ in Equation (5.3.1). When

calculating this one can use the fact P

(⋂J
j=1BS′

i′ ,j

)
= P (R′S′

i′
) where S′i′ is a multiset

containing only the element S ′i′ with multiplicity J , so S′i′ = 〈S ′i′ , S ′i′ , . . . , S ′i′〉. Therefore

it can be calculated in a similar manner to P (R′G) as described in the Supporting

Information (Section D.1).

Example 5.9. Consider the motivating example of 4 arms and 3 stages using the
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double triangular boundaries. The binding bounds can be found under the global null

hypothesis as given in Section 5.4 to control the FWER at 5%, so that P (RG,G) = 0.95.

Next one finds P

(⋂J
j=1BS′

i′ ,j

)
= P (R′S′

i′
) for the complete set of S′ as is shown in Table

5.3.1. Since for the motivating example P

(⋂J
j=1 BS′

i′ ,j

)
is greater than P (RG,G) = 0.95

for all S ′i′ ∈ S′, so the FWER is controlled in the strong sense.

Table 5.3.1: The value of P

(⋂J
j=1 BS′

i′ ,j

)
, for given set of S ′i ∈ S′ as given in Equation

(5.3.1).

S ′1 S ′2 S ′3 S ′4 S ′5 S ′6 S ′7

P

(⋂J
j=1BS′

i′ ,j

)
0.972 0.972 0.972 0.972 0.979 0.979 0.979

In Table 5.3.1 it can be seen that multiple values of P

(⋂J
j=1 BS′

i′ ,j

)
are equiv-

alent. This is because the order of treatments has no effect on the calculation of

P

(⋂J
j=1 BS′

i′ ,j

)
provided that the number of elements are the same and so is the sam-

ple size for each treatment. Therefore when there is equal sample size per treatment

at each stage S′ can be further reduced to contain d(K − 1)/2e elements as shown in

Example 5.10.

Example 5.10. For the motivating example with equal sample size per treatment at

each stage, S′ can be reduced to

S′ =

{
{(1, 2), (1, 3), (2, 3)}, {(1, 2), (3, 4)}

}
.

If the requirements of Theorem 5.3.2 are not met, one can guarantee control of

FWER by determining the design using non-binding boundaries under the global null

hypothesis. By using Theorem 5.3.3 these boundaries will be conservative for binding

boundaries but guarantee strong control of the FWER.
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Theorem 5.3.3. The FWER is greater or equal for the non-binding boundaries com-

pared to the binding boundaries for a given Tβ.

Proof. From Equation (5.3.2)

1− P
(
RTβ ,Tγ

)
≤ 1− P

(
R′Tβ

)
.

In the Supporting Information (Section D.1) the equations to calculate the FWER

under the global null hypothesis, for both binding and non-binding boundaries, along

with how to calculate the probabilities required for Theorem 5.3.2 are given.

5.3.3 Power

The power of the trial is the probability that a treatment with the clinically relevant

effect is found. Similar to the definition of power under the least favourable configura-

tion (LFC) in the MAMS case with a control treatment (Magirr et al., 2012) we define

power under the LFC as the probability that treatment k′ is the only treatment left

by the end of the trial, given ψ1 = ψ2 = . . . = ψk′−1 = ψk′ − θ′ = ψk′+1 = . . . = ψK ,

where θ′ is the clinically relevant effect. The sample size of the trial is found to ensure

that the power under the LFC is greater than 1 − β, where 1 − β is the pre-defined

level of power desired. There are multiple ways in which treatment k′ can become the

successful treatment in the trial.

Example 5.11. For the motivating example, but with only 3 arms instead of 4 for

this one example, let us assume that treatment 1 is the one with a clinically relevant

effect, while all other treatments have the same effect of zero. Treatment 1 could be

the successful treatment by the end of the second stage in five different ways. (1.) At

the first stage treatment 3 is found inferior to treatment 1 and at stage 2 treatment 2
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is found inferior to treatment 1; (2.) at the first stage 3 is found inferior to treatment

2 but not treatment 1 and at stage 2 treatment 2 is found inferior to treatment 1; (3.)

at the first stage treatment 2 is found inferior to treatment 1 and at stage 2 treatment

3 is found inferior to treatment 1; (4.) at the first stage 2 is found inferior to treatment

3 but not treatment 1 and at stage 2 treatment 3 is found inferior to treatment 1; (5.)

all treatments progress to the second stage and then treatment 2 and 3 are all found

inferior to treatment 1. For this example a simplified version of the 4 arm example,

which is studied for the rest of this paper, has been used. For illustrative purposes a

three arm example is used.

When calculating the power under the LFC then one must sum over all possible

configurations that end in only the clinically relevant treatment being found. The

power under the LFC therefore equals

∑
Ωp,y∈Ωp,1...Ωp,Y

∫ ωu,1(t(1,2),1,y)

ωl,1(t(1,2),1,y)

. . .

∫ ωu,J (t(K−1,K),J,y)

ωl,J (t(K−1,K),J,y)

φ(z,θ,Σ)dz, (5.3.4)

where φ(z,µ,Σ) is the probability density function of a multivariate normal distribution

with mean µ and covariance matrix Σ. Here

θ =

(
ψ1 − ψ2√
V(1,2),1

, . . . ,
ψK−1 − ψK√
V(K−1,K),1

, . . .
ψ1 − ψ2√
V(1,2),J

, . . . ,
ψK−1 − ψK√
V(K−1,K),J

)
,

with ψ1 = ψ2 = ψk′−1 = ψk′ − θ′ = ψk′+1, . . . = ψK and Σ is defined in the Sup-

porting Information (Section D.2). Here Ωp,y defines the upper and lower boundaries

for a possible configuration which results in only the clinically relevant treatment be-

ing found, where Y is the total number of possible configurations and y = 1, . . . , Y .

Each Ωp,y is made up of a list of upper and lower boundaries for each test statis-

tic and each stage, so Ωp,y = {ω1(t(1,1),1,y), . . . , ωJ(t(K−1,K),J,y)}, with ωj(t(k,k?),j,y) =

(ωl,j(t(k,k?),j,y), ωu,j(t(k,k?),j,y)) where ωl,j(t(k,k?),j,y) is the lower boundary for testing hy-

pothesis Hk.k? at stage j and ωu,j(t(k,k?),j,y) is the upper boundary, for k, k? = 1, . . . K
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and j = 1, . . . , J , with t(k,k?),j,y = a1, a2, . . . , a8 that defines the values of ωj(t(k,k?),j,y),

which are defined in Table 5.3.2.

The first 5, a1, a2, . . . , a5, are used to define the 5 possible areas in which each test

statistic value could be, assuming it was still being tested in the trial. The test statistic

is either: below the outer lower boundary (a1); between the outer and inner lower

boundaries (a2); between the inner lower and upper boundaries (a3); inner and outer

upper boundaries (a4); above the outer upper boundary (a5). The remaining 3 values,

a6, a7, a8, are used to simplify and streamline the calculations. The notation a6 is used

for a test statistic in which one of the treatments being tested has stopped the trial.

One can remove any integrals for which t(k,k?),j,y = a6 as long as the corresponding θ

and Σ values are also removed. The notation a7 is used for a test statistic in which at

least one of the treatments being tested is dropped at the current stage and the test

statistic is not significant enough to cause another treatment to be dropped. Finally

a8 is used as for any stage in which u?j = 0, there are now only 3 possible outcomes for

each test statistic of interest, a1, a5 and a8.

Based on the 8 values, a1, . . . , a8, in the Appendix 5.6.1 it is given how to deter-

mine Ωp = {Ωp,1, . . . ,Ωp,Y } and the corresponding values of t(k,k?),j,y for each Ωp,y.

To calculate these we use Algorithm 5. This algorithm runs by first starting with

Ω = {Ω1, . . . ,ΩY ?}, which is a inclusive list of boundaries for all the trial test statistics,

of length Y ?. It assumes even if a test statistic falls below the outer lower boundary,

or above the outer upper boundary or all are within the inner boundaries, that the test

statistic will continued to be studied. This list is then reduced and altered in order to

both decrease the number of elements needing calculating for a more efficient calcula-

tion of power, and to only leave combinations of bounds which lead to only the one

clinically relevant treatment being found.
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Table 5.3.2: The value of ωj(t(k,k?),j,y), where ωj(t(k,k?),j,y) =
{ωl,j(t(k,k?),j,y), ωu,j(t(k,k?),j,y)}, for given stage j = 1, . . . , J depending on the in-
teger value of t(k,k?),j,y.

t(k,k?),j,y a1 a2 a3 a4

ωj(t(k,k?),j,y) {−∞,−uj} {−uj,−u?j} {−u?j , u?j} {u?j , uj}

t(k,k?),j,y a5 a6 a7 a8

ωj(t(k,k?),j,y) {uj,∞} {−∞,∞} {−uj, uj} {−uj, uj}

5.3.4 Expected sample size

The expected sample size is defined as E(N |Θ) where Θ is the effect of all the treat-

ments, so Θ = {ψ1, ψ2, . . . , ψK}. The expected sample size can be found as

E(N |Θ) =
Y∑

y′=1

N(ΩE,y′)QΘ(ΩE,y′), (5.3.5)

where Y ′ is the number of outcomes of interest, QΘ(ΩE,y′) is the probability for each

outcome and N(ΩE,y′) is the total number of patients associated with each outcome.

Also similar to power we define ΩE = {ΩE,1, . . . ,ΩE,Y ′} where ΩE,y′ is the set of bound-

aries for that given configuration y′. One can use Algorithm 5 given in Appendix 5.6.1

to calculate ΩE. In Appendix 5.6.2 the equations to calculate both QΘ(ΩE,y′) and

N(ΩE,y′) are given. One can also use N(ΩE,y′) and QΘ(ΩE,y′) to find the distribution

of the sample size as done in Chapter 2.

5.4 Numerical results

Below, we revisit the setting of the motivating sepsis trial discussed in Magaret et al.

(2016). As discussed in Section 5.2 we use the design configuration of four treatment

arms and 3 stages with equal number of patients per arm per stage for a continuous

outcome. The clinically relevant effect of interest is θ = log(1.5) with V(k,k?),j = (n−1
k,j +

n−1
k?,j)

−1. In line with Whitehead et al. (2020) the power is set to 90% and double
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triangular stopping boundaries will be used (Whitehead, 1997; Whitehead and Brunier,

1990; Whitehead and Todd, 2004), however now we use the stricter requirement of

FWER at 5% (two sided).

Following Theorem 5.3.1 the FWER is controlled in the strong sense if designed

under the global null hypothesis for non-binding stopping rules, while in Example 5.9

it is shown that this also holds for binding rules when α = 5%. Therefore, for the trial,

for both binding and non-binding stopping rules, the FWER will be controlled in the

strong sense.

Using the equations given in the Supporting Information (Section D.1) the double

triangular boundaries are found such that the FWER equals 5%. The power under

the LFC and expected sample size were calculated using Equation (5.3.4) and the

Equation (5.3.5), respectively. Both Ωp and ΩE were found from Ω using Algorithm

5 in Appendix 5.6.1, with Y ? = 3.814× 1012, and this being reduced to Y = 2974 and

Y ′ = 25907 by using this algorithm, where Y ?, Y and Y ′ is the number of configurations

in Ω,Ωp,ΩE, respectively. The calculations were carried out using R (R Core Team,

2021) and the packages mvtnorm (Genz et al., 2021), gtools (Warnes et al., 2021),

doParallel (Daniel et al., 2022a) and foreach (Daniel et al., 2022b).

5.4.1 Alternative designs

The first alternative design considered is to run each comparison as a separate trial

while using the double triangular boundaries. For the 4 arm example this will involve

running 6 separate trials each with 3 stages. Each one of these trials is designed to have

power of 90% and a two-sided type I error of 5%. When just powering each individual

trial the power is the probability that a clinically relevant treatment is found superior to

the other treatment. Therefore this power is different to considering the power across

the multiple trials. Across all the trials we define the power under the LFC as the

probability of finding the clinically relevant treatment as superior in all the trials it is
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involved in.

For the first alternative design the total type I error across all the separate trials

will equal 1− (1− α)6 as η = 6. We also consider the second alternative design where

separate trials will be used with the total type I error across all the trials equalling 5%,

so, the type I error for each trial is set to 0.85%. For this second alternative design we

will ensure that the power is controlled at 90% under the LFC. The total type II error

under the LFC across all the trials equals 1− (1− β)4−1 as there are K − 1 hypotheses

which need to be rejected for there not to be an error. The adjusted power for each

trial is therefore 96.5%.

The third alternative design is the method described in Whitehead et al. (2020). In

Whitehead et al. (2020) they describe the type I error of interest as the probability of

the pairwise type I error for each comparison and the power is the probability that a

treatment k is found inferior compared to another treatment k′ given ψk′ − ψk = θ′.

Their approach uses the same trial structure as the design discussed here, however does

not account for any correlation between test statistics of different treatments, or the

fact all remaining test statistics need to be within the inner boundaries for the trial

to stop. This approach is presented with the type I error and power as defined in

Whitehead et al. (2020).

As the third alternative design does not account for the correlation between the

test statistics of different treatments we also consider controlling the FWER and power

across the entire trial using the Bonferroni correction (Bonferroni, 1936). This is the

fourth alternative approach, in which the type I error for each comparison is set to

α/6 = 0.083% and the power for each comparison is set to 1− β/(4− 1) = 96.7%.

5.4.2 Results

The sample size, stopping boundaries and the expected sample size, along with power

and FWER for the different design options are given in Table 5.4.1. As expected, the
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proposed MAMSAP design has the desired FWER control of 5% and power under LFC

of 90%. The maximum sample size for the design with binding boundaries is 243× 4 =

972 while the design with non-binding boundaries has a maximum sample size of 984

patients. The expected sample size is studied under 4 configurations: The first is the

global null hypothesis, Θ0 = (ψ, ψ, ψ, ψ) where ψ is the treatment effect of a treatment

without a clinically relevant effect; the second is the LFC, Θ1 = (ψ + θ′, ψ, ψ, ψ); in

the third configuration two treatments have a clinically relevant effect compared to

the other treatments, Θ2 = (ψ + θ′, ψ + θ′, ψ, ψ); and the fourth, Θ3 = (ψ + θ′, ψ +

θ′, ψ + θ′, ψ) has three treatments with a clinically relevant effect compared to the

remaining treatment. The expected sample size under these configuration ranges from

749.9 patients under the null hypothesis to 629.7 patients under Θ2 for the MAMSAP

design for binding boundaries. For the MAMSAP design for non-binding boundaries

the expected sample size ranges from 636.6 patients under Θ2 to 758.0 patients under

the global null hypothesis.

For the MAMSAP design with non-binding boundaries, if the inner boundaries rules

are strictly followed, then the FWER is 4.8%, highlighting the small conservatism that

can occur if the non-binding boundaries rules are followed. The necessary increase in

the stopping boundaries resulting from the use of non-binding rules means that one

additional patient per arm per stage is needed to achieve power above 90%.

The operating characteristics for the competing approaches are given in Table 5.4.1

for binding boundaries. The Whitehead approach results in a smaller sample size com-

pared to MAMSAP, however this approach does not control the FWER nor achieves

power at the desired level. For example the maximum sample size drops by 38% com-

pared to MAMSAP, at the cost of an FWER inflation of over 16% and a drop in power

by 8.9%. When using the Whitehead design with a Bonferroni adjustment, so that the

FWER and the power are now controlled, the bounds and sample size are conservative

resulting in a larger maximum and expected sample size than required. As a result the
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expected sample size under the global null hypothesis has increased from 749.9 for the

MAMSAP design to 820.1 for the Bonferroni adjusted Whitehead design.

Table 5.4.1 also shows the operating characteristics of running multiple separate

trials. Even when not controlling for the FWER or power across all the trials there

is still an increase in sample size compared to running MAMSAP due to the need to

recruit each treatment group multiple times. The maximum sample size increases from

972 to 1800. Additionally the FWER is inflated to 26.5% and the power under the

LFC is only 73.6%. The increase in sample size is further emphasised when the power

and FWER are controlled across all the trials at the desired level. Now the maximum

sample size is increased by over 300% to 3204 compared to the MAMSAP design.

In Table 5.4.2 the probability of finishing the trial with i out of K ′ clinically relevant

treatments is shown for the MAMSAP design under both binding and non-binding

stopping rules. Here Θ4 = (ψ+θ′, ψ+θ′, ψ+θ′, ψ+θ′). One should note that Θ4 is also

equivalent to being under the global null as all the treatments have the same treatment

effect. For both the binding and non-binding boundaries, under Θ1, the probability of

finding one treatment with a clinically relevant effect equals the power under the LFC as

planned. Moreover the probability of finding all 4 treatments with a clinically relevant

effect equals one minus the FWER under Θ4. It can be seen for this example that when

under the LFC the probability of finding K ′ out of K ′ clinically relevant treatments is

at its lowest. It is at its highest when there are 2 clinically relevant treatments, with

the probability of finding both clinically relevant treatments being 97.1% and 97.2%

for binding and non-binding boundaries respectively. When there are two clinically

relevant treatments then one or both of the two clinically relevant treatments can be

found to be superior to the other null treatments. This is why the power under this

configuration is higher compared to the LFC where there is only one clinically relevant

treatment.

On the right hand side of Table 5.4.2 there is the probability of ending the trial
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with i? out of K −K ′ treatments which do not have a clinically relevant effect. Under

the global null hypothesis the trial will ideally finish with all 4 null treatments being

declared similar. This is set to be controlled at the 5% level, therefore for i? = 4 in this

case this gives 95% for binding boundaries. When not all treatments are identified as

equal under the global null hypothesis, most often only one treatment is dropped. For

the binding boundaries under the LFC it can be seen that the probability of ending the

trial with 1 null treatment is at 7.9%, which is greater than the level of control for the

FWER. This is because the power is set to 90% so there is a 10% chance that one or

more of the null treatments will not have been rejected by the end of the trial.

In Table 5.4.2 the breakdown of the probabilities for the Whitehead design are also

given. For the Whitehead design for binding boundaries the effect of not controlling

the FWER or power under the LFC across the entire design can be seen. Now there

is only a 78.6% chance of ending the trial without wrongly rejecting a null hypotheses

as shown for Θ0. Additionally there is a 13.7% chance that under the LFC there is

still 1 treatment without a clinically relevant effect at the end of the trial. When

studying the Bonferroni adjusted Whitehead design it can be seen that the design is

overly conservative which is also shown in Table 5.4.1. When considering the separate

trials design one is unable to produce these results as now there is a chance that the

separate trials can end in contradictory results. For example one may find that one can

reject H1,2 and declare that treatment 1 is superior so ψ1 > ψ2, however one may find

in another trial that ψ2 > ψ3 and that ψ3 > ψ1 as each trial is independent. As a result

this is another drawback of running multiple separate trials.

In the Supporting Information (Section D.5) one can find the results for the compet-

ing approaches when using non-binding stopping boundaries, as shown in Table 5.4.1

for the binding designs. Additionally in the Supporting Information (Section D.4) a

more generalised algorithm of Algorithm 5 in Appendix 5.6.1 is given to find the set

needed to calculate the power for K ′ clinically relevant treatments.
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Table 5.4.1: Operating characteristics of the MAMSAP design for both binding and
non-binding boundaries along with the operating characteristics of the competing ap-
proaches for binding stopping boundaries.

Design

u1

u2

u3

 u?1u?2
u?3

 FWER
Power

n1

n2

n3

 max(N)

E(N |Θ0)
E(N |Θ1)
E(N |Θ2)
E(N |Θ3)

MAMSAP
3.166

2.798
2.742

  0
1.679
2.742

 0.050
0.900

 81
162
243

 972

749.9
647.5
629.7
669.9

with binding
boundaries

MAMSAP with
3.181

2.811
2.755

 0.000
1.687
2.755

 0.048
0.903

 82
164
246

 984

758.0
654.5
636.6
677.2

non-binding
boundaries 2.484

2.195
2.151

  0
1.317
2.151

 0.213
0.811

 50
100
150

 600

488.8
397.6
393.6
428.7

Whitehead
design

Bonferroni 3.213
2.840
2.783

  0
1.704
2.783

 0.045
0.929

 89
178
267

 1068

820.1
689.9
676.4
726.6

adjusted
Whitehead

design 2.484
2.195
2.151

  0
1.317
2.151

 0.265
0.736

 50
100
150

 1800

1284.5
1199.3
1170.8
1199.3

Separate
trials

FWER 3.205
2.833
2.776

  0
1.699
2.776

 0.050
0.905

 89
178
267

 3204

2223.8
2090.4
2045.9
2090.4

controlled
separate

trials
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Table 5.4.2: The probability of finishing the trial declaring i out of K ′ clinically relevant
treatments under five different configurations: Θ0 = (ψ, ψ, ψ, ψ); Θ1 = (ψ+ θ′, ψ, ψ, ψ);
Θ2 = (ψ+θ′, ψ+θ′, ψ, ψ); Θ3 = (ψ+θ′, ψ+θ′, ψ+θ′, ψ); Θ4 = (ψ+θ′, ψ+θ′, ψ+θ′, ψ+θ′).
Along with the probability of ending the trial with i? treatments out of K −K ′ which
do not have a clinically relevant effect.

Binding boundaries
Treatment Number of clinical relevant Number of null

effect 1 2 3 4 1 2 3 4
Θ0 - - - - 0.000 0.004 0.045 0.950
Θ1 0.900 - - - 0.079 0.016 0.004 -
Θ2 0.010 0.971 - - 0.018 0.001 - -
Θ3 0.001 0.026 0.969 - 0.004 - - -
Θ4 0.000 0.004 0.045 0.950 - - - -

Non-Binding Boundaries
Treatment Number of clinical relevant Number of null

effect 1 2 3 4 1 2 3 4
Θ0 - - - - 0.000 0.004 0.044 0.952
Θ1 0.903 - - - 0.077 0.016 0.004 -
Θ2 0.009 0.972 - - 0.017 0.001 - -
Θ3 0.001 0.025 0.970 - 0.004 - - -
Θ4 0.000 0.004 0.044 0.952 - - - -

Whitehead Design
Treatment Number of clinical relevant Number of null

effect 1 2 3 4 1 2 3 4
Θ0 - - - - 0.006 0.037 0.171 0.786
Θ1 0.811 - - - 0.137 0.040 0.013 -
Θ2 0.051 0.899 - - 0.047 0.003 - -
Θ3 0.014 0.113 0.860 - 0.013 - - -
Θ4 0.006 0.037 0.171 0.786 - - - -

Bonferroni adjusted Whitehead Design
Treatment Number of clinical relevant Number of null

effect 1 2 3 4 1 2 3 4
Θ0 - - - - 0.000 0.004 0.040 0.956
Θ1 0.929 - - - 0.058 0.010 0.002 -
Θ2 0.009 0.980 - - 0.011 0.000 - -
Θ3 0.001 0.023 0.974 - 0.002 - - -
Θ4 0.000 0.004 0.040 0.956 - - - -
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5.5 Discussion

The work presented here allows for the design of multi-arm multi-stage trials in which

there is no control treatment so all pairwise comparisons are conducted. We have

developed a method which allows the calculation of both binding and non-binding

stopping boundaries to control the FWER under the global null hypothesis. We show

that the design controls the FWER in the strong sense when non-binding rules are

used and a test with a finite number of comparisons has been developed in order to

test if the FWER is controlled in the strong sense for binding boundaries. Furthermore

expressions for the power under the LFC and the expected sample size are provided.

Based on a motivating example we show that the proposed method, MAMSAP design,

outperforms alternative approaches that also control FWER and power.

In the Supporting Information (Section D.3) it is shown that the FWER holds in

the strong sense for the double triangular boundaries, for equal sample size per arm

per stage, for up to an 8 arm 15 stage example with FWER set to 2.5%, 5%, and

10%. Beyond 8 arms and 15 stages the computation becomes too slow and unstable to

accurately check Theorem 5.3.2. One could therefore extend this work to see if there is

a way to prove strong control of FWER for the double triangular stopping boundaries

or if there is a counter example.

Building on the work on adding arms in the controlled setting as studied in Chapter

2, Chapter 3 and (Burnett et al., 2020), future work can be done considering this

problem for the all pairwise setting. Such an extension raises questions around the use

of non-concurrent treatments and potential bias caused by time trends. Both of which

are well studied when there is a common control (Lee and Wason, 2020; Marschner and

Schou, 2022).

This chapter introduces a framework for designing multi-arm multi-stage trials in

which there is no control treatment, centred around normal continuous endpoints. Using

the methodology proposed by Jaki and Magirr (2013), this approach can accommodate
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other endpoints, including binary, as discussed in Magaret et al. (2016). As one employs

this methodology, it is essential to acknowledge potential computational challenges

related to the computation of high-dimensional multivariate normal distributions and

the large number of feasible outcomes of the trial, particularly when dealing with large

numbers of arms and stages. If such challenges arise, one may consider approaches

outlined in Blondell et al. (2021) for handling the high-dimensional multivariate normal

distributions, or alternatively, use a simulation-based approach.

5.6 Appendix

5.6.1 Calculation of Ωp and ΩE

Algorithm 5 starts with a Ω which is an inclusive list of boundaries for all the trial test

statistics, assuming that even if a test statistic falls below the outer lower boundary, or

above the outer upper boundary or all are within the inner boundaries, that the test

statistic will continued to be studied. Similar to Ωp, Ω = {Ω1, . . . ,ΩY ?} where each

Ωy? is the set of upper and lower boundaries required for that given configuration. The

number of configurations is denoted Y ?, so Ωy? = {ω1(t(1,1),1,y?), . . . , ωJ(t(K−1,K),J,y?)}

for y? = 1, . . . , Y ?. In total Ω begins with a list of length Y ? = 5Jη as every configuration

of tk,k?,j,y? = a1, . . . , a5 is considered for every k 6= k?, k, k? = 1, . . . , K, j = 1, . . . , J

and y? = 1, . . . , Y ?. So we are testing −∞ < Zk,k?,j < l; l < Zk,k?,j < −u?; −u? <

Zk,k?,j < u?; u? < Zk,k?,j < u; u < Zk,k?,j <∞ for every Zk,k?,j.
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Algorithm 5 To find Ωp and ΩE

1 Generating every possible combination of a1, . . . , a5 for every t(k,k?),j,y? , where

y? = 1, . . . , Y ? where Y ? = 5ηJ . To create a set of all outcomes Ω

2 Use Reduction 1 to remove any impossible sets of Ω.

3 Use Reduction 2 to change for any stage in which u? = 0 to replace the any

t(k,k?),j,y? = a2, a3, a4 with the values t(k,k?),j,y? = a8 then remove any duplicates

sets in Ω.

4 Use Reduction 3 to change the final stage to remove the any sets in Ω with the

t(k,k?),J,y? = a2, a4.

5 Repeat the following steps for j from 1 : J .

i If j > 1 use Reduction 5 to replace any hypotheses which stopped the stage

before with t(k,k?),j,y? = 6 and remove any duplicates sets in Ω.

ii Use Reduction 4 for stage j to replace any t(k,k?),j,y? = a2, a3, a4, a8 of treat-

ments which stop at stage j with t(k,k?),j,y? = a7 and remove any duplicates

sets.

Now ΩE equals the reduced Ω.

6 Use Reduction 6 to remove all sets of Ω in which any t(k′,k?),j,y? = a1 or t(k,k′),j,y? =

a5 for hypothesis testing treatment k′.

7 Use Reduction 7 to remove all sets of Ω in which any t(k′,k?),J,y? = a1, a2, a3, a4

and t(k,k′),J,y? = a2, a3, a4, a5 for hypothesis testing treatment k′.

8 Use Reduction 8 to remove all sets of Ω in which for each j all t(k,k?),j,y? =

a1, a3, a5, a6, a7 and at least one of t(k,k?),j,y? = a3. Now Ωp equals the reduced Ω.
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Once the list Ω has been created, Algorithm 5 is used to reduce the list to find ΩE,

using the following first 5 reductions and find Ωp, using the following 8 reductions.

Reduction 1: Test which of the 5 outcomes are possible for a particular Z(k,k?),j based

on the outcomes of the other test statistics at stage j. This is because Z(k,k?),j can be

rewritten in terms of Z(k̇,k),j and Z(k̇,k?),j where k̇ < k < k? as

Z(k,k?),j =
Z(k̇,k?),j

√
r−1

k̇,j
+ r−1

k?,j − Z(k̇,k),j

√
r−1

k̇,j
+ r−1

k,j√
r−1
k,j + r−1

k?,j

.

Therefore the maximum value Z(k,k?),j for a given k̇ is

max(Z(k,k?),j|k̇) =
max(Z(k̇,k?),j)

√
r−1

k̇,j
+ r−1

k?,j −min(Z(k̇,k),j)
√
r−1

k̇,j
+ r−1

k,j√
r−1
k,j + r−1

k?,j

.

Given all values of k̇ which are smaller then k then

max(Z(k,k?),j) = min(max(Z(k,k?),j|1), . . .max(Z(k,k?),j|k − 1)).

Similarly the minimum value Z(k,k?),j for a given k̇ is

min(Z(k,k?),j|k̇) =
min(Z(k̇,k?),j)

√
r−1

k̇,j
+ r−1

k?,j −max(Z(k̇,k),j)
√
r−1

k̇,j
+ r−1

k,j√
r−1
k,j + r−1

k?,j

.

Given all values of k̇ which are smaller then k gives

min(Z(k,k?),j) = max(min(Z(k,k?),j|1), . . .min(Z(k,k?),j|k − 1)).

Using the maximum value and minimum value that each Z(k,k?),j can take, given the

range of values Z(k̇,k),j and Z(k̇,k?),j can take, results in a reduction in which of a1, . . . , a5

need to be considered as the limits of Z(k,k?),j. For example in a 3 arm case, with
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equal sample size per arm, if t(1,3),j = a1 (so −∞ < Z(1,3),j < −uj) and t(1,2),j = a5

(uj < Z(1,2),j < ∞) then we know that Z(2,3),j < −2uj therefore the only possible area

of t(2,3),j is a1.

Reduction 2: For any stage in which u?j = −u?j = 0 there are only 3 possible

outcomes for each test statistic.

Reduction 3: At the final stage where u?J = uJ there are only 3 outcomes: −∞ <

Zk,k?,J < −uJ ; −u?J < Zk,k?,J < u?J ; uJ < Zk,k?,J <∞.

Reduction 4: If treatment k is dropped at stage j the remaining test statistics for

treatment k that are not significant to cause another treatment to be dropped, so

between −uj and uj, have no effect on the rest of the trial as treatment k will be

dropped from the following stage. Therefore for treatment k which is dropped from

the trial at a given stage j the test statistics related to treatment k have 3 outcomes

of interest: −∞ < Zk,k?,j < −uj; −uj < Zk,k?,j < uj; uj < Zk,k?,j < ∞. One is still

interested in the area −∞ < Zk,k?,j < −uj and uj < Zk,k?,j < ∞ as from the initial

definition of Ω?
y for some y? = 1, . . . , Y it is possible for example for Z1,2,j < −uj,

−uj < Z1,3,j < uj, Z2,3,j < −uj even though this is not possible in reality, so this event

will have probability 0 which needs to be accounted for.

Reduction 5: If a treatment has already been dropped, then for the remaining stages

the value of its test statistics no longer matter, as in the trial these test statistics would

no longer be tested. Therefore for computational convenience −∞ < Zk,k?,j < ∞ if

treatment k or k? was dropped from the trial at stage j? where j? < j as in reality this

test statistic would no longer be of interest in a real trial.

Furthermore when calculating the power under the LFC there are three further

reductions that can be made which result in only treatment k′ being found as the

clinically relevant treatment.

Reduction 6: If treatment k′ is found to be the clinically relevant treatment then

it can never have been dropped from the trial, therefore −∞ < Zk′,k?,j < −uj and
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uj < Zk,k′,j <∞ are not possible for test statistics still being tested at stage j.

Reduction 7: At the final stage any remaining treatments must be found inferior to

treatment k′, therefore, uJ < Zk′,k?,J <∞ and −∞ < Zk,k′,J < −uJ for any treatments

still being tested.

Reduction 8: The trial can not stop early for all the treatments being found similar

as this means that treatment k′ was not found superior to at least one treatment.

Therefore one can remove all outcomes which have all remaining test statistics, at any

stage j, falling within −u?j to u?j .

Using these 8 reductions as detailed in Algorithm 5 one can find Ωp and ΩE.

5.6.2 Calculation of QΘ(ΩE,y′) and N(ΩE,y′)

One can use Algorithm 5 given in Appendix 5.6.1 to calculate ΩE. Now one can find

the probability for each outcome ΩE,y′ given Θ (QΘ(ΩE,y′)):

QΘ(ΩE,y′) =

∫ ωu,1(t(1,2),1,y′ )

ωl,1(t(1,2),1,y′ )

. . .

∫ ωu,J (t(K−1,K),J,y′ )

ωl,J (t(K−1,K),J,y′ )

φ(z,θ,Σ)dz,

where θ has ψ1, . . . , ψK of interest and Σ is defined in the Supporting Information

(Section D.2). One needs to find the total number of patients associated with each

outcome,

N(ΩE,y′) =
K∑
k=1

nk,j̄k,y′ ,

where

j̄k,y′ = min
j

([t(k?,k),j,y = a6 ∀ k? = 1, . . . , k − 1 ∩ t(k,k′),j,y = a6 ∀ k′ = k + 1, . . . , K]

∪ [j − 1 = J ])− 1,

so j̄k,y′ gives the stage at which treatment k stopped being recruited to, for configuration

y′.



Chapter 6

Conclusions and Further work

6.1 Conclusion

This thesis has explored the design and analysis of platform trials to evaluate the poten-

tial efficiency gained from such trial designs in the later stages of the drug development

process. The use of platform trials has the ability to help with a large issue faced

by modern clinical trials; which is that bringing a new treatment to market is a long

and expensive process, which can often end in failure (Dimasi et al., 2003; Mullard,

2018; Wouters et al., 2020; Kola and Landis, 2004; Wong et al., 2019). This is through

a platform trial’s ability to test multiple treatments, have interim analyses and add

treatments later into the trial. This work will enable future clinical trials to be de-

veloped in more efficient ways. This will allow for future medical developments to be

found using fewer patients, in a shorter time frame and at reduced cost, whilst still

ensuring that with these gains in efficiency there is not an increase in errors from the

trials.

In Chapter 2, a comprehensive design for adding additional treatments in a pre-

planned manner at interim analyses has been developed and investigated. The pro-

posed design ensures robust control of the family-wise error rate (FWER) and power,

159
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accommodating both interim analyses and different stopping boundary shapes. The

chapter derives the equations required to find the stopping boundaries, the sample size,

the sample size distribution and expected sample size. The findings reveal that the pro-

posed approach can offer advantages over running separate trials and more traditional

MAMS designs where all the treatments begin at once. For the traditional MAMS

designs the savings are reductions in trial duration and in the case of separate trials

the savings can be in both the sample size and trial duration.

Chapter 3 then builds on this work to create a design for which the adding of

additional treatments can be done at any pre-planned point. Additionally, this work

now explores trials in which the aim is to identify all clinically relevant treatments, so

the trial continues after a superior treatment is found. One may want this type of design

if one is interested in lower doses of the same treatment; or multiple treatments from

different sponsors; or interested if another treatment has preferable secondary outcomes

and it also meets the primary outcome. It is shown in this work how one can calculate

multiple different types of power which may be of interest, along with the expected

sample size. This work studies the effect of adding later treatments at different time

points and then compares this to running separate trials. If there is the expectation of

FWER control in platform designs and not in the case across multiple separate trials,

then this chapter highlights potential issues caused from using a platform design with

regards to the total sample size, this builds on discussions around what is the most

appropriate type I error control in platform trials (Molloy et al., 2022; Wason et al.,

2014, 2016; Howard et al., 2018; Proschan and Waclawiw, 2000; Proschan and Follmann,

1995; Nguyen et al., 2023).

Chapter 4 investigates the question of should a control be changed during a platform

trial to a superior treatment found within the trial with respect to power. This work

begins by defining the types of power one may be interested in when changing the

control group. It then shows that if one is going to keep the same stopping boundaries
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then there can be a loss in these powers by using the pre change of control data. This is

studied for both the case where all the treatments begin at once and when some active

treatments start later. Overall, this work highlights the potential benefits of starting a

new trial if one wants to change controls.

In Chapter 5 the scenario of not having a control treatment is studied for a platform

trial in which all treatments begin at the same time. As there is no control treatment,

all pairwise comparisons are conducted. It is shown how one can calculate stopping

boundaries to control the FWER in the strong sense either by showing the criteria of

a test are met or using non-binding boundaries. A formulation for both power and the

expected sample size are given along with an algorithm which drastically reduces the

computational demands. This proposed method’s ability to potentially achieve lower

sample size whilst still maintaining both FWER and power at the specified levels in

comparison to the alternative approaches is then demonstrated in an example.

Overall this thesis has presented methods to design multiple types of platform trials.

The focus across all the chapters are how our approaches work with respect to the power

of the trial and how this compares to alternative methods. Additionally in Chapters

2, 3 and 5 the work has been driven by finding boundaries which control the FWER

in the strong sense and in Chapters 2, 3 and 4 the focus has been on the design of

trials in which additional treatments can be added later into the trial. This thesis

has presented methods for designing platform trials to help ensure they are designed

in a more effective manner to help reduce the time and cost of late phase treatment

development.

6.2 Future work

As explored at the end of each chapter there are multiple areas in which this work could

be extended. One area for further work, which was universal across all the chapters,
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is how one can change the allocation ratio without then having potential issues with

time trends. In the Supporting Information for Chapter 2 a model-based approach has

been proposed and there has been other work (Roig et al., 2022, 2024; Burnett et al.,

2020) considering this issue, however the large problem is the unknown nature of the

time trends. Furthermore, the unknown nature of the time trends are the same issue

faced when considering using non-concurrent control data (Lee and Wason, 2020).

To tackle this, further research is needed into using previously collected data through

a literature review to model time trends which may persist within a specific disease area

and outcome measure (Marandino et al., 2023). Using this information one could find

confidence intervals around the potential time trends for the given trial (Zhang et al.,

2009). Then when designing the trial one could use the 95% confidence interval to

calculate the worst case scenario for a trial, both when calculating the type I error and

power. Using this overly conservative estimate will ensure, with high probability, that

even if the underlying function used to estimate the time trend is not correct, there is

still control of the type I error and power above the desired level. One interesting point

to study is if this design results in a increase in sample size in such a large manner that

it is no longer beneficial to include non-concurrent controls or a changing allocation

ratio, compared to using a design which has neither of these.

Another area for further research for both Chapters 2 and 3 is exploring optimal

boundary shapes for the methods proposed, as is done in the MAMS case when all

the treatments begin at once in Wason and Jaki (2012). However, there are further

complications when considering the case of additional arms. For example, one may

wish to have different boundary shapes for each treatment; and the treatment effect

of each treatment matters as the order in which treatments are added affects what is

considered to be the optimal boundaries for that given design.

As shown in Wason and Jaki (2012) optimal boundary shape calculations are com-

putationally very intensive. Initially we would simplify the problem by searching for
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the optimal boundaries whilst keeping the allocation ratio fixed throughout the trial,

along with fixing the number of stages for each treatment. This not only avoids is-

sues around time trends but will also help in reducing the computation of the problem

as the allocation ratio will not change with every chosen boundary. Additionally to

help with the computation we would suggest having the same boundary shape for each

treatment, it will ensure that the PWER is equal for each treatment without having to

use an algorithm such as Algorithm 1.

As suggested in Wason et al. (2012) and in Wason and Jaki (2012) using a stochastic

search technique called simulated annealing (Lin and Geyer, 1992; Aarts and Van Laarhoven,

1989) could be a good heuristic approach to finding a close to optimal design. Simu-

lating annealing consists of multiple iterations in which a new design is generated at

each iteration. There is then the decision of whether to accept the new design or not.

Simulating annealing always accepts a new candidate design which has an improved

performance, for example lower expected sample size under the null. In simulating

annealing even designs that are worse then the current design become the new design

of interest with a non-zero probability. This is essential as there may be local optima,

so one will wish to explore alternative areas in-order to find the global optima.

In Wason and Jaki (2012) they use simulated annealing to find the optimal bound-

aries under the global null and under the LFC. In addition to these, we suggest that if

the focus is on conjunctive power then the optimal design, given that all the treatments

have a clinically relevant effect, should be studied. When under the global null, or

in the case when all treatments have a clinically relevant effect, there is no difference

between the treatment effect of each treatment, so one can do a search similar to that

done in the MAMS case. However when in the case of the LFC there is now an addi-

tional complication, as depending on which treatment has a clinically relevant effect,

influences which boundaries are optimal. It will be dependent on when that treatment

is added. As it is not possible to know which treatment has a clinically relevant effect,
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we would suggest for each proposed design calculating the expected sample size for the

least favourable configuration for all k = 1, . . . , K then summing this together to give

a score which is used to compare against future designs.

Furthermore in Wason and Jaki (2012) they build on work in Shuster (2002); Wason

and Mander (2012); Wason et al. (2012) to find the optimal boundaries under the θ1-

minimax design. Under this design the bounds are found that gives the lowest expected

sample size under θ̃1, which is the value of θ1 that gives the maximum expected sample

size over all possible values of θ1. The assumption made is that the rest of the active

treatments have a treatment effect equal to that of the control treatment. Finding this

design is a lot more computationally expensive as now the value of θ̃1 needs to be found

for each design. An additional issue with this is it still makes the assumption of known

effect of the other active treatments which is also unknown. This is done in order to help

reduce the computation. If one wants to use the θ1-minimax design when additional

arms are added then, as seen when considering the LFC, one will need to calculate the

design multiple times, once for each θk as depending on when the treatment is added

will dictate which bounds are optimal.

We propose research could be done into finding the optimal boundaries based on

a prior for the likely values of θ1, . . . , θK . The prior distributions of these treatment

effects can be dictated by the clinicians, based on prior experience with the active

treatments. We would then suggest breaking down each prior into a finite set of values

for each θk that should be tested, and then weighting each θk value by how likely it is.

One of the main advantages to using this approach is that one can account for multiple

different values of each θ1, . . . , θK at once and the calculation can be parallelised, so can

greatly reduce the computation time compared to calculating the θ1-minimax design.

Additionally another advantage is that it is using values for θ1, . . . , θK which are thought

to be likely, whereas when using the θ1-minimax design there is a chance that the θ̃1

that gives the maximum sample size is very unlikely to ever happen. However one
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challenge with this design is that as the number of arms increases then there will be a

increase in the number of combinations of potential values for θ1, . . . , θK that will need

to be studied, so increasing the computational cost, so this is something which needs

to be considered when taking this design further.

One of the largest extensions to be done for Chapter 4 is the effect on overall and

conditional power if the boundaries can be changed when the control is changed to

ensure type I error control is maintained. For this to be done first work is needed on

how to calculate the type I error of choice for the rest of the trial. This can then be used

to calculate new boundaries. How this is calculated will be highly dependent on which

type I error control is the focus and will likely be dependent on the number of arms

and stages in the trial. If one is focused on the FWER then to calculate the FWER

of the entire trial one will have to calculate the probability of the type I error having

happened, given the fact that a treatment has become the new control at a given stage

of the trial. From this one can then account for the probability that there has already

been a type I error made within the trial when calculating the new boundaries. One

could potentially adjust the alpha spending function approach to allow for this error to

be accounted for when finding the bounds for the remainder of the trial.

Chapter 5 could be extended to allow for the addition of arms in the case where

there is no control treatment as done in Chapter 2 and Chapter 3 for trials which have

a control treatment in either a preplanned manner, or as discussed in Burnett et al.

(2020) in an un-planned manner. If one is to do this then one should reconsider when

treatments that are found similar to one another can be stopped early. As currently

if a new treatment is added then it can make it impossible for all the remaining test

statistics to fall within the inner boundaries for a couple of stages after this treatment

is added. Therefore one could consider using a less strict rule for stopping similar

treatments. For example if two treatments are found to be similar then one could stop

one of the treatments, either by continuing the one which has the slightly higher test
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statistic or by choosing one at random. However one issue to consider is how this

may effect the final conclusion of the trial with respect to being able to reject later

hypotheses.

Finally, an area which this work can be taken further is for the use of the proposed

approaches in real clinical trials, as the methods proposed here can result in large

reductions in both sample size and duration. However not until they are applied to

a real clinical trials will all the potential benefits and disadvantages be known. With

the work by Jaki and Magirr (2013) one can use this work for trials with non-normal

endpoints. In trials with normal endpoints, where there is a small sample size, one

can use the approach discussed in Magirr et al. (2012); Jennison and Turnbull (1999)

to transform the test statistics to reduce the issues around the assumption of known

variance. Therefore this work can be applied to trials across a range of different clinical

endpoints.

In order to get the work of this thesis used in real trials, it will be important

that the methodology is presented clearly in high impact journals. Moreover the work

needs to be presented to a range of different stake holders that are involved in the

development of late phase trials and make them aware of the key messages of this work.

Furthermore, when seeking funding for trials which will be based on this work, it must

be ensured that the methodology is presented in a way such that it can be understood

by a range of stakeholders and that the code to replicate the design is available and

clear. Additionally this work could also be used within an R (R Core Team, 2021)

package to make it more accessible, either as a stand alone package or as part of future

developments of the MAMS package (Jaki et al., 2019).
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Supporting Information: A

multi-arm multi-stage platform

design that allows pre-planned

addition of arms while controlling

the family-wise error

A.1 Proof of strong control of FWER

Recall that Ak,j(θk) = [Zk,j < lk,j + (µk −µ0− θk)I1/2
k,j ] and Bk,j(θk) = [lk,j + (µk −µ0−

θk)I
1/2
k,j < Zk,j < uk,j + (µk − µ0 − θk)I1/2

k,j ].

Proof. For any εk > 0,

Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk + εk)

)
∩ Ak,j(θk + εk)

]
⊆

Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ak,j(θk)

]
.
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Take any

w = (Zk,1, . . . , Zk,J) ∈
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk + εk)

)
∩ Ak,j(θk + εk)

]
.

For some q ∈ {1, . . . , Jk}, for which Zk,q ∈ Ak,q(θk + εk) and Zk,j ∈ Bk,j(θk + εk)

for j = 1, . . . , q − 1. Zk,q ∈ Ak,q(θk + εk) implies that Zk,q ∈ Ak,q(θk). Furthermore

Zk,q ∈ Bk,q(θk + εk) implies that Zk,q ∈ Bk,q(θk) ∪ Ak,q(θk) for some j = 1, . . . , q − 1.

Therefore,

w ∈
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ak,j(θk)

]
.

Next suppose for any m1, . . . ,mK where m1 ∈ {1, . . . , K} and mk ∈ {1, . . . , K}

\{m1, . . . ,mk−1} with θm1 , . . . , θml ≤ 0 and θml+1
, . . . , θmK > 0. Let Θl = (θm1 , . . . , θml).

Then

P (reject at least one true H0k|Θ)

≤ P (Zk,j > uk,j for some (k, j) ∈ {(m1, 1) . . . , (m1, Jm1), (m2, 1)

. . . , (ml, 1), . . . , (ml, Jml)}|Θ)

= 1− P (R̄l(Θl))

≤ 1− P (R̄l(0))

≤ 1− P (R̄K(0))

= P (Zk,j > uk,j for some (k, j) ∈ {(m1, 1) . . . , (m1, Jm1), (m2, 1)

. . . , (mK , 1), . . . , (mK , JmK )}|H0.G)

= P (reject at least one true H0k|H0.G).
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A.2 Efficient computation of expected sample size

The sample size calculation can be split into four sections. Two sections that focus

on the control treatment and two sections that focus on the active treatments. These

sections are:

1. The probability the control treatment finishes at each stage j0 as the trial is

stopped, given no null hypotheses are rejected, where j0 ∈ 1, . . . , J0. This is

calculated by taking the difference between the probability that every treatment is

stopped for futility by the control’s j0th stage, denoted by Ψj and every treatment

is stopped for futility by the control’s stage j0− 1. The control treatment cannot

stop being recruited until either: one or more null hypotheses is rejected, or

until all the active treatments have had at least one stage. Therefore, in this

calculation only the stages after every treatment has been added to the trial need

to be considered, so s? is defined as s? = max(S). Using this gives for j0 > s?,

Ψj0 =

∫ ∞
−∞

. . .

∫ ∞
−∞

[
K∏
k=1

(
min[Jk,j0−s(k)]∑

j=1

Φ(Lk,j(θk), Uk,j(θk),Σk,j)

)
]
dΦ(t1) . . . dΦ(tj0),

and for j0 ≤ s? gives Ψj0 = 0 and Ψ0 = 0.

2. The probability the control treatment finishes at each stage as the trial is stopped,

given that a null hypothesis is rejected. This is calculated by taking the difference

between the probability that at least one null hypothesis is rejected by the control

treatments j0
th stage, denoted by Υj0 , and that at least one null hypothesis is
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rejected by the control’s j0 − 1 stage.

Υj0 = 1−
∫ ∞
−∞

. . .

∫ ∞
−∞

K∏
k=1

[
1{j0 − s(k) > 0}

[
1{j0 − s(k) > 1}

min(Jk,j0−s(k)−1)∑
j=1

Φ(Lk,j(θk), Uk,j(θk),Σk,j) + 1{j0 − s(k) ≤ Jk}

Φ(Lh,j0−s(k)(θk), Üh,j0−s(k)(θk),Σh,j0−s(k))]
+ 1{j0 − s(k) ≤ 0}

]
dΦ(t1) . . . dΦ(tj0),

where Ük,j(θk) = (uk,1(θk), . . . uk,j−1(θk), uk,j(θk)), with Υ0 = 0.

3. The probability treatment k′ stops at each of its J ′th stages because at least one

other treatments null hypothesis has been rejected at this stage, denoted by Λk′,J ′

where,

Λk′,J ′ =

∫ ∞
−∞

. . .

∫ ∞
−∞

[
$k′,s(k′)+J ′−1 −$k′,s(k′)+J ′

][
1{J ′ − 1 > 0}

Φ(L̈k′,J ′−1(θ′k), Ük′,J ′−1(θ′k),Σk′,J ′−1) + 1{J ′ − 1 ≤ 0}]
dΦ(t1) . . . dΦ(ts(k′)+J ′),

where L̈k,j(θk) = (lk,1(θk), . . . lk,j−1(θk), lk,j(θk)) and

$k′,j0 =
K∏

k=1,k 6=k′

[
1{j0 − s(k) > 0}

[
1{j0 − s(k) > 1}

min(Jk,j0−s(k)−1)∑
j=1

Φ(Lk,j(θk), Uk,j(θk),Σk,j) + 1{j0 − s(k) ≤ Jk}

Φ(Lk,j0−s(k)(θk), Ük,j0−s(k)(θk),Σk,j0−s(k))

]
+ 1{j0 − s(k) ≤ 0}

]
,

with $k′,0 = 1.

4. The probability treatment k′ stops at each of its J ′th stages because only H0k′
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is rejected, or no null hypotheses are dropped at this stage and treatment k′ is

stopped as its test statistic drops below its lower boundary for that stage (Ξk′,J ′).

Ξk′,J ′ =

∫ ∞
−∞

. . .

∫ ∞
−∞

(
K∏

k=1,k 6=k′

[
1{s(k′) + J ′ − s(k) > 0}

(

1{s(k′) + J ′ − s(k) > 1}
[min(Jk,s(k

′)+J ′−s(k)−1)∑
j=1

Φ(Lk,j(θk), Uk,j(θk),Σk,j)

]
+ 1{s(k′) + J ′ − s(k) ≤ Jk}Φ(Lk,s(k′)+J ′−s(k)(θk), Üh,s(k′)+J ′−s(k)(θk),

Σk,s(k′)+J ′−s(k))

)
+ 1{s(k′) + J ′ − s(k) ≤ 0}

])[
Φ(Lk′,J ′(θk′), Uk′,J ′(θk′)

,Σk′,J ′) + Φ(L+
k′,J ′(θk′), U

+
k′,J ′(θ

′
k),Σk′,J ′)

]
dΦ(t1) . . . dΦ(ts(k′)+J ′),

where

U+
k,j(θk′) =(uk,1(θk′), . . . uh,j−1(θk′),∞)

L+
k,j(θk′) =(lk,1(θk′), . . . lh,j−1(θk′), uh,j(θk′))

Using the probabilities calculated above the expected sample size is:

NE =
W∑
j0=1

(Ψj0 + Υj0 −Ψj0−1 −Υj0−1)n0,j0 +
K∑
k′=1

Jk′∑
J ′=1

(Ξk′,J ′ + Λk′,J ′)nk′,J ′ .

A.3 Explicit formulation of the PWER
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The PWER for treatment k (α?k) can be written as:

α? = 1−
[ ∫ lk,1

−∞
φ(z1, µ = 0,Σ = 1)dz1 +

∫ uk,1

lk,1

∫ lk,2

−∞
φ((z1, z2), µ = (0, 0),Σ = Σ2)

dz1dz2 + . . .+

∫ uk,1

lk,1

∫ uk,2

lk,2

. . .

∫ uk,Jk−1

lk,Jk−1

∫ lk,Jk

−∞
φ((z1, z2, . . . , zJk−1, zJk),

µ = (0, 0, . . . , 0, 0),Σ = ΣJk)dz1dz2 . . . dzJk−1dzJk

where φ(z, µ,Σ) is the probability density function of a multi-variate normal distribution

with mean µ and covariance matrix Σ. With

Σ2 =

 1
1

rk,2
+ 1
r0,s(k)+2−r0,s(k)√

r−1
k,1+(r0,s(k)+1−r0,s(k))−1

√
r−1
k,2+(r0,s(k)+2−r0,s(k))−1

1
rk,2

+ 1
r0,s(k)+2−r0,s(k)√

r−1
k,1+(r0,s(k)+1−r0,s(k))−1

√
r−1
k,2+(r0,s(k)+2−r0,s(k))−1

1


and
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A.4 Table of results for non-binding stopping rules

based on the motivating trial

We present here the results of Setting 1 and Setting 2 as presented in Table 2.3.1 if

one uses non-binding stopping rules for futility. Once again as done in Chapter 2 the

sample size for Setting 1 was found using the adjustment to the algorithm to ensure

equal allocation ratio. The stopping boundaries and sample size for Setting 1 using

non-binding stopping rule are

U =

2.520 2.376

2.520 2.376

 , L =

0.840 2.376

0.840 2.376

 ,

n1,1 n1,2

n2,1 n2,2

 =

78 156

78 156

 ,

(
n0,1 n0,2 n0,3

)
=

(
78 156 234

)
.

The stopping boundaries and sample size for Setting 2 using non-binding stopping rule

are

U =

2.812 2.485 2.435

− 2.515 2.372

 , L =

0 1.491 2.435

− 0.838 2.372

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

47 94 141

− 78 156

 ,

(
n0,1 n0,2 n0,3

)
=

(
47 125 203

)
.

In Table A.4.1 the FWER and power along with the expected and maximum sample

sizes are given. It can be seen that the FWER is lower than the 2.5% planned level.

This is due to this value being calculated assuming one did use the original plan of using

the stopping boundaries for futility. However when these bounds were calculated they

assumed that the stopping boundaries were not be used. Overall the sample size for

both designs remains very similar with it only being increased by 1 additional patient
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per stage for Setting 2 and stayed the same for Setting 1.

Table A.4.1: The results of the triangular stopping boundary shape on the design
configuration for the motivating FLAIR trial under Setting 1 and setting 2 when non-
binding stopping rules are used to calculate the boundaries.

FWER PWER1 LFC1 NS1 max(N) E(N |HG) E(N |LFC1) E(N |LFC2)

PWER1 LFC2 NS2 max(T ) E(T |HG) E(T |LFC1) E(T |LFC2)

Non-binding 0.024 0.012 0.807 2 546 355.9 289.9 406.2

Setting 1 0.012 0.800 2 (26.0) (16.9) (13.8) (19.3)

Non-binding 0.023 0.012 0.805 3 500 308.0 303.1 353.8

Setting 2 0.012 0.805 2 (23.8) (14.7) (14.4) (16.8)

Key: E(N |HG), E(N |LFCk), E(T |HG), E(T |LFCk) is the expected sample size and

trial duration under the null and under the LFC for treatment k, respectively.

A.5 Table of results for Setting 1 based on the mo-

tivating trial

As done for Setting 2 in Table 2.3.1 of Chapter 2 in Table A.5.1 of the Supporting

Information the results of the different comparison approaches given in Section 2.3 is

shown. For the expected duration until the MAMS trial finishes it is now assumed

that the trial does not begin until the beginning of the second stage for Setting 1.

Therefore 154 patients have already been recruited which equals 7.3 months. The

stopping boundaries and sample size for the separate trials when FWER is controlled

are for each trial,

U =

(
2.508 2.364

)
, L =

(
0.836 2.364

)
,(

n1,1 n1,2

)
=

(
77 154

)
,

(
n0,1 n0,2

)
=

(
77 154

)
.
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The stopping boundaries and sample size for the separate trials when FWER is not

controlled are for each trial,

U =

(
2.222 2.095

)
, L =

(
0.741 2.095

)
,(

n1,1 n1,2

)
=

(
65 130

)
,

(
n0,1 n0,2

)
=

(
65 130

)
.

The stopping boundaries and sample size for the MAMS trial with 2 stages are,

U =

2.482 2.340

2.482 2.340

 , L =

0.827 2.340

0.827 2.340

 ,

n1,1 n1,2

n2,1 n2,2

 =

76 152

76 152

 ,

(
n0,1 n0,2

)
=

(
76 152

)
.

The stopping boundaries and sample size for the Naive MAMS with the same nk,j trial

with 2 stages are,

U =

2.222 2.095

2.222 2.095

 , L =

0.741 2.095

0.741 2.095

 ,

n1,1 n1,2

n2,1 n2,2

 =

65 130

65 130

 ,

(
n0,1 n0,2 n0,3

)
=

(
65 130 195

)
.

The stopping boundaries and sample size for the Naive MAMS with the same max(N)

trial with 2 stages are,

U =

2.222 2.095

2.222 2.095

 , L =

0.741 2.095

0.741 2.095

 ,

n1,1 n1,2

n2,1 n2,2

 =

65 91

26 52

 ,

(
n0,1 n0,2 n0,3

)
=

(
65 91 117

)
.
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The stopping boundaries and sample size for the PWER platform with 2 stages are,

U =

2.222 2.095

2.222 2.095

 , L =

0.741 2.095

0.741 2.095

 ,

n1,1 n1,2

n2,1 n2,2

 =

68 136

68 136

 ,

(
n0,1 n0,2 n0,3

)
=

(
68 136 204

)
.

The stopping boundaries and sample size for the Bonferroni platform with 2 stages are,

U =

2.510 2.367

2.510 2.367

 , L =

0.837 2.367

0.837 2.367

 ,

n1,1 n1,2

n2,1 n2,2

 =

78 156

78 156

 ,

(
n0,1 n0,2 n0,3

)
=

(
78 156 234

)
.

A.6 p-values for the stopping boundaries for the ap-

proaches given in Table 2.3.1 of the Chapter 2

Define pU as the p-values for the U matrix, where the matrix U containing the upper

boundaries, where row k correspond to treatment comparison k. Define pL as the p-

values for the L matrix, where the matrix L containing the lower boundaries, where

row k correspond to treatment comparison k. The p-values for the stopping boundaries

for Setting 1 are,

pU =

0.006 0.009

0.006 0.009

 , pL =

0.202 0.009

0.202 0.009

 .
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Table A.5.1: The results of the triangular stopping boundary shape on the design
configuration for the motivating FLAIR trial under Setting 1 and four competing ap-
proaches: when running each trial separately, when using the MAMS design by Magirr
et al. (2012), when using the naive MAMS approach and when using a platform design
based on PWER control.

FWER PWER1 LFC1 NS1 max(N) E(N |HG) E(N |LFC1) E(N |LFC2)
PWER2 LFC2 NS2 max(T ) E(T |HG) E(T |LFC1) E(T |LFC2)

Setting 1 0.025 0.013 0.811 2 546 356.2 288.2 405.3
0.013 0.804 2 (26.0) (17.0) (13.7) (19.3)

Separate trials 0.025 0.013 0.805 2 616 368.2 419.3 419.3
FWER control 0.013 0.805 2 (29.3) (17.5) (20.0) (20.0)
Separate trials 0.049 0.025 0.803 2 520 316.2 349.7 349.7

no FWER control 0.025 0.803 2 (24.8) (15.1) (16.7) (16.7)
MAMS trial 0.025 0.013 0.804 2 456 280.7 309.8 309.8

2 Stage 0.013 0.804 2 (29.0) (20.7) (22.1) (22.1)
Naive MAMS 0.048 0.025 0.802 3 455 299.3 234.0 331.4

same nk,j 0.025 0.787 2 (21.7) (14.3) (11.1) (15.8)
Naive MAMS 0.047 0.025 0.676 2 260 197.8 172.8 214.4
same max(N) 0.021 0.414 2 (12.4) (9.4) (8.2) (10.2)

PWER 0.048 0.025 0.819 3 476 313.1 241.0 345.1
Platform 0.025 0.805 2 (22.7) (14.9) (11.5) (16.4)

Bonferroni 0.024 0.013 0.809 2 546 356.1 289.1 405.7
Platform 0.013 0.802 2 (26.0) (17.0) (13.8) (19.3)

Key: E(N |HG), E(N |LFCk), E(T |HG), E(T |LFCk) is the expected sample size and
trial duration under the null and under the LFC for treatment k, respectively.
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The p-values for the stopping boundaries for Setting 2 are,

pU =

0.003 0.007 0.008

− 0.006 0.009

 , pL =

0.500 0.071 0.008

− 0.203 0.009

 .

The p-values for the stopping boundaries for the separate trials when FWER is con-

trolled are for the first trial,

pU =

(
0.003 0.007 0.008

)
, pL =

(
0.500 0.070 0.008

)
.

For the second trial,

pU =

(
0.006 0.009

)
, pL =

(
0.202 0.009

)
.

The p-values for the stopping boundaries for the separate trials when FWER is not

controlled are for the first trial,

pU =

(
0.007 0.014 0.016

)
, pL =

(
0.500 0.094 0.016

)
.

For the second trial,

pU =

(
0.013 0.018

)
, pL =

(
0.229 0.018

)
.

The p-values for the stopping boundaries for the MAMS trial with 2 stages are,

pU =

0.006 0.009

0.006 0.009

 , pL =

0.204 0.009

0.204 0.009

 .
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The p-values for the stopping boundaries for the MAMS trial with 3 stages are,

pU =

0.003 0.007 0.008

0.003 0.007 0.008

 , pL =

0.500 0.072 0.008

0.500 0.072 0.008

 .

The p-values for the stopping boundaries for the Naive MAMS with the same nk,j trial

are,

pU =

0.007 0.014 0.016

− 0.014 0.016

 , pL =

0.500 0.094 0.016

− 0.094 0.016

 .

The p-values for the stopping boundaries for the Naive MAMS with the same max(N)

trial are,

pU =

0.007 0.014 0.016

− 0.014 0.016

 , pL =

0.500 0.094 0.016

− 0.094 0.016

 .

The p-values for the stopping boundaries for the PWER platform are,

pU =

0.007 0.014 0.016

− 0.013 0.018

 , pL =

0.500 0.094 0.016

− 0.229 0.018

 .

The p-values for the stopping boundaries for the Bonferroni platform are,

pU =

0.003 0.007 0.008

− 0.006 0.009

 , pL =

0.500 0.070 0.008

− 0.201 0.009

 .
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A.7 Probability of each treatment stopping for fu-

tility or superiority for the approaches given in

Table 2.3.1 of Chapter 2

In Table A.7.1 the probability of each treatment stopping for futility or superiority at

each stage of the trial is given for Setting 1 and 2. This is studied under the global

null hypothesis, when the power under the LFC is true for treatment 1 and for when

the power under the LFC is true for treatment 2. The futility calculation also include

the probability that the other treatment is taken forward instead of the treatment of

interest. This is why for stage 1 of the trial there is a chance that treatment 2 is

stopped for futility before it is studied and this equals the probability that treatment

1 stopped for superiority at this given point. Similar results for both the MAMS trial

2 stage and 3 stage are given in Table A.7.3. Additionally similar results for the Naive

MAMS with the same nk,j and Naive MAMS with the same max(N) are given in Table

A.7.4. Additionally similar results for the PWER platform and Bonferroni platform

are given in Table A.7.5. In Table A.7.2 the results for the separate trials when FWER

is controlled and when FWER is not controlled are given. In this table it shows that

the effect of one trial does not influence the result of the other trial due to them being

completely separate.

A.8 Tables of results based on the motivating trial

for different stopping boundaries

In Table A.8.1 and Table A.8.2 the results for the different combinations of stopping

boundary shapes are shown for Setting 1 and 2 respectively. The stopping boundary

shapes which are considered here are Pocock (Pocock, 1977), O’Brien and Fleming
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Table A.7.1: The probabilities of each treatment stopping for either futility or superi-
ority under the global null hypothesis and when the power under the LFC is true for
treatment 1 and for treatment 2, for both Setting 1 and Setting 2.

Setting 1
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.798 0.006 0.190 0.006 - -
Treatment 2 0.006 - 0.796 0.006 0.185 0.006

LFC1
Treatment 1 0.069 0.427 0.120 0.384 - -
Treatment 2 0.427 - 0.549 0.001 0.022 0.001

LFC2
Treatment 1 0.780 0.007 0.211 0.002 - -
Treatment 2 0.007 - 0.071 0.423 0.118 0.380

Setting 2
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.500 0.003 0.434 0.006 0.053 0.004
Treatment 2 0.003 - 0.798 0.006 0.186 0.006

LFC1
Treatment 1 0.038 0.160 0.089 0.441 0.071 0.202
Treatment 2 0.160 - 0.790 0.001 0.048 0.001

LFC2
Treatment 1 0.481 0.003 0.493 0.002 0.021 0.000
Treatment 2 0.003 - 0.072 0.421 0.121 0.382

(O’Brien and Fleming, 1979) and Triangular stopping boundaries (Whitehead, 1997).

However for both the Pocock boundary shape and the O’brien and Flemming boundary

shape the symmetric futility boundary may be too stringent a requirement to be able

to drop ineffective treatments, therefore a simple alternative lk,j = 0 for j < Jk is used.

As can be seen in these tables the upper and lower stopping boundaries are given, with

the top row being the boundaries for the first active treatment added and the second

row being for the second active treatment.

A.9 Results for Setting 1 of allowing a change in

allocation ratio

In Table A.9.1 the results for the different combinations of stopping boundary shapes

are shown for Setting 1 when one uses Algorithm 3, therefore, this algorithm does

not result in guaranteed equal allocation ratios. The stopping boundary shapes which
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Table A.7.2: The probabilities of each treatment stopping for either futility or supe-
riority under the global null hypothesis and when the power under the LFC is true
for treatment 1 and for treatment 2, for both separate trials with FWER control and
separate trials without FWER control.

Separate trials FWER control - Trial for treatment 1
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority
HG Treatment 1 0.500 0.003 0.432 0.006 0.055 0.004

LFC1 Treatment 1 0.028 0.091 0.089 0.413 0.080 0.198
LFC2 Treatment 1 0.479 0.003 0.443 0.007 0.062 0.005

Separate trials FWER control - Trial for treatment 2
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority
HG Treatment 2 0.798 0.006 0.189 0.007 - -

LFC1 Treatment 2 0.780 0.007 0.204 0.008 - -
LFC2 Treatment 2 0.071 0.419 0.124 0.386 - -

Separate trials no FWER control - Trial for treatment 1
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority
HG Treatment 1 0.500 0.007 0.409 0.012 0.066 0.007

LFC1 Treatment 1 0.038 0.242 0.089 0.397 0.067 0.168
LFC2 Treatment 1 0.481 0.008 0.417 0.014 0.073 0.008

Separate trials no FWER control - Trial for treatment 2
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority
HG Treatment 2 0.771 0.013 0.204 0.012 - -

LFC1 Treatment 2 0.753 0.015 0.218 0.014 - -
LFC2 Treatment 2 0.085 0.458 0.113 0.345 - -
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Table A.7.3: The probabilities of each treatment stopping for either futility or superi-
ority under the global null hypothesis and when the power under the LFC is true for
treatment 1 and for treatment 2, for both MAMS trial with 2 stages and MAMS trial
with 3 stages.

MAMS trial 2 stage
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.800 0.006 0.187 0.006 - -
Treatment 2 0.801 0.006 0.187 0.006 - -

LFC1
Treatment 1 0.073 0.422 0.123 0.381 - -
Treatment 2 0.933 0.001 0.065 0.000 - -

LFC2
Treatment 1 0.933 0.001 0.066 0.000 - -
Treatment 2 0.073 0.422 0.123 0.381 - -

MAMS trial 3 stage
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.503 0.003 0.431 0.006 0.054 0.004
Treatment 2 0.503 0.003 0.431 0.006 0.054 0.004

LFC1
Treatment 1 0.029 0.198 0.089 0.414 0.077 0.194
Treatment 2 0.637 0.001 0.354 0.001 0.006 0.000

LFC2
Treatment 1 0.637 0.001 0.355 0.001 0.006 0.000
Treatment 2 0.029 0.197 0.089 0.414 0.077 0.19391

Table A.7.4: The probabilities of each treatment stopping for either futility or supe-
riority under the global null hypothesis and when the power under the LFC is true
for treatment 1 and for treatment 2, for both naive MAMS with same nk,j and naive
MAMS with same max(N).

Naive MAMS same nk,j

Stage 1 Stage 2 Stage 3
Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.500 0.007 0.412 0.011 0.063 0.006
Treatment 2 0.007 - 0.903 0.0136 0.070 0.007

LFC1
Treatment 1 0.038 0.242 0.091 0.395 0.066 0.167
Treatment 2 0.242 - 0.740 0.003 0.015 0.001

LFC2
Treatment 1 0.481 0.008 0.470 0.005 0.034 0.001
Treatment 2 0.008 - 0.323 0.336 0.105 0.2280

Naive MAMS same max(N)
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.500 0.007 0.410 0.010 0.066 0.006
Treatment 2 0.007 - 0.903 0.014 0.070 0.007

LFC1
Treatment 1 0.038 0.242 0.135 0.312 0.112 0.162
Treatment 2 0.242 - 0.731 0.005 0.021 0.001

LFC2
Treatment 1 0.481 0.008 0.455 0.007 0.047 0.003
Treatment 2 0.008 - 0.444 0.229 0.140 0.179
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Table A.7.5: The probabilities of each treatment stopping for either futility or supe-
riority under the global null hypothesis and when the power under the LFC is true
for treatment 1 and for treatment 2, for both the PWER platform and the Bonferroni
platform approaches.

PWER platform
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.500 0.007 0.414 0.011 0.062 0.006
Treatment 2 0.007 - 0.772 0.013 0.198 0.011

LFC1
Treatment 1 0.049 0.206 0.090 0.424 0.060 0.171
Treatment 2 0.206 - 0.740 0.003 0.050 0.001

LFC2
Treatment 1 0.482 0.007 0.483 0.004 0.024 0.000
Treatment 2 0.007 - 0.085 0.459 0.108 0.340

Bonferroni platform
Stage 1 Stage 2 Stage 3

Futility Superiority Futility Superiority Futility Superiority

HG
Treatment 1 0.500 0.003 0.435 0.006 0.053 0.004
Treatment 2 0.003 - 0.800 0.006 0.186 0.006

LFC1
Treatment 1 0.036 0.161 0.087 0.443 0.070 0.202
Treatment 2 0.161 - 0.790 0.001 0.047 0.001

LFC2
Treatment 1 0.481 0.003 0.493 0.002 0.021 0.000
Treatment 2 0.003 - 0.073 0.416 0.124 0.384

are considered here are Pocock (Pocock, 1977), O’Brien and Fleming (O’Brien and

Fleming, 1979) and Triangular stopping boundaries (Whitehead, 1997). As can be seen

in these tables the upper and lower stopping boundaries are given, with the top row

being the boundaries for the first active treatment added and the second row being for

the second active treatment. As this table show one can save on sample size by doing

this however one now needs to be aware of time trends as discussed in Supporting

Information Section A.11.

A.10 Distribution of sample size

The distribution of the total sample size and the sample size of each treatment when

the triangular stopping boundaries are used for Setting 1 under the global null is given

in Figure A.10.1 with the probability mass function for the total sample size given in
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Figure A.10.1: Cumulative distribution functions (CDF) of the number of treatments
needed for the trial in Setting 2 of the total sample size and for each arm individually.
For example the probability that treatment 1 has stopped by the time it has had 78
patients recruited to it is 80.4%.

Equation (A.10.1). In this example the triangular stopping boundaries for Setting 1

gives the interquartile range of 312 to 390 and median of 312 under the global null for

the total sample size.

Distribution of the total sample size Setting 1 =



0.006, if N = 156

0.641, if N = 312

0.161, if N = 390

0.156, if N = 468

0.035, if N = 546

(A.10.1)

The probability mass function for the total sample size for Setting 2 is given in Equation
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(A.10.2)

Distribution of the total sample size Setting 2 =



0.003, if N = 92

0.402, if N = 246

0.369, if N = 292

0.098, if N = 400

0.034, if N = 415

0.071, if N = 446

0.023, if N = 492

(A.10.2)

A.11 The effect of time trends on Setting 2

In this section we study the effect of both a linear and step function time trend. In

Figure A.11.1 the result of using a linear time trend can be seen. The amount given

on the x-axis is the difference in the mean on control at the start of the trial to the

end. In Figure A.11.2 the result of using a step function as a time trend can be seen

where the step happens at the end of the first stage of the trial. The amount given

on the x axis of the time trend is the difference in the mean of the control from the

start of the trial to when the second treatment starts (and when the allocation ratio

changes). As can be seen in these figures the time trend only affects the treatment with

the change of allocation ratio. However it also shows that a time trend can result in a

loss of FWER control, with FWER now only controlled at 9.49% for the step function

with a change in mean of minus 1, and also that the power for the treatments may no

longer controlled at the pre-set level.

If one knows that there is going to be a time trend and what this time trend will

be then one can model this Lee and Wason (2020). One can recalculate the Z values as

follows, when there is a single change in the allocation ratio for a treatment to account
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for the effect of the time trend. These new adjusted Z values (ZA
k,j) are,

ZA
k,j = Zk,j −

(
n0,jc−n0,s(k)

n0,j+s(k)−n0,s(k)
− nk,jc

nk,j

)
µ̃

σ
√

(nk,j)−1 + (n0,s(k)+j − n0,s(k))−1

where jc is the stage at which the allocation ratio changes, and µ̃ is the difference in

the average mean before and after the change in allocation ratio.

However the effect of the time trends is often unknown Lee and Wason (2020).

Therefore if you believe this is going to be the case one can use Setting 1 with an equal

allocation ratio.

A.12 Robustness to the timing of the actual adding

for Setting 1

The same 3 approaches, as given in Section 2.4, to adding the second treatment earlier

or later are studied here for Setting 1 as can be seen in Figure A.12.1.

A.13 The effect of a larger θ0 when using triangular

stopping boundaries

For this example the same variables are used as the ones discussed in Section 2.3 apart

from θ0 = − log(0.95). The main focus of this section is to show how this larger θ0

can result in the third approach to adding treatments earlier or later, as discussed in

Section 2.4, does not control the power of all the treatments when the treatment is
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Figure A.11.1: The effect of a linear time trend on Setting 2. The x-axis defines the
amount the mean changes from the start of the trial to the end. With sub-figure (a)
showing the FWER under the global null and the PWER for each treatment, and in
sub-figure (b) showing the power under the LFC for Treatment 1 and the power under
the LFC for Treatment 2.
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Figure A.11.2: The effect of a step time trend on Setting 2. The x-axis defines the
amount the mean changes at the second stage. With sub-figure (a) showing the FWER
under the global null and the PWER for each treatment, and in sub-figure (b) showing
the power under the LFC for Treatment 1 and the power under the LFC for Treatment
2.
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Figure A.12.1: The effect of adding the treatment later or earlier than planned using
three different approaches for Setting 1 on FWER, power and PWER. With sub-figure
(a) showing the FWER under the global null, in sub-figure (b) showing the power
under the LFC for Treatment 1 and the power under the LFC for Treatment 2, and in
sub-figure (c) showing the PWER for Treatment 1 and the PWER for Treatment 2.
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Table A.13.1: The results of the triangular stopping boundaries on the design configu-
ration for the example trial with θ0 = − log(0.95) for both settings.

FWER PWER1 LFC1 NS1 max(N) E(N |HG) E(N |LFC1) E(N |LFC2)
PWER1 LFC2 NS2 max(T ) E(T |HG) E(T |LFC1) E(T |LFC2)

Setting 1 0.025 0.013 0.816 2 553 360.7 292.2 413.7
0.013 0.800 2 (26.3) (17.2) (13.9) (19.7)

Setting 2 0.025 0.013 0.803 3 496 305.8 298.5 350.13
0.013 0.803 2 (23.6) (14.6) (14.2) (16.7)

Key: E(N |HG), E(N |LFCk), E(T |HG), E(T |LFCk) is the expected sample size and
trial duration under the null and under the LFC for treatment k, respectively.

added earlier. The boundaries and sample size for Setting 1 when θ0 = − log(0.95) are:

U =

2.501 2.358

2.501 2.358

 , L =

0.834 2.358

0.834 2.358

 ,

n1,1 n1,2

n2,1 n2,2

 =

79 158

79 158

 ,

(
n0,1 n0,2 n0,3

)
=

(
79 158 237

)
.

The boundaries and sample size for Setting 2 when θ0 = − log(0.95) are:

U =

2.776 2.453 2.404

− 2.496 2.353

 , L =

0 1.472 2.404

− 0.832 2.353

 ,

n1,1 n1,2 n1,3

− n2,1 n2,2

 =

46 92 138

− 78 156

 ,

(
n0,1 n0,2 n0,3

)
=

(
46 124 202

)
.

The FWER, PWER per treatment, power under the LFC and the expected sample

size for both settings are given in Table A.13.1. The effect of adding the treatment

earlier or later than planned using the three approaches discussed in Section 2.4 is

given in Figure A.13.1 and Figure A.13.2 for Settings 1 and 2, respectively. Figures

A.13.2 now show that the power under the LFC for Treatment 1 under Setting 2 is no

longer controlled for any of the approaches when the second treatment is added earlier.
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Figure A.13.1: The effect of adding the treatment later or earlier than planned us-
ing three different approaches for Setting 1 on FWER, power and PWER when
θ0 = − log(0.95). With sub-figure (a) showing the FWER under the global null, in
sub-figure (b) showing the power under the LFC for Treatment 1 and the power under
the LFC for Treatment 2, and in sub-figure (c) showing the PWER for Treatment 1
and the PWER for Treatment 2.
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Figure A.13.2: The effect of adding the treatment later or earlier than planned us-
ing three different approaches for Setting 2 on FWER, power and PWER when
θ0 = − log(0.95). With sub-figure (a) showing the FWER under the global null, in
sub-figure (b) showing the power under the LFC for Treatment 1 and the power under
the LFC for Treatment 2, and in sub-figure (c) showing the PWER for Treatment 1
and the PWER for Treatment 2.
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A.14 Simulation study on the effect of not adding

the later treatment for the motivating exam-

ple

We ran 10 million simulations of both Setting 1 and Setting 2 assuming the later

treatment was not added but using the design defined in Section 2.3. For Setting 1,

the power under the LFC for Treatment 1 was 81.2% and the FWER was 1.28%. For

Setting 2, the power under the LFC for Treatment 1 was 1.30% and the FWER was

80.4%. This showed for both settings that the power was above the desired level of 80%,

and that there is very conservative control on FWER, compared to the 2.5% target.

A.15 Algorithm for PWER control

Let α? be the desired level of the PWER control for each active treatment, then one

can use Algorithm 6 to find the stopping boundaries for the given boundary functions.

Algorithm 6 Approach to compute the stopping boundaries for PWER control

1 Find a1 such that α?1 = α?.

2 Find a2 such that α?2 = α?.

...

H Find aK such that α?K = α?.
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B.1 Proof of FWER

As in Magirr et al. (2012) we define for any vector of constants Θ = (θ1, . . . , θK) and

k = 1, . . . , K, j = 1, . . . , Jk, then define the events,

Ak,j(θk) =[Zk,j < lk,j + (µk − µ0 − θk)I1/2
k,j ],

Bk,j(θk) =[lk,j + (µk − µ0 − θk)I1/2
k,j < Zk,j < uk,j + (µk − µ0 − θk)I1/2

k,j ].

199
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The FWER under the equal to

1− P (R̄K(Θ)) = 1− P (
⋂

k∈{m1,...,mK}

(
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(Θ)

)
∩ Ak,j(Θ)

])
)

where if µk − µ0 = θk for k = 1, . . . , K, the event that H01, . . . , H0K all fail to be

rejected is equal to R̄K(Θ). The convention that
⋂0
i=1 = Ω where Ω is the whole sample

space is used and m1 ∈ {1, . . . , K} and mk ∈ {1, . . . , K}\{m1, . . . ,mk−1}. Therefore

{m1, . . . ,mK} = {1, . . . , K}. This notation reflects the fact that the order in which

treatments are added affects the FWER as seen in Chapter 2.

Theorem B.1.1. For any Θ, under the conditions above, P (reject at least one true H0k|Θ) ≤

P (reject at least one true H0k|HG).

Proof. If µk − µ0 = θk for k = 1, . . . , K, the event that H01, . . . , H0K all fail to be

rejected is equivalent to

R̄K(Θ) =
⋂

k∈{m1,...,mK}

(
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ak,j(θk)

])
.

Then for any εk > 0,

Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk + εk)

)
∩ Ak,j(θk + εk)

]
⊆

Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ak,j(θk)

]
.

Take any

w = (Zk,1, . . . , Zk,J) ∈
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk + εk)

)
∩ Ak,j(θk + εk)

]
.

For some q ∈ {1, . . . , Jk}, for which Zk,q ∈ Ak,q(θk + εk) and Zk,j ∈ Bk,j(θk + εk)

for j = 1, . . . , q − 1. Zk,q ∈ Ak,q(θk + εk) implies that Zk,q ∈ Ak,q(θk). Furthermore

Zk,q ∈ Bk,q(θk + εk) implies that Zk,q ∈ Bk,q(θk) ∪ Ak,q(θk) for some j = 1, . . . , q − 1.
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Therefore,

w ∈
Jk⋃
j=1

[( j−1⋂
i=1

Bk,i(θk)

)
∩ Ak,j(θk)

]
.

Next suppose for any m1, . . . ,mK where m1 ∈ {1, . . . , K} and mk ∈ {1, . . . , K}

\{m1, . . . ,mk−1} with θm1 , . . . , θml ≤ 0 and θml+1
, . . . , θmK > 0. Let Θl = (θm1 , . . . , θml).

Then

P (reject at least one true H0k|Θ)

= 1− P (R̄l(Θl))

≤ 1− P (R̄l(0))

≤ 1− P (R̄K(0))

= P (reject at least one true H0k|H0.G).

The following proof was nearly identical to the one presented in Chapter 2 and

builds on the work of Magirr et al. (2012). The only change from Chapter 2 is now is

P (reject at least one true H0k|Θ) = 1−P (R̄l(Θl)) instead of being P (reject at least one true

H0k|Θ) ≤ 1− P (R̄l(Θl)).

B.2 O’Brien and Fleming boundaries and the Pocock

boundaries

The O’Brien and Fleming boundaries (O’Brien and Fleming, 1979) with the futility

boundaries equal to zero for j < JK , to remove the symmetric boundaries, which may
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be too stringent (Magirr et al., 2012) give the stopping boundaries

U1

U2

 =

3.166 2.239

3.166 2.239

 ,

L1

L2

 =

0 2.239

0 2.239

 .

When the focus is on ensuring that the pairwise power is greater than 80% the sample

sizes aren1,1 n1,2

n2,1 n2,2

 =

70 140

70 140

 ,

n0,1,1 n0,1,2

n0,2,1 n0,2,2

 =

 70 140

140 210

 .

n(1)

n(2)

 =

 0

70

 .

When ensuring that the conjunctive power is greater than 80% the sample sizes are

n1,1 n1,2

n2,1 n2,2

 =

87 174

87 174

 ,

n0,1,1 n0,1,2

n0,2,1 n0,2,2

 =

 87 174

174 261

 .

n(1)

n(2)

 =

 0

87

 .

Table B.2.1 shows the results for different values of θ1 and θ2 when the conjunctive

power is greater than 80% and when the pairwise power is greater than 80%.

The Pocock boundaries (Pocock, 1977) with the futility boundaries equal to zero

for j < JK , to remove the symmetric boundaries, which may be too stringent (Magirr

et al., 2012) give the stopping boundaries

U1

U2

 =

2.440 2.440

2.440 2.440

 ,

L1

L2

 =

0 2.440

0 2.440

 .

When the focus is on ensuring that the pairwise power is greater than 80% the sample

sizes are:n1,1 n1,2

n2,1 n2,2

 =

76 152

76 152

 ,

n0,1,1 n0,1,2

n0,2,1 n0,2,2

 =

 76 152

152 228

 .

n(1)

n(2)

 =

 76

152

 .
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Table B.2.1: Operating characteristics of the proposed designs under different values
of θ1 and θ2, for both control of pairwise power and of conjunctive power, when the
proposed designs use O’Brien and Fleming boundaries (O’Brien and Fleming, 1979)
with futility boundaries equal to zero.

Design for pairwise power
θ1 θ2 PPW,1 PPW,2 PC PD max(N) E(N |θ1, θ2)
θ′ θ′ 0.806 0.806 0.671 0.941 490 452.3
θ′ 0 0.806 0.013 0.806 0.807 490 407.3
θ′ −∞ 0.806 0 0.806 0.806 490 337.4
0 θ′ 0.013 0.806 0.806 0.807 490 429.7
0 0 0.013 0.013 1 0.025 490 384.8
−∞ θ′ 0 0.806 0.806 0.806 490 394.8

Design for conjunctive power
θ1 θ2 PPW,1 PPW,2 PC PD max(N) E(N |θ1, θ2)
θ′ θ′ 0.889 0.889 0.801 0.977 609 545.5
θ′ 0 0.889 0.013 0.889 0.889 609 500.7
θ′ −∞ 0.889 0 0.889 0.889 609 413.8
0 θ′ 0.013 0.889 0.889 0.889 609 523.1
0 0 0.013 0.013 1 0.025 609 478.3
−∞ θ′ 0 0.889 0.889 0.889 609 479.6

When ensuring that the conjunctive power is greater than 80% the sample sizes are:

n1,1 n1,2

n2,1 n2,2

 =

95 190

95 190

 ,

n0,1,1 n0,1,2

n0,2,1 n0,2,2

 =

 95 190

190 285

 .

n(1)

n(2)

 =

 0

95

 .

Table B.2.2 shows the results for different values of θ1 and θ2 when the conjunctive

power is greater than 80% and when the pairwise power is greater than 80%.

B.3 Non-binding triangular stopping boundaries

The triangular boundaries (Whitehead, 1997) with non-binding futility boundaries for

the type I error, are

U =

U1

U2

 =

2.517 2.373

2.517 2.373

 , L =

L1

L2

 =

0.839 2.373

0.839 2.373

 .
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Table B.2.2: Operating characteristics of the proposed designs under different values
of θ1 and θ2, for both control of pairwise power and of conjunctive power, when the
proposed designs use Pocock boundaries (Pocock, 1977) with futility boundaries equal
to zero.

Design for pairwise power
θ1 θ2 PPW,1 PPW,2 PC PD max(N) E(N |θ1, θ2)
θ′ θ′ 0.802 0.802 0.662 0.941 532 429.3
θ′ 0 0.802 0.013 0.802 0.802 532 420.6
θ′ −∞ 0.802 0 0.802 0.802 532 345.7
0 θ′ 0.013 0.802 0.802 0.803 532 424.9
0 0 0.013 0.013 1 0.025 532 416.3
−∞ θ′ 0 0.802 0.802 0.802 532 387.5

Design for conjunctive power
θ1 θ2 PPW,1 PPW,2 PC PD max(N) E(N |θ1, θ2)
θ′ θ′ 0.889 0.889 0.801 0.978 665 507.6
θ′ 0 0.889 0.013 0.889 0.890 665 516.1
θ′ −∞ 0.889 0 0.889 0.889 665 422.5
0 θ′ 0.013 0.889 0.889 0.890 665 511.9
0 0 0.013 0.013 1 0.025 665 520.4
−∞ θ′ 0 0.889 0.889 0.889 665 465.1

When the focus is on ensuring that the pairwise power is greater than 80% the sample

sizes are:n1,1 n1,2

n2,1 n2,2

 =

77 154

77 154

 ,

n0,1,1 n0,1,2

n0,2,1 n0,2,2

 =

 77 154

154 231

 .

n(1)

n(2)

 =

 0

77

 .

When ensuring that the conjunctive power is greater than 80% the sample sizes are:

n1,1 n1,2

n2,1 n2,2

 =

97 194

97 194

 ,

n0,1,1 n0,1,2

n0,2,1 n0,2,2

 =

 97 194

194 291

 .

n(1)

n(2)

 =

 0

97

 .

Table B.3.1 shows the results for different values of θ1 and θ2 when the conjunctive

power is greater than 80% and when the pairwise power is greater than 80%. As can

be seen in these results unlike in Table 3.3.2 the disjunctive power no longer equals the

target of 2.5% when θ1, θ2 = 0. This is because this is the FWER if one did use the
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Table B.3.1: Operating characteristics of the proposed designs under different values
of θ1 and θ2, for both control of pairwise power and of conjunctive power, when the
proposed designs use triangular boundaries (Whitehead, 1997) with non-binding futility
boundaries for the type I error.

Design for pairwise power
θ1 θ2 PPW,1 PPW,2 PC PD max(N) E(N |θ1, θ2)
θ′ θ′ 0.802 0.802 0.663 0.942 539 426.6
θ′ 0 0.802 0.012 0.802 0.803 539 377.5
θ′ −∞ 0.802 0 0.802 0.802 539 347.5
0 θ′ 0.012 0.802 0.802 0.804 539 402.0
0 0 0.012 0.012 1 0.024 539 353.0
−∞ θ′ 0 0.802 0.802 0.802 539 387.0

Design for conjunctive power
θ1 θ2 PPW,1 PPW,2 PC PD max(N) E(N |θ1, θ2)
θ′ θ′ 0.891 0.891 0.803 0.979 679 513.9
θ′ 0 0.891 0.012 0.891 0.891 679 467.7
θ′ −∞ 0.891 0 0.891 0.891 679 430.0
0 θ′ 0.012 0.891 0.891 0.891 679 490.8
0 0 0.012 0.012 1 0.024 679 444.7
−∞ θ′ 0 0.891 0.891 0.891 679 471.9

lower boundaries for futility. Without these lower bounds the FWER is 2.5%. This is

the same for the PWER when looking at the pairwise power when θ1 or θ2 equals 0.

B.4 Plots based on the results from Section 3.4 for

the two and three stage designs

The plots for the 2 stage and 3 stage example trials as given in Table 3.3.3 are shown in

Figure B.4.1 and Figure B.4.2. These plots are similar to the ones seen in Figure 3.3.1

and 3.3.2 of Chapter 3. The y-axis gives the sample size for the trial. The x-axis gives

the amount of control patients recruited between each active treatment being added

(n(k)− n(k− 1)). Plotted on the graph is the maximum sample size and the expected

sample size under the different configurations considered in Table 3.3.3. Figure B.4.1

gives the plots when the pairwise power is controlled at 80% and Figure B.4.2 gives the

plots when the conjunctive power is controlled at 80%. As can be seen in Figure B.4.2
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there are times where there are less lines than expected. This is simply caused by the

points when separate trials becomes better than running the proposed platform trial

is at the same point for multiple different Θ, as seen in Table 3.3.3, therefore the lines

overlap.
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Figure B.4.1: The maximum sample size and the expected sample size under different
Θ depending on the value n(k) − n(k − 1), for the pairwise power control of 80% and
FWER of 5% one-sided. The dash vertical lines correspond to the points where the
maximum or expected sample size of the trial is now greater than running separate
trials which each have type I error control of 2.5% one-sided.
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Figure B.4.2: The maximum sample size and the expected sample size under different
Θ depending on the value n(k) − n(k − 1), for the conjunctive power control of 80%
and FWER of 5% one-sided. The dash vertical lines correspond to the points where
the maximum or expected sample size of the trial is now greater than running separate
trials which each have type I error control of 2.5% one-sided.
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Supporting Information: Design of

platform trials with a change in the

control treatment arm

C.1 Proof for conditional power Theorem 4.3.4

Proof. We define the following:

Bk?,j(δ1,j, δ2,j) =[−∞ < Z?
k?,k′,j < (δ2,juj + δ1,j)],

Ck?,j(δ1,j, δ2,j) =[(δ2,juj + δ1,j) < Z?
k?,k′,j].

The conditional power equals is:

R(δ1,j, δ2,j) =
J⋃

j=j′+1

[ j−1⋂
i=j′+1

(Bk?,i(δ1,i, δ2,i)) ∩ Ck?,j(δ1,j, δ2,j)

]
.

When no data is taken δ1,j = 0 and δ2,j = 1. However when old data is taken forward

δ1,j =
−Ẑk,k′,j′

√
nk′,j′√

nk,j−nk,j′
and δ2,j =

√
nk,j√

nk,j−nk,j′
. Therefore when old data is retained δ1,j ≥ 0

and δ2,j ≥ 1 as Ẑk,k′,j′ < 0.

208
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Then under the assumption uj ≥ 0 for all j = (j′ + 1) . . . J . For any ε1,j ≥ 0 and

ε2,j ≥ 0 let

w = (Z?
k?,k′,j′+1, . . . , Z

?
k?,k′,J) ∈

J⋃
j=j′+1

[ j−1⋂
i=j′+1

(Bk?,i(δ1,i + ε1,i, δ2,i + ε2,i))

∩ Ck?,j(δ1,j + ε1,j, δ2,j + ε2,j)

]
.

For some q ∈ {j′+1, . . . , J} for which Z?
k?,k′,q ∈ Ck?,q(δ1,q + ε1,q, δ2,q + ε2,q) and Z?

k?,k′,h ∈

Bk?,h(δ1,h + ε1,h, δ2,h + ε2,h) for h = j′ + 1, . . . q − 1. Z?
k?,k′,q ∈ Ck?,q(δ1,q + ε1,q, δ2,q + ε2,q)

implies that Z?
k?,k′,q ∈ Ck?,q(δ1,q, δ2,q). Furthermore Z?

k?,k′,q ∈ Bk?,q(δ1,q + ε1,q, δ2,q + ε2,q)

implies that Z?
k?,k′,q ∈ Bk?,q(δ1,q, δ2,q) ∪ Ck?,q(δ1,q, δ2,q) for some h = j′ + 1, . . . q − 1.

Therefore,

w = (Z?
k?,k′,j′+1, . . . , Z

?
k?,k′,J) ∈

J⋃
j=j′+1

[ j−1⋂
i=j′+1

(Bk?,i(δ1,i, δ2,i)) ∩ Ck?,j(δ1,j, δ2,j)

]
.

As a result P (R(0, 1)) ≥ P (R(
−Ẑk,k′,j′

√
nk′,j′√

nk,j−nk,j′
,

√
nk,j√

nk,j−nk,j′
)).

C.2 Conditional power formulations for Case 1

The denominator of the conditional power for a change after the first stage is:

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1) =

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞

∫ 0

−∞
φ

[
z, µ

Ωk?,k′,1
[1,2,3,4] ,Σ

Ωk?,k′,1
[1,2,3,4]

]
dz.(C.2.1)

where φ(z, µ,Σ) is the probability density function of a multi-variate normal distribution

with mean µ and covariance matrix Σ. Also

µΩk?,k′,1 =

(√
n(µk′ − µ0)

σ
√

2
,

√
n(µk? − µ0)

σ
√

2
,

√
n(µk? − µk′)
σ
√

2

,

√
n(µk − µk′)
σ
√

2
,

√
n(µk? − µk′)

σ

)
,
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and

ΣΩk?,k′,1 =



1 1
2

−1
2
−1

2
−1

2

√
1
2

1
2

1 1
2

0 1
2

√
1
2

−1
2

1
2

1 1
2

√
1
2

−1
2

0 1
2

1 1
2

√
1
2

−1
2

√
1
2

1
2

√
1
2

√
1
2

1
2

√
1
2

1


,

with [·] defining which entries to take from the vector, and [·] also defines the rows and

columns of the matrix, needed. The numerator of the conditional power for a change

after the first stage is:

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1 ∩ E4

k?,k′,1) =

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞

∫ 0

−∞

∫ ∞
u2

φ

[
z,

µΩk?,k′,1 ,ΣΩk?,k′,1

]
dz. (C.2.2)

The conditional power for treatment k? when treatment k′ becomes the new control at

stage 1 equals Equation (C.2.2) divided by Equation (C.2.1). When only retaining the

new information the conditional power is:

P (E?4
k?,k′,1) =

∫ ∞
u2

φ

[
z,

(√
n(µk? − µk′)
σ
√

2

)
, 1

]
dz. (C.2.3)

C.3 Overall power formulations for Case 1

Due to all the arms starting at the same point Ξk,1 can be simplified to

Ξk,1 =

∫ ∞
u1

∫ 0

−∞

∫ 0

−∞
φ

[
z, µΞk,1 ,ΣΞk,1

]
dz,
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where

µΞk,1 =

(√
n(µk? − µ0)

σ
√

2
,

√
n(µk1 − µk?)
σ
√

2
,

√
n(µk2 − µk?)
σ
√

2

)
,

and

ΣΞk,1 =


1 −1

2
−1

2

−1
2

1 1
2

−1
2

1
2

1

 .

The probability k? becomes the control at the second stage is

Ξk,2 =

∫ u1

l1

∫ ∞
u2

∫ l1

−∞

∫ l1

−∞
φ

[
z, µ

Ξk,2
[1,2,3,5],Σ

Ξk,2
[1,2,3,5]

]
dz+∫ u1

l1

∫ ∞
u2

∫ u1

l1

∫ 0

−∞

∫ l1

−∞
φ

[
z, µ

Ξk,2
[1,2,3,4,5],Σ

Ξk,2
[1,2,3,4,5]

]
dz+∫ u1

l1

∫ ∞
u2

∫ l1

−∞

∫ u1

l1

∫ 0

−∞
φ

[
z, µ

Ξk,2
[1,2,3,5,6],Σ

Ξk,2
[1,2,3,5,6]

]
dz+∫ u1

l1

∫ ∞
u2

∫ u1

l1

∫ 0

−∞

∫ u1

l1

∫ 0

−∞
φ

[
z, µΞk,2 ,ΣΞk,2

]
dz.

where

µΞk,2 =

(√
n(µk? − µ0)

σ
√

2
,

√
n(µk? − µ0)

σ
,

√
n(µk1 − µ0)

σ
√

2
,

√
n(µk1 − µk?)

σ
,

√
n(µk2 − µ0)

σ
√

2
,

√
n(µk2 − µk?)

σ

)
,

and

ΣΞk,2 =



1
√

1
2

1
2
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2

√
1
2
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2
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2
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2
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√
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√
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√
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√
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√
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.
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Figure C.4.1: For multiple values of µ3 − µ0: the conditional power for treatment 2
given that treatment 1 has gone forward at the first stage when all the data is retained.

We have Ωk?,k′,1 equals Equation (C.2.2) and Ω?
k?,k′,1 equals Equation (C.2.1) multiplied

by Equation (C.2.3).

C.4 The effect of different values of µ3 − µ0 for the

Case 1

The results of using different values of µ3 − µ0 are studied. The values studied are

µ3 − µ0 = −θ0, µ3 − µ0 = 0 and µ3 − µ0 = θ0. The conditional power for treatment 2

given treatment 1 has become the new control at stage 1 when using all the data is given

in Figure C.4.1. The conditional power for treatment 2 given treatment 1 has become

the new control at stage 1 when using only the new data is given in Figure C.4.2. The

difference in conditional power for treatment 2 given treatment 1 has become the new

control at stage 1 is given in Figure C.4.3. The overall power when using all the data

is given in Figure C.4.4. The overall power when using only the new data is given in

Figure C.4.5. The difference in overall power is given in Figure C.4.6. The probability

of the treatment which does not have the greatest treatment effect becoming the control

at the first stage is given in Figure C.4.7.
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Figure C.4.2: For multiple values of µ3 − µ0: the conditional power for treatment 2
given that treatment 1 has gone forward at the first stage when only the data post the
change in control is used.
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Figure C.4.3: For multiple values of µ3−µ0: the difference in conditional power between
keeping the data pre change and not.
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Figure C.4.4: For multiple values of µ3 − µ0: the overall power when all the data is
retained.
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Figure C.4.5: For multiple values of µ3−µ0: the overall power when only the data post
the change in control is used.
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Figure C.4.6: For multiple values of µ3 − µ0: the difference in overall power between
keeping the data pre change and not.

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 2
−

µ 0

0.1

0.2

0.3

0.4

Wrong treatment at stage 1 (µ3 − µ0 = − 0.178)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 2
−

µ 0

0.1

0.2

0.3

0.4

Wrong treatment at stage 1 (µ3 − µ0 = 0)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 2
−

µ 0

0.1

0.2

0.3

0.4

Wrong treatment at stage 1 (µ3 − µ0 = 0.178)

Figure C.4.7: For multiple values of µ3 − µ0: the probability of the treatment which
does not have the greatest treatment effect becoming the control at the first stage.
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Figure C.5.1: The difference in conditional power based on the value of the test statistics
for treatment 2 given that treatment 1 has gone forward at the first stage for fixed
µ1 = 0.25 and µ2 = 0.75.

C.5 The effect of different values of Z(1,0),1 and Z(2,0),1

on the conditional power for given µ1 and µ2

Figure C.5.1 shows the effect on conditional power for treatment 2 given treatment

1 became the control after the first stage, for different possible values of Z(1,0),1 and

Z(2,0),1 given that µ1 = −0.25 and µ2 = 0.75. The grey area is the values of Z(1,0),1 and

Z(2,0),1 which are not possible as Z(1,0),1 < Z(2,0),1. One only needs to consider values of

Z(1,0),1 > u1 as otherwise treatment 1 would not be the new control. It is shown here

that even in a case where on average there is very little benefit in only retaining the

new information there are potential values of Z(1,0),1 and Z(2,0),1 where there is large

benefit in only using the new data. For example if Z(1,0),1 = 4 and Z(2,0),1 = 1.5 then

there is an loss in conditional power of 82.7% by retaining the old data.
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C.6 Three stage conditional power given change af-

ter the first stage

The only conditional power where one may see benefit in keeping the old data in a

3 stage case when uj > 0 for all j is if the control changes at the first stage. The

denominator of the conditional power for a change after the first stage is:

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1) =

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞

∫ 0

−∞
φ

[
z, µ

Ωk?,k′,1
[1,2,3,4] ,Σ

Ωk?,k′,1
[1,2,3,4]

]
dz,

where φ(z, µ,Σ) is the probability density function of a multi-variate normal distribution

with mean µ and covariance matrix Σ. Also

µΩk?,k′,1 =

(√
n(µk′ − µ0)

σ
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2
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√
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√
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√
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√
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,
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The numerator of the conditional power for a change after the first stage is:

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1 ∩ E4

k?,k′,1) =

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞

∫ 0

−∞

∫ ∞
u2

φ

[
z, µ

Ωk?,k′,1
[1,2,3,4,5],

Σ
Ωk?,k′,1
[1,2,3,4,5]

]
dz +

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞

∫ 0

−∞

∫ u2

l2

∫ ∞
u3

φ

[
z, µΩk?,k′,1 ,ΣΩk?,k′,1

]
dz.
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Figure C.6.1: For multiple values of µ3 − µ0 for the 3 stage example: the conditional
power for treatment 2 given that treatment 1 has gone forward at the first stage when
all the data is retained.

The conditional power for treatment k? when treatment k′ becomes the new control at

stage 1 is:
P (E1

k?,k′,1 ∩ E2
k?,k′,1 ∩ E3

k?,k′,1 ∩ E4
k?,k′,1)

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1)

.

When we only retain the new information the conditional power is:

P (E?4
k?,k′,1) =

∫ ∞
u2

φ

[
z,

(√
n(µk? − µk′)
σ
√

2

)
, 1

]
dz.

The effect of using all the data; the post change data and the difference for conditional

power between keeping the old data and not for the O’Brien and Fleming bounds

(O’Brien and Fleming, 1979) are given in Figure C.6.1, C.6.2 and C.6.3 respectively.

The O’Brien and Fleming bounds are u1 = 3.640, u2 = 2.574, u3 = 2.101 and l1 =

−3.640, l2 = −2.574, l3 = 2.101 found using the (Magirr et al., 2012). The maximum

sample size using Chapter 3 is 312 which is based on 26 patients per stage per arm.

As can be seen even when using the negative bounds given by O’Brien and Fleming

there is no advantage to keeping the old data in this example. This means that in this

case for the overall power there is also no benefit to retaining the old data. However

in the Supporting Information Section C.7 we study a 3 stage example where there is

benefit in keeping the old data when there are negative bounds.
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Figure C.6.2: For multiple values of µ3 − µ0 for the 3 stage example: the conditional
power for treatment 2 given that treatment 1 has gone forward at the first stage when
only the new data is retained.
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Figure C.6.3: For multiple values of µ3 − µ0 for the 3 stage example: the difference in
conditional power between keeping the data pre change and not.
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C.7 Example where negative bounds can cause loss

in power when only keeping new data

Consider a three stage example with n1 = 100 n2 = 101 and n3 = 10000 and the lower

bounds l1 = l2 = −1.1 and u1 = u2 = u3 = 2. We set µ1 = 1000, µ2 = 1000.3,

µ3 = µ0 = 0. Then similar to above we focus on the conditional power of treatment 2

given treatment 1 has gone forward at the first stage. The conditional power is 96.4%

when data is retained compared to 90.5% when only the new data is retained. This

is because after the first stage there is a 9.47% chance that treatment 2 is dropped

compared to treatment 1 when only the new data is used. However when old data is

kept this drops to 3.63%. This therefore makes it more likely that treatment 2 will get

to the final stage where there is a very high chance it will now be found superior to the

control.

However even for this example if one changes the difference of µ1 − µ2 then one

will likely find that keeping the old data is worse than not. This section highlights

that it is possible when there are negative bounds that keeping the old data can be

positive, however this may not be very likely. As one can show that the conditional

power difference can be positive for keeping the data, this means that this also holds

for the overall power.

C.8 Simple random allocation effect on conditional

power

We use a simple random allocation method to study the effect on conditional power.

We simulate 100,000,000 runs of the case where treatment 1 has been taken forward

after the first stage and treatment 2 is the treatment of interest. It is assumed that

µ3−µ0 = 0 for the example and the triangular boundaries are used as defined in Section
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4.5. The results of 3 different cases are given in Table C.8.1. As can be seen in Table

C.8.1 when µ1 − µ0 = 0.178 and µ2 − µ0 = 0.545 the conditional power is still a lot

higher when using only the data post change in control. Furthermore for this example

there were only 167 simulations that found keeping all the data resulted in treatment

2 being found superior, when it was not found superior when using only the new data.

This is compared to 26165252 for the other way round. This has highlighted that the

conditional power and therefore overall power is still likely less when all the data is

retained even when using a simple random allocation method.

Table C.8.1: The conditional power when using a simple random allocation

Treatment effects Conditional power Treatment 2 only goes forward

µ1 = µ0 µ2 = µ0 new data all data with new data with all data

0.545 1.090 61,21% 19.37% 41832417 649

0.545 0.723 8.26% 0.39% 7870200 18

0.178 0.545 30.01% 3.84% 26165252 167

C.9 Case 2: complete equations for calculating con-

ditional and overall power

Conditional power equation when an arm is added later

The conditional power for treatment 1 or 2 given the other has become the control at

the first stage is calculated as follows:

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1) =

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞
φ

[
z, µ

Ωk?,k′,1
[1,2,3] ,Σ

Ωk?,k′,1
[1,2,3]

]
dz,
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and

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1 ∩ E4

k?,k′,1) =

∫ ∞
u1

∫ ∞
l1

∫ 0

−∞

∫ ∞
u2

φ

[
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dz,
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When only new data is kept the conditional power is:

P (E?4
k?,k′,1) =

∫ ∞
u2

φ

[
z,

(√
n(µk? − µk′)
σ
√

2

)
, 1

]
dz.

The conditional power for treatment 3 given that either treatment 1 or 2 has become

the new control at their first stage is calculated as follows.

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1 ∩ E4

k?,k′,1) = P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1)P (E4

k?,k′,1),

where P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1) is equals

P (E1
k?,k′,1 ∩ E2

k?,k′,1 ∩ E3
k?,k′,1) =

∫ ∞
u1

∫ 0

−∞
φ

[
z,

(√
n(µk′ − µ0)

σ
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2

√
n(µk? − µk′)
σ
√

2

)

,

 1 −1
2

−1
2

1

]dz,
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and P (E4
k?,k′,1) is

P (E4
k?,k′,1) =

∫ ∞
u1

φ

[
z,

(√
n(µk? − µk′)
σ
√

2

)
, 1

]
dz+

∫ u1

l1

∫ ∞
u2

φ

[
z,

(√
n(µk? − µk′)
σ
√

2
,

√
n(µk? − µk′)

σ

)
,

 1
√

1
2√

1
2

1

]dz.

Therefore the conditional power for both when old concurrent data is used and only

new concurrent data is used is P (E4
k?,k′,1).

When treatment 1 or treatment 2 becomes the control at their second stage the

conditional power is as follows, where we define treatment k1 = {1, 2}/k′ for the other

treatment tested which did not become the control.

P (E1
k?,k′,2 ∩ E2

k?,k′,2 ∩ E3
k?,k′,2) =

∫ u1

l1

∫ ∞
u2

∫ u1

l1

∫ l1
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.

The conditional power when only using new data is

P (E?4
k?,k′,1) =

∫ ∞
u2

φ

[
z,

(√
n(µk? − µk′)
σ
√

2

)
, 1

]
dz.

Overall power

When studying the overall power if the treatment with the greatest effect starts at the

beginning of the trial we define, k1 be the other treatment that starts the trial at the

beginning, and let k2 be the treatment which starts after the first stage. Then the

probability treatment k? becomes the new control at the first stage is:

Ξk,1 =

∫ ∞
u1

∫ 0

−∞
φ

[
z, µΞk,1 ,ΣΞk,1

]
dz,

where

ΣΞk,1 =

 1 −1
2

−1
2

1

 .
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and
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The probability treatment k? becomes the new control at the second stage is:
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and
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Therefore the overall power for treatment k? given it starts the trial at the start is

2∑
j?=1

Ξk?,j? + Ωk?,k′={1,2}/k?,1.
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Now we consider when k? is the treatment which is added later (i.e treatment 3). Now

k1 and k2 are both for the treatments which began the trial. The probability treatment

k? becomes the new control at its first stage is:
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and
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The probability treatment k? becomes the new control at its second stage is:
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Figure C.10.1: For multiple values of µ3 − µ0 with treatment 3 added later: the condi-
tional power for treatment 2 given that treatment 1 has gone forward at the first stage
when all the data is retained.

Therefore, the overall power for treatment k? given it is the treatment which is added

later is:
2∑

j?=1

Ξk?,j? +
∑

k′∈{1,2}

2∑
j′=1

Ωk?,k′,j′ .

C.10 Complete results for Case 2

Conditional power for treatment 2 against treatment 1 after the first stage

The results of using different values of µ3 − µ0 are studied. The values studied are

µ3 − µ0 = −θ0, µ3 − µ0 = 0 and µ3 − µ0 = θ0. The conditional power for treatment 2

given treatment 1 has become the new control at stage 1 when using all the data is given

in Figure C.10.1. The conditional power for treatment 2 given treatment 1 has become

the new control at stage 1 when using only the new data is given in Figure C.10.2. The

difference in conditional power for treatment 2 given treatment 1 has become the new

control at stage 1 is given in Figure C.10.3.

Conditional power for treatment 3 against treatment 1 after the first stage

The results of using different values of µ2 − µ0 are studied. The values studied are

µ2 − µ0 = −θ0, µ2 − µ0 = 0 and µ2 − µ0 = θ0. The conditional power for treatment 3

given treatment 1 has become the new control at stage 1 is given in Figure C.10.4.
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Figure C.10.2: For multiple values of µ3 − µ0 with treatment 3 added later: the condi-
tional power for treatment 2 given that treatment 1 has gone forward at the first stage
when only the data post the change in control is used.

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 2
−

µ 0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Difference in conditional power (µ3 − µ0 = − 0.178)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 2
−

µ 0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Difference in conditional power (µ3 − µ0 = 0)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 2
−

µ 0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Difference in conditional power (µ3 − µ0 = 0.178)

Figure C.10.3: For multiple values of µ3−µ0 with treatment 3 added later: the difference
in conditional power between keeping the data pre change and not.
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Figure C.10.4: For multiple values of µ2 − µ0 with treatment 3 added later: the con-
ditional power for treatment 3 given that treatment 1 has gone forward at the first
stage.
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Figure C.10.5: For multiple values of µ2 − µ0 with treatment 3 added later: the con-
ditional power for treatment 3 given that treatment 1 has gone forward at the second
stage when all the data is retained.
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Figure C.10.6: For multiple values of µ2 − µ0 with treatment 3 added later: the con-
ditional power for treatment 3 given that treatment 1 has gone forward at the second
stage when only the data post the change in control is used.

Conditional power for treatment 3 against treatment 1 after the second stage

The results of using different values of µ2 − µ0 are studied. The values studied are

µ2 − µ0 = −θ0, µ2 − µ0 = 0 and µ2 − µ0 = θ0. The conditional power for treatment 3

given treatment 1 has become the new control at stage 2 when using all the data is given

in Figure C.10.5. The conditional power for treatment 3 given treatment 1 has become

the new control at stage 1 when using only the new data is given in Figure C.10.6. The

difference in conditional power for treatment 3 given treatment 1 has become the new

control at stage 1 is given in Figure C.10.7.
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Figure C.10.7: For multiple values of µ2−µ0 with treatment 3 added later: the difference
in conditional power between keeping the data pre change and not.
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Figure C.10.8: For multiple values of µ3− µ0 with treatment 3 added later: the overall
power when all the data is retained.

Overall power for treatment 2 against treatment 1

The results of using different values of µ3 − µ0 are studied. The values studied are

µ3−µ0 = −θ0, µ3−µ0 = 0 and µ3−µ0 = θ0. The overall power when using all the data

is given in Figure C.10.8. The overall power when using only the new data is given in

Figure C.10.9. The difference in overall power is given in Figure C.10.10.
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Figure C.10.9: For multiple values of µ3− µ0 with treatment 3 added later: the overall
power when only the data post the change in control is used.
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Figure C.10.10: For multiple values of µ3 − µ0 with treatment 3 added later: the
difference in overall power between keeping the data pre change and not.
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Figure C.10.11: For multiple values of µ2−µ0 with treatment 3 added later: the overall
power when all the data is retained.

Overall power for treatment 3 against treatment 1

The results of using different values of µ2 − µ0 are studied. The values studied are

µ2 − µ0 = −θ0, µ2 − µ0 = 0 and µ2 − µ0 = θ0. The overall power when using all the

data is given in Figure C.10.11. The overall power when using only the new data is

given in Figure C.10.12. The difference in overall power is given in Figure C.10.13.
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Figure C.10.12: For multiple values of µ2−µ0 with treatment 3 added later: the overall
power when only the data post the change in control is used.
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Figure C.10.13: For multiple values of µ2 − µ0 with treatment 3 added later: the
difference in overall power between keeping the data pre change and not.

Analysis 1 Analysis 2

Control

Treatment 1

Treatment 2

Treatment 3

Figure C.11.1: Illustration of the motivating trial when one treatment starts after the
first stage and all the treatments only have one analysis.

C.11 Added later with no interim analyses

In this example each treatment only has one analysis as is illustrated in Figure C.11.1.

Therefore when treatment 1 and 2 have their analysis treatment 3 is halfway through

recruitment and is not studied at this point. The upper and lower boundaries are

found using the method in Chapter 2 to once again control the FWER at 5%. They are

u1 = l1 = 2.089. In addition each active treatment gets 78 patients so the maximum

sample size is 351 in order to control the pairwise power at 90% (Chapter 3).

For the conditional power there is only one point where this is non-zero and this is

if either treatment 1 or 2 go forward at there final analysis with treatment 3 being the

one of interest. If one assumes it was treatment 1 that goes forward the conditional
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Figure C.11.2: For multiple values of µ2 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the conditional power for treatment 3 given that treat-
ment 1 has gone forward when all the data is retained.

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 3
−

µ 0

0.00

0.25

0.50

0.75

Conditional power only using new data: (µ2 − µ0 = − 0.178)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 3
−

µ 0

0.00

0.25

0.50

0.75

Conditional power only using new data: (µ2 − µ0 = 0)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
µ1 − µ0

µ 3
−

µ 0

0.00

0.25

0.50

0.75

Conditional power only using new data: (µ2 − µ0 = 0.178)

Figure C.11.3: For multiple values of µ2 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the conditional power for treatment 3 given that treat-
ment 1 has gone forward when only the data post the change in control is used.

power for treatment 3 if all the data is used, for multiple values of µ2−µ0, can be seen

in Figure C.11.2. Similarly in Figure C.11.3 the conditional power if only the data post

change is used. Figure C.11.4 shows the difference in conditional power. As can be

seen in Figure C.11.4 now retaining the information can have a positive effect on the

conditional power of the trial.

In Figure C.11.5 overall power when comparing treatment 1 and 2 is presented

for multiple values of µ3 − µ0. The only difference between the overall power when

retaining all the data is from treatment 3. Therefore only one set of results when

comparing treatment 1 and 2 are presented. However in Figure C.11.6 and Figure

C.11.7 the overall power when keeping all the data or only keeping the new data are

shown comparing treatment 1 and 3, respectively. In Figure C.11.8 the difference in

overall power is shown. This shows in this example there is almost always advantage
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Figure C.11.4: For multiple values of µ2 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the difference in conditional power between keeping the
data pre change and not.
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Figure C.11.5: For multiple values of µ3 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the overall power when only the data post the change
in control is used.

to keeping the historic data with a power increase of potentially more then 2.5%.
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Figure C.11.6: For multiple values of µ2 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the overall power when all the data is retained.
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Figure C.11.7: For multiple values of µ2 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the overall power when only the data post the change
in control is used.
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Figure C.11.8: For multiple values of µ2 − µ0 with treatment 3 added later and each
treatment only has 1 analysis: the difference in overall power between keeping the data
pre change and not.
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Supporting Information: A

multi-arm multi-stage design for

trials with no control arm and all

pairwise testing

D.1 Calculating FWER under the global null

When calculating P (RG,G) there are, at each stage, only two possibilities that need to

be calculated, either all arms are between −u and u or all are between −u? and u?.

Therefore we define Ūj(·) where Ūj(1) = u?j and Ūj(0) = uj. So

P (RG,G) =
J∑
j=1

∑
qj=1&qi∈{0,1}
i=1,2,...,j

−1(
∑j
i=1(qi)−1)

∫ Ū1(q1)

−Ū1(q1)

. . .

∫ Ū1(q1)

−Ū1(q1)

. . .

∫ Ūj(qj)

−Ūj(qj)
. . .

∫ Ūj(qj)

−Ūj(qj)
φ(z,0,Σ[1:ηj])dz,
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where φ(z,µ,Σ) is the probability density function of a multivariate normal distribution

with mean µ and covariance matrix Σ. The equation for the covariance matrix, Σ, is

defined in the Supporting Information Section D.2 and [·] defines the rows and columns

of the covariance matrix, needed. For non-binding boundaries one can find P (R′G) as

∫ u1

−u1
. . .

∫ u1

−u1
. . .

∫ uJ

−uJ
. . .

∫ uJ

−uJ
φ(z,0,Σ)dz. (D.1.1)

To calculate in P (R′T?β) one can use Equation (D.1.1), however, now simply excluding

any test statistics which are related to treatments which don’t have equal treatment

effect.
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D.2 The correlation matrix equation

The correlation matrix, Σ, structure is

Σ =



ρ((1,2),1),((1,2),1) ρ((1,2),1),((1,3),1) . . .

ρ((1,3),1),((1,2),1) ρ((1,3),1),((1,3),1) . . .

...
...

. . .

ρ((K−1,K),1),((1,2),1) ρ((1,K),1),((1,3),1) . . .

ρ((1,2),2),((1,2),1) ρ((1,2),2),((1,3),1) . . .

...
...

. . .

ρ((K−1,K),J),((1,2),1) ρ((K−1,K),J),((1,3),1) . . .

ρ((1,2),1),((K−1,K),1) ρ((1,2),1),((1,2),2) . . . ρ((1,2),1),((K−1,K),J)

ρ((1,3),1),((K−1,K),1) ρ((1,3),1),((1,2),2) . . . ρ((1,3),1),((K−1,K),J)

...
...

. . .
...

ρ((1,K),1),((K−1,K),1) ρ((1,K),1),((1,2),2) . . . ρ((1,K),1),((K−1,K),J)

ρ((1,2),2),((K−1,K),1) ρ((1,2),2),((1,2),2) . . . ρ((1,2),2),((K−1,K),J)

...
...

. . .
...

ρ((K−1,K),J),((K−1,K),1) ρ((K−1,K),J),((1,2),2) . . . ρ((K−1,K),J),((K−1,K),J)



,

where

ρ((k1,k?1),j),((k2,k?2),j?) = corr(Z(k1,k?1),j, Z(k2,k?2),j?).

D.3 Double triangular boundaries

In Figure D.3.1 the double triangular stopping boundaries are found to control the

FWER under the global null for binding boundaries. Here we consider an equal number

of patients per stage per arm and the FWER control target, α is 2.5%, 5% and 10%.
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Figure D.3.1: Comparison of the max(1 − P

(⋂J
j=1BS′

i′ ,j

)
) for all S ′i′ ∈ S′ with the

desired FWER level of control, when using the binding double triangular stopping
boundaries found under the global null.

Figure 2 shows max

(
1− P

(⋂J
j=1BS′

i′ ,j

))
for all S ′i′ ∈ S′ for each α level when using

the boundaries found to control the FWER under the global null. It can be seen that,

at all points in Figure D.3.1, the probability of max

(
1 − P

(⋂J
j=1 BS′

i′ ,j

))
is below

that of the FWER of focus. Therefore by Theorem 5.3.2 this shows that for the double

triangular stopping boundaries, with equal sample size per stage per arm, the FWER

is controlled in the strong sense when using boundaries found under the global null

hypothesis for up to 8 arms and 15 stages.

D.4 Generalised version of Algorithm 1

Let k′ = {k′1, . . . , k′K′} define the set of treatments with a clinically relevant effect. Let

Ωp,K′ be the set of possible outcomes for power given that there are K ′ clinically relevant

treatments. Using Algorithm 7 the power for given k′ can be found using Ωp,K′ with

Equation 5.3.4 with ψ1 = ψ2 = ψk′1−1 = ψk′1 − θ
′ = ψk′1+1 = . . . = ψk′

K′−1 = ψk′
K′
− θ′ =
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ψk′
K′+1 = . . . = ψK . For Algorithm 7 the final 3 reductions need to be edited and 1

additional one added compared to Algorithm 5.

Reduction 6?: Treatments k′1, . . . k
′
K′ can never be dropped from the trial therefore

−∞ < Zk′i,k?,j < −uj and uj < Zk,k′i,j < ∞ for all k′i = k′1, . . . k
′
K′ are not possible for

test statistics still being tested at stage j.

Reduction 7?: At the final stage any remaining treatments not in the set k′ must be

found inferior to treatments in k′ therefore uJ < Zk′i,k?,J <∞ and −∞ < Zk,k′i,J < −uJ

for k′i ∈ k′ and k, k? /∈ k′ for any treatments still being tested.

Reduction 8?: The trial can not stop early for futility if any treatments k /∈ k′ is

still being tested. Therefore one can remove all outcomes which have all remaining test

statistics, at any stage j, falling within −u?j to u?j which includes a treatment k /∈ k′.

Reduction 9?: If the trial stops at stage j all the test statistics testing k′i ∈ k′ against

k′i? ∈ k′ must finish falling within −u?j to u?j .

D.5 Non-binding results

Table D.5.1 gives the operating characteristics of the competing approaches for non-

binding stopping boundaries as done for binding stopping boundaries in Table 5.4.1.
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Algorithm 7 To find Ωp,K′

1 Generating every possible combination of a1, . . . , a5 for every t(k,k?),j,y? , where
y? = 1, . . . , Y ? where Y ? = 5ηj . To create a set of all outcomes Ω

2 Use Reduction 1 to remove any impossible sets of Ω.

3 Use Reduction 2 to change for any stage in which u? = 0 to replace the any
t(k,k?),j,y? = a2, a3, a4 with the values t(k,k?),j,y? = a8 then remove any duplicates
sets in Ω.

4 Use Reduction 3 to change for the final stage to remove the any sets in Ω with
the t(k,k?),J,y? = a2, a4.

5 Repeat the following steps for j from 1 : J .

i If j > 1 use Reduction 5 to replace any hypotheses which stopped the stage
before with t(k,k?),j,y? = a6 and remove any duplicates sets in Ω.

ii Use Reduction 4 for stage j to replace any t(k,k?),j,y? = a2, a3, a4, a8 of treat-
ments which stop at stage j and remove any duplicates sets.

6 Use Reduction 6? to remove all sets of Ω in which any t(k′i,k?),j,y? = a1 or t(k,k′i),j,y? =
a5 for hypothesis testing any treatment k′i ∈ k′.

7 Use Reduction 7? to remove all sets of Ω in which any t(k′i,k?),J,y? = a1, a2, a3, a4 and
t(k,k′i),J,y? = a2, a3, a4, a5 for hypothesis testing treatment k′i ∈ k′ and k, k? /∈ k′.

8 Use Reduction 8? to remove all sets of Ω in which for each j all t(k,k?),j,y? =
a1, a3, a5, a6, a7 and at least one of t(k,k?),j,y? = a3 where either k /∈ k′ or k? /∈ k′.

9 Use Reduction 9? to remove all sets of Ω in which for each j all t(k,k?),j,y? =
a1, a3, a5, a6, a7 and at least one of t(k′i,k′i? ),j,y? 6= a3 where k′i, k

′
i? ∈ k′. Now Ωp,K′

equals the reduced Ω.
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Table D.5.1: Operating characteristics of the MAMSAP design and competing ap-
proaches for non-binding stopping boundaries.

Design

u1

u2

u3

 u?1u?2
u?3

 FWER
Power

n1

n2

n3

 max(N)

E(N |Θ0)
E(N |Θ1)
E(N |Θ2)
E(N |Θ3)3.181

2.811
2.755

 0.000
1.687
2.755

 0.048
0.903

 82
164
246

 984

758.0
654.5
636.6
677.2

MAMSAP
design

2.517
2.225
2.180

 0.000
1.335
2.180

 0.201
0.813

 51
102
153

 612

497.8
406.8
402.1
437.1

Whitehead
design

Bonferroni 3.235
2.859
2.801

  0
1.715
2.801

 0.042
0.930

 90
180
270

 1080
832.0

698.2
684.1
734.0

adjusted
Whitehead

design 2.517
2.225
2.180

 0.000
1.335
2.180

 0.248
0.739

 51
102
153

 1836

1308.9
1224.6
1196.5
1224.6

Separate
trials

FWER 3.227
2.852
2.794

  0
1.711
2.794

 0.047
0.901

 89
178
267

 3204

2222.0
2095.7
2053.7
2095.7

controlled
separate

trials
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