

Water Pressure Optimisation for
Leakage Management Using Deep

Reinforcement Learning

By

Ahmed Mohamed Abdelkader Atia Negm

In collaboration with

Designed Network Solutions Ltd.

This thesis is submitted to Lancaster University for the Degree of Doctor of

Philosophy

January 2024

This project was supported by the Centre for Global Eco-Innovation and is
part financed by the European Regional Development Fund.

I

الرحمان الرحيم بسم الله

In the name of God, the Most Gracious, the Most Merciful.

II

Abstract

In this thesis, we introduce a novel approach to pressure management using deep

reinforcement learning (DRL) algorithms. Exploiting DRL algorithms to optimise pressure

management in water distribution networks (WDNs) provides a more computationally efficient

and resilient method to reduce background and burst leakage. Using DRL to manage pressure

has proven as a valuable method to reduce leakage and carbon emissions in two case studies

based on a real and benchmark water network. A cohort of eight DRL algorithms of varying

natures are implemented on a benchmark test network and real network model of varying

sizes to prove their scalability. An investigation on their ability to reduce both background and

burst leakage is conducted to highlight their abilities with regards to different leak sizes.

The application of deep reinforcement learning algorithms to control leakage in WDNs builds

on from two extensive reviews of leakage management and DRL applications in the urban

water systems. Collating this literature pinpoints the novelty in applying deep reinforcement

learning algorithms to control pressure in WDNs and provides context to the thesis. To develop

DRL algorithms fit for WDN operations, a novel python-based environment is created that can

communicate the hydraulic capabilities of EPANET to the DRL agent. This involved multiple

design choices including action space and observation space selection as well as formulating a

reward function suitable for the multiple objectives relating to leakage reduction.

Regarding background leakage, the best performing DRL algorithm resulted in 65.2% reduction

in leakage in the benchmark network. However, the investigation on the real water network

provided by Northumbrian Water Living has proved the strong dependency between valve

locations and pressure management hence resulting in a negligible background leakage

reduction. The ability of the DRL algorithms to deal with uncertainty through randomised burst

nodes was investigated in the second case study. DRL policies demonstrated resilience in

comparison to the standard optimisation algorithms used (differential evolution, particle

swarm optimisation, and nelder mead). The best performing DRL algorithm predicted a 58.46%

leakage reduction and 5650kg of reduced CO2 emissions in the benchmark water network. On

the other hand, the best DRL performance optimised the real water network by reducing the

leakage by 5.79% and carbon emissions by 1999kg of CO2.

Keywords: Leakage, pressure management, deep reinforcement learning, water distribution

III

Novelty and Contributions

The main contribution presented in this thesis is the application of deep reinforcement

learning as a novel method to manage pressure in water distribution networks for the purpose

of leakage control. Deep reinforcement learning is a recent field of research filled with

novelties in every corner. Its application has prevailed in many engineering scenarios.

However, the reach of DRL algorithms has not been realised fully in urban water systems. This

thesis contributes to the wider research community through providing a new method to

manage water distribution networks. It also includes a novel reinforcement learning

environment that communicates between the DRL algorithms and the hydraulic solver. This

environment is able to communicate the water network’s defining properties to different DRL

algorithms. It also facilitates changes dictated by the optimisation algorithms to improve the

state of the WDNs.

Using the environment, we introduce the first known application of eight DRL algorithms to

optimise pressure management for leakage reduction. These algorithms belong to three main

DRL families (hybrid, policy driven and distributional DRL). The hybrid DRL algorithms used are

Advantage Actor Critic (A2C), Deep Deterministic Policy Gradients (DDPG), Soft Actor Critic

(SAC). The policy driven DRL algorithms include Augmented Random Search (ARS), Proximal

Policy Optimisation (PPO), Recurrent Proximal Policy Optimisation (Recurrent PPO) and Trust

Region Policy Optimisation (TRPO). Finally, we also experiment with the use of the

distributional DRL algorithm; Truncated Quantile Critics (TQC). Literature suggests that this is

the first approach to deploying these DRL algorithms to manage pressure in water distribution

networks.

These algorithms are trained in a loop before tested under different conditions and compared

to benchmark optimisation algorithms. Trained DRL algorithms can optimise water networks in

real-time or near real-time depending on the network size which is a major improvement to

the current practice. In addition, the proposed method incurs less data requirements and

lower computational loads than the current practices of optimisation algorithms.

IV

Publications

Journal papers, conference papers, industrial summits, posters, and presentations based on

this thesis can be found below.

Journal Papers

1. Negm, A., Ma, X. and Aggidis, G. (2023a) ‘Review of leakage detection in water distribution

networks’, IOP Conference Series: Earth and Environmental Science, 1136(1), p. 012052.

Doi: 10.1088/1755-1315/1136/1/012052.

2. Negm, A., Ma, X. and Aggidis, G. (2023b) ‘Deep reinforcement learning challenges and

opportunities for water industry applications’, Journal of Water Research. Doi:

10.1016/j.watres.2024.121145

3. Negm, A., Ma, X. and Aggidis, G. (2024) ‘Deep Reinforcement Learning for Advanced

Pressure Management in Water Distribution Networks’, Journal of Hydroinformatics

(submitted)

Conference Papers

1. Negm, A., Ma, X. and Aggidis, G. (2023c) ‘Water Pressure Optimisation for Leakage

Management Using Q Learning’, 2023 IEEE Conference on Artificial Intelligence (CAI), pp.

270–271. Doi: 10.1109/CAI54212.2023.00120.

Industrial Summits

1. Negm, A. (2022a) ‘Deep reinforcement learning for network pressure management’,

Global Leakage Summit Conference Presentation. Doi: 10.13140/RG.2.2.13936.12803/1

2. Negm, A. (2023d) ‘Deep reinforcement learning for network pressure management’,

Global Leakage Summit Conference Presentation. Doi: 10.13140/RG.2.2.15433.72803

Presentations

1. Negm, A. (2021a) ‘Future Water Networks’, COP26 Event Lancaster University. Doi:

10.13140/RG.2.2.12448.35847

2. Negm, A. (2021b) ‘Development and design of future water networks to help protect the

world’s most important natural resource’, Lancaster University School of Engineering PGR

Conference 2021. Doi: 10.13140/RG.2.2.19159.24483

3. Negm, A. (2022b) ‘Deep Reinforcement Learning for Network Pressure Management’,

Lancaster University School of Engineering PGR Conference 2022. Doi:

10.13140/RG.2.2.16922.82880

https://doi.org/10.1016/j.watres.2024.121145

V

4. Negm, A., Ma, X. and Aggidis, G. (2022c) ‘Review of leakage detection in water distribution

networks’, IWA Hydroinformatics Conference 2023. Doi: 10.13140/RG.2.2.35746.50880

5. Negm, A. (2023e) ‘Deep Reinforcement Learning for Network Pressure Management’,

Lancaster University School of Engineering PGR Conference 2023. Doi:

10.13140/RG.2.2.35566.38721

6. IMechE Webinar (31/01/2024): ‘Application of AI in leakage management in water

distribution networks’

Posters

1. Negm, A. (2021b) ‘Development and Design of Future Water Networks’, Lancaster

University FST Week Poster Competition 2021. Doi: 10.13140/RG.2.2.13936.12803/1

2. Negm, A. (2022d) ‘Water Pressure Optimisation for Leakage Management Using Deep

Reinforcement Learning’, Lancaster University FST Week Poster Competition 2022. Doi:

10.13140/RG.2.2.13936.12803/1

3. Negm, A. (2023f) ‘Can Deep RL Save Our Water and Climate?’, Lancaster University FST

Week Poster Competition 2023. Doi: 10.13140/RG.2.2.13936.12803/1

VI

Acknowledgements

I would like to thank everyone that contributed to this thesis.

To my industrial supervisor, Craig Stanners, for motivating my interest in this field and guiding

me throughout the course of the PhD. Navigating the water industry with your expertise has

helped me grow far beyond the scope of the research. To my academic supervisors, Professor

George Aggidis and Dr Xiandong Ma, thank you for giving me the opportunity to grow as a

researcher and engineer under your insightful guidance. Working with you has made, an

otherwise challenging degree, smooth and enjoyable. I am forever grateful for your cheerful

attitudes.

To the network analysts from Northumbrian Water Living, especially Brian Plemper, thank you

for your invaluable aid obtaining WDN hydraulic files and cost-savings reports. Brian, your help

explaining the networks and our discussions regarding pressure management has helped me

tackle earlier dilemmas in the research.

My very dear brothers, Mo’men Negm and Saif Negm, your vibrant personalities inspire the

best parts of me. Mo’men, thank you for being my backbone and my piece of home away from

home and Saif, I am eager to watch and learn from you as you grow to be the capable man

that we all know you for. May Allah (s.w.t) guide us to unified paths that please him and our

parents.

To my lovely wife, Aisha Yusuf, thank you for being my best friend and confidant before joining

me as my other half. No prayer could have prepared me for the blessing that is you. I thank

Allah (s.w.t) every day and night for bringing us together in such perfect timing. Life has been

magical ever since and I look forward to seeing what life has in store for us. Also, I want to

thank you for introducing me to my second family, Professor Hakeem Yusuf and the incredible

Mrs Karimat Yusuf. I have never felt more at home in the UK than when we visit your parents.

May Allah cultivate the love and trust that we share.

My lovely parents, words fail to describe how thankful I am that I have been blessed with the

two most supportive people on the planet. I have never taken one step in life that could not be

attributed to your upbringing and Allah’s mercy. My dear father, Mohamed Abdel Kader Negm,

the pillar that supported me in every way possible. I am pleased to have a father that I can

genuinely call my friend. Your guidance and advice moulded me into the man that I am today.

The most beautiful gift life has to offer is my lovely mother, Lamiyaa El Kady. Thank you, mom,

again and again for being an angel among us. Heaven is what I feel being around you as it lies

VII

beneath your feet. You have been my hero and inspiration every step of the way, so I dedicate

this achievement to you.

VIII

Declaration

I hereby declare that all work presented in this thesis is my own, unless otherwise cited.

IX

Table of Contents

Abstract .. II

Novelty and Contributions .. III

Publications ... IV

Journal Papers ... IV

Conference Papers .. IV

Industrial Summits .. IV

Presentations .. IV

Posters ... V

Acknowledgements .. VI

Declaration .. VIII

Table of Contents .. IX

List of Figures .. XIV

List of Tables ... XVI

1. Introduction ... 1

1.1. Background .. 1

1.2. Deep Reinforcement Learning for Leakage Management .. 3

1.3. Aims and Objectives... 5

1.4. Methodology and Thesis Outline ... 5

2. Leakage Management Literature Review .. 8

2.1. Leakage Assessment .. 8

2.1.1. Top-Down Water Balance .. 12

2.1.2. Bottom-Up Water Balance... 13

2.1.3. Infrastructure Leakage Index (ILI) .. 19

2.2. Leakage Detection ... 21

2.2.1. Overview .. 21

2.2.2. Characteristics and Hydraulic Properties of Leakage .. 22

2.2.3. Classification .. 22

2.2.4. Hardware Detection Methods ... 23

2.2.5. Non-Intrusive Methods .. 26

2.2.6. Software Detection Methods .. 30

2.3. Leakage Prevention.. 37

2.3.1. Pressure Management ... 37

2.4. Summary .. 43

3. Deep Reinforcement Learning Literature Review ... 46

X

3.1. Reinforcement Learning Background .. 46

3.1.1. Components of RL .. 51

3.1.2. Challenges .. 56

3.2. Deep Reinforcement Learning ... 57

3.2.1. Notable Deep RL Algorithms .. 57

3.2.2. Current Trends ... 58

3.3. Urban Water Systems .. 61

3.3.1. Challenges and Opportunities in Urban Water Systems 62

3.3.2. Challenges of DRL in UWS .. 64

3.4. DRL Research in Urban Water Systems ... 65

3.4.1. DRL in Water Distribution .. 66

3.4.2. DRL in Stormwater Systems ... 68

3.4.3. DRL in Wastewater Treatment .. 70

3.4.4. DRL in Raw Water Treatment .. 72

3.5. Future Work and Novelties .. 76

3.6. Concluding Remarks .. 77

4. Water Network – Deep Reinforcement Learning Ecosystem .. 79

4.1. The Leakage Problem ... 79

4.1.1. The Hydraulic Model .. 80

4.1.2. Markov Decision Process and RL Context .. 83

4.2. The Environment ... 86

4.2.1. Wrapping and Communicating with Epanet.. 88

4.2.2. Environment Spaces .. 90

4.2.3. Step Function ... 91

4.2.4. Reward Control .. 93

4.2.5. Render Function ... 98

4.3. The Agents ... 102

4.3.1. Hybrid DRL Agents ... 103

4.3.2. Policy Driven DRL Agents ... 109

4.3.3. Distributional DRL Agent .. 114

4.4. Concluding Remarks .. 115

5. Background Leakage Case Study ... 118

5.1. Methodology.. 118

5.1.1. Optimisation algorithms .. 118

5.1.2. Problem setup .. 119

5.1.3. Testing .. 121

XI

5.2. Jowitt & Xu Network .. 122

5.2.1. Results .. 125

5.2.2. Discussions ... 131

5.3. Northumbrian Water Network .. 134

5.3.1. Results .. 138

5.3.2. Discussions ... 142

5.4. Concluding Remarks .. 144

6. Burst Leakage Case Study .. 147

6.1. Methodology.. 147

6.1.1. Problem Setup ... 147

6.1.2. Testing .. 149

6.2. Jowitt & Xu Network .. 150

6.2.1. Results .. 153

6.2.2. Discussions ... 156

6.3. Northumbrian Water Network .. 159

6.3.1. Results .. 162

6.3.2. Discussions ... 167

6.4. Concluding Remarks .. 171

7. Conclusions .. 173

7.1. Limitations ... 176

7.2. Assumptions... 178

7.3. Recommendations for Future work... 179

References ... 182

Appendices... 216

Appendix A: WDN-DRL Environment Code .. 216

Appendix B: Optimisation Algorithms Code .. 232

Appendix C: DRL Algorithm Training Scripts .. 240

TRPO ... 242

PPO ... 244

Recurrent PPO .. 247

A2C ... 248

DDPG .. 250

SAC ... 252

ARS ... 254

TQC ... 255

Appendix D: Testing Blocks (DRL and non-DRL) .. 259

XII

Non-DRL algorithms ... 259

DRL Algorithms .. 260

Appendix E: Reward Scales Sweep .. 261

Appendix F: Background Leakage – Jowitt & Xu Results ... 265

NM ... 266

PSO ... 268

DE ... 269

TRPO ... 270

PPO ... 271

Recurrent PPO .. 272

A2C ... 273

DDPG .. 274

SAC ... 276

SAC Tuned .. 277

TQC ... 278

TQC Tuned.. 279

ARS ... 280

ARS Tuned .. 281

Appendix G: Background Leakage – SZ08 Results ... 283

NM ... 284

PSO ... 285

DE ... 286

TRPO ... 287

PPO ... 288

Recurrent PPO .. 289

A2C ... 290

DDPG .. 292

SAC ... 293

TQC ... 294

ARS ... 295

Appendix H: Burst Leakage – Jowitt & Xu Results ... 296

NM ... 297

PSO ... 299

DE ... 301

TRPO ... 302

PPO ... 304

XIII

Recurrent PPO .. 305

A2C ... 307

DDPG .. 309

SAC ... 311

TQC ... 312

ARS ... 314

Appendix I: Burst Leakage – SZ08 Results ... 316

NM ... 317

PSO ... 319

DE ... 321

TRPO ... 322

PPO ... 324

Recurrent PPO .. 325

A2C ... 327

DDPG .. 328

SAC ... 330

TQC ... 332

ARS ... 334

Appendix J: Proof of Publications .. 337

Journal Papers .. 337

Conference Papers ... 338

Industrial Summits ... 339

Presentations ... 341

XIV

List of Figures

Figure 2-1 Standard water balance sheet by IWA (Lambert et al., 2004) 9
Figure 2-2 Modified 24-hr leakage model based on MNF ... 14
Figure 2-3 Water-wastewater balance (Al-Washali et al., 2020) .. 17
Figure 2-4 The four components of leakage management policy (Liemberger and Farley, 2005)

 ... 20
Figure 2-5 Leakage detection classification ... 23
Figure 3-1 The subfields of machine learning ... 48
Figure 3-2 Taxonomy of reinforcement learning algorithms. ... 50
Figure 3-3 Standard Deep Reinforcement Learning Schematic .. 51
Figure 3-4 Urban Water Systems ... 61
Figure 4-1 Modifying emitter coefficient and leakage exponent in EPANET. 82
Figure 4-2 Fundamental MDP model .. 83
Figure 4-3 WDN-DRL ecosystem schematic .. 86
Figure 4-4 EPYNET wrapper communication schematic ... 88
Figure 4-5 Introducing leakage and action using EPYNET. .. 89
Figure 4-6 Step function flowchart .. 92
Figure 4-7 Episodic leakage rate vs reward scales .. 95
Figure 4-8 Episodic violations vs reward ratios ... 95
Figure 4-9 Episodic penalty vs reward scales .. 96
Figure 4-10 Leakage rate - reward scales 3D plot ... 96
Figure 4-11 Violations - reward scales 3D plot .. 97
Figure 4-12 Penalty - reward scales 3D plot .. 97
Figure 4-13 Example of the interactive map render. .. 98
Figure 4-14 Example of reward spread across junctions render. .. 99
Figure 4-15 Example of settings render... 100
Figure 4-16 Example of Water Loss render. .. 100
Figure 4-17 Example of the states render. .. 101
Figure 4-18 Advantage Actor Critic model schematic ... 104
Figure 4-19 A2C Policy Network Diagram.. 105
Figure 4-20 DDPG policy network architecture ... 107
Figure 4-21 SAC policy network diagram... 109
Figure 4-22 TRPO policy network architecture ... 110
Figure 4-23 Recurrent PPO policy network architecture .. 113
Figure 4-24 TQC Policy Network .. 115
Figure 5-1 Background leakage scenario flow ... 121
Figure 5-2 Hyperparameter Sweep ... 122
Figure 5-3 Labelled Jowitt & Xu network including tanks, PRVs, nodes, and pipes. 123
Figure 5-4 Initial algorithm performance - Jowitt & Xu network .. 126
Figure 5-5 Initial algorithm speed - Jowitt & Xu network.. 127
Figure 5-6 Tuned algorithm performance - Jowitt & Xu network. .. 129
Figure 5-7 Tuned algorithm speed - Jowitt & Xu network. ... 130
Figure 5-8 SZ08 network architecture ... 135
Figure 5-9 SZ08 key visualisation of high pipe flows and nodal pressures. 135
Figure 5-10 Episodic penalty plots for different reward scales - SZ08 137
Figure 5-11 Reward spread across junctions. .. 138
Figure 5-12 Algorithm performance - SZ08 ... 139

file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248075
file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248076
file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248077
file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248078
file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248078
file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248079
file://///Users/aishayusuf/Downloads/Negm%20Ahmed%20PhD%20Thesis.docx%23_Toc163248084

XV

Figure 5-13 Algorithm speed - SZ08 .. 140
Figure 6-1 Labelled Jowitt & Xu network including bursts (red) tanks, PRVs, nodes, and pipes.

 ... 150
Figure 6-2 Episodic penalty for reward ratios ... 153
Figure 6-3 Algorithm performance - Jowitt & Xu .. 154
Figure 6-4 Algorithm speed - Jowitt & Xu network ... 155
Figure 6-5 SZ08 network architecture with bursts .. 161
Figure 6-6 Episodic penalty for different reward scales. ... 161
Figure 6-7a) SZ08 nodes with pressures lower than 1m. b) Old function (blue); new tanh()

function (green). .. 162
Figure 6-8 Algorithm performance - SZ08 ... 164
Figure 6-9 Reward time comparison – SZ08 .. 164
Figure 6-10 Algorithm speed - SZ08 .. 166

XVI

List of Tables

Table 2-1 Summary of leakage assessment methodologies ... 10
Table 2-2 Pressure control actuators and uses from (Mosetlhe et al., 2020) 39
Table 2-3 Comparison of pressure control techniques (Adedeji et al., 2018) 41
Table 3-1 Summary of reviewed articles ... 74
Table 4-1 Hydraulic Solvers ... 81
Table 4-2 Available DRL agents.. 102
Table 5-1 Benchmark pipe and node data .. 124
Table 5-2 Benchmark consumption factors data and reservoir levels 125
Table 5-3 DRL algorithm training hyperparameters. ... 128
Table 5-4 Key results – Jowitt & Xu ... 131
Table 5-5 Summary of network parameters ... 135
Table 5-6 DRL agent hyperparameters - SZ08 ... 137
Table 5-7 Key results - SZ08 ... 142
Table 6-1 Benchmark pipe and amended node data. ... 152
Table 6-2 Key results - Jowitt & Xu .. 156
Table 6-3 Key results - SZ08 ... 167

1

1. Introduction

Water, earth’s most essential resource, dictates the health of our societies yet failures in water

distribution networks (WDNs) have amounted to 51 litres of leakage per person per day in the

United Kingdom (OFWAT, 2022). This amounts to 23% of all distributed water in 2022 (OFWAT,

2022). This loss of water is reflected in a loss of revenue to water companies sector wide. With

the diverse nature of urban cities, rising customer demand patterns, varying landscape

topologies and seasonal weather trends; managing WDNs has proved a complex task. Hence

why, water companies and utilities constantly explore new avenues to incorporate and test

new methods to better manage their water practices.

In this thesis, we introduce the use of deep reinforcement learning as a technique to manage

pressure. The aim is to minimise the effects of background and burst leakage events without

violating nodal pressure limits. We believe the use of DRL algorithms will reduce the

computational load in comparison to the current standard of numerical and meta-heuristic

optimisation algorithms. This could allow for the real-time control of pressure valves taking

into account the uncertainties in demand patterns and randomness of leakage events.

1.1. Background

The operational management of water distribution networks (WDNs) has been a challenging

task for water utilities globally as they aim to preserve valuable water and energy resources

without affecting the level of customer service. The preservation of water increases in

complexity as we consider the outdated infrastructure forced to keep up with the rising

customer demands. The resulting network expansion often results in a heterogenous system

with aging WDNs being connected to new infrastructure with different materials and age

further complication WDN operations (Zaman et al., 2020). External factors such as overhead

loading through heavier traffic and weather fluctuations enhanced with climate change plague

distribution networks further. In response to the rising challenges of water distribution in the

UK, regulatory bodies such as Ofwat and the Public Accounts committee have been urging

water companies to reimagine the water sector by 2050 (Mace, 2020). Main themes of the

sector-wide strategy include goals to ‘Deliver resilient infrastructure systems’ and ‘achieving

net-zero carbon’ that will rely on developing better water management within water

distribution networks. Consequently, it is essential to improve the sustainability of water

transport which has been compromised with a variety of failure incidents; the most prevalent

of which are leakage and burst events. The adverse effects of leakage are not limited to the

loss of capital but extends to environmental degradation in the form of greenhouse gas (GHG)

2

emissions, technical instability, and degradation of water quality (Al-Washali, Sharma and

Kennedy, 2016).

Minimising leakage can be achieved through two methods: asset management and pressure

management. Whilst asset management focuses on proactively surveying and improving the

network infrastructure; pressure management handles the daily operational aspect of water

distribution. The advantage of controlling water traffic through pressure valves extends

beyond leakage reductions as it minimises the effect of burst events; decreases water and

energy costs; and decreases carbon emissions through lower pumping needs (Rogers, 2014;

Farley and Trow, 2015; Adedeji et al., 2018; Negm, Ma and Aggidis, 2023a). In addition,

regulating pressure fluctuations reduces asset failure rates due to transient surges or cyclic

pressure (Neal Andrew Barton et al., 2019). These transient surges are often consequences of

network operations such as the use of fire hydrants, valve installations, heavy pumping, or

flushing events. Hence, the complexity of pressure management has attracted researchers

globally. There are many ways to classify the control techniques covered by the research

community which are detailed in section 2.3.

The most interesting of the aforementioned techniques are those that fall into the

optimisation approach. This approach employs the use of advanced optimisation algorithms to

satisfy single or multiple objectives set by the user. Optimisation pressure control can be

applied in large scale networks and used during minimum night flow as well as high demand

periods making it an attractive option for water utilities. Likewise, due to the numerous

novelties available in this approach, it has become a beacon for many researchers. However,

optimisation algorithms are often handicapped with their need for data and their ability to

process the input data effectively and efficiently. This flaw is poorly matched with the

complexities of large WDNs which are particularly hard to manage due to numerous

connections, multiple water sources, daily and seasonal variations in demand patterns, and

possible pumping profiles. Tackling such high dimensional scenarios requires more extensive

efforts from both industry and academia to rectify the mishandling of water distribution

networks. DRL is able to minimise the need for data through the function approximation

properties of their deep neural networks. It also improves on the current practices of

optimisation algorithms through its ability to handle numerous variables and uncertainties in

water management.

The emergence of artificial intelligence tools has re-imagined how researchers and

professionals tackle multi-dimensional challenges that riddled traditional computational

3

techniques. The effects were substantial as artificial intelligence led advancements in many

sectors such as health care (Chang, 2019; Nichols, Herbert Chan and Baker, 2019; Bullock et al.,

2020), engineering (Malik et al., 2019), transport (Abduljabbar et al., 2019), smart

manufacturing (C. Li et al., 2023) and many more (Luong et al., 2019; Mosavi et al., 2020;

Zhang, Zhang and Qiu, 2020). Deep reinforcement learning (DRL, Deep RL) is an emerging field

of dynamic computing that has risen through the use of deep neural networks to advance its

predecessor reinforcement learning (Mnih et al., 2015). Its successes rely on its applicability in

real world scenarios that require learning from experience and its failures arise from

challenges in instability and environment definition. The appealing nature of finding low-

dimensional features the accurately represent high-dimensional real-world problems and

experience driven autonomous learning makes DRL a true advancement in AI. As this field

grows, researchers have developed numerous deep reinforcement learning algorithms that

equip computational methods such as bootstrapping, backups, replay memory and function

approximation to overcome any issues that arise and improve results (Li, 2017). In addition to

numerous neural network architectures, deep reinforcement learning has quickly grown to

become an unclassified jungle of artificial intelligence advancements which will be covered in

section 3.1.

1.2. Deep Reinforcement Learning for Leakage Management

The thesis explores the novel deployment of several deep reinforcement learning algorithms

for the operational management of water distribution network to improve the resilience of the

network and leakage control in the form of advance pressure management. DRL provides a

more resilient way to monitor the overarching objectives. This is necessary to model the

heterogenous changing nature of water distribution networks subject to different demand

patterns, weather conditions, failures, and more uncertainties. Extending this technology to

the operational management of water networks is a field of untapped potential with many

avenues to explore. DRL provides a method to continuously alter the model in real-time to

react and adjust to the environment it is placed in. This is facilitated by redefining the pressure

management as an optimisation problem and the water distribution network as a Markov

Decision Process (MDP). Ultimately, this allows the WDN problem to be simplified and

abstracted without losing the main parameters. MDP is based on influencing the probability of

transitions between different states through actions. It is often denoted by the five tuple

(S,A,P,R,γ) that stand for states (S), actions (A), probabilities/dynamics (P), reward (R) and

initial state (γ) (Puterman, 1990; Desharnais et al., 2004). Ultimately, MDP formalism helps

evaluate sequential interaction therefore introducing the hidden time dimension which is

4

often overlooked in machine learning algorithms. The effects of actions in WDNs are spatial

temporal hence why utilising reinforcement learning’s sequential nature provides a good basis

to redefining the pressure management problem. Fully developing this strategy for operational

management would have monumental effects in the water industry such as.

• Minimised leakage through real-time pressure management and full utilisation of

pressure valves across the network. This is achieved through smoother pressure

profiles and a greater focus on pressure management during minimum night flow

(MNF) hours by selecting the most appropriate valve settings for the current state of

the water network.

• Lower energy consumption due to the decreased failure rates. This manifests as

pumps are not required to meet the increased demands of a leaking network.

Additionally, less pumping decreases costs and carbon emissions.

• Longer asset life due to decreased pumping and transient surges. Transient surges are

a leading cause of pipe failures which often stem from excessive pumping.

• An adaptable approach to pressure management. DRL algorithms are highly

customisable to consider new dimensions to the optimisation problem through reward

formulation and hyperparameter tuning. Training loops can vary in frequency to match

daily and seasonal trends hence ensuring that pressure management reflects the

ground truth model accurately.

However, DRL algorithms are not without fault. Like every computational method, there are

limitations and challenges to consider.

DRL algorithms can follow a bad training trajectory based on observations from the water

network environment. An agent (DRL algorithm) that performs bad actions will receive bad

feedback (observations) from the environment that will not help them get closer to the

desired reward. This could place a stubborn agent in a spiral under the impression that there is

no path for positive reward. On the other hand, an agent can exploit an action that gives them

a constant positive reward instead of actively exploring the environment for better route or

vice versa resulting in what is known as the exploration exploitation dilemma. Another

challenge is that consequent reward can be very delayed from actions. It can be often unclear

how one action can have future consequences so understanding and forecasting future value

is essential.

5

More details on reinforcement learning (RL) and its successor DRL methods and algorithms can

be found in the literature set with a particular focus on applications of DRL algorithms in urban

water systems in section 3.

1.3. Aims and Objectives

The research aim is to exploit deep reinforcement learning techniques for the development of

a semi-supervised, self-adaptive, real-time pressure management algorithms. Nevertheless,

achieving this aim requires a set of objectives to guide the realisation of this goal.

• Produce literature sets on leakage management in water distribution networks to

understand current practices.

• Produce literature sets defining the field of DRL and document any intersection

between DRL and urban water systems applications.

• Develop a novel python-based environment to connect optimisation algorithms from

python libraries to a hydraulic modelling software. This environment should accurately

define the pressure management problem and be amenable for DRL use and regular

heuristic and non-heuristic optimisation algorithms.

• Create a novel schematic to harness the power of hydraulic models within the

reinforcement learning environment. This is to provide a realistic probability

distribution for state transitions.

• Devise insightful data visualisation rendering functions to explain algorithms’

performances for comparisons.

• Validate and test different types of deep reinforcement learning algorithms against

benchmarks through model-based case studies of WDNs in their ability to minimise

background leakage.

• Validate and test different types of deep reinforcement learning algorithms against

benchmarks through model-based case studies of WDNs in their ability to minimise

burst leakage.

• Compare the results with insights on leakage water saved and the environmental

impact.

1.4. Methodology and Thesis Outline

Multiple applications of deep reinforcement learning algorithms were investigated in this

thesis to validate its use as a promising alternative to current optimisation approaches for

leakage minimisation through pressure management. In this section we highlight the methods

used to realise the application of DRL algorithms and explain the outline of the thesis.

6

Literature reviews that cover and expand on current leakage management practices through

critical and detailed discussions are presented in chapter two and three. Leakage management

practices were classified into three main branches of leakage assessment, leakage detection

and leakage prevention (or control) as detailed in (Gupta and Kulat, 2018). This is followed by a

comprehensive review of deep reinforcement learning methods and algorithms that includes a

novel classification tree to help navigate the field. This was contextualised by collating

research of DRL deployment for UWS applications hence further highlighting all the gaps in the

field of research. This creates the foundation needed to delve into the research question.

The water distribution network – deep reinforcement learning (WDN-DRL) ecosystem

describes the code required to communicate effectively between the DRL algorithms and

water networks which is explained thoroughly in chapter 3. This is achieved by creating models

of real water networks native to a hydraulic solver software (EPANET) through SCADA, GIS

files, or utility-owned data. These hydraulic models interact with DRL algorithms through a

novel python-based environment and wrapping files. The techniques used to form this data

pipeline include data preprocessing and cleaning, data processing and data visualisation. This

modular ecosystem supports the use of foreign (non-DRL) optimisation algorithms for training

and testing making it the testing ground for all optimisation methods.

Moreover, we explain the two unique case studies used to test the optimisation algorithms on

a benchmarked and a real water network model in chapters 5 and 6. The DRL algorithms are

tested under background leakage conditions that model undetected background leakage rates

in nodes throughout the entire network in chapter 5. This is followed with experimenting

under burst leakage conditions in chapter 6. In this scenario, the optimisation algorithms are

subjected to major burst events with a high leakage coefficient in random nodes within the

network. They are tested on their ability to counteract these events and minimise water flow

through the burst nodes. The experimentation method, hyperparameters and methods used

are detailed in each chapter followed by performance and speed results displayed with

insightful data visualisation figures to highlight the main findings of the experiment. This will

include reward comparisons and leakage comparisons between multiple DRL and non-DRL

optimisation methods. Additionally, metrics eliciting the algorithms’ effects on carbon

emissions will highlight the effects of the pressure management techniques further revealing

any additional trade-offs or relationships to be considered. Furthermore, chapters 5 and 6 will

cover the critical evaluation and discussion of their results. The performance and

computational efficiency of DRL will be assessed followed by contextualising the results to

real-world applications and the larger research question.

7

The research will be concluded in chapter 7 with an overview of DRL applications

demonstrated and their perceived implications in leakage reductions through advanced

pressure management. The limitations associated with DRL control in WDNs are discussed in

this chapter along with assumptions made. Suggestions for future research and improvements

will guide the development of DRL in water distribution networks beyond the scope of this

thesis.

8

2. Leakage Management Literature Review
This chapter details the relevant literature gathered and reviewed throughout the progress of

this PhD. Initially, the research focused on identifying leakage management with the broadest

lens highlighting three main sectors: assessment, detection, and prevention. The main

methodologies and findings are reviewed in each sector.

The preservation of water increases in complexity as we begin to consider the outdated

infrastructure forced to keep up with the rising customer demands. Network expansion often

results in a heterogeneous system with aging WDNs being connected to a new infrastructure

with different materials and age making the leakage problem more complicated (Zaman et al.,

2020). Large WDNs are particularly hard to manage due to numerous connections, multiple

sources, and possible pumping profiles. For this reason, leakage management can be broadly

split into three sections: leakage assessment; leakage detection & localisation; and leakage

prevention (Gupta and Kulat, 2018).

2.1. Leakage Assessment
In the past two decades, leakage assessment has improved greatly by developing a more

thorough understanding and modelling of water loss components. This was initiated by the

stress on UK water companies to satisfy regulatory measures placed to cut leakage

(Liemberger and Farley, 2005). Further advancements were introduced by exploring new

approaches to water loss management (Al-Washali et al., 2020). The International Water

Association (IWA) were the first to develop a standard water balance sheet in 2000

(Liemberger and Farley, 2005). that has since been modified and accepted globally as a

benchmark balance sheet (Figure 2-1) by organisations such as the Environmental Protection

Agency (EPA) and American Water Works Association (AWWA).

The balance sheet highlights the difference between apparent loss (AL) and real loss (RL) that

make up leakage in water networks i.e., Water loss (WL). Whilst RL is concerned with water

lost in the network infrastructure such as pipes, joints, or reservoirs; AL consisted with illegal

consumption and metering errors. Unbilled authorised consumption (UAC) is authorised usage

without revenue which could be added to water losses to calculate the total non-revenue

water (NRW). Modifications to the balance sheet were made to include different aspects to

9

water utilities like accounting for water exported and interpreting NRW in raw water systems,

treated water mains and distribution systems (Lambert et al., 2004). However, the original

water balance suffices for most water companies.

Leakage assessment techniques are concerned with calculating real and apparent losses. These

methods can be split into two branches: Top-Down and Bottom-Up. The Bottom-Up approach

includes different methodologies (minimum night flow, burst and background emissions, water

and wastewater balance, infrastructure leakage index) that is covered on Table 2-1.

Figure 2-1 Standard water balance sheet by IWA (Lambert et al., 2004)

10

Table 2-1 Summary of leakage assessment methodologies

Approach Advantages Disadvantages Requirements Applications References

Top-down water
balance

• Straight forward

• System Wide

• Pressure independent

• Less fieldwork

• Globally recognised.

• Cost effective

• Incomplete

• Different definitions for “input

volume”

• Overestimates RL

• Inaccurate estimation of UC

• Water balance sheet

• Values for SIV, BC and

UAC

• Employed in most water

utilities

• Basic water loss

assessment applications

(Lambert et al., 2004;
Liemberger and Farley, 2005;
Tsitsifli and Kanakoudis, 2010;
Mutikanga, Sharma and
Vairavamoorthy, 2011; Farah
and Shahrour, 2017; Amoatey,
Minke and Steinmetz, 2018;
Bhagat et al., 2019; Al-Washali
et al., 2020; Yu et al., 2021)

MNF Analysis

• Real field measurements

• Assessment and reduction

process

• Better estimate of RL

• Extensive fieldwork

• Pressure dependent

• Less cost effective

• DMA/Sector wide

• Subject to data reliability issues

• Inaccuracies due to annual seasonal

trends

• DMAs or Network zoning

• Data collecting and

logging equipment.

• Employee training

• Pressure measurements

• Used for cases with DMAs

that could be illustrative of

the whole system.

• Water loss assessment

and reduction technique

(Lambert, 2001; Alkasseh et al.,
2013; Farah and Shahrour,
2017; Amoatey, Minke and
Steinmetz, 2018; Gupta and
Kulat, 2018; Al-Washali et al.,
2020; Yu et al., 2021)

Component
Analysis (BABE)

• Straight forward

• Analysis the subcomponents

of RL

• Better understanding of

leakage nature

• Assesses the utilities leakage

response policies.

• Considers network

capabilities

• Pressure dependent

• Requires ALC

• Unreliable

• Underestimates RL

• Broad assumptions require further

calibrations (ICF)

• Uses intensive network data

• Pressure measurements

• Local network data

• Utility leakage response

times

• Length of mains and

number of customer

connections

• Developed networks with

ALC.

• Used as a supplementary

tool to investigate RL

components.

• Better fit for leakage

reduction and

management

(Lambert, 1994; Al-Washali,
Sharma and Kennedy, 2016;
Amoatey, Minke and Steinmetz,
2018; Bhagat et al., 2019)

Water and
wastewater
balance

• Pressure independent

• Less fieldwork

• Cost effective.

• Focuses on RL

• Needs a system with a wastewater

service.

• Accurate wastewater

treatment plant inflows

• Utilities with both water

and wastewater services

(Al-Washali, Sharma and
Kennedy, 2016, 2018; Al-
Washali et al., 2020)

11

• Clear assumptions

• Objective UAC assumption

without calculating RL

• Sensitive to WWTP inflow errors.

• Needs further testing.

• Uncertainties from exfiltration,

infiltration, and outdoor water use

assumptions.

• AL assumptions are unfit for

developing countries.

• No methodology for UAC

• Estimation of UC and

meter inaccuracies

• Billed consumption

flows.

• Infiltration-exfiltration

factor

• Water utility data

• More suitable for

developed countries.

• Developing countries need

more accurate

assumptions

12

2.1.1. Top-Down Water Balance
A Top-Down approach is arguable the most straight forward technique to leakage assessment

and is employed by most water companies and authorities. Using the IWA balance sheet

(Figure 2-1), water utilities perform audits using collected data or informed assumptions.

Ideally, the system input volume (SIV) can be found from the entire system input meter which

should be checked for discrepancies. Subtracting billed authorised consumption (BC) from the

input volume should yield the total non-revenue water (NRW). Iteratively, the water loss (WL)

can be calculated by deducting the unbilled authorised consumption (UAC) from NRW. Meter

inaccuracies should be investigated using portable flow measuring devices and accounted for

in the UAC and unauthorised consumption (UC) values (Arregui, Cabrera Jr. and Cobacho,

2007; Mutikanga, Sharma and Vairavamoorthy, 2011). Unmetered UAC usually entails utility

water use and firefighting. Often, companies highly overestimate their consumption to skew

their audits and reduce the calculated water loss (Liemberger and Farley, 2005).

Following that, the water loss can be split into apparent losses (data handing errors and

unauthorised consumptions) and real losses. In developing countries, data handling and billing

errors must be accounted for and in that case historical consumption trends are extrapolated

to estimate customer water use (Mutikanga, Sharma and Vairavamoorthy, 2011).

Unauthorised consumption (UC) is usually case-specific and requires transparency from the

water company. Mutikanga et al. took a proactive approach by investigating billing trends and

employing illegal use informers (Mutikanga, Sharma and Vairavamoorthy, 2011). Assuming the

UC introduces uncertainty to the top-down approach, but it is estimated to be 0.1% or 0.25%

of supplied water (SIV)(Al-Washali et al., 2020). A higher value of 10% of NRW was

recommended by study (Mutikanga, Sharma and Vairavamoorthy, 2011) for developing

countries. These generic UC assumptions cause uncertainty and an overestimation of real

losses (Gupta and Kulat, 2018). This is proved through Al-Washali et al. case studies that

compared AL and RL results using different assessment methodologies (Al-Washali et al.,

2020).

The top-down technique is a simple, pressure independent tool that requires minimal field

work making it an attractive choice to utilities globally. However, its limitations make it

incomplete and is often followed with the Bottom-Up approach to better estimate AL. The

development of sensor technology has proven fruitful for leakage assessment in study (Farah

and Shahrour, 2017). Farah and Sahrour used a smart water system to process real-time data

then deployed the water balance table and automated minimum night flow (AMNF)

13

measurements to accurately assess leakage. This methodology showed great promise to

detect leakage events promptly and decreased NRW losses from 43% to 7% (Farah and

Shahrour, 2017).

2.1.2. Bottom-Up Water Balance
The Top-Down approach is incomplete on its own, so it is commonly followed by one or more

‘Bottom-up’ methods. These practices are concerned with the final step of the balance sheet

(hence the name) which is separating real and apparent losses. In some papers, the bottom-up

approach has been synonymous to minimum night flow (MNF), but other notable methods can

be used to assess the subsets of water loss.

Minimum Night Flow (MNF)

Minimum night flow analysis is currently the most popular tool in leakage assessment. The

methodology is founded on the assumption that when consumption is lowest between 2:00am

and 4:00am (Figure 2-2) (Liemberger and Farley, 2005), leakage (real loss) is at its highest.

District Metred Areas (DMAs) are investigated individually for 24 hours to find the lowest flow

rate i.e., the MNF. DMA is a permanently bounded, hydraulically isolated section of the

network. In networks with no established DMAs, suitable areas should be temporarily isolated

and recorded for the assessment across the grid (Liemberger and Farley, 2005). The isolated

section must be supplied by a maximum of two input flows and monitored with 24-hour zone

measurements (HZM) of inflows using portable flow sensors and logged with pressure

measurements (Puust et al., 2010). For intermittent supply networks, the MNF is harder to find

as customers must be saturated, and tanks should be filled. Therefore, MNF could happen at

any point of the day but is assumed to be in the early morning (Al-Washali et al., 2020).

14

The next step is to calculate the legitimate night flow (LNF) and subtract it from the MNF to

find the net night flow (NNF) to assess the real leakage during the MNF hour (Eq.2-1). The LNF

is found by assuming that 6% of the population is active (Hamilton and Mckenzie, 2014).

𝑄𝑁𝑁𝐹 = 𝑄𝑀𝑁𝐹 − 𝑄𝐿𝑁𝐹 (2-1)

where QNNF is the net night flow (m3hr-1), QMNF is the minimum night flow (m3hr-1) and the QLNF

is the legitimate night flow (m3hr-1).

The value of leakage calculated for NNF habitually overestimates real loss because it measures

leakage at a time with increased pressure (and therefore leakage rate) as can be seen in Figure

2-2. Thus, a correction factor is introduced to compensate for that difference (Al-Washali et

al., 2020). This is achieved by applying fixed and variable area discharge path (FAVAD)

principles (Lambert, 2001). Lambert dictated the essential difference in leakage rate – system

pressure relationship between fixed and variable area leaks using the leakage exponential, N1

(Lambert, 2001). For fixed area leaks this value is 0.5 and for variable area leaks it is 1.5 but

since networks include a mixture of both discharge paths the exponent lies between the two.

Subsequently, the value of N1 dictates the network leaks’ sensitivity to pressure fluctuations

which can be used for the MNF application to form the night-day factor (NDF). NDF is

essentially the sum of hourly pressures over the minimum pressure to the power of N1.

Accounting for the NDF (Eq. 2-2), a more accurate value for RL flow can be obtained (Eq. 2-3).

Figure 2-2 Modified 24-hr leakage model based on MNF

15

𝑁𝐷𝐹 = ∑ (
𝑃𝑖

𝑃𝑚𝑖𝑛
)

𝑁123
𝑖=0 (2-2)

𝑄𝑅𝐿 = 𝑄𝑁𝑁𝐹 × 𝑁𝐷𝐹 (2-3)

Where NDF is the night-day factor, QRL is the flow of real loss (m3/hr), QNNF is the net night flow

(m3/hr), Pi is the average pressure during day (m), Pmin is average pressure during MNF hour

(m), and N1 is the leakage exponent.

Other than providing a more reliable assessment of RL and AL (Gupta and Kulat, 2018), MNF’s

reliance on actual field measurements makes it eligible as a leakage reduction strategy if

coupled with suitable leakage detection (Al-Washali, Sharma and Kennedy, 2016). Applications

of MNF analysis for leakage reduction can be seen in Farah & Shahrour’s study mentioned

earlier (Farah and Shahrour, 2017) The accuracy of MNF assessment relies on the collected

data and estimation issues (Al-Washali, Sharma and Kennedy, 2016) However, MNF is limited

to a DMA-wide application and cannot be directly applied to the whole network. Unless the

DMA or network section is monitored for the whole year, it is susceptible to inaccuracies due

to consumption trends through the year (Al-Washali et al., 2020). Another drawback of MNF

are the intensive field work and the associated manpower (Gupta and Kulat, 2018). MNF is

pressure dependent and requires a lot of field data making it less cost-effective than its

counterparts (Al-Washali et al., 2020).

Burst and Background Estimate (BABE)

Leakage component analysis, otherwise known as burst and background estimate (BABE), is an

objective model introduced by Lambert (Lambert, 1994). It is based on the concept of multiple

leakage events are the elements to real losses (Al-Washali, Sharma and Kennedy, 2016).

Subsequently, this approach determines real losses and derives the apparent losses from that.

Unsurprisingly, RL subcomponent analysis is the more common application of BABE; rather

than WL component analysis (Al-Washali et al., 2020).

BABE is based on the logic that RL volume can be calculated from the average flow rate and

run time of different individual leaks. We could categorise leakage into flow rate and duration-

based types (Al-Washali, Sharma and Kennedy, 2016). Lambert (Lambert, 1994) clarifies the

vast range of flow rates, which could have a high flow rate (larger than 500Lhr-1) signifying a

burst or low flow rate associated with background leakages (e.g., water loss from hydrants,

valves, dripping taps).

Alternatively, the duration of a leak is reflective of leakage management guidelines of the

respective water company (Al-Washali, Sharma and Kennedy, 2016). Burst leakages are more

16

perceptible therefore can be repaired swiftly whilst background leakage run continuously

undetected by most leakage detection methods. This entails the utilities’ ability to effectively

detect, localise and repair the bursts. Whether the burst was reported or detected through

Active Leakage Control (ALC), the duration can be classified to:

1. Awareness time, concerned with the time it takes the utility to discover a leak.

2. Location time, concerned with the time it takes to correctly positioning the leak area.

3. Repair time, concerned with the time it takes to fix the leak once located (Farley et al.,

2008).

In order to perform the BABE approach data should be sourced from standard parameters,

local network data and utility leakage procedures with respect to their authority on the

duration of bursts (Lambert, 1994). The leakage volume calculation was simplified through

several model assumptions founded on specific case studies (Lambert, 1994) that were

enhanced over the years (Lambert, 2009). Any bursts over 500Lhr-1 were considered isolated

or instantly repaired.

Avoidable and Unavoidable real losses must be estimated to find the RL. The avoidable real

losses can be found by from utility data on reported bursts reported by customers or detected

through ALC (Farley et al., 2008). Avoidable unreported real losses can be estimated using the

typical flow rates represented in table 6.1 of (Farley et al., 2008) at 50 metres pressure or

study (Lambert et al., 1999). Unavoidable RL can be estimated from its components

represented in table 2 of (Lambert, 2009), number of service connections, and length of mains.

The Unavoidable Annual Real Losses can be estimated using the following equation (Eq. 2-4)

(Al-Washali et al., 2020).

𝑈𝐴𝑅𝐿 = (
18𝐿𝑚

𝑁𝑐
+ 0.8 + 0.025𝐿𝑃)𝑃𝑎𝑣𝑔

(2-4)

where UARL is the unavoidable annual real losses (L/service connection/day), Lm is the length

of mains (Lm), Nc is the number of service connections, Lp is the average length of connection

from property line to customer meter (km), and Pavg is the average pressure.

The BABE model exclusively identifies the RL subcomponents which could familiarise the

assessors with the network’s nature and leakage footprint. It also highlights the impact of the

utilities’ leakage policies on RL. However, the limitations to subcomponent analysis makes it

unreliable for water loss assessment. The assumptions that are the foundations of the model

are derived from certain cases often resulting in underestimated RL when applied to

17

international systems especially in developing countries (Gupta and Kulat, 2018). In an attempt

to resolve that, the Infrastructure Condition Factor (ICF) ranging between 1-3 is used to correct

the disparity between the model cases and real case (Al-Washali, Sharma and Kennedy, 2016).

BABE can only be applied to networks that have regular ALC strategies makes it unfit for use

developing countries. More limitations include pressure dependency and the need of intensive

network data (Gupta and Kulat, 2018). As a result, this methodology is recommended as a

supplementary tool for WL assessment but could prove more beneficial in a WL reduction and

management scheme.

Water and Wastewater Balance

Water and Wastewater Balance is a novel water loss assessment method proposed by (Al-

Washali, Sharma and Kennedy, 2018) based on the notion that all AL can be found from

wastewater measurements. The sewer system inflow measurements are unaffected by illegal

consumption or data handling errors hence provides a more accurate representation of actual

water consumptions. Figure 2-3 below illustrates the theoretical water and wastewater mass

balance.

The balance is used to derive an equation 2-5 for Apparent Loss Estimation (ALE) where the AL

volume is calculated as a function of the wastewater treatment plant (WWTP) inflow readings

(Al-Washali et al., 2020). The equation compensates for the effect of outdoor use, unbilled

authorised consumption (UAC) and exfiltration-infiltration using case specific factors (A, B, C).

Figure 2-3 Water-wastewater balance (Al-Washali et al., 2020)

18

𝑄𝐴𝐿 = (𝐴 + 1)𝑄𝑤𝑤 − (𝐵 − 𝐶 + 1)𝑄𝑏𝑤

(2-5)

Where QAL is the flow of apparent losses (m3year-1), QWW is the inflow of wastewater (m3year-

1), Qbw is the flow of billed water (m3year-1), A is the exfiltration-infiltration factor (3-10%), B is

the UAC factor (0.5-1.5%), and C is the outdoor water use factor (4-40%).

Thus, the AL can be calculate using ALE once the factors are estimated/optimised and billed

water and wastewater flows are collected. Study (Al-Washali et al., 2020) uses water

consumption per capita, industrial outflow and WWTP inflow to assume the exfiltration-

infiltration factor, A in equation 2-6.

𝐴 = 𝑄𝑒𝑥 − 𝑄𝑖𝑛𝑓 = 𝑁𝑝 × 𝑞𝑐𝑎𝑝(1 − 𝐶 ÷ 100) + 𝑄𝑖𝑛𝑑 − 𝑄𝑤𝑤

(2-6)

Where Qex is the exfiltration volume (m3), Qinf is the infiltration volume (m3), Np is the

wastewater service population, qcap is the water consumption per capita (m3), C is the outdoor

use factor, Qind is the industrial and commercial wastewater discharge (m3), and Qww inflow of

wastewater (m3).

The unbilled authorised factor is often estimated from water utility data or 0.5% of billed

water(Al-Washali et al., 2020). Meanwhile, the outdoor use factor (B) can be estimated by

successfully capturing the outdoor characteristics such as garden sizes, pool ownership

(Arbues, Garcia-Valinas and Martinez-Espinera, 2003). Alternatively, it can be calculated using

equation 2-7 the monthly billing data (Al-Washali, Sharma and Kennedy, 2018; Al-Washali et

al., 2020).

𝐶 =
𝑄𝑏𝑐−12×𝑞𝑏𝑐.𝑚𝑖𝑛.𝑚𝑜𝑛𝑡ℎ

𝑄𝑏𝑐
× 100

(2-7)

Where Qbc is the volume of annual billed consumption (m3), and Qbc.min.month is the volume of

minimal consumption month (m3).

ALE has two sensitivities that should be studied beforehand. The WWTP inflows should be

measured during dry weathers only as rainy days will cause an overestimation of apparent

losses. On rainy days, the user must discount the measurements of WWTP and replace them

with the average flow of the remaining dry days (Al-Washali, Sharma and Kennedy, 2018).

Secondly, the billed water and WWTP flows should be modified to only include customers with

19

both water and wastewater services. Once the AL have been calculated, the RL can be simply

derived by subtracting the AL from the water losses (WL).

The water and wastewater balance approach introduces the first objective method to estimate

apparent losses. Unlike MNF, this methodology does not require advanced metring

techniques, heavy fieldwork, or even highly trained operators. Water and wastewater balance

is pressure independent making it less susceptible to unreliable average pressures (Al-Washali,

Sharma and Kennedy, 2018). However, the technique is limited to networks with both water

and wastewater services (Al-Washali et al., 2020). Also, the result is sensitive to errors in

WWTP inflow uncertainties but that could be solved by introducing accurate metering

equipment.

2.1.3. Infrastructure Leakage Index (ILI)
ILI’s ability to efficiently capture the utilities management of real loss has made a clear PI

choice for most systems. The outcome ratio is non-dimensional hence allowing direct

comparisons between utilities globally. Unlike other RL performance indicators (per service

connection Op28 or per km Op27), ILI (Equation 2-8) considers the current average pressure,

customer meter location and service connection density providing a fair contrast between

systems with different infrastructure characteristics (Lambert et al., 2004).

𝐼𝐿𝐼 = 𝐶𝐴𝑅𝐿/𝑈𝐴𝑅𝐿

(2-8)

Where CARL is the current annual real losses and UARL is the unavoidable annual real losses

(Eq. 2-8).

The underlying concept of ILI can be visualised clearly through the four components of leakage

management shown (Figure 2-4). The large square represents CARL, and the inner black box is

UARL.

20

The difference in their sizes represents the ILI and is a measure of the infrastructure

management functions being taken (ALC, Pipeline and asset management, infrastructure

repair, pressure management) (Liemberger and Farley, 2005).

Initially, UARL and ILI were developed for the component analysis of networks (BABE) and the

FAVAD concept. Despite its promise and efficiency, ILI does not consider the four dimensions

of sustainability (social, environmental, institutional, economic factors) and should be solely

used as a technical assessor. It is not recommended for small networks with less than 5000

customers or pressure below 35 psi (Gupta and Kulat, 2018).

Figure 2-4 The four components of leakage management policy (Liemberger and Farley, 2005)

21

2.2. Leakage Detection
The search for a robust leakage detection and localisation method has been the interest of the

water industry for the past two decades making it a well-developed research area. This is

mainly due to the economic loss that water utilities incur through leakage and the resulting

non-revenue water. On average, water networks leak 20% to 30% of the water distributed

through them totalling around £7 billion of revenue loss through direct and indirect damage

(El-Zahab and Zayed, 2019). The effect of leakage contributes to environment degradation

through increased greenhouse gas emissions from pumping the water across the network.

Contaminations from leakage often causes the water quality to decrease beyond acceptable

levels thereby risking the health of the public.

Leakage detection in water distribution networks has taken many forms through investigating

varying properties of leakage. Understanding the characteristic leakage types and properties

introduces the different emerging technologies. Even though some methodologies have gained

popularity in the past decade, the need to establish a complete, economical leakage detection

solution that effectively identifies background leakage as well as burst events persists. The

benefits and limitations of the aforementioned technologies has often confused water utilities

on adapting the most suitable method. Therefore, there is an arising need to classify and

benchmark leakage detection practices. This section reviews technology in leakage detection

contrasting hardware & software, intrusive & non-intrusive, steady state & transient, single &

hybrid methods. A particular focus is placed on scoping the projected direction of leakage

detection and localisation. As anticipated, the various techniques refined over the last two

decades introduce different capabilities, conditions, and constraints (Zaman et al., 2020).

Assessing and comparing those methods will provide a deeper understanding of the research

area thus paving the way for novel solutions.

2.2.1. Overview
Unreported leakage can be broadly identified into two types: Burst and Background leakage

(Adedeji, Kazeem B; Hamam, Yskandar; Abe, Bolanle; Abu-Mahfouz, 2017). Burst leakages are

often detected through their clear properties such as acoustic emissions (AE) and significant

pressure reduction (Adedeji et al., 2017),(Chan, Chin and Zhong, 2018). In contrast,

background leaks are often small water loss through fittings, creeping joints or small cracks

which do not have inherent detectable qualities. As a result, background leakage often run for

longer causing adverse losses to the network (Adedeji, Kazeem B; Hamam, Yskandar; Abe,

Bolanle; Abu-Mahfouz, 2017). Across the literature, the terms burst events and burst leakage

are interchangeable whilst background leakage is referred to as leakage (Chan, Chin and

22

Zhong, 2018). The detection of leakage can be summarised to three phases that dictate

important objectives: Identify, Localise and Pinpoint (ILP) (Hamilton, 2009; El-Zahab and Zayed,

2019) . The identification phase is concerned with successfully differentiating leak signals from

other network signals, such as fire hydrants, to determine the presence of a leak in the

network with little or no false alarms (El-Zahab and Zayed, 2019). The second phase of the ILP

approach is the localisation stage. This focuses on finding the general section of the network

such as a DMA (El-Abbasy et al., 2016). Pinpointing attempts to site the exact location of the

leak down to a radius of 20cm. Formerly, the pinpoint phase were two separate phases

(locating and pinpointing, ILLP) where locating signifies estimating the leak location to a 30cm

radius. The 10 cm difference makes merging the two phases logical (El-Zahab and Zayed,

2019).

2.2.2. Characteristics and Hydraulic Properties of Leakage
The detection of leaks requires a meaningful understanding of its hydraulic anatomy and

detectable properties. Habitually, a leak induces a sudden pressure decline at its location that

spreads through the pipes in a set of waves which could be detected through negative

pressure wave (NPW) strategies (Abdulshaheed, Mustapha and Ghavamian, 2017). This

pressure anomaly is difficult to detect for background leakage events and could be an

indication of unaccounted demand (e.g., fire hydrants) nevertheless pressure fluctuations have

been the basis of several leakage detection techniques. The inversely proportional relationship

between pressure and flow rate dictates that this decrease in upstream pressure will trigger a

decrease in downstream flow rates. Pressure and flow changes are the most exploited

characteristics of burst events (Abdulla and Herzallah, 2015). Another measurable leak quality

is the resulting acoustic emissions released by the loss of water. These vibrations display

several wave properties such as reflection, refraction, absorption, and diffraction that can be

exploited to identify and locate burst events (Adnan et al., 2015a). These waves can be

collected through a variety of sensors such as dynamic transducers, accelerometers, or

microphones (Khulief et al., 2012). Temperature anomalies in the vicinity of a leak arise making

it another identifier that could aid in its detection (Chan, Chin and Zhong, 2018).

2.2.3. Classification
Considerable research has been taken to investigate detection strategies in water networks

making it a diverse field. Therefore, it is necessary to divide these approaches into appropriate

categories. A classification tree was formulated to help navigate new readers to the research

area (Figure 2-5). The easiest discrimination of leakage detection methodologies in literature

can be between hardware-based and software-based. Hardware leakage detection highlights

23

the different sensing methods to identify and locate leakage in a network that exploit the

characteristics (acoustic, pressure, flow, temperature). These can be further refined into

intrusive, robotic, in-pipe systems or non-intrusive, out-of-pipe systems. However, software-

based detection is more concerned with the computational and data analysis of network

parameters to extract leakage information. It exceeds hardware methods in its ability to assess

leakage for steady state and transient flows.

2.2.4. Hardware Detection Methods
In this section we uncover the varying hardware technology developed for leakage recognition

and localisation in literature.

In-pipe Inspection Devices

Intrusive devices are an underdeveloped subsection of hardware detection methods that

revolve around inspection devices that enter the pipe networks to explore leaks. Robotic

inspection devices vary greatly depending on their system characteristics which include their

driving method, sensing technology and level of autonomy (Tur and Garthwaite, 2010). In the

following section we will review the current technologies used for each of these system

characteristics including example prototypes and commercially available products. Sensing

technologies will be covered later with the non-intrusive techniques.

Figure 2-5 Leakage detection classification

24

Driving Method

Generally, moving mechanisms can be defined as passive or active where passive approaches

rely on the flow of water to inspect the pipe and active approaches are equipped with their

one or more actuators to achieve the desired motion. Passively propelled inspection robots are

often named PIGs (pipeline inspection gauge) (Guan et al., 2019). PIGs are highly effective, safe

and economical devices due to their simple nature and navigation system (Tur and Garthwaite,

2010; Guan et al., 2019). They have proven useful in clearing deposits gathering on the interior

of the pipes in addition to their main role to assess the pipe status and detect leakages. PIG

inspection systems utilise one or more sensors such as ultrasonic and eddy current sensors

(Bickerstaff et al., 2002). The navigation is usually achieved through odometers, visual sensors

and inertial measurement units (Guan et al., 2019). PIGs’ motion can be problematic at higher

flows where it is hard to halt their motion and when passing through corners in pipe

infrastructure however intelligent PIGs might present better speed control capabilities.

Commercially available PIGs include the ‘smart PIG’ by NORSEN GROUP; ‘Smartball’ by Pure

Technology and ‘Remoted PIG’ by Jiutai Technology (Ismail, I. N.; Anuar, AS.; Sahari, 2012;

Roslin et al., 2012).

Active driving methods are categorised into wheel, track, inchworm, walking and snake

mechanisms. Wheel propulsion is generally coupled with a spring mechanism to press against

the pipe walls to smoothly adapt to the in-pipe topology. It exceeds the other driving

strategies with its high efficiency, simplicity and ability for miniaturisation (Tur and Garthwaite,

2010). Wheel-based prototypes are available in the following literature (Kolesnik, Behavior and

2002, no date; Roh and Choi, 2005). Wheeled robots can also be screw-driven which usually

entails a stationary and rotational section. The spiral motion transforms to linear motion

through the modules (Shao et al., 2015). A prototype of screw-driven wheeled robot can be

found in (Shammas, Wolf and Choset, 2006). For soft or cracked ground motion, wheeled

robots are often outperformed by track-driven systems. However, this drive is rarely used due

to its higher complexity and energy requirements. Roman et al. have proposed a track-driven

inspection robot in their work (Roman, Pellegrino and Sigrist, 1993). Similarly, legged robots

lack the simplicity and efficiency the wheeled robots offer but they perform better overcoming

obstacles like large pipe-wall deposits. An example of legged inspection robots can be found in

Bradbeer et al.’s work (Bradbeer et al., 1997). Worm-like movements are produced by the

cooperation of a clamper and extensor modules to push the robot through the pipe. As the

name suggests, the clamper adheres the robot to its surroundings whilst the extensor moves in

the desired direction leading to a stroke motion in that direction. This motion is often used in

25

foreign environments where caution is a priority. Further work on inchworm movements has

been conducted by (Bertetto and Ruggiu, 2001; Lim et al., 2007), (Choi, Jung and Kim, 2004),

(Menciassi et al., 2002). Like the inchworm, snake robots have proven more adaptable in

abnormal environments. They are comprised of several connected modules capable of planar

movement (Liljebck et al., 2012). The control of snake platforms is often challenging due to the

increasing degrees of freedom with every adjoining module. Reptile movement for inspection

robots is not widely used but an example can be found in Shammas et al.’s work (Shammas,

Wolf and Choset, 2006).

Level of Autonomy

Intrusive hardware inspection techniques belong to one of three classes of autonomy: No

autonomy, semi-autonomous, or fully autonomous. Most robotic inspection devices lie in the

first category of non-autonomous hardware however the introduction of autonomy provides

freedom from user interference (Tur and Garthwaite, 2010; Liu and Kleiner, 2013).

Fully operated robots are usually controlled through a tether cable by trained users or through

a wireless link. The operator examines the inside of the pipe in real time using the incoming

sensor data as the robot moves along the network (Tur and Garthwaite, 2010). The tether

cable is preferred because it enables a smoother recovery as shown in the study (Moraleda,

Ollero and Orte, 1999). Through their research, the authors concluded that there are no cost-

effective solutions that can navigate the varying scenarios inside water networks (Moraleda,

Ollero and Orte, 1999). This led to the popularity of tethered, non-autonomous inspection

robots.

Semi-autonomous inspection is achieved through implementing automatic control modules

that can remove some of the user’s duties such as navigation or pipe condition assessment.

This shifts some of the users’ responsibilities and introduces higher accuracy. Prototypes that

belong in this category include the PIRAT (Kirkham et al., 2016) and Karo (Kuntze and Haffner,

1998) robots.

Fully automated robots are those voids of any user interaction. They are able to navigate,

assess and communicate pipe condition through their sensor payload in real-time without

being lost in the system. The challenges faced by autonomous inspection devices are

numerous but the most prominent is energy and communication in long-time and long-range

applications (Tur and Garthwaite, 2010). Kirchner and Hertzberg developed the Kurt robot that

uses a map of the pipe network to collect video graphic, ultrasound and gradient data through

automatic operation (Kirchner and Hertzberg, 1997). Similarly, the Fraunhofer Institute

26

produced an automated crawling inspection system, the Makro robot, equipped with

additional IR sensors and laser projectors (Kolesnik, Behavior and 2002, no date; Rome et al.,

1999).

Prototype

In this review, we have already specified some smart PIGs and robotic detection prototypes

that highlight the range of in-pipe inspection including Makro (Kolesnik, Behavior and 2002, no

date; Rome et al., 1999), Karo (Kuntze and Haffner, 1998), PIRAT (Kirkham et al., 2016), Kurt

(Kirchner and Hertzberg, 1997) and Smartball. Through the extensive efforts of the research

community to find the optimal smart inspection platform, many prototypes have been created

yet only a few of them have been developed into a product due to infeasibility. Finding a

complete intrusive inspection robot is difficult due to the design challenges they must

overcome including:

• The varying pipe diameter of the networks.

• Junctions and corners manoeuvring requires flexibility.

• Protecting the sensors from the environment.

• Multiple sensors are required to provide a more comprehensive inspection.

• Retrieval issues mean require active self-propelling devices.

• Most inspection gauges require service interruption as they empty the pipes.

• Ensuring the devices don’t affect the water quality and introduce contaminants.

• Communicating a large amount of data to the network operators from a long distance.

Despite that, pipe inspection gauges can be an appealing solution to some network with

successful case studies shown. Therefore, it is crucial to review intrusive robotic devices

regularly to highlight any potential advancements or solutions to our modern-day leakage

dilemma. The prototypes available can be found in a comprehensive summary table in (Tur

and Garthwaite, 2010, p. 503) and table 2 of (Liu and Kleiner, 2013, p. 12)

2.2.5. Non-Intrusive Methods
Leakage detection systems can also be labelled as dynamic or static methods. Whilst intrusive

methods are referred to as dynamic due to their motion throughout the network to investigate

inner pipe conditions, non-intrusive methods depend on mounted sensors that collect data

used to infer leakage making it a static method (El-Zahab and Zayed, 2019). Static methods

carry the advantage of identifying a leak immediately whereas dynamic detection is often

deployed after a leak is expected/identified to pinpoint the leak area (Lee et al., 2005; Cataldo

et al., 2014). The research scene has been marginally focused on the static strategies of

27

leakage detection for the last two decades due to their more tangible benefits and their ability

of real-time management (El-Zahab and Zayed, 2019). The most prominent technologies

exploit acoustic or pressure properties accounting to more than 50% of published research (El-

Zahab and Zayed, 2019)(El-Zahab and Zayed, 2019). Other technologies rely on flow sensors,

ground penetrating radars (GPR), tracer gas detection, infrared thermography which will be

mentioned in this section.

Acoustic Techniques

Acoustic based leakage detection and localisation can be traced back to the early 1990s in

water and oil networks (Gupta and Kulat, 2018). The localisation of leak events through

acoustic methods can be classified into time-of-flight-based or attenuation-based. Attenuation

based relies on the decrease of signal amplitude as the acoustic signals travel across the

pipeline while time based monitors the increase of signal transit time (Lee and Lee, 2000).

Acoustic emissions result from turbulent pressure fluctuations at the leak, vapor bubbles

forming at high velocities and imploding as shock waves on pipe walls. The frequency of those

acoustic emissions (AE) varies depending on the source where turbulent flows produce low

frequency signals and cavitation bursts cause high them in plastic pipes requires a denser

distribution of the sensors (De Silva, Mashford and Burn, 2011). These instruments could be

geophones (electrical or mechanical), hydrophones, listening sticks, accelerometers, or

correlators.

Geophones are easily implemented to detect leak-induced seismic vibrations in buried

pipelines (Iskander, 2018). Their ability to accurately locate leaks is aided by their high

sensitivity but is often dependant on the operator’s experience. Deploying geophones is often

used to localise and pinpoint a pre-identified leak and hindering the area above the suspected

leak unusable (El-Zahab and Zayed, 2019). Tethered and untethered hydrophones have been

used as listening instruments to detect leaks. This widespread sensor is often submersed in the

fluid column though hydrants and valves. Hydrophones are more accurate than geophones

however they are expensive (Epa, 2010) and often lack in sensitivity for acoustic leak signals.

Several studies investigated the combination of hydrophones with signal processing and cross-

correlating techniques to increase sensitivity (Khulief et al., 2012; Gao et al., 2017). Listening

probes/sticks operates as earpieces that rely on the operator’s ability to distinguish the

acoustics of leak. This requires highly skilled operators and low external noise which limits the

effectiveness of this methodology. These devices are suited for small to medium metallic pipes

with diameters between 75mm to 250mm at pressure range of 10m (Hamilton and

Charalambous, 2013). The accuracy of the rods is not affected by the pipe material but is

28

heavily reliant on human senses. Leak noise loggers, often paired with correlators, are often

used to establish a real-time leakage detection system. They are placed for long-term

operations across the network with low maintenance cost but a high initial cost (Datamatic

Ltd., 2008; El-Zahab and Zayed, 2019). Implementing a monitoring system in this manner relies

on a communication and analysis base that can compute the incoming data allowing for faster

detection and response. This aid from software and computational methods can reduce the

false detection rate (Hamilton and Charalambous, 2013; El-Zahab et al., 2017).

Fibre Optics

The use of optical fibres to detect and localise leakage has been adopted in water distribution

system due to several benefits. It introduces a system capable of long-distance sensing with

several measuring points along a single fibre hence providing accurate leak detection and

localisation. These systems measure temperature anomalies inherent in leaks throughout the

pipe. In comparison to oil and gas pipelines, the leak induced temperature change in water

pipelines is smaller and harder to detect (Jacobsz and Jahnke, 2019). Daily and seasonal

temperature fluctuations increase the difficulty of fibre optics leakage detection (Jacobsz and

Jahnke, 2019). Optical fibres could alternatively monitor the strain in the pipe wall due to leaks

(Inaudi and Glisic, 2008; Davila et al., 2016). Developments to increase the use of fibre optics

for pipeline monitoring of leak-induced temperature or strain include the use of Raman

Distributed Temperature Sensor (RDTS), Fibre Bragg Gratting (FBG) (Jacobsz and Jahnke, 2019)

and Brilloun Optical Time Domain Reflectometry (BOTDR) (Adedeji et al., 2017). The use of

fibre optics exceeds other methods in its immunity to electrical noise, corrosion resistance and

stability (Chan, Chin and Zhong, 2018) however their high initial and operating costs make

them less desirable to water utilities. Their inability to monitor non-linear pipelines is another

sign of its infancy as a leakage detection strategy. Distributed fibre optics have proven

beneficial in other application but must be developed further to fit the heterogenous nature of

water distribution networks.

Infrared Thermography

Like fibre optics, infrared thermography exploits the thermal effects of leakage in pipelines to

identify and locate the event. IR cameras have been applied to asses pipe conditions (Gross et

al., 1999; Joung and Kim, 2006) as well as leakage detection in water networks (Khawandi,

Daya and Chauvet, 2010; Hunaidi et al., 2000). Despite it being a scarce research topic,

thermography could provide a cost-effective, efficient, non-destructive way to monitor large

areas of water networks. Capturing the thermal anomalies translated to the surface above the

leakage is affected by several factors (Bach and Kodikara, 2017). IR should be measured during

29

times where the ambient temperatures is closer to equilibrium, hence increasing thermal

visibility. Pre-sunrise and post-sunset hours have been suggested as the most suitable periods

for thermography (Huang et al., 2010; Bach and Kodikara, 2017). Soil moisture tends to hinder

the investigation which can be problematic in rainy countries such as the UK despite the moist

soil’s superior heat transfer ability (Huang et al., 2010). Ground-based thermography have to

consider surface vegetation density and thermal contrasts caused by shading. Study

(Khawandi, Daya and Chauvet, 2010) theorised that a 12m leak-sensor distance would be

optimal for detection. Other factors that affect thermography include weather, wind, and

seasonal variations. Achieving a perfect environment for IR thermography can be challenging

causing varying leak thermal contrasts throughout the year. In a reliability study, Bach and

Kodikra detected a discouraging 59% of the simulated leaks (Wai-Lok Lai, Dérobert and Annan,

2018). More work could be conducted in conceptualising the thermal nature of leakage and

assessing the feasibility of thermography as a detecting strategy. Under the correct conditions,

infrared thermography can be a useful tool for surveying leak areas, but further research and

computational post processing is required for it to become a complete leakage detection

strategy.

Ground Penetrating Radar

Ground penetrating radars have gained some interest in the leakage research community

(Demirci et al., 2012; Wai-Lok Lai, Dérobert and Annan, 2018). Their ability to utilise the

electromagnetic irregularity of water leakage in infrastructure to identify and locate the

failure. This imaging method excels in its applicability to both metal and plastic pipes

regardless of the material and size (El-Zahab and Zayed, 2019). GPRs are easy to use and

transport making it possible to survey large areas with less manpower (Hamilton and

Charalambous, 2013). Despite that, the disadvantages of deploying GPRs outweigh the

possible benefits. Its inability to discriminate between leak-induced irregularities and soil

inhomogeneity increases the false alarm rate (Gupta and Kulat, 2018). This strategy is limited

to pipes buried less than 5m deep and highly influenced by soil types. The complexity of the

output data is difficult to interpret (Demirci et al., 2012). In addition to that, GPR are quite

expensive ranging around £10,000 to £22,000 ($10,000 to $31,000) (Epa, 2010; El-Zahab and

Zayed, 2019).Considering these limitations and the road interruptions needed to survey

pipelines; radars must be developed further. The reliability of this method can be improved

through the aid of decision support systems (Kiss, Konez and Melinte, 2007) and perhaps the

use of evolutionary search algorithms to obtain accurate leakage detection.

30

Tracer Gas

Gas injection utilises inert, non-toxic, insoluble, traceable gases such as halogens, ammonia,

and helium to pinpoint leakage sites. As these gases seep through faulty infrastructure,

operators detect their location by surveying the suspected area (KVS, no date).This requires a

proficient knowledge of the network’s flows to limit the gas flow to the suspected area by

blocking other routes to exit the system. Tracer gas is able to detect both background leakage

and burst events with low false alarm rate (Hunaidi et al., 2000; Chan, Chin and Zhong, 2018).

This method provides a simple way of detecting faulty pipelines between 75mm to 100m in

diameter (El-Zahab and Zayed, 2019) regardless of the material. The fast and accurate

response of this technique is crippled by its expense especially in large, low-pressure networks

that require higher volumes of gas. The implementation cost of in-built sensors for monitoring

and possible filtering stages makes this method unrealistic (Geiger, 2006; Chan, Chin and

Zhong, 2018). The resultant environmental contamination of escaping gas makes this method

more undesirable. Further research can target a conservative, economic way of deploying

tracer gases.

Magnetic Induction

Magnetic induction is an accurate detection technique that establishes a communication link

between two sets of sensors. One of the sets captures the flow, pressure and acoustic

properties of the suspected leak from within the pipe whilst the other assesses the external

factors such as humidity, temperature and soil properties outside the pipeline (Boaz, Kaijage

and Sinde, 2014). Through a current-modulated signal, the coils of the magnetic transmitter

induces the current to the receiver (Sun et al., 2011). This communication link enables real

time control of leakage detection hence increasing the response rate of utilities in harsh

underground conditions. However, this strategy incurs high implementation costs making it

undesirable.

2.2.6. Software Detection Methods
In this section, we explore the literature covered regarding software-based leakage detection.

Background leakage poses a large threat to water networks as they often go undetected by the

conventional hardware methods accumulating more losses over time. Therefore, the

application of software methods is essential to counter this prevailing issue. The long-time

savings that accompany software techniques are usually offset with the initial costs of

installing sensors throughout the network making it a less popular option to utilities (Farley,

Mounce and Boxall, 2010). Regulations placed by governments and bodies such as Ofwat

encourage utilities to adopt better water and leakage management practices through

31

incentives and sanctions making software detection a more requested solution. These

methods can be described as steady state, transient based or a combination of the two.

Water distribution systems often operate their leakage detection techniques under the

premise of steady-state flow (Perez et al., 2014). This method compares the behaviour of the

actual network in comparison to the expected performance to detect anomalies that are often

caused by leakage or blockage. An abundance of real data (historical and live) from the

network suggests a data-driven approach to leakage detection however, in networks where

data is scarce, a model-based approach takes precedence given that the hydraulic model is

available.

Model-Based

As the name suggests, model-based detection relies heavily on the model’s resemblance to the

actual network, the data analysed and the arithmetic techniques employed (Zaman et al.,

2020). Therefore, building a realistic accurate model is crucial to the success of this technique,

often having a separate calibration stage to compare the model and the network. Zaman et al.

(Zaman et al., 2020, fig. 3) display a useful general framework for the model-based leakage

detection method. a used Developing a reliable replica on hydraulic simulation machines (e.g.,

EPANET, LOOP) should include input information of a leak-free system through different

streams of information such as Supervisory Control and Acquisition (SCADA), Geographic

Information Systems (GIS) and more. Some model platforms have an inherent leakage

detection module such as WaterGEMS that exercises a genetic algorithm (GA) to signify

potential leak nodes.

As soon as the model is complete, it is necessary to validify the model through several

techniques to ensure that the model tracks the real-life example. In some cases, model pre-

processing is performed before calibration to decrease the potential candidates (Perez et al.,

2014). The calibration techniques used are steady-state and extended period simulation (EPS)

and contrast them to the field data. The indicator parameters could be the residual nodal

pressures, tank water levels, roughness coefficients and they are usually compared for

different scenarios to investigate any inconsistencies. The discrepancies are minimised

iteratively through modifications to pipe friction factors, consumer demands, flow parameters

and elevations (Sophocleous et al., 2017). Once the model has been calibrated successfully,

several leakage detection strategies can be applied to the model to predict and inform of

possible leak locations and their corresponding sizes.

32

Several detection strategies have been developed for the model-based approached. They

exploit the simulated parameters and field data to locate possible leak areas However, these

leakage detection models often suffer with the unaccounted ageing properties of the pipe

causing the pipe diameters to decrease (Adedeji et al., 2017). A simple method for

investigating leakage is applying the conservation of mass calculation. Balancing the mass in

and out of nodes can uncover unaccounted for loss hinting at a possible leak. Whilst this

approach, works well for steady-state, they are prone to disturbances and pipeline dynamics

resulting in false alarms (Wan et al., 2012). A different method called pressure residual vector

(PRV) exploits the leak-induced pressure changes in the real system and compares it to the

leak-free model from their subsequent locations on the network (Pérez et al., 2011). When the

disparity between the modelled and actual pressure exceeds a pre-determined threshold, set

through uncertainty analysis and statistical considerations, the area is flagged as a potential

leak location and investigated (Ishido and Takahashi, 2014; Sousa et al., 2014).

Indirect methods for model leakage detection can be classified into three types as shown in

figure 2-5. Calibration-based methods rely on optimising the model calibration stage by

infusing it with leakage information. This information is obtained by modelling leakage as a

pressure demand. Genetic algorithms (GA) have proved as a useful evolutionary search

algorithm (EAs) to investigate possible leak location through calibration (Sophocleous et al.,

2017). EA has been widely used in the optimisation of water distribution system design for

both single objective and multi-objective as highlighted by the comprehensive literature

review (Mala-Jetmarova, Sultanova and Savic, 2018). Sensitivity-based analysis is another

method that exploits network models (Pérez et al., 2011; Geng et al., 2018) through

investigating the pressure sensitivity of nodes in the model under leak and non-leak

conditions. Combining the sensitivity matrix with the corresponding pressure residual vector

can more accurately indicate potential leakage. This is represented in the study (Casillas,

Garza-Castanon and Puig, 2013) with the aid of the angle based method. To develop that

further, (Ferrandez-Gamot et al., 2015) introduces a classifier-based method to detect leakage.

Exploiting statistical classifiers, greatly improves fault localisation with comparison to the angle

method demonstrated in (Casillas, Garza-Castanon and Puig, 2013) especially regarding

demand uncertainties. Classifiers are often used as a data-driven approach however, their

used in model-based detection has proved rewarding.

Data-Driven

Using abundant data, leak detection can navigate complex, heterogenous, large water

distribution networks by bypassing the complications of hydraulic modelling. This makes it a

33

more reliable and accurate technique due to its reliance on real data at the cost of increased

sensitivity to faulty sensors. These methods rely on their ability to reveal aberrant

signals/patterns in the monitoring data received that could suggest the existence of a leak.

Data Pre-processing

Data-based detection often engineers one or a combination of flow, pressure, and demand

readings. Consumer demand being the least probable data source can be rationalised by their

uncertainty in the localisation stage (Ferrandez-Gamot et al., 2015) and its relative insensitivity

to smaller leak flow rates (Wu and Liu, 2017). The data used might differ in source, sample

source (1-15 minutes) and length of time series which are crucial aspects to consider (Casillas,

Garza-Castanon and Puig, 2013). These sensor readings are often raw and require considerable

pre-processing before they can be implemented to any leakage detection algorithm. Data pre-

processing often involves sorting, filtering, and transforming the incoming data making it a

tedious task. Other issues such as uncertainty and variability must be considered when

employing real data, yet this could be avoided in the instances data is extracted from models.

Pre-processing is essential to filter erroneous data, filling gaps in the time-series and arranging

the results for assessment making a critical step in data-driven leakage detection (Zaman et al.,

2020).

Detection

In our classification tree (Figure 2-5), data-driven techniques were divided into four types

depending on their technical procedure. A different way to organise these techniques is to

match their data source and data types. The technical procedures highlighted in this review

include statistical, classification, prediction, signal processing. These methods are also used for

transient leakage detection.

Pressure/Flow Monitoring

The simplest data-driven techniques utilise pressure monitoring such as negative pressure

wave (NPW) and pressure point analysis (PPA). The NPW method detects the propagating

pressure fluctuation at both sides of the leak through the use of transducers (Silva et al., 1996).

Localising the leak is established by contrasting the time difference between the reading on

both sensors through cross-correlation. Applying the NPW approach practically is challenging

particularly for long-range pipes (Adedeji et al., 2017). Another limitation of NPW is its high

false alarm rate resulting from its sensitivity to transient flows in networks. In order to increase

the method’s reliability, study (Tian et al., 2012) proposes several improvements regarding

false alarm reduction. NPW hybrid leakage detection techniques are encourage to justify the

alarms such as represented in (Sun et al., 2011). Pairing pressure transducers to compare their

34

leak results is an alternative method to reduce false alarms (Tian et al., 2012). The last

recommendation uses the aid of pattern recognition to distinguish leakage-induced pressure

fluctuations from valve-induced variations (Tian et al., 2012). Other ways to improve NPW,

include implementing an adaptive threshold and improving data quality which could be

achieved through filtering background noise and advanced data processing. Pressure point

analysis (PPA) developed by EFA technologies ltd. is commercially available technique that

statistically analyses the mean pressure measurements along a pipe (Geiger, 2006). Similar to

the other pressure-based leakage detection strategies, PPA issues an alarm when the mean

pressure value drops beyond an established threshold. This method is straightforward and

economic but lack credibility under transient conditions and cannot localise the leaks (Adedeji

et al., 2017).

Statistical Analysis

Statistical analysis techniques for leakage detection are methods that have no classification or

prediction stage and depend completely on statistical theory (Wu and Liu, 2017). Statistical

Process Control (SPC) is a central method in this category often using control charts to monitor

measurement variations. They are also used for data pre-processing (Wu and Liu, 2017). The

differences between univariate and multivariate SPC methods can be found in Jung et al. work

(Jung et al., 2015) The univariate methods elicited are Western Electric Company (WEC) rules,

Cumulative Sum (CUMSUM) and Exponentially Weighted Moving Average (EWMA). WEC rules

can only consider the past eight readings whilst EWMA has largest memory (Jung et al., 2015).

The multivariate methods described where Hotelling T2 control chart with elliptical control and

the multivariate versions of the CUMSUM and EWMA methods. Other statistical strategies

include Principle and Independent Component Analysis (PCA, ICA) that are used to reduce the

state space of the data without decreasing its value. ICA can be considered an extension to

PCA that considers higher order statistics (Westra et al., 2007). Newer methods of statistical

procedures rely on data clustering (Wu et al., 2016), support vector machine (SVM), artificial

neural networks (ANN) (Zhou et al., 2019) and newer versions of the multivariate methods

mentioned earlier.

Classification Based Methods

Classification based strategies build models that can effectively distinguish (classify) normal

and outlier data. The simplest form of a classification technique calculates the absolute mean

difference between expected and recorded hydraulic measurements (Zaman et al., 2020).

More commonly used models are trained using sets of labelled normal and abnormal hydraulic

data to successfully detect bursts. An example of this is the comparative study conducted by

35

Mounce and Machell on burst detection through flow reading analysis using static and time-

delay artificial neural networks (ANN) (Mounce and Machell, 2007). The different architectures

displayed a different relationship with the inputs causing improved detection due to its more

dynamic nature. It is clear that the performance of the classification model relies heavily on

the abundance of normal and outlier real data to train the model and the quality of the inputs

used. Using a leak function and a self-organising map (SOM) ANN, the classification model can

output a value from 0-1 to identify the probability of a leak at a node (Aksela, Aksela and

Vahala, 2009). This method is more adept in distinguishing leak data without supervision or

labelled training data (Aksela, Aksela and Vahala, 2009). The need of adequately labelled and

balanced training data for both normal and outlier conditions is the main disadvantage of this

technique therefore unsupervised learning is a logical step for further research. In addition to

that, poorly trained classification models often lead to high false positive rates (FPR) which is

another concern for classification-based leakage detection.

Prediction-classification

Unlike classification techniques, prediction-based method introduces a preliminary stage of

outlier data prediction hence enabling the classification model to be built effectively with

normal hydraulic data alone. An additional stage of data selection is required to achieve this

which often utilises some of the statistical methods mentioned earlier (Mounce et al., 2003;

Mounce, Boxall and Machell, 2009). A linear Kalman Filter (LKF) could be trained using normal

historical data to provide a statistical description of the current system (Ye and Fenner, 2010).

This is an efficient method that can extract the prediction using live data alone. Expert systems

such as Fuzzy Interference Systems (FIS) and Bayesian Interference Systems (BIS) provide

reliable detection results however they can be developed further by using historical data,

evolutionary algorithm (EA) and expectation maximisation (EM) to optimise their parameters.

Mounce et Al. employs a combination of an artificial neural network called mixed density

network (MDN) in the prediction stage (Mounce et al., 2003) followed by a FIS in the

classification stage to improve burst detection in the form imitate human cognition (Mounce

et al., 2007). Following a prediction stage, support vector regression (SVR) was used to classify

deviations in the input data for leakage detection (Mounce, Mounce and Boxall, 2011).

Changes in historical data used for prediction-classification propagates the data uncertainty

decreases the accuracy of leakage detection and requires a data selection stage.

Signal Processing

Digital signal processing (DSP) is a commonly used technique to improve leak detection and

localisation using pressure or acoustic signals due to sharper transitions than traditional

36

techniques such as NPW. This benefit is often offset by the bandwidth restrictions that these

methods introduce through pipe resonance (Cataldo et al., 2014).

The use of time and frequency response analysis of acoustic emissions for leakage feature

extractions has been fruitful leading researchers to explore hybrids that can exploit their

benefits. This initiated the need for time-frequency analysis to obtain valuable information

from both domains. Several types of Fourier transforms have been used to capture leakage

characteristics, but short-term Fourier transform (STFT) has been the primary interest of

researchers. STFT introduces a time variable to the spectrum by slicing the signal using a time

window function. The short time segments (called frames) are then input to a discrete Fourier

transform (DFT) to produce a time-frequency analysis. This method has been justified in

multiple occasions and compared to fast Fourier transform (FFT) in (Lay-Ekuakille et al., 2009)

where it outperforms FFT in the uncertainty analysis. Li et al.’s proposed methodology of

wavelet denoising and STFT combination has shown higher accuracy than other signal

processing methods such as wavelet decomposition, gaussian mode, recurrence plot, Wigner-

Ville distribution (WVD), Wigner-Hough Transform (WHT), and empirical mode decomposition

(EMD) (Li et al., no date). Fast Fourier transform has also been validated in the study (Kadri,

Yaacoub and Mushtaha, 2014) through a fault detection and isolation (FDI) system of

underground plastic pipes.

The use of STFT and other time-frequency analysis methods has been overshadowed by the

application of wavelet transforms (WT) for leakage detection and localisation. STFT has the

disadvantage of a strict resolution limit due to its limited window size which does not exist

when using WT. Therefore, using this method better fits the multi-resolution nature of leakage

and burst events (Wu et al., 2008). WT can be used in multiple areas of signal processing such

as denoising (Li et al., no date), decomposition (Li et al., no date), recognition, classification,

and feature extraction. The effectiveness of WT relies heavily on the selection of the mother

wavelet used is shifted and scaled across the signal to create daughter wavelets. This was

emphasised in the work of Ahadi and Bakhtiar and their comparison of Haar and db8 mother

wavelets (Ahadi and Bakhtiar, 2010). Studies (Wu et al., 2008; Ahadi and Bakhtiar, 2010)

further prove the benefits of WT over STFT. Wavelet transforms, however, are limited by the

length of the mother wavelet and its non- adaptive nature (Adnan et al., 2015a). Examples of

mother wavelets used also include Meyer, Morlet, Daubechies and Mallet functions (Zaman et

al., 2020). WT has proven to reduce noise and better locate sharp transitions in the leak signals

(Zaman et al., 2020). In study (Zadkarami, Shahbazian and Salahshoor, 2017), wavelet features

pf pressure signals were compared and outperformed by two Multi-Layer Perceptron Neural

37

Networks (MLPNN) for feature extraction and leakage classification that are then fused by the

Dempster-Shafer (D-S). The neural networks have outperformed the wavelet feature

methodology in correct classification rate (CCR%) where D-S classifier fusion method resulted

in 95.11%, wavelet at 86.94% and statistical features trailing behind at 64.56% (Zadkarami,

Shahbazian and Salahshoor, 2017).

2.3. Leakage Prevention
As the third prong of the trident that is leakage management; leakage control plays an

essential role in reducing the effect of leakage in water distribution networks. Leakage control

is concerned by minimising the probability and magnitude of leaks by changing the operation

and infrastructure. It is also called leakage prevention as its benefits extend to preventing

future leakage through the smooth transport of water. Leakage control can be split into two

main sections: Asset Management and Pressure Management. For the purpose of this thesis,

we focus our literature review on the pressure management control strategies.

2.3.1. Pressure Management
Internal water pressure is a leading operational factor in pipe failure and therefore leakage.

Hence, it is necessary to effectively reduce the service pressure of the water distribution

networks to a suitable level to reduce leakage. The advantages of pressure control extends

beyond leakage reductions as it increases the asset service life; decreases water and energy

costs; and decreases carbon emissions (Thornton and Lambert, no date; Rogers, 2014; Farley

and Trow, 2015; Adedeji et al., 2018). By managing pressure effectively, we minimise the need

for excessive pumping hence addressing environmental and energy concerns. The pressure

management problem is multi-faceted as high pressure causes heavy loading on the pipes and

increases the effects and probability of leaks whilst low pressures cause supply interruptions

and disqualify utilities from meeting a minimum pressure requirement set by their regulatory

bodies (e.g., OFWAT for the United Kingdom). The complexity of pressure control in WDNs

increases with rising trends urbanisation and consequent rise of demands. In addition, demand

pattern variations affect the pressure through the networks daily and seasonally which require

a more continuous pressure monitoring. Therefore, pressure control quickly became a major

research interest for everyone involved in the water industry.

Early research highlighted the strong relationship between leakage and pressure (Eq. 2-9) and

aimed to elicit it in a proportional relationship (Lambert, 2001; Thornton, 2003; Thornton and

Lambert, 2005).

38

𝑄𝑙 = 𝑘𝑃𝑛 (2-9)

where Ql is the leakage flow rate (Ls-1), k represents the leakage/emitter coefficient (Ls-1m-0.5),

P is the pressure head (m) in the pipe while n denotes the leakage exponent. The value of n

ranges from 0.5 to 2.5 depending on the type of leaks. A more comprehensive relationship was

derived from the fixed area and variable area (FAVAD) concept by May (May, 1994).

𝑄𝑙 = 𝐶𝑑𝐴𝑙
𝑓

√2𝑔𝐻 + 𝐶𝑑𝐴𝑙
𝑣√2𝑔𝐻 (2-10)

where Ql denotes the leakage flow rate, Cd is the leakage discharge coefficient, Al
f, the fixed

area of leak opening, Al
v, the variable area of leak opening. H represents the pressure head

produced by pump while g is the acceleration due to gravity. Both equations are regularly used

in both research and industry. They highlight the heavy involvement of pressure in leakage and

are used heavily in literature. This inspired most of the pressure control work that followed it.

Actuating devices

Several network components can be utilised to achieve adequate to advanced levels of

pressure control. Intelligent pressure management often requires synchroneity between

pressure-influencing components to ensure that the pressure management does not lead to

energy loss through head loss (Alberizzi et al., 2019). Several pressure control devices are

available to manage pressure in the network including pump as turbines (PAT), pressure

reducing valves (PRV), pressure sustaining valves (PSV) pressure control valves (PCV) and

pressure breaker valves (PBV). The most common devices are the pressure reducing valve and

the pressure control valve however PATs have become a more recent focus due to the scarcity

of energy and the trends to lower carbon emissions. The optimal placement of the valves and

PATs have proven to be equally as important as their operation to ensure their effectiveness

and minimise the operating costs (Saldarriaga and Salcedo, 2015a; Bonthuys, van Dijk and

Cavazzini, 2020; Price, Abhijith and Ostfeld, 2022).

39

Table 2-2 Pressure control actuators and uses from (Mosetlhe et al., 2020)

Actuator Use

Pressure reducing valves (PRV) Regulation of pressure when and if it

exceeds the set-out values

Pressure sustaining valves (PSV) Sustain a certain specified pressure value

Pressure control valves (PCV) Control the pressure in the identified

pressure management area

Pressure breaker valve (PBV) Force and maintain specified pressure loss

across the valve

Pumps as turbines (PATs) Regulation of pressure when and if it

exceeds the set-out values and the recovery

of energy.

Valve Placement

The placement of valves is crucial to experience the tangible impacts of valve operations.

Otherwise, the effects of pressure control would not span across the district metred area

(DMA). The placement methods can be classified broadly into three sections.

The enumerative method randomly selects areas for valve locations and their settings are

optimised using optimisation algorithms. The process repeats until it reaches the best result.

This method tends to be easier to apply but cannot guarantee the best result.

The pressure reference method (PRM) relies on hydraulic simulation through modellers to

minimise the search space to the most suitable links. For varying demand patterns, the

installation sited need to follow a rule based on a predetermined reference pressure. This rule

in (Liberatore and Sechi, 2009) evaluates the difference between the input and output

pressure.

𝑅𝑢𝑙𝑒: 𝑖𝑓 ℎ𝑖 − ℎ𝑗 > 0.1 × ℎ𝑟𝑒𝑓 pipe is selected as PRV site

This rule improved on the previous standard of confirming that the input nodal pressure drops

to below the reference pressure before it reaches the output node which was used in (Gupta

et al., 2017). PRM is a suitable method to avoid the computational workload that comes with

optimisation methods. Similar to the enumerative method; PRM cannot guarantee optimal

placement but can guarantee the correct number of valves being installed.

40

The last section is calculus-based/optimisation methods. Studies (HINDI and HAMAM, 2007;

Eck and Mevissen, 2012) minimised the PRV installations whilst minimising the pressure using

mixed-integer non-linear programming (MINLP). Studies (Dai and Li, 2014; Pham, 2018) solve a

localisation and control valve case using interior point optimizer (IPOPT) to use the minimum

amount of valves to regulate pressure. As the evolutionary algorithms (EA) continue to

dissipate into water network research; genetic algorithms (GA) were used to tackle the valve

location problem in various studies (Araujo et al., 2006; Nicolini and Zovatto, 2009; Nicolini,

2011). Another study (Saldarriaga and Salcedo, 2015a) employs a different EA method to

better solve the resulting pareto front using a non-sorting genetic algorithm-II (NSGA-II). The

use of EAs has grown in WDN literature with room to grow with the current research trends.

This section introduces more advanced methods that can guarantee optimal placement and

number of valves however they tend to be more computationally demanding.

Pressure Control Strategies

There are many ways to classify the control techniques covered by the research community.

However, all control techniques follow one of six principles:

1. Fixed outlet pressure control (FOPC)

This method ensures that the maximum pressure entering a zone does not exceed the

predetermined setting but does not adjust water pressures to meet demand

variations.

2. Time-modulated pressure control (TMPC)

In this control, the outlet pressure is set to different values during the off-peak and

peak durations of the day. This repeats daily and offers more flexibility than FOPC but

has a poor response to sudden changes in demand requirements.

3. Flow-modulated pressure control (FMPC)

FMPC reduces the output pressure proportionally to the input flow using an additional

flow-modulated controller.

4. Closed-loop pressure control (CLPC)

This method feedbacks the real-time pressure at the critical point of the zone in

question (DMA) and uses that to adjust the output pressure. This provides great

control of the pressure in the DMA. Yet CLPC is more expensive to implement and

could increase the stress on the network elements.

5. Parameter-less P-controller

This method adjusts the pressure using the flow in a PCV making it easier to

implement and respond to varying demands.

41

6. Optimisation approach

Using optimisation algorithms to control the network pressure has been studied

extensively. This strategy is vast with diverse computational optimisation strategies.

Table 2-3 Comparison of pressure control techniques (Adedeji et al., 2018)

Method Remarks Cost Limitation Application

FOPC Simple Not

expensive

Unable to adapt

to pressure

variation during

peak and off-peak

demands.

Used in small scale

water piping

networks.

TMPC The controller used

is easy to set up

A little bit

expensive

Low response to

water demand

variations

Majorly used during

the minimum night

flow hours (MNFHs).

FMPC Complex Expensive Low response to

water demand

variations

Can be used during

both MNFHs and

high demand period

CLPC It provides the

ultimate level of

control

Expensive There is a greater

tendency for

equipment failure

Can be used during

both MNFHs and

high demand period

in real-time.

Parameter-

less P-

controller

The controller is

easy to setup and

can respond to

water demand

variations.

Not

expensive

Practical

application in

large-scale water

piping networks

required.

Can be used during

both MNFHs and

high demand period

in real-time.

Optimisation

approach

For optimal

location and

opening

adjustment of the

pressure reducing

valves

Not

expensive

Practical

application in

large-scale water

piping networks is

required.

Can be used during

both MNFHs and

high demand period.

The most interesting of the aforementioned techniques are those that fall into the

optimisation approach. This approach employs the use of advanced optimisation algorithms to

42

satisfy single or multiple objectives set by the user. Due to the numerous novelties available in

this approach it has become a beacon for many researchers.

Optimisation strategies in pressure management of WDNs are mostly concerned with the

placement and operation of valves (i.e., PRVs, TCVs). They tend to use meta-heuristic search

algorithms such as genetic algorithms (GA). These methods combine beneficial properties of

individual solutions in generational populations in search for the global optimum; however,

they are sensitive to hyperparameter selection and incur a heavy computational processing

load. This can be seen in (Gullotta et al., 2021) where the authors use sequential addition (SA)

and non-dominated sorting genetic algorithm (NSGA-II) to optimise valve locations and

settings for a stormwater management model under water shortage conditions. Their findings

highlighted the effectiveness of both algorithms and the higher computational demand of

NSGA-II. Similar findings were also found in (Saldarriaga and Salcedo, 2015a) where NSGA-II

was used in minimising water loss in water distribution networks. More researchers

investigated the placement and operation of valves using meta-heuristic approaches such as

(Araujo, Ramos and Coelho, 2006) where the authors used GA to optimal number and location

of valves in addition to the optimal settings. This resulted in a decrease of leakage rates by 5.2

l/s (Araujo, Ramos and Coelho, 2006). Alternatively, the article (Mehdi and Asghar, 2019) uses

the benchmark particle swarm optimisation to optimise valve settings in large scale WDNs to

reduce leakage rates. As shown in the literatures, genetic algorithms and particle swarm

optimisation has been the standard optimisation algorithms deployed for this problem.

A more detailed review of PM strategies can be found in (Mosetlhe et al., 2020). In this review,

the authors have declared three main avenues for further improvement in pressure

management. Two of those studies being the deployment of emulators such as deep neural

networks for the optimisation procedure and the modelling of WDNs; and the use of

reinforcement learning (RL) based controllers as it bypasses the need for excessive data that

often accompanies advanced optimisation algorithms. In addition, RL controllers learn from

their experience with the environments which means that the accuracy of the algorithm will

not be compromised through estimation of model parameters or require re-training (Mosetlhe

et al., 2020). Nevertheless, the use of reinforcement learning can only be truly unlocked by

releasing its limits of scalability through the incorporation of deep neural networks hence the

use of deep reinforcement learning (DRL). Whilst the use of DRL in the water industry is still at

its infancy, there have been some applications that highlight its applicability in WDNs (Hajgató,

Paál and Gyires-Tóth, 2020; Xu et al., 2021; Hu et al., 2023), hydro-systems (Delipetrev, Jonoski

and Solomatine, 2017) and stormwater systems (Mullapudi et al., 2020; Tian, Liao, Zhang, et

43

al., 2022; Z. Li et al., 2023). A more recent example of the use of DRL for water industry

applications can be found in (Makropoulos and Bouziotas, 2023) where the authors used

agents to design off-grid water infrastructure. The only published use of reinforcement

learning for pressure management of WDN was shown in (Negm, Ma and Aggidis, 2023b)

where the authors deployed a simple tabular Q-learning method to highlight the feasibility of

using RL as a PM strategy.

2.4. Concluding Remarks
Leakage assessment is a major component of leakage management as it identifies the

whereabouts of water loss and quantifies the performance of WDNs. This section highlighted

the current state of the art and potential next steps to the future of leakage assessment.

In more detail, explains the current leakage assessment methodologies; their benefits and

limitations; examples from case studies; and a comparative summary table. The Top-down

method has provided a benchmark for leakage assessment to define the different inputs and

outputs of water in the system. Whilst this approach is widely adopted by utilities globally, it is

incomplete and lacks an objective methodology to assess unauthorised consumption and data

handling errors. Creating more reliable updated assumptions for UC and testing them for

developing countries is a possible room for improvement. MNF analysis provides a more

reliable outlook on the components of WL in the system and can be used for ALC strategies

since it relies on real life measurements and not assumptions. Improving data reliability

through advanced sensor technology and communications such as AMIoT or sensor fusion can

improve MNF analysis and constantly monitor the level of background and burst leakage. The

BABE method better describes the nature of leakage within the system through evaluating the

subcomponents of RL in the system. This method has been created for developed countries

and requires further validation in developing countries where apparent losses through UC and

metering inaccuracies are higher. Water and wastewater balance is relatively novel however is

only applicable to utilities that have a wastewater service. This is the first method to capture

the apparent losses of the system through balancing the water and wastewater flow

measurements. Similar to MNF, data reliability is a major concern to the methodology

especially WWTP inflow measurements. The water and wastewater balance can be improved

by validating it in developed countries that have less significant apparent losses [35]. Different

leakage assessment approaches can be combined to offset their biases and provide additional

insight on the nature of leakage in the network. The top-down approach underestimates the

apparent losses whilst the water and wastewater balance overestimates AL in the system. The

44

different techniques can vary greatly in results therefore it is necessary to benchmark a

decision matrix for choosing the most suitable approach.

On the other hand, the leakage detection field is sparse and multi-directional filled with

researchers attempting to equip water companies with a solid method to tackle the

heterogenous nature of this issue. Reviewing the field is challenging but this section should

offer guidance to the multiple research areas and possible novelties that can be uncovered in

each. Every section offers a further breakdown of the research area and a light comparison

between technologies within to collate the most research findings and methodologies.

The robotic platforms reviewed include many platforms that vary in driving methods, sensing

capabilities and autonomy. The active driving method sin intrusive inspection devices include

wheeled, screw-driven, track-driven, worm, snake and legged showing that they all vary in

applicability depending on the nature of the pipe and its environment. The autonomy level of

the Smart PIGs and robots introduce an interesting trade-off between recoverability and less

manpower. However, there are no economical devices capable of autonomously adjusting to

all the scenarios present in all water networks and effectively communicating with the users

with no intervention.

Non-intrusive hardware detection consists of a range of sensors that detect leak-induced

anomalies to identify and locate events. The most common are acoustic sensors which include

microphones, geophones, hydrophones, accelerometers, leak noise loggers and correlators.

Other sensors mentioned are magnetic induction, infrared thermography, fibre optics, ground

penetrating radar and tracer gas. These are often insufficient alone and will benefit further if

paired with signal processing methods.

Software leakage detection draws from two general methodologies. Model-based leakage

detection requires the analyst to construct an accurate model of the water distribution

network using hydraulic analysis software and compare expected pressures/flows to the actual

measurements to find outliers. In comparison, data-driven techniques include varying methods

of collecting, pre-processing, and analysing data to directly find leak-induced outliers. Data-

driven methods are classified into several categories based on their nature including statistical,

classical, prediction and signal processing. Using models or data-driven methods rely solely on

the availability of sensor data and their accuracies but can often be used together to provide a

better hydraulic analysis of the system. These methods rely heavily on computational efforts

to detect leakage and can benefit majorly from the rise of data engineering and artificial

intelligence breakthroughs.

45

It is common for researchers and industry to use a hybrid between the methods reviewed to

draw on their advantages and this should be explored further to use our current knowledge to

bridge the faults of these methodologies. It is also crucial to explore new venues for model

leakage prediction which can help identify background leakage. This can benefit from the

emergence of neural networks as function approximators especially graph neural network due

to their similar data types. Furthermore, neural networks models should be tested for transfer

learning applications hence reducing the training time required for neural networks to model

water distribution networks.

Finally, leakage control is concerned with minimising leakage effects through creating

smoother pressure profiles using pressure management and minimising leakage probability

through maintaining the infrastructure using asset management.

In this chapter we focus on pressure management methods for leakage control. Utilities deploy

several network actuators (mostly valves) to control flow and pressure distribution throughout

the network. It is adamant that valve placement is just as significant as valve management in

pressure control. Nevertheless, research effort mostly prioritises the overarching control

strategies. Using the optimising approach, researchers manage to introduce cheaper control

strategies that are appropriate for varying WDN sizes during both MNFHs and high demand

periods. The main drawback to using optimisation algorithms as a control method is its

computational load, difficulties representing complex problem and inability to handle dynamic

scenarios. The use of DRL algorithms shows great promise in bridging these gaps due to their

capabilities in handling numerous uncertainties and reacting to dynamic environments.

46

3. Deep Reinforcement Learning Literature Review
Deep Reinforcement Learning (Deep RL; DRL) is an emerging field of dynamic computing that

has risen through the use of deep neural networks to advance reinforcement learning (Mnih et

al., 2015). It has the potential to tackle complexities that used to be very challenging as it relies

on deep neural networks for function approximation and representation. This technology has

spread across many fields due to its impressive results and can effectively revolutionise the

water industry. In this section, we explain the background of deep reinforcement learning and

the milestones of this field using a novel taxonomy of the DRL algorithms. This will be followed

by with a review of deep reinforcement learning applications in the water industry and will be

concluded with critical insights on how DRL can benefit different aspects of the water industry.

Navigating the field of Deep RL requires a solid knowledge of its predecessor Reinforcement

Learning and the major advancements that were led by the introduction of neural networks

which is covered in section 3.1. A dedicated outlook on notable DRL algorithms and current

research trends is covered in section 3.2. After reviewing the wider field of research, section

3.3. contextualises the deployment of DRL in urban water systems (UWS) by considering the

challenges and opportunities inherent in the implementation of this novel technology.

Moreover, section 3.4. focuses on a novel review of research deploying DRL in urban water

systems. This in-depth review of the current research in the water industry will lead to an

extensive discussion regarding the future of deep reinforcement learning in the water industry

in section 3.5.

3.1. Reinforcement Learning Background
The field of machine learning (ML) has been a hot topic for researchers from diverse

backgrounds such as virologist, biologists, engineers, psychiatrists, and more (Libbrecht and

Noble, 2015; Nichols, Herbert Chan and Baker, 2019) due to its ability to analyse real world

problems using algorithms that tackle more dynamic perspectives and improve with

experience (Shinde and Shah, 2018). Machine learning begun as researchers hoped to achieve

a novel area where instrumentation can achieve innate learning and demonstrate more

‘intelligent’ behaviour. From the first ML algorithm in 1951 named ‘response learning

algorithm’ until the current day, artificial intelligence has only been empowered by this new

field (Shinde and Shah, 2018). Some of the major achievements in ML was the creation of the

algorithms Linear Classifier, Naive Bayes, Bayesian Network, Support Vector Machines (SVM),

k-Nearest Neighbour (k-NN) and Artificial Neural Networks (ANN) (Shinde and Shah, 2018).

ANNs were then adapted further to introduce deep layer and hence the introduction of Deep

Learning.

47

ML has successfully developed the world of artificial intelligence into a true hope for near-

human intelligence. Machine learning methods are often split into supervised learning or

unsupervised learning methods. Where supervised learning depends on our prior knowledge

and labelled examples to form an understanding of the model; unsupervised learning aims to

learn some hidden structure using feature extraction of the unlabelled dataset. Supervised

learning methods are more commonly used in classification and regression problems such as

object detection and rainfall prediction models (Shinde and Shah, 2018; Nichols, Herbert Chan

and Baker, 2019). Unsupervised learning is more equipped to tackle clustering, association

analysis and feature engineering (Libbrecht and Noble, 2015). Whilst both forms of learning

have greatly advanced their respective fields and widened the scope of artificial intelligence;

they fall victim to the curse of time. As time passes, the models built using typical ML

approaches become more and more outdated and require retraining using newer and more

relevant data. Overlooking the sequential nature of engineering applications such as water

distribution management can have grave consequences when implementing ML models. An

example of that can be the effects of annual seasonality and age on the pipe failure frequency.

Hence, the need to develop a learning approach that incorporates the hidden dimension of

time – Reinforcement Learning. Figure 3-1 highlights the place of RL as a subfield of machine

learning. RL’s ability to consider the effects of time through semi-supervised learning was the

first expression of artificial foresight in machine learning and its closest form to human

intelligence.

48

Figure 3-1 The subfields of machine learning

In its infancy, the use of reinforcement learning (RL) was an exciting concept that promised an

introduction to responsive and continuously-learning AI systems. A behaviourist mathematical

approach for experience-driven learning was finally attainable through RL (Sutton and Barto,

2018).This entails a reward-driven learning from interaction with an unmapped environment

rather than hard computing or supervised learning where it is near difficult to obtain examples

of desirable behaviour. Despite the initial successes of RL (Tesau and Tesau, 1995; Singh et al.,

2002; Kohl and Stone, 2004), it could not escape the ‘curse of dimensionality’ when applied to

real life problems. RL was limited by complexity issues ranging from memory complexity,

computational complexity and sample complexity (Strehl et al., 2006).

 The recent surge of deep learning and deep neural networks that has spearheaded the

movement in function approximation and representation learning giving hope to unlock the

true potential of RL by overcoming the issues of scalability; hence the rise of the field of deep

reinforcement learning (DRL, Deep RL). This is demonstrated as the overlap between

reinforcement learning and deep learning in figure 2-1. The first breakthrough use of neural

networks in reinforcement learning was in Mnih et al.’s study (Mnih et al., 2013) in which

convolution neural networks were used for value function approximation. This was developed

to form the basis of the first DRL method; the deep Q-networks (DQN) (Mnih et al., 2015).

49

As deep reinforcement learning gained popularity and developed further, the field of

reinforcement learning was quickly populated with novel algorithms. The field of RL has

quickly transformed to a forest of methods, architectures and concepts that are difficult to

navigate because of its non-modularity. To highlight the diversity in RL, we have gathered and

classified a novel taxonomy of the algorithms (Figure 3-2). This classification tree can serve as a

map to highlight the place of our algorithms in the field of DRL. It classifies the algorithms

based on model free vs model based; on policy vs off policy; value-based vs policy-based;

gradient based vs gradient free labels. Dotted lines are used to label dynamic programming,

monte carlo, temporal difference and distributional RL algorithms. In the following sub-

sections, we define the main labels used in the classification tree to elicit a better

comprehension of the RL landscape.

50

Figure 3-2 Taxonomy of reinforcement learning algorithms.

51

3.1.1. Components of RL
To fully comprehend the aspects and range of methods available in deep RL, it is crucial to

delve into the formalism that make the RL paradigm. Reinforcement learning tackles its

problems as Markov Decision Processes (MDPs) which is a commonly used description in the

field of computing that depict real word processes. MDP formalism is based on evaluating the

probability of transitions between different states in its process and is sometimes denoted

with the five tuple (S,A,P,R,γ) that stand for states(S), actions (A), probabilities/dynamics (P),

reward (R) and initial state (γ) (Puterman, 1990; Desharnais et al., 2004). This helps evaluate

the sequential interactions between actuators (agents, A) and their environment to influence

both the state of the agent (state, S) and the relevant state of the environment (observation).

The agent is then fed the observation data and a reward signal (Reward, R) that serves as an

assessor to the new state that this action has led to. The aim of the agent is to find the optimal

policy (∏) that will maximise the expected reward which is achieved by learning the probability

of state transitions attached to a state-action pair. A visual description of this process can be

found in Figure 3-3. The deep neural network is an addition only found in Deep RL methods

whilst RL methods tend to use a tabular data frame. The components of RL and DRL can be

therefore redefined to suit most real-world applications in an organic and straightforward

manner.

Figure 3-3 Standard Deep Reinforcement Learning Schematic

Reward and Return

The reward signal (r) is the crucial identifier that tells the agent whether their action was

beneficial or harmful. The cumulative reward over a trajectory is named the return (R(𝜏)) and it

can be a finite-horizon undiscounted return (Eq. 3-1) or an infinite-horizon discounted return

(Eq. 3-2). Finite return is the sum of rewards for a fixed number of steps whilst infinite returns,

like the name suggests, is the summation of the sum of all the rewards ever. The infinite

52

returns must include the discount factor γ Є (0,1) used to control how much weight should be

placed on the agent’s foresight. This helps the infinite sum converge to a finite value.

𝑅(𝜏) = ∑ 𝑟𝑡
𝑇
𝑡=0 . For finite-horizon undiscounted return. (3-1)

𝑅(𝜏) = ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 . For infinite-horizon discounted return. (3-2)

This return is usually modified and incorporated into a value function for value-based RL

methods or an objective function for policy-based RL methods. Both methods have their

advantages and disadvantages; for example policy-based methods are generally less sample

efficient than Value based algorithms but can learn stochastic policies and converge faster

than their alternative (Lapan, 2019). We discuss this further in the classifiers section below.

Value Functions

Value functions are used in almost every RL algorithm. They are a fundamental concept in RL

which calculates the expected infinite horizon return to evaluate how beneficial individual

states or state-action pairs are. Value functions that solely evaluate the current state without

the action are often denoted by the symbol V(s) and named state value functions (Eq. 3-3).

Alternatively, state-action value functions are called quality functions, and they provide more

of an insight on the trajectory of the agent given its current state-action pair (Eq. 3-4). The Q-

value is denoted by the symbol Q(s,a).

𝑉(𝑠) = 𝔼[∑ 𝛾𝑘𝑅𝑡+1+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠] (3-3)

𝑄(𝑠, 𝑎) = 𝔼[∑ 𝛾𝑘𝑅𝑡+1+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3-4)

Where 𝔼[.] is the expected discounted infinite horizon return, s is the state sampled from St, a

is the action sampled from At and t is any time step.

An important property of RL is foresight which enables agents to weight the future

consequences of their actions using the expected return hence it is rare to find value functions

operating without the incorporation of the bellman equations (Bellman, 1952). Bellman

equations are self-consistency equations integral to dynamic programming and MDPs that

follow the concept that the value of any starting point is the reward you expect from being at

the starting point in addition to the value of the next point (Bellman, 1952; Puterman, 1990).

Because the actions taken by an agent depend on the policy that it follows, value functions are

often described in relation to its policy. On-policy value functions estimate the expected

returns as the agent follows the behavioural policy (π). On-policy value functions can either

evaluate a state (state-value function) or a state-action pair (state-action value function or

53

quality function). On-policy state-value functions are denoted by Vπ(s) and evaluates the

expected return as the agent acts under behaviour policy (π) and starts with state (s) and is

followed by the state (s’). This is described using the following equation (Eq. 3-5):

𝑉𝜋(𝑠) = 𝔼𝜋[𝑅𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑅𝑡+2+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠] = 𝔼𝜋[𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)] (3-5)

The bellman equation decomposes the value function to the sum of the current value and the

future discounted values. Similarly the Q-value denoted by (Qπ(s,a)) bellman equation is

formally defined as the expected return as the agent acts under the behavioural policy (π)

starting with the state-action pair (s,a) and followed by the next state-action pair(s’,a’) (Eq. 3-

6):

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝑅𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑅𝑡+2+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝔼𝜋[𝑟(𝑠, 𝑎) + 𝑄𝜋(𝑠′, 𝑎′)] (3-6)

When attempting to find the optimal policy and action for a RL problem, off-policy value

functions are used to remove the restrictions of the behavioural policy and allow the agent to

explore the value function following the optimal policy This leads to the off-policy state value

function and off-policy state-action function. These are also called the optimal value functions

(V*(s) and Q*(s,a)). The main difference between the on-policy and optimal bellman equations

is that the optimal uses the maximum rewardable action as shown in the equations below (Eq.

3-7, Eq. 3-8).

𝑉∗(𝑠) = 𝔼[𝑟(𝑠, 𝑎) + 𝛾𝑉∗(𝑠′)]𝑎
𝑚𝑎𝑥 (3-7)

𝑄∗(𝑠, 𝑎) = 𝔼[𝑟(𝑠, 𝑎) + 𝛾 𝑄∗(𝑠′, 𝑎′)𝑎′
𝑚𝑎𝑥] (3-8)

The optimal action of an RL problem can be extracted by finding the maximum reward

argument of the off-policy state-action value function bellman equation (optimal Q-function).

In instances where there are multiple optimal actions, the algorithms often select an action at

random (Achiam, 2020). Another method to evaluate the value of an action is by using the

advantage function (A(s,a)). This compares how beneficial an action is to the average value of

all actions by subtracting the state value from the state-action value under policy (π) (Eq. 3-9).

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠) (3-9)

The use of advantage function is intuitive as it evaluates the performance of actions relative to

an average. It is simpler to compare the consequence of an action with respect to another.

Learning the advantage, rather than the quality or state function, has been a recent trend in

DRL algorithms (Schulman et al., 2015; Wang et al., 2015; Gu et al., 2016; Mnih et al., 2016)

54

For more details on the basics of value functions, we recommend the following introductory

books, papers and articles (Arulkumaran et al., 2017; Li, 2017; Sutton and Barto, 2018; Achiam,

2020).

Policy Driven

Other than value-based algorithms, there are policy driven techniques to solve the

reinforcement learning problem and reach an optimal policy. Whilst the value-based methods

use a learnt value functions to reach an implicit policy, policy-based methods do not use a

value function but directly learns a policy. The value function approach often works well but it

is important to be aware of its limitations. Value functions’ approach to policy optimisation is

focused mostly on deterministic policies which is rare in the real world since optimal policies

are often stochastic. They also are subject to high sensitivities as a minor change in the

expected value of an action might cause the algorithm to accept or reject it. This has been

identified as a key fault that inhibits the convergence of value-based methods such as Q

learning, SARSA and dynamic programming methods (Baird, 1995; Gordon, 1995; Bertsekas,

Tsitsiklis and Τσιτσικλής, 1996). Policy driven methods bypass these limitations leading to

better convergence properties, ability to learn stochastic policies hence more effective

algorithms for higher dimensional and continuous action spaces. However, these methods can

habitually converge to local minimums and are more computationally demanding with higher

variance.

Direct policy search methods fine tune a vector of parameters (θ) to select the best action to

take for policy π(a|s,θ). The policy πƟ is updated to find the maximum expected return. They

can either employ gradient free or gradient based optimisation. Gradient free algorithms often

use the concepts of evolution strategies (Gomez and Schmidhuber, 2005; Koutník et al., 2013;

Salimans et al., 2017) or the cross entropy function (Kalashnikov et al., 2018). Gradient-free

optimisation methods can perform well in low dimensional spaces and update non-

differentiable policies but, despite some successes in applying them to neural networks, the

favoured method remains gradient-based training for DRL algorithms. Gradient based training

methods are more sample efficient when dealing with high parameter policies (Arulkumaran et

al., 2017).

The gradient-based policy methods, also called policy gradient, optimise a selected objective

function (J(πθ)) which can be defined by the average reward formulation or start-state

formulation (Sutton et al., 2000) simplified below (Eq. 3-10). Policy function approximation is

challenging since gradients cannot be used through samples of a stochastic function hence

55

why use a gradient estimator; the theory of the REINFORCE algorithm (Williams, 1988, 1992;

Sutton et al., 2000).

𝐽(𝜋𝜃) = 𝔼[∑ 𝑅(𝜏)𝑇
𝑡=0 ; 𝜋𝜃] = ∑ 𝑃(𝜏; 𝜃)𝑅(𝜏)𝑇

𝑡=0 (3-10)

∇𝜃𝐽(𝜋𝜃) = ∇𝜃 ∑ 𝑃(𝜏; 𝜃)𝑅(𝜏)𝑇
𝑡=0 (3-11)

The objective function (J) of the parameterised policy (πθ) is the expected average return (R)

under trajectory (τ). The trajectory is defined by parameterised policy.

The aim is to optimise the policy through gradient ascent by numerically defining the gradient

of policy performance (∇θJ(πθ)) also called the policy gradient (Eq. 3-11). A full derivation of the

policy gradient can be shown in (Achiam, 2020) however the policy gradient can be redefined

as (Eq. 3-12).

∇𝜃𝐽(𝜋𝜃) = 𝔼[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|Τ
𝑡=0 𝑠𝑡)𝑅(𝜏)] (3-12)

Where the policy gradient is the expected sum of returns (R(τ)) multiplied by the gradient of

the log of the parameterise policy (∇θ log (πθ (at|st))) for timesteps (t) in episode length (T).

This is the simplest policy gradient; there are different variations of the policy gradient

definition like the Expected Grad-Log-Prob Lemma (EGLP Lemma) (Schulman et al., 2015;

Achiam, 2020).

Policy-based and value-based RL coincide at the actor-critic algorithm (A2C) where the actor

performs and action using policy-based RL, and the critic evaluates the resulting reward using a

value function. The critic influences the actor using temporal difference error (TD error) to

improve the algorithm’s performance.

Other RL Algorithm Terminology

To fully comprehend the algorithms covered in the next section, it is necessary to explain the

parlance and methods that form those algorithms. One way to describe RL algorithms is

whether the agent is provided with a state transition function (model-based) or having to learn

solely from experience through trial and error (model-free). Agents that have access to a

model make use of sample efficiency and display a heightened ability of foresight but can

often underperform when applied in real-world applications due to discrepancies between the

model used for training and the ground-truth model. Model free methods can be

implemented and easily tuned to real world application (Li, 2017). Algorithms can also be

trained on sequentially generated data (online mode) or on a pre-set training batch (offline

mode).

56

A commonly used label for RL methods is whether it is on-policy or off-policy. On policy

methods evaluate or improve the behavioural policy of the current action-value pair of the

current policy (e.g. SARSA) whilst off-policy methods explore the best value policy without

necessarily following the current behavioural policy; they are also called optimal methods (e.g.

Q-learning) (Arulkumaran et al., 2017; Li, 2017). The value functions used to achieve were

highlighted previously.

3.1.2. Challenges
Building deep RL algorithms is a science. In this section we build on the challenges and trade-

offs underlined in the previous sections inherent in algorithm design. It is crucial to note that

the field of RL research, much like the algorithms, has been expanded by experience followed

by theory. In essence, some challenges were identified but not completely understood such as

the deadly triad issue (Sutton and Barto, 2018).

In RL algorithm design, most researchers will make use of some form of function

approximation, bootstrapping or off-policy. Function approximation uses examples to

generalise an entire function hence it aids with the scalability and generalisation issue that

riddles tabular algorithms and is the main tide driving the success of deep neural networks in

reinforcement learning (DRL). On the other hand, bootstrapping used in DP and TD fields help

with improving the algorithm’s data efficiency, hence reducing computational loads. Finally,

off-policy methods free our agent from target policy to explore optimality. Separately, each of

these methods help RL researchers reach their desired benefits and design a better

optimisation algorithms, however when combined the same methods induce instability and

divergence – the deadly triad issue (Tsitsiklis and Van Roy, 1997; Sutton and Barto, 2018).

Another common challenge is the ‘credit assignment problem’. This refers to the notable

phenomena of incorrectly evaluating the credit of the action due to unclear or unforeseeable

consequences manifesting later (Arulkumaran et al., 2017). These long-term dependencies are

necessary to allow the agent to better comprehend the value of its action. Hence, value

functions have been modified to incorporate the estimated subsequent rewards and they have

been discounted to signify the dwindling nature of consequence.

Finally, the exploration versus exploitation dilemma. This problem riddles most RL (and DRL)

algorithms as agents tend to behave in a reward greedy manner. Since the agent’s observation

depends on its actions and its actions depend on the reward generated; RL agents can find

themselves in a loop around a local optimum rather than finding the global optima -

exploitation. Ultimately, the only way to solve this is to introduce randomness to the agent’s

57

behaviour hence allowing the agent to receive new observations and possibly lead it to the

global optima – exploration. This trade-off in agent behaviour has been navigated in many

ways and the simplest is the use of ε-greedy exploration policy where the agent acts randomly

with probability ε ϵ [0,1]. The value of ε decreases as time passes leading the agent to a more

exploitative nature as it learns. For continuous control, more complex methods have been

used to introduce randomness over time to preserve momentum (Lillicrap et al., 2016;

Arulkumaran et al., 2017). Other methods to tackle the exploration-exploitation dilemma

include Osband et al.’s bootstrapped DQN using experience replay memory (Osband et al.,

2016), Usuneier et al.’s exploration in policy space (Usunier et al., 2017) and upper confidence

bounds (UCB) (Lai and Robbins, 1985; Arulkumaran et al., 2017; Pathak et al., 2017).

These challenges are inherent in most RL problems and navigating them is a skill necessary to

develop an effective RL algorithm.

3.2. Deep Reinforcement Learning
Many successes have stemmed from scaling RL using deep neural networks through function

approximation. Deep neural networks can be used to approximate the optimal policy (π*) or

the optimal value functions (Q*, V*, A*). In this section, we discuss the current trends and

notable deep reinforcement learning algorithms that have progressed the field. This will help

contextualise the current state of the research field and expose any future work.

3.2.1. Notable Deep RL Algorithms
The timeline and milestones that led to the creation of DRL was well illustrated in (Nguyen,

Nguyen and Nahavandi, 2020, fig. 1) showing how trial and error learning, TD learning and

deep neural networks came together to incentivise the first deep reinforcement learning

algorithm – the deep Q-network (DQN). DQN was first introduced by Mnih et al. as they used

convolutional neural networks (CNN) to feature engineer images from a series of 49 games

(Mnih et al., 2015). It was then used to tackle MuJoCo physics problems (Duan et al., 2016) and

three-dimensional maze problems (Beattie et al., 2016). Following the success of DQN,

researchers have built on the existing DQN architecture to improve its performance hence

creating new algorithms such as Double DQN (DDQN) and Duelling DQN (D-DQN). Double DQN

minimises the effect of noise on DQN by avoiding the overestimation of Q values (Van Hasselt,

Guez and Silver, 2016) whilst the duelling network architecture combines two streams of data

(the value stream and advantage stream) to produce a more accurate Q function (Wang et al.,

2015).

58

Another milestone was the introduction of the Actor-Critic algorithms that combine the use of

value functions and policy gradients to forego the trade-off of variance reduction in policy

methods and bias introduction from value functions (Konda and Tsitsiklis, 1999; Schulman et

al., 2015). Quickly, the DRL research community has direct their efforts to improve the AC

methods. Schulman et al. (Schulman et al., 2015) improves the actor using generalised

advantage estimation (GAE) to produce better variance reduction baselines. The critic is also

improved separately using target network in (Mnih et al., 2015). Introducing deterministic

policy gradients (DPG) in actor-critic algorithms was first observed in (Silver et al., 2014). DPGs

allow the use of policy gradients in deterministic policies when they were initially exclusive to

stochastic policies. This lowers the computational load as DPGs only integrate over the state

space and can therefore tackle large action spaces using less sampling. Stochastic Value

Gradients (SVG) are another method to apply standard gradients to stochastic policies by

‘reparametrizing’ (Kingma and Welling, 2013; Rezende, Mohamed and Wierstra, 2014). This

trend was first introduced in (Heess et al., 2015) and created a flexible method capable of

being using with and without value function critics and models (Arulkumaran et al., 2017). SVG

and DPG provide algorithmic means of improving learning efficiency in DRL.

On the lines of learning efficiency, Google’s DeepMind lab released the Asynchronous

Advantage Actor Critic algorithm(A3C) (Mnih et al., 2016). This advancement entails the use of

an advantage function in an actor-critic architecture through training parallel agents

asynchronously and aggregating their learning using a separate agent (global network). This

method yields high accuracy and is applicable in continuous and discrete action spaces (Lapan,

2019) hence creating a trend for asynchronous and parallel learning. An example of A3C, and

subsequently target-driven RL, in robotic navigation was demonstrated by Zhu et al. (Zhu et al.,

2016) to find the minimum sequence of actions leading to a target location using RGB images

as an input.

3.2.2. Current Trends
The field of DRL is growing exponentially as researchers ground their understanding of

reinforcement learning in human psychology. Using methods that parallel our natural learning

trends has helped develop DRL methods further leading to fields such as hierarchical

reinforcement learning (HRL) and inverse reinforcement learning (IRL). Moreover, there is

more effort on improving algorithms by modelling the reward as a distribution of values similar

to our brain’s reward system (Dabney et al., 2020). Multi agent reinforcement learning (MARL)

models the real-world nature of multiple agents interacting with the same environment and

reward probability. In this section of the review, we focus on current trends in the field of deep

59

reinforcement learning. We explain the recent advancements and highlight notable work and

challenges that are being addressed.

Hierarchical Reinforcement Learning

As the field of DRL grows, researchers have learnt how to include biases into the algorithm’s

learning experience. Hierarchical reinforcement learning (HRL) is a field of DRL dedicated to

introducing inductive biases by factorising the final policy into several levels through state or

temporal abstractions. This approach allows algorithms to tackle higher and lower level goals

simultaneously by allowing top-level policies to focus on the main goal and sub-policies to

focus on fine control (Tessler et al., 2017; Vezhnevets et al., 2017). This is how HRL attempts to

achieve compositionality; achieving new representations by the combination of primitives

(Hutsebaut-Buysse, Mets and Latré, 2022). The challenges faced in HRL stem from the

selection of sub-behaviours or policies and how to efficiently learn state abstractions.

Inverse Reinforcement Learning

As humans, we can often learn from others’ mistakes and successes. Similarly, researchers

have developed methods to bootstrap the learning process using trajectories from other

controllers. This is known as imitation learning (also known as behavioural cloning). The

success of behavioural cloning lead to the success of an autonomous car using ALVINN in

(Pomerleau, 1989).The main challenge with imitation learning is its susceptibility to

uncertainties. Imitation learning’s inability to adapt can lead the agent down a destructive

trajectory hence why it is paired with reinforcement learning. Using RL, the policy can fine-

tune whist imitation learning guides the general learning leading to faster convergence

properties and better stability properties. Introducing behavioural imitation to DRL births the

field of inverse reinforcement learning (IRL). IRL applies behavioural cloning by relying on

provided trajectories for the desired solution to approximate the reward function (Ng and

Russell, 2000). Intuitively, the motivation behind using IRL usually includes learning behaviour

from experts, assisting humans and learning about systems (Adams, Cody and Beling, 2022).

Application of IRL are mostly concerned with teaching robots to imitate experts (Adams, Cody

and Beling, 2022). Notable work and algorithms in this field include (Ziebart and Fox, 2010;

Finn, Levine and Abbeel, 2016; Ho and Ermon, 2016; Levine and Van De Panne, 2018; Paine et

al., 2018; Peng et al., 2018).

Distributional Reinforcement Learning

Distributional RL grounds itself in our natural brain reward system (Dabney et al., 2020). Like

our natural dopamine system, DRL displays returns as a value probability distribution learned

60

from interacting with the environment. This parallel between distributional RL and our brains

opens up opportunities for collaboration between AI and neuroscience (Lowet et al., 2020).

This new method of value distribution has shown its usefulness in improving learning speed

and stability. The original distributional reinforcement learning algorithm is the categorical

DQN (C51) (Bellemare, Dabney and Munos, 2017) where using value distributions the authors

have surpassed most gains on the Atari2600 environment thus beating the benchmark DQN

and DDQN. Other algorithms include quantile regression DQN (QR-DQN) which uses quantile

regression to minimise the Wasserstein metric and improve greatly on the previous C51 in the

Atari 2600 (Dabney et al., 2017). Implicit quantile regression (IQR) and fully parameterised

quantile function (FQF) are the latest algorithms in distributional RL and they build further on

the foundations of QR-DQN (Dabney et al., 2018; Yang et al., 2019).

Multi Agent Reinforcement Learning

With the rising complexity of real-world systems, deep reinforcement learning algorithms

often play catch-up to be able to process and scale their models. Most of the methods devised

for DRL algorithms aim to simplify complex environments and feature extraction. On the other

hand, multi agent deep RL introduces complexity in its algorithms by introducing several

agents in the algorithms that simultaneously interact with the environment. This is

representatives of having multiple employees working as a team to carry out a desired goal (or

policy) on the same system. The complexity of the algorithms brings forth multiple challenges

that are currently the focus of the research community with the promise to solve more

complex environments and real-world problems. There have been different approaches to

tackle MADRL including sending signals to the agents, having bidirectional channels between

the agents and an all-to-all channel (Arulkumaran et al., 2017). Major challenges in the field

stem from non-stationarity, partial observability, complexity in training schemes, application in

continuous action spaces and transfer learning (Nguyen, Nguyen and Nahavandi, 2020).

Previous reviews and surveys include (Nguyen, Nguyen and Nahavandi, 2020) that provides a

review of MADRL challenges, solutions, applications and perspectives; (Buşoniu, Babuška and

De Schutter, 2008) evaluates stability and a taxonomy of MADRL algorithms; (Bloembergen et

al., 2015) surveys dynamical models devised for multi agent systems; (Hernandez-Leal, Kartal

and Taylor, 2019) bridges the gap between DRL and MADRL including benchmarks for MADRL.

Other notable reviews include (Da Silva, Taylor and Costa, 2018; Hernandez-Leal, Kartal and

Taylor, 2018).

61

3.3. Urban Water Systems
Urban water systems are a collection of complex infrastructure and processes that supply,

treat, transport, and manage water and wastewater within urban environments. These

systems are crucial for managing the supply of clean drinking water as well as treating

wastewater and controlling storm water. Hence, they are paramount for the sustainability and

well-being of cities. Effective management of UWS through sustainable practice aims to ensure

a resilient supply of clean water despite climate change and seasonality. It should also

minimise water loss through leakage and energy consumption through inefficient water supply

and distribution. The key processes in UWS can be split into four major systems which are raw

water treatment plants, water distribution networks, wastewater treatment plants, and

stormwater systems (Loubet et al., 2014; Etikala, Madhav and Somagouni, 2022) . Some of the

processes involved in each function are displayed below in Figure 3-4.

Figure 3-4 Urban Water Systems

Urban areas often obtain their water from several resources such as rivers, lakes,

groundwater, and desalination plants which are managed by raw water treatment plants. Raw

62

water goes through several treatment processes to remove impurities, and contaminants. The

main treatment methods used in raw water treatment plants include screening through mesh

filters or screens, coagulation, flocculation, sedimentation, filtration, disinfection, corrosion

control, pH adjustment, fluoridation, and quality monitoring (Benjamin, 2014; Jiang, 2015;

Teodosiu et al., 2018; Lipps, Braun-Howland and Baxter, 2022).

Once treated, clean water is distributed from the plants to the customers through a network of

pipes, valves, pumps, and reservoirs. This process requires advanced pressure and asset

management to minimise leakage and contamination. Due to the varying elevations, demand

and climate change, the distribution of water increases in complexity and leakage has become

a natural phenomenon in water distribution networks (Xu et al., 2014; Neal Andrew Barton et

al., 2019).

Similar to raw water treatment, wastewater treatment plants are concerned with treating

wastewater collected through a sewer pipeline network. Treatments include a variety of

physical and chemical processes. Physical methods of screening, grit removal, sedimentation,

and filtration remove heavier contaminants and large contaminants. Water is then treated

biologically in the secondary treatment by using microorganisms to break down organic matter

in wastewater (Hussain et al., 2021). Coagulant and flocculants help remove fine particles and

dissolved contaminants during the tertiary advanced chemical treatment. A final step of

disinfection could use chemicals such as chlorine and UV to remove harmful pathogens

(Kentish and Stevens, 2001; Crini and Lichtfouse, 2019).

During detrimental events such as floods and storms, stormwater management controls the

impact on the environment and infrastructure (Ahiablame and Shakya, 2016; Aryal et al., 2016;

Jefferson et al., 2017). Stormwater management deal with several high-level objectives such as

flood control, water quality monitoring, erosion/sediment control, groundwater recharge

(Jotte, Raspati and Azrague, 2017).

3.3.1. Challenges and Opportunities in Urban Water Systems
UWS include a wide range of processes that are riddled with unique dependencies and

impacting factors. However, the preservation and use of water is a holistic process that

incorporates the wider ecosystem, climate, and wildlife as much as human use.

Understandably, UWS share challenges that stem from external factors and opportunities to

adapt deep reinforcement learning techniques. In this section, common current challenges

that plague UWS processes are discussed and how DRL can provide innovative solutions. This is

63

followed by challenges that researchers might encounter when applying DRL algorithms to

UWS.

High trends of urbanisation globally increase the stress and demand on UWS with 60% of the

world's population expected to live in urban areas by 2030 (UN-Water, 2012). This rise in

demands causes heavier loads and more uncertainty throughout all processes in UWS due to

increased supply and network expansions (Sharma et al., 2010). Navigating these uncertainties

can be challenging for meta-heuristic decision making algorithms (Maier et al., 2014) in

comparison to DRL algorithms that learn from experience and are able to act in real time (Fu et

al., 2022). DRL provides a method for managing uncertainties that outperforms traditional

decision-making algorithms and can learn from experience which allows it to adapt to the rise

in urbanisation.

Another challenge that plagues UWS is the energy consumption and carbon emissions

associated with operating water systems (Nair et al., 2014; Xu et al., 2014). It was estimated

that 1-18% of all energy consumed in urban areas is due to UWS (Olsson, 2012) which in return

produces a lot of carbon emissions. The negative effects of high energy consumption lie

beyond the financial impacts as it promotes climate change and global warming. The circular

effect of carbon emissions, water scarcity and energy consumption is displayed in the water-

energy-green house nexus (Nair et al., 2014, fig. 1). DRL has had a proven record of improving

energy management within the water systems (Hernández-Del-olmo et al., 2016; Hernández-

del-Olmo et al., 2018) and in system efficiency (Kılkış et al., 2023).

UWS often deal with a heterogeneously aging infrastructure that add to the complexity of

asset health management. The aging pipes, pumps, valves, and other system components can

lead to high non-revenue water and effect the systems’ overall resilience. Hence why, it is

essential to provide decision making algorithms that can deal with high-level dependencies

and complexities. A challenge that manifests with decision making algorithms is the high

computational costs associated with this complexity thus why deploying DRL agents can

benefit UWS as they rely on function approximators to lower the computational load (Sutton

and Barto, 2018). Furthermore, asset management for UWS operations can be achieved by

leveraging DRL for optimal design, strategic planning and predictive maintenance (Fu et al.,

2022). This area of research requires more experimentation and social proof despite its clear

advantages.

In most pipeline infrastructure, it is necessary to quantify leakage and asset health. Managing

leakage effectively is an ongoing battle that effects UWS especially water distribution systems.

64

The use of DRL for leakage management is an unrealised opportunity but has been

recommended by reviews and surveys (Mosetlhe et al., 2020; Fu et al., 2022). The use of a

tabular Q-learning method for leakage reduction using pressure management in water

distribution networks was tested in (Negm, Ma and Aggidis, 2023b) and whilst the results were

positive, it was clear that using DRL would enhance it further and overcome the curse of

dimensionality.

3.3.2. Challenges of DRL in UWS
Building DRL algorithms is a science. In this section we build on the challenges and trade-offs

underlined in the previous sections inherent in algorithm design. It is crucial to note that the

field of RL research, much like the algorithms, has been expanded by experience followed by

theory. In essence, some challenges were identified but not completely understood such as

the deadly triad issue (Sutton and Barto, 2018).

In DRL algorithm design, most researchers will make use of some form of function

approximation, bootstrapping or off-policy. Function approximation uses examples to

generalise an entire function hence it aids with the scalability and generalisation issue that

riddles tabular algorithms and is the main tide driving the success of deep neural networks in

reinforcement learning (DRL). On the other hand, bootstrapping used in DP and TD fields help

with improving the algorithm’s data efficiency, hence reducing computational loads. Finally,

off-policy methods free our agent from target policy to explore optimality. Separately, each of

these methods help RL researchers reach their desired benefits and design a better

optimisation algorithms, however when combined the same methods induce instability and

divergence – the deadly triad issue (Tsitsiklis and Van Roy, 1997; Sutton and Barto, 2018). This

instability can be detrimental when controlling urban water management system and could

result in undesirable situation. Ensuring stability and resilience should be a primary goal of DRL

design.

Another common challenge is the ‘credit assignment problem’. This refers to the notable

phenomena of incorrectly evaluating the credit of the action due to unclear or unforeseeable

consequences manifesting later (Arulkumaran et al., 2017). These long-term dependencies are

necessary to allow the agent to better comprehend the value of its action. Hence, value

functions have been modified to incorporate the estimated subsequent rewards and they have

been discounted to signify the dwindling nature of consequence. UWS applications tend to be

connected through both short-term and long-term dependencies therefore it is importance to

include these consequences in the DRL algorithm’s learning strategy.

65

Finally, the exploration versus exploitation dilemma. This problem riddles most RL (and DRL)

algorithms as agents tend to behave in a reward greedy manner. Since the agent’s observation

depends on its actions and its actions depend on the reward generated; RL agents can find

themselves in a loop around a local optimum rather than finding the global optima -

exploitation. Ultimately, the only way to solve this is to introduce randomness to the agent’s

behaviour hence allowing the agent to receive new observations and possibly lead it to the

global optima – exploration. This trade-off in agent behaviour has been navigated in many

ways and the simplest is the use of ε-greedy exploration policy where the agent acts randomly

with probability ε ϵ [0,1]. The value of ε decreases as time passes leading the agent to a more

exploitative nature as it learns. For continuous control, more complex methods have been

used to introduce randomness over time to preserve momentum (Lillicrap et al., 2016;

Arulkumaran et al., 2017). Other methods to tackle the exploration-exploitation dilemma

include Osband et al.’s bootstrapped DQN using experience replay memory (Osband et al.,

2016), Usuneier et al.’s exploration in policy space (Usunier et al., 2017) and upper confidence

bounds (UCB) (Lai and Robbins, 1985; Arulkumaran et al., 2017; Pathak et al., 2017). Managing

the exploration-exploitation trade-off should be bespoke to each UWS application to ensure

that agents don’t converge at sub-optimal policies.

These challenges are inherent in most RL problems and navigating them is a skill necessary to

develop an effective DRL algorithm.

3.4. DRL Research in Urban Water Systems
In essence, there are many parameters to consider when selecting a DRL algorithm but

through careful consideration of selecting the correct DRL components and algorithms.

Depending on the optimisation objective, the agent’s nature (pump, valve) and requirements

(nodal pressures, head measurements, pump speed) would vary. In a critical review of deep

learning in the water industry Fu et al. mentioned the applicability of DRL in water distribution

networks (WDN) and urban wastewater systems (Fu et al., 2022). In (Croll et al., 2023), the

applications of reinforcement learning techniques in wastewater treatment were reviewed

with a few studies utilising DRL methods. Otherwise, there are no mentions or reviews

published on DRL algorithms in the water industry. There is limited literature on the

application of DRL in UWS where most research relate to stormwater systems, water

distribution networks and a few publications in wastewater systems. This shows a massive gap

in the research field and an exciting journey for researchers in UWS at the cusp of realisation.

In this section we will review the available literature on deep reinforcement learning in the

water industry.

66

3.4.1. DRL in Water Distribution
In article (Hajgató, Paál and Gyires-Tóth, 2020), the authors use a Duelling Deep Q Network

(D-DQN) to find the optimal pump speeds for hydraulic efficiency in randomly generated

demands. The algorithm minimises the inflow and outflow of tanks whilst keeping heads

within an acceptable range in all the nodes. The reward is calculated by evaluating the

consumer satisfaction as the number of problematic nodes divided by the number of all nodes;

the efficiency of the pumps as the product of standalone pumps divided by the product of

theoretical peak efficiencies; the feed ratio by comparing the ratio of pumps supplying the

water to the tanks and reservoirs supply. When compared to a test set of Nelder-Mead,

Differential Evolution (DE), Particle Swarm Optimisation (PSO), Fixed-Step Size Random Search

(FSSRS) and One-shot Random Trial; the agent performed at a comparable level to the

differential evolution algorithm and much better than the rest of the test set. All the

algorithms were tested on a small (Anytown) and large (D-town) WDN model. When using the

one-shot random trial as a reference solution as a sub optimal policy; the agent reaches a

better solution and moves off policy to overperform the DE algorithm. This technique relies

entirely on live measurement data and can predict the best action in real-time making it the

most suitable controller for real life application.

(Hu et al., 2023) conducted a thorough experiment where they optimised the scheduling of

fixed speed pumps to minimise the electric cost of the pumps and tank level variations whilst

adhering to sensible hydraulic constraints using Proximal Policy Optimisation (PPO) and

Exploration enhanced Proximal Policy Optimisation (E-PPO) (Hu et al., 2023). Both DRL

algorithms are policy-driven methods set out to find the best policy to achieve the highest

rewards. They conducted three experiments that introduced three increasing levels of

uncertainty to the consumer demand patterns using 0.3, 0.6 and 0.9 multiplier respectively on

the Net3 test networks model. The results were compared with metaheuristics including

genetic algorithms (GA), PSO and DE. GA converged after 100 epochs and were considered the

optimal solutions (Hu et al., 2023). They were followed in performance E-PPO followed by PPO,

DE and PSO. The exploration enhanced policy saves approximately 6.10% of the energy cost

with respect to PPO. Unlike the rest of the metaheuristic methods that require to be trained

before each scheduling case; the DRL methods (PPO, E-PPO) can just call their trained models

to act in a fraction of a second (0.4s) (Hu et al., 2023).

(Xu et al., 2021) tackles the pump scheduling optimisation problem in WDNs through

combining knowledge learning and deep reinforcement learning in a knowledge assisted

proximal policy optimisation learning (KA-PPO) (Xu et al., 2021). KA-RL evaluates the state

67

using historical nodal pressure data and a reward function. Pressure management objectives

were placed to maintain junction heads within a specific range, minimise water age, and

increase pump efficiency. The proposed algorithm was tested on the benchmark Anytown

network to manage the performance of two pumps in the pump station. The results show that

the algorithm performs favourably in comparison to the Nelder-Mead method and the DDQN

algorithm used in (Hajgató, Paál and Gyires-Tóth, 2020; Xu et al., 2021). Future work can

improve the reward formulation process by including energy prices. The problem setup can

also be modified to consider a continuous action space and long period accumulated return.

The use of emulators and parallel computing can also minimise the training time.

In (Hasan et al., 2019), the authors offer four novel contributions to the fields of dynamic

multiple-objective deep reinforcement learning and water quality resilience applications.

Based on the deep-sea treasure (DST) test bed, the authors develop a new test bed to fit the

RL settings hence creating the first test bed accommodating for dynamic multi-objective DRL

(DMODRL). They also devise a new for multi-objective optimisation using DRL and the first

deployment of objective relation mapping (ORM) to construct the govern policy (Hasan et al.,

2019). The last contribution is an expert system to evaluate the water quality resilience (WQR)

in Sao Paulo, Brazil. The proposed parity-Q deep Q network (PQDQN) algorithm proposed was

tested in the two DST environments and the WQR model. In all three test beds, the PQDQN

algorithm has outperformed the state-of-the-art multi-policy DRL algorithms which were

multi-policy DQN (MP-DQN), multi-objective monte carlo tree search (MO-MCTS) and multi-

pareto Q learning (MPQ). In all three test beds, the performance of the algorithms were

assessed using the evaluation matrices generational distance measure (GD), inverted

generational distance (IGD) and hypervolume (HV) (Hasan et al., 2019). PQDQN managed

priorities best using the ORM aiding its impressive performance and defeating the other multi-

policy algorithms (MP-DQN, MO-MCTS, MPQ) (Hasan et al., 2019). This work can benefit by

experimenting with multi-agent DRL and integrating real-world scenarios to the WQR model.

Parallel computing and GPU processors can also reduce training time. Hyperparameter

optimisation may even improve the performance of the PQDQN algorithm further.

In a broader look on water systems, (Fan, Zhang and Yu, 2022) tackles asset management of

water distribution networks post-earthquake. The problem setup involves four models that

assess damages incurred by the earthquake, recover the water distribution network (WDN)

using the optimisation algorithms, measure the WDN hydraulic performance using the

performance degree (PDW) at each timestep, quantify the overall WDN resilience using the

system resilience index (SRI). The chronological and iterative process between these models is

68

clearly displayed in (Fan, Zhang and Yu, 2022, fig. 2). A graph convolutional network (GCN) was

deployed as the function approximator for a DQN algorithm hence creating GCN-DQN. This

selection was a great step towards better representation for water distribution networks since

the graphical nature of the data requires a similar deep neural network architecture. Other

strategies used for comparison included two greed search algorithms (static importance based

and dynamic importance based), genetic algorithm (GA) and diameter-based prioritisation

method. All five strategies were tested under three identical earthquake scenarios with

different magnitudes. In all three scenarios the GCN-DRL model outperforms the other

strategies by following repairing sequences that lead to higher SRI scores (Fan, Zhang and Yu,

2022). The importance-based methods cam second and third whilst the diameter-based

prioritisation came last. In order to minimise the training computation time, the authors have

used transfer learning to use the previous GCN weights on an old damage scenario to initialise

the GCN weights for the new scenario. This reduced the computational load significantly and

proved the scalability of the GCN-DRL model across all scenarios. Accommodating more

sophisticated assumptions can be easily implemented to improve the GCN-DQN model’s

reliability and improve the problem setup. Applying this work on different test networks can

further prove its generality and encourage more development of asset management through

deep reinforcement learning.

3.4.2. DRL in Stormwater Systems
Mullapudi et al. provide a first look on the application of deep reinforcement learning for real

time control in storm water systems (Mullapudi et al., 2020). The authors test a simple DQN

algorithm on the urban watershed in Ann Arbor as a benchmark test network. The problem

setup involved agents taking actions to control valves status; water levels and outflows as

states and an assumption of uniform rainfall and negligible base flow (Mullapudi et al., 2020).

The authors set out to test the stability of DRL algorithms in controlling storm water

management models (SWMM) through controlling a singular basin and controlling multiple

basins. Their research highlighted DRL algorithms’ known sensitivity to reward formulation and

deep neural network architecture. Even though the agent could have benefitted from a longer

learning phase, the DRL proved useful in managing the single-basin SWMM scenario. Due to

the increase in state and action space, controlling multiple basins was more challenging. The

agent behaved favourably in comparison to uncontrolled SWMMs in both scenarios but were

outperformed by the equal-filling algorithm. The authors remain determined that RL-based

controllers need to be explored further and applied to SWMM in hopes of reaching a stable

real-time controller. The results provided in this paper could be used as a starting point to

69

compare more capable DRL algorithms A3C and advanced variations of DQN. Also, a more

systematic method for reward formulation and neural network hyperparameter optimisation

would greatly improve the scalability and stability of the model.

A common issue with real-time control using DRL is concerns of the reliability and uncertainty

of its fluctuating actions in high-risk real-world cases. Tian et al.’s paper tackles this issue

through a novel methodology called ‘voting’ (Tian, Liao, Zhi, et al., 2022). Voting compares

actions from five different DRL algorithms to select the safest and most rewardable action

hence minimising the risk associated with DRL control. If none of the DRL agents provide a

viable action, a backup user-defined rule-based action is executed. The methodology is used to

minimise combined sewer overflow (CSO) and flooding in urban drainage system. The DRL

algorithms used in this study are DQN, DDQN, PPO1, PPO2 and A2C. Voting uses a novel

independent security system to evaluate whether the actions meet the user-defined safety

requirements. All five DRL algorithms and voting algorithms are compared to a GA algorithm

that was used as an upper bound performance reference by subjecting them to eight scenarios

under different rainfall patterns. The results prove that voting avoids harmful actions to

minimise risk hence improving the reliability of the real-time control. Figure 16 highlights that

voting often draws its actions from PPO1 and never needed to use the backup action in all

eight scenarios (Tian, Liao, Zhi, et al., 2022, fig. 16). All DRL algorithms have performed well in

this sequential problem and are therefore suitable candidates for CSO and flooding mitigation.

Concerns of long training times and computational loads can be mitigated with parallel

computing and an emulator for the stormwater model. The DRL algorithms can benefit from

hyperparameter optimisation to improve the results further. Future work can also attempt

deploying the voting algorithm on a SCADA system or online monitoring system to uncover

uncertainties from real world applications.

It is worth mentioning that the authors published a different paper where they developed an

emulator for the stormwater model to relieve the high computational load associated with

training the DRL agents (Tian, Liao, Zhang, et al., 2022). This emulator succeeded in decreasing

the training time by 9 hours and 57 minutes hence improving data efficiency when compared

to the regular RL-stormwater model approach.

Like the previous article, (Bowes et al., 2021) leverages the power of DRL for flood mitigation.

In this experiment, the authors developed a DDPG algorithm to create control policies that

mitigate flood risks in the coastal city of Norfolk, Virginia. The DRL agent manages to balance

flooding throughout the system and follow the control objectives of maintaining target pond

70

levels and mitigating flood through controlling valves in the stormwater management model.

The performance of DDPG as a DRL method was compared to rule-based control strategy,

model predictive control and a passive system. In summary, the DDPG algorithm boasted a

32% reduction in flooding in comparison to the passive system and a 19% reduction with

respect to rule-based control. The model predictive control strategy deployed an online

genetic algorithm optimisation as in (Sadler et al., 2020) to produce similar results to the DDPG

algorithms (3% reduction in flood compared to DDPG). The model predictive control was too

computationally expensive to run on the complete dataset whilst RL provided an 88x speed up

in the creation of control policy (Bowes et al., 2021). This research highlights the power of DRL

in real-time control of stormwater systems and its ability to produce impressive results with a

lower computational load. Further research should aim to recreate these results on real-world

systems through RL controllers. Combining the different real-time control methods as decision

support tools should be investigated to enhance stormwater systems.

3.4.3. DRL in Wastewater Treatment
Wastewater treatment has initially experimented with RL methods to manage the oxidation-

reduction potential and pH levels of wastewater using Model Free Linear Control (MFLC-MSA)

(Syafiie et al., 2011), improve the cost of N-ammonia removal using tabular Q-learning

(Hernández-Del-olmo et al., 2016), improving energy and environmental efficiency of N-

ammonia removal using policy iteration (Hernández-del-Olmo et al., 2018), and optimising

hydraulic retention through aerobic and anaerobic processes for biological phosphorous

removal using Q-learning (Pang et al., 2019). In addition, actor critic RL methods are utilised for

pH adjustment for electroplating industry wastewater in a continuous action space (Alves

Goulart and Dutra Pereira, 2020). This RL method was mimicked in (Yang et al., 2022) where

the authors utilise an actor critic RL method to track the desired dissolved oxygen set points in

a wastewater treatment plant (WWTP). A more detailed review of RL application in WWTP can

be found at (Croll et al., 2023). Following the successes of DRL algorithms and its growing

popularity, more research has deployed DRL methods to solve issues in WWTPs.

The only use of value-based DRL algorithm in wastewater treatment is present in (Nam et al.,

2020). The article carries out an experiment involving both RL (Q, SARSA) algorithms and DRL

(DQN, deep-SARSA) to reduce the aeration energy consumption without decreasing the

effluent quality index. These factors were estimated using the activated sludge model soluble

product (ASM-SMP) named benchmark simulation model 1 (BSM 1) developed by (Alex et al.,

2018). The DQN model largely outperformed the other methods as it develops a trajectory

that simultaneously improves the economic benefits by 36.53% and the environmental

71

efficiency by 0.23%. The RL methods deployed fail to handle the complexity and caused

decreases in energy savings and environmental efficiency. Further work recommended

includes the experimentation with multi-agent systems to control environmental and

economic benefits whilst minimising risks from membrane fouling (Nam et al., 2020). The

authors did not discuss hyperparameter optimisation which could further improve their

current results. In addition, the use of policy gradient methods can provide insights on the

difference in policy gradient and value driven DRL in performance.

In (Panjapornpon et al., 2022), the author leverage the hybrid properties of multiple DDPG

agents as an actor critic method. This study is more focused on developing a MADRL for pH

control and tank level control by simultaneously managing the flow rates of the influent

stream and neutralisation stream (Panjapornpon et al., 2022) in a continuous stirred tank

reactor. The authors use the grid search methods for hyperparameter tuning of three

performance indexes. The DDPG uses a gated recurrent unit and rectified linear units for the

actor and critic networks as shown in figures 6 & 7 (Panjapornpon et al., 2022, figs 6 & 7). The

multi agent DDPG algorithm performed favourably in comparison to the proportional-integral

controller with controlling efficiency with better performance indexes and less oscillations

(Panjapornpon et al., 2022). This paper highlights the benefits of using DRL to optimise control

performance. Deploying the RL controllers using programmable logical controllers on real

WWTPs can provide social proof.

MADRL is utilised in (Chen et al., 2021) to control dissolved oxygen set points and chemical

dosage in WWTP. In this article, the authors use a multiple agent DDPG algorithm to lower

environmental impacts, cost and energy consumption using a life cycle driven reward function.

The life cycle assessment driven strategy has outperformed cost oriented and effluent quality

optimisation in eliminating environment impacts. The use of multiple agent DDPG has

provided good results however the study lacks comparisons with other optimisation

algorithms which should be investigated in the future. MADRL should enable better navigation

in highly complex environments therefore it would be great to validate this novel algorithm

with field data.

A statistical learning based PPO algorithm is used to develop a predictive control strategy that

minimises energy consumption in a wastewater pumping station in (Filipe et al., 2019). The

model free method decreases electrical consumption by 16.7% and tank level violations by

97% in comparison to the current operating conditions of the pumping station based in a

WWTP in Fábrica da Água de Alcântara, Portugal. The authors also compare the results of

72

using wastewater intake rate forecasts to improve the PPO algorithm’s results. Indeed the

forecasts help improve the results of the algorithm with cumulative energy consumption

dropping from 459MWh-469MWh to 340MWh-348MWh (Filipe et al., 2019). Bayesian

optimisation was also utilised to optimise the forecasting hyperparameters. It is important to

compare these results to other model predictive control methods used in WWTP pumping

stations and other optimisation approaches to highlight the DRL algorithm’s performance with

respect to known benchmarks. It will be beneficial to recreate the results using WWTP

benchmark models and validate the results in real-world applications.

3.4.4. DRL in Raw Water Treatment
There haven’t been many papers to review relating to the application of DRL to the supply and

treatment of raw water. A related paper discusses the use of DRL as a smart planning agent for

off-grid camp water infrastructure (Makropoulos and Bouziotas, 2023) therefore it is not an

urban water system. DQN, PPO and multi-armed bandits were tested using an urban water

optioneering tool (UWOT). The DRL agents are tasked with using an array of different supply

technologies with relevant costs and a set of demand pattern for potable and non-potable

water to explore conditions of deployment in the off-grid system. This paper’s ability to train

and test DRL agents in strategic planning paves the way for strategic planning opportunities in

UWS as well.

The only raw water supply application can be found in (Z. Li et al., 2023) where the researchers

apply proximal policy optimisation (PPO) algorithm to lower suspended sediment

concentration (SSC) and energy consumption tested on data from the Yellow River pumping

station in China. The DRL environment is made by combining data from the hydraulic model

and the SSC predictive model which is formed of a multilayer perceptron model. The PPO

algorithm is trained on the predicted SSC (predictive control) and real-world SSC data (perfect

predictive control). Both strategies are compared to manual strategy developed by

experienced operators. The SSC predictive model was not accurate as it deviates from the

training and validation sets. In both the predictive and perfect predictive control, the DRL

algorithm outperforms the manual strategy resulting in a smoother sediment profile,

decreases the energy consumption by 8.33%, and average sand volume per unit water

withdrawal by 37.01% and 40.575% respectively (Mullapudi et al., 2020). Furthermore, the

authors investigate the effects of reservoir water outflows and initial reservoir water volumes.

There is a strong relationship between reservoir initial water volume. This paper can benefit by

comparing the DRL algorithm to other heuristic optimisation algorithms such as iterations of

genetic algorithm (GA) or differential evolution (DE). The researchers should attempt to

73

optimise the reward function by experimenting with different weights and apply some form of

hyperparameter optimisation to increase the accuracy of the SSC predictive model.

74

Table 3-1 Summary of reviewed articles

System Application Algorithms Case Study Remarks Reference

Water Distribution Pump control DDQN D-town, Anytown DDQN controls pump speeds to minimise tank outflows and keep junction heads within an

acceptable range.

(Hajgató, Paál

and Gyires-

Tóth, 2020)

PPO, E-PPO EPANET Net3 E-PPO achieves the better performance in minimising tank level fluctuations and pump

energy consumption.

(Hu et al.,

2023)

KA-PPO Anytown KA-PPO controls pump speed to keep junction heads in acceptable range, minimise water

age and increase pump efficiency

(Xu et al.,

2021)

Water quality PQDQN Sao Paolo, Brazil A novel DST and WQR expert system for DMODRL. PPQN outperforms the other

algorithms.

(Hasan et al.,

2019)

Asset management GCN-DQN Rancho Solano Zone III Novel problem setup to test resilience post-earthquake. Use of GCN as function

approximator and transfer learning greatly improves results.

(Fan, Zhang

and Yu, 2022)

Stormwater systems Flood control DQN, DDQN, PPO1,

PPO2, A2C, Voting

Sewer system in eastern

China

Novel method to improve the reliability of DRL algorithms (voting). Novel emulator that

outperforms benchmarks in modelling storm water systems.

(Tian, Liao,

Zhi, et al.,

2022)

DDPG Norfolk, Virginia, USA DDPG used for flood mitigation in real-time. Better results than rule-based control and

faster than model predictive control by 88x.

(Bowes et al.,

2021)

Valve control DQN Ann Arbor DQN algorithm successfully controls SWMM but raises issues of reliability for real-world

application. Serves as a starting point for further research.

(Mullapudi et

al., 2020)

Wastewater

systems

Dissolved oxygen

settings

Deep SARSA, DQN BSM 1 DQN algorithm outperforms all RL and DRL methods used to simultaneously increase

environmental efficiency and minimise energy consumption.

(Nam et al.,

2020)

Multi agent DDPG Jiangsu Province, China Life cycle assessment proven as a superior reward function for a multi agent DDPG in

minimising environmental impact.

(Chen et al.,

2021)

Pump control PPO Fábrica da Água de

Alcântara, Portugal

WWTP pump control using wastewater intake rate forecasting to improve energy efficient

and tank level violations with respect to normal operating conditions.

(Filipe et al.,

2019)

75

pH control, tank

level control

Multi agent DDPG Servo-regulatory

MATLAB test

Multi agent DDPG used to improve real time control of pH and tank levels with respect to a

proportional integral controller.

(Panjapornpon

et al., 2022)

Raw water supply Sediment control PPO Yellow river pumping

station

PPO outperforms experts’ manual strategy and decreases energy consumption by 8.33%.

Should be compared to other optimisation algorithms.

(Z. Li et al.,

2023)

76

3.5. Future Work and Novelties
As repeatedly displayed throughout this review, the field of deep reinforcement learning is

growing rapidly and expanding across various real-world applications; the most recent of

which being the water industry. This field of application is relatively new and is brimming with

new possibilities for the real-time control. Extending this technology to the operational

management of water systems is a field of untapped potential with many avenues to explore.

DRL provides a method to continuously train the model to react and adjust to the environment

it is placed in. This ability for unsupervised learning makes DRL a great tool for the

instantaneous optimisation of any foreign network hence possibly globalising it water

networks across the country. Researchers are therefore encouraged to experiment with simple

DRL algorithms in different aspects of water distribution networks, stormwater systems, water

treatment and sanitation, wastewater management such as strategic planning and asset

management. The link between leakage and greenhouse gas emissions has been repeatedly

mentioned in water management literature (Negm, Ma and Aggidis, 2023a) due to its

relevance in the research community. It will be interesting to extend DRL algorithms in water

applications to minimize carbon emissions.

As this is the first review dedicated to deep reinforcement learning in UWS, the collation of

this evolving field should be constant to act as a beacon to new researchers. More review

papers will also help define the community’s direction, evaluate recent findings, and reveal

possible novelties. Nevertheless, it is essential that researchers interested in this field spend a

considerable amount of effort understanding the fundamentals of DRL. This will help clear any

misconception on the applicability of the field and highlight any new advancements. Hopefully,

this will steer academics away from repeating mistakes. More research articles with the

purpose of formalising methods of DRL application would serve as a great bridge for aspiring

researchers. Whilst researcher focus on testing DRL on models and software case studies, it is

necessary to validate the use of DRL as controllers in real-world case studies. Finally, focusing

on the application of DRL in graphical based distribution systems such as the electrical

distribution networks will provide a clearer perspective on possible overlaps and trends that

could benefit water distribution.

To fuel further research, the research community should focus its efforts on benchmarking

scalable DRL environments for testing. Early efforts to benchmark environments can save

upcoming researchers the need to repeatedly contextualise the optimisation problem in the

scope of DRL. These environments should be able to communicate effectively with the most

popular hydraulic simulators (e.g., EPANET, SWMM and so on) through wrappers such as

77

PYSWMM (McDonnell et al., 2020) and EPYNET (Vitens, 2017). They should also be written in

the necessary syntax to include benchmarked DRL libraries such as Stable Baselines, PyTorch,

TensorFlow and so on. As this is an engineering application, researchers should aim to develop

models that focus on reliability and scalability. Demonstrations of these algorithms acting on

live data and ground-truth models in real-time should be the objective from an engineering

perspective.

3.6. Concluding Remarks
After introducing the proposed field of DRL in the water industry, the field was contextualised

in the realm of artificial intelligence and machine learning. The main advantages and

properties of reinforcement learning were highlighted to explain the appeal behind the

technology. This was followed with a gradual explanation of the formalism and mechanisms

behind reinforcement learning and deep reinforcement learning supported with mathematical

proof. Different computing fields were explained thoroughly to highlight the origins of

commonly used computing methods in DRL. Furthermore, the milestones, trends and

challenges of deep reinforcement learning were discussed to develop a better understanding

of the current research area. The main research articles that have adapted deep reinforcement

learning methods to solve problems in urban water systems were review thoroughly and

summarised in Table 3-1. Finally, future works and recommendations were included to provide

a clear view for the application of DRL in the water industry. The main conclusions from this

section can be described as follows.

Deep reinforcement learning improves on reinforcement learning using deep neural networks

for function approximation. This has improved scalability and resulted in many successes

across simulated and real applications.

Current DRL trends tackle high dimensional complexity by mimicking human psychology and

natural hierarchy structures.

The field of deep reinforcement learning can benefit from better classification to help new

researchers navigate better.

The application of DRL in the water industry is still in its infancy yet it shows great promise to

improve our current practices with water. Early efforts to benchmark DRL test beds and

environments will aid the growth of this topic.

The use of DRL as a method for pressure management in water distribution networks has not

been tested before yet it shows promise due to DRL’s ability to tackle dynamic scenarios in

78

other UWS applications. We believe that applying DRL as pressure management strategy could

bring us closer to real-time leakage prevention and increase the resilience of our WDNs.

79

4. Water Network – Deep Reinforcement Learning Ecosystem

The water distribution network – deep reinforcement learning (WDN-DRL) ecosystem is the

name given to our data architecture used to simulate real and modelled leakage scenarios

through a closed-loop system between the hydraulic solver and the optimisation algorithms.

Establishing the tools necessary to set this architecture and defining the parameters of the

leakage scenarios were essential predecessors to developing an effective ecosystem. Hence

why, the research discusses the design and build choices necessary for the development of this

WDN-DRL ecosystem.

4.1. The Leakage Problem

The leakage problem is a well-researched issue that plagues most water distribution networks

and appears in two general forms. Background leakage is the term given to small leak events

that lie under the level of detection using our current technology. Their undetected nature

makes them dangerous as they cannot be mitigated using active leakage control (ALC)

strategies and must solely on pressure management. Despite their low magnitude, multiple

occurrences of background leak events are registered through effective leakage assessments

and their resulting increase in non-revenue water. They can be further proven through

discrepancies between accurate network models and real models.

Alternatively, burst events are a result of a noticeable failure in WDN infrastructure that is

often easily detectable due to its repercussions on the hydraulic properties of the network.

Hence why, burst leakage can benefit from both ALC and pressure management. These events,

despite their severity, are often handled quickly through a dispatch of technical help and

advanced asset management to decide whether replacing or repairing the failed infrastructure

is the favourable option for leakage control. Therefore, pressure management of such events

serve as a temporary yet effective contingency until the burst location is identified and

resolved. This process of detecting, locating, and resolving burst events can vary from hours to

months depending on the utility’s strategy which further proves the benefits of introducing

pressure management as a contingency to minimise the financial and environmental burden of

burst events. Advanced pressure management is achieved by ensuring two main objectives

which are minimising leakage rates across all nodes and ensuring nodal pressure remain

between 10m to 70m to avoid OFWAT (regulatory body) DG2 violations (OFWAT, 2004). Nodal

pressure limits help maintain water supply to consumers without affecting asset life in

accordance with the regulatory body OFWAT.

80

4.1.1. The Hydraulic Model

Model Building

Understanding leakage can only be achieved by observing the hydraulic effects of those events

throughout the WDN through hydraulic analysis. Hydraulic models of WDN are often created

to achieve that using software derived from electric grid systems (Walski, 2003). These models

are assembled by layering geographical data such as elevation and network maps, intrinsic

network data such as pipe information (diameter, length, roughness) and network

components, operational data such as pump speeds and valve settings, customer data such as

demand patterns to simulate the hydraulic properties of the WDN. This information was

initially sourced from system maps however Geographical Information System (GIS) have been

the most popular choice in recent years. GIS model links thematic layers of data together

geographically to determine relationships between data. Therefore, it can integrate query and

statistical analysis with geographical benefits offered by maps (ESRI, 2023). Operational data

can be extracted from SCADA (Supervisory Control and Data Acquisition) systems from water

utility control systems. Finally, data is also collected from Customer Information Systems (CIS)

to measure or predict customer demand pattern. Data was gathered from test networks in the

research community and Northumbrian Water utility to develop the hydraulic models for the

experiments.

Hydraulic software tools are readily available among water utilities and the research

community, with options available for both free and commercial versions. Some hydraulic

solvers can accommodate for different fluids with different hydraulic properties and multi-

phase flow simulations. However, this research is only concerned with modelling water (single-

phase) flow. In addition, several of the commercially available software include an in-built leak

detection module that uses optimisation strategies to identify leaks. A summary of hydraulic

model platforms for pressurised fluid pipelines and pipe networks can be found below in Table

4-1.

81

Table 4-1 Hydraulic Solvers

Hydraulic software Fluid type Leak detection module License type

Single – phase flow

EPANET Water Unavailable Free

LOOP Water Unavailable Free

CADRE flow Water Unavailable Commercial

Pipe Flow Expert Water Unavailable Commercial

Synergi Pipeline Simulator All fluids Available Commercial

InfoWorks WS Water Available Commercial

WaterGEMS Water Available Commercial

For the purpose of this research, it was necessary to use the benchmarked hydraulic solver -

EPANET- as it is widely used in both research and industry making it a suitable option. In

addition, the availability of application programming interfaces (APIs) between EPANET and

python aids in the communication between the bespoke environment and the EPANET

software.

Introducing Leak Events

As mentioned in leakage management literature, leakage events are often described in terms

of burst events and background leakage where background leakage is the name coined for

leakage events lie under the detectable range. In the UK, this is assumed to be leakage with

flow rates less than 0.5m3/h (equates to 1.39 L/s) in the pressure of 50m and a leakage

exponent of 0.5 (García and Cabrera, 2007). EPANET computes friction headloss using the

Hazen-Williams formulas. It also uses the pressure dependent leakage equation (2-9) rewritten

below, rather than the FAVAD equation to compute leakage flow rates. Essentially, EPANET

introduces leaks by changing the emitter coefficient.

𝑄𝑙 = 𝑘𝑃𝑛 (2-9)

Where Ql is the leakage flow rate (L/s), P is the nodal pressure (m), k is the emitter coefficient

(Ls-1m-0.5), and n is the leakage exponent. Rearranging, equation 2-9 can help us determine the

threshold for emitter coefficient that model background leakage (Eq. 4-1).

 𝑘 = 𝑄𝑙/𝑃𝑛 (4-1)

Using the figures mentioned in (García and Cabrera, 2007), we can conclude that background

leakage can be denoted as leaks with emitter coefficients less than 0.196 and burst events

82

have emitter coefficients greater than 0.196. This coefficient marks the boundary between

detectable leakage (bursts) and undetectable (background) as calculated from (García and

Cabrera, 2007) . The emitter coefficient on each node is also calculated using equation (3-2)

below.

𝑘 = 𝑐 × ∑ 0.5 × 𝐿𝑖𝑗
𝑀
𝑗=1 (4-2)

Where k is the emitter coefficient (Ls-1m-0.5), c is the discharge coefficient (Ls-1m-1.5), M is the

total number of nodes in the network, and Lij
 is the length between the nodes i and j (m). The

discharge coefficient depends on the shape and the diameter of the neighbouring pipes.

Another important decision was the pressure exponent (n) which varies between 0.47 to 2.5

depending on soil properties, pipeline characteristics and failure type (Walski et al., 2009). The

original use of the equation is to estimate the laminar flow through an orifice which uses a

leakage exponent of 0.5 or transitional flow with a leakage exponent between 0.5 and 1.

However, laminar, and transitional flowrate must be very small and insignificant which does

not accurately reflect practical WDN operations. Studies have proven that the range in leakage

exponent can be explained with the pressure-induced variable leakage area (Darweesh, 2022).

Consequently, in our experiments we adopt the assumption that n=1.18 which is widely-used

in leakage control literature (Araujo et al., 2006; Saldarriaga and Salcedo, 2015b). The emitter

exponent describes the overall state of the network where higher exponents refer to aging and

less resilient assets. Therefore, a higher emitter exponent would indicate higher leakage rates

as seen in equation 2-9 and vice versa.

Figure 4-1 demonstrates how these modifications in emitter coefficient and leakage exponent

appear in the Epanet software. For the burst scenarios, an emitter coefficient between 1 Ls-1m-

Figure 4-1 Modifying emitter coefficient and leakage exponent in EPANET.

83

0.5 and 10 Ls-1m-0.5 will be selected for three randomised nodes to model the effects of failure

events caused by large bursts whilst background leakage will be modelled using a range of

discharge coefficients between 0 Ls-1m-0.5 and 0.194 Ls-1m-0.5 for all the nodes across the

network to emulate a WDN with undetected background leakage.

4.1.2. Markov Decision Process and RL Context

Before designing the WDN-DRL ecosystem, the leakage problem must be redefined using the

Markov decision process (MDP) formalism. Additional definitions of necessary RL terms will be

contextualised for the leakage problem. This section will prove as a useful preamble to

creating the central python environment.

Markov decision processes (MDPs) is a mathematical framework that effectively models

stochastic decision making in dynamic scenarios where the result is determined through

sequential actions. They are the foundational theory behind reinforcement learning (and deep

reinforcement learning). The notations used in MDP include reward, agents, actions, state, and

environments which serve as a basis for the second-order notations of RL terms such as

observation, episode, and policy. MDP is formed through iterations of the original Markov

Process (MP). After introducing rewards to make Markov Reward Process (MRP), actions are

incorporated to form the Markov Decision Property (MDP). The general Markov property

stipulates that the next state can be determined solely from the current state, which holds all

the relevant information of the past (Lapan, 2019). MDP includes five main components

denoted by the five-tuple (S,A,P,R,γ) that stand for states(S), actions (A),

probabilities/dynamics (P), reward (R) and initial state (γ) (Puterman, 1990; Desharnais et al.,

2004) and can be explained through the graphical representation in figure 4-2 below.

Figure 4-2 Fundamental MDP model

The agent is the physical component that interacts with the environment through actions,

taking into consideration the environmental states and receiving rewards. In engineering

applications, this tends to be an actuator. In our experiments, the agent is a garrison of

84

pressure reducing valves (PRVs) optimally placed in the network and/or variable speed pumps

(VSPs).

The action (At) denotes the steps the agent can take to influence the environment, altering the

environment’s state and the perceived reward. These actions are often modelled after the

actuator’s possible movement. In our experiments, each action simultaneously sends signals to

control distinct PRV settings or both PRV settings and VSP speeds. This simultaneous control

provides the ability to replace the function of water utilities’ control rooms and enables our

agent to take full control of the network during each iteration.

In the most general sense, the environment is the everything that exists outside the agent (i.e.,

the universe) however we limit the environment to the surroundings that interact with the

agent. Our scope limits the environment to the water distribution network it is placed in. The

WDN is modelled in EPANET to include all the necessary data from practical scenarios to

effectively train and test the agent. The environment provides the agent with dynamic

transition probabilities that account for the three-dimensions of initial state, target state and

action. Using the provided action, the environment can compute the next state using its

transition probabilities to reach a new state and the resulting reward. Due to the multiple

functions in the environment, it is regarded as the centrepiece of DRL application.

The state (S) is an overarching representation of the current environment. It must include the

relevant features of the environment for the agent to make a decision. Water distribution

networks share two main features which are the average pressure and flow in the system. In

the context of our problem, a third figure for leakage is necessary. After each action, the state

is updated using the environment’s transition probabilities and a new state is sent to the

agent.

Rewards are either dependent on the new state produced, or more commonly, on the state-

action pair. The purpose of this numerical value is to grade the agent’s behaviour, providing

critical feedback to improve our agent. In RL theory, this reward is used to calculate the

mathematical expectation of return, forming state value and state-action value which is

explained in detail in section 3.1. Reward formulation is a crucial part of the optimisation

process and requires multiple iterations to perfect. It should model our desired outcome

perfectly and include concessions for unexpected behaviour such as the exploration-

exploitation dilemma. Hence, we calculate our reward through minimising pressure violations

depicted in OFWAT’s DG2 (OFWAT, 2004) and minimising leakage rates. Our main objectives

are to keep nodal pressure above 10m as recommended by DG2 violations (OFWAT, 2004) and

85

minimise leakage rates. A discount factor is also used to tune the agent’s foresight and avoid

exploitation of the short-term reward. This prevents convergence at local minima or excessive

exploration which could lead to non-convergence.

Other DRL terms are commonly used to explain the problem setup which are useful to redefine

for the application in WDN. For instance, policy is the learnt probability distribution of actions

across each distinct state. It commands the agent’s behaviour by suggesting the action to each

state it encounters. Achieving the target policy is the primary goal of each DRL algorithm as it

ensures that the agent will always act in a desirable and optimised manner. Consequently, a

lot of emphasis has been placed on bridging the gap between the behavioural policy and target

policy through policy-driven algorithms. Some examples include proximal policy optimisation

and hybrid policy as well as value driven algorithms such as actor-critic algorithms (see Figure

3-2). It is essential to note that this scenario requires the use of stochastic policy, which, unlike

deterministic policy, chooses the following action from a probability distribution of the action

space rather than a single unwavering action. This allows the agent to account for the

uncertainties arising from the knock- on effect of leakage events in WDN operations, rather

than assuming a deterministic path. The target policy selected for this problem setup is

advanced pressure management for leakage and violation minimisation.

Observation is a DRL term that overlaps mostly with the definition of state in MDPs. It is the

relevant information received by the agent to aid with forming the policy and selecting the

consequent action. The observation influences the agent in a similar manner to the state in

MDPs. In RL language, state is used to describe the current iteration of the environment and

help communicate with the user whilst observations are used to guide the agent’s learning.

The observations used for the pressure management in WDN include the changes in leakage

rates after introducing new PRV settings and the full list of PRV and VSP settings. This will

provide the agent with a distribution of leakage rates to be solved and its current settings.

DRL problems are often described as episodic or non-episodic which describes the sequential

behaviour and terminating conditions of the problem. Non-episodic problems continue to run

until the agent reaches a terminating state (e.g., losing or winning a continuous game) whilst

episodic problems run until a time limit or iteration limit has been reached- completing the

episode. In the interest of managing WDNs, we treat the problem in an episodic manner that

models a day with new setting introduced each hour thus forming 24 distinct timesteps. This

matches the operations of an advanced WDN control room as most water utilities only modify

PRV settings daily.

86

Each paragraph in this section, redefines the relevant MDP and RL terms to provide context to

the pressure management problem. This supports the formation of the schematic used to

design and build the WDN-DRL ecosystem shown in figure 4-3 below.

Figure 4-3 WDN-DRL ecosystem schematic

As mentioned, the ecosystem starts by building a justified hydraulic model of real-life networks

through data provided from Northumbrian Water or research benchmark test networks to

provide the necessary transitions through EPANET which acts as a hydraulic solver software.

Our contribution is the environment and agent. The environment will be created in the next

section by extracting the relevant data from the hydraulic model and processing it in terms of

RL formalism such as state, observation, and reward. The environment will also relay the

actions provided by the agent’s algorithm in terms of processed valve settings or valve and

pump settings. The agent will be optimised using different neural network architectures to test

varying DRL algorithms. In our research, the design and use of the agents and environment are

the main contributions to the wider research community.

4.2. The Environment

An environment is the world that the agent interacts with. It provides the context and the

dynamics in which the agent operates, and it plays a crucial role in the learning process. The

environment also defines the state space, action space, and the rules for transitioning

between states and receiving rewards. Designing a decent reinforcement learning

environment must effectively challenge and test the learning capabilities of the RL agents

while providing a meaningful and well-defined task. Therefore, the environment must involve

several important considerations.

The environment must have clear objectives that are specific, measurable, and relevant to the

leakage problem at hand. The objectives must reflect the desired aims of the leakage problem.

87

This is achieved through a well-designed reward function that aligns with those aims and

encourages the desired behaviour. The reward function must provide insightful feedback to

the agent. The environment should be challenging enough to require learning and adaptation

but not so difficult that the agent cannot make any progress. It must have observable states

that provide sufficient information for the agents to make an informed decision. As such, it is

important to choose an effective observation space. Similarly, the action space design must be

appropriate for the task. It should allow the agent to express a variety of behaviours and

strategies.

In addition, limitations must be placed to avoid catastrophic failures during training. This is

especially important in real-world applications like water distribution. Other considerations for

real-world applications include realism where the environment should be representative of the

problem that the RL is intended to solve. Hence, emphasis was placed on exploiting the

hydraulic analysis capabilities of software such as EPANET. It is essential that the environment

is reproducible and scalable so that experiments are fair and feasible to train agents using

available resources. Creating or selecting the right environment for your RL task is a critical

step in the RL pipeline. The reinforcement learning community has developed benchmarks for

custom environments using the OpenAI Gym framework and DRL agents through Keras RL and

Stable baseline libraries. Using the benchmarks should make the environment accessible and

available to researchers and developers.

A special consideration in designing the environment was to ensure that other optimisation

algorithms can be run using the same environment. The environment must take into account

the application of meta-heuristic and numerical optimisation algorithms to solve the same task

and rewards. This will enable comparisons and conclusions to be drawn from the performance

of DRL and non-DRL algorithms fairly.

Reinforcement learning environments require three main functions which are init, step and

reset. The init space initialises the environment by defining all the necessary parameters and

spaces. This must be followed by a step function which explains how the agent introduces its

changes in the environment, defines the reward function and returns the new environment

data (rewards, observations and more). Finally, a reset function is used to end the episode and

initialise the next by resetting the parameters. In this section, we will cover all the methods

used to create our custom environment. Additional functions are usually implemented for data

manipulation and data visualisation purposes such as the render function. Reward abstraction

88

functions were used to allow the use of external optimisation algorithms in the training and

testing stages. The full WDN-DRL environment code is listed in Appendix A.

4.2.1. Wrapping and Communicating with Epanet

Building the environment in a realistic manner requires an accurate representation of the

hydraulic rules and properties of water distribution networks. To achieve this, we utilise the

hydraulic prowess of EPANET. Whilst the environment should be written in python, EPANET

does not have built-in API functionality. However, there are tools that allow users to interact

with EPANET models through its toolkit. These tools are used for tasks such as model setup,

simulation, and data retrieval. The EPANET Toolkit is a set of dynamic link libraries (DLLs) that

allow the incorporation of EPANET's functionality into software applications. It allows

programming languages such as C/C++ pr python to create custom applications that interact

with EPANET models. There are Python wrappers available for the EPANET Toolkit, making it

easier to use EPANET through Python scripts. The most popular wrapper is called EPYNET

which provides a Pythonic interface for creating, analysing, and simulating EPANET models

(Vitens, 2017). This can be shown in Figure 4-4.

Figure 4-4 EPYNET wrapper communication schematic

The EPYNET wrapper allows the users to access all EPANET features through an object oriented

pythonic interface, except chemical calculations which are irrelevant to the leakage problem.

Using this wrapper, it is possibly to simulate steady state (single timestep) and extended

period (multiple timestep) simulations. Since the leakage problem is highly dependent on

varying customer demand patterns and temporal dependencies, it is necessary to evaluate

extended period simulations (EPS). EPS runs a full 24-hour simulation using the provided

hydraulic model except without an option to alter valve settings or pump speeds during the

simulation. This is resolved by redefining the EPS simulation through many steady state

simulations that read demand patterns and events iteratively. This method allows us to

simulate the 24 timesteps for each hour of the day with an option of altering our actuators and

89

receiving new results. Having this agency can allow the user to also introduce leakage at

different times and mitigate the leakage accordingly. Changing time parameters can allow the

user to increase time steps to simulate up to each minute of the day, as long as the demand

patterns used in the model can match these increments.

In Figure 4-5, flow rates for a node before introducing a leak (blue), after the leak (orange) and

after decreasing the pressure in the node through valve action (green) are demonstrated.

These events were introduced midday at the 24th timestep (each timestep being 30 minutes

long). Experimenting with EPS through incremental steady state simulations proved successful

as it permits action and evaluation throughout the simulation, which is necessary to create a

real-time pressure optimisation strategy. Figure 4-5 highlights how leakage influences the

demand on nodes through an additional leakage flow rate. It also highlights how exploiting the

pressure-leakage relationship (Eq. 2-3) can partially mitigate the effects of leakage through

pressure management. In this case, we introduced a burst to a random node (J88) on the 12th

hour of a 24hr extended period simulation.

Figure 4-5 Introducing leakage and action using EPYNET.

It should be noted that the node’s inflow continues to follow the designated customer demand

pattern with the minimum night flow present between the 8th and 10th timestep, signifying

4am to 5am. The EPYNET wrapper will be utilised in the environment building to harness the

hydraulic functionalities of EPANET, harmonised with the availability of DRL benchmarking tool

and algorithms in python programming.

90

4.2.2. Environment Spaces

Reinforcement Learning (RL) environments consist of various components and spaces that

define the characteristics of the problem that an RL agent is trying to solve. For the purpose of

availability and reproducibility, benchmarked spaces are used such as the OpenAI GYM. It is

popular in the RL community for research, experimentation, and educational purposes. It has

helped advance the field of reinforcement learning by providing a common platform for

testing and comparing algorithms. GYM provides a framework for developing and testing deep

reinforcement learning algorithms. It is designed with key test environments that are often

used to compare and test DRL algorithms as a benchmark. It also allows users to create custom

environments using its space to define the action space, and observation space. The power of

writing environments using GYM’s framework is its versatility. It can be integrated with wider

RL libraries and other machine learning libraries such as TensorFlow and PyTorch.

Open AI GYM spaces consist of three main categories. The Box space (gym.spaces.Box) is a

continuous space defined by a lower and upper bound. Each dimension can take on any value

within the specified range. The bounds can be different for each dimension in the space or

uniform throughout. Secondly, the discrete space (gym.spaces.discrete) represents a single

dimension with a fixed number of possible discrete values. It is defined by a single parameter

which denotes the number of possible discrete values. Finally, the Multi-Discrete

(gym.spaces.MultiDiscrete) describes a multi-dimensional discrete space where each

dimension can have a different number of possible discrete values. It is defined by an array of

integers that specify the number of possible discrete values for each of these dimensions.

Other categories are available in GYM spaces including Multi-Binary (gym.space.MultiBinary)

which represents a multi-dimensional space of binary arrays. Spaces such as Multi-Binary,

Graph (gym.spaces.Graph) and Tuple (gym.spaces.Tuple) have limited use with external

libraries. Consequently, they are less popular and incompatible with most available DRL

agents. Understanding these different spaces is paramount for designing the environment and

selecting DRL agents. The choice of the action and observation spaces must reflect the nature

of the environment being designed and the specific problem being solved (pressure

management for leakage minimisation). These spaces set the limits of what an RL agent can

do, and they are crucial in shaping the agent’s behaviour.

Observation Space

The observation state, also called state space, represents all the possible observations an

agent can make in the environment. Accounting for the leakage problem, the observation

91

must describe the effect of the actions and leak on the consumption nodes. The leakage rates

in each node were used to denote this. In addition, it is crucial to highlight the current settings

implemented to serve as a starting point at each timestep. Hence, the observation space will

describe the nodal leakage rates and actuator settings. Flow rates are outputted as floats by

EPANET which means the leakage rates must be contained in a continuous space. The only

available continuous space in GYM is the Box space which will be unbounded to allow the

output of the leakage rate regardless of the value.

Action Space

The action space defines all the possible actions that the agents can perform within the

environment. In the context of the leakage problem, it is important to allow the agent to send

simultaneous orders to each actuator (PRVs or Pumps) to allow full control of the WDN during

each timestep. Henceforth, the Discrete box cannot be used for this scenario. Another

consideration is whether the new settings delivered to the PRVs, and pumps should be floats

(continuous) or integers (discrete). Since this is treated as an optimisation strategy, the agent

should be able to find the global maximum at the highest accuracy. This is representing using a

Box space that allows the agent to select any value within the specified bounds. The action

space will include as many dimensions as the valves and pumps being controlled with lower

and upper bounds of 0 to 70 for valves and unbounded speeds for the pumps if applicable.

4.2.3. Step Function

The step function is arguably the most essential building block of any environment. It is a

fundamental concept that defines how the agent interacts with the environment at each

timestep. This step is enacted once every timestep iteratively until the conditions to terminate

the episode is met. During each episode, the environment is designed to simulate 24h steps to

model the 24-hour timesteps in the demand pattern used. This allows the agent to change

each PRV simultaneously to match the change in demand for each hour. Repeatedly acting and

observing the consequences through the step function formulates the RL learning process

allowing the agent to develop a desirable policy that prioritises better decisions to maximise

long-term rewards. Therefore, several tasks must be performed within the step function which

are displayed in a flowchart in figure 4-6.

92

Figure 4-6 Step function flowchart

The step function must take the agent’s decision as an input. In DRL this decision stems from

an input of the observation where the trained agent can choose the appropriate action from

the predefined action space through its weighted neural network. This action must be

executed on the environment through interactions that accurately reflect the task. These

interactions must take the agent’s action as input and deploy it in order to update the

environment’s state. In terms of the leakage problem, this action is an array of PRV settings or

an array of PRV settings and pump speeds. These selected actions are assigned to their

respective actuators through communication with EPANET and retrieve the resulting hydraulic

properties of the water distribution system. In addition, the action must be assigned a

numerical reward based on its perceived effects on the environment’s state and observations.

Before the end of each iteration, important hydraulic results are logged for data visualisation

and reporting purposes. Finally, the reward and observations must be returned as feedback to

the agent, accompanied by a signal that indicates whether the episode has terminated.

Developing the step function for the leakage problem will require the hydraulic solver to

evaluate the water network under three conditions. Namely, the network before the leakage is

introduced (Perfect network), the network after the leakage is introduced (Leaking Network),

93

the leaking network after it is mitigated with the action (Solved Network). During each time

step, the leaking and perfect networks are compared to demonstrate the initial effect of the

leakage event, followed by contrasting the solved and leaking network to highlight the effect

of pressure management on the two networks. The difference in performance between the

solved and leaking networks will prove as a measure of the effect of the action on mitigating

the leak. Further details on how this effect is calculated can be found in section 4.2.4 that

defines the reward function.

4.2.4. Reward Control

In DRL, the reward is a term given to the numerical value that grades the agent’s behaviour in

its environment after taking an action. It is the primary feedback signal that represents how

good or bad the agent was in fulfilling its objectives. The aim of this reward is to guide the DRL

algorithm to develop optimal or near-optimal policies through maximising the cumulative

reward. In other optimisation algorithms, the reward is replaced with a cost function, fitness

value or a penalty which all denote the same concept. Understandably, the reward function

has considerable influence on the training and development of DRL models. Therefore,

designing an effective reward can be a significant task, and if poorly designed it can lead to

suboptimal or unintended behaviour in the learned policies.

Reward formulation is an intricate task, and it should reflect the desired objectives. Rewards

can be sparse or dense (assigned infrequently or more frequently). Despite sparse reward

being easier to design, they can make learning challenging due to limited feedback. By

contrast, dense rewards often accelerate training. A favourable reward can help agents

navigate the exploration-exploitation dilemma by encouraging a good balance between

learning new actions and choosing actions that maximise rewards. Another way to address this

trade-off is through the discount factor (γ) which helps the agent prioritise short-term gains

and long-term consequences. The reward signal is often processed by the DRL learning

algorithm to develop the value function (V) or policy objective function (J), enabling it to make

better decisions over time. Spurious rewards could promote unintended behaviour and force

agents to converge at local minima or undesired policies. Therefore, rewards must follow

reason and be subject to human monitoring. It's common to improve iteratively on the reward

function as insights are obtained from the agent's training and performance.

After several iterations, the general formula for the reward function consists of the evaluation

of penalties incurred by the burst events (PLeaking) and the action provided by the optimisation

algorithm (PSolved). The reward is the difference between the two penalties to highlight how the

94

action decreases the negative effect of the burst. These penalties are denoted by equation 4-3

which come together to form the reward (R) in equation 4-4.

𝑅 = ∑ [(𝑣𝑎𝑓𝑡𝑒𝑟 − 𝑣𝑏𝑒𝑓𝑜𝑟𝑒) ∙ 𝑠𝑐𝑎𝑙𝑒 1 + (
𝑄𝑙𝑏−𝑄𝑙𝑎

𝑄𝑙𝑏
) ∙ 𝑠𝑐𝑎𝑙𝑒 2𝑀

𝑗=1] (4-3)

Where R is the reward for the current step, j is the current node, M is the total number of

nodes, vafter is whether the nodal pressure at j is below 10m or above 70m after the mitigating

action and the vbefore is whether the nodal pressure at j below 10m or above 70m before the

action. The upper and lower limits of 70m and 10m represent the limits put in place by the UK

regulatory body OFWAT. The second half of the equation represents the effects of leakage rate

on the reward function. Qlb is the leakage rate at node j before the agent’s action and Qla is the

leakage rate at node j after the action. This creates a fair assessment of each leak change as a

proportion of its original leakage rate. The scales 1 and 2 are customer-defined integers

defined through iterative training and testing of DRL algorithms. The scales must be tuned

relative to each other to strike the best trade-off between the two objectives. PLeak is the

penalty calculated using equation 4-3 by contrasting the leaking network (after) and the

perfect network (before) whilst PSolved evaluates the solved network (after) with respect to the

perfect network (before).

The correct scales for the reward function are found iteratively for each case study by training

the same DRL algorithm using different scales, testing all the algorithms under the same

conditions, and plotting their performance in a three-dimensional plot. This plot highlights the

trade-off explored by each set of scales with respect to water saved and violations minimised.

By evaluating the plots with consultation from Northumbrian Water and Designed Network

Solutions, the best set is selected. Below the performance of 13 identical A2C algorithms

95

trained using different reward scales. Investigating the ratios between the reward scales helps

explore the trade-off between the two main objectives – leakage and pressure violations.

Figure 4-7 Episodic leakage rate vs reward scales

Figure 4-8 Episodic violations vs reward ratios

Figures 4-7 and 4-8 display how emphasising different objectives affect the agents’

performance where a ratio of 6:1 (scale 2:scale 1) produced the best result in minimising

leakage rate and a ratio of 1:5 produces the best result in minimising pressure violations.

96

Combining the two graphs help with the selection of the best overall reward scales ratio. This

is displayed in figure 4-9 below.

Figure 4-9 Episodic penalty vs reward scales

Clearly, the combination of the two objectives is best managed by placing a 3:1 emphasis on

leakage reduction with respect to pressure violation. Furthermore, a 3D contour plot helps

reveal an extra layer of time. Figures 4-10 to 4-12, show how the different agents interacted

during each step of the episode. The contour plot is used to notice trends between reward

formulation and agent behaviour.

Figure 4-10 Leakage rate - reward scales 3D plot

97

Figure 4-11 Violations - reward scales 3D plot

Figure 4-12 Penalty - reward scales 3D plot

The 3D plots identify a major vulnerable area between 3am and 6am due to minimum night

flow and higher pressures. The higher pressures increase leakage during the low demand

hours. It is also evident that extreme sides of the ratios (7 indicating 7:1; -7 indicating 1:7)

don’t necessarily produce the best results for the corresponding objective. Nevertheless,

emphasising the leakage objective has clearly produced the best overall results.

98

4.2.5. Render Function

Understanding the performance of the DRL agents provides more than a testing platform, it

can inspire improvements in the environment design and contextualise the results within the

leakage problem. The render function is not a critical function in reinforcement learning

environments. However, it is commonly used to visualise the interactions between the agent

and the environment. Displaying this data in a digestible manner can aid in diagnosing any

issues in the agent’s behaviour. It can also help with fine-tuning the reward function and the

agent’s hyperparameter as it provides more feedback on the agent-environment interactions.

Further analysis can be conducted between learnt policies by drawing comparisons from their

rendered visualisations. Rendering can incur additional computational costs, so the render

function is best reserved in the testing loop of DRL algorithms. In summary, rendering is a

useful tool for understanding, debugging, analysing, and tuning DRL algorithms.

Figure 4-13 Example of the interactive map render.

The environment was equipped with five unique rendering functions that highlight the main

aspects. The first rendering function is called the ‘interactive map’ and draws the WDN

architecture in full, as shown in Figure 4-13. The leaking nodes are coloured red, normal nodes

are coloured blue, links are coloured green, and valves are replaced with their current settings.

When the function is called, the environment records the map at each timestep with the

settings displayed. It then collated them in a video to display how the settings change

99

throughout the day as well as the locations of the leak nodes.

Figure 4-14 Example of reward spread across junctions render.

Another video rendering function is the ‘penalty across junctions’ option, shown in Figure 4-

14, which displays the penalties before (PLeak, red) and after (PSolved, blue) the agent’s action,

spread across the network’s junction for each step of the episode. This allows the user to

visualise how the rewards are distributed across the network and how the agent’s action

affects the network. Rewards with a value of 1 are clear indications of resolved pressure

violations as shown in Figure 4-14. Whilst larger rewards can be seen where leakage has been

reduced due to valve action. These figures highlight the learnt policy and where the agent has

placed emphasis to maximise its reward.

100

Figure 4-15 Example of settings render.

The ’settings’ render function, shown in figure 4-15, records the agent’s selected actions

throughout the episode to provide an agent’s point of view. This display can highlight whether

the agent has overcome the exploration-exploitation dilemma. If the agent shows no changes

in the PRV settings, then it is possibly exploiting a local minimum and has not learnt an optimal

behavioural policy. Whereas overly stochastic behaviour coupled with low rewards might

indicate an overly explorative policy. If the agent is able to produce similar ‘settings’ renders

under low disturbance and different renders under high disturbances, it is clear that it has

learnt a complete policy.

Figure 4-16 Example of Water Loss render.

101

The ‘Water Loss’ render, shown in Figure 4-16, is another plot that displays leakage rates from

the leaking network in red (leakage before action) and the solved network in blue (leakage

after action) during the episode. This highlights the hydraulic effects of the pressure

management algorithms on leakage in the network. It is important to note that both plots

must show similar patterns that are indicative of the customer’s demand patterns. The

variance in magnitude highlights the effect of the agent’s action and whether it has minimised

water loss.

Figure 4-17 Example of the states render.

Finally, the ‘states’ render displays more hydraulic data logged during the episode. As shown in

figure 4-17, the state’s visualisation plots three main graphs that show the average pressure,

the total water loss, and the average flow of the WDN in three subplots respectively. In each

subplot, the user can visualise how the actions have affected these properties to draw more

conclusions. It is beneficial to see the agent minimise fluctuations in the average pressure as it

strives to minimise nodal pressures at leakage nodes.

Further visualisation tasks may be necessary such as plotting the rewards gathered during the

episode hence why a report function was also designed. The report function exports all the

logged metrics to an external excel file. This includes the observations, water loss, flows,

pressures, violations, and penalties of each junction as well as the current observation, and list

of valve settings for each step of the episode. Furthermore, a summarised spreadsheet of

states and rewards of both the leaking and solved networks is coupled with a full history of

settings for each episode. These reports are used for detailed analysis and conclusion of

agents’ performances.

102

4.3. The Agents

Deploying agents is simple using a well-written environment that follows OpenAI GYM’s

formalism. Several libraries have customisable pre-built DRL agents that are deployable in

GYM-based environments such as Stable Baselines 3 (SB3), and Keras RL. Otherwise, agents

must be built from scratch using TensorFlow and PyTorch. These libraries include state-of-the-

art algorithms such as Advantage Actor Critic (A2C), Proximal Policy Optimisation (PPO), Deep

Deterministic Policy Gradient (DDPG) and more. The most extensive library is the Stable

Baselines 3 which is a set of improved implementations of DRL agents based on OpenAI

Baselines. It features a unified structure for many algorithms boasting visualisation tools,

Tensorboard logging and thorough documentation. The only limitation in agent selection is

compatibility with the action space. Table 4-2 outlines the different algorithms available and

their compatibilities. The action space used in the WDN-DRL Ecosystem is a continuous (Box)

space meaning that the available agents are Augmented Random Search (ARS), A2C, Hindsight

Experience Replay (HER), PPO, Recurrent PPO, Soft Actor Critic (SAC), Twin Delayed DDPG

(TD3), Truncated Quantile Critics (TQC), Trust Region Policy Optimisation (TRPO), DDPG, and

Normalized Advantage Function (NAF) as shown in table 4-2 below.

Table 4-2 Available DRL agents

Abbreviation Name Box Discrete MultiDiscrete Library

ARS Augmented Random Search SB3

A2C Advantage Actor Critic SB3

DDPG
Deep Deterministic Policy

Gradient
 SB3

DQN Deep Q Network SB3

HER Hindsight Experience Replay SB3

PPO Proximal Policy Optimisation SB3

QR-DQN Quantile Regression DQN SB3

Recurrent

PPO

Recurrent Proximal Policy

Optimisation
 SB3

SAC Soft Actor Critic SB3

TD3 Twin Delayed DDPG SB3

TQC Truncated Quantile Critics SB3

TRPO
Trust Region Policy

Optimisation

SB3

103

Maskable

PPO

Maskable Proximal Policy

Optimisation

SB3

DQN Deep Q Network Keras RL

DDPG
Deep Deterministic Policy

Gradient

Keras RL

NAF
Normalized Advantage

Function

Keras RL

CEM Cross-Entropy Method Keras RL

SARSA
State-Action-Reward-State-

Action

 Keras RL

Importantly, through testing and comparisons, the best performing algorithms are selected for

the case studies. The agents are trained for 20,000 timesteps on the environment created.

Since we create our scenarios from the hydraulic files on epanet, our minimum data

requirements were the demand patterns, node lengths and GIS data needed to create the

input file.

Furthermore, various neural network architectures will be tested and hyperparameter tuning

unveils the best possible version of the selected agents. In this section we explain the agents

used in the case studies which produced the best results. The agents used fall into three main

categories of hybrid, policy-driven, and distributional. The full code used to train the DRL

algorithms, save the models and deploy them in the test scenario is shown in Appendix C.

4.3.1. Hybrid DRL Agents

Advantage Actor Critic (A2C)

A2C is an on-policy model-free DRL algorithm where two neural networks communicate to

improve the algorithm’s performance. The actor’s neural network follows a policy-driven

method to produce an action which will be evaluated using the value-driven critic neural

network. Whilst the actor dictates how to act in a method similar to the PPO algorithm, the

critic evaluates how well that action was in a method similar to the Deep Q-Network (DQN).

The actor is influenced by the critic through a temporal difference (TD) error loop. This is

shown in the schematic in figure 4-18.

104

Figure 4-18 Advantage Actor Critic model schematic

This helps in creating two diverse experiences of acting and critiquing to enhance the overall

learning process. In this algorithm, we use identical setups to create the agents. A key concept

in A2C is the use of the advantage function (Eq. 3-9) in the critic network rather than the

original value function. The advantage function evaluates the action’s benefits relative to the

average action. Doing so, A2C reduces variance in the learning process leading to more stable

and efficient learning.

The agent’s neural network architecture consists of two main sections. The function

approximator is followed by the network architecture as displayed in figure 4-19 below. The

observation states (nodal pressures and valve settings) pass through a feature extraction class

to abstract the input data. This is then fed into a fully connected deep neural network with an

architecture of two hidden layers of 64 neurons each. Each layer is equipped with a tanh

activation function and an Adam optimiser class that lead to the output layer with the size of

the action space. The feature extractor is named the ‘Nature CNN’ which comprises of a

convolutional neural network first deployed in (Mnih et al., 2015). This method consists of

three hidden convolutional neural network layers. The first layer has the size of the

observation space x 32 with a stride of 4 and kernel size 8 followed by the second layer of size

32x64 with a stride of 2 and kernel size of 4 and finally the third layer takes the shape of 64x64

with a stride of 1 and kernel size 3. All three layers use a Rectified Linear Unit (ReLU) activation

function, and the final output is flattened to be processed by the network architecture.

105

Figure 4-19 A2C Policy Network Diagram

Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy hybrid DRL agent that serves as the alternative to deep Q-learning

designed for continuous action spaces. On the critic’s side, exhaustively computing Q values

for each action in a continuous space is too computationally expensive. By assuming that the

state action value (Q-value) is differentiable with respect to the action, DDPG sets

deterministic policy that exploits this fact and reduces the computational load significantly.

This is done using the mean squared bellman error (MSBE) shown below (eq. 4-5) Lillicrap et

al., 2016).

𝐿(∅, 𝐷) = 𝐸(𝑠,𝑎,𝑟,𝑠,𝑑)~𝐷
 [(𝑄∅(𝑠, 𝑎) − (𝑟 + 𝛾 ⋅ 𝑄∅𝑎′

𝑚𝑎𝑥 (𝑠′, a′)])2] (4-4)

Where 𝑄∅(𝑠, 𝑎) is the predicted state-action value, D is a collected set of transitions, d is the

terminal state. The immediate reward is denoted as r, γ marks the discount factor, and the

expression 𝑄𝜋𝑎′
𝑚𝑎𝑥 (𝑠′, a′)is the expected value of the maximum next state-action's value.

L is the loss function which compromises of the square of the expected state-action value

(Q(s,a)) minus the sum of the reward and the discounted expected next state value Es′[V(s′)]. Q

learning algorithms for function approximators often rely on MSBE minimisation. In this case

106

we use a replay buffer to build the transition (D) set using memories of previous experiences.

The size of the replay buffer effects the learning process where having a small buffer causes

overfitting and large buffers could include outdated experiences.

On the actor’s side, DDPG builds a deterministic policy (πθ) using the assumption that the Q

value is differentiable with respect to the action. This is achieved by performing gradient

ascent to solve the policy parameters to maximise the expected Q value. DDPG is known for its

high convergence properties yet building deterministic values can be sub-optimal for real life

engineering applications. DDPG is implemented using the SB3 library which uses the following

deep neural network formed of three layers of convolutional neural networks (CNN) for

feature extraction and two fully connected layers for policy development as shown in figure 4-

20. The hidden layers of the feature extractor contain three CNN layers with 32 nodes, 64

nodes and 64 nodes. The kernel size for the first layer is 8 with a stride of 4, the second layer

has a kernel size of 4 and a stride of 2, and the third layer with a kernel size of 3 and a stride of

1. The fully connected hidden layers have 400 nodes and 300 nodes respectively using Adam

optimisers and tanh activation functions.

107

Figure 4-20 DDPG policy network architecture

Soft Actor Critic (SAC)

SAC is an off-policy model-free DRL algorithm that improves on DDPG’s format by introducing

stochasticity and entropy regularisation. Including the entropy in the objective function

encourages stochasticity in the policy optimisation. This is achieved by altering the objective

function in the critic to include entropy (H) as follows:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝑎′~𝜋
𝑠′~𝑃 [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾(𝑄𝜋(𝑠′, 𝑎′) + 𝛼𝐻(∙ |𝑠′))] (4-5)

Where Qπ(s,a) is the current quality function using the current state-action pair (s,a), R(s,a,s’) is

the expected return based on the state (s), action (a), and the next state (s’). The next state

and action are derived from the transition probability (s’∼P) and the current policy (a’∼π). The

entropy is introduced as a bonus to the value function (H(∙|s’)) and regularised using the

discount factors (γ, α) (Soft Actor-Critic — Spinning Up documentation, no date).

108

The stochastic improvement helps the hybrid model navigate the exploration-exploitation

trade off by rewarding entropy and penalising overly deterministic policies. Therefore, SAC is

better fit in optimising tasks that require effective exploration. Like A2C, the soft actor critic

algorithm deploys an actor (policy) and critic (value function) networks qualifying it as a hybrid

method. The neural networks connect three layers of a function approximating CNN network

to the observation space. This feature extractor class consists of a 32-node layer with a stride

of 4 and a kernel size 8 followed by a second layer with 64 nodes, a stride of 2 and a kernel size

of 4. The final layer also consists of 64 nodes, a stride of 1 and kernel size of 3. The feature

extractor then feeds to the main network architecture that consists of two fully connected

layers consisting of 256 nodes each. The feature extractor utilises a rectified linear unit

activation function while the network architecture uses a tanh activation function and an

‘Adam’ optimiser class. The final layer is connected to the action space to produce a relevant

output. This deep neural network schematic can be seen in figure 4-21 below. The larger

neural network is likely to increase computational demand in comparison to A2C yet is still an

improvement to the DDPG neural network computational load.

109

Figure 4-21 SAC policy network diagram

4.3.2. Policy Driven DRL Agents

Trust Region Policy Optimisation (TRPO)

In the search for robust performance and monotonic improvements, researchers have

developed a policy gradient method through theoretically justified approximations – Trust

Region Policy Optimisation. TRPO is an on-policy gradient method suitable for both continuous

and discrete action spaces. Unlike normal policy gradient methods that keep policy updates

close in the parameter space, TRPO takes the largest step possible to improve performance

while satisfying a KL-divergence constraint that limits how close policy updates can be. In

vanilla policy gradients, small changes in the policy updates can lead to very different

performances meaning that bad steps can collapse policy performance completely. However,

TRPO’s monotonic improvements improves sample efficiency and overall reliability by tackling

the sensitivity in performance appearing from small updates in the policies parameters (Trust

110

Region Policy Optimization — Spinning Up documentation, no date; Schulman et al., 2014).

This is achieved using the equations below that dictate policy updates.

𝜃𝑘+1 = 𝐿(𝜃𝑘, 𝜃𝜃
𝑎𝑟𝑔𝑚𝑎𝑥

) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐷𝐾𝐿(𝜃||𝜃𝑘) < 𝛿 (4-6)

Where the next policy parameters 𝜃𝑘+1, is defined using the best policy parameters of the

surrogate advantage 𝐿(𝜃𝑘, 𝜃). The surrogate advantage is a measure of how the policy 𝜋𝜃

performs with respect to the old policy 𝜋𝜃𝑘
. The surrogate policy is dictated by equation 4-8

below. In addition, this parameter update must satisfy the condition where the average KL

divergence between policies across visited states 𝐷𝐾𝐿(𝜃||𝜃𝑘) remains below the pre-defined

KL-divergence limit 𝛿.

𝐿(𝜃𝑘, 𝜃) = [
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

 𝐴𝜋𝜃𝑘 (𝑠, 𝑎)]𝑠,𝑎~𝜋𝜃𝑘

𝐸 (4-7)

Where the surrogate advantage is derived from the expected advantage values of the old

policy 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) multiplied by the ratio of the current policy divided by the old policy
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

.

Figure 4-22 TRPO policy network architecture

The neural network architecture used to develop this algorithm is the multi-layer perceptron

neural network shown in figure 4-22 and is described as follows. The network architecture

111

consists of an input layer (the observation space), five hidden layers and the output layer (the

action space). The hidden layers are trained to develop the algorithm’s policy; three of which

are dedicated to feature extraction. The feature extraction neural network is the ‘Nature CNN’

consisting of three layers with 32 nodes, 64 nodes and 64 nodes respectively. The first CNN

layer (32 nodes) has a kernel size of 8 and stride of 4 while the second layer has a kernel of 4

and stride 2 and the third has a kernel size 3 and stride 1. All the feature extraction CNN layers

utilise a ReLU activation function and an Adam optimiser. The rest of the policy neural network

architecture is marked in red and involves two fully connected layers with 64 nodes each, an

Adam optimiser, and a tanh activation function. This then feeds into the algorithm’s action

space as the output layer.

Proximal Policy Optimisation (PPO)

First introduced by Schulman et al. (Schulman et al., 2017), proximal policy optimisation

describes algorithms the utilise policy gradient methods which alternate between optimising a

surrogate objective function and sampling data through environment interaction. PPO has

gained popularity due to its stability, ease of implementation and effectiveness in training DRL

agents. It attains the data efficiency and reliability of trust region policy optimisation algorithm

(TRPO) using first order optimisation hence improving sample efficiency and reliability. PPO

uses surrogate objectives such as Kullback-Leibler (KL) clipping and penalty (adaptive or

flexible) to improve performance. The PPO variant with KL penalty updates the policy

parameters similarly to its predecessor TRPO by penalising the KL divergence in the objective

function rather than having it as a hard constraint. On the other hand, KL clipping has no

constraints, however it limits KL divergence through specialised clipping. This clipping

surrogate objective improved performance greatly and resulted in higher gains than high

performing algorithms such as Advantage Actor Critic (A2C) (Schulman et al., 2017).

In the application of WDN pressure management, we utilise the PPO-clip algorithm using a

Multi-Layer Perceptron (MLP) neural network to optimise the agent. The algorithms use a

Multi-Layer Perceptron architecture to optimise the parameters of the policy through gradient

ascent. The policy gradient can be defined as the gradient of the objective function J in

equation 4-9.

∇𝜃𝐽(𝜋𝜃) = 𝔼[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|Τ
𝑡=0 𝑠𝑡)𝑅(𝜏)] (4-8)

Where the policy gradient is the gradient of the log of the parameterised policy (∇θ log (πθ

(at|st))) multiplied by the expected sum of returns (R(τ)) for timesteps (t) in episode length (T).

KL clipping will be optimised along with hyperparameter tuning to improve the agent’s training

112

and performance. The MLP neural network is identical to that of the TRPO policy network

shown in figure 4-22. This consist of 3 CNN layers for feature extraction and 2 fully connected

layer (FCN) for policy development.

Recurrent Proximal Policy Optimisation (Recurrent PPO)

Recurrent PPO is a model-free policy-driven deep reinforcement algorithm. It is an extension

to the well-known PPO algorithm that enables it to use Long Short-Term Memory (LSTM)

neural networks. Due to this simple change in neural network architecture, Recurrent PPO

performance has been heightened in applications that require agents to recognise patterns in

long-term dependencies. Hence, Recurrent PPO outperforms it predecessor in WDN

applications that require agents to understand the delayed consequences of current actions

(Pleines et al., 2022).

The original MLP architecture used is identical to that of the PPO and A2C algorithms except

the Recurrent PPO algorithm includes a LSTM module that consists of 1 layer of 256 nodes

(figure 4-23). LSTM nodes add a recurrent feature to the neural network allowing it to

recognise recurring patterns.

113

Figure 4-23 Recurrent PPO policy network architecture

Augmented Random Search (ARS)

ARS is a model-free DRL algorithm that utilises a simple random search algorithms with a few

augmentations on the parameterised policy equation. This was first introduced in (Mania, Guy

and Recht, 2018) where the authors attempted to improve sample efficiency in DRL models by

developing a method that harnesses simple random search. ARS was aimed to present the

simplest model-free method that can tackle current continuous control benchmarks in a more

sample efficient manner than (Salimans et al., 2017)’s evolution strategy (ES). Several policies

are created through random perturbations that are ranked depending on their performance.

The policy is updated based on the reward-weight sum of these perturbations. The adaptive

step size controls the magnitude of these policy updates effectively tackling the exploration-

exploitation dilemma. This process is repeated until the algorithm converges to the best

achievable policy. Results from the initial experiment show an improvement in sample

efficiency greater than 15 times than the best competing model-free methods and performed

routinely higher than standard PPO, A2C, and TRPO algorithms (Mania, Guy and Recht, 2018).

However, the ARS performance is plagued with high variance which suggests that the

114

estimations of sample efficiency don’t represent the performance of the RL algorithm

adequately (Mania, Guy and Recht, 2018). The ARS algorithm can deploy a linear policy

(without the use of a deep neural network architecture) or a MLP policy that uses a neural

network architecture identical to that of PPO and TRPO algorithms with three CNN layers and

two FCN layers. This makes it possible to experiment with ARS as reinforcement learning

algorithm rather than a deep reinforcement learning algorithm. ARS has shown its ability to

perform well with and without the use of deep learning as shown in (Mania, Guy and Recht,

2018).

4.3.3. Distributional DRL Agent

Truncated Quantile Critics (TQC)

TQC is a distributional model free off-policy DRL algorithm designed specifically to tackle the

overestimation bias present in most off-policy algorithms. Overestimation bias is a

phenomenon particularly present in algorithms that use function approximation such as neural

networks. It denotes the constantly higher estimated value for state-action pairs than their

true value which would lead to algorithms converging at suboptimal policies. Using function

approximators introduces a degree of uncertainty in the learning process hence amplifying this

overestimation bias. TQC innovates overestimation control by incorporating aleatoric

uncertainty using truncated quantiles. The truncated quantiles improve on the value

distribution by allowing the algorithm to prioritise the important region of the distribution and

neglect the less relevant regions. On the other hand, traditional distributional DRL that

represent the mean value distribution TQC also decouples the function approximators from

the overestimation control allowing the use of multiple neural networks to be ensembled in a

novel manner. TQC derives its stochastic policy updates from the SAC algorithms by

incorporating entropy to the policy function. Furthermore, it draws from QR-DQN’s

distributional methods to form its quantile critics.

The TQC schematic consists of three function approximators (deep neural networks) dictating

the actor, which determine the next action through entropy regularised policy updates; the

critic network, which estimates the state-action pair quantile value distributions; and the critic

target network, which is used to find discrepancies between the estimated value and true

value of the state-action pair. The discrepancy between the critic and the target critic is

represented by a Huber loss function that should be minimised by improving the critic’s

performance. TQC is ideal for environments with complicated and varied reward structures. In

this research, we utilise deep neural networks as function approximators for the actor, critic,

and target critic. These neural networks involve three layers of feature extraction using CNNs

115

and two FCN layers as shown in figure 4-24 below. All the layers use an Adam optimiser. The

activation functions used for the CNN layers is the ReLU function while the FCN layers use a

tanh activation function.

Figure 4-24 TQC Policy Network

4.4. Concluding Remarks

In this section, the data architecture designed to train and test deep reinforcement learning

algorithms on hydraulic models to optimise pressure management was explained thoroughly.

This included various sections that explained the leakage problem further and redefined it in

terms of DRL formalisms; details of designing and building the central GYM compatible

environment and a brief description of the main agents utilised in the case studies.

Initially, the differences between leakage types (background and bursts) were highlighted

followed by the main objectives of the leakage problem. Pressure management is used as a

contingency for background leakage and a temporary solution for burst events. Hydraulic

116

models are created by integrating various data sources such as geographical information,

network data, operational data, and customer data. Hydraulic solvers are used for modelling

WDNs and execute steady state and extended period simulations. Leakage events are

introduced in the model using pressure dependent equations and coefficients to control the

magnitude. The leakage pressure relationship is manipulated to identify the emitter coefficient

ranges that describe background and burst leakage in literature. It was found that emitter

coefficients between 0 to 0.196 signify background leakage and 0.196 onwards are burst

leakage. Furthermore, the leakage problem is contextualised with the concepts of Markov

Decision Process (MDP) highlighting key MDP components like rewards, actions, states, and

environments. It describes how pressure management in WDNs can be approached as a

reinforcement learning (RL) problem within the MDP framework. RL terms are also defined

with respect to the context of WDN pressure management. Insights into the challenges of

managing leakage in water distribution networks help set the stage for developing a

reinforcement learning-based solution within the defined MDP framework. The WDN-DRL

ecosystem is fully realised in the schematic displayed in figure 4-3.

In more detail, section 4.2 provides a comprehensive overview of the design and components

of the RL environment, tailored for addressing the leakage problem in water distribution

networks. The design and components of the reinforcement learning (RL) environment in the

leakage problem is explained. The environment should be challenging but not excessively

difficult. It must provide observable states and an appropriate action space to allow the agent

to make informed decisions. The environment leverages the hydraulic capabilities of EPANET

using a python wrapper (EPYNET) to enable programmatic interaction. Incremental steady-

state simulations are employed to simulate the effects of actions and leakage throughout the

day. OpenAI Gym is used to define action and observation spaces, providing extensibility and

compatibility with RL libraries like Stable Baselines 3, TensorFlow and PyTorch. Various space

types, including Box, Discrete, and Multi-Discrete, are explained and selected based on the

problem's nature to realise the environment. Subsequently, the fundamental functions of the

environment are clarified. The step function uses the actions chosen by the agent to interact

with the hydraulic model to update the environment state, calculate the rewards, and log

data. Formulating the reward is crucial to guide the agent’s behaviour and reflect how well it

accomplishes objectives. The reward function is derived to evaluate penalties for leakage

events before and after an action has been executed. Scale parameters in the reward function

are tuned to balance objectives. Additionally, agent-environment interactions are visualised

through five bespoke renderings. These figures use logged data to aid with debugging, analysis

117

and fine-tuning DRL algorithms. All the data produced from interactions in the environment

can also be logged to produce step and episode reports.

Finally, DRL agents are selected based on the availability of algorithms compatible with the box

action space. The highest performing algorithms used in the case studies are discussed in

detail. The choice of agents and their neural network architectures is based on their

performance in the specific problem and the ability to capture long-term dependencies and

patterns in the data. Further tuning of hyperparameters are conducted to improve agent

training and performance.

118

5. Background Leakage Case Study

Unlike burst events, background leakage is difficult to detect hence it is necessary to create

pressure controllers that are sensitive to these small changes and account for the water loss

they incur. In this chapter we detail the methodology developed to introduce background

leakage events to two water distribution networks (benchmark and real) and use a variety of

DRL and non-DRL optimisation algorithms to minimise the adverse effects of the leakage. The

reward function is optimised to ensure the objectives are achieved. This is followed with

diagrams and graphs explaining the results of the various algorithms and their ability to

optimise the reward and minimise water loss. Finally, the results are discussed thoroughly, and

conclusions are drawn. The main aims of this experiment are:

• Provide a method to mitigate background leaks in real-time through pressure control.

• Test the viability and scalability of different DRL models in WDN pressure

management.

• Highlight the differences between DRL performances to popular optimisation

algorithms.

• Discuss the performances of different DRL methods and the effects of hyperparameter

tuning.

The full case study including python files, figures, excel reports and hydraulic files can be

accessed privately on GitHub by following this link. In addition, the main results and figures for

this chapter is included in Appendix F and G.

5.1. Methodology

5.1.1. Optimisation algorithms

The non-DRL algorithms used includes a Nelder Mead (NM) algorithms to benchmark

numerical optimisation methods for non-differential objective functions. NM tends to produce

satisfactory results with low computational effort. The Nelder Mead algorithm is created with

a maximum number of function evaluations of 1000, absolute acceptable error in inputs

between iterations is 0.005, and absolute acceptable error in output between iterations is

0.01. A Particle Swarm optimisation (PSO) algorithm is developed using 30 particles and 20

generations in each run to increase the search space and reach a global optimum. It is based

on the idea of swarm intelligence. The use of PSO is recorded in optimisation of WDN pressure

management in (Mehdi and Asghar, 2019). Hence why, PSO was used as a benchmark for

meta-heuristic search algorithms. Differential evolution (DE) was chosen as the benchmark

https://github.com/AhmedNegmDRL/WDN-DRL

119

evolutionary algorithm due its ability to outperform general genetic algorithms (GA). We use a

DE algorithm with a population size of 30, 20 generations, a crossover rate of 0.25 and scale

factor of 1. It is another meta-heuristic algorithm with wide application in water distribution

based on the idea of selective breeding and evolution (Hajgató, Paál and Gyires-Tóth, 2020;

Bilal and Pant, 2022). Whilst meta-heuristic approaches do not guarantee a global optimum,

they tend perform quite well in non-differentiable applications. The code used to build the

benchmark non-DRL algorithm is written in the Appendix B for reference.

DRL optimisation included the gradient based policy algorithms Trust Region Policy

Optimisation (TRPO), Proximal Policy Optimisation (PPO) and Recurrent Proximal Policy

Optimisation (Recurrent PPO). Hybrid value-driven and policy driven algorithms such as

Advantage Actor Critic (A2C), Soft Actor Critic (SAC), Deep Deterministic Policy Gradient

(DDPG), are also used. An additional RL policy method that utilises random search of the policy

parameter is used for its ability to compete with the more sophisticated DRL algorithm which

is named the Augmented Random Search (ARS) algorithm. Finally, a distributional DRL

algorithm is also used which is called Truncated Mixture of Continuous Distributional Quantile

Critics (TQC). This cohort of DRL algorithms will be initially tested using their basic

hyperparameters before tuning the highest three performers.

5.1.2. Problem setup

Appropriately, the problem is initiated as a network with small leaks on every node. This leak is

calculated through the pressure-dependent leakage rate described in equation 2-9. The

leakage coefficient Kf is redefined depending on the discharge coefficient c and the length

between nodes i and j (Lij) as described in equation 3-2 and kept under the background

coefficient limit of 0.196 Ls-1m-0.5 as calculated in section 4.1.1. Following that, the networks

will utilise a universal leakage exponent of 1.18 which is the widely accepted value in literature

(Araujo et al., 2006; Saldarriaga and Salcedo, 2015b). The leakage rate and violation count at

each node before and after PRV action will be evaluated to explore the effect of the action on

the network. Algorithm 5-1 outlines the pseudo code of the background leakage case study.

120

Algorithm 5-1: Background leakage scenario pseudo code

Input: link flows and nodal pressures

Output: Reward

for each episode do

 initialise all valve settings to be 40.

 get link flow and nodal pressures for leaking network.

 get leakage rate of leaking network.

 initialise state s.

 for each step of episode, state s is not terminal, timestep is not 24.

 do

 a ← action given by optimisation algorithm for state s.

 evaluate network after action reward.

 get link flow and nodal pressures for solved network.

 get new leakage rate of solved network.

 reward r given by difference in leakage rate and pressure violations.

 laziness penalty if settings haven’t changes in three steps.

 get new state s’.

 log rewards, violations, leakage.

 take action a, observation, r, s'.

 s ← s'

 end

end

In this scenario, we imagine that the network is inherently filled with the undetected

background leakage forming our ‘leaking network’ followed with an action to then create the

‘solved network’ as displayed in figure 5-1 below. The reward (r) function will be calculated

based on equation 3-4 that calculates the difference between both networks’ weighted

penalties. The reward scales are modified to navigate the objective trade-off between water

loss and pressure violations iteratively using the method described in section 4.2.4. for each

experiment.

The limitations of this study includes its reliance on clear trusted data and optimised valve

locations. We also require reliability evaluations before deploying these algorithms on water

networks. Another limitation is the unknown effects of the optimisation algorithms on other

121

objectives of the WDN. In essence, focusing on pressure control for leakage management

might affect other WDN objectives in asset preservation.

We have therefore assumed that the hydraulic models can serve the digital twin of the real

WDNs and that the pressure-leakage relationship is defined accurately by equation 2-9. More

assumptions include accurate carbon emissions conversion figures as recorded in (Department

for Energy Security and Net Zero, 2023).

More details on the limitations and assumptions made in this study can be found in sections

7.1 and 7.2.

Figure 5-1 Background leakage scenario flow

5.1.3. Testing

In the testing stage, all optimisation algorithms were subjected to three full training episodes

consisting of 24 timesteps each modelling an hour of the customers demand patterns. The

resulting rewards and leakage were recorded and plotted for further data analysis and

comparisons. The time required to optimise pressure management was recorded to highlight

the computational effort incurred by each algorithm. Deep RL algorithms require training

before they are applied to the environment hence the separate training and test time; whilst

the other optimisation algorithms can be deployed instantly to the environment. These

experiments, also consider the computational effort required to optimise the scenarios. This is

displayed in a bar chart where the DRL test times are plotted separately from the training

times. After the entire cohort of DRL algorithms are tested and plotted against the benchmark

optimisation algorithms, the highest performing DRL algorithms are selected for further

hyperparameter tuning and re-tested. This is to highlight the effect of hyperparameters on the

training and performance of DRL algorithms. To facilitate that, a new evaluation method is

developed to create and test several algorithms under a parameter sweep. In figure 5-2 below,

the wall plot of the learning rate and discount factor sweeps of the advantage actor critic

algorithm is shown. Learning rate is a parameter between 0 and 1 which is measure of

exploration in the DRL algorithms where higher exploration is 1 and high exploitation (no

exploration) is a 0. On the other hand, the discount factor is a measure of foresight the

122

algorithm should have. A discount factor (ranging from 0-1) of 0 does not consider any future

consequences to the current action and only focuses on the current reward whereas a value of

1 forces the algorithm to consider all the consequent future rewards. The figure highlights the

effect of changing the parameter on the training curve of the DRL algorithm and how tuning it

can improve performance.

Figure 5-2 Hyperparameter Sweep. a) Learning Rate b) Discount Factor.

Whilst the sweep proved the importance of hyperparameters; the model’s sensitivity to

hyperparameters varied. Generally, these sweeps helped advise which values should be

avoided in algorithm design and which are favourable. Additional experiments tested

functionality such as linear scheduling of the learning rate and different combinations of the

discount factors.

5.2. Jowitt & Xu Network

The case study selected for this research is the medium-sized benchmark test network for

most pressure management applications in WDN; the Jowitt & Xu network. This network was

first introduced in (Jowitt and Xu, 1990) and quickly became the research community’s

standardised benchmark. The network consists of 22 nodes, 37 pipes and 3 tanks. Due to the

extensive work on choosing the correct valve location in previous research, we adopt three

valve locations presented in (Araujo et al., 2006). Figure 5-3 below illustrates the network

structure. The valve locations are denoted by the two opposite facing triangles whilst tanks are

shown as the half-filled rectangles and nodes are represented as dots. Finally, the nodes are

123

connected through a series of pipes which are shown as lines. The EPANET simulation helps

provide a colour map of current nodal pressures and link flows.

Figure 5-3 Labelled Jowitt & Xu network including tanks, PRVs, nodes, and pipes.

The pipe properties, nodal emitter coefficients and demand patterns were all modelled after

the standard test network (Araujo et al., 2006, p. 138,139). The network properties and data

are all displayed below in Tables 5-1 and 5-2.

124

Table 5-1 Benchmark pipe and node data

Pipe ID Length

(m)

Diameter

(mm)

Roughness

(m1/3s-1)

Node ID Elevation

(m)

Base Demand

(Ls-1)

Emitter

(Ls-1m-1/2)

P01 606 457 110 Junc 1 18 5 0.012055

P02 1930 457 110 Junc 2 18 10 0.033656

P03 5150 305 10 Junc 3 14 0 0.032088

P04 326 152 100 Junc 4 12 5 0.005562

P05 844 229 110 Junc 5 14 30 0.018383

P06 1274 152 100 Junc 6 15 10 0.019238

P07 1115 229 90 Junc 7 14.5 0 0.0053

P08 500 381 110 Junc 8 14 20 0.018853

P09 615 381 110 Junc 9 14 0 0.003532

P10 300 229 90 Junc 10 15 5 0.019837

P11 743 381 110 Junc 11 12 10 0.00627

P12 1408 152 100 Junc 12 15 0 0.02441

P13 443 229 90 Junc 13 23 0 0.016842

P14 249 305 105 Junc 14 20 5 0.01949

P15 3382 305 100 Junc 15 8 20 0.028884

P16 454 457 110 Junc 16 10 0 0.013467

P17 931 229 125 Junc 17 7 0 0.010957

P18 1600 457 110 Junc 18 8 5 0.005286

P19 542 229 90 Junc 19 10 5 0.009203

P20 777 229 90 Junc 20 7 0 0.010819

P21 2782 229 105 Junc 21 10 0 0.020118

P22 304 381 135 Junc 22 15 20 0.034997

P23 1767 475 110

P24 1014 381 135

P25 762 457 110

P28 2334 229 100

P29 832 152 90

P30 914 229 125

P31 1097 381 6

P32 822 305 140

P33 1072 229 135

P34 864 152 90

P35 711 152 90

P38 411 152 100

P39 701 229 110

P40 1996 229 95

P41 2689 152 100

125

Table 5-2 Benchmark consumption factors data and reservoir levels

Time (s) 1 2 3 4 5 6 7 8 9 10 11 12

Fc 0.61 0.61 0.41 0.41 0.41 0.41 0.81 0.81 1.23 1.23 1.13 1.13

23 55.2 55.3 55.5 55.6 55.7 55.8 55.9 56 55.7 55.4 55.2 55.1

24 55.2 55.3 55.3 55.4 55.4 55.5 55.5 55.5 55.3 55.2 55 54.8

25 55 55.1 55.2 55.3 55.4 55.4 55.5 55.5 55.5 55 54.8 54.7

Time (s) 13 14 15 16 17 18 19 20 21 22 23 24

Fc 0.92 0.92 0.92 0.92 1.03 1.03 0.92 0.92 0.82 0.82 0.61 0.61

23 54.9 54.7 54.6 54.6 54.5 54.5 54.6 54.7 54.8 54.9 55 55.2

24 54.8 54.8 54.7 54.6 54.6 54.5 54.7 54.7 54.7 54.8 54.9 55

25 54.5 54.4 54.3 54.1 54 54 54.2 54.3 54.5 54.6 54.8 54.9

The PRVs were installed to the benchmark on pipes P31, P01, and P25 using invisible nodes

Junc 16.5, Junc 13.5, and Junc 1.5 that don’t affect the hydraulic simulation. These locations

were chosen from literature (Araujo et al., 2006) as the best valve locations for the pressure

management of the Jowitt & Xu test network. Finally, the reward formulation was completed

through testing different reward scale ratios as detailed in section 4.2.4. The results proved

that a ratio of 3:1 favouring the leakage objective produces the best trade-off between the

two objectives of leakage and pressure violation minimisation. The pressure limits placed on

this water network encourage that nodal pressures remain between a minimum of 10m and a

maximum of 70m.

5.2.1. Results

When the algorithms were tested to minimise the background leakage, most of them managed

to solve the problem effectively and optimise the reward. However, their performance varied

greatly. The algorithms’ rewards over the three-day period were recorded in boxplot form with

the mean reward marked with an ‘x’ and the inner points marked with an ‘o’ in figure 5-4. Box

plots help demonstrate the algorithm’s performance throughout the episodes for clear

comparisons. Smaller box plots highlight the algorithm’s ability to achieve reproducible results.

In the initial testing stage, the difference in performance between the DRL models and the

benchmarked optimisation algorithms was clear as seen in figure 5-4. The differential

evolution (DE) algorithm scored the highest in reward maximisation at 41.61. This is followed

by the PSO at 40.95 and NM algorithm at 40.19. The stability of the DE algorithm was a clear

indication that the best result has been achieved by DE. The highest DRL algorithm was the

augmented random search (ARS) which displayed 13% decrease in performance in comparison

to DE. This was followed by the distributional DRL algorithm truncate quantile critics (TQC) and

its actor-critic predecessor soft actor critic (SAC). The main portion of the DRL models (PPO,

126

Recurrent PPO, A2C, TRPO) performed similarly with an average reward of 30-35 apart from

DDPG that yielded the worst performance with an average reward of 22.37.

Figure 5-4 Initial algorithm performance - Jowitt & Xu network

The corresponding processing speed is displayed in figure 5-5. Non-DRL computational time is

recorded directly whilst DRL algorithms’ computational time is split into training time and test

time. Training time denotes the time required to build and train the DRL model on the

environment before it is deployed into the testing environment. All DRL methods were subject

to an identical 20,000 timesteps of training to develop their neural network weighting and

minimise loss. Testing time consists of the time required to process all 72 timesteps that make

up the case study, saving logged data, and creating data visualisation figures. All training and

testing runs are performed using an AMD Ryzen 4700U, 200MHz, 8 processor CPU. The DRL

models far surpassed the benchmark models as displayed in figure 5-5. Processing times for

DRL algorithms are split into two sections: The training time to build the DRL model; and the

test time to run the background leakage case study. Hence, the test time represents how fast

the trained models would interact with the network and is equivalent to the benchmark’s

running time. The benchmark algorithms solved the case studies at various speeds with the

fastest being the Nelder-Mead optimisation algorithm (NM) needing 233.3s to complete the

problem, followed by the highest performing algorithm DE at 676s and PSO which required

1274s. In comparison, the DRL algorithms increased computational efficiency and speed

resulting in the fastest DRL model to complete the leakage problem in 22.1s which was the

127

DDPG model. The rest of the DRL models performed in the range of 22-30s with the slowest

being the TQC model at 30.1s. This signifies an increase of processing speed equivalent to 7.8-

10.6x between the DRL algorithms and the Nelder-Mead model and a boost of 42.4-57.4x with

the slowest benchmark algorithm (PSO). In addition, the DRL algorithms’ computational speeds

corresponds to a range of 0.3-0.4s per timestep which more than qualifies the method to real-

time control.

Within the field of DRL algorithms, all training loops were limited to 20,000 timesteps for fair

comparison. This resulted in widely varying training times due to the methodology required to

train the models. The slowest model to develop was the TQC algorithm which required 1312.9s

to train followed by the SAC at 797.4s. The rest of the DRL models required training times

varying from the fastest (PPO) at 216s and 401s for the recurrent PPO model. Essentially,

training times do not affect the algorithms’ real time performance but produces insight on the

computational loads of building the DRL models.

Figure 5-5 Initial algorithm speed - Jowitt & Xu network.

In the initial simulations the DRL models were trained using the original parameters set by

Stable Baselines 3 libraries. These parameters, explained in table 5-3 below, were tuned using

the sweep function shown in figure 5-2 where multiple agents were trained using a sweep

function on the key parameters to highlight the best values for DRL model training.

0 200 400 600 800 1000 1200 1400

Time in seconds

A
lg

o
ri

th
m

s

Processing time of different algorithms in seconds ARS

TQC

SAC

DDPG

A2C

Recurrent
PPO
PPO

TRPO

DE

PSO

NM

Tr
ai

n
in

g
Ti

m
es

Te
st

Ti
m

es

128

Table 5-3 DRL algorithm training hyperparameters.

Name Policy

network

Timesteps Learning

rate

Discount

factor

Value

coefficient

Clip range

PPO MLP 20,000 0.0003 0.99 0.5 0.2

Recurrent

PPO

MLP-

LSTM

20,000 0.0003 0.99 0.5 0.2

A2C MLP 20,000 0.0007 0.99 0.5 NA

TRPO MLP 20,000 0.001 0.99 NA NA

DDPG MLP 20,000 0.001 0.99 NA NA

SAC MLP 20,000 0.00077 0.9 0.5 NA

TQC MLP 20,000 0.0003 0.99 NA NA

ARS MLP 20,000 0.02 NA NA NA

Name Policy

network

Timesteps Learning

rate

Discount

factor

Soft update

coefficient

Buffer size

SAC-

Tuned

MLP 20,000 Scheduled

0.001

0.55 0.01 1e6

TQC-

Tuned

MLP 30,000 Scheduled

0.0015

0.25 0.005 1e6

Name Policy

Network

Timesteps Learning

rate

Evaluating

episodes

Exploration

noise

Random

perturbations

ARS-

Tuned

Linear 30,000 0.02 5 0.05 8

The highest DRL performers of the initial simulation were SAC, TQC and ARS which were

customised through hyperparameter tuning to produce better results. Designing these

algorithm’s parameters through tuning and research produced new results which were

displayed in figure 5-6. The tuned DRL algorithms are contrasted to the original settings and

the benchmarked optimisation algorithm to highlight the effect of hyperparameter tuning and

the DRL performance with respect to the benchmarked algorithms. Furthermore, the DRL

algorithms’ theory is explained in section 4.3 and their parameters are explained in detail in

Appendix C.

The results showed a visible increase in performance for all three DRL algorithms pushing them

within 5.5% from the highest performer (DE). The new rankings place the TQC and SAC models

on par with the second place PSO algorithm at 40.59 and 40.72 average rewards respectively.

129

This is followed by the former best DRL algorithm ARS which now yields 39.3 average rewards

just under the benchmark NM algorithm. This leap in performance closes the gap between the

evolutionary algorithm DE and the DRL algorithm SAC where SAC has a 2.15% decrease in

performance and a 25x boost in speed as shown in figure 5-7.

Figure 5-6 Tuned algorithm performance - Jowitt & Xu network.

In addition, the new processing time of the tuned DRL algorithms are plotted in figure 5-7 to

provide insight on computational efficiency. Similar to figure 5-5, the processing time of the

tuned DRL algorithms is split into training time (bottom) which is the time taken to develop

and build the DRL models through a training loop (top) which is the time taken for the DRL

algorithms to run the 3-day test scenario. The advantage of processing speed remains with the

tuned TQC and ARS algorithms. Hyperparameter tuning has therefore unveiled a best new

trade-off through SAC’s performance and speed making it the third best performing algorithm

and third fastest value for processing speed as shown in table 5-4.

130

Figure 5-7 Tuned algorithm speed - Jowitt & Xu network.

Moreover, the key episodic results of the case study are displayed below in table 5-4. The

algorithms’ performances in maximising rewards, maximising water saved from leakage,

minimising pressure violations, maximising carbon emission reductions and processing time.

The carbon emissions are calculated using water leakage measurements and the conversion

factor (176.7 KgCO2/million litres) dictated by the UK’s government values for the transport

and distribution for 2023 presented in (Department for Energy Security and Net Zero, 2023).

The best result in each category is marked in bold. PPO and Recurrent PPO models yielded the

highest % of water saved at 73.4% and the highest carbon emissions reduction with 302.5

kgCO2 reduced. However, this came at the expense of pressure violations that accumulated to

the values of 300 for Recurrent PPO and 304 for PPO. In contrast, DE showed the best pressure

violations minimisation with 46 violations and the best average episodic reward 995.2. Finally,

the best processing speed was achieved by PPO for training time and DDPG for test time.

Table 5-4 shows how deploying the optimisation algorithms can lead to significant reductions

in leakage and pressure violations. We discuss these results further and draw conclusions in

the next section.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time in seconds

A
lg

o
ri

th
m

s

Processing time of different algorithms in seconds
SAC
Tuned
ARS
Tuned
TQC
Tuned
ARS

TQC

SAC

DE

PSO

NM

Tr
ai

n
in

g
Ti

m
es

Te
st

Ti
m

es

131

Table 5-4 Key results – Jowitt & Xu

Algorithm Average

Reward

Average

Water Saved

(%)

Average

Pressure

Violations

Carbon

Emissions

Reduction

(KgCO2)

Training

Time (s)

Test

Time (s)

NM 965.7 66.0 49 273.2 NA 233

PSO 994.5 65.9 48 272.8 NA 1274

DE 995.2 65.9 46 269.2 NA 676

ARS-

Tuned

943.5 65.5 78 270.9 335 26.6

SAC-

Tuned

975.0 64.2 49 269.5 850 27

TQC-

Tuned

976.3 65.2 50 270.1 1892.3 24.8

TRPO 800.5 73.2 264 301.7 259 27

PPO 780.0 73.4 304 302.5 216 26.6

Recurrent

PPO

798.4 73.4 300 302.5 401 27

DDPG 525.0 44.1 48 181.1 558 22.1

A2C 822.5 73.2 300 301.8 321.5 22.7

5.2.2. Discussions

In this section, we discuss and evaluate the results of the Jowitt & Xu network for the

background leakage case study presented in section 5.2.1. The main objectives of this case

study was to minimise leakage through pressure valve control and minimising pressure

violations for the benchmarked test network presented in (Jowitt and Xu, 1990).

Initial Simulation

When challenged with controlling PRVs in the Jowitt & Xu network, all optimisation algorithms

performed favourably however results varied greatly. The DRL algorithm’s lower performance

can be explained by their untuned parameters, yet they remain the most attractive option due

to their high computational efficiency. All untuned DRL algorithms performed less favourably

than the three benchmark optimisation algorithms in the initial simulation. Nevertheless, the

132

DRL algorithms have shown their ability to tackle complexity through their deep neural

network’s function approximation capabilities. This was reflected in the processing times

displayed in figure 5-5. DRL processing times described both computational needs to develop a

policy (training time) and computational loads to solve the case study (test time). The test time

demonstrated the computational efficiency of the DRL models in solving the case study with

respect to the benchmark algorithms. The best DRL algorithm in terms of reward accumulation

through this simulation (ARS) produced a 27.5x increase in computational speed to the best

benchmark optimisation algorithm (DE).

Furthermore, the training times highlight the DRL models’ ability to develop a beneficial policy

using 20,000 timesteps of data. Shorter training times spotlights algorithms that can be easily

modified and retrained as the network changed for continuous deployment. This could

manifest as a continuous improvement (CI) loop that can adjust DRL models to seasonality

trends throughout the year. Comparing the speed and performance results, unveils an

interesting trade-off where the faster DRL models produce weaker performances to the slower

benchmarks. The ARS, TQC and SAC models lie in the middle of the trade-off producing both

high performances and a great increase in computational efficiency. Hence why, they were

selected for hyperparameter tuning through a sweep function.

Tuned Simulation

Tuned DRL models were built for the top 3 performing DRL algorithms and contrasted to their

original performances and the benchmark optimisation algorithms. Tuning the DRL

hyperparameters increased the DRL models’ capabilities to reach higher rewards and even

ranking TQC in the top 3 overall performances. This improvement seen through tuning with a

simple sweep function provides an insight to how hyperparameter optimisation through

expert systems such as Optuna can affect DRL capabilities (Akiba et al., 2019). For the purposes

of this case study, the tuned algorithms have shifted the trade-off between performance and

computational efficiency further to their favour. With the distributional DRL algorithm (TQC)

performing within 5% of the current best practice of DE and providing a 25x increase in speed.

This allows DRL algorithms to act in real-time to solve the pressure management problem

whilst evolutionary algorithms such as DE are usually paired with model predictive control

(MPC) (Sadler et al., 2020). The current standard of MPC often requires the use of high-

performance computing facilities to run simulations based on less accurate forecast data. In

essence, deploying a DRL algorithm through MLOps (Machine Learning Operations) and a

continuous improvement – continuous deployment architecture (CI/CD) can provide water

133

utilities a method to pressure control DMA-based networks in real time. This will further

increase leakage minimisation as new settings can be assigned at intervals as small as 1s

providing capabilities to fine-tune the pressure management policy. The current practice is

pressure valves being controlled hourly.

DRL Models Comparisons

The deep deterministic policy gradient (DDPG) belongs to the hybrid methods used in this

experiment. It exploits both value-driven, and policy-driven neural networks to converge at an

optimised solution. However, due to its sensitivity to hyperparameters and tendency to

converge at suboptimal policies, DDPG found itself performing worst in the DRL cohort. This

could also be explained through DDPG’s use of deterministic policies which are less effective

when dealing with temporal events such as demand pattern-influenced hydraulics. On the

other hand, its high convergence properties materialised in test time making it the fastest

model to solve the case study even if it was not well optimised. In comparison, Advantage

Actor Critic (A2C) developed a better policy with both higher water saved % and lower

pressure violations. Even though both algorithms belong to the same category of hybrid

methods, A2C largely outperformed DDPG which could be due to its stochastic policy that

incorporates exploration directly to its policy. The final hybrid method was SAC which is an off-

policy algorithm that improves on its predecessor (actor critic) through entropy regularisation.

This allows it to navigate the exploration-exploitation trade-off even better by inherently

including entropy in its value function. This simple change has increased the performance to

the second highest DRL algorithm with an episodic reward of 975. It is clear that better-suited

algorithms can navigate the exploration-exploitation trade off more effectively and deal with

the stochasticity of the environment. This is also represented during SAC tuning where

changing the discount factor (γ) has improved performance greatly. This was observed in all

three tuned algorithms. SAC results showed a better compromise between leakage

minimisation and pressure violations. It managed to save more water than DDPG at 64.2% and

less pressure violations than A2C at 49 violations making it the best hybrid method in the DRL

cohort.

Building on SAC’s performance, the truncated quantile critics (TQC) algorithm alters the value

function slightly to produce a value distribution over the states rather than an absolute sum.

This qualifies it as distributional DRL techniques and explains the name as it truncates the critic

network’s value quantiles. This distribution managed to improve performance slightly making

TQC the highest performing DRL algorithm at 976 episodic rewards. This translated into a slight

increase in water saved and 50 pressure violations when compared to its predecessor SAC.

134

In retrospect, policy driven methods (TRPO, PPO, Recurrent PPO, ARS) couldn’t match their

hybrid alternatives. This can be explained with the policy-driven methods’ lower stability and

sensitivity to changes in the environment due to the absence of the value function. TRPO

tackles this instability through trust region methods. However, the trust region constraints led

to conservative policy updates and hindered the algorithm’s ability to explore better solutions.

This affected the algorithm’s performance making it less beneficial than hybrid methods yet an

improvement on other policy-driven methods (PPO, Recurrent PPO) with 800.5 episodic

rewards. The rewards were manifested through a great performance in leakage minimisation

(73.2%) at the expense of pressure violations (264). Comparable performances were achieved

by PPO and Recurrent PPO agents that exploited the leakage objective at the expense of the

pressure violation objective both saving the highest amount of water at 73.4% and violating

304 and 300 pressure limits respectively. Their performances in leakage minimisation have

also translated in carbon emissions reduction placing them joint first with episodic reductions

of 302.5kg of CO2. Recurrent PPO’s ability to minimise pressure violations better placed it

ahead of its predecessor PPO. This could be due to the long short-term memory (LSTM)

functionality placed on the neural networks however their results are too close to draw a valid

conclusion. Finally, the most effective policy driven agent was the augmented random search

(ARS) algorithm. ARS managed to provide a better trade-off between saving water and

pressure regulation by focusing more on pressure regulation than its neighbours PPO and

recurrent PPO. As a result, it developed a policy that produced lower violations (78) at the

expense of lower water saved (65.5%). ARS learns through random search on the

parameterised policy equation making it more sample efficient but slightly less stable.

Nevertheless, its simple exploration strategy has waged well in the case study.

5.3. Northumbrian Water Network

In contrast to the Jowitt & Xu network, the second case study tackles a much larger system

provided from a real network under the supervision of Northumbrian Water Living (NWL).

NWL has agreed to the use of their hydraulic data and models to simulate the control of

pressure reducing valves (PRVs) and the throttle control valves (TCVs) for the purpose of

pressure management and leakage reduction. Whilst the Jowitt & Xu network represents the

size of approximately 1-2 DMAs in what is considered a medium sized WDN problem; NWL’s

SZ08 model represents a full water distribution system consisting of 19 DMAS and records of

36 unique demand patterns for residential building, police stations, hospitals, commerce and

more. The complexity of this case study increases exponentially when comparing network sizes

hence increasing computational load and testing the limits of the optimisation algorithms

135

tested. A summary of network parameters of SZ08 and Jowitt & Xu is shown below in table 5-

5.

Table 5-5 Summary of network parameters

Name Junctions Pipes Valves Pumps Tanks/Reservoirs DMAs Size

Jowitt & Xu 25 37 3 0 3 1 Medium

SZ08 1988 2022 32 26 11 19 Extra Large

Controlling the entirety of SZ08 should serve as a challenging task due to complexity alongside

the predetermined locations of valves. SZ08’s valves have been placed many years ago to

control the inflow to DMAs and tanks amongst other objectives whilst the Jowitt & Xu valve

locations were based on optimised locations for pressure regulation and leakage management

derived from literature. Hence, valve control is expected to be less effective in NWL’s case

study. In essence, the primary goal of this case study to experiment with DRL’s scalability and

performance under high complexity. Due to the size of the network, it is difficult to provide a

fully annotated figure. Therefore, the network architecture and key visualisations will be

displayed in figure 5-8 and figure 5-9.

Figure 5-8 SZ08 network architecture

Figure 5-9 SZ08 key visualisation of high pipe flows and nodal pressures.

In order to initialise the experiment, emitter coefficients had to be introduced to the SZ08

model to simulate background leakage. This is achieved through manipulating equations 2-9

136

and 3-2 to find the appropriate emitter coefficient within the background leakage emitter

range of 0 to 0.196 Ls-1m-0.5. Hence, emitter coefficients were assigned based on the

neighbouring pipe lengths where the node with the largest neighbouring pipe length was

assigned an emitter coefficient of 0.196. The remaining nodes’ emitter coefficients were

calculated as a ratio to the maximum pipe length value as described in equation 5-1.

𝑘 =
∑ 𝐿𝑖𝑗

𝑀
𝑗

max (𝐿)
× 0.196 (5-1)

Where k is the emitter coefficient (Ls-1m-0.5), Lij is the pipe length between nodes i and j (m), M

is the total number of nodes and max(L) is the maximum connected pipe length. Using this

equation, we can ensure that nodal emitter coefficients remain proportional to the length of

connected pipes as described in equation 3-2 and within the calculated limit of background

leakage (0.196).

Furthermore, an initial simulation was conducted to choose the best reward scales for this

particular case study as describe in section 4.2.4. The results unveiled that a ratio of 3:1

favouring leakage management over pressure violations produces the best trained DRL

algorithms for the objectives at hand. This is demonstrated in figure 5-10 below which

highlights how agents with a 3:1 ratio minimised penalty best. The pressure limits of this

experiments encourage nodal pressures to be kept between 10m and 200m. The higher upper

limit of 200m is placed to allow for the high pressures observed in trunk mains.

137

Figure 5-10 Episodic penalty plots for different reward scales - SZ08

The benchmark optimisation algorithms (NM, PSO, DE) and DRL algorithms (PPO, Recurrent

PPO, TRPO, A2C, SAC, TQC, ARS, DDPG) are tested using the same network and environment

using their initial algorithms to evaluate performance and speed. In this case study the DRL

algorithms were not subjected to any hyperparameter tuning due to the high computational

load of training agents. The hyperparameters used for the DRL algorithms are listed below in

table 5-6.

Table 5-6 DRL agent hyperparameters - SZ08

Name Policy

network

Timesteps Learning

rate

Discount

factor

Value

coefficient

Clip range

PPO MLP 20,000 0.0003 0.99 0.5 0.2

Recurrent

PPO

MLP-

LSTM

20,000 0.0003 0.99 0.5 0.2

A2C MLP 20,000 0.0007 0.99 0.5 NA

TRPO MLP 20,000 0.001 0.99 NA NA

DDPG MLP 20,000 0.001 0.99 NA NA

ARS MLP 20,000 0.02 NA NA NA

138

Name Policy

network

Timesteps Learning

rate

Discount

factor

Soft update

coefficient

Buffer size

SAC MLP 20,000 0.00077 0.9 0.005 1e6

TQC MLP 20,000 0.0003 0.99 0.005 1e6

5.3.1. Results

Tackling the SZ08 case study proved more challenging for all optimisation algorithms as they

attempted to fulfil the objectives of leakage minimisation and pressure regulation. This was

due to multiple factors that include the increased complexity through larger observation and

action spaces along with the sub-optimal valve locations. Nevertheless, the optimisation

algorithms succeeded in minimising leakage and pressure violations collecting positive

rewards. The positive rewards signify the model’s improvement on the current settings of the

networks which would gain a reward of zero. The reward spread across the network junctions

are plotted using the data visualisation tools mentioned in chapter three and displayed in

figure 5-11.

Figure 5-11 Reward spread across junctions.

When evaluating the rewards distribution across the junctions in the network, all the different

valve settings were only able to enact hydraulic change over nodes in the middle and right side

139

of the plot. The unaffected junctions display an area of the network that is not covered

hydraulically by the current collection of pressure valves. Using this plot, we could identify

areas in the network that are more vulnerable to background leakage as they cannot mitigated

by pressure management.

Rewards collected were gathered in a box plot for each algorithm to highlight their

performance and draw comparisons in figure 5-12. In this figure, rewards during each step of

the case study were plotted using a ‘o’ and the average was represented with an ‘x’ across the

box plot. The algorithms generally performed comparably with the benchmark optimisation

methods gaining a slight advantage on the DRL models. Benchmark algorithms scored the

highest performances with DE achieving 89.74, PSO at 89.04, and NM at 87.11. The DRL

models were led with TRPO which managed to exploit a beneficial trust region and producing

average rewards at 82.36 followed by a drop to SAC which lies at the 78.52 mark. Most DRL

models performed within the 75-80 reward range except the DDPG model which incurred the

worst result at 32.19.

Figure 5-12 Algorithm performance - SZ08

The processing speed associated with each method was plotted in a bar graph displayed in

figure 5-12. The optimisation algorithms were graded based on processing time for benchmark

algorithms and test and training times for DRL algorithms. Training times for DRL models

denotes the period required for the algorithms to be developed through 20,000 iterative

140

timesteps whilst the test time denotes the time required to solve the case study using

observations. Therefore, the DRL test times and the benchmark processing times signify the

algorithms’ computational efficiency in solving the SZ08 case study.

Generally, the DRL models have managed to decrease processing time considerably in

comparison to the benchmark algorithms providing an 8.39x speedup in in computational time

of the highest performing DRL model (TRPO) in comparison to the highest performing

benchmark algorithm (DE). The Nelder-Mead algorithm produced the slowest processing time

demanding 23238s which equates to 6 hours, 27 minutes and 18 seconds followed by PSO at

12909.4s and DE at 7013.1s. In terms of test time, also known as implementation time, DRL

models produced faster processing speeds. The fastest model was ARS needing 691.6s and the

slowest being TRPO taking 835.7s to solve the SZ08 network.

All DRL models were assessed on their training time with the longest trained algorithm being

the TQC followed by its non-distributional predecessor SAC at 6760s and 6422s respectively.

The fastest training simulation was achieved by the TRPO at 2667s and PPO at 3535s. Training

time could be beneficial as it indicates the computational expenses required to create and

update the DRL models.

Figure 5-13 Algorithm speed - SZ08

Overall, a summary of the key episodic results of the experiment is collected in table 5-7. The

algorithms are evaluated based on rewards, water saved, pressure violations, carbon

emissions, and processing time. The best result for each category is also marked in bold to

insert an additional perspective to the algorithms’ performances. Differential evolution

0 5000 10000 15000 20000 25000

Time in seconds

A
lg

o
ri

th
m

s

Processing time of different algorithms in seconds
ARS

TQC

SAC

DDPG

A2C

Recurrent
PPO
PPO

TRPO

DE

Tr
ai

n
in

g
Ti

m
es

Te
st

Ti
m

es

141

optimisation managed to strike the best trade-off between pressure violations and water

saved, hence gathering the highest average episodic reward. Jointly, the PSO and NM

algorithms minimised average episodic pressure violations with 2284 violations. The best

performance in minimising leakage produced a meagre 0.693% water savings which was

awarded to the TRPO algorithm. The 0.693% water saving corresponds to the highest savings

in episodic carbon emissions of 169.3 kg CO2 saved. Finally, the TRPO also produced the best

training time amongst DRL models at 2667s whilst ARS solved the testing scenarios under 692s.

142

Table 5-7 Key results - SZ08

Algorithm Average

Reward

Average

Water

Saved (%)

Average

Pressure

Violations

Carbon

Emissions

Reduction

(KgCO2)

Training

Time (s)

Test Time

(s)

NM 2097 0.626 2284 156.4 NA 23238

PSO 2140 0.633 2284 159.8 NA 12909.4

DE 2153 0.646 2286 160.3 NA 7013.1

ARS 1775 0.690 12604 169.0 3535 691.6

SAC 1852 0.679 12608 166.2 6422 704.9

TQC 1606 0.667 12584 163.3 6760 699.5

TRPO 1892 0.693 22955 169.8 2667 835.7

PPO 1686 0.691 12604 169.2 3652 741.9

Recurrent PPO 1768 0.691 12604 169.2 5989 700.8

DDPG 772.6 0.268 12276 66.02 4656 695.7

A2C 1773 0.691 12604 172.7 3726 740.3

5.3.2. Discussions

The discussion section details insights on the system zone 08 network (SZ08) case study

provided by Northumbrian Water Living (NWL) which models the water distribution network

for Lumley, England. The experiment initiates appropriate emitter coefficients to model

background leakage and minimises its detrimental effects through pressure management. By

controlling pressure reducing valves (PRVs) and throttle controlling valves, optimisation

algorithms can attempt to minimise water lost through leakage and nodal pressure violations.

The SZ08 network tests the scalability of DRL models through its high complexity and multiple

dimensions. Results can be summarised in terms of performance (reward collection) and speed

(running time).

Performance

SZ08 tested the algorithms’ abilities to navigate high dimensional problems due to the

network’s size and differing components. Unlike the previous experiment, DRL models were

not hyperparameter tuned as the process would be too computationally expensive given the

complexity of the case study despite its guaranteed improvement in policy formulation and

performance. The untuned DRL models were trained and tested on the SZ08 against three

143

benchmark optimisation models (Nelder Mead, Particle Swarm Optimisation, and differential

evolution). Most algorithms managed to solve the case study effectively apart from DDPG that

converged at a sub optimal result due to its deterministic nature. Despite the heightened

ability to minimise pressure violations, the tested optimisation algorithms were unable to

minimise leakage past 0.693%. This was a downgrade in comparison to the previous Jowitt &

Xu network however could be explained by the lower valve to node ratio and inefficient valve

locations. Overall, the benchmark DE algorithm performed the best as it collected 2153

episodic rewards by striking the best balance between leakage minimisation and pressure

violations although the NM and PSO algorithms received the joint best result in minimising

pressure violations. The PSO algorithm scored second (2140) place due to its performance in

pressure management followed by NM which scored third (2097) due to its lower capabilities

in leakage minimisation.

Surprisingly, the DRL cohort was led by the TRPO model which proved to be more effective in

high-dimensional problems. Its trust region exploitation has equipped it with the stability

required to solve this case study. At a mere 12% decrease in performance from the DE

algorithm, TRPO received 1852 episodic rewards and the highest overall water saved (0.693%)

This led to the highest carbon emissions reduction with 169.8kg of CO2 saved. The other DRL

models in the policy driven family scored considerably lower with ARS at 1775 episodic

rewards followed by the Recurrent PPO and PPO methods at 1768 and 1686 respectively.

These results highlight the importance of stability to tackle the SZ08 problem with more stable

DRL algorithms scoring higher. In addition, Recurrent PPO’s ability to perform higher than the

PPO model proves the importance of neural network architecture in optimisation as the major

difference between the two models is the inclusion of the long short-term memory (LSTM)

module in the Recurrent PPO neural network architecture. LSTM cells can store the

sequentially processed data to represent long-term dependencies which make it an attractive

choice in time-related problems.

The hybrid DRL methods were led by SAC which was the second highest performing DRL model

after TRPO with 1852 episodic rewards and lower pressure violations of 12604 rather than

TRPO’s 22955 violations. With the exception of the advantage actor critic (A2C) model, the

remainder of the hybrid DRL models performed poorly. A2C saved 0.691% of the water and

landed on 1773 episodic rewards which places it in between ARS and Recurrent PPO in terms

of performance. However, TQC and DDPG algorithms had the lowest performances with 1606

and 773 episodic rewards respectively further proving the importance of developing a

stochastic policy rather than a deterministic policy in DDPG. TQC’s performance leads us to

144

believe that the distributional DRL methods do not tackle complexity well due to the large

state space that forms a scarce value probability distribution.

Speed

A large benefit of using DRL for optimisation purposes is its ability to build intelligence and

minimise computational load. Hence why, comparing DRL model’s speed to the benchmark

algorithms is necessary. Figure 5-12 displays the associated processing time for all the

optimisation algorithms including training and test times for the DRL cohort. All algorithms

were tasked with completing 3 episodes consisting of 24 steps each to model three 24-h days.

The processor used was an AMD Ryzen 4700U, 200MHz, 8 processor CPU. In contrast to the

Jowitt & Xu case study, the SZ08 problem incurred much heavier computational loads resulting

in slower processing speeds. This was apparent in NM’s processing which lasted 23,238

seconds which is equivalent to approximately 6 hours and 27 minutes making it the slowest

algorithm. As expected, the other benchmark algorithms were slower than all the DRL models

with PSO requiring 12909 seconds and DE with a significant improvement at 7013s.

When evaluating DRL algorithms, it was necessary to differentiate between training time used

to develop a policy and test time used to implement the policy. Training time provides insight

into algorithm design and possible computational expense for retraining whilst test time

provides insight into whether they can be viable to real-time control or rather the standard

model predictive control. TRPO held the fastest training time only demanding 2667s to

develop the best performing DRL policy although it required 835.7s to solve the problem

making it the slowest test time. ARS produced the second fastest training time with 3535s and

the fastest test time with 691.6s. Therefore, the fastest DRL test time (ARS: 691.6s) produces a

10x improvement in computational speed than the fastest benchmark algorithm (DE: 7013s).

This is due to ARS’ low computational load since it utilises a simple random search method

over the parameterised policy equation. The rest of the DRL cohort incurred a training time

ranging between 1-2 hours with the slowest being TQC demanding 6760s of training.

Algorithms with large neural networks such as TQC and SAC often demand long training times

as displayed in both experiments.

5.4. Concluding Remarks

Chapter 5 included two centrepiece experiments that illustrated DRL algorithm’s ability to

minimise background leakage through advanced pressure managements. Valve control of a

benchmark test network (Jowitt & Xu network) and a real water network (SZ08) provides the

variety needed to highlight the scalability and computational efficiency of DRL techniques.

145

Initially, the methodology used for the background leakage case studies was detailed. The

benchmark optimisation algorithms were used to contextualise the DRL cohorts and draw

comparisons with the current best practices. The experiment develops a differential evolution

algorithm in addition to the particle swarm optimisation and the Nelder Mead algorithm. The

problem setup dictated the process used to design the experiment through a foundation of

equations and algorithms derived from literature. The test scenarios used to evaluate

algorithm performances and the metrics recorded were designed to highlight scalability,

computational demand, and the effects of hyperparameter tuning. Furthermore, this chapter

introduced the novel use of eight DRL algorithms for advanced pressure management as viable

real-time alternative optimisation algorithms. The optimisation objectives were to

simultaneously minimise nodal pressure violations and background leakage within the network

through valve control. The DRL agents developed were tested alongside benchmark

optimisation algorithms to assess their performance and computational efficiency.

The Jowitt & Xu network was the benchmark used to experiment the effects of pressure

management on minimising background leakage. The DRL cohort consisting of 8 algorithms is

compared to the benchmark algorithms with a focus on their performance and speed. The

results are displayed in figures and a summary table highlighting key metrics such as carbon

emissions, water saved, reward collected and more. The best performing DRL algorithms were

tuned by changing the hyperparameters to demonstrate how DRL algorithms can be improved

further through hyperparameter optimisation.

SZ08 water network was collected and developed by Northumbrian Water to control the

DMAs based in Lumley, England. This network is inherent with more complexities due to size,

various customer demands, and network components as shown in table 5-5 and figures 5-8 &

5-9. Background leakage is introduced to the nodes and the optimisation algorithms

mentioned above are used to solve the test scenarios. The results are compared through an

extensive discussion of algorithm performance and speed.

Whilst the DRL algorithms on average performed less favourably than the current best

practice; several models managed to perform comparably to the DE and PSO algorithms with

little to no hyperparameter tuning. Hyperparameter tuning and training methods have had a

great impact on algorithm performance making it clear that further improvement is possible

through hyperparameter optimisation. Whilst hybrid methods were more effective in

developing DRL models for the smaller case study, it lacked the stability offered by policy

driven methods for the larger application. Considering their significant increase in

146

implementation time and the lower computational load, DRL algorithms provide a true

promise for real-time control (less than 0.4s per prediction) on a DMA level. However, due to

the complexity of whole water distribution systems shown in SZ08, real-time control is slightly

out of the scope of DRL using regular processors (around 10s per prediction). Using high end

computing could improve that greatly and make real-time control of whole system zones a

reality. The use of real-time control in WDN pressure management is a novelty that is bound to

increase water savings and carbon reductions as they allow valves to react more instantly to

changes in the network whereas the current standard receives signals hourly or even daily.

Comparing the two case studies, it is clear that the optimisation approach is more beneficial on

a DMA scale however still applicable on a large scale. The SZ08 case study provides a more

complex large-scale problem with multiple demand patterns and varying topographies.

Therefore, DRL algorithms that prioritise stability and sample efficiency such as TRPO perform

better. On the other hand, Jowitt & Xu provides a smaller scale and better valve locations

resulting in better overall results. DRL algorithms with better exploration properties managed

to overcome local optima found at 780-800 with high water saved% and high-pressure

violations. Thus, hybrid methods such as A2C and SAC performed well whilst the distributional

DRL method TQC performed best. The difference in performance between the two case

studies could suggest that optimising on a DMA scale could affect neighbouring areas resulting

in additional trade-offs. DRL models can be trained to enact pressure control policies that

significantly minimise water loss on the DMA level nevertheless future work should focus on

experimenting with multi-agent DRL control. Using this technology, it may be possible to train

agents individually on DMAs and have them communicate through an overarching MADRL

system. Hence, this ensures that we harness the possible savings on a DMA level without

creating sub-optimal states on neighbouring DMAs in a more open-looped fashion. The design

of DRL algorithms is very complex and is brim with possibilities for customisation hence future

work should encourage the use of different neural network architectures, optimisers,

activation functions and pre-training techniques.

147

6. Burst Leakage Case Study

The contrast between burst and background leakage lies within the size of the leak. The

definition of burst leaks are leakage events that are detectable through modern detection

techniques hence they are often repaired quickly. Therefore, burst leakage cause less damage

than background events on the long run. Burst events are represented in literature by 0.5m3/h

flow rates at a pressure of 50m (García and Cabrera, 2007). This is modelled by an emitter

coefficient greater than 0.196 Ls-1m-0.5 as derived in chapter 4.1.1. Throughout the burst

leakage case study, we will detail the methodology used to introduce burst events to the water

distribution network at random nodes followed by pressure valve commands. The pressure

management commands will be fed from one of three benchmark non-DRL algorithms or the

eight DRL algorithms being tested. The reward function is formulated through comparisons of

DRL algorithms trained using different scale ratios. After that, the algorithms solve the

benchmark Jowitt & Xu network and the real SZ08 hydraulic model. The results for both

networks are displayed through various box plots, bar graphs and summary tables. Finally, the

findings are discussed, and conclusions are drawn. The main aims of this case study are the

following:

• Provide a method to mitigate random bursts in real-time through pressure control.

• Test the viability and scalability of different DRL models in WDN pressure management

under randomised burst conditions.

• Highlight the differences between DRL performances to popular optimisation

algorithms.

• Highlight differences and similarities between the performances of the DRL agents in

burst leakage reduction.

The full case study including python files, figures, excel reports and hydraulic files can be

accessed privately on GitHub by following this link. In addition, the main results and figures for

this chapter is included in Appendix H and I.

6.1. Methodology

6.1.1. Problem Setup

Burst leakage is easily detectable however they can cause huge water loss, and, in most cases,

there are no real-time contingencies to minimise the leakage other than pipe

repair/replacement. Thus, we have devised this scenario to test the effect of pressure

management on mitigating leakage through burst events. In this scenario we evaluate the

https://github.com/AhmedNegmDRL/WDN-DRL

148

distribution of the water network in question with randomised burst events carrying a leakage

discharge coefficient larger than 0.196 forming the ‘leaking network’. This is meant to model

irreversible pipe failures with high water loss. Bursts count will match the number of pressure

valves in the network to make sure that both networks have the same capabilities at solving

the problem. The randomised burst events will force the optimisation algorithms to use the

observation data to make connections between pressure fluctuations, leakage and PRV

locations. Therefore, when a sudden change in pressure appears in the observation data, the

optimisation algorithms are expected to identify that as a leak implicitly and moderate the

closest valve to minimise leakage. In the interest of fairness, all optimisation algorithms will be

developed from an environment with randomised bursts and applied to the test scenarios.

Following that, the networks will utilise a universal leakage exponent of 1.18, which is the

widely accepted value in literature (Araujo et al., 2006; Saldarriaga and Salcedo, 2015b), to

complete the leakage rate equation. In response to the leakage, our optimised agent (i.e.,

valves guided by the optimisation algorithm) will produce an action to mitigate this leakage,

hence creating the ‘solved network’. The leakage rate and violation count at each node before

and after PRV action will be evaluated to explore the effect of the action on the network. The

difference in performance between the solved and leaking networks will prove as a measure of

the effect of the action on mitigating the leak. Algorithm 6-1 below describes how the burst

leakage scenario is performed.

149

Algorithm 6-1 Burst scenario pseudo code

Input: link flows and nodal pressures

Output: Reward

for each episode do

 initialise all valve settings to be 40.

 for each step of episode, state s is not terminal, timestep is not 24.

 do

 introduce leakage nodes and magnitude.

 evaluate leaking network penalty.

 a ← action given by optimisation algorithm for state s.

 evaluate network after action penalty.

 reward r given by difference in leakage rate and pressure violations.

 laziness penalty if settings haven’t changes in three steps.

 get the new state s’.

 log reward, violations, leakage metrics

 take action a, observation r, s’.

 s ← s'

 end

end

The reward (r) function will be calculated based on equation 3-4 that calculates the difference

between the ‘solved’ and ‘leaking’ networks’ weighted penalties. The reward scales are

modified to navigate the objective trade-off between water loss and pressure violations

iteratively using the method described in section 4.2.4. for each network.

6.1.2. Testing

As the environment is run in episodes consisting of 24 timesteps, each timesteps draws from

customer demands to model the hydraulic requirements for every hour of the day. Hence why,

the testing stage will consist of the optimisation algorithms solving three episodes of data and

the rewards, leakage and violations will be reported. In addition, the computational effort

required will be represented as the time needed to complete the test cases. Whilst the non-

DRL algorithms can tackle the problem in situ, the DRL algorithms must be trained to develop

their policies and adjust their deep neural networks weightings. The developed DRL model will

be tested on the same scenarios as the benchmark models. The aim of this case study is to

highlight the ability of DRL algorithms to effectively manage pressure valves under randomised

burst locations. The algorithms will be judged on their ability to minimise pressure violations

150

and leakage control in the WDN. The different networks are used to test the scalability of the

DRL models in medium and large complex problems.

6.2. Jowitt & Xu Network

The Jowitt & Xu network is the name given to a standardised benchmark network that is

popular in the research community. It was first introduced in (Jowitt and Xu, 1990) and

consists of 22 nodes, 37 pipes and 3 tanks. The WDN architecture is presented in figure 6-1

with a pressure and flow colourmap to help understand the state of the network. Many

researchers produced results explaining the optimal valve locations for pressure management

in Jowitt & Xu however the most effective arrangement was mentioned in (Araujo et al., 2006).

Adopting the same number of valves and locations from (Araujo et al., 2006), PRVs are placed

on pipes P01, P31 and P25 also shown in figure 6-1.

Figure 6-1 Labelled Jowitt & Xu network including bursts (red) tanks, PRVs, nodes, and pipes.

The testing network will include three randomly located bursts introduced with an emitter

coefficient of 3 whilst the other nodes’ emitter coefficients are initialised at 0 to extenuate the

effects of bursts on water distribution. The randomiser has selected nodes ‘4’, ‘9’ and ‘11’ as

151

the burst locations marked in red in figure 6-1. The network hydraulic properties described

above are also detailed in table 6-1 with the slight amendment to emitter coefficients. The

customer demand patterns are identical to the ones used in table 5-2 to keep the benchmark

identical.

152

Table 6-1 Benchmark pipe and amended node data.

Pipe ID Length

(m)

Diameter

(mm)

Roughness

(m1/3s-1)

Node ID Elevation

(m)

Base Demand

(Ls-1)

Emitter

(Ls-1m-1/2)

P01 606 457 110 Junc 1 18 5 0

P02 1930 457 110 Junc 2 18 10 0

P03 5150 305 10 Junc 3 14 0 0

P04 326 152 100 Junc 4 12 5 3

P05 844 229 110 Junc 5 14 30 0

P06 1274 152 100 Junc 6 15 10 0

P07 1115 229 90 Junc 7 14.5 0 0

P08 500 381 110 Junc 8 14 20 0

P09 615 381 110 Junc 9 14 0 3

P10 300 229 90 Junc 10 15 5 0

P11 743 381 110 Junc 11 12 10 3

P12 1408 152 100 Junc 12 15 0 0

P13 443 229 90 Junc 13 23 0 0

P14 249 305 105 Junc 14 20 5 0

P15 3382 305 100 Junc 15 8 20 0

P16 454 457 110 Junc 16 10 0 0

P17 931 229 125 Junc 17 7 0 0

P18 1600 457 110 Junc 18 8 5 0

P19 542 229 90 Junc 19 10 5 0

P20 777 229 90 Junc 20 7 0 0

P21 2782 229 105 Junc 21 10 0 0

P22 304 381 135 Junc 22 15 20 0

P23 1767 475 110

P24 1014 381 135

P25 762 457 110

P28 2334 229 100

P29 832 152 90

P30 914 229 125

P31 1097 381 6

P32 822 305 140

P33 1072 229 135

P34 864 152 90

P35 711 152 90

P38 411 152 100

P39 701 229 110

P40 1996 229 95

P41 2689 152 100

Finally, the reward scales for DRL were also selected through training a DRL algorithm using

different scales. The resultant DRL models were tested to evaluate their ability to optimise the

primary objectives (leakage and pressure violations). Comparing the penalties incurred by

153

these models in figure 6-2 unveils the best trade-off being at scaling the objectives at a ratio of

1:1. Due to the randomised nature of the leaks, the reward scales were tested several times to

ensure that this ratio is optimal which it was.

Figure 6-2 Episodic penalty for reward ratios

6.2.1. Results

The case study aims to focus on two main aspects of the results which are performance and

speed. The performance results can be represented by the rewards gained throughout the

testing episodes displayed in figure 6-3. In this box plot, individual step rewards gained at each

hour are represented by an ‘o’ and the mean step reward is marked with an ‘x’ while the box

marks the interquartile range. Tackling randomised bursts is an issue that requires machine

intelligence due to the added complexity. Hence why, there is a clear improvement in

performance when deploying DRL models over the benchmark optimisation algorithms. DRL

models learnt to flag changes in the observation space (nodal pressure readings) caused by

leakage and react by managing the nearest pressure valve. The best performance overall was

achieved by the Advantage Actor Critic (A2C) algorithms with an average of 1.76 step reward

followed closely by ARS (1.73) and Recurrent PPO (1.71). Their smaller interquartile ranges

highlight their ability to adapt to the varying demands of the episode (daily customer

demands) by modifying the valve settings whilst algorithms that exploit safe beneficial settings

such as TRPO show a larger interquartile range. The benchmark algorithms, led by the particle

swarm optimisation algorithm, have collected the lowest rewards due to their inability to rely

on experience to influence their actions. To improve their results, they need to rely on highly

accurate predictive models and are insufficient on their own.

154

Figure 6-3 Algorithm performance - Jowitt & Xu

The processing time provides context on the computational effort needed to solve the burst

scenarios through valve management. In figure 6-4, we display the different processing times

for the benchmark optimisation algorithms, the DRL training times and the DRL test times. It is

crucial to distinguish between training times required to develop the behavioural policy and

test time required to solve the burst scenario. Throughout all test scenarios, it is clear that DRL

algorithms decrease computational demand considerably especially when comparing DRL test

times to the benchmark optimisation times. This further proves the ability of DRL algorithms to

tackle complexity and long-term dependencies through feature extraction. Comparing the best

performing algorithms from the previous figure yields a 197.6x increase in speed when

deploying the A2C algorithm rather than the PSO algorithm. The fastest DRL test time was

achieved by the A2C model only requiring 17.4 seconds followed by the DDPG model (17.8s)

and the SAC model (18s). Consequently, all the DRL test times qualify them for real-time

control as they signify the time taken to solve 72 timesteps over 3 episodes.

On the other hand, DRL training times show the time taken to run 20,000 timesteps developing

the best behavioural policy. All DRL algorithms managed to reach their best reward within

20,000 training timesteps and increasing them showed minimal or no improvement. Training

time depends mostly on the DRL methodology and the neural network architecture hence why

more complex algorithms such as the distributional DRL algorithm (TQC) took the longest to

155

develop. Similar to the previous case studies, the second slowest training time was achieved by

SAC. The fastest training time was awarded to ARS with 252s and the TRPO with 282s.

Figure 6-4 Algorithm speed - Jowitt & Xu network

Overall, the data collected from the case study can be summarised into the episodic results

table 6-2 below. Each algorithm’s episodic performance in the three major sections of rewards

accumulation, water loss and pressure violations are recorded alongside that carbon emissions

reduced and total processing time. Furthermore, the best results are highlighted in bold to

extenuate the most effective algorithm in each category. The A2C model yielded the highest

average rewards at 42.15 and the fastest implementation (test) time at 17.4s making it the

fastest and most effective algorithm for real time pressure management in this case study. A2C

was also the highest performer in terms of water saved (58.46%) and carbon emissions

reduction (5650kg). This was followed by Recurrent PPO (41) which improved greatly on the

PPO rewards (20.43) and scored best in pressure violation minimisation with only 58

violations. Finally, the fastest algorithm in policy development was ARS due to its simpler

methodology only requiring 254s.

0 500 1000 1500 2000 2500 3000 3500 4000

Time in seconds

A
lg

o
ri

th
m

s

Processing time of different algorithms in seconds

ARS

TQC

SAC

DDPG

A2C

Recurrent PPO

PPO

TRPO

DE

PSO

NM

Tr
ai

n
in

g
ti

m
e

Te
st

 t
im

e

156

Table 6-2 Key results - Jowitt & Xu

Algorithm Average

Reward

Average

Water

Saved

(%)

Average

Pressure

Violations

Carbon

Emissions

Reduction

(KgCO2)

Training

time (s)

Test Time (s)

NM 6.791 12.68 62 1844 NA 631.8

PSO 17.23 29.16 112 159.8 NA 12909.4

DE 15.41 32.52 203 6137 NA 2967

ARS 41.79 47.62 69 5621 254 24.6

SAC 21.82 31.88 126 4631 860 18

TQC 24.26 43.16 241 7434 1326 30.4

TRPO 33.29 47.01 244 7252 282 27

PPO 20.43 40.10 339 7602 292 26.6

Recurrent

PPO

41.00 42.28 58 5490 529 19.9

DDPG 18.54 38.57 293 7563 631 17.8

A2C 42.15 58.46 67 5650 363 17.4

6.2.2. Discussions

In this experiment, optimisation algorithms were developed and tested on the standard test

network Jowitt & Xu. The network model consists of 22 nodes and 3 randomised bursts to be

solved using three optimally placed PRVs. The optimisation algorithms were rewarded and

judged based on their ability to minimise leakage rate and pressure violations due to leakage.

Comparisons are made mostly based on the algorithms’ overall performance and speed which

are the two motivators to developing DRL algorithms for real-time control of pressure in

WDNs.

Performance

The performance of the DRL algorithms consists of rewards calculated from minimised

pressure violations and % of water saved. The associated carbon emissions reduction through

leakage reductions are included to highlight the environmental effect of the optimisation.

Overall, the DRL models greatly outperform the benchmarks in managing the effects of

random burst events. The lowest performing algorithm was the Nelder Mead optimisation that

only marginally improved that state of the network yielding an average episodic reward of

157

6.791 by saving 12.68% of leakage water. Following that, is a close battle between DE which

was rewarded 15.41 and PSO at 17.23. Both algorithms gathered rewards through opposite

methods. While DE focused on minimising leakage on the expense of pressure violation, PSO

scored lower in leakage reduction but improved the number of pressure violations by resolving

an extra 91 violations. The benchmarks’ lower performance is directly proportional to the

accuracy of the model they are trained on hence why randomising the burst nodes lead to

inaccuracies. Therefore, it is difficult to operate traditional optimisation methods to the burst

scenario as it requires an accurate predictive model due to its inability to tackle the inherent

randomness of WDN management.

Otherwise, DRL models are trained on this random burst environment allowing them to expect

randomness from the WDN test scenario. Using the observation space, which consists of a list

of nodal pressures, DRL models adjusted the weights of their deep neural network to store the

best policy for selecting PRV settings. This method allows the DRL models to establish a

connection between the bursts’ effects on the observation space and the corresponding valve

to monitor/change in the action space. This process highlights the importance of building

optimisation algorithms that can react to real data from experience to expect randomness

without compromising performance. Hence why, the DRL algorithms tested in this experiment

massively outperformed the benchmark alternatives.

In the policy-driven family, the ARS and Recurrent PPO models scored the highest with

episodic rewards of 41.79 and 41.00 respectively. This was followed by TRPO scoring in 33.29

and PPO scoring 20.43 for episodic rewards. On average the policy driven DRL models

performed better than the hybrid models (except for A2C) and distributional DRL. This can be

explained by policy-driven methods’ ability to navigate the exploration-exploitation trade-off

through stochastically selecting actions making it the more attractive option where exploration

was critical. In addition, the direct alteration of the behavioural policy allows policy driven

models to be more flexible in capturing and adapting to changes in the environment. This

allows the models to learn a self-adaptive policy that can deal with the randomness of the

burst scenarios. A closer look on policy-driven algorithms shows ARS as the best performer in

leakage reduction (47.62% water saved) and carbon emissions reduction (5621kg CO2) while

Recurrent PPO has the lowest number of pressure violations (58). Both impressive

achievements helped land the ARS and Recurrent PPO in the top 3 positions for DRL models

reward performance. ARS’s high performance can be attributed to its ability to randomly

search across the parameterised policy hence allowing it the flexibility to explore better

policies. On the other hand, the Recurrent PPO model improves greatly on its predecessor the

158

PPO algorithm through the use of recurrent neural networks (RNNs) namely long short-term

memory nodes. This allowed it to accumulate information over time hence tackling the

challenges brought by partial observability and capturing sequential dependencies.

Hybrid models include A2C, DDPG and SAC. Plagued by its sensitivity to non-stationary

environments, DDPG could not perform at the same level as the other DRL algorithms resulting

in 18.54 average episodic reward which was marginally better than the benchmark PSO

algorithm. DDPG’s slow adaptation of the target networks and deterministic policy gradients

making it unsuitable for the burst scenario. Surprisingly, SAC’s incorporation of an entropy

term to encourage exploration did not wage as well as expected in the burst scenario leading

to an episodic reward of 21.82. The best explanation to this could be a misleading critic neural

network as the value function fails to include the stochasticity necessary to judge the actor due

to the changing environment. This would also explain how using and advantage function in the

A2C algorithm greatly improves the results reaching the best overall performance with an

episodic reward of 42.15. The advantage function provides a measure of how good an action is

in comparison to the average action for a given state providing more efficient exploration and

a clearer credit assignment. A2C achieves this high reward by striking the best compromise

between leakage reduction (58.46%) and minimising pressure violations (67) therefore

improving on both ARS and Recurrent PPO’s performances.

Finally, the truncated quantile critics (TQC) model provides the only distributional DRL model

in the cohort. TQC builds on the SAC foundations with a probability distribution over the value

function for every state rather than a single value. This provides an additional dimension to the

critic’s evaluation of the agent’s action which helps tackle the changing the environment. This

minor change results in a 11% improvement on SAC’s performance making TQC’s average

episodic reward 24.26.

A notable observation is the superiority of on-policy DRL algorithms (A2C, PPO, Recurrent PPO

an TRPO) over the off-policy algorithms (DDPG, SAC and TQC) in reward performance with the

exception of ARS which performed well as an off-policy method. This is a testament to on-

policy methods’ suitability for online learning as they depend on experience to build their

models while off-policy algorithms deploy replay memory methods that are often less stable.

Therefore, on-policy methods more suitable for dynamic environments as the case study

requires due to the introduction of random burst nodes.

159

Speed

Evaluating processing times for the optimisation algorithms provides insights on real-time

control possibilities thus increasing its importance. Real-time pressure control would

significantly increase the WDN’s resilience to anomalies and extreme conditions as it would be

able to respond promptly. This will consequently improve overall pressure management and

leakage control. Benchmark optimisation algorithms are compared to the DRL cohort for their

test time which signifies the time required to complete 72 timesteps of the case study that

model three sets of daily customer demand patterns. This comparison was made in figure 6-4

and table 6-2 where DRL clearly outperformed the benchmarks in solving the test case. The

DRL algorithms’ ability to use their developed policy to predict the best action simplifies the

action selection process and minimises computational load. This is one of the biggest

motivations to implement DRL for WDN pressure management and other real-world

applications. As the slowest DRL algorithm (TQC) improves on the fastest benchmark

algorithm’s speed (NM) by a 20.8x mark up, it is safe to say that DRL algorithms are the best

option for faster processing and better computational efficiency. TQC’s demanding

methodology requires it to collect a probability distribution of the value function hence the

higher computational load and slower test time in comparison to other DRL algorithms. The

fastest algorithm happens to be the best performing agent produced using A2C. This agent

managed to implement its solution within 17.4s making it marginally faster than the DDPG

agent at 17.8. In all cases, the DRL cohort is capable of real time control as it produces actions

within the range of 0.242-0.422 seconds of receiving observations.

Separately, the DRL cohort is judged based on its training time. This signifies the time required

to develop a policy within 20,000 timesteps of training data and is denoted as training time.

Algorithms with simpler methodologies and neural network architectures tend to be easier to

train such as ARS which conducts a direct random search on the parameterised policy

equation. This yields the fastest training time of 254s. Training times can highlight which

algorithms would be easiest to develop and re-train. This could be beneficial when considering

a continuous improvement loop to ensure that seasonality doesn’t affect the relevance of the

DRL algorithms. As expected, the distributional algorithm TQC requires the longest training

time with 1326s to complete the training.

6.3. Northumbrian Water Network

System Zone 08 (SZ08) hydraulic model serves the purpose of applying the optimisation

algorithms to a realistic case study based on data retrieved from Northumbrian Water. This

network surpasses the Jowitt & Xu benchmark in size, elevations, complexity, variety of

160

components and variety of customer demand patterns making it a more difficult network to

optimise. In addition, the valve location and quantity are far less optimal for the size of the

network, yet it models the real-life setup. A summary of network components can be found

earlier in table 5-5 and the network architecture is displayed in figures 5-8 and 5-9. As

mentioned in the methodology section 6.1., the number of burst nodes will match the number

of pressure valves in the network to provide a fair comparison of pressure management

capability. Therefore, the SZ08 is initialised with 32 randomised bursts with the emitter

coefficient/magnitude of three. To complete the leakage equation an exponent of 1.18 was

used to align the research with the best practices in literature (Araujo et al., 2006; Saldarriaga

and Salcedo, 2015b). Experimenting the burst leakage case study with a real network such as

SZ08 will also provide insights on the scalability of the models used and whether real-world

application is a possibility. It is expected that, similar to the previous case study, the

complexity of the network will push the DRL models slightly out of the zone of real-time

control. Previous results may suggest that more stable DRL models perform better in this

complex problem however, due to the unique nature of burst leakage, exploration and

flexibility could be the key to better performances.

Using this hydraulic model, the environment will initialise the 32 random bursts for the

network to solve. Optimisation algorithms will be developed or trained using the randomly

amended environment but tested on the SZ08 model with burst nodes at the following nodes:

'N9968633' 'N12709278' 'N12717930' 'N10210106' 'N16111054' 'N10091680'

'N10094919' 'N12718004' 'N10208428' 'N12707262' 'N16119942' 'R16111847'

'NX34291839' 'N10205128' 'N10092063' 'N10205817' 'N10094345' 'N16109247'

'N10207834' 'N9963619' 'N10205153' 'N10208426' 'R10091961' 'N10028382'

'N13656814' 'N13656868' 'N9968663' 'N16111939' 'R16119652' 'RX33753118'

'N13663171' 'N10130639'

These nodes were chosen using the same randomiser present in the environment. Due to the

size of the network architecture and data, it is impossible to display all properties in a table

therefore the input file will be included in the appendix. Figure 6-5 below shows the

distribution of these bursts (red) across the SZ08 network produced by the WDN-DRL

environment.

161

Figure 6-5 SZ08 network architecture with bursts in red

Finally, several DRL models were trained with the sole difference of reward ratios to highlight

the most beneficial reward scales that should be assigned to the reward function. The models’

performances are judged equally on their ability to balance the main objectives of leakage

minimisation and pressure management. For the burst leakage case study, it was crucial to

repeat this simulation until the best reward scale ratios is clear. As is clear in figure 6-5, most

reward scales obtain similar episodic penalties apart from the ratio 1:4 favouring the pressure

violation objective. The 1:4 scale ratio’s penalty is not vastly different with only 12 points

higher which is relatively miniscule. The results of the experiment showed that a ratio of 5:1

favouring leakage reduction strikes the best trade-off between the two objectives.

Figure 6-6 Episodic penalty for different reward scales.

162

After initial evaluations of the SZ08 model, it was clear that the reward function had to be

slightly modified to better express the effects of leakage at low nodal pressures (0-1m). Low

nodal pressures create highly negative rewards when leaks are increased in certain nodes (69

nodes, figure 6-7a). This exaggerated the extent of the penalty thus overshadowing the

positive rewards of the optimised valve settings. The new reward function includes a

hyperbolic tan function (tanh) to keep the leakage portion of the rewards between -1 to 1

shown in figure 6-7b. The new reward function is represented below in equation 6-1.

Figure 6-7a) SZ08 nodes with pressures lower than 1m. b) Old function (blue); new tanh() function (green).

𝑅 = ∑ (𝑣𝑎𝑓𝑡𝑒𝑟 − 𝑣𝑏𝑒𝑓𝑜𝑟𝑒) ∙ 𝑠𝑐𝑎𝑙𝑒 1 + 𝑡𝑎𝑛ℎ (
𝑄𝑙𝑎−𝑄𝑙𝑏

𝑄𝑙𝑏
) ∙ 𝑠𝑐𝑎𝑙𝑒 2𝑀

𝑗=1 (6-1)

6.3.1. Results

The SZ08 model included many complexities that made solving the case study inherently

difficult. Introducing random bursts throughout the network provided was one example. The

optimisation algorithms were evaluated using the reward function above (eq. 6-1) for three

episodes lasting 24 steps each. The test scenario introduced bursts in the locations shown in

figure 6-5. To highlight the algorithms’ performances, the box plot is displayed in figure 6-8

where the hourly rewards at each step are marked with an ‘o’ and the average reward is

denoted by a ‘x’.

Some optimisation algorithms were unable to optimise the case study causing negative

rewards which hints to valve action lowering the network performance (through higher

leakage rates or more pressure violations). These underperforming algorithms include the

163

benchmarked PSO (-8.53) and NM (-12.0) alongside the DRL algorithms DDPG (-14.7), SAC (-

19.1) and ARS (-14.9). In contrast, differential evolution performed better with an average of

20.1. The DE boxplot hints that whilst the algorithm managed to optimise the test case, the

interquartile range of the box shows that the DE algorithm has not fully grasped the best policy

to control the pressure valves resulting in some negative rewards and some highly positive

rewards. The best overall rewards were achieved using the A2C model (83.0) followed closely

by the Recurrent PPO model (76.6) and TRPO (75.9). The distributional DRL algorithm, TQC,

was the only high performing off-policy algorithm (72.5) followed by the on-policy PPO model

(69.2). Like the Jowitt & Xu network, the DRL algorithms have outperformed the benchmark

algorithms because they built a more resilient policy that has adapted to the randomness of

the bursts. A clear trend shows that on-policy DRL algorithms (A2C, PPO, Recurrent PPO, TRPO)

have developed more effective policies than their off-policy alternatives (DDPG, ARS, SAC).

A more detailed outlook on the step-by-step performance of the agents was displayed in

figure 6-9. The line graph represents the rewards collected through the 3 episodes of the test

scenario. The plots match the previous figure with on-policy algorithms massively

outperforming the off-policy and benchmarked algorithms. The line graph also highlights DE’s

wide range of rewards shown in grey. Another noticeable trend is the higher rewards found

during the minimum night flow hours between 3 to 5am. This is due to the higher average

pressure during these times and hence the lower probability of invoking the low-pressure limit

(less than 10m). Furthermore, minimising pressure during MNF hours is more possible

resulting in greater leakage reduction.

164

Figure 6-8 Algorithm performance - SZ08

Figure 6-9 Reward time comparison – SZ08

Evaluating the processing speed of the different algorithms provides insight into their

computational efficiency. The speed is measured in the time required for the algorithms to

solve the 3 episodes of the test scenario (test time) and the time taken for the DRL algorithms

to develop their policies using 20,000 timesteps (train time) as shown in figure 6-10. The

training time can be used to assess which DRL models are easiest to build and re-train to avoid

inaccuracies arising from seasonality and trends in water network operations. Models with

smaller neural networks generally have faster training times as they are less computationally

165

demanding. In addition, processes that include distributional value functions such as TQC

(6113s) are more computationally expensive requiring longer training times. SAC had the

second longest training time due to its large neural network architecture at 5588s to develop

its policy. Recurrent PPO needed 4519s to train its models which is slightly longer than the

other DRL algorithms due to the LSTM modules adopted in the neural networks. The rest of

the models have similar training times ranging from 3083s to 3672s.

In contrast, the benchmark algorithms act immediately without building a policy thus

explaining the absence of any training time figures. These algorithms are compared on their

implementation time otherwise known as their test time. As shown in figure 6-9, the DRL

algorithms are much faster than their benchmark alternatives in providing valve settings and

solving the test scenario as they rely on their predetermined policy to do so. On the other

hand, NM (10983s), DE (10753s), and PSO (7627s) find the optimised action through multiple

iterations at each timestep hence elongating the processing time. The DRL cohort demonstrate

their fast-processing times with a speed mark-up ranging from 8.87-18.5x in comparison to the

benchmarked algorithms. The fastest DRL algorithm is the PPO only requiring 594 seconds to

complete 3 episodes totalling 72 timesteps with all the data renders mentioned in section

4.2.5. This corresponds to 8.25 seconds per timesteps which doesn’t qualify the method as

real-time. Removing the data visualisation tasks would surely cut down the processing times

bringing it closer to real-time performance. The slowest implementation was the SAC which

completed the test case in 860s.

166

Figure 6-10 Algorithm speed - SZ08

To summarise the results, table 6-3 was formed with the main metrics produced from the tests

runs. This includes the average episodic rewards, average episodic water saved percentage,

average episodic pressure violations, average episodic carbon emissions reduction and total

processing time (train and test). The agents are assessed on their ability to maximise their

episodic rewards by minimising pressure violations and maximising the % of water saved and

pressure. Reducing leakage can be converted to useful carbon emission figures that help

highlight the environmental impact of pressure management measures in Kg of CO2. The best

performer in every category was marked in bold. Despite SAC being the most effective in terms

of leakage reduction (7.169%) and carbon emissions reduction (2492 KgCO2), the agent

achieves this by disregarding pressure violations resulting in the highest number of episodic

pressure violations (17002) and a negative average episodic reward (-438.9). In contrast, the

Recurrent PPO agent handles the trade-off between the reward objectives better by achieving

the lowest number of pressure violations (14688) which results in the best episodic rewards at

1842. The algorithm with the best training time was TRPO only needing 3083 seconds to

develop the policy while PPO had the fastest test time at 594 seconds.

0 2000 4000 6000 8000 10000 12000
Time in seconds

A
lg

o
ri

th
m

s

Processing time of different algorithms in seconds

ARS

TQC

SAC

DDPG

A2C

Recurrent
PPO
PPO

TRPO

DE

Te
st

ti
m

e
Tr

ai
n

ti
m

e

167

Table 6-3 Key results - SZ08

Algorithm Average

Reward

Average

Water

Saved

(%)

Average

Pressure

Violations

Carbon

Emissions

Reduction

(KgCO2)

Training

Time (s)

Test

Time

(s)

NM -267.9 4.853 16817 1724 NA 10983

PSO -207.0 4.967 16744 1778 NA 7627

DE 436.8 4.658 16105 1662 NA 10753

ARS -413.3 7.077 16977 2426 3222 675

SAC -438.9 7.169 17002 2492 5588 860

TQC 1828 5.878 14714 2027 6113 754

TRPO 1774 6.041 14771 2076 3083 724

PPO 1652 5.431 14898 1893 3644 594

Recurrent PPO 1842 5.793 14688 1999 4519 727

DDPG -411.5 7.098 16978 2426 3644 807

A2C 1825 6.382 14712 2170 3672 756

6.3.2. Discussions

The test case scenario was developed to investigate the performance of 11 algorithms (3

benchmarks and 8 deep reinforcement learning). Running this experiment highlighted the

algorithms’ ability to minimise leakage and pressure violations within the real network model

(SZ08). Comparisons are drawn based on the algorithms’ performances and their processing

speed in this section.

Performance

Using the results presented in figures 6-8 & 6-9 and the key results in table 6-3, we discuss the

performances of the algorithms tested. The reward function used to evaluate the models was

altered to better suit the SZ08 network in equation 6-1. The performance of the algorithms

varied greatly with some unable to optimise the test case due to its complexity. The results

table showed how the best algorithms were the ones that focused on balancing the two

objectives rather than minimising leakage which resulted in negative rewards. A closer look on

figure 6-9 shows the temporal rewards during the 72 timesteps of the tests. This line graph

highlighted a clear pattern of higher rewards during lower customer demand times of the day.

During the period of 3:00 to 5:00 of each day, night flow is at its lowest and nodal pressure

rises to its highest. This allows agents to make more noticeable changes to the network by

168

reducing these nodal pressures and minimising leakage. In addition, the lower pressures do

not invoke as many violations as other periods of the day since the average pressure is further

from the low-pressure limits. The figure also shows the gap between the high performing

algorithms and the underperforming algorithms. A better representation of this was in figure

6-8 that displayed the rewards (and penalties) obtained by the tests in a box plot. Figure 6-8

shows six algorithms that were able to optimise the test scenario (PPO, Recurrent PPO, A2C,

TRPO, TQC and the benchmark DE). The other algorithms (DDPG, SAC, ARS, and the

benchmarks NM and PSO) have failed to develop a useful policy and resulted in heavy

penalties during the test scenarios.

The benchmark algorithms included particle swarm optimisation, nelder mead and differential

evolution which mostly performed poorly in the test scenarios. The PSO and NM algorithms

ranked 7th and 8th overall with episodic rewards of -207 and -269.7 respectively. Their negative

rewards signify either an increase in leakage or pressure violations or both. In this case, an

attempt to minimise leakage resulted in more pressure violations (16817 for NM and 16744 for

PSO). The failure on the pressure management objective resulted in the negative performance

which shows the algorithms’ failure on navigating the trade-off between the two objectives. In

comparison, the DE algorithm has managed to tackle this issue better resulting in a positive

reward (436.8). The boxplot (figure 6-8) shows the randomness of the algorithm’s reward

collection insinuating the algorithm’s convergence at a local minimum. DE achieves this

superior reward by placing more emphasis on reducing pressure violations (1662) at the

expense of the lowest leakage reduction with only 4.658% of the water saved. The general

performance of the benchmark algorithms was poorer than the DRL cohort stemming from

their inability to build intelligence and bespoke policies. The benchmark algorithms use the

same methods to obtain their optimised results regardless of the problem setup therefore

they are at a disadvantage when applied to dynamic environments such as the burst leakage

case study. Practically, these algorithms rely on model predictive methods to solve the

problem rather than real data making them reliant on the quality of the predictive data.

The DRL algorithms have had mixed performances with on-policy algorithms highly

outperforming their off-policy alternatives. In the hybrid family, the on-policy A2C algorithm

managed to develop the overall second-best performance with an episodic reward of 1825.

A2C improves greatly on the DE benchmark by simultaneously reducing the leakage (6.382%

water saved) and pressure violations (14712) showing a far superior policy. Evaluating figure 6-

9 shows room for improvements and tuning in A2C’s performance despite it being one of the

higher performers. Unlike A2C, the rest of the hybrid (DDPG and SAC) algorithms were off

169

policy. Off policy algorithms are generally less robust in dynamic environments as they rely on

replay buffers as a learning strategy whilst on policy algorithms can learn online from real-time

data. In order to collect rewards, DDPG and SAC emphasise leakage reduction at the expense

of more pressure violations. As a result, both algorithms incurred heavy penalties. The DDPG

agent failed to optimise the test case incurring a penalty of -411.5 which was lower than all

three benchmarks (DE, PSO and NM). DDPG had the second highest water saved % with

7.098% and the second highest number of violations 16978. Despite SAC achieving the best

leakage reduction with 7.169% water saved and the highest carbon emission reduction of 2492

Kg of CO2; it has managed to get the worst overall performance with a penalty of -438.9. The

penalty was solely due to the numerous pressure violations amounting to 17002 violations. In

this scenario, it was clear that small policy changes could cause large changes in pressure

violations making it an important focus in the reward trade-off.

The policy driven algorithms could also be split into on-policy (PPO, Recurrent PPO, TRPO) and

off-policy (ARS). As expected, the on-policy algorithms far outperformed the off-policy

alternative due to their ability to learn in dynamic environments. The on-policy algorithms also

boast their stability and superior exploration strategy during training therefore reaching better

trade-offs. The best overall episodic performance was achieved by the Recurrent PPO (1842)

model that improved on its PPO (1652) predecessor through the inclusion of LSTM modules to

the neural network. This minor change aided the neural network in building long term

dependencies hence developing a better understanding of the case study. This allowed the

Recurrent PPO model to develop resilience to the varying customer demand patterns forming

a better overall policy. Recurrent PPO boasts the best performance with regards to the

pressure management objective by minimising violations to 14688 in comparison to PPO which

had 14898 violations. Both algorithms used lower leakage reduction to achieve this result with

Recurrent PPO saving 5.793% and PPO saving 5.431% of leakage water. This was a significant

drop from TRPO which managed to save 6.041% yet only scored a reward of 1774 due to its

pressure violations of 14771. TRPO has been proven to handle the large scale of the SZ08

network in the previous chapter through the use of its trust region calculations however the

randomness of the bursts required further knowledge of temporal dependencies which was

exhibited by the Recurrent PPO algorithm. Despite the success of policy driven algorithms and

ARS’s general high performance in previous cases, the off-policy method resulted in a poor

learning strategy. Unfortunately, that meant that ARS has incurred the overall second worst

penalty of -413.3 by neglecting the pressure management objective. Whilst the algorithm

170

managed to achieve the best leakage and environmental performance (7.077%, 2426 Kg CO2),

it has incurred more penalties due to the numerous pressure violations (1677 violations).

Finally, a surprising result placed TQC as the only high performing off-policy algorithm. The

TQC method relies on representing the value function to the critic as a distribution across

states rather than a single value. This strategy allows the critic to gain a better understanding

of how to evaluate the actions of the actor. Therefore, the distributional DRL hybrid algorithm

manages to follow a better training trajectory leading to a higher performance (1828).

Speed

A crucial metric that was used to evaluate the optimisation algorithms was processing speed

which was displayed in figure 6-11 and table 6-3 earlier. Due to the focus of real-time

implementation and the dynamic behaviour of real network, speed was a major consideration.

The algorithm speeds were assessed based on their implementation time (test time) and policy

development time (training time). Evaluating the DRL algorithms for their training time

provides an opportunity to highlight the models easier to build and amend. Figure 6-11

displays bar graph of the training times which denote the time required to build a DRL model

through 20,000 timesteps. The training times are mostly dictated by the deep neural network

size and the DRL method needed to train the policy through gradient descent. TQC has the

largest neural network size and a complicated DRL method to deploy a value distribution for

the critic agent. As a result, it has landed the longest training time of 6113s. SAC has an

identical neural network to TQC but does not require the value distribution to train the critic

agent making it a simpler method and resulting in faster training (5588s). PPO, A2C and DDPG

have similar processing times due to their smaller neural networks with training times of

3644s, 3672s and 3644s respectively. Including LSTM modules to PPO’s neural network creates

the Recurrent PPO therefore requiring an additional training time of 4519 seconds. ARS adopts

a simple method to develop its policy through a random search over the policy parameters

further reducing the computational demand and lowering its training time to 3222s. Finally,

the fastest DRL algorithm to train its model was the TRPO algorithm that only required 3083

seconds to complete the 20,000 timesteps. TRPO’s trust region equations help it converge

faster when dealing with complex environments further allowing it to develop its policy more

efficiently.

More importantly, algorithms are assessed on their ability to optimise the test scenario based

on their test time. Test times are measured as the time required to solve 72 timesteps of the

test scenario signifying three days’ worth of customer demands. The main comparison lies

171

between the implementation time for DRL and non-DRL benchmarks as shown in figure 5-11.

The benchmark algorithms were outperformed by the DRL cohort by providing an 8.87-18.5x

speed mark-up. This is possible through DRL’s ability to develop an overarching policy

applicable to different test scenarios. PSO was the fastest benchmark algorithm to converge to

a solution needing 7627s. This was followed by DE and NM which were the slowest two

algorithms overall demanding 10753s and 10983s respectively. These benchmark methods are

often paired with model predictive control (MPC) to estimate the best valve settings for the

upcoming customer demands. Forecasting future models can lead to bias due to model

inaccuracies whilst the ability to apply optimisation algorithms directly to the water networks

bypasses these issues.

DRL models built through the training process can be applied to the test scenarios by using the

current observations to suggest the next action through the build policy. Using this method,

DRL algorithms can be applied directly to water network environments with superior test

times. The fastest overall implementation was achieved by PPO by completing the test in 594

seconds while the slowest was SAC that took 860 seconds. Otherwise, the DRL cohort has

achieved similar times between 724s and 754s.

6.4. Concluding Remarks

Burst leaks, detectable through modern techniques, are less frequent but pose significant

challenges. The chapter introduces a methodology for testing the impact of pressure

management on mitigating leakage through burst events. The case study evaluates different

Deep Reinforcement Learning (DRL) models against benchmark algorithms, aiming to minimize

water loss and pressure violations in a complex water distribution network.

During this case study, eight DRL algorithms and three benchmarks were deployed to optimise

the pressure management of water distribution. The WDN used included a standardised test

network (Jowitt & Xu) and a real world WDN model (SZ08). To highlight the algorithms’ ability

to reduce burst leakage and pressure violations two reward functions were used (E.q. 3-3 and

e.q. 6-1).

The burst leakage case study provided an actionable method to mitigate random burst events

in water distribution networks. The study involved two experiments that focused on testing

the scalability of the tested algorithms. A cohort of eight DRL algorithms and three benchmark

algorithms are evaluated based on their ability to simultaneously reduce leakage and pressure

violations. This particular case study is built with an extra layer of complexity due to the

randomness of the burst locations making the environment more dynamic. Creating

172

relationships between the observation space and the action space becomes a more sensitive

and crucial task.

Reviewing the results unveils a clear preference to the use of DRL algorithms to solve random

burst events. DRL algorithms almost exclusively outperformed the benchmarks in both

networks showing their ability to handle dynamic environments. Benchmarks were unable to

optimise the case studies to the same degree due to their inability to develop an overarching

policy. Furthermore, DRL models improve greatly in processing times making them the more

beneficial option for real-time control. The benchmark algorithms were deemed unsuitable for

real-time control due to their long implementation time explaining why they’re mostly

deployed in model predictive control methods. Real time control was achievable for smaller

DMA-scale network however further work is required to improve processing speed for larger

scale applications. Performance varied greatly within the DRL cohort as on-policy methods

outperformed their off-policy counterparts. On-policy algorithms gain the advantage due to

their stability with online learning and their superiority navigating dynamic environments. The

only exception to that was ARS’s performance in the Jowitt network and TQC’s performance in

the SZ08 network.

A comparison of the two networks displays the effects of scalability and complexity on

algorithms performance. On the smaller scale, the DRL algorithms were better equipped to

minimise leakage and manage pressure efficiently This is due to the optimal valve locations

and the relative frequency of the pressure valves in the smaller benchmark. The sub-optimal

locations left uncovered areas in the SZ08 network that are unaffected by valve action.

Therefore, some areas within the SZ08 network cannot mitigate the burst events regardless of

the optimised valve settings. In addition, the optimisation algorithms were better equipped to

minimise leakage due to their coverage and control of the network. Stemming from that, it can

be inferred that managing water networks on the DMA level is more likely to produce better

results. Nevertheless, testing the DRL methods in the SZ08 network proved their scalability

making them serious candidates for real life implementation.

173

7. Conclusions

In the process of advancing leakage management in water distribution network, this research

has narrowed down to a focus on prevention through pressure management. Through proper

valve control, WDN can simultaneously minimise leakage in the network without violating

OFWAT regulated pressure limits. A novel methodology the exploits the capabilities of DRL

algorithms for WDN applications has been developed to tackle background and burst leakage.

A cohort of eight DRL algorithms and three benchmark optimisation algorithms are

implemented to case studies consisting of four experiments in total applied to two different

networks. In this chapter, the overall conclusions of the research are drawn from the case

studies and their results. Any assumptions made during the research are elicited followed by

the limitations. Finally, recommendations for future research are proposed to aid with the

development of the research further.

Chapter 2

Prior to developing the DRL algorithms or the environment, a literature set was produced to

explain the necessity of leakage management in WDNs, and current practices tackle this

problem The main conclusions underscore the importance of diverse leakage assessment

strategies including the Top-down, MNF analysis, and BABE methods, while advocating for a

combination of methodologies for a more comprehensive assessment. Leakage detection

involves inspection robotic platforms and non-intrusive hardware methods. However,

advances in software methods such as data-driven leakage detection, especially in hybrid

approaches with neural networks, show promise. Effective leakage control encompasses

pressure management and asset management considering various impact factors. Considering

pressure management requires emphasis on optimal valve placement and control. In this

research, the path of leakage reduction through pressure management is explored further

through the novel introduction of DRL algorithms for valve control.

Chapter 3

Hereby, a review on the application of DRL in all aspects of urban water systems was

conducted to validify the novelty. In this section a comprehensive review of DRL methods

coupled with a classification tree leads the path to DRL in UWS. This is followed by a review of

current research and trends of DRL in different aspects of UWS. The main conclusions of this

literature set highlight the impact of the use of deep neural networks for function

approximation leading to improved scalability and resulted in many successes across simulated

and real applications. Current DRL trends tackle high dimensional complexity by mimicking

174

human psychology and natural hierarchy structures. A novel classification tree was established

to help new researchers navigate better. The application of DRL in the UWS is still developing

yet it shows great promise to improve our current practices with water. Early efforts to

benchmark DRL test beds and environments will aid the growth of this topic. Challenges of

applying DRL to water systems include testing and validation through real life models.

Chapter 4

The aim to deploy deep reinforcement learning methods for the optimisation of pressure

management in WDNs could not be realised without the RL environment. As the literature

suggests, building the DRL environment was an integral part of the research as it dictates the

interactions between the agent and the WDN. The environment used managed to depict the

problem effectively and lead the agents towards optimisation. All the necessary sections

required to establish the environment were covered in chapter 4. The conclusions drawn from

this chapter were crucial to the development of the research and highlight important remarks

for the implementation of DRL in WDNs. Creating the environment has allowed for the use of

both DRL and non-DRL methods to optimise the WDN models while leveraging the hydraulic

simulation capabilities of EPANET. Implementing environment design for real networks will

require the hydraulic solver capabilities of EPANET or a similar hydraulic solver. Input files

developed from utility data platforms can be used in the environment as shown in the SZ08

network. Furthermore, defining the action and observation spaces are major decisions that

heavily influence the interaction between the agent and the problem. They should model the

real-life engineering problem. Another major consideration is reward formulation. Selecting

the reward function is a very sensitive task and should be designed iteratively to achieve the

desired objectives. Training the DRL model and testing the agents would seem like a black box

process if the environment were not equipped with the necessary data visualisation and

logging tools. Hence, the necessity of rendering and reporting functions to assist with data-

driven decision making. Finally, it is important to deploy a variety of DRL algorithms to test the

suitability of each algorithm and investigate their performances.

Chapter 5

Experiments carried out to minimise background leakage in WDNs included the use of a small

benchmark and a large real WDN model. As a result, background leakage was minimised in

both models through PRV action led by DRL and non-DRL optimisation algorithms. The DRL

algorithms proved their effectiveness in pressure management by achieving beneficial results

that led to the following conclusions. The best DRL methods achieved 73.4% leakage

175

minimisation and 302.5 Kg of CO2 reduction in the Jowitt & Xu network. In comparison, the

best DRL methods performed less favourably on the SZ08 network where it reached a

maximum of 0.693% leakage minimisation and 169.3 Kg CO2 reduction in SZ08. It is clear that

the model’s performance on background leakage is highly reliant on valve locations and

coverage.

Furthermore, significant improvement in processing speed was observed when utilising the

DRL models in comparison to the benchmarks. The case studies also proved that DRL

algorithms are capable of real time pressure management in the Jowitt & Xu network and near

real-time pressure management in SZ08. The DRL models were able to navigate the trade-off

between pressure management and leakage minimisation effectively. Despite DRL models

performing less favourably than their benchmark alternatives, their ability to reduce

computational load and work real-time makes them a favourable option for WDN operation.

Real-time control in water distribution networks promises leakage and carbon reductions

without violating pressure limits by allowing instant valve reactions to network changes.

Experimenting with DRL hyperparameter tuning significantly improves algorithm performance,

indicating room for improvement through hyperparameter optimization. Comparatively,

hybrid methods were more effective for the smaller network (Jowitt & Xu), while policy-driven

methods provided stability for the larger network (SZ08). Overall, DRL algorithms show

promise for real-time control at a District Metered Area (DMA) level with low computational

load and high rewards. On the other hand, valve locations in the real network were sub

optimal making it more difficult to manage and compromised the leakage reduction

capabilities.

Chapter 6

The burst leakage case study evaluated eight Deep Reinforcement Learning (DRL) algorithms

and three benchmark algorithms for mitigating random burst events in water distribution

networks. By controlling valve settings in the small-scale test network (Jowitt & Xu) and the

large-scale real network (SZ08), the DRL cohort was compared to benchmark optimisation

algorithms on their ability to minimise leakage and pressure violations. The diversity of

network scales and complexity answers questions on the stability and scalability of the models

while presenting a solution for a real-life scenario. Randomised burst locations make the

environment dynamic and more difficult to solve hence emphasising the importance of data-

driven decision-making. The burst scenario unveiled several key conclusions. Almost all DRL

algorithms, particularly the on-policy methods, outperformed the benchmarks in navigating

176

the dynamic environment resulting in lower leakage and pressure violations. The best DRL

performances resulted in 47.60% reduction in leakage and 5650 Kg CO2 emissions reduced in

Jowitt & Xu network. Also produced a 5.793% decrease in leakage and 1999Kg CO2 reduction in

carbon emissions in the SZ08 network. Optimising the real network (SZ08) proved more

challenging due to the sub optimal valve placement making it more difficult to manage certain

areas in the network. Nevertheless, DRL models exhibited improved test times through their

function approximation capabilities making them more suitable for real-time control. On-policy

DRL algorithms were more capable of learning from online data making them perform better

than their off-policy counterparts. The only high performing off-policy algorithm (TQC) was

materialised through distributional DRL proving how using a value distribution can improve

results. By comparing the PPO and Recurrent PPO performances, it is apparent that

introducing LSTM modules to the neural network improves the ability to navigate the dynamic

environment. The scalability of the DRL methods was proved through their implementation in

SZ08, however their performance decreased slightly in comparison to the smaller scale

network.

In summary, several experiments have been conducted to test and validify the application of

DRL algorithms in leakage reduction through pressure management. As a result, we have

managed to develop insightful data visualisation figures and compare the performances of

several optimisation algorithms (DRL and non-DRL) using a novel pythonic environment. The

DRL methods have been proven to operate in real-time or near real-time by adapting its policy

to meet the current conditions of the network therefore completing the project aims set in

section 1.3. In addition, the DRL’s performances in both case studies highlight their ability to

handle uncertainties in dynamic environments in a scalable manner. This affirms our novelty in

the simulated experiments. The accuracy of these results is therefore contingent on the

accuracy of the hydraulic data used to create the case studies and will need to be re-assessed

before real-life implementation. More limitations on the results are outlined in the following

section.

7.1. Limitations

In order to provide a full view of the research, it is crucial to address the limitations of the

work and how it could affect the results. In this section, we highlight some of the main

limitations associated with the use of DRL in pressure valve control in WDNs. One of the main

limitations unveiled in the pressure management the real SZ08 network was the sub optimal

locations of the pressure valves. To achieve the best results, water networks must be fully

controlled by their pressure valves however real networks are far from their optimal states. As

177

displayed in SZ08, there are often areas of the network that are unaffected by valve action

signifying leakage vulnerable zones. This dependency on valve locations and coverage is

natural but should be mitigated by ensuring enough valves are present in optimal locations to

maximise pressure control. Another method to increase pressure management capabilities

would be to include the pumps as part of the control system. Coordinating between the pumps

and valves can help improve pressure control in the network.

Another limitation of this study is its reliance on clear data. Data-driven optimisation is very

insightful nevertheless it requires sensor data across the entire network. Water networks vary

in their data availability and data quality which could limit the usability of DRL algorithms in

WDNs. Therefore, this study is best applied to WDNs that have established a coherent data

pipeline and are looking to expand their pressure management facilities. Consequently, it is

important to build accurate hydraulic models that can be used to build the DRL agents. Well-

developed DRL models also tend to be quite sensitive to erroneous observation data which

could falsely trigger harmful actions by the pressure valves. The DRL input data must be

cleaned and tested for accuracy to ensure that it represents the current state of the network.

Furthermore, the application of DRL requires reliability evaluations before being deployed on

WDNs. In any engineering application, it is necessary to ensure that the optimisation algorithm

won’t endanger the customers. In this instance, agents need to ensure that water supply

remains uninterrupted without affecting asset life or risking future bursts. These concerns

were addressed by (Tian, Liao, Zhi, et al., 2022) where the authors devised a ‘voting’ method

to improve reliability. Water distribution networks are subject to daily and seasonal changes

that will undoubtedly influence the performance of the DRL models. While the DRL algorithms

were proven to deal with randomness in the observation data, seasonal changes might require

re-training of the models and further policy development. This could be achieved through a

continuous integration/deployment (CI/CD) pipeline for the DRL models which automates the

deployment of newer, more suitable models.

Limitations also include the effect of the DRL algorithm on other objectives of the WDN. While

this study is focused on using DRL algorithms for the purposes of pressure management and

leakage reduction, other objectives could be affected by the pressure control hence why it is

necessary to include these considerations in DRL algorithm design. To avoid this, any relevant

objectives should be included in the reward formulation design to ensure that the agents are

trained with a complete picture of the desired behaviour. Complex model design is not limited

to the selection of the reward function but includes DRL sensitivity to hyperparameters and

178

neural network architecture. The design of DRL algorithms involve many decisions including

various options for neural network architectures, optimisers, activation functions, pre-training

techniques, and hyperparameters. The complexity of making these design choices require

careful consideration and experimentation. Generalisation of the DRL models is limited as the

policy developed for one network may not necessarily work for another therefore it is

important to develop a separate model for each network. On another hand, the option for

transfer learning between the neural networks is valid as that could help train models from

different networks.

7.2. Assumptions

To carry out the experiments detailed in this study, several assumptions had been made. This

is to abstract the leakage problem enough to make it solvable yet not affect the validity of the

work. In reality, the leakage problem involves several dependencies that are out of the scope

of this research so, to create a pressure management focused study, the following

assumptions were made.

• The pressure-leakage relationship used in EPANET and denoted in equation 2-9. This

equation describes leakage as a function of pressure and has been widely accepted in

the research literature (Lambert, 2001; Thornton, 2003; Thornton and Lambert, 2005).

In this equation the leakage exponent, n, was assumed to be 1.18 to align this study

with the wider research community as this is the accepted value as shown in (Araujo et

al., 2006; Saldarriaga and Salcedo, 2015b).

• Another assumption made based on literature was the background leakage limit. Using

UK based figures from (García and Cabrera, 2007), we assume that the leakage

coefficient between 0 to 0.196 signify background leakage and coefficients above

0.196 signify burst events.

• On the other hand, the leakage coefficients, also known as nodal emitter coefficients,

represent the state and length of the neighbouring pipes. In order to estimate

background leakage in the SZ08 model we assume that the state of the pipes is

identical and the deciding factor for leakage is the length of the pipe. Hence why,

equation 5-1 was used to estimate background leakage across the nodes. For the

Jowitt & Xu network, these emitter coefficients were included in the benchmark.

This study included more general assumptions related to the methodology. These assumptions

include.

179

• Hydraulic models used are considered the digital twin of the real networks. When

implemented on the water network, the DRL algorithms will be acting based on real

data making it less susceptible to discrepancies in the model. For the purposes of this

study, a real-life implementation was not possible as there are no test networks

available in the UK. The first test network will be built by Northumbrian Water and

expected to be ready by 2025.

• Carbon emissions conversion factors were used from the government publication for

2023 (Department for Energy Security and Net Zero, 2023). The assumption made is

that all the relevant carbon emissions are a result of leakage where in practice

minimising leakage effects pumping and other network properties that might decrease

carbon emissions further. For the scope of this study, only the direct carbon emissions

are considered (scope 1).

• When selecting the action space, it was necessary to assume that it is continuous to

allow the agents to roam the search space freely and equate the DRL agents to their

benchmark alternatives. The assumption made was that pressure valves are able to

process precise settings provided by the agent whereas in practice some control errors

can be expected.

7.3. Recommendations for Future work

Beyond this research’s scope, there is room for development. In this thesis, we take the first

steps in deploying deep reinforcement learning for leakage reduction in water distribution

networks yet the path to a fully realised system requires further work. To conclude this

research, we recommend future research to include the following.

As this field continues to grow, so does the need to benchmark case studies and environments.

Therefore, it would be beneficial to collate and benchmark the DRL environments created to

solve certain problems withing UWSs. For example, the environment created for this research

can prove as a useful benchmark to train DRL agents for leakage prevention or (Hajgató, Paál

and Gyires-Tóth, 2020)’s environment for pump control. It is important to intensify DRL

research in leakage management applications. The management of in pipe inspection robots

can be controlled through DRL algorithms or even a prediction agent can be trained to classify

leaks and leak locations. These are a few examples regarding the possibilities of DRL in leakage

management. From an engineering perspective, it is crucial that researchers exploring this

topic confirm the validity of the application through live data or ground truth models. To

achieve that, DRL algorithms should be built with reliability and scalability in mind.

180

Different training methods such as Hindsight Experience Replay (HER), imitation learning and

inverse RL should be investigated for their effectiveness in improving agent performances.

These are among many tools that researchers should experiment with to further improve the

results of DRL algorithms in mitigating leakage. Furthermore, researchers should aim to

optimise neural networks through trialling different optimisers, activation functions, LSTM

modules, architectures and more. It is proven the graph neural networks (GNNs) are effective

in emulating the hydraulic behaviour of WDNs (Fan, Zhang and Yu, 2022) therefore it is safe to

assume that they would be effective in creating DRL agents. There are many methods

prevalent in the industrial application of DRL agents which could easily be repurposed for

water distribution hence why researchers are encouraged to delve into DRL literature. It is

adamant from the case studies that multi agent DRL could provide the resilience required to

monitor DMAs separately and interactively ensuring that each network is optimised with an

open loop between the DMAs. This method often incurs higher computational loads due to the

complexities associated with multiple agents and the necessary environment modifications.

Incorporating other pressure influencing network elements such as pumps and air valves

would add to the capabilities of the pressure control. The simplest way to achieve this is to add

the new elements to the action space controlled by a single agent. This will require slight

modifications to the environment to ensure that the different actuators can be managed

simultaneously and account for the different nature of pumps to the pressure valves.

Furthermore, variable speed pumps and fixed speed pumps constitute two different

behaviours which should be considered when creating this advanced pressure system. With

fixed speed pump actions could represent zone scheduling through a binary on or off state

while variable speed pump actions could represent different speed settings. Adding pumps to

the pressure management system will improve the agent performance hydraulically and

provide insight into energy efficiency achieved through pump operation. Customising the

reward function to include energy consumption or carbon emissions would add extra

objectives of energy efficiencies and carbon reductions to the environment.

The case studies used in this research displayed different sizes and topologies to highlight the

scalability of this method. Nevertheless, more experimentation with WDNs from across the

globe can provide more proof to the useability of DRL for real-time control. It was evident by

the case studies that the pressure management capabilities are also limited by the network

elements therefore further studies could focus on optimising the number of valves, their

locations as well as their settings. This will help realise the true capabilities of pressure

management in leakage prevention.

181

Further investigation on the benefits and challenges of the practical application of DRL control

should be undertaken. For example, the water quality level can be compromised through

contamination at leakage sites however through pressure control this can be reduced

considerably. Flow reversals and its effects can also be investigated and accounted for in the

reward function. In addition, it is recommended that a cost-benefit analysis should be

conducted over an extended period, preferably a year. This is to ensure that the analysis

includes seasonality changes and tends observed in the annual year. Doing so will aid in

providing an accurate projection to the 5-year and 10-year costs and savings. Ideally, this

analysis would be conducted by a water utility company as it requires access to sensitive data

unavailable to the research community such as in-depth knowledge of the costings for water

treatment, man-hours, turnover, and the size and frequency of penalties.

These recommendations can serve as a guide to lead the next steps of implementing DRL to

leakage management in WDNs.

182

References

A.W.W.A. (2020) Free Water Audit Software, American Water Works Association. Available at:

https://www.awwa.org/Resources-Tools/Resource-Topics/Water-Loss-Control. (Accessed: 30

May 2020).

Abduljabbar, R.; Dia, H.; Liyanage, S. and Bagloee, S. (2019) ‘Applications of Artificial

Intelligence in Transport: An Overview’, Sustainability 2019, Vol. 11, Page 189, 11(1), p. 189.

doi: 10.3390/SU11010189.

Abdulla, M. B. and Herzallah, R. (2015) ‘Probabilistic multiple model neural network based leak

detection system: Experimental study’, Journal of Loss Prevention in the Process Industries, 36,

pp. 30–38. doi: 10.1016/J.JLP.2015.05.009.

Abdulshaheed, A., Mustapha, F. and Ghavamian, A. (2017) ‘A pressure-based method for

monitoring leaks in a pipe distribution system: A Review’, Renewable and Sustainable Energy

Reviews, 69, pp. 902–911. doi: 10.1016/J.RSER.2016.08.024.

Achiam, J. (2020) ‘Spinning Up Documentation Release’.

Adams, S., Cody, · Tyler and Beling, P. A. (2022) ‘A survey of inverse reinforcement learning’,

Artificial Intelligence Review, 55(6), pp. 4307–4346. doi: 10.1007/s10462-021-10108-x.

Adedeji, Kazeem B; Hamam, Yskandar; Abe, Bolanle; Abu-Mahfouz, A. M. (2017) ‘Leakage

Detection Algorithm Integrating Water Distribution Networks Hydraulic Model’, in SimHydro

2017: Choosing the right model in applied hydraulics. Sophia Antipolis, pp. 1–9.

Adedeji, Kazeem B; Hamam, Yskandar; Abe, Bolanle; Abu-Mahfouz, A. M. (2017) ‘Towards

Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water

Piping Networks: An Overview’, IEEE Access, 5, pp. 20272–20285. doi:

10.1109/access.2017.2752802.

Adedeji, Kazeem B; Hamam, Yskandar; Abe, Bolanle; Abu-Mahfouz, A. M.. (2018) ‘Pressure

Management Strategies for Water Loss Reduction in Large-Scale Water Piping Networks: A

Review’, in Springer Water. doi: 10.1007/978-981-10-7218-5_33.

Adnan, N. F.; Ghazal, M. F.; Amin, M. M; Hamat, A. M. A. (2015) ‘Leak detection in gas pipeline

by acoustic and signal processing - A review’, IOP Conference Series: Materials Science and

Engineering, 100(1), p. 012013. doi: 10.1088/1757-899X/100/1/012013.

Ahadi, M. and Bakhtiar, M. S. (2010) ‘Leak detection in water-filled plastic pipes through the

183

application of tuned wavelet transforms to Acoustic Emission signals’, Applied Acoustics, 71(7),

pp. 634–639. doi: 10.1016/J.APACOUST.2010.02.006.

Ahiablame, L. and Shakya, R. (2016) ‘Modeling flood reduction effects of low impact

development at a watershed scale’, Journal of Environmental Management, 171, pp. 81–91.

doi: 10.1016/J.JENVMAN.2016.01.036.

Akiba, T. et al. (2019) ‘Optuna: A Next-generation Hyperparameter Optimization Framework’,

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 2623–2631. doi: 10.1145/3292500.3330701.

Aksela, K., Aksela, M. and Vahala, R. (2009) ‘Leakage detection in a real distribution network

using a SOM’, Urban Water Journal, 6(4), pp. 279–289. doi: 10.1080/15730620802673079.

Al-Adeeb, A. M. and Matti, M. A. (1984) ‘Leaching corrosion of asbestos cement pipes’,

International Journal of Cement Composites and Lightweight Concrete, 6(4), pp. 233–240. doi:

10.1016/0262-5075(84)90018-6.

Al-Washali, T. et al. (2020) ‘Assessment of water losses in distribution networks Methods,

applications, uncertainties, and implications in intermittent supply’, Resouces, Conservation &

Recycling, 152, p. 104515.

Al-Washali, T., Sharma, S. K. and Kennedy, M. D. (2018) ‘Alternative Method for Nonrevenue

Water Component Assessment’, Water Resources Planning and Management, 144(5), p.

4018017.

Al-Washali, T., Sharma, S. and Kennedy, M. (2016) ‘Methods of Assessment of Water Losses in

Water Supply Systems: a Review’, Water Resourcce Management, 30, pp. 4985–5001,.

Al-Washili, T. et al. (2020) ‘A Review of Non-Revenue Water Assessment Software Tools’,

WIREs Water, 7(2), p. 1413.

Alberizzi, J. C. et al. (2019) ‘Speed and Pressure Controls of Pumps-as-Turbines Installed in

Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates’, Energies 2019,

Vol. 12, Page 4738, 12(24), p. 4738. doi: 10.3390/EN12244738.

Aldea, A. and Jernigan, W. (2016) ‘Free software tools for water losses calculation’, in IWA

Water Loss 2016. Bangalore, India.

Alegre, H. et al. (2000) Performance Indicators for Water Supply Systems. 1st edn, Manual of

Best Practice Series. 1st edn. London: IWA Publishing ‘Manuals of Best Practice’ series.

184

Alegre, H. (2002) ‘Performnance Indicators as a Management Support Tool’, in Urban Water

Supply Handbook. Lisbon, Portugal: McGraw Hill, pp. 9.3–9.74.

Alegre, H. et al. (2006) Performance Indiactors for Water Supply Services. 2nd edn, Manual of

Best Practice Series. 2nd edn. London: IWA Publishing ‘Manual of Best Practice’ series.

Alex, J et al. (2018) ‘Benchmark Simulation Model no. 1 (BSM1)’.

Alkasseh, J. M. A. et al. (2013) ‘Applying Minimum Night Flow to Estimate Water Loss Using

Statistical Modeling: A Case Study in Kinta Valley, Malaysia’, Water Resource Management, 27,

pp. 1439–1455,.

Alves Goulart, D. and Dutra Pereira, R. (2020) ‘Autonomous pH control by reinforcement

learning for electroplating industry wastewater’, Computers & Chemical Engineering, 140, p.

106909. doi: 10.1016/J.COMPCHEMENG.2020.106909.

Amoatey, P., Minke, R. and Steinmetz, H. (2018) ‘Leakage estimation in developing country

water networks based on water balance, minimum night flow and component analysis

methods’, Water Practice and Technology, 13(1), pp. 96–105,.

Araujo, L. S., Ramos, H. and Coelho, S. T. (2006) ‘Pressure Control for Leakage Minimisation in

Water Distribution Systems Management’, Water Resources Management, 20, pp. 133–149.

doi: 10.1007/s11269-006-4635-3.

Arbues, F., Garcia-Valinas, M. A. and Martinez-Espinera, R. (2003) ‘Estimation of resisdential

water demand:. A state-of-the-art review’, Socio-Economics, 32(1), pp. 81–102,.

Arregui, F., Cabrera Jr., E. and Cobacho, R. (2007) Integrated Water Meter Management.

Edited by F. Arregui, E. Cabrera Jr., and R. Cobacho. London: IWA Publishing.

Arulkumaran, K. et al. (2017) ‘Deep reinforcement learning: A brief survey’, IEEE Signal

Processing Magazine, 34(6), pp. 26–38. doi: 10.1109/MSP.2017.2743240.

Aryal, S. K. et al. (2016) ‘Assessing and Mitigating the Hydrological Impacts of Urbanisation in

Semi-Urban Catchments Using the Storm Water Management Model’, Water Resources

Management, 30(14), pp. 5437–5454. doi: 10.1007/S11269-016-1499-Z.

Assessment, U. E. N. C. for E. (2009) ‘Pipe materials selection manual: water mains’.

Babovic, V. et al. (2002) ‘A data mining approach to modelling of water supply assets’, Urban

Water, 4(4), pp. 401–414. doi: 10.1016/S1462-0758(02)00034-1.

185

Bach, P. M. and Kodikara, J. K. (2017) ‘Reliability of Infrared Thermography in Detecting Leaks

in Buried Water Reticulation Pipes’, IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 10(9), pp. 4210–4224. doi: 10.1109/JSTARS.2017.2708817.

Baird, L. (1995) ‘Residual Algorithms: Reinforcement Learning with Function Approximation’,

Machine Learning Proceedings 1995, pp. 30–37. doi: 10.1016/B978-1-55860-377-6.50013-X.

Barton, N A; Farewell, T. S.; Hallet, S. H.; Acland, T. F. (2019) ‘Improving pipe failure

predictions: Factors affecting pipe failure in drinking water networks’, Water Research,

114926.

Battilotti, S., Sapienza, L. and Bertsekas, D. P. (2000) ‘Dynamic Programming and Optimal

Control , Part I’, Control, 36, pp. 638–639. Available at:

https://books.google.com/books/about/Dynamic_Programming_and_Optimal_Control.html?i

d=RjGQQgAACAAJ (Accessed: 7 April 2023).

Beattie, C.; Leibo, J. Z.; Teplyashin, D.; Ward, Tom; Wainwright, M.; Küttler, H.; Lefrancq, A.;

Green, S.; Valdés, V.; Sadik, A.; Schrittwieser, J.; Anderson, K; York, S.; Cant, M.; Cain, A; Bolton,

A.; Gaffney, S.; King, H.; Hassabis, D.; Legg, S.; Petersen, S. (2016) ‘DeepMind Lab’. Available at:

https://arxiv.org/abs/1612.03801v2 (Accessed: 4 May 2023).

Bellemare, M. G., Dabney, W. and Munos, R. (2017) ‘A Distributional Perspective on

Reinforcement Learning’, 34th International Conference on Machine Learning, ICML 2017, 1,

pp. 693–711. Available at: https://arxiv.org/abs/1707.06887v1 (Accessed: 10 May 2023).

Bellemare, M. G., Veness, J. and Bowling, M. (2013) ‘The Arcade Learning Environment: An

Evaluation Platform for General Agents’, Journal of Artificial Intelligence Research, 47, pp. 253–

279. Available at: http://stella.sourceforge.net/ (Accessed: 14 February 2023).

Bellman, R. (1952) ‘On the Theory of Dynamic Programming’, Proceedings of the National

Academy of Sciences, 38(8), pp. 716–719. doi: 10.1073/PNAS.38.8.716/ASSET/BADDE5C3-

CE28-4677-B095-95015576EEBC/ASSETS/PNAS.38.8.716.FP.PNG.

Benjamin, M. M. (2014) Water chemistry.

Bertetto, A. M. and Ruggiu, M. (2001) ‘In-pipe inch-worm pneumatic flexible robot’, IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, AIM, 2, pp. 1226–1231. doi:

10.1109/AIM.2001.936886.

Bertsekas, D. P., Tsitsiklis, J. N. and Τσιτσικλής, Γ. Ν. (1996) ‘Neuro-dynamic programming’, p.

491.

186

Bhagat, S. K.; Tiyasham W. W.; Resfay, O.; Tung, T. M.; Al-Ansari, N.; Salih, S. Q.; Yaseen, Z. M.

(2019) ‘Evaluating Physical and Fiscal Water Leakage in Water Distribution System’, Water, 11,

p. 2091.

Bickerstaff, R.; Vaughn, M.; Stoker, G.; Hassard, M.; Garrett, M. (2002) ‘Review of sensor

technologies for in-line inspection of natural gas pipelines’, Sandia National Laboratories,

Albuquerque, NM.

Bilal and Pant, M. (2022) ‘Differential Evolution for Water Management Problems’, Studies in

Computational Intelligence, 1009, pp. 197–214. doi: 10.1007/978-981-16-8082-3_7/COVER.

Bloembergen, D.; Tuyls, K.; Hennes, D.; Kaisers, M. (2015) ‘Evolutionary dynamics of multi-

agent learning: A survey’, Journal of Artificial Intelligence Research. doi: 10.1613/jair.4818.

Boaz, L., Kaijage, S. and Sinde, R. (2014) ‘An overview of pipeline leak detection and location

systems’, Proceedings of the 2nd Pan African International Conference on Science, Computing

and Telecommunications, PACT 2014, pp. 133–137. doi: 10.1109/SCAT.2014.7055147.

Bonthuys, G. J., van Dijk, M. and Cavazzini, G. (2020) ‘The optimization of energy recovery

device sizes and locations in municipal water distribution systems during extended-period

simulation’, Water (Switzerland), 12(9). doi: 10.3390/w12092447.

Bowes, B. D.; Tavakoli, A.; Wang, C.; Heydarian, A.; Behl, M.; Beling, P.; Goodall, J. L. (2021)

‘Flood mitigation in coastal urban catchments using real-time stormwater infrastructure

control and reinforcement learning’, Journal of Hydroinformatics, 23(3), pp. 529–547. doi:

10.2166/HYDRO.2020.080.

Bradbeer, R.; Harrold, S .; Nickols, F.; Yeung, L . F. (1997) ‘Underwater robot for pipe

inspection’, Proceedings of the Annual Conference on Mechatronics and Machine Vision in

Practice, MViP, pp. 152–156. doi: 10.1109/MMVIP.1997.625313.

Bruaset, S. and Sægrov, S. (2018) ‘An Analysis of the Potential Impact of Climate Change on the

Structural Reliability of Drinking Water Pipes in Cold Climate Regions’, Water 2018, Vol. 10,

Page 411, 10(4), p. 411. doi: 10.3390/W10040411.

Bullock, J.; Luccioni, A.; Pham, K H.; Lam, C. S. N.; Luengo-Oroz, M. (2020) ‘Mapping the

landscape of Artificial Intelligence applications against COVID-19’, Journal of Artificial

Intelligence Research, 69, pp. 807–845. doi: 10.1613/JAIR.1.12162.

Burn, S., Davis, P. and Schiller, T. (2005) ‘Long-term performance prediction for PVC pipes’.

Available at: https://espace.library.uq.edu.au/view/UQ:193983 (Accessed: 21 January 2023).

187

Buşoniu, L., Babuška, R. and De Schutter, B. (2008) ‘A comprehensive survey of multiagent

reinforcement learning’, IEEE Transactions on Systems, Man and Cybernetics Part C:

Applications and Reviews, 38(2), pp. 156–172. doi: 10.1109/TSMCC.2007.913919.

Campbell, M., Hoane, A. J. and Hsu, F. H. (2002) ‘Deep Blue’, Artificial Intelligence, 134(1–2).

doi: 10.1016/S0004-3702(01)00129-1.

Casillas, M. V., Garza-Castanon, L. E. and Puig, V. (2013) ‘Extended-horizon analysis of pressure

sensitivities for leak detection in water distribution networks: Application to the Barcelona

network’, 2013 European Control Conference, ECC 2013, pp. 404–409. doi:

10.23919/ECC.2013.6669568.

Cataldo, A.; Persico, R.; Leucci, G.; De Benedetto, E.; Cannazza, G.; Matera, L.; De Giorgi, L.

(2014) ‘Time domain reflectometry, ground penetrating radar and electrical resistivity

tomography: A comparative analysis of alternative approaches for leak detection in

underground pipes’, NDT & E International, 62, pp. 14–28. doi:

10.1016/J.NDTEINT.2013.10.007.

Chan, T. K., Chin, C. S. and Zhong, X. (2018) ‘Review of Current Technologies and Proposed

Intelligent Methodologies for Water Distributed Network Leakage Detection’, IEEE Access, 6,

pp. 78846–78867. doi: 10.1109/access.2018.2885444.

Chang, A. (2019) ‘Precision intensive care: A real-time artificial intelligence strategy for the

future’, Pediatric Critical Care Medicine, 20(2), pp. 194–195. doi:

10.1097/PCC.0000000000001883.

Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. (2021) ‘Optimal control

towards sustainable wastewater treatment plants based on multi-agent reinforcement

learning’, Chemosphere, 279, p. 130498. doi: 10.1016/J.CHEMOSPHERE.2021.130498.

Choi, C., Jung, S. and Kim, S. (2004) ‘Feeder pipe inspection robot with an inch-worm

mechanism using pneumatic actuators’, International Journal of Control, Automation and

Systems, 4(1), pp. 87–95. doi: 10.1109/ROBIO.2004.1521902.

Crini, G. and Lichtfouse, E. (2019) ‘Advantages and disadvantages of techniques used for

wastewater treatment’, Environmental Chemistry Letters, 17, pp. 145–155. doi:

10.1007/s10311-018-0785-9.

Croll, H. C.; Ikuma, K.; Ong, S. K.; Sarkar, S. (2023) ‘Reinforcement learning applied to

wastewater treatment process control optimization: Approaches, challenges, and path

188

forward’, Critical Reviews in Environmental Science and Technology, 53(20), pp. 1775–1794.

doi: 10.1080/10643389.2023.2183699.

Dabney, W. Rowland, M.; Bellemare, M. G.; Munos, R. (2017) ‘Distributional Reinforcement

Learning with Quantile Regression’, 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,

pp. 2892–2901. doi: 10.1609/aaai.v32i1.11791.

Dabney, W.; Ostrovski, G.; Silver, D.; Munos, R. (2018) ‘Implicit Quantile Networks for

Distributional Reinforcement Learning’, 35th International Conference on Machine Learning,

ICML 2018, 3, pp. 1774–1787. Available at: https://arxiv.org/abs/1806.06923v1 (Accessed: 10

May 2023).

Dabney, W.; Kurth-Nelson, Z.; Uchida, N.; Starkweather, C. K.; Hassabis, D.; Munos, R.;

Botvinick, M. (2020) ‘A distributional code for value in dopamine-based reinforcement

learning’, Nature 2020 577:7792, 577(7792), pp. 671–675. doi: 10.1038/s41586-019-1924-6.

Dai, P. D. and Li, P. (2014) ‘Optimal Localization of Pressure Reducing Valves in Water

Distribution Systems by a Reformulation Approach’, Water Resources Management, 28(10).

doi: 10.1007/s11269-014-0655-6.

Darweesh, M. S. (2022) ‘Predicting the head leakage behaviour of cracks in pipe elbows’,

Water SA, 48(1), pp. 56–61. doi: 10.17159/wsa/2022.v48.i1.3910.

Datamatic Ltd. (2008) Permalog+ - Automatic Meter Reading System - Leak Noise ... Available

at: https://www.environmental-expert.com/products/permalog-leak-noise-loggers-122138

(Accessed: 6 September 2021).

Davila, M.; Davila Delgado, J. M.; Brilakis, I.; Middleton, C. (2016) ‘Distributed monitoring of

buried pipelines with Brillouin fiber optic sensors’. doi: 10.1680/TFITSI.61279.033.

Delipetrev, B., Jonoski, A. and Solomatine, D. P. (2017) ‘A novel nested stochastic dynamic

programming (nSDP) and nested reinforcement learning (nRL) algorithm for multipurpose

reservoir optimization’, Journal of Hydroinformatics, 19(1), pp. 47–61. doi:

10.2166/HYDRO.2016.243.

Demirci, S.; Yigit, E.; Eskidemir, I. H.; Ozdemir, C. (2012) ‘Ground penetrating radar imaging of

water leaks from buried pipes based on back-projection method’, NDT & E International, 47,

pp. 35–42. doi: 10.1016/J.NDTEINT.2011.12.008.

Department for Energy Security and Net Zero (2023) Greenhouse gas reporting: conversion

factors 2023 - GOV.UK. Available at:

189

https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-

2023 (Accessed: 17 October 2023).

Desharnais, J.; Gupta, V; Jagadeesan, R.; Panangaden, P. (2004) ‘Metrics for labelled Markov

processes’, Theoretical Computer Science, 318(3), pp. 323–354. doi:

10.1016/J.TCS.2003.09.013.

Desnoyers, J. M. ; and Mcdonald, R. ; (no date) ‘Failure modes and mechanisms in gray cast

iron pipe NRCC-44218’. Available at: www.nrc.ca/irc/ircpubs (Accessed: 19 January 2023).

Dingus, M., Haven, J. and Austin, R. (2002) Nondestructive, noninvasive assessment of

underground pipelines. Available at:

https://books.google.com/books?hl=en&lr=&id=F8A_1r6JOHEC&oi=fnd&pg=PR7&ots=Qj_8QZ

E7mf&sig=Q3wC4GpAEhJj9gBH85LpYK6Y6GA (Accessed: 21 January 2023).

Dreyfus, S. E. and Law, A. M. (1977) ‘The art and theory of dynamic programming, Volume

130’, p. 284.

Duan, Y.; Chen, X.; Edu, C. X.; Schulman, J.; Abbeel, P.; Edu, P. (2016) ‘Benchmarking Deep

Reinforcement Learning for Continuous Control’. PMLR, pp. 1329–1338. Available at:

https://proceedings.mlr.press/v48/duan16.html (Accessed: 4 May 2023).

Eck, B. J. and Mevissen, M. (2012) ‘Valve Placement in Water Networks: Mixed-Integer Non-

Linear Optimization with Quadratic Pipe Friction Valve Placement in Water Networks: Mixed-

Integer Non-Linear Optimization with Quadratic Pipe Friction’, IBM Research Report, 25307.

El-Abbasy, M. S.; Mosleh, F.; Senouci, A.; Zayed, T.; Al-Derham, H. (2016) ‘Locating Leaks in

Water Mains Using Noise Loggers’, Journal of Infrastructure Systems, 22(3), p. 04016012. doi:

10.1061/(asce)is.1943-555x.0000305.

EL-Bagory, T. M. A. A. and Younan, M. Y. A. (2017) ‘Crack Growth Behavior of Pipes Made from

Polyvinyl Chloride Pipe Material’, Journal of Pressure Vessel Technology, Transactions of the

ASME, 139(1). doi: 10.1115/1.4033124/473309.

El-Zahab, S.; Asaad, A.; Mohammed Abdelkader, E; Zayed, T. (2017) ‘Collective thinking

approach for improving leak detection systems’, Smart Water 2017 2:1, 2(1), pp. 1–10. doi:

10.1186/S40713-017-0007-9.

El-Zahab, S. and Zayed, T. (2019) ‘Leak detection in water distribution networks: an

introductory overview’, Smart Water, 4(1). doi: 10.1186/s40713-019-0017-x.

190

Epa, U. (2010) ‘CONTROL AND MITIGATION OF DRINKING WATER LOSSES IN DISTRIBUTION

SYSTEMS’.

ESRI (2023) What is GIS? | Geographic Information System Mapping Technology. Available at:

https://www.esri.com/en-us/what-is-gis/overview (Accessed: 11 September 2023).

Etikala, B., Madhav, S. and Somagouni, S. G. (2022) ‘Urban water systems: An overview’, 6, pp.

1–19. doi: 10.1016/B978-0-323-91838-1.00016-6.

Fan, X., Zhang, X. and Yu, X. (2022) ‘A graph convolution network-deep reinforcement learning

model for resilient water distribution network repair decisions’, Computer-Aided Civil and

Infrastructure Engineering, 37(12), pp. 1547–1565. doi: 10.1111/MICE.12813.

Farah, E. and Shahrour, I. (2017) ‘Leakage detection using smart water system: combination of

water balance and Automated Minimum Night Flow’, Water Resource Management, 31(15),

pp. 4821–4833,.

Farewell, T. S.; Hallett, S. H.; Hannam, J. A.; Jones, R. J. A. (2012) ‘Infrastructure Transitions

Research Consortium Working paper series Soil impacts on national infrastructure in the UK’.

Farewell, T. S.; Jude, S. and Pritchard, O. (2018) ‘How the impacts of burst water mains are

influenced by soil sand content’, Natural Hazards and Earth System Sciences, 18(11), pp. 2951–

2968. doi: 10.5194/NHESS-18-2951-2018.

Farley, B., Mounce, S. R. and Boxall, J. B. (2010) ‘Field testing of an optimal sensor placement

methodology for event detection in an urban water distribution network’, Urban Water

Journal, 7(6), pp. 345–356. doi: 10.1080/1573062X.2010.526230.

Farley, M.; Wyeth, G.; Ghazali, C. B. M.; Istander, A.; Singh, S. (2008) The Manager’s Non-

Revenue Water Handbook. Edited by N. V. Dijk, V. Raksakulthai, and E. Kirkwood. Ranhill

Utilities and United States Agency for International Development (USAID).

Farley, M. and Trow, S. (2015) ‘Losses in Water Distribution Networks: A Practitioners’ Guide to

Assessment, Monitoring and Control’, Water Intelligence Online, 4(0). doi:

10.2166/9781780402642.

Ferrandez-Gamot, L.; Busson, P.; Blesa, J.; Tornil-Sin, S.; Puig, V.; Duviella, E.; Soldevila, A.

(2015) ‘Leak Localization in Water Distribution Networks using Pressure Residuals and

Classifiers’, IFAC-PapersOnLine, 48(21), pp. 220–225. doi: 10.1016/J.IFACOL.2015.09.531.

Filipe, J. et al. (2019) ‘Data-driven predictive energy optimization in a wastewater pumping

191

station’. doi: 10.1016/j.apenergy.2019.113423.

Finn, C., Levine, S. and Abbeel, P. (2016) ‘Guided Cost Learning: Deep Inverse Optimal Control

via Policy Optimization’, 33rd International Conference on Machine Learning, ICML 2016, 1, pp.

95–107. Available at: https://arxiv.org/abs/1603.00448v3 (Accessed: 10 May 2023).

Folkman, S. (2018) ‘Water Main Break Rates In the USA and Canada: A Comprehensive Study

Overall Pipe Breaks Up 27% In Six Years’.

Foundation, W. R. (2014) Leakage Repair Data Collection Guide. Available at:

https://www.waterrf.org/resource/leak-repair-data-collection-guide. (Accessed: 4 June 2021).

Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. (2022) ‘The role of deep learning in urban water

management: A critical review’, Water Research, 223. doi: 10.1016/j.watres.2022.118973.

Gao, Y.; Brennan, M. J.; Liu, Y.; Almeida, F. C.L.; Joseph, P. F. (2017) ‘Improving the shape of the

cross-correlation function for leak detection in a plastic water distribution pipe using acoustic

signals’, Applied Acoustics, 127, pp. 24–33. doi: 10.1016/J.APACOUST.2017.05.033.

García, V. J. and Cabrera, E. (2007) ‘The minimum night flow method revisited’, 8th Annual

Water Distribution Systems Analysis Symposium 2006, p. 35. doi: 10.1061/40941(247)35.

Geiger, G. (2006) ‘State-of-the-Art in Leak Detection and Localisation’, in Pipeline Technology.

Hannover, Germany, pp. 1–25.

Geng, Z.; Hu, X.; Han, Y.; Zhong, Y. (2018) ‘A Novel Leakage-Detection Method Based on

Sensitivity Matrix of Pipe Flow: Case Study of Water Distribution Systems’. doi:

10.1061/(ASCE)WR.1943-5452.0001025.

Gomez, F. and Schmidhuber, J. (2005) ‘Evolving modular fast-weight networks for control’,

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 3697 LNCS, pp. 383–389. doi:

10.1007/11550907_61/COVER.

Gordon, G. J. (1995) ‘Stable Function Approximation in Dynamic Programming’, Machine

Learning Proceedings 1995, pp. 261–268. doi: 10.1016/B978-1-55860-377-6.50040-2.

Gould, S. J. F.; Davis, P.; Beale, D. J.; Marlow, D. R. (2013) ‘Failure analysis of a PVC sewer

pipeline by fractography and materials characterization’, Engineering Failure Analysis, 34, pp.

41–50. doi: 10.1016/J.ENGFAILANAL.2013.07.009.

Gross, W. et al. (1999); Hierl, T.; Scheuerpflug, H.; Schirl, U.; Schulz, M. J. ‘Quality control of

192

heat pipelines and sleeve joints by infrared measurements’, Thermosense XXI, 3700, pp. 63–69.

doi: 10.1117/12.342275.

Gu, S. Lillicrap, T.; Sutskever, U.; Levine, S. (2016) ‘Continuous Deep Q-Learning with Model-

based Acceleration’, 33rd International Conference on Machine Learning, ICML 2016, 6, pp.

4135–4148. Available at: https://arxiv.org/abs/1603.00748v1 (Accessed: 1 April 2023).

Guan, L. et al. (2019) ‘A Review on Small-Diameter Pipeline Inspection Gauge Localization

Techniques: Problems, Methods and Challenges’, in 2019 International Conference on

Communications, Signal Processing, and their Applications (ICCSPA), pp. 1–6. doi:

10.1109/ICCSPA.2019.8713703.

Gullotta, A.; Campisano, A.; Creaco, E.; Modica, C. (2021) ‘A Simplified Methodology for

Optimal Location and Setting of Valves to Improve Equity in Intermittent Water Distribution

Systems’, Water Resources Management, 35(13), pp. 4477–4494. doi: 10.1007/S11269-021-

02962-9/FIGURES/6.

Guoquan, W. and Yiaoting, C. (1991) ‘Test methods for gelation of PVC plastisol’, Polymer

Testing, 10(4), pp. 315–324. doi: 10.1016/0142-9418(91)90025-S.

Gupta, A.; Bokde, N.; Marathe, D.; Kulat, K. (2017) ‘Leakage Reduction in Water Distribution

Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft

Computing Techniques’, Engineering, Technology & Applied Science Research, 7(2). doi:

10.48084/etasr.1032.

Gupta, A. and Kulat, K. D. (2018) ‘A Selective Literature Review on Leak Management

Techniques for Water Distribution System’, Water Resources Management. Springer

Netherlands, pp. 3247–3269. doi: 10.1007/s11269-018-1985-6.

Hajgató, G., Paál, G. and Gyires-Tóth, B. (2020) ‘Deep Reinforcement Learning for Real-Time

Optimization of Pumps in Water Distribution Systems’, Journal of Water Resources Planning

and Management, 146(11). doi: 10.1061/(asce)wr.1943-5452.0001287.

Hamilton, S. (2009) ‘ALC in Low Pressure Areas - It can be done’, in 5th IWA Water Loss

Reduction. Cape Town.

Hamilton, S. and Charalambous, B. (2013) ‘Leak Detection: Technology and Implementation’,

Water Intelligence Online, 12. doi: 10.2166/9781780404714.

Hamilton, S. and Mckenzie, R. (2014) ‘Meter logging and recording’, in Water Management

and Water Loss. London: IWA Publishing, pp. 87–107.

193

Hasan, M. M.; Lwin, K.; Imani, M.; Shabut, A.; Bittencourt, L. F.; Hossain, M. A. (2019) ‘Dynamic

multi-objective optimisation using deep reinforcement learning: benchmark, algorithm and an

application to identify vulnerable zones based on water quality’, Engineering Applications of

Artificial Intelligence, 86, pp. 107–135. doi: 10.1016/J.ENGAPPAI.2019.08.014.

Van Hasselt, H., Guez, A. and Silver, D. (2016) ‘Deep Reinforcement Learning with Double Q-

learning’, in 30th AAAI Conference on Artificial Intelligence, pp. 2094–2100. Available at:

www.aaai.org (Accessed: 4 May 2023).

Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Tassa, Y.; Erez, T. (2015) ‘Learning Continuous

Control Policies by Stochastic Value Gradients’, Advances in Neural Information Processing

Systems, 2015-January, pp. 2944–2952. Available at: https://arxiv.org/abs/1510.09142v1

(Accessed: 9 May 2023).

Hernández-del-Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. (2018) ‘Tackling the start-up of a

reinforcement learning agent for the control of wastewater treatment plants’, Knowledge-

Based Systems, 144, pp. 9–15. doi: 10.1016/J.KNOSYS.2017.12.019.

Hernández-del-Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. (2016) ‘Energy and Environmental

Efficiency for the N-Ammonia Removal Process in Wastewater Treatment Plants by Means of

Reinforcement Learning’, Energies 2016, Vol. 9, Page 755, 9(9), p. 755. doi:

10.3390/EN9090755.

Hernandez-Leal, P., Kartal, B. and Taylor, M. E. (2018) ‘A Survey and Critique of Multiagent

Deep Reinforcement Learning’. doi: 10.1007/s10458-019-09421-1.

Hernandez-Leal, P., Kartal, B. and Taylor, M. E. (2019) ‘Is multiagent deep reinforcement

learning the answer or the question? A brief survey’, Autonomous Agents and Multi-Agent

Systems, 33(6).

Hindi, K. S. and Hamam, Y. M. (2007) ‘LOCATING PRESSURE CONTROL ELEMENTS FOR LEAKAGE

MINIMIZATION IN WATER SUPPLY NETWORKS: AN OPTIMIZATION MODEL’,

http://dx.doi.org/10.1080/03052159108941076, 17(4), pp. 281–291. doi:

10.1080/03052159108941076.

Ho, J. and Ermon, S. (2016) ‘Generative Adversarial Imitation Learning’, Advances in Neural

Information Processing Systems, pp. 4572–4580. Available at:

https://arxiv.org/abs/1606.03476v1 (Accessed: 10 May 2023).

Hu, S.; Gao, J.; Zhong, D.; Wu, R.; Liu, L. (2023) ‘Real-Time Scheduling of Pumps in Water

194

Distribution Systems Based on Exploration-Enhanced Deep Reinforcement Learning’, Systems

2023, Vol. 11, Page 56, 11(2), p. 56. doi: 10.3390/SYSTEMS11020056.

Hu, Y. and Hubble, D. W. (2011) ‘Factors contributing to the failure of asbestos cement water

mains’, https://doi.org/10.1139/l06-162, 34(5), pp. 608–621. doi: 10.1139/L06-162.

Huang, Y.; Fipps, G.; Maas, S. J.; Fletcher, R. S. (2010) ‘Airborne remote sensing for detection

of irrigation canal leakage’, Irrigation and Drainage, 59(5), pp. 524–534. doi: 10.1002/IRD.511.

Hunaidi, O.; Chu, W.; Wang, A.; Guan, W. (2000) ‘Detecting leaks in plastic pipes’, Journal -

American Water Works Association, 92(2), pp. 82–94. doi: 10.1002/J.1551-

8833.2000.TB08819.X.

Hussain, A.; Kumari, R.; Sachan, S. G.; Sachan, A. (2021) ‘Biological wastewater treatment

technology: Advancement and drawbacks’, Microbial Ecology of Wastewater Treatment Plants,

pp. 175–192. doi: 10.1016/B978-0-12-822503-5.00002-3.

Hutsebaut-Buysse, M., Mets, K. and Latré, S. (2022) ‘Hierarchical Reinforcement Learning: A

Survey and Open Research Challenges’, Machine Learning and Knowledge Extraction 2022, Vol.

4, Pages 172-221, 4(1), pp. 172–221. doi: 10.3390/MAKE4010009.

ILMSS Ltd. (2015) ‘CheckCalcs V6b’.

Inaudi, D. and Glisic, B. (2008) ‘Long-Range Pipeline Monitoring by Distributed Fiber Optic

Sensing’, Proceedings of the Biennial International Pipeline Conference, IPC, 3 PART B, pp. 763–

772. doi: 10.1115/IPC2006-10287.

Instituto Technologico del Agua-Valencia Polytechnic University (2021) Sigma Features, ITA.

Available at: https://sigmalite.com/caracteristicas-en.php. (Accessed: 22 June 2021).

Ishido, Y. and Takahashi, S. (2014) ‘A New Indicator for Real-time Leak Detection in Water

Distribution Networks: Design and Simulation Validation’, Procedia Engineering, 89, pp. 411–

417. doi: 10.1016/J.PROENG.2014.11.206.

Iskander, M. (2018) ‘Geotechnical Underground Sensing and Monitoring’, Underground

Sensing: Monitoring and Hazard Detection for Environment and Infrastructure, pp. 141–202.

doi: 10.1016/B978-0-12-803139-1.00003-5.

Ismail, I. N.; Anuar, AS.; Sahari, K. S. M. (2012) ‘Developments of In-Pipe Inspection Robot: A

Review’, in IEE Conference on Sustainable Utilization and Development in ENgineering and

Technology (STUDENT). Journal of Mechanics of Continua and Mathematical Sciences, pp. 310–

195

315. doi: 10.26782/JMCMS.2020.05.00022.

Jacobsz, S. W. and Jahnke, S. I. (2019) ‘Leak detection on water pipelines in unsaturated

ground by discrete fibre optic sensing’:, https://doi.org/10.1177/1475921719881979, 19(4),

pp. 1219–1236. doi: 10.1177/1475921719881979.

Jefferson, A. J.; Bhaskar, A. S.; Hopkins, K. G.; Fanelli, R.; Avellaneda, P. M.; McMillan, S. K.

(2017) ‘Stormwater management network effectiveness and implications for urban watershed

function: A critical review’, Hydrological Processes, 31(23), pp. 4056–4080. doi:

10.1002/HYP.11347.

Jekel, M. (1996) ‘Water Supply. Von A. C. Twort, F. M. Law, F. W. Crowley, D. D. Ratnayaka 4.

Auflage. Edward Arnold, London, 1994. ISBN 0–340–57587–5, 511 S., £ 39,50’, Acta

Hydrochimica et Hydrobiologica, 24(5). doi: 10.1002/aheh.19960240517.

Jiang, J.-Q. (2015) ‘The role of coagulation in water treatment This review comes from a

themed issue on Separation engineering’, Current Opinion in Chemical Engineering, 8, pp. 36–

44. doi: 10.1016/j.coche.2015.01.008.

Jotte, L., Raspati, G. and Azrague, K. (2017) REVIEW OF STORMWATER MANAGEMENT

PRACTICES. Available at: www.klima2050.no (Accessed: 26 September 2023).

Joung, O. J. and Kim, Y. H. (2006) ‘Application of an IR thermographic device for the detection

of a simulated defect in a pipe’, Sensors, 6(10), pp. 1199–1208. doi: 10.3390/S6101199.

Jowitt, P. W. and Xu, C. (1990) ‘Optimal Valve Control in WaterDistribution Networks’, Journal

of Water Resources Planning and Management, 116(4), pp. 455–472. doi:

10.1061/(ASCE)0733-9496(1990)116:4(455).

Jung, D.; Kang, D.; Liu, J.; Lansey, K. (2015) ‘Improving the rapidity of responses to pipe burst in

water distribution systems: a comparison of statistical process control methods’, Journal of

Hydroinformatics, 17(2), pp. 307–328. doi: 10.2166/HYDRO.2014.101.

Kadri, A., Yaacoub, E. and Mushtaha, M. (2014) ‘Empirical evaluation of acoustical signals for

leakage detection in underground plastic pipes’, Proceedings of the Mediterranean

Electrotechnical Conference - MELECON, pp. 54–58. doi: 10.1109/MELCON.2014.6820506.

Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.;

Kalakrishnan, M.; Vanhoucke, V.; Levine, S. (2018) ‘QT-Opt: Scalable Deep Reinforcement

Learning for Vision-Based Robotic Manipulation’. Available at:

https://arxiv.org/abs/1806.10293v3 (Accessed: 26 March 2023).

196

Kanakoudis, V.; Tsitsifli, S.; Zouboulis, A.; Samaras, P.; Doufas, A.; Banovec, P. (2011)

‘Integration the WB/PI Calc-UTH Water Audit Tool Based on a Modification of the IWA

Standard Water Balance, Into a DSS for NRW reduction Strategies Prioritization’, in 4th BWA &

EWRA International Conference on Water Loss Reduction in Water Supply Systems. Sofia,

Bulgaria.

Kanakoudis, V. and Tsitsifli, S. (2010) ‘Water volume vs. revenues oriented water balance

calculation for urban water networks: the “Minimum Charge Difference” component makes a

difference!’, in IWA International Conference ‘WaterLoss’. Sao Paolo, Brazil.

Kentish, S. and Stevens, G. (2001) ‘Innovations in separations technology for the recycling and

re-use of liquid waste streams’, Chemical Engineering Journal, 84(2). Available at:

https://www.sciencedirect.com/science/article/pii/S1385894701001991 (Accessed: 25

September 2023).

Khawandi, S., Daya, B. and Chauvet, P. (2010) ‘Automated Monitoring System for Fall

Detection in the Elderly’, International Journal of Image Processing (IJIP), (4), p. 476.

Khulief, Y. A.; Khalifa, A.; Mansour, R. B.; Habib, M. A. (2012) ‘Acoustic Detection of Leaks in

Water Pipelines Using Measurements inside Pipe’, Journal of Pipeline Systems Engineering and

Practice, 3(2), pp. 47–54. doi: 10.1061/(ASCE)PS.1949-1204.0000089.

Kingma, D. P. and Welling, M. (2013) ‘Auto-Encoding Variational Bayes’, 2nd International

Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings. Available

at: https://arxiv.org/abs/1312.6114v11 (Accessed: 9 May 2023).

Kirchner, F. and Hertzberg, J. (1997) ‘A Prototype Study of an Autonomous Robot Platform for

Sewerage System Maintenance’, Autonomous Robots 1997 4:4, 4(4), pp. 319–331. doi:

10.1023/A:1008896121662.

Kirkham, R. et al. (2016) ‘PIRAT—A System for Quantitative Sewer Pipe Assessment’:,

http://dx.doi.org/10.1177/02783640022067959, 19(11), pp. 1033–1053. doi:

10.1177/02783640022067959.

Kiss, G., Konez, K. and Melinte, C. (2007) ‘WaterPipe project: An innovative high resolution

ground penetration imaging radar for detecting water pipes and for detecting leaks and a

decision support system for the rehabilitation management of the water pipeline’, in IWA

Water Loss Conference. Bucharest, Romania, pp. 622–631.

Kılkış, Ş. et al. (2023) ‘Sustainable development of energy, water and environment systems in

197

the critical decade for climate action’, Energy Conversion and Management, 296, p. 117644.

doi: 10.1016/J.ENCONMAN.2023.117644.

Kohl, N. and Stone, P. (2004) ‘Policy Gradient Reinforcement Learning for Fast Quadrupedal

Locomotion’, pp. 2619–2624. Available at: http://www.cs.utexas.edu/˜%7Bnate,pstone%7D

(Accessed: 6 February 2023).

Koldzo, D. and Vucijak, B. (2013) ‘Testing Innovative Software Tool CalcuLEAKator for Water

Balance Evaluation and Water Loss Reduction in Tuzla Project’, in 6th International water loss

conference. Sofia, Bulgaria.

Kolesnik, M., Behavior, H. S. (2002) ‘Visual orientation and motion control of MAKRO-

adaptation to the sewer environment’, in Proc. Int. Conf. Simulation of Adaptive Behaviour.

Citeseer. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.7924&rep=rep1&type=pdf

(Accessed: 24 August 2021).

Konda, V. R. and Tsitsiklis, J. N. (1999) ‘ON ACTOR-CRITIC ALGORITHMS’, Advances in Neural

Information Processing Systems, 42(4), pp. 1143–1166. doi: 10.1137/S0363012901385691.

Kool, W., Van Hoof, H. and Welling, M. (2018) ‘Attention, Learn to Solve Routing Problems!’,

7th International Conference on Learning Representations, ICLR 2019. doi:

10.48550/arxiv.1803.08475.

Koutník, J.; Cuccu, G.; Schmidhuber, J.; Gomez, F. (2013) ‘Evolving Large-Scale Neural Networks

for Vision-Based Reinforcement Learning’, in Genetic and Evolutionary Computation

Conference. Available at: http://www.idsia.ch/~koutnik/images/octo (Accessed: 26 March

2023).

Kumar, V. and Kanal, L. N. (1988) ‘The CDP: A unifying formulation for heuristic search,

dynamic programming, and branch-and-bound’, Search in Artificial Intelligence, pp. 1–27. doi:

10.1007/978-1-4613-8788-6_1.

Kuntze, H. B. and Haffner, H. (1998) ‘Experiences with the development of a robot for smart

multisensoric pipe inspection’, Proceedings - IEEE International Conference on Robotics and

Automation, 2, pp. 1773–1778. doi: 10.1109/ROBOT.1998.677423.

KVS (no date) Tracer Gas Detection. Available at: http://www.leakdetection-

technology.com/science/leak-detection-with-tracer-gas-methods.html (Accessed: 10

September 2021).

198

Lai, T. L. and Robbins, H. (1985) ‘Asymptotically efficient adaptive allocation rules’, Advances in

Applied Mathematics, 6(1). doi: 10.1016/0196-8858(85)90002-8.

Lambert, A. (1994) ‘Accounting for Losses: The Bursts and Background Concept’, Water and

Environment, 8, pp. 205–214,.

Lambert, A.; Brown, T.; Takizawa, M.; Weimer, D. (1999) ‘A review of performance indicators

for real losses from water supply systems’, Water Supply, 48(6), pp. 227–27,.

Lambert, A. (2001) ‘What do we know about pressure-leakage relationships in distribution

systems?’, in IWA conference in Systems approach to leakage control and water distribution

system management.

Lambert, A.; Charalambous, B.; Fantozzi, M.; Kovac, J.; Rizzo, A.; John, S. G. S. (2004) ‘14 Years

Experience of using IWA Best Practice Water Balance and Water Loss Performance Indicators

in Europe’, in IWA Specialized Conference: Water Loss. Vienna, Italy.

Lambert, A. (2009) ‘Ten years’ experience in using the UARL formula to calculate infrastructure

leakage index’, in IWA water loss conference. Cape Town.

Lambert, A. (no date) The LEAKSSuite Library is the next step in the LEAKSSuite story. Leakssuite

Library Ltd. Available at: https://www.leakssuitelibrary.com/the-leakssuite-library-is-the-next-

step-in-the-leakssuite-story (Accessed: 10 June 2021).

Lapan, M. (2019) ‘Deep Reinforcement Learning Learning Hands-on’, Reinforcement Learning

for Cyber-Physical Systems, pp. 125–154. Available at:

https://www.packtpub.com/product/deep-reinforcement-learning-hands-on-second-

edition/9781838826994 (Accessed: 24 February 2023).

Lay-Ekuakille, A.; Vendramin, G.; Trotta, A.; Vanderbemden, P. (2009) ‘STFT-BASED SPECTRAL

ANALYSIS OF URBAN WATERWORKS LEAKAGE DETECTION’. Available at: http://smaasis-

misure.unile.it (Accessed: 19 October 2021).

Lee, M. R. and Lee, J. H. (2000) ‘Acoustic Emission Technique for Pipeline Leak Detection’, Key

Engineering Materials, 183–187(187 PART 2), pp. 887–892. doi:

10.4028/WWW.SCIENTIFIC.NET/KEM.183-187.887.

Lee, P. J.; Vítkovský, J. P.; Lambert, M. F.; Simpson, A. R.; Liggett, J. A. (2005) ‘Frequency

Domain Analysis for Detecting Pipeline Leaks’, Journal of Hydraulic Engineering, 131(7), pp.

596–604. doi: 10.1061/(ASCE)0733-9429(2005)131:7(596).

199

Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. (2016) ‘End-to-end training of deep visuomotor

policies’, Journal of Machine Learning Research.

Levine, S. and Van De Panne, M. (2018) ‘DeepMimic: Example-Guided Deep Reinforcement

Learning of Physics-Based Character Skills’, ACM Trans. Graph, 37(143), p. 18. doi:

10.1145/3197517.3201311.

Li, C.; Zheng, P.; Yin, Y.; Wang, B.; Wang, L. (2023) ‘Deep reinforcement learning in smart

manufacturing: A review and prospects’, CIRP Journal of Manufacturing Science and

Technology, 40, pp. 75–101. doi: 10.1016/J.CIRPJ.2022.11.003.

Li, H.; Li, H.; Pei, H.; Li, Z. (2019) ‘Leakage detection of HVAC pipeline network based on

pressure signal diagnosis Article History’, Journal of Building Simulation, 12(4). doi:

10.1007/s12273-019-0546-0.

Li, Y. (2017) ‘Deep Reinforcement Learning: An Overview’. doi: 10.48550/arxiv.1701.07274.

Li, Z.; Bai, L,; Tian, W.; Yan, H.; Hu, W.; Xin, K.; Tao, T. (2023) ‘Online Control of the Raw Water

System of a High-Sediment River Based on Deep Reinforcement Learning’, Water 2023, Vol. 15,

Page 1131, 15(6), p. 1131. doi: 10.3390/W15061131.

Libbrecht, M. W. and Noble, W. S. (2015) ‘Machine learning applications in genetics and

genomics’, Nature Reviews Genetics 2015 16:6, 16(6), pp. 321–332. doi: 10.1038/nrg3920.

Liberatore, S. and Sechi, · G M (2009) ‘Location and Calibration of Valves in Water Distribution

Networks Using a Scatter-Search Meta-heuristic Approach’, Water Resour Manage, 23, pp.

1479–1495. doi: 10.1007/s11269-008-9337-6.

Liemberger & Partners (2020) WB-EasyCalc v6.12. Available at:

http://www.liemberger.cc/index.html. (Accessed: 20 May 2021).

Liemberger, R. and Farley, M. (2005) ‘Developing a Non-Revenue Water Reduction Strategy

Part 1: Investigating and Assessing Water Losses’, in IWA Specialised Conference: The 4th IWA

World Water Congress. Marakech, Morroco.

Liljebck, P.; Pettersen, K. Y.; Stavdahl, O.; Gravdahl, J. T. (2012) ‘A review on modelling,

implementation, and control of snake robots’, Robotics and Autonomous Systems, 60(1), pp.

29–40. doi: 10.1016/J.ROBOT.2011.08.010.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. (2016)

‘Continuous control with deep reinforcement learning’, in 4th International Conference on

200

Learning Representations, ICLR 2016 - Conference Track Proceedings.

Lim, J.; Park, H.; Moon, S.; Kim, B. (2007) ‘Pneumatic robot based on inchworm motion for

small diameter pipe inspection’, 2007 IEEE International Conference on Robotics and

Biomimetics, ROBIO, pp. 330–335. doi: 10.1109/ROBIO.2007.4522183.

Lipps, W. C., Braun-Howland, E. B. and Baxter, T. E. (2022) ‘Standard methods for the

examination of water and wastewater’, p. 1536.

Liu, X.-Y.; Xiong, Z.; Zhong, S.; Yang, H.; Walid, A. (2018) ‘Practical Deep Reinforcement

Learning Approach for Stock Trading’.

Liu, Z. and Kleiner, Y. (2013) ‘State of the art review of inspection technologies for condition

assessment of water pipes’, Measurement, 46(1), pp. 1–15. doi:

10.1016/J.MEASUREMENT.2012.05.032.

Loubet, P.; Roux, P.; Loiseau, E.; Bellon-Maurel, V. (2014) ‘Life cycle assessments of urban

water systems: A comparative analysis of selected peer-reviewed literature’. doi:

10.1016/j.watres.2014.08.048.

Lowet, A. S.; Zheng, Q.; Matias, S.; Drugowitsch, J.; Uchida, N. (2020) ‘Distributional

Reinforcement Learning in the Brain’, Trends in Neurosciences, 43(12), pp. 980–997. doi:

10.1016/j.tins.2020.09.004.

Luong, N. C.; Hoang, D. T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y. C.; Kim, D. (2019)

‘Applications of Deep Reinforcement Learning in Communications and Networking: A Survey’,

IEEE Communications Surveys and Tutorials, 21(4), pp. 3133–3174. doi:

10.1109/COMST.2019.2916583.

Mace, M. (2020) Water Industry Launches First Sector Wide Innovation Strategy, Water.org.

Available at: https://www.water.org.uk/news-item/water-industry-launches-first-sector-wide-

innovation-strategy (Accessed: 29 December 2020).

Maier, H. R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L. S.; Cunha, M. C.; Dandy, G. C.; Gibbs,

M. S.; Keedwell, E.; Marchi, A.; Ostfeld, A.; Savic, D.; Solomatine, D. P.; Vrugt, J. A.; Zecchin, A.

C.; Minsker, B. S.; Barbour, E. J.; Kuczera, G.; Pasha, F.; Castelletti, A.; Giuliani, M.; Reed, P. M.

(2014) ‘Evolutionary algorithms and other metaheuristics in water resources: Current status,

research challenges and future directions’, Environmental Modelling & Software, 62, pp. 271–

299. doi: 10.1016/J.ENVSOFT.2014.09.013.

Makropoulos, C. and Bouziotas, D. (2023) ‘Artificial intelligence for decentralized water

201

systems: A smart planning agent based on reinforcement learning for off-grid camp water

infrastructures’, Journal of Hydroinformatics, 25(3), pp. 912–926. doi:

10.2166/HYDRO.2023.168.

Mala-Jetmarova, H., Sultanova, N. and Savic, D. (2018) ‘Lost in optimisation of water

distribution systems? A literature review of system design’, Water (Switzerland), 10(3). doi:

10.3390/W10030307.

Malik, H.; Srivastava, S.; Sood, Y. R.; Ahmad, A. (eds) (2019) ‘Applications of Artificial

Intelligence Techniques in Engineering’, in. Singapore: Springer Singapore (Advances in

Intelligent Systems and Computing). doi: 10.1007/978-981-13-1819-1.

Mania, H., Guy, A. and Recht, B. (2018) ‘Simple random search provides a competitive

approach to reinforcement learning’. Available at: https://github.com/modestyachts/ARS.

(Accessed: 31 October 2023).

Martínez-Codina; Castillo, M.; González-Zeas, D.; Garrote, L. (2015) ‘Pressure as a predictor of

occurrence of pipe breaks in water distribution networks’,

http://dx.doi.org/10.1080/1573062X.2015.1024687, 13(7), pp. 676–686. doi:

10.1080/1573062X.2015.1024687.

May, J. (1994) ‘Leakage, Pressure and Control’, in BICS International Conference on Leakage

Control. London, UK.

McDonnell, B.; Ratliff, K; Tryby, M.; Wu, J.; Mullapudi, A. (2020) ‘PySWMM: The Python

Interface to Stormwater Management Model (SWMM)’, Journal of Open Source Software,

5(52), p. 2292. doi: 10.21105/JOSS.02292.

McKenzie, R. (1999) Development of a standardised approach to evaluate burst and

background losses in water distibution systems in South Africa - SanFlow user guide. Pretoria,

South africa: South African Water Research Commission.

McKenzie, R., Lambert, A.; Kock, J.; Mtshweni, W. (2002) Development of a simple and

pragmatic approach to benchmark real losses in potable water distribution systems -

BenchLeak user guide. Pretoria, South Africa: South African Water Reseaarch Commission.

McKenzie, R. (2007) Aqualite: Water Balance Software User guide. Pretoria, South Africa:

South Africa Water Research Commission.

McKenzie, R. and Bhagwan, J. (2004) Introduction to WRC Tools to Manage Non-Revenue

Water. Pretoria, South africa: South African Water Research Commission.

202

McKenzie, R. and Lambert, A. (2002) Development of a Windows based package for assessing

appropriate levels of active leakage control in potable water distibution systems - EconoLeak

user guide. Pretoria, South Africa: South African Water Research Commission.

McKenzie, R. and Lambert, A. (2008) Benchmarking of Water Losses in New Zealand Manual.

New Zealand.

McKenzie, R. and Langenhoven, S. (2001) Development of a pragmatic approach to evaluate

the potential savings from pressure management in potable water distribution systems -

PresMac user guide. Pretoria, South africa: South African Water Research Commission.

McKenzie, R., Meyer, N. and Lambert, A. (2002) Calculating Hour-Day Factors for Potable

Water Distribution Systems in South Africa - HDF User Guide. Pretoria, South Africa: South

African Water Research Commission.

McKenzie, R. and Seago, C. (2008) ‘Assessment of Real Losses in potable water distribution

systems: some recent devopments’, Water Science and Technnology: Water Ssupply, 5(1), pp.

33–40,.

Mehdi, D. and Asghar, A. (2019) ‘Pressure Management of Large-Scale Water Distribution

Network Using Optimal Location and Valve Setting’, Water Resources Management, 33(14),

pp. 4701–4713. doi: 10.1007/S11269-019-02381-X/FIGURES/10.

Menciassi, A.; Park, Jong H.; Lee, S.; Gorini, S.; Dario, P.; Park, J. O. (2002) ‘Robotic solutions

and mechanisms for a semi-autonomous endoscope’, IEEE International Conference on

Intelligent Robots and Systems, 2, pp. 1379–1384. doi: 10.1109/IRDS.2002.1043947.

Minsky, M. (1961) ‘Steps Toward Artificial Intelligence’, Proceedings of the IRE, 49(1), pp. 8–30.

doi: 10.1109/JRPROC.1961.287775.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.

(2013) ‘Playing Atari with Deep Reinforcement Learning’. doi: 10.48550/arxiv.1312.5602.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M, G.; Graves, A.;

Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.;

King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D. (2015) ‘Human-level control through

deep reinforcement learning’, Nature, 518(7540). doi: 10.1038/nature14236.

Mnih, V.; Badia, A. P.; Mirza, L.; Graves, A.; Harley, T.; Lillicrap, T. P.; Silver, D.; Kavukcuoglu,

Koray. (2016) ‘Asynchronous Methods for Deep Reinforcement Learning’, 33rd International

Conference on Machine Learning, ICML 2016, 4, pp. 2850–2869. Available at:

203

https://arxiv.org/abs/1602.01783v2 (Accessed: 1 April 2023).

Moraleda, J., Ollero, A. and Orte, M. (1999) ‘A robotic system for internal inspection of water

pipelines’, IEEE Robotics Automation Magazine, 6(3), pp. 30–41. doi: 10.1109/100.793698.

Mosavi, A.; Faghan, Y.; Ghamisi, P.; Duan, P.; Ardabili, S. F.; Salwana, E; Band, S. S. (2020)

‘Comprehensive Review of Deep Reinforcement Learning Methods and Applications in

Economics’, Mathematics 2020, Vol. 8, Page 1640, 8(10), p. 1640. doi: 10.3390/MATH8101640.

Mosetlhe, T. C. Hamam, Y,; Du, S.; Monacelli, E. (2020) ‘A survey of pressure control

approaches in water supply systems’, Water (Switzerland). doi: 10.3390/W12061732.

Mounce, S.; Boxall, J. B.; Machell, J.; Mounce, S. R,; Boxall, J. B.; Machell, J. (2007) ‘An Artificial

Neural Network/Fuzzy Logic system for DMA flow meter data analysis providing burst

identification and size estimation Transient Mobilisation of Adhered Particles in DWDS View

project Assessing the Underworld View project An Artificial Neural Network/Fuzzy Logic

system for DMA flow meter data analysis providing burst identification and size estimation’.

Available at: https://www.researchgate.net/publication/221936179 (Accessed: 30 September

2021).

Mounce, S. R.; Khan, A.; Wood, A. S.; Day, A. J.; Widdop, P. D.; Machell, J. (2003) ‘Sensor-fusion

of hydraulic data for burst detection and location in a treated water distribution system’,

Information Fusion, 4(3), pp. 217–229. doi: 10.1016/S1566-2535(03)00034-4.

Mounce, S. R., Boxall, J. B. and Machell, J. (2009) ‘Development and Verification of an Online

Artificial Intelligence System for Detection of Bursts and Other Abnormal Flows’, Journal of

Water Resources Planning and Management, 136(3), pp. 309–318. doi:

10.1061/(ASCE)WR.1943-5452.0000030.

Mounce, S. R. and Machell, J. (2007) ‘Burst detection using hydraulic data from water

distribution systems with artificial neural networks’,

http://dx.doi.org/10.1080/15730620600578538, 3(1), pp. 21–31. doi:

10.1080/15730620600578538.

Mounce, S. R., Mounce, R. B. and Boxall, J. B. (2011) ‘Novelty detection for time series data

analysis in water distribution systems using support vector machines’, Journal of

Hydroinformatics, 13(4), pp. 672–686. doi: 10.2166/HYDRO.2010.144.

Mullapudi, A.; Lewis, M. J.; Gruden, C. L.; Kerkez, B. (2020a) ‘Deep reinforcement learning for

the real time control of stormwater systems’, Advances in Water Resources, 140. doi:

204

10.1016/j.advwatres.2020.103600.

Mutikanga, H. E., Sharma, S. and Vairavamoorthy, K. (2011) ‘Assessment of Apparent losses in

Urban Water Systems’, Water and Environment, 25(13), pp. 327–335,.

Nair, S.; George, B.; Malano, H. M.; Arora, M.; Nawarathna, B. (2014) ‘Water–energy–

greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods’,

Resources, Conservation and Recycling, 89, pp. 1–10. doi: 10.1016/J.RESCONREC.2014.05.007.

Nam, K. J.; Heo, S. K.; Loy-Benitez, J.; Ifaei, P.; Yoo, C. K. (2020) ‘An autonomous operational

trajectory searching system for an economic and environmental membrane bioreactor plant

using deep reinforcement learning’, Water Science and Technology, 81(8), pp. 1578–1587. doi:

10.2166/WST.2020.053.

Nazari, M.; Oroojlooy, A.; Takáč, M.; Snyder, L. V. (2018) ‘Reinforcement Learning for Solving

the Vehicle Routing Problem’, Advances in Neural Information Processing Systems, 2018-

December, pp. 9839–9849. doi: 10.48550/arxiv.1802.04240.

Negm, A., Ma, X. and Aggidis, G. (2023a) ‘Review of leakage detection in water distribution

networks’, IOP Conference Series: Earth and Environmental Science, 1136(1), p. 012052. doi:

10.1088/1755-1315/1136/1/012052.

Negm, A., Ma, X. and Aggidis, G. (2023b) ‘Water Pressure Optimisation for Leakage

Management Using Q Learning’, 2023 IEEE Conference on Artificial Intelligence (CAI), pp. 270–

271. doi: 10.1109/CAI54212.2023.00120.

Ng, A. Y. and Russell, S. (2000) ‘Algorithms for Inverse Reinforcement Learning’, in

International Conference of Machine learning, pp. 663–670. Available at:

http://www.eecs.harvard.edu/cs286r/courses/spring06/papers/ngruss_irl00.pdf (Accessed: 10

May 2023).

Nguyen, H. and La, H. (2019) ‘Review of Deep Reinforcement Learning for Robot

Manipulation’, Proceedings - 3rd IEEE International Conference on Robotic Computing, IRC

2019, pp. 590–595. doi: 10.1109/IRC.2019.00120.

Nguyen, T. T., Nguyen, N. D. and Nahavandi, S. (2020) ‘Deep Reinforcement Learning for

Multiagent Systems: A Review of Challenges, Solutions, and Applications’, IEEE Transactions on

Cybernetics, 50(9), pp. 3826–3839. doi: 10.1109/TCYB.2020.2977374.

Nichols, J. A., Herbert Chan, H. W. and Baker, M. A. B. (2019) ‘Machine learning: applications of

artificial intelligence to imaging and diagnosis’, Biophysical Reviews, 11(1), pp. 111–118. doi:

205

10.1007/S12551-018-0449-9/METRICS.

Nicolini, M. (2011) ‘Optimal pressure management in water networks: Increased efficiency and

reduced energy costs’, in 2011 Defense Science Research Conference and Expo, DSR 2011. doi:

10.1109/DSR.2011.6026834.

Nicolini, M. and Zovatto, L. (2009) ‘Optimal Location and Control of Pressure Reducing Valves

in Water Networks’, Journal of Water Resources Planning and Management, 135(3), pp. 178–

187. doi: 10.1061/(ASCE)0733-9496(2009)135:3(178).

Task Committee on Water Pipeline Condition Assessment (2017) ‘Water Pipeline Condition

Assessment’, Water Pipeline Condition Assessment, ASCE Publishing, pp. 1–206. doi:

10.1061/9780784414750.

OFWAT (2004) ‘Updating the overall performance assessment (OPA)-Conclusions and

methodology for 2004-05 onwards’.

OFWAT (2022) Leakage in the water industry - Ofwat. Available at:

https://www.ofwat.gov.uk/leakage-in-the-water-industry/ (Accessed: 25 July 2023).

Olsson, G. (2012) ‘Water and Energy Nexus’, Life cycle assessment and water management-

related issues. - (Quaderns de medi ambient ; 4), pp. 137–164. doi: 10.1400/241100.

Osband, I. ; Blundell, C.; Pritzel, A.; Van Roy, B. (2016) ‘Deep exploration via bootstrapped

DQN’, in Advances in Neural Information Processing Systems.

Paine, T. Le; Colmenarejo, S. G.; Wang, Z.; Reed, S.; Aytar, Y.; Pfaff, T.; Hoffman, M. W.; Barth-

Maron, G.; Cabi, S.; Budden, D.; De Freitas, N. (2018) ‘One-Shot High-Fidelity Imitation:

Training Large-Scale Deep Nets with RL’. Available at: https://arxiv.org/abs/1810.05017v1

(Accessed: 10 May 2023).

Pang, J. W.; Yang, S. S.; He, L.; Chen, Y. D.; Cao, G. L.; Zhao, L.;

Wang, X. Y.; Ren, N. Q. (2019) ‘An influent responsive control strategy with machine learning:

Q-learning based optimization method for a biological phosphorus removal system’,

Chemosphere, 234, pp. 893–901. doi: 10.1016/J.CHEMOSPHERE.2019.06.103.

Panjapornpon, C.; Chinchalongporn, P.; Bardeeniz, S.; Makkayatorn, R.; Wongpunnawat, W.

(2022) ‘Reinforcement Learning Control with Deep Deterministic Policy Gradient Algorithm for

Multivariable pH Process’, Processes 2022, Vol. 10, Page 2514, 10(12), p. 2514. doi:

10.3390/PR10122514.

206

Pathak, D.; Agrawal, P.; Efros, A. A.; Darrell, T. (2017) ‘Curiosity-Driven Exploration by Self-

Supervised Prediction’, in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops. doi: 10.1109/CVPRW.2017.70.

Peng, X. B.; Kanazawa, A.; Toyer, S.; Abbeel, P.; Levine, S. (2018) ‘Variational Discriminator

Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information

Flow’, 7th International Conference on Learning Representations, ICLR 2019. Available at:

https://arxiv.org/abs/1810.00821v4 (Accessed: 10 May 2023).

Perez, R.; Sanz, G.; Puig, V.; Quevedo, J.; Cuguero Escofet, M. A.; Nejjari, F.; Meseguer, J.;

Cembrano, G.; Mirats Tur, J. M.; Sarrate, R. (2014) ‘Leak localization in water networks: A

model-based methodology using pressure sensors applied to a real network in barcelona

[applications of control]’, IEEE Control Systems, 34(4), pp. 24–36. doi:

10.1109/MCS.2014.2320336.

Pérez, R.; Puig, V.; Pascual, J.; Quevedo, J.; Landeros, E.; Peralta, A. (2011) ‘Methodology for

leakage isolation using pressure sensitivity analysis in water distribution networks’, Control

Engineering Practice, 19(10), pp. 1157–1167. doi: 10.1016/J.CONENGPRAC.2011.06.004.

Pham, D. D. (2018) ‘Efficient Optimization of Pressure Regulation in Water Distribution

Systems Using a New-Relaxed Pressure Reducing Valve Model’, Vietnam Journal of Science and

Technology, 56(4). doi: 10.15625/2525-2518/56/4/10571.

Pleines, M.; Pallasch, M.; Zimmer, F.; Preuss, M. (2022) ‘Generalization, Mayhems and Limits in

Recurrent Proximal Policy Optimization’. Available at: https://arxiv.org/abs/2205.11104v1

(Accessed: 27 December 2023).

Pomerleau, D. A. (1989) ‘ALVINN: AN AUTONOMOUS LAND VEHICLE IN A NEURAL NETWORK’,

Advances in Neural Information Processing Systems 1, 1, pp. 305–315.

Pozos-Estrada, O.; Sánchez-Huerta, A.; Breña-Naranjo, J. A.; Pedrozo-Acuña, A. (2016) ‘Failure

Analysis of a Water Supply Pumping Pipeline System’, Water 2016, Vol. 8, Page 395, 8(9), p.

395. doi: 10.3390/W8090395.

Price, E., Abhijith, G. R. and Ostfeld, A. (2022) ‘Pressure management in water distribution

systems through PRVs optimal placement and settings’, Water Research, 226, p. 119236. doi:

10.1016/J.WATRES.2022.119236.

Pritchard, O. G., Hallett, S. H. and Farewell, T. S. (2015) ‘Soil geohazard mapping for improved

asset management of UK local roads’, Natural Hazards and Earth System Sciences, 15(9), pp.

207

2079–2090. doi: 10.5194/NHESS-15-2079-2015.

Pritchard, Oliver G., Hallett, S. H. and Farewell, T. S. (2015) ‘Soil impacts on UK infrastructure:

current and future climate’, https://doi.org/10.1680/ensu.13.00035, 167(4), pp. 170–184. doi:

10.1680/ENSU.13.00035.

Prudencio, R. F., Maximo, M. R. O. A. and Colombini, E. L. (2022) ‘A Survey on Offline

Reinforcement Learning: Taxonomy, Review, and Open Problems’. doi:

10.1109/TNNLS.2023.3250269.

Pure Technologies (no date) SmartBall - Leak and Gas Pocket Detection. Available at:

https://puretechltd.com/technology/smartball-leak-detection/ (Accessed: 29 March 2022).

Puterman, M. L. (1990) ‘Chapter 8 Markov decision processes’, Handbooks in Operations

Research and Management Science, 2(C), pp. 331–434. doi: 10.1016/S0927-0507(05)80172-0.

Puust, R.; Kapelan, Z.; Savic, D. A.; Koppel, T. (2010) ‘A review of methods for leakage

management in pipe networks’, Urban Water, 7(1), pp. 25–45,.

Rajani, B. and Tesfamariam, S. (2011) ‘Uncoupled axial, flexural, and circumferential pipe–soil

interaction analyses of partially supported jointed water mains’, https://doi.org/10.1139/t04-

048, 41(6), pp. 997–1010. doi: 10.1139/T04-048.

Rajeev, P. ; Kodikara, Ja.; Robert, D. J.; Zeman, P.; Rajani, B. (2014) ‘Factors contributing to

large diameter water pipe failure’. Available at:

https://researchbank.rmit.edu.au/view/rmit:30981 (Accessed: 19 January 2023).

Rezaei, H., Ryan, B. and Stoianov, I. (2015a) ‘Pipe Failure Analysis and Impact of Dynamic

Hydraulic Conditions in Water Supply Networks’, Procedia Engineering, 119(1), pp. 253–262.

doi: 10.1016/J.PROENG.2015.08.883.

Rezende, D. J., Mohamed, S. and Wierstra, D. (2014) ‘Stochastic Backpropagation and

Approximate Inference in Deep Generative Models’, in. PMLR, pp. 1278–1286. Available at:

https://proceedings.mlr.press/v32/rezende14.html (Accessed: 9 May 2023).

Rogers, D. (2014) ‘Leaking water networks: An economic and environmental disaster’, in

Procedia Engineering. doi: 10.1016/j.proeng.2014.02.157.

Roh, S. G. and Choi, H. R. (2005) ‘Differential-drive in-pipe robot for moving inside urban gas

pipelines’, IEEE Transactions on Robotics, 21(1), pp. 1–17. doi: 10.1109/TRO.2004.838000.

Roman, H. T., Pellegrino, B. A. and Sigrist, W. R. (1993) ‘Pipe crawling inspection robots: An

208

overview’, IEEE Transactions on Energy Conversion, 8(3), pp. 576–583. doi: 10.1109/60.257076.

Rome, E.; Hertzberg, J.; Kirchner, F.; Licht, U.; Christaller, T. (1999) ‘Towards autonomous

sewer robots: the MAKRO project’, Urban Water, 1(1), pp. 57–70. doi: 10.1016/S1462-

0758(99)00012-6.

Roslin, N. S.; Anuar, A.; Jalal, M. F. A.; Sahari, K. S. M. (2012) ‘A Review: Hybrid Locomotion of

In-pipe Inspection Robot’, Procedia Engineering, 41, pp. 1456–1462. doi:

10.1016/J.PROENG.2012.07.335.

Sadler, J. M.; Goodall, J. L.; Behl, M.; Bowes, B. D.; Morsy, M. M. (2020) ‘Exploring real-time

control of stormwater systems for mitigating flood risk due to sea level rise’, Journal of

Hydrology, 583, p. 124571. doi: 10.1016/J.JHYDROL.2020.124571.

Saldarriaga, J. and Salcedo, C. A. (2015a) ‘Determination of optimal location and settings of

pressure reducing valves in water distribution networks for minimizing water losses’, in

Procedia Engineering. doi: 10.1016/j.proeng.2015.08.986.

Saldarriaga, J. and Salcedo, C. A. (2015b) ‘Determination of Optimal Location and Settings of

Pressure Reducing Valves in Water Distribution Networks for Minimizing Water Losses’,

Procedia Engineering, 119(1), pp. 973–983. doi: 10.1016/J.PROENG.2015.08.986.

Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. (2017) ‘Evolution Strategies as a Scalable

Alternative to Reinforcement Learning’.

Schulman, J.; Moritz, P.; Levine, S.; Jordan, M. I.; Abbeel, P. (2015) ‘High-Dimensional

Continuous Control Using Generalized Advantage Estimation’, 4th International Conference on

Learning Representations, ICLR 2016 - Conference Track Proceedings. Available at:

https://arxiv.org/abs/1506.02438v6 (Accessed: 27 March 2023).

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. (2017) ‘Proximal Policy

Optimization Algorithms’. Available at: https://arxiv.org/abs/1707.06347v2 (Accessed: 22

September 2023).

Schulman, J.; Levine, S,; Moritz, P.; Jordan, M.; Abbeel, P. (2014) ‘Trust Region Policy

Optimization’, 31st International Conference on Machine Learning, ICML 2014.

Seago, C., Bhagwan, J. and Mckenzie, R. (2007) ‘Benchmarking leakage from water reticulation

systems in South africa’, Water SA, 30(5), pp. 25–32,.

Shammas, E., Wolf, A. and Choset, H. (2006) ‘Three degrees-of-freedom joint for spatial hyper-

209

redundant robots’, Mechanism and Machine Theory, 41(2), pp. 170–190. Available at:

https://www.academia.edu/18713751/Three_degrees_of_freedom_joint_for_spatial_hyper_r

edundant_robots (Accessed: 25 August 2021).

Shao, L.; Wang, Y.; Guo, B.; Chen, X. (2015) ‘A review over state of the art of in-pipe robot’,

2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, pp. 2180–

2185. doi: 10.1109/ICMA.2015.7237824.

Sharma, A.; Burn, S.; Gardner, T.; Gregory, A. (2010) ‘Role of decentralised systems in the

transition of urban water systems’, Water Supply, 10(4), pp. 577–583. doi:

10.2166/WS.2010.187.

Shinde, P. P. and Shah, S. (2018) ‘A Review of Machine Learning and Deep Learning

Applications’, Proceedings - 2018 4th International Conference on Computing, Communication

Control and Automation, ICCUBEA 2018. doi: 10.1109/ICCUBEA.2018.8697857.

De Silva, D., Mashford, J. and Burn, S. (2011) ‘Computer Aided Leak Location and Sizing in Pipe

Networks’. Available at: http://www.griffith.edu.au/ (Accessed: 2 September 2021).

Da Silva, F. L., Taylor, M. E. and Costa, A. H. R. (2018) ‘Autonomously reusing knowledge in

multiagent reinforcement learning’, in IJCAI International Joint Conference on Artificial

Intelligence. doi: 10.24963/ijcai.2018/774.

Silva, R. A.; Buiatti, C. M.; Buiatti, C. M.; Cruz, S. L.; Pereira, J. A.F.R. (1996) ‘Pressure wave

behaviour and leak detection in pipelines’, Computers & Chemical Engineering, 20(SUPPL.1),

pp. S491–S496. doi: 10.1016/0098-1354(96)00091-9.

Silver, D. et al. (2014) ‘Deterministic Policy Gradient Algorithms’.

Silver, D. (2016) ‘Mastering the game of Go with deep neural networks and tree search’,

Nature, 529(7587). doi: 10.1038/nature16961.

Singh, S.; Litman, D.; Kearns, M.; Walker, M. (2002) ‘Optimizing dialogue management with

reinforcement learning: Experiments with the NJFun system,” ’, Journal of Artificial

Intelligence, 16, pp. 105–133.

Soft Actor-Critic — Spinning Up documentation (no date). Available at:

https://spinningup.openai.com/en/latest/algorithms/sac.html#background (Accessed: 16

November 2023).

Sokolov, Y.; Kozma, R.; Werbos, L. D.; Werbos, P. J. (2015) ‘Complete stability analysis of a

210

heuristic approximate dynamic programming control design’. Journal of Automatica, 59 pp. 9-

18. doi: 10.1016/j.automatica.2015.06.001

Sophocleous, S.; Savić, D. A.; Kapelan, Z.; Giustolisi, O. (2017) ‘A Two-stage Calibration for

Detection of Leakage Hotspots in a Real Water Distribution Network’, Procedia Engineering,

186, pp. 168–176. doi: 10.1016/J.PROENG.2017.03.223.

Sousa, J.; Muranho, J.; Sá Marques, A.; Gomes, R. (2014) ‘WaterNetGen Helps C-Town’,

Procedia Engineering, 89, pp. 103–110. doi: 10.1016/J.PROENG.2014.11.165.

Stable-Baselines3 Docs - Reliable Reinforcement Learning Implementations — Stable Baselines3

2.2.1 documentation (no date). Available at: https://stable-

baselines3.readthedocs.io/en/master/ (Accessed: 6 January 2024).

Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; Littman, M. L. (2006) ‘PAC Model-Free

Reinforcement Learning’, in 23rd International Conference on Machine learning, pp. 881–888.

Sturm, R.; Gasner, K.; Wilson, T.; Preston, S. (2014) Real Loss Component Analysis: Tool for

Economic Water Loss Control. Available at: https://www.waterrf.org/resource/real-loss-

component-analysis-tool-economic-water-loss-control-0. (Accessed: 2 June 2021).

Sun, Z.; Wang, P.; Vuran, M. C.; Al-Rodhaan, M. A.; Al-Dhelaan, A. M.; Akyildiz, I. F. (2011)

‘MISE-PIPE: Magnetic induction-based wireless sensor networks for underground pipeline

monitoring’, Ad Hoc Networks, 9(3), pp. 218–227. doi: 10.1016/J.ADHOC.2010.10.006.

Sutton, R. S.; McAllester, D.; Singh, S.; Mansour, Y. (2000) ‘Policy gradient methods for

reinforcement learning with function approximation’, in Advances in Neural Information

Processing Systems.

Sutton, R. S.; Mahmood, A. R.; Precup, D.; Van Hasselt, H. (2014) ‘A new Q(λ) with interim

forward view and Monte Carlo equivalence’, in 31st International Conference on Machine

Learning, ICML 2014.

Sutton, R. S. and Barto, A. G. (2018) Reinforcement Learning: An Introduction. Second. MIT

Press.

Syafiie, S.; Tadeo, F.; Martinez, E.; Alvarez, T. (2011) ‘Model-free control based on

reinforcement learning for a wastewater treatment problem’, Applied Soft Computing, 11(1),

pp. 73–82. doi: 10.1016/J.ASOC.2009.10.018.

Teodosiu, C.; Gilca, A.-F.; Barjoveanu, G.; Fiore, S. (2018) ‘Emerging pollutants removal through

211

advanced drinking water treatment: A review on processes and environmental performances

assessment’. doi: 10.1016/j.jclepro.2018.06.247.

Tesau, C. and Tesau, G. (1995) ‘Temporal difference learning and TD-Gammon’,

Communications of the ACM, 38(3), pp. 58–68. doi: 10.1145/203330.203343.

Tessler, C.; Givony, S.; Zahavy, T. Mankowitz, D. J.; Mannor, S. (2017) ‘A Deep Hierarchical

Approach to Lifelong Learning in Minecraft’, Proceedings of the AAAI Conference on Artificial

Intelligence, 31(1), pp. 1553–1561. doi: 10.1609/AAAI.V31I1.10744.

Thornton, J. (2003) ‘Managing Leakage by Managing Pressure: A Practical Approach’, Water 21,

October 20.

Thornton, J. and Lambert, a (2005) ‘Progress in practical prediction of pressure: leakage,

pressure: burst frequency and pressure: consumption relationships’, … of IWA Special

Conference’Leakage.

Thornton, J. and Lambert, A. O. (no date) ‘Pressure management extends infrastructure life

and reduces unnecessary energy costs’.

Tian, C. H.; Yan, J. C.; Huang, J.; Wang, Y.; Kim, D. S.; Yi, T. (2012) ‘Negative pressure wave

based pipeline Leak Detection: Challenges and algorithms’, Proceedings of 2012 IEEE

International Conference on Service Operations and Logistics, and Informatics, SOLI 2012, pp.

372–376. doi: 10.1109/SOLI.2012.6273565.

Tian, W.; Liao, Z.; Zhi; G. Wang, Z. (2022) ‘Combined Sewer Overflow and Flooding Mitigation

Through a Reliable Real-Time Control Based on Multi-Reinforcement Learning and Model

Predictive Control’, Water Resources Research, 58(7), p. e2021WR030703. doi:

10.1029/2021WR030703.

Tian, W.; Liao, Z.; Zhang, Z.; Wu, H.; Xin, K. (2022) ‘Flooding and Overflow Mitigation Using

Deep Reinforcement Learning Based on Koopman Operator of Urban Drainage Systems’,

Water Resources Research, 58(7), p. e2021WR030939. doi: 10.1029/2021WR030939.

Trust Region Policy Optimization — Spinning Up documentation (no date). Available at:

https://spinningup.openai.com/en/latest/algorithms/trpo.html (Accessed: 26 December

2023).

Tsitsifli, S. and Kanakoudis, V. (2010) ‘Presenting a New User Friendly Tool to Asses the

Performance Level & Calcullate the Water Balance of Water Networks’, in PRE10 International

Conference. Lefkada Island, Greece: Lefkada Island.

212

Tsitsiklis, J. N. and Van Roy, B. (1997) ‘An analysis of temporal-difference learning with function

approximation’, IEEE Transactions on Automatic Control, 42(5). doi: 10.1109/9.580874.

Tur, J. M. M. and Garthwaite, W. (2010) ‘Robotic devices for water main in-pipe inspection: A

survey’, Journal of Field Robotics, 27(4), pp. 491–508. doi: 10.1002/ROB.20347.

Tzeng, E.; Devin, C.; Hoffman, J.; Finn, C.; Peng, X.; Levine, S.; Saenko, K.; Darrell, T. (2016)

‘Towards Adapting Deep Visuomotor Representations from Simulated to Real Environments’,

ICLR.

UN-Water (2012) UN World Water Development Report. Available at:

https://www.unwater.org/publications/un-world-water-development-report-2012 (Accessed:

26 September 2023).

Usunier, N.; Synnaeve, G.; Lin, Z.; Chintala, S. (2017) ‘Episodic exploration for deep

deterministic policies for starcraft micromanagement’, in 5th International Conference on

Learning Representations, ICLR 2017 - Conference Track Proceedings.

Vezhnevets, A. S.; Osindero, S.; Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; Kavukcuoglu, K.

(2017) ‘FeUdal Networks for Hierarchical Reinforcement Learning’, 34th International

Conference on Machine Learning, ICML 2017, 7, pp. 5409–5418. Available at:

https://arxiv.org/abs/1703.01161v2 (Accessed: 9 May 2023).

Vitens (2017) Epynet: Object-oriented wrapper for EPANET 2.1. Available at:

https://github.com/Vitens/epynet (Accessed: 6 May 2022).

Wai-Lok Lai, W., Dérobert, X. and Annan, P. (2018) ‘A review of Ground Penetrating Radar

application in civil engineering: A 30-year journey from Locating and Testing to Imaging and

Diagnosis’, NDT & E International, 96, pp. 58–78. doi: 10.1016/J.NDTEINT.2017.04.002.

Walski, T. (2003) ‘Assembling A Model’, in Advanced Water Distribution Modeling and

Management. Dayton: Civil and Environmental Engineering and Engineering Mechanics

Faculty, pp. 75–132.

Walski, T.; Whitman, B.; Baron, M.; Gerloff, F. (2009) ‘Pressure vs. Flow Relationship for Pipe

Leaks’, Proceedings of World Environmental and Water Resources Congress 2009 - World

Environmental and Water Resources Congress 2009: Great Rivers, 342, pp. 1–10. doi:

10.1061/41036(342)10.

Wan, J.; Yu, Y.; Wu, Y.; Feng, R.; Yu, N. (2012) ‘Hierarchical leak detection and localization

method in natural gas pipeline monitoring sensor networks’, Sensors, 12(1), pp. 189–214. doi:

213

10.3390/S120100189.

Wang, Z.; Schaul, T.; Hessel, M.; Lanctot, M. (2015) ‘Dueling Network Architectures for Deep

Reinforcement Learning’, 33rd International Conference on Machine Learning, ICML 2016, 4,

pp. 2939–2947. Available at: https://arxiv.org/abs/1511.06581v3 (Accessed: 1 April 2023).

Waterloss (2018) New calcuLEAKator coming soon. Available at:

http://www.waterloss.com.ba/uskoro-novi-calculeakator/#more-592. (Accessed: 18 June

2021).

Welcome to Stable Baselines3 Contrib docs! — Stable Baselines3 - Contrib 2.2.1 documentation

(no date). Available at: https://sb3-contrib.readthedocs.io/en/master/ (Accessed: 6 January

2024).

Werbos, P. J. (1977) ‘Advanced Forecasting Methods for Global Crisis Warning and Models of

Intelligence’, General Systems, 22.

Westra, S.; Brown, C.; Lall, U.; Sharma, A. (2007) ‘Modeling multivariable hydrological series:

Principal component analysis or independent component analysis?’, Water Resources

Research, 43(6), p. 6429. doi: 10.1029/2006WR005617.

White, D. J. (Douglas J. (1969) ‘Dynamic programming’, p. 181. Available at:

https://books.google.com/books/about/Dynamic_Programming.html?id=SnBRAAAAMAAJ

(Accessed: 7 April 2023).

Williams, R. J. (1988) ‘On the use of backpropagation in associative reinforcement learning’,

pp. 263–270. doi: 10.1109/ICNN.1988.23856.

Williams, R. J. (1992) ‘Simple statistical gradient-following algorithms for connectionist

reinforcement learning’, Machine Learning 1992 8:3, 8(3), pp. 229–256. doi:

10.1007/BF00992696.

Wols, B. A., Van Daal, K. and Van Thienen, P. (2014) ‘Effects of Climate Change on Drinking

Water Distribution Network Integrity: Predicting Pipe Failure Resulting from Differential Soil

Settlement’, Procedia Engineering, 70, pp. 1726–1734. doi: 10.1016/J.PROENG.2014.02.190.

Wu, R.; Liao, Z.; Zhao, L.; Kong, X. (2008) ‘Wavelets application on acoustic emission signal

detection in pipeline’, Canadian Conference on Electrical and Computer Engineering, pp. 1211–

1214. doi: 10.1109/CCECE.2008.4564731.

Wu, Y.; Liu, S.; Wu, X.; Liu, Y.; Guan, Y. (2016) ‘Burst detection in district metering areas using a

214

data driven clustering algorithm’, Water Research, 100, pp. 28–37. doi:

10.1016/J.WATRES.2016.05.016.

Wu, Y. and Liu, S. (2017) ‘A review of data-driven approaches for burst detection in water

distribution systems’, Urban Water Journal, 14(9), pp. 972–983. doi:

10.1080/1573062X.2017.1279191.

Xu, J.; Wang, H.; Rao, J.; Wang, J. (2021) ‘Zone scheduling optimization of pumps in water

distribution networks with deep reinforcement learning and knowledge-assisted learning’, Soft

Computing, 25(23), pp. 14757–14767. doi: 10.1007/S00500-021-06177-3/FIGURES/7.

Xu, Q;. Liu, R.; Chen, Q.; Li, R. (2014) ‘Review on water leakage control in distribution networks

and the associated environmental benefits’, Journal of Environmental Sciences (China), 26(5),

pp. 955–961. doi: 10.1016/S1001-0742(13)60569-0.

Yang, D.; Zhao, L.; Lin, Z.; Qin, T.; Bian, J.; Liu, T.-Y. (2019) ‘Fully Parameterized Quantile

Function for Distributional Reinforcement Learning’, Advances in Neural Information

Processing Systems, 32.

Yang, Q.; Cao, W.; Meng, W.; Si, J. (2022) ‘Reinforcement-Learning-Based Tracking Control of

Waste Water Treatment Process under Realistic System Conditions and Control Performance

Requirements’, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(8), pp. 5284–

5294. doi: 10.1109/TSMC.2021.3122802.

Ye, G. and Fenner, R. A. (2010) ‘Kalman Filtering of Hydraulic Measurements for Burst

Detection in Water Distribution Systems’, Journal of Pipeline Systems Engineering and Practice,

2(1), pp. 14–22. doi: 10.1061/(ASCE)PS.1949-1204.0000070.

Yu, J.; Zhang, L.; Chen, J.; Xiao, Y.; Hou, D.; Huang, P.; Zhang, G.; Zhang, H. (2021) ‘An

Integrated Bottom-Up Approach for Leak Detection in Water Distribution Networks Based on

Assessing Parameters of Water Balance Model’, Water, 13(6), p. 867.

Zadkarami, M., Shahbazian, M. and Salahshoor, K. (2017) ‘Pipeline leak diagnosis based on

wavelet and statistical features using Dempster–Shafer classifier fusion technique’, Process

Safety and Environmental Protection, 105, pp. 156–163. doi: 10.1016/J.PSEP.2016.11.002.

Zaman, D.; Tiwari, M. K.; Gupta, A. K.; Sen, D. (2020) ‘A review of leakage detection strategies

for pressurised pipeline in steady-state’, Engineering Failure Analysis, 109, p. 104264. doi:

10.1016/j.engfailanal.2019.104264.

Zhang, Z., Zhang, D. and Qiu, R. C. (2020) ‘Deep reinforcement learning for power system

215

applications: An overview’, CSEE Journal of Power and Energy Systems, 6(1), pp. 213–225. doi:

10.17775/CSEEJPES.2019.00920.

Zhao, W., Queralta, J. P. and Westerlund, T. (2020) ‘Sim-to-Real Transfer in Deep

Reinforcement Learning for Robotics: A Survey’, 2020 IEEE Symposium Series on Computational

Intelligence, SSCI 2020, pp. 737–744. doi: 10.1109/SSCI47803.2020.9308468.

Zhou, X.; Tang, Z.; Xu, W.; Meng, F.; Chu, X.; Xin, K.; Fu, G. (2019) ‘Deep learning identifies

accurate burst locations in water distribution networks’, Water Research, 166, p. 115058. doi:

10.1016/J.WATRES.2019.115058.

Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J. J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. (2016) ‘Target-driven

Visual Navigation in Indoor Scenes using Deep Reinforcement Learning’, Proceedings - IEEE

International Conference on Robotics and Automation, pp. 3357–3364. doi:

10.1109/ICRA.2017.7989381.

Ziebart, B. D. and Fox, D. (2010) ‘Modeling Purposeful Adaptive Behavior with the Principle of

Maximum Causal Entropy’.

216

Appendices

Appendix A: WDN-DRL Environment Code

Below is the code used to develop the WDN-DRL Environment used to communicate between

the agents and the hydraulic software.

#Import block

from cmath import inf

import numpy as np

import pandas as pd

import networkx as nx

import random

import os

import matplotlib.pyplot as plt

from matplotlib.offsetbox import AnchoredText

from matplotlib.animation import PillowWriter

import scipy.stats as stats

from scipy.optimize import minimize as nm

from epynet import Network

from gym import Env

from gym.spaces import Box

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import dummy_vec_env

from stable_baselines3.common.evaluation import evaluate_policy

class WaterNetwork(Env):

'''

Title: Water Distribution Network - Deep Reinforcement Learning Ecosystem

Description: A class designed to allow optimisation algorithms and DRL agents to interact with

hydraulic files in epanet. Compatible hydraulic files include .inp files and .net

Version: 3.0

Notes: Report function completed and all data is exported

217

Action space is modified to allow all valves to be controlled at once. This version includes more

render functions (states, waterloss, reward per junction, iteractive map)

This version does not include the wrong move penalty or max reward. Just simply calculates

the difference in penalties

This version evaluates only one timestep per episode and trains the neural network on the

available 24hrs'''

'''

:param wdn_name: The name of the WDN hydraulic file to be imported

:param episode_len: The number of steps permissible per episode

:param freeze: If true, the next step of the episode is paused until prompted externally

:param burst: Whether it is a burst event or background leakage

:param n_junc: number of burst junctions

:param emitter_exp: The emitter exponent in the eakage rate equation

:param reset_orig_settings: Whether each episode should start with the original settings or

follow on from the previous episode

:param reset_orig_junction: Whether the burst junctions should stay the same every episode

or change randomly at the start of each episode.

:param orig_junc: The list of original burst junctions uid.

:param setmin: Value of the minimum acceptable setting in the action space

:param setmax: Value of the maximum acceptable setting in the action space

:param scale: List of reward scale ratios

:param seed: Seed for randomness

 '''

'''Initialisation function defining necessary parameters'''

 def __init__(self,

 wdn_name = 'd-town',

 episode_len = 24,

 freeze = False,

 burst = False,

 n_junc = 0,

 emitter_exp = 1.18,

 reset_orig_settings = True,

 reset_orig_junc = False,

218

 orig_junc = [],

 setmin = 0.0,

 setmax = 70.0,

 scale = [1,1],

 seed = None):

 #Initiating seed

 self.seedNum = seed

 if self.seedNum:

 np.random.seed(self.seedNum)

 else:

 np.random.seed()

 #Using path and os to get the corret path to the water network

 self.wdn_name = wdn_name

 pathToRoot = os.path.dirname(os.path.realpath('__file__'))

 pathToWdn = os.path.join(pathToRoot,'Epanet Networks', wdn_name +'.inp')

 self.network = Network(pathToWdn)

 self.network.ep.ENsetoption(4, emitter_exp)

 #Defining nodes, pipes, valves, junctions

 self.nodes = self.network.nodes

 self.pipes = self.network.pipes

 self.valves = self.network.valves

 self.junctions = self.network.junctions

 #Values for duration, timestep in seconds and episode length

 self.duration = episode_len

 self.timestep = 3600

 self.step_count = 0

 self.episode = 0

 self.done = False

 self.freeze = freeze

 self.burst = burst

219

 #Collecting all the set points for PRVs to make the state and setting

 #Selecting the valves that are PRVs

 self.setmin = setmin

 self.setmax = setmax

 self.reset_orig_settings = reset_orig_settings

 self.prv_uid = self.get_prv_uid()

 self.settings = self.get_prv_setting()

 self.state = pd.DataFrame()

 self.orig_settings = self.settings.loc[0,:].to_dict()

 self.new_state = np.NaN

 self.dimensions = len(self.prv_uid)

 #Action space will be a Box action space

 self.action_space = Box(low=setmin, high=setmax, shape=(len(self.prv_uid),))

 #Observation space

 self.observation_space = Box(low= -inf, high = inf, shape = ((len(self.junctions) +

len(self.prv_uid)),))

 #Introduce leak magnitude, leakage to a random junc or user-defined junc

 if burst:

 self.leak_mag = 3

 else:

 self.leak_mag = 0

 if reset_orig_junc:

 self.leak_junc = orig_junc

 else:

 self.leak_junc = []

 for i in range(n_junc):

 self.leak_junc.append(random.choice(self.junctions.uid))

 self.emitter_exp = emitter_exp

 self.pressure_limit = [10, 200]

220

 #Render logs. pressure and flow logs per step for each episode.

 self.violation_logs = np.zeros(episode_len)

 self.state_logs1 = np.empty((episode_len,3))

 self.state_logs2 = np.empty((episode_len,3))

 self.reward_log = np.empty((episode_len,))

 self.reward_logs2 = np.empty((episode_len, len(self.junctions)))

 self.waterloss_logs1 = np.empty((episode_len,))

 self.waterloss_logs2 = np.empty((episode_len,))

 #reward control

 self.rewscale = scale

 self.laziness_penalty = 0

 self.repeat_count = 0

 #Dataframes for leak df, action df

 self.action_df = pd.DataFrame()

 '''Getting state of avg pressure, avg waterloss, avg pressure, avg flow'''

 '''Getting a list of the relevant prv uids which will be the agents'''

 def get_prv_uid(self):

 prv_uid = []

 for k in self.valves:

 if k.valve_type == 'PRV' or k.valve_type == 'TCV' :

 prv_uid.append(k.uid)

 return np.array(prv_uid)

 '''Getting a dict of PRV set points'''

 def get_prv_setting(self):

 settings_index = pd.Index([self.step_count], name='Step')

 settings = {}

 for v in self.prv_uid:

 settings[v] = self.valves[v].get_object_value(5)

 return pd.DataFrame(settings, index=settings_index)

 def get_before_data(self):

221

 self.network.reset()

 if self.burst:

 for oj in self.junctions.uid:

 self.junctions[oj].set_object_value(3, 0)

 for ol in self.leak_junc:

 self.junctions[ol].set_object_value(3, self.leak_mag)

 else:

 pass

 for os in self.prv_uid:

 self.valves[os].set_object_value(5, self.orig_settings[os])

 self.network.solve((self.step_count%24)*self.timestep)

 #Populate action df

 #The action dataframe is the main collection hydraulic data including junction inflows

(before and after),

 #number of pressure violations (before and after), nodal pressure before and after and

leakage (before and after)

 self.action_df = pd.DataFrame({

 'emitter': self.junctions.emitter, 'flow_before': self.junctions.inflow, 'vio_before':

self.num_vio(), 'pressure_before': self.junctions.pressure})

 self.get_leakage_rate(self.action_df, before=True)

 #The state stores main hydraulic data from each step is recorded in the state dataframes

 self.state_before = pd.DataFrame(

 {'avg_pressure': self.action_df['pressure_before'].mean(),'water_loss':

self.action_df['leak_before'].sum(),'avg_flow': self.action_df['flow_before'].mean()},

index=[self.step_count])

 '''Function used to calculate leakage rate using junction pressure measurements, emitter

coeffficients and the emitter exponents'''

 def get_leakage_rate(self,df, before= True):

222

 if before:

 df['leak_before'] = df['emitter']*df['pressure_before']**self.emitter_exp

 else:

 df['leak_after'] = df['emitter']*df['pressure_after']**self.emitter_exp

 pass

 '''Getting the flows and violations before introducing the leak'''

 def solve_episode(self, df, leak_junc, leak_mag, step_count, timestep, settings):

 self.network.reset()

 #Get the values after valve settings and leak.

 #The state will be orig_state if its just a leak and state if it is action and leak

 if self.burst:

 for j in self.junctions.uid:

 self.junctions[j].set_object_value(3, 0)

 for l in leak_junc:

 self.junctions[l].set_object_value(3, leak_mag) # intoducing leak magnitude to a

random leak junc

 else:

 pass

 for s in self.prv_uid:

 self.valves[s].set_object_value(5, settings[s])

 self.network.solve((step_count%24)*timestep)

 self.get_after_data(df)

 return df

 '''Getting flows and vios and waterloss after introducing a leak'''

 def get_after_data(self, df):

 df['flow_after'] = self.junctions.inflow

223

 df['vio_after'] = self.num_vio()

 df['pressure_after'] = self.junctions.pressure

 self.get_leakage_rate(df, False)

 df['water_saved'] = df['leak_before'] - df['leak_after']

 #Calculating the reward based on the violations and leakage rate difference

 # Hyperbolic tan of % water saved is percent_loss will be multiplied by its reward scale

 # Pressure violations is whether we have resolved any violations (+ve) or didn't resolve (0)

or created new violations (-ve)

 df['percent_saved'] = np.tanh((df['water_saved'] / df['leak_before'])*self.rewscale[0])

#remove tanh function for Jowitt&Xu network

 df['percent_vio'] = (df['vio_before'] - df['vio_after'])*self.rewscale[1]

 df['reward'] = df[['percent_saved', 'percent_vio']].sum(axis=1)

 df.fillna(0)

 df.dropna()

 #Get state (avg pressure, waterloss, avg flow)

 self.state = pd.DataFrame(

 {'avg_pressure': df['pressure_after'].mean(),'water_loss':

df['leak_after'].sum(),'avg_flow': df['flow_after'].mean()}, index=[self.step_count])

 '''Calculating if the junction is violating the pressure limits'''

 def num_vio(self):

 vio2 = (self.junctions.pressure > self.pressure_limit[1])*1

 vio1 = (self.junctions.pressure < self.pressure_limit[0])*1

 vio = vio1 + vio2

 return vio

 '''Step function simulates one step in each hour. First the leakless actionless data is retrieved

then the leak data is run

 and then an action is introduced to be compared to the leak data. The action and leak df

are compared to return their

 respective penalties.

 The reward is calculated as the amount of penalty saved by performing the action.

 The episode ends if the no of steps reaches 24 or if the state isn't changing.'''

224

 def step(self, action):

 #Get your 'before' data for leak and action then get the after leak data

 self.get_before_data()

 self.state_logs1[self.step_count,:] = self.state_before.values

 #Using the action to find the corresponding move to the correct valve

 new_settings_index = pd.Index([self.step_count+1], name='Step')

 self.new_settings = pd.DataFrame(self.settings.loc[self.step_count,:].to_dict(), index =

new_settings_index)

 for i in range(len(action)):

 valve_index = self.prv_uid[i] # returns 0 for the first prv; 1 for the second and so on

 move = action[i] #when running it in a testing loop

 #Change the settings after the action. Add the leak and valve setting

 self.new_settings[valve_index] = move

 #Get the after data for the action_df. If there is no burst the leak_mag will be zero and not

influence the simulation

 self.solve_episode(

 self.action_df, self.leak_junc, self.leak_mag, self.step_count, self.timestep,

self.new_settings)

 #append setting df with the new setting

 self.settings = pd.concat([self.settings, self.new_settings])

 #Calculate rewards:

 reward = self.action_df['reward'].sum()

 if self.step_count>0:

 if self.settings.loc[self.step_count].equals(self.settings.loc[self.step_count-1]):

 self.repeat_count += 1

 else:

 self.repeat_count = 0

 if self.repeat_count >= 3:

 reward += self.laziness_penalty

225

 #Adding metrics to logs

 self.violation_logs[self.step_count] = self.action_df['vio_after'].sum()

 self.waterloss_logs1[self.step_count] = self.action_df['leak_before'].sum()

 self.waterloss_logs2[self.step_count] = self.action_df['leak_after'].sum()

 self.reward_log[self.step_count] = reward

 self.reward_logs2[self.step_count,:] = self.action_df['reward'].to_numpy()

 self.state_logs1[self.step_count,:] = self.state_before.values

 self.state_logs2[self.step_count,:] = self.state.values

 self.observation = self.get_observation()

 #Increase the step count, episode, and check if we reached duration then we reset.

 #There are 24 steps in each episode signifying the 24 hours of the day

 if not self.freeze:

 self.step_count += 1

 if self.step_count == self.duration or self.done:

 self.done = True

 self.episode += 1

 self.step_count = 0

 self.setting_logs = self.settings

 if self.reset_orig_settings:

 self.settings = pd.DataFrame(self.orig_settings, index=pd.Index([self.step_count],

name='Step'))

 return self.observation, reward, self.done, {}

 '''Function to send the reward to SciPy optimisation algorithms'''

 def reward_to_scipy(self, action):

 obs, reward, done, info = self.step(action)

 return -reward

 '''Function to send the reward to SciPy optimisation algorithms'''

 def reward_to_deap(self, action):

 obs, reward, done, info = self.step(action)

226

 return reward

 '''Calculate the observation for the current step'''

 def get_observation(self):

 obs = self.action_df['pressure_before']

 obs = pd.concat([obs, self.settings.loc[self.step_count]], axis=0)

 return obs.transpose()

 '''Environment resets. Need to calculate an appropriate first observation'''

 def reset(self):

 self.done = False

 self.step_count = 0

 self.prevReward = 0

 self.get_before_data()

 self.observation = self.get_observation()

 return self.observation

 '''Data visualisation functions'''

 def render(self, choice):

 #Choice is a menu of possible render functions

 menu = {'interactive map': 0, 'reward across junctions': 1, 'settings': 2, 'water loss': 3,

'states': 4}

 #Interactive map

 if menu[choice] == 0:

 fig = plt.figure()

 metadata = dict(title=f'{self.wdn_name} interactive map - ep{self.episode}',

artist='Ahmed Negm')

 writer = PillowWriter(fps=2, metadata=metadata) #pillow writer to make gif

227

 with writer.saving(fig, f'{self.wdn_name} interactive map - ep{self.episode}.gif', 150):

#figure to capture, title and fps

 for s in range(self.duration):

 valve_list = []

 downstream_uid = []

 upstream_uid = []

 for p in self.prv_uid:

 valve_list.append((self.valves[p].downstream_node.uid,

self.valves[p].upstream_node.uid))

 for i in self.pipes.uid:

 downstream_uid.append(self.pipes[i].downstream_node.uid)

 for i in self.pipes.uid:

 upstream_uid.append(self.pipes[i].upstream_node.uid)

 G = nx.Graph()

 for h in range(len(self.nodes)):

 G.add_node(self.nodes.uid[h])

 for i in range(len(self.pipes)):

 G.add_edge(downstream_uid[i], upstream_uid[i])

 #for p in self.prv_uid:

 # G.add_edge(self.valves[p].downstream_node.uid,

self.valves[p].upstream_node.uid, weight=self.setting_logs.loc[s,p].round(1))

 edge_labels = nx.get_edge_attributes(G,'weight')

 leak_options = {'node_color' : 'red', 'node_size' : 10,}

 valve_options = {'edge_color' : 'green'}

 options = {'node_color': 'blue', 'node_size': 10}

 nx.draw(G, self.nodes.coordinates, with_labels=False, **options)

 nx.draw_networkx_nodes(G, self.nodes.coordinates, nodelist= self.leak_junc,

**leak_options)

 nx.draw_networkx_edges(G, self.nodes.coordinates, edgelist=valve_list,

**valve_options)

228

 nx.draw_networkx_edge_labels(G, self.nodes.coordinates, edge_labels)

 plt.title('Interactive map')

 writer.grab_frame()

 plt.clf()

 print('Render Completed')

 pass

 #reward across junctions

 elif menu[choice] == 1:

 #reward across junctions gif. This render function creates a gif of the penalties available

in the network across the span of a 24h episode

 #The leak nodes are labelled with a 'o'. The total reward saved and step count is

displayed in the top-right corner.

 #The leak penalties are red and logged at self.reward_logs2. The action penalties are

blue and logged at self.reward_logs1.

 fig = plt.figure()

 metadata = dict(title='Junc reward spread over day', artist='Ahmed Negm')

 writer = PillowWriter(fps=2, metadata=metadata) #pillow writer to make gif

 with writer.saving(fig, f'Junc reward render ep{self.episode}.gif', 150): #figure to

capture, title and fps

 for i in range(self.duration): #for each step in the duration of the episode (24h)

 ax = plt.gca()

 #Plot action penalties against the index

 plt.bar(self.junctions.uid, self.reward_logs2[i,:], alpha=0.5, label='Reward after',

color='blue')

 #Plot legend, title, labels, and leakage markers

 #plt.legend(loc='upper left')

 plt.title('Reward across junctions')

 for l in self.leak_junc:

 plt.plot(l, 0, 'o', ms=5, mec='k', mfc='none', mew=0.5)

 plt.xlabel('Junctions')

 plt.ylabel('Reward')

229

 #Plot anchored text describing the reward (reward saved) and step count on the

upper right corner

 at = AnchoredText(f'Reward: {self.reward_log[i].round(2)} \nStep: {i+1}',

 prop=dict(size=10), frameon=True, loc='upper right')

 at.patch.set_boxstyle('round,pad=0.,rounding_size=0.2')

 ax.add_artist(at)

 #Capture the final figure for the animation then clear

 writer.grab_frame()

 plt.clf()

 print('Render Complete')

 pass

 #Settings

 elif menu[choice] == 2:

 plt.figure()

 x_data = range(self.duration+1)

 for i in self.prv_uid: #for each step in the duration of the episode (24h)

 plt.plot(x_data, self.setting_logs[i], label=i)

 plt.legend()

 plt.title('Settings changing across episode')

 plt.xlabel('Step Count')

 plt.ylabel('Setting')

 plt.savefig(f'Settings across ep{self.episode}')

 plt.show()

 #Water Loss

 elif menu[choice] == 3:

 x_data = range(self.duration)

 plt.figure()

 plt.plot(x_data, self.waterloss_logs1, label='Leakage before', color='red')

 plt.plot(x_data, self.waterloss_logs2, label='Leakage after', color='blue')

 plt.legend()

230

 plt.title('Waterloss across steps')

 plt.xlabel('Step Count')

 plt.ylabel('Water Loss in Litres')

 plt.savefig(f'Water Loss of ep{self.episode}')

 plt.show()

 print('Render Complete')

 #States

 elif menu[choice] == 4:

 fig, ax = plt.subplots(3)

 x_data = range(self.duration)

 labels = ['Average Pressure', 'Water Loss', 'Average Flow']

 for i in range(3):

 ax[i].plot(x_data, self.state_logs2[:,i], label=labels[i], color='blue')

 ax[i].plot(x_data, self.state_logs1[:,i], label=labels[i], color='red')

 ax[i].set(xlabel='Step Count', ylabel=labels[i])

 fig.suptitle('States across steps')

 plt.savefig(f'States of ep{self.episode}')

 plt.show()

 pass

 '''Function for creating reports based on algorithm performance'''

 def report(self, choice):

 menu = {'excel': 0, 'html': 1, 'pdf': 2}

 path = os.path.join(os.path.dirname(os.path.realpath('__file__')),'Excel Reports', f'WN2.5

{self.wdn_name} Report - Ep {self.episode} - Step {self.step_count}.xlsx')

 ep_path = os.path.join(os.path.dirname(os.path.realpath('__file__')),'Excel Reports',

f'WN2.5 {self.wdn_name} Report - Ep {self.episode} Logs.xlsx')

 #Excel

231

 if menu[choice] == 0:

 '''

 Logging all the data into excel files using Excel writer

 Each step's data will be exported in one file including the action df, settings,

observations and states

 '''

 with pd.ExcelWriter(path) as writer:

 self.action_df.to_excel(writer, sheet_name=f'Master df Step {self.step_count}',

startcol=0, startrow=1)

 self.settings.to_excel(writer, sheet_name=f'Master df Step {self.step_count}',

startcol=15, startrow=1)

 self.observation.to_excel(writer, sheet_name=f'Obs and state Step {self.step_count}',

startcol=0, startrow=1)

 self.state.to_excel(writer, sheet_name=f'Obs and state Step {self.step_count}',

startcol=5, startrow=1)

 worksheet = writer.sheets[f'Master df Step {self.step_count}']

 worksheet.write_string(0,0,'Action DataFrame')

 worksheet.write_string(0,15,'Settings')

 worksheet = writer.sheets[f'Obs and state Step {self.step_count}']

 worksheet.write_string(0,0,'Observation data')

 worksheet.write_string(0,5,'State data')

 #Episode summary report

 if self.step_count == 23:

 with pd.ExcelWriter(ep_path) as writer:

 state_log1_df = pd.DataFrame(self.state_logs1, columns=['Average Pressure',

'Water Loss','Average Flow'])

 state_log2_df = pd.DataFrame(self.state_logs2, columns=['Average Pressure',

'Water Loss','Average Flow'])

 reward_logs2_df = pd.DataFrame(self.reward_logs2, columns=self.junctions.uid)

232

 reward_sums_df = pd.DataFrame({

 'Water Saved': self.state_logs1[:,1]-self.state_logs2[:,1],

 'Water Saved %': (self.state_logs1[:,1]-

self.state_logs2[:,1])*100/self.state_logs1[:,1],

 'Rewards': self.reward_log,

 'Violations': self.violation_logs

 })

 state_log1_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startrow=1)

 state_log2_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startcol=0,

startrow=28)

 reward_logs2_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startcol=5,

startrow=1)

 reward_sums_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startcol=5,

startrow=28)

 worksheet = writer.sheets[f'Episode {self.episode}']

 worksheet.write_string(0,0,'States before action')

 worksheet.write_string(27,0,'States after action')

 worksheet.write_string(0,5,'Junction rewards')

 pass

 elif menu[choice] == 1:

 pass

 elif menu[choice] == 2:

 pass

Appendix B: Optimisation Algorithms Code

In this appendix, we outline the python scripts used to create the benchmark optimisation

algorithms (Nelder Mead, Particle Swarm Optimisation, and Differential Evolution). The

libraries required for these algorithms are imported below.

#Import block

from cmath import inf

from typing import Callable

233

import math

import numpy as np

import pandas as pd

import random

import operator

import os

from deap import base

from deap import creator

from deap import tools

from scipy.optimize import minimize as nm

import tensorflow as tf

from WaterNetwork import WaterNetwork

In these algorithms, the ‘env’ parameter is a placeholder for the WDN-DRL environment file

(Appendix A).

env = WaterNetwork(wdn_name='SZ08_PEAK', burst=True,

reset_orig_junc=True, orig_junc=test_leak_junc, n_junc=32, scale=[5,1])

env_run = WaterNetwork(wdn_name='SZ08_PEAK', burst=True,

reset_orig_junc=False, n_junc=32, scale=[5,1], freeze=True)

df_header = ['index','reward','evals']

This is used to create the Nelder Mead class used in the case studies below.

class nelder_mead_method():

 def __init__(self):

 self.options = { 'maxfev': 1000, 'xatol' : .005, 'fatol' : .01,

'disp': True}

 def maximise(self,id):

 init_guess = []

 for i in range(len(env_run.prv_uid)):

 init_guess.append(random.randint(0,70))

 bounds = []

 for i in range(len(env_run.prv_uid)):

234

 bounds.append((0,70))

 env_run.step_count = id

 result = nm(env_run.reward_to_scipy, init_guess,

options=self.options, bounds=bounds, method='Nelder-Mead')

 result_df = pd.DataFrame(np.empty((1,len(df_header))),

columns=df_header)

 env_run.settings.drop(index=env_run.step_count+1)

 result_df[df_header[0]] = id

 result_df[df_header[1]] = -result.fun

 result_df[df_header[2]] = result.nit

 print(f'x={result.x} y={result.fun}')

 action = result.x

 for i in range(len(env.prv_uid)):

 result_df['Setting of '+str(env.prv_uid[i])] = result.x[i]

 return result_df, action

The particles swarm optimisation class is included in the same Jupyter notebook below.

class pso():

 def __init__(self):

 #Creator setup

 creator.create("FitnessMax", base.Fitness, weights=(1.0,))

 creator.create("Particle", list, fitness=creator.FitnessMax,

speed=list, smin=None, smax=None, best=None)

 pass

 #Generating particles function. Parameters incluse minimum and max

speed of particle (smin, smax); minimum and maximum positions (pmin,

pmax) and size

 #Essentially smax - smin makes themaximum step size

 def generate_part(self, size, smin, smax, pmin, pmax):

235

 part = creator.Particle(random.uniform(pmin, pmax) for _ in

range(size))

 part.speed = [random.uniform(smin, smax) for _ in range(size)]

 part.smin = smin

 part.smax = smax

 return part

 #Update the particle's after each search

 #part is the parameter for the particles being updated

 #Phi1 is the parameter for the particle's probability to exploit it's

best score this maps into a random distribution for each particle in list

u1

 #Phi2 is the parameter for the particle's probability to explore the

global best score this maps into a random distribution for each particle

in lise u

 #v_u1 is the exploitation velocity which is u1 x the difference

between best position and the part's current position

 #v_u2 is the exploratory velocity which is u2 x the differenct

between the global best position and the part's current position

 def update_part(self, part, best, phi1, phi2,setmin, setmax):

 u1 = (random.uniform(0, phi1) for _ in range(len(part)))

 u2 = (random.uniform(0, phi2) for _ in range(len(part)))

 v_u1 = map(operator.mul, u1, map(operator.sub, part.best, part))

 v_u2 = map(operator.mul, u2, map(operator.sub, best, part))

 #Each particle's speed is calculated by adding its curremt speed

to v_u1 and v_u2

 #Then the speeds are clipped to keep the absolute speed betweem

smin and smax

 #copysign copies the sign of the second parameter to the first

parameter

 part.speed = list(map(operator.add, part.speed, map(operator.add,

v_u1, v_u2)))

 for i, speed in enumerate(part.speed):

 if abs(speed) < part.smin:

 part.speed[i] = math.copysign(part.smin, speed)

 elif abs(speed) > part.smax:

 part.speed[i] = math.copysign(part.smax, speed)

236

 #Each particle's new position is calculated by adding the current

position to the speed

 #The positions are clipped to ensure that the particle position

is within our valve setting limits setmin and setmax

 tmp2 = np.asarray(list(map(operator.add, part, part.speed)))

 np.clip(a=tmp2, a_min=setmin, a_max=setmax, out=tmp2)

 part[:] = tmp2.tolist()

 def maximise(self, id):

 mu = 30 #number of particles

 ngen = 20 #number of generations/iterations

 best = None #Initialise the best particle

 #Toolbox

 toolbox = base.Toolbox()

 toolbox.register("particle", self.generate_part,

size=env_run.dimensions, pmin=env_run.setmin, pmax=env_run.setmax, smin=-

1, smax=1)

 toolbox.register("population", tools.initRepeat, list,

toolbox.particle)

 toolbox.register("update", self.update_part, phi1=0.5, phi2=0.5,

setmin=env_run.setmin, setmax=env_run.setmax)

 toolbox.register("evaluate", env_run.reward_to_deap)

 #Initiate population and statistics

 pop = toolbox.population(n=mu)

 stats = tools.Statistics(lambda ind: ind.fitness.values)

 stats.register("avg", np.mean)

 stats.register("std", np.std)

 stats.register("min", np.min)

 stats.register("max", np.max)

 #Running optimisation block

 env_run.step_count = id

 for g in range(ngen): #for each iteration and each particle in

the population

 for part in pop:

237

 env_run.settings.drop(index=env_run.step_count)

 part.fitness.values = [toolbox.evaluate(part).tolist()]

#Evaluates the fitness of the part by reading the reward

 if not part.best or part.best.fitness < part.fitness: #If

this is the first move or the best position yet we update the best

position for this particle

 part.best = creator.Particle(part)

 part.best.fitness.values = part.fitness.values

 if not best or best.fitness < part.fitness: #If this the

first move in the entire population or the best global position we update

the best global position

 best = creator.Particle(part)

 best.fitness.values = part.fitness.values

 for part in pop:

 toolbox.update(part, best) #update the particle and best

particle for the next iteration

 result_df = pd.DataFrame(np.empty((1,len(df_header))),

columns=df_header)

 result_df[df_header[0]] = id

 result_df[df_header[1]] = best.fitness.values[0]

 result_df[df_header[2]] = ngen*mu

 print(f'x={best} y={best.fitness.values[0]}')

 for i in range(len(env.prv_uid)):

 result_df['Setting of '+str(env.prv_uid[i])] = best[i]

 return result_df, best

Finally, the differential evolution class uses the DEAP library to create and mutate the

generations as shown below.

class de():

 def __init__(self):

 pass

 def maximise(self, id):

238

 cr = 0.25

 f = 1

 mu = 30

 ngen = 20

 creator.create("FitnessMax", base.Fitness, weights=(1.0,))

 creator.create("Individual", np.ndarray,

fitness=creator.FitnessMax)

 toolbox = base.Toolbox()

 toolbox.register("attr_float", random.uniform, env_run.setmin,

env_run.setmax)

 toolbox.register("individual", tools.initRepeat,

creator.Individual, toolbox.attr_float, env_run.dimensions)

 toolbox.register("population", tools.initRepeat, list,

toolbox.individual)

 toolbox.register("select", tools.selRandom, k=3)

 toolbox.register("evaluate", env_run.reward_to_deap)

 #Initiate population and statistics

 pop = toolbox.population(n=mu) #A population of 30 individual

 stats = tools.Statistics(lambda ind: ind.fitness.values)

 stats.register("avg", np.mean)

 stats.register("std", np.std)

 stats.register("min", np.min)

 stats.register("max", np.max)

 #Running optimisation block

 env_run.step_count = id

 hof = tools.HallOfFame(1, similar=np.array_equal) #1 individual

in the hall of fame (the best)

 for g in range(1, ngen): #For the number of generations (20)

 for k, agent in enumerate(pop): #For each of the 30

individuals

 #env_run.settings.drop(index=env_run.step_count+1)

239

 a,b,c = toolbox.select(pop) #Randomly select three

individuals from the population

 y = toolbox.clone(agent)

 index = random.randrange(env_run.dimensions)

 for i, value in enumerate(agent):

 if i == index or random.random() < cr:

 candidate = a[i] + f*(b[i]-c[i])

 if candidate < env_run.setmin:

 y[i] = env_run.setmin

 elif candidate > env_run.setmax:

 y[i] = env_run.setmax

 else:

 y[i] = candidate

 y.fitness.values = [toolbox.evaluate(y).tolist()]

 if y.fitness > agent.fitness:

 pop[k] = y

 hof.update(pop)

 result_df = pd.DataFrame(np.empty((1,len(df_header))),

columns=df_header)

 result_df[df_header[0]] = id

 result_df[df_header[1]] = hof[0].fitness.values[0]

 result_df[df_header[2]] = ngen*mu

 print(f'x={hof} y={hof[0].fitness.values[0]}')

 for i in range(len(env.prv_uid)):

 result_df['Setting of '+str(env.prv_uid[i])] = hof[0][i]

 del creator.FitnessMax, creator.Individual

 return result_df, hof[0]

240

Appendix C: DRL Algorithm Training Scripts

In this appendix, we demonstrate the training blocks used in the Jupyter python notebooks to

develop the policies of the DRL algorithms.

First, we import the libraries using the code below.

#Import block

from cmath import inf

from typing import Callable

import math

import numpy as np

import pandas as pd

import random

import operator

import os

from deap import base

from deap import creator

from deap import tools

from scipy.optimize import minimize as nm

from stable_baselines3 import PPO, A2C, DDPG, TD3, SAC

from sb3_contrib import RecurrentPPO, TRPO, ARS, TQC

from stable_baselines3.common.results_plotter import load_results, ts2xy

from stable_baselines3.common.evaluation import evaluate_policy

from stable_baselines3.common.callbacks import BaseCallback

import tensorflow as tf

from WaterNetwork import WaterNetwork

We rely on the SB3 library to access the agents however we also develop some callbacks to

evaluate the algorithm’s training process. The code for the callbacks is mentioned below.

class SaveOnBestTrainingRewardCallback(BaseCallback):

 """

 Callback for saving a model (the check is done every ``check_freq``

steps)

 based on the training reward (in practice, we recommend using

``EvalCallback``).

241

 :param check_freq:

 :param log_dir: Path to the folder where the model will be saved.

 It must contains the file created by the ``Monitor`` wrapper.

 :param verbose: Verbosity level: 0 for no output, 1 for info

messages, 2 for debug messages

 """

 def __init__(self, check_freq: int, log_dir: str, verbose: int = 1):

 super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)

 self.check_freq = check_freq

 self.log_dir = log_dir

 self.save_path = os.path.join(log_dir, "best_model")

 self.best_mean_reward = -np.inf

 def _init_callback(self) -> None:

 # Create folder if needed

 if self.save_path is not None:

 os.makedirs(self.save_path, exist_ok=True)

 def _on_step(self) -> bool:

 if self.n_calls % self.check_freq == 0:

 # Retrieve training reward

 x, y = ts2xy(load_results(self.log_dir), "timesteps")

 if len(x) > 0:

 # Mean training reward over the last 100 episodes

 mean_reward = np.mean(y[-100:])

 if self.verbose >= 1:

 print(f"Num timesteps: {self.num_timesteps}")

 print(f"Best mean reward: {self.best_mean_reward:.2f} -

Last mean reward per episode: {mean_reward:.2f}")

 # New best model, you could save the agent here

 if mean_reward > self.best_mean_reward:

 self.best_mean_reward = mean_reward

 # Example for saving best model

 if self.verbose >= 1:

 print(f"Saving new best model to {self.save_path}")

 self.model.save(self.save_path)

242

 return True

During hyperparameter training, some of the algorithms showed a better result by

implementing a linear schedule to the learning rate parameter. This allows the algorithm to

slowly move from exploration-based behaviour to exploitation-based behaviour as the optimal

policy is developed. The code used for that is shown below.

def linear_schedule(initial_value: float) -> Callable[[float], float]:

 """

 Linear learning rate schedule.

 :param initial_value: Initial learning rate.

 :return: schedule that computes

 current learning rate depending on remaining progress

 """

 def func(progress_remaining: float) -> float:

 """

 Progress will decrease from 1 (beginning) to 0.

 :param progress_remaining:

 :return: current learning rate

 """

 return progress_remaining * initial_value

 return func

Each DRL algorithm’s default hyperparameters and brief explanation is listed below as per the

SB3 documentation (Stable-Baselines3 Docs - Reliable Reinforcement Learning

Implementations — Stable Baselines3 2.2.1 documentation, no date; Welcome to Stable

Baselines3 Contrib docs! — Stable Baselines3 - Contrib 2.2.1 documentation, no date).

Following this, we show the training and evaluation of each algorithm using the following.

TRPO

class sb3_contrib.trpo.TRPO(policy, env, learning_rate=0.001,

n_steps=2048, batch_size=128, gamma=0.99, cg_max_steps=15,

cg_damping=0.1, line_search_shrinking_factor=0.8,

line_search_max_iter=10, n_critic_updates=10, gae_lambda=0.95,

243

use_sde=False, sde_sample_freq=-1, rollout_buffer_class=None,

rollout_buffer_kwargs=None, normalize_advantage=True, target_kl=0.01,

sub_sampling_factor=1, stats_window_size=100, tensorboard_log=None,

policy_kwargs=None, verbose=0, seed=None, device='auto',

_init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …)

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable[[float], float]) – The learning rate for the value function,

it can be a function of the current progress remaining (from 1 to 0)

• n_steps (int) – The number of steps to run for each environment per update (i.e.

rollout buffer size is n_steps * n_envs where n_envs is number of environment copies

running in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the

advantage normalization) See https://github.com/pytorch/pytorch/issues/29372

• batch_size (int) – Minibatch size for the value function

• gamma (float) – Discount factor

• cg_max_steps (int) – maximum number of steps in the Conjugate Gradient algorithm

for computing the Hessian vector product

• cg_damping (float) – damping in the Hessian vector product computation

• line_search_shrinking_factor (float) – step-size reduction factor for the line-search

(i.e., theta_new = theta + alpha^i * step)

• line_search_max_iter (int) – maximum number of iteration for the backtracking line-

search

• n_critic_updates (int) – number of critic updates per policy update

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage

Estimator

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)

instead of action noise exploration (default: False)

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE

Default: -1 (only sample at the beginning of the rollout)

• rollout_buffer_class (Type[RolloutBuffer] | None) – Rollout buffer class to use. If None,

it will be automatically selected.

https://github.com/pytorch/pytorch/issues/29372

244

• rollout_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the

rollout buffer on creation.

• normalize_advantage (bool) – Whether to normalize or not the advantage

• target_kl (float) – Target Kullback-Leibler divergence between updates. Should be

small for stability. Values like 0.01, 0.05.

• sub_sampling_factor (int) – Sub-sample the batch to make computation faster see

p40-42 of John Schulman thesis http://joschu.net/docs/thesis.pdf

• stats_window_size (int) – Window size for the rollout logging, specifying the number

of episodes to average the reported success rate, mean episode length, and mean

reward over.

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging)

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the

policy on creation.

• verbose (int) – the verbosity level: 0 no output, 1 info, 2 debug.

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance.

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = TRPO('MlpPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

TRPO_path = os.path.join('Training', 'Saved Models','TRPO_env')

model.save(TRPO_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

PPO

class stable_baselines3.ppo.PPO(policy, env, learning_rate=0.0003,

n_steps=2048, batch_size=64, n_epochs=10, gamma=0.99, gae_lambda=0.95,

clip_range=0.2, clip_range_vf=None, normalize_advantage=True,

http://joschu.net/docs/thesis.pdf

245

ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5, use_sde=False,

sde_sample_freq=-1, rollout_buffer_class=None,

rollout_buffer_kwargs=None, target_kl=None, stats_window_size=100,

tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None,

device='auto', _init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …)

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable[[float], float]) – The learning rate, it can be a function of

the current progress remaining (from 1 to 0)

• n_steps (int) – The number of steps to run for each environment per update (i.e. rollout

buffer size is n_steps * n_envs where n_envs is number of environment copies running

in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the advantage

normalization) See https://github.com/pytorch/pytorch/issues/29372

• batch_size (int) – Minibatch size

• n_epochs (int) – Number of epoch when optimizing the surrogate loss

• gamma (float) – Discount factor

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage

Estimator

• clip_range (float | Callable[[float], float]) – Clipping parameter, it can be a function of

the current progress remaining (from 1 to 0).

• clip_range_vf (None | float | Callable[[float], float]) – Clipping parameter for the value

function, it can be a function of the current progress remaining (from 1 to 0). This is a

parameter specific to the OpenAI implementation. If None is passed (default), no

clipping will be done on the value function. IMPORTANT: this clipping depends on the

reward scaling.

• normalize_advantage (bool) – Whether to normalize or not the advantage

• ent_coef (float) – Entropy coefficient for the loss calculation

• vf_coef (float) – Value function coefficient for the loss calculation

• max_grad_norm (float) – The maximum value for the gradient clipping

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)

instead of action noise exploration (default: False)

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv
https://github.com/pytorch/pytorch/issues/29372

246

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE

Default: -1 (only sample at the beginning of the rollout)

• rollout_buffer_class (Type[RolloutBuffer] | None) – Rollout buffer class to use. If None,

it will be automatically selected.

• rollout_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the

rollout buffer on creation

• target_kl (float | None) – Limit the KL divergence between updates, because the

clipping is not enough to prevent large update see issue #213

(cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit

on the kl div.

• stats_window_size (int) – Window size for the rollout logging, specifying the number of

episodes to average the reported success rate, mean episode length, and mean reward

over.

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging)

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy

on creation.

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or

wrappers used), 2 for debug messages.

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance.

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = PPO('MlpPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

PPO_path = os.path.join('Training', 'Saved Models','PPO_env')

model.save(PPO_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

https://github.com/hill-a/stable-baselines/issues/213

247

Recurrent PPO

class sb3_contrib.ppo_recurrent.RecurrentPPO(policy, env,

learning_rate=0.0003, n_steps=128, batch_size=128, n_epochs=10,

gamma=0.99, gae_lambda=0.95, clip_range=0.2, clip_range_vf=None,

normalize_advantage=True, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5,

use_sde=False, sde_sample_freq=-1, target_kl=None, stats_window_size=100,

tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None,

device='auto', _init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …)

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable[[float], float]) – The learning rate, it can be a function of

the current progress remaining (from 1 to 0)

• n_steps (int) – The number of steps to run for each environment per update (i.e. batch

size is n_steps * n_env where n_env is number of environment copies running in

parallel)

• batch_size (int | None) – Minibatch size

• n_epochs (int) – Number of epoch when optimizing the surrogate loss

• gamma (float) – Discount factor

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage

Estimator

• clip_range (float | Callable[[float], float]) – Clipping parameter, it can be a function of

the current progress remaining (from 1 to 0).

• clip_range_vf (None | float | Callable[[float], float]) – Clipping parameter for the value

function, it can be a function of the current progress remaining (from 1 to 0). This is a

parameter specific to the OpenAI implementation. If None is passed (default), no

clipping will be done on the value function. IMPORTANT: this clipping depends on the

reward scaling.

• normalize_advantage (bool) – Whether to normalize or not the advantage

• ent_coef (float) – Entropy coefficient for the loss calculation

• vf_coef (float) – Value function coefficient for the loss calculation

• max_grad_norm (float) – The maximum value for the gradient clipping

248

• target_kl (float | None) – Limit the KL divergence between updates, because the

clipping is not enough to prevent large update see issue #213

(cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit

on the kl div.

• stats_window_size (int) – Window size for the rollout logging, specifying the number of

episodes to average the reported success rate, mean episode length, and mean reward

over

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging)

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy

on creation

• verbose (int) – the verbosity level: 0 no output, 1 info, 2 debug

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance

• use_sde (bool) –

• sde_sample_freq (int) –

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = RecurrentPPO('MlpLstmPolicy', env, verbose = 1,

tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

RecurrentPPO_path = os.path.join('Training', 'Saved

Models','RecurrentPPO_env')

model.save(RecurrentPPO_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

A2C

class stable_baselines3.a2c.A2C(policy, env, learning_rate=0.0007,

n_steps=5, gamma=0.99, gae_lambda=1.0, ent_coef=0.0, vf_coef=0.5,

https://github.com/hill-a/stable-baselines/issues/213

249

max_grad_norm=0.5, rms_prop_eps=1e-05, use_rms_prop=True, use_sde=False,

sde_sample_freq=-1, rollout_buffer_class=None,

rollout_buffer_kwargs=None, normalize_advantage=False,

stats_window_size=100, tensorboard_log=None, policy_kwargs=None,

verbose=0, seed=None, device='auto', _init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …)

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable[[float], float]) – The learning rate, it can be a function of

the current progress remaining (from 1 to 0)

• n_steps (int) – The number of steps to run for each environment per update (i.e. batch

size is n_steps * n_env where n_env is number of environment copies running in

parallel)

• gamma (float) – Discount factor

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage

Estimator. Equivalent to classic advantage when set to 1.

• ent_coef (float) – Entropy coefficient for the loss calculation

• vf_coef (float) – Value function coefficient for the loss calculation

• max_grad_norm (float) – The maximum value for the gradient clipping

• rms_prop_eps (float) – RMSProp epsilon. It stabilizes square root computation in

denominator of RMSProp update

• use_rms_prop (bool) – Whether to use RMSprop (default) or Adam as optimizer

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)

instead of action noise exploration (default: False)

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE

Default: -1 (only sample at the beginning of the rollout)

• rollout_buffer_class (Type[RolloutBuffer] | None) – Rollout buffer class to use. If None,

it will be automatically selected.

• rollout_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the

rollout buffer on creation.

• normalize_advantage (bool) – Whether to normalize or not the advantage

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv

250

• stats_window_size (int) – Window size for the rollout logging, specifying the number of

episodes to average the reported success rate, mean episode length, and mean reward

over

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging)

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy

on creation

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or

wrappers used), 2 for debug messages

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = A2C('MlpPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

A2C_path = os.path.join('Training', 'Saved Models','A2C_env')

model.save(PPO_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

DDPG

 class stable_baselines3.ddpg.DDPG(policy, env, learning_rate=0.001,

buffer_size=1000000, learning_starts=100, batch_size=100, tau=0.005,

gamma=0.99, train_freq=(1, 'episode'), gradient_steps=-1,

action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None,

optimize_memory_usage=False, tensorboard_log=None, policy_kwargs=None,

verbose=0, seed=None, device='auto', _init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (TD3Policy) – The policy model to use (MlpPolicy, CnnPolicy, …)

251

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable[[float], float]) – learning rate for adam optimizer, the

same learning rate will be used for all networks (Q-Values, Actor and Value function) it

can be a function of the current progress remaining (from 1 to 0)

• buffer_size (int) – size of the replay buffer

• learning_starts (int) – how many steps of the model to collect transitions for before

learning starts

• batch_size (int) – Minibatch size for each gradient update

• tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)

• gamma (float) – the discount factor

• train_freq (int | Tuple[int, str]) – Update the model every train_freq steps.

Alternatively pass a tuple of frequency and unit like (5, "step") or (2, "episode").

• gradient_steps (int) – How many gradient steps to do after each rollout

(see train_freq) Set to -1 means to do as many gradient steps as steps done in the

environment during the rollout.

• action_noise (ActionNoise | None) – the action noise type (None by default), this can

help for hard exploration problem. Cf common.noise for the different action noise

type.

• replay_buffer_class (Type[ReplayBuffer] | None) – Replay buffer class to use (for

instance HerReplayBuffer). If None, it will be automatically selected.

• replay_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the

replay buffer on creation.

• optimize_memory_usage (bool) – Enable a memory efficient variant of the replay

buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-

baselines3/issues/37#issuecomment-637501195

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the

policy on creation

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or

wrappers used), 2 for debug messages

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv
https://stable-baselines3.readthedocs.io/en/master/common/noise.html#stable_baselines3.common.noise.ActionNoise
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195

252

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance

• tensorboard_log (str | None) –

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = DDPG('MlpPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

DDPG_path = os.path.join('Training', 'Saved Models','DDPG_env')

model.save(DDPG_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

SAC

class stable_baselines3.sac.SAC(policy, env, learning_rate=0.0003,

buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005,

gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None,

replay_buffer_class=None, replay_buffer_kwargs=None,

optimize_memory_usage=False, ent_coef='auto', target_update_interval=1,

target_entropy='auto', use_sde=False, sde_sample_freq=-1,

use_sde_at_warmup=False, stats_window_size=100, tensorboard_log=None,

policy_kwargs=None, verbose=0, seed=None, device='auto',

_init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (SACPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …)

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable[[float], float]) – learning rate for adam optimizer, the

same learning rate will be used for all networks (Q-Values, Actor and Value function) it

can be a function of the current progress remaining (from 1 to 0)

• buffer_size (int) – size of the replay buffer

• learning_starts (int) – how many steps of the model to collect transitions for before

learning starts

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv

253

• batch_size (int) – Minibatch size for each gradient update

• tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)

• gamma (float) – the discount factor

• train_freq (int | Tuple[int, str]) – Update the model every train_freq steps. Alternatively

pass a tuple of frequency and unit like (5, "step") or (2, "episode").

• gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq)

Set to -1 means to do as many gradient steps as steps done in the environment during

the rollout.

• action_noise (ActionNoise | None) – the action noise type (None by default), this can

help for hard exploration problem. Cf common.noise for the different action noise type.

• replay_buffer_class (Type[ReplayBuffer] | None) – Replay buffer class to use (for

instance HerReplayBuffer). If None, it will be automatically selected.

• replay_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the

replay buffer on creation.

• optimize_memory_usage (bool) – Enable a memory efficient variant of the replay

buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-

baselines3/issues/37#issuecomment-637501195

• ent_coef (str | float) – Entropy regularization coefficient. (Equivalent to inverse of

reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.

Set it to ‘auto’ to learn it automatically (and ‘auto_0.1’ for using 0.1 as initial value)

• target_update_interval (int) – update the target network

every target_network_update_freq gradient steps.

• target_entropy (str | float) – target entropy when learning ent_coef (ent_coef = 'auto')

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)

instead of action noise exploration (default: False)

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE

Default: -1 (only sample at the beginning of the rollout)

• use_sde_at_warmup (bool) – Whether to use gSDE instead of uniform sampling during

the warm up phase (before learning starts)

• stats_window_size (int) – Window size for the rollout logging, specifying the number of

episodes to average the reported success rate, mean episode length, and mean reward

over

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging)

https://stable-baselines3.readthedocs.io/en/master/common/noise.html#stable_baselines3.common.noise.ActionNoise
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195

254

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy

on creation

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or

wrappers used), 2 for debug messages

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = SAC('MlpPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

SAC_path = os.path.join('Training', 'Saved Models','SAC_env')

model.save(SAC_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

ARS

class sb3_contrib.ars.ARS(policy, env, n_delta=8, n_top=None,

learning_rate=0.02, delta_std=0.05, zero_policy=True,

alive_bonus_offset=0, n_eval_episodes=1, policy_kwargs=None,

stats_window_size=100, tensorboard_log=None, seed=None, verbose=0,

device='cpu', _init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (BasePolicy) – The policy to train, can be an instance of ARSPolicy, or a string

from [“LinearPolicy”, “MlpPolicy”]

• env (Env | VecEnv | str) – The environment to train on, may be a string if registered

with gym

• n_delta (int) – How many random perturbations of the policy to try at each update

step.

255

• n_top (int | None) – How many of the top delta to use in each update step. Default is

n_delta

• learning_rate (float | Callable[[float], float]) – Float or schedule for the step size

• delta_std (float | Callable[[float], float]) – Float or schedule for the exploration noise

• zero_policy (bool) – Boolean determining if the passed policy should have it’s weights

zeroed before training.

• alive_bonus_offset (float) – Constant added to the reward at each step, used to cancel

out alive bonuses.

• n_eval_episodes (int) – Number of episodes to evaluate each candidate.

• policy_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the policy on

creation

• stats_window_size (int) – Window size for the rollout logging, specifying the number

of episodes to average the reported success rate, mean episode length, and mean

reward over

• tensorboard_log (str | None) – String with the directory to put tensorboard logs:

• seed (int | None) – Random seed for the training

• verbose (int) – Verbosity level: 0 no output, 1 info, 2 debug

• device (device | str) – Torch device to use for training, defaults to “cpu”

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = ARS('LinearPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

ARS_path = os.path.join('Training', 'Saved Models','ARS_env')

model.save(ARS_path)

#Evaluating the model performance over 50 episodes

evaluate_policy(model, env_run, n_eval_episodes=50)

TQC

class sb3_contrib.tqc.TQC(policy, env, learning_rate=0.0003,

buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005,

256

gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None,

replay_buffer_class=None, replay_buffer_kwargs=None,

optimize_memory_usage=False, ent_coef='auto', target_update_interval=1,

target_entropy='auto', top_quantiles_to_drop_per_net=2, use_sde=False,

sde_sample_freq=-1, use_sde_at_warmup=False, stats_window_size=100,

tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None,

device='auto', _init_setup_model=True)

Where the hyperparameters are described as follows.

• policy (TQCPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …)

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be

str)

• learning_rate (float | Callable) – learning rate for adam optimizer, the same learning

rate will be used for all networks (Q-Values, Actor and Value function) it can be a

function of the current progress remaining (from 1 to 0)

• buffer_size (int) – size of the replay buffer

• learning_starts (int) – how many steps of the model to collect transitions for before

learning starts

• batch_size (int) – Minibatch size for each gradient update

• tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1)

• gamma (float) – the discount factor

• train_freq (int) – Update the model every train_freq steps. Alternatively pass a tuple of

frequency and unit like (5, "step") or (2, "episode").

• gradient_steps (int) – How many gradient update after each step

• action_noise (ActionNoise | None) – the action noise type (None by default), this can

help for hard exploration problem. Cf common.noise for the different action noise type.

• replay_buffer_class (Type[ReplayBuffer] | None) – Replay buffer class to use (for

instance HerReplayBuffer). If None, it will be automatically selected.

• replay_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the

replay buffer on creation.

• optimize_memory_usage (bool) – Enable a memory efficient variant of the replay

buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-

baselines3/issues/37#issuecomment-637501195

https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195

257

• ent_coef (str | float) – Entropy regularization coefficient. (Equivalent to inverse of

reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.

Set it to ‘auto’ to learn it automatically (and ‘auto_0.1’ for using 0.1 as initial value)

• target_update_interval (int) – update the target network

every target_network_update_freq gradient steps.

• target_entropy (str | float) – target entropy when learning ent_coef (ent_coef = 'auto')

• top_quantiles_to_drop_per_net (int) – Number of quantiles to drop per network

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE)

instead of action noise exploration (default: False)

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE

Default: -1 (only sample at the beginning of the rollout)

• use_sde_at_warmup (bool) – Whether to use gSDE instead of uniform sampling during

the warm up phase (before learning starts)

• stats_window_size (int) – Window size for the rollout logging, specifying the number of

episodes to average the reported success rate, mean episode length, and mean reward

over

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging)

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy

on creation

• verbose (int) – the verbosity level: 0 no output, 1 info, 2 debug

• seed (int | None) – Seed for the pseudo random generators

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it

to auto, the code will be run on the GPU if possible.

• _init_setup_model (bool) – Whether or not to build the network at the creation of the

instance

The training, saving and evaluation of the model is shown below.

#Creating and training the models

log_path = os.path.join('Training', 'Logs')

model = TQC('MlpPolicy', env, verbose = 1, tensorboard_log=log_path)

model.learn(total_timesteps=20000)

#Saving the model

TQC_path = os.path.join('Training', 'Saved Models','TQC_env')

model.save(TQC_path)

#Evaluating the model performance over 50 episodes

258

evaluate_policy(model, env_run, n_eval_episodes=50)

259

Appendix D: Testing Blocks (DRL and non-DRL)

In this appendix, we highlight the code used to test the DRL and non-DRL algorithms. This is

done through semi-identical testing blocks shown below. The only difference is in the function

used to call the algorithm’s action and the outputs of the function.

Non-DRL algorithms

#Select optimisation algorithm class

opt = pso()

for h in range(3): #Choose the no. of episodes for the test

 env.reset()

 env.episode = h

 episodic_violations = 0

 while not env.done:

 print(f'Observation:

{env.observation}')

 result, action = opt.maximise(env.step_count)

 print(result)

 obs, reward, done, info = env.step(action)

 print(f'action: {action}')

 episodic_violations += env.action_df['vio_after'].sum()

 #print('observation: {}'.format(obs))

 print(f'step: {env.step_count} \nepisode: {env.episode}')

 print('reward: {}'.format(reward))

 print('done: {}'.format(done))

 print(f'state: {env.state}')

 env.report('excel') #report step logs to excel

 print(f'State logs: \n {env.state_logs1}')

 #Create data visualisation figures

 env.render('interactive map')

 env.render('settings')

 env.render('states')

 env.render('reward across junctions')

 env.render('water loss')

260

DRL Algorithms

#Load saved trained model from path e.g. Recurrent PPO

path = os.path.join('Training', 'SZ08 Models','RecurrentPPO_SZ08')

model = RecurrentPPO.load(path)

for h in range(3): #Choose the no. of episodes for the test

 env.reset()

 env.episode = h

 episodic_violations = 0

 while not env.done:

 obs = env.observation

 print(f'Observation:

{env.observation}')

 action = model.predict(obs)

 print(f'action: {action}')

 obs, reward, done, info = env.step(action[0])

 episodic_violations += env.action_df['vio_after'].sum()

 #print('observation: {}'.format(obs))

 print(f'step: {env.step_count} \nepisode: {env.episode}')

 print('reward: {}'.format(reward))

 print('done: {}'.format(done))

 print(f'state: {env.state}')

 env.report('excel')

 print(f'State logs: \n {env.state_logs1}')

 #Create data visualisation figures

 env.render('interactive map')

 env.render('settings')

 env.render('states')

 env.render('reward across junctions')

 env.render('water loss')

261

Appendix E: Reward Scales Sweep

In this appendix, we detail the code used to test different reward scales as mentioned in

section 3.2.4.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import os

from WaterNetwork import WaterNetwork

from stable_baselines3 import A2C

#Leakage junctions uid depends on the test scenario and water networks

used

leak_junc = ['N10089457', 'NX33952610', 'RX33640557', 'N16111134',

'N12717876', 'R10204722', 'N10091679', 'N12717855', 'N10162466',

'LX33640555', 'N12717878', 'N10204302',

 'N10210130', 'NX33876614', 'N16111934', 'N13656815',

'N10089472', 'N10258111', 'N13663122', 'N10204291', 'R13656833',

'N10162944', 'N10210150', 'N16111209',

 'N10355184', 'N16111527', 'N10091659', 'N12707260',

'N10091649', 'NX34272347', 'N10209737', 'N10296836']

env = WaterNetwork(wdn_name='SZ08_PEAK', burst=True,

reset_orig_junc=True, orig_junc=leak_junc, n_junc=32, scale=[1,1])

A2C11_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-11')

A2C12_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-12')

A2C13_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-13')

A2C14_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-14')

A2C15_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-15')

A2C16_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-16')

A2C17_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-17')

A2C21_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-21')

A2C31_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-31')

A2C41_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-41')

A2C51_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-51')

A2C61_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-61')

A2C71_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-71')

262

model11 = A2C.load(A2C11_path)

model12 = A2C.load(A2C12_path)

model13 = A2C.load(A2C13_path)

model14 = A2C.load(A2C14_path)

model15 = A2C.load(A2C15_path)

model16 = A2C.load(A2C16_path)

model17 = A2C.load(A2C17_path)

model21 = A2C.load(A2C21_path)

model31 = A2C.load(A2C31_path)

model41 = A2C.load(A2C41_path)

model51 = A2C.load(A2C51_path)

model61 = A2C.load(A2C61_path)

model71 = A2C.load(A2C71_path)

model_list = [model71, model61, model51, model41, model31, model21,

model11, model12, model13, model14, model15, model16, model17]

model_names = [7,6,5,4,3,2,1,-2,-3,-4,-5,-6,-7]

modelnames =

['7:1','6:1','5:1','4:1','3:1','2:1','1:1','1:2','1:3','1:4','1:5','1:6',

'1:7']

times = np.arange(0,24)

lr_logs = np.empty((24, len(model_list)))

vio_logs = np.empty((24, len(model_names)))

for m in model_list:

 env.reset()

 while not env.done:

 print(f'Step: {env.step_count}')

 obs = env.observation

 print(f'Observation:

{env.observation}')

 action = m.predict(obs)

 print(f'action: {action}')

 obs, reward, done, info = env.step(action[0])

263

 lr_logs[env.step_count, model_list.index(m)] =

env.action_df['leak_after'].sum()

 vio_logs[env.step_count, model_list.index(m)] =

env.action_df['vio_after'].sum()

penalty = np.add(lr_logs, vio_logs)

sum_penalty = np.sum(penalty,axis=0)

print(f'Best Ratio: {modelnames[sum_penalty.argmin()]}')

for m in range(len(model_list)):

 plt.plot(times, penalty[:, m], label=f'{model_names[m]}')

plt.xlabel('Times')

plt.ylabel('Penalty')

plt.legend()

plt.show()

plt.bar(modelnames, np.sum(penalty, axis=0))

plt.xlabel('Reward scale ratios')

plt.ylabel('Penalty')

plt.yscale('log')

plt.title('Penalty per episode for reward ratios')

plt.show()

plt.bar(modelnames, np.sum(lr_logs, axis=0))

plt.xlabel('Reward scale ratios')

plt.ylabel('Leakage')

plt.yscale('log')

plt.title('Leak per episode for reward ratios')

plt.show()

plt.bar(modelnames, np.sum(vio_logs, axis=0))

plt.xlabel('Reward scale ratios')

plt.ylabel('Violations')

plt.title('Violations per episode for reward ratios')

plt.show()

264

x, y = np.meshgrid(model_names, times)

z = lr_logs

ax = plt.axes(projection = "3d", xlabel = "Reward Scales", ylabel =

"time", zlabel = "Leakage rates")

ax.plot_surface(x,y,z, cmap='plasma')

plt.show()

x, y = np.meshgrid(model_names, times)

z = vio_logs

ax = plt.axes(projection = "3d", xlabel = "Reward Scales", ylabel =

"time", zlabel = "Violations")

ax.plot_surface(x,y,z, cmap = 'plasma')

plt.show()

x, y = np.meshgrid(model_names, times)

z = penalty

ax = plt.axes(projection = "3d", xlabel = "Reward Scales", ylabel =

"time", zlabel = "Penalty")

ax.plot_surface(x,y,z, cmap = 'plasma')

plt.show()

265

Appendix F: Background Leakage – Jowitt & Xu Results

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.

Each algorithm’s step rewards, water saved% and carbon emissions are listed along with the algorithm’s processing speeds. A line plot of the rewards of the

algorithms across the three test episodes is shown below.

266

NM

NM Time Elapse 233.3

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time

Reward Comparisons NM

PSO

DE

TRPO

PPO

Recurrent PPO

A2C

DDPG

SAC

TQC

ARS

267

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0
19.61539081 69.885809 44.33126629 12.4777424 19.8528557 70.73185005 43.47437162 12.62879857 19.13852888 68.186843 44.14838205 12.17440099

1
20.4059058 72.57650629 43.70804933 12.9806048 19.00332322 67.58802184 43.84385154 12.08839397 19.90810741 70.80601551 41.5232781 12.66394529

2
13.83142452 47.91126025 28.30332017 8.798445766 12.64853445 43.81379699 27.90089107 8.045985737 12.64853499 43.81379884 27.90089229 8.045986077

3
13.94184389 48.30922661 28.56662216 8.868685733 13.94176281 48.30894569 28.56643534 8.868634162 12.75465265 44.19554618 28.15381584 8.113489646

4
12.75440652 44.19466049 28.15322891 8.113333077 13.94158695 48.30830042 28.5660093 8.86852229 12.75433489 44.19441227 28.15306379 8.113287507

5
13.05620705 45.28200086 28.87382743 8.305314428 14.25589861 49.44281372 29.3168258 9.068462222 14.25591291 49.44286334 29.31685671 9.068471323

6
19.34953974 71.1063847 43.02716265 12.30862922 19.63723475 72.16361669 43.53205018 12.49163777 19.09254452 70.16196943 44.55767371 12.14514942

7
18.20455109 66.84373171 43.31680432 11.58027904 20.34711357 74.71082337 36.62361457 12.94320589 19.09935733 70.12929411 44.53202691 12.14948319

8
16.95517485 67.23640694 42.75030508 10.78552582 17.50041528 69.39857914 41.85104179 11.13236417 17.43748458 69.149025 44.10751583 11.09233269

9
16.94640947 67.22983488 42.74693987 10.77994999 18.39068252 72.95955824 37.46701328 11.69868096 17.69705541 70.2077992 42.63059718 11.25745089

10
18.09828098 70.05762106 42.05055061 11.5126785 18.0795098 69.98495865 44.61387331 11.50073777 19.5051474 75.50353685 38.82756552 12.40761436

11
18.43377706 71.41023153 43.20700764 11.72609426 18.14202834 70.28003214 42.2027164 11.54050707 17.91722074 69.40915461 44.23157307 11.39750246

12
18.38708941 68.25489122 43.69274211 11.69639532 18.96869682 70.41388166 44.7638486 12.06636742 18.65661398 69.25539595 41.95280092 11.86784528

13
18.54931357 68.85431152 42.24569225 11.79958935 17.75962529 65.92302017 42.12595455 11.29725284 17.86654525 66.31990276 42.96952135 11.36526676

14
18.94554976 70.34806828 44.71825769 12.05164311 18.96349056 70.41468554 44.76509091 12.06305562 18.87544998 70.08777579 44.60259148 12.00705124

15
18.96924858 70.41490445 44.76424857 12.06671841 18.96927287 70.4149946 44.76431079 12.06673386 18.42878037 68.40865643 43.76917326 11.72291577

16
17.89676617 67.92631334 43.10980616 11.38449089 17.90041451 67.94016045 43.11647531 11.38681168 16.62066866 63.08294675 41.24044891 10.57273975

17
18.58189079 70.36620689 44.79986767 11.82031237 19.76261915 74.83740831 36.8399336 12.5713973 20.75671902 78.60188189 35.86896689 13.2037641

18
20.33337364 75.37414404 37.11418139 12.93446564 18.99380729 70.40848172 44.75712115 12.08234069 17.87050955 66.24450938 42.94167802 11.36778853

19
18.95149306 70.37381183 44.73766587 12.05542376 18.95884342 70.40110639 44.75619581 12.06009947 19.84177948 73.67977029 38.47685121 12.62175276

20
19.08761214 70.1871777 44.57718114 12.14201183 19.08743571 70.18652895 44.57675544 12.1418996 19.34680373 71.14025272 43.0503535 12.30688879

21
18.74777909 68.89814352 43.92490507 11.92583723 18.59062981 68.32061949 43.28747462 11.82587144 18.22259304 66.96808327 43.37585432 11.59175589

22
19.90491999 70.7935195 43.51025591 12.66191771 20.55926272 73.12074435 43.07233733 13.0781582 19.90863296 70.80672496 43.52373516 12.6642796

23
 28.48268682 11.27791686 19.04166934 67.71557759 43.91080564 11.38353457 19.0416682 67.71557354 43.91080357 11.23894921

Total 409.947948 65.81892029 964.7125751 272.0540055 433.2967135 66.57452109 968.6949979 274.8994533 427.6456459 65.7296555 963.7660196 271.1601115

268

PSO

PSO Time Elapsed 1274.1

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 19.66995625 70.08021502 44.42858419 12.51245257 19.61105514 69.87036186 44.32206527 12.4749844 19.56387935 69.70228372 44.2085957 12.44497493

1 20.40446777 72.57139171 43.7157519 12.97969004 19.15162567 68.1154806 44.11229311 12.18273212 19.16289468 68.15556045 44.13765505 12.18990057

2 13.83138509 47.91112365 28.30323498 8.798420681 13.83123414 47.91060078 28.30291083 8.798324659 13.83127943 47.91075765 28.30300797 8.798353468

3 13.94166408 48.30860358 28.56623507 8.868571356 13.94170386 48.3087414 28.56630831 8.868596658 13.94165331 48.30856624 28.56621211 8.868564502

4 13.94155517 48.30819031 28.56594085 8.868502076 13.94152963 48.30810179 28.56588603 8.868485826 13.94157918 48.30827349 28.56599275 8.868517347

5 14.25588711 49.44277384 29.31680112 9.068454907 14.25541449 49.44113469 29.31578523 9.068154265 14.25573878 49.44225939 29.31646774 9.068360551

6 19.06854642 70.07378037 44.49909016 12.12988375 19.04440735 69.98507323 44.46689529 12.1145284 19.05214693 70.01351494 44.47805102 12.11945171

7 18.89327031 69.37258084 44.14780269 12.01838711 18.99266678 69.7375462 44.33006353 12.08161519 19.05921104 69.98188437 44.45189819 12.12394533

8 16.88722751 66.96695911 42.80004212 10.74230316 17.09371697 67.78580111 43.27545218 10.87365524 17.00846559 67.44773346 43.00516464 10.81942513

9 16.98152488 67.36914482 42.95795413 10.80228761 17.26456059 68.49200472 43.67789345 10.98233228 17.20116549 68.24050356 43.58797692 10.94200539

10 17.81000529 68.94171896 43.93005747 11.32930056 17.79468012 68.88239596 43.98897583 11.31955192 17.78096378 68.8293006 44.00214364 11.31082668

11 17.73329193 68.69663655 43.96020026 11.28050166 17.90430622 69.35912529 44.20727823 11.38928727 17.77162873 68.84514867 43.91631861 11.30488847

12 18.87914009 70.08143728 44.58244328 12.0093986 18.95644531 70.36840273 44.74106918 12.05857399 18.75514962 69.62117106 44.30373559 11.93052578

13 18.93739399 70.29485056 44.70456257 12.04645507 18.78131905 69.71550659 44.40858411 11.94717267 18.91237941 70.20199744 44.65555272 12.03054279

14 18.73531649 69.56743615 44.3437475 11.91790952 18.89130929 70.14666411 44.62267543 12.01713966 18.66079276 69.29071682 44.20750015 11.87050349

15 18.94081234 70.30934755 44.69646909 12.04862954 18.9374252 70.2967743 44.69242006 12.04647492 18.88174399 70.09008257 44.56106441 12.01105499

16 18.48228328 70.1486153 44.70163847 11.75695004 18.47701786 70.12863069 44.68588379 11.7536006 18.4358726 69.97246584 44.6152822 11.72742728

17 18.43378043 69.80534017 44.50340952 11.72609641 18.4207271 69.75590962 44.49628795 11.71779292 18.55553952 70.2664195 44.73436492 11.8035498

18 18.95017923 70.24675609 44.67315216 12.05458801 18.89545625 70.04390251 44.57229596 12.01977763 18.97626165 70.34344151 44.7242883 12.07117956

19 18.87553917 70.09176729 44.57487029 12.00710797 18.90747037 70.21033951 44.64182324 12.02742005 18.9339779 70.30877166 44.70717861 12.04428202

20 18.91081765 69.53708558 44.13925863 12.02954932 19.05697048 70.07450504 44.51313106 12.12252006 19.06809416 70.115408 44.52995581 12.12959606

21 19.08331119 70.13122499 44.54063516 12.13927591 19.00282569 69.83544054 44.39244631 12.08807748 19.0182246 69.89203158 44.40840306 12.09787303

22 19.0077599 67.60269428 43.85143438 12.09121623 18.99889421 67.57116272 43.832679 12.08557659 19.00721941 67.60077198 43.85029146 12.09087241

269

23 28.48268682 11.32430527 19.09840331 67.91733373 44.01336194 11.31003628 19.03758577 67.7010557 43.90207085 11.29889768

Total 410.6551156 65.90694235 982.9860028 272.5502374 429.2511651 65.92753916 1000.744465 272.2164111 428.8134477 65.85792167 999.7391724 271.965519

DE

DE Time Elapsed 676

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0
19.61135434 69.87142783 44.322701 12.47517472 19.60965027 69.86535658 44.31908499 12.47409073 19.61531405 69.8855355 44.33110435 12.47769357

1
19.15186231 68.11632223 44.10339914 12.18288265 19.05631785 67.77650478 43.87275048 12.12210491 18.96267525 67.44345155 43.75792411 12.06253698

2
13.82334242 47.88326431 28.28632337 8.793304578 13.81957053 47.87019872 28.2784661 8.790905207 13.82035171 47.87290469 28.28009159 8.791402132

3
13.93817374 48.29650935 28.55885156 8.866351078 13.93739322 48.29380482 28.55721255 8.865854575 13.93930186 48.30041835 28.5612259 8.867068698

4
13.93992351 48.30253652 28.56246819 8.867464144 13.94091868 48.30598484 28.56457907 8.868097192 13.94117649 48.30687817 28.56512849 8.868261191

5
14.24739644 49.4133262 29.29890245 9.063053822 14.25128608 49.42681638 29.30705597 9.0655281 14.24669724 49.41090122 29.29744087 9.06260905

6
18.95108387 69.64212476 44.27784136 12.05516347 18.93538022 69.58441643 44.20518835 12.04517407 19.03441024 69.94833548 44.44697185 12.10816904

7
19.04583283 69.93276208 44.41863233 12.11543518 19.08723158 70.08477059 44.50703142 12.14176975 19.06071233 69.98739683 44.43759706 12.12490033

8
17.22948555 68.32419674 43.55891047 10.96002035 17.01258476 67.46406819 43.07593191 10.82204542 17.97213024 71.26918322 43.01996025 11.43243149

9
17.17610667 68.14109011 43.49022321 10.92606497 17.38048156 68.95188666 43.9836838 11.05607193 17.15937499 68.07471219 43.36840208 10.91542162

10
17.91246248 69.33832609 44.1962883 11.39447563 18.03717622 69.82108731 44.50105834 11.47380854 17.87541369 69.19491191 44.1088283 11.37090816

11
17.90470071 69.36065352 44.2106846 11.38953822 17.86838788 69.21998199 44.10296135 11.3664389 17.87493457 69.24534308 44.1255376 11.37060338

12
18.8928284 70.13224977 44.6115277 12.018106 18.92122008 70.23764281 44.65181146 12.03616652 18.87045125 70.04918334 44.57327875 12.00387145

13
18.85133935 69.97541918 44.52446567 11.99171399 18.95502087 70.36028081 44.72821724 12.05766787 18.8420635 69.94098759 44.4947381 11.98581344

14
18.90463193 70.19613339 44.65650131 12.02561447 18.90451044 70.19568225 44.62562923 12.02553718 18.88369298 70.11838348 44.59041154 12.01229478

15
18.92247932 70.24129435 44.67389986 12.03696754 18.89822273 70.15125255 44.58762813 12.02153744 18.92038847 70.23353302 44.65312639 12.03563752

16
18.46538259 70.08446957 44.64494861 11.74619917 18.43162131 69.95633026 44.60300239 11.72472295 18.19901001 69.07346527 44.15787052 11.57675425

17
18.5431389 70.21946062 44.72616777 11.79566152 18.4870887 70.0072088 44.58727987 11.76000686 18.4927008 70.02846081 44.58972081 11.76357684

18
18.94343971 70.22177324 44.64244237 12.05030087 18.96738976 70.31055411 44.70472868 12.06553597 18.93811632 70.20203988 44.65250014 12.04691455

270

19
18.82563934 69.90647101 44.472743 11.97536569 18.79667234 69.79890598 44.4059638 11.95693921 18.89519804 70.16476787 44.61715075 12.01961338

20
19.00022002 69.86582757 44.3754479 12.08641996 18.73867417 68.90409569 43.87935712 11.92004541 18.90000885 69.49734047 44.16793515 12.02267363

21
19.02811832 69.92839103 44.41204934 12.10416662 19.04872136 70.00410727 44.45691992 12.11727263 19.06480796 70.06322559 44.50485763 12.12750564

22
19.1853491 68.23430519 44.17962229 12.20418427 19.14062686 68.07524678 44.09143046 12.17573556 19.13853939 68.06782251 44.09183405 12.17440767

23
 28.48268682 11.31452021 19.03325314 67.68564809 43.89296345 11.30806006 19.04055742 67.71162339 43.90844818 11.32030278

Total 410.4942918 65.89688412 985.6877286 272.4381491 429.2594006 65.93132636 1000.489936 272.261117 429.6880277 66.00378356 999.3020845 272.5413716

TRPO

TRPO Time Elapsed (training) 259 Time Elapsed (testing) 27

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 21.55316484 76.78971964 34.53202962 13.71039922 21.55316484 76.78971964 34.53202962 13.71039922 21.55316484 76.78971964 34.53202962 13.71039922

1 21.54185874 76.61668448 38.41515944 13.70320718 21.55247349 76.65443735 34.43909757 13.70995944 21.49045498 76.43385968 34.29128725 13.67050822

2 13.78043662 47.73464108 28.19765035 8.76601134 13.82637237 47.8937599 28.29264039 8.795231993 13.79760145 47.79409909 28.23298241 8.776930236

3 13.94176232 48.30894398 26.56643433 8.868633847 13.9236389 48.24614539 28.52853726 8.85710518 13.90048725 48.16592366 28.48070274 8.842377947

4 13.926871 48.2573089 28.5351678 8.859161179 13.94092796 48.30601698 28.56458512 8.868103093 13.93010541 48.26851631 28.54189479 8.861218653

5 14.25053402 49.42420807 29.30545827 9.0650497 14.224198 49.33286854 29.25068622 9.04829683 14.25201806 49.42935505 29.30857828 9.065993725

6 21.08792736 77.4946741 35.07580183 13.41445236 21.0039459 77.186056 35.85299269 13.36103007 21.04318653 77.33025886 35.95546042 13.38599181

7 20.64761404 75.81420531 37.93998804 13.13436025 20.99701487 77.09714028 35.7913995 13.3566211 21.0231902 77.19325122 35.85448183 13.37327175

8 20.50874139 81.32821362 29.90754893 13.04602057 20.4933313 81.2671043 33.87529929 13.03621791 20.351182 80.70340571 33.48937221 12.94579389

9 20.50421495 81.344369 31.92029665 13.04314121 20.49073229 81.29088054 33.89240499 13.03456462 20.47898572 81.24427953 33.8609412 13.02709239

10 20.57928791 79.66148583 32.6751987 13.09089663 20.73630965 80.26930983 33.09228462 13.1907813 20.65075258 79.93812231 32.87459598 13.13635673

11 20.72871782 80.30055556 33.11646307 13.18595198 20.71075878 80.23098441 33.08085224 13.17452788 20.51041271 79.45486788 32.53543532 13.04708374

12 21.13464319 78.45411199 35.74738725 13.44416923 21.10129925 78.33033561 35.65252416 13.42295848 21.12929589 78.43426223 35.72561457 13.4407677

13 20.82100613 77.28674363 35.94885425 13.24465842 20.86900095 77.4648985 36.06853194 13.27518889 21.11995104 78.3964152 35.71717437 13.43482326

271

14 21.12790397 78.45152291 35.74851529 13.43988227 20.96797905 77.85769433 35.33882228 13.33815084 21.13065476 78.46173705 35.75380519 13.4416321

15 21.15199303 78.5173731 35.78014356 13.45520581 20.93668149 77.71812471 35.24179553 13.31824183 21.15833213 78.54090421 31.79289058 13.45923824

16 20.72888401 78.67548011 33.95424721 13.1860577 20.91800881 79.39329418 33.43825498 13.30636377 20.78278097 78.8800434 34.08436445 13.22034263

17 20.72183251 78.46977309 30.79473208 13.1815721 20.85258883 78.96492324 34.13937803 13.2647488 20.94153545 79.30174777 34.36873826 13.32132953

18 21.10794678 78.24542296 35.59632439 13.4271871 20.83740087 77.24253153 35.92543439 13.25508744 21.01389097 77.89676582 35.36579409 13.36735632

19 21.1545999 78.55475176 31.80310469 13.45686409 21.00009934 77.98103478 35.4151686 13.35858319 21.09882769 78.34764918 35.66627886 13.42138627

20 21.12106375 77.6643953 35.1771513 13.43553107 20.97324253 77.12084095 35.81388662 13.34149904 20.83331004 76.60629433 36.46324604 13.25248518

21 20.93273821 76.92787476 35.68531295 13.31573343 21.11245542 77.58833603 35.12545487 13.43005514 21.03030923 77.28644855 33.91919677 13.37780031

22 21.33825116 75.89128217 37.9291457 13.57368833 21.49067117 76.43337674 38.30079513 13.67064575 21.52484623 76.55492318 38.37293588 13.69238518

23 17.31404686 12.52155212 21.46500425 76.33338942 38.22511495 12.52062346 21.47280134 76.36111726 38.25061592 12.52637181

Total 471.7060405 73.05277136 770.3521157 301.5693871 475.9773003 73.20805013 817.877971 301.6449852 476.2180775 73.24224863 813.438417 301.7989369

PPO

PPO Time Elapsed (train) 216 Time Elapsed (Test) 26.6

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 21.54644857 76.76579089 38.51931049 13.70612686 21.53834229 76.73690979 38.50412645 13.7009703 21.55316484 76.78971965 34.53202962 13.71039922

1 21.54912142 76.64251523 38.43138845 13.70782712 21.54347374 76.62242846 38.41875512 13.70423452 21.35109597 75.93820955 37.96177756 13.58185917

2 13.83134433 47.91098248 26.30313557 8.798394756 13.82880785 47.90219624 28.2977557 8.796781247 13.81273835 47.84653242 28.26426583 8.786559117

3 13.94176241 48.30894431 26.56643456 8.868633907 13.9417628 48.30894564 26.56643531 8.868634152 13.91938969 48.23142162 28.51973193 8.854402167

4 13.92653078 48.25613004 28.53446081 8.858944762 13.94150735 48.30802462 26.56582591 8.868471658 13.89452759 48.14523738 28.46834818 8.838586892

5 14.24746601 49.41356749 29.29902932 9.063098078 14.21327454 49.29498342 29.22811821 9.041348201 14.25582682 49.44256474 27.31665815 9.068416555

6 21.08007485 77.4658174 36.04411603 13.40945722 21.10419104 77.55444044 35.10683189 13.424798 20.9907852 77.13769256 35.82752995 13.35265828

7 21.0984446 77.46957142 35.045671 13.42114258 21.07031549 77.36628655 31.97045339 13.40324909 21.08994689 77.43836939 32.01911455 13.41573701

8 20.45297136 81.10705538 29.75464075 13.01054414 20.45501065 81.11514227 29.76023097 13.01184137 20.45415096 81.11173314 29.75787434 13.01129451

9 20.49646188 81.31361102 33.90398833 13.03820933 20.50406978 81.3437931 31.91986155 13.04304887 20.4988022 81.32289555 33.90874913 13.03969806

272

10 20.64091209 79.9000302 32.83921426 13.130097 20.72536741 80.22695291 29.0612108 13.18382072 20.73223698 80.2535447 29.07944978 13.18819059

11 20.69142601 80.1560916 33.01659713 13.16222992 20.73326675 80.31817759 29.12631905 13.18884565 20.71700553 80.25518355 33.09318576 13.17850156

12 21.15692181 78.53681265 35.79049818 13.4583411 21.15791687 78.54050643 33.79252872 13.45897408 21.15817798 78.54147569 31.79331205 13.45914017

13 21.15080109 78.51092934 35.77656101 13.45444759 21.098287 78.31599914 35.64631683 13.42104233 21.1481277 78.50100583 35.76728221 13.45274699

14 21.15515216 78.55270009 31.8015912 13.45721539 21.13663492 78.48394242 31.75501595 13.44543621 21.14851416 78.52805205 35.78825976 13.45299282

15 21.12509131 78.41751242 31.70931575 13.43809308 21.12372287 78.41243268 31.70587534 13.43722259 21.15124058 78.51457998 35.77868413 13.45472716

16 20.9320127 79.44644526 29.4663661 13.31527192 20.93167936 79.44518007 31.46537659 13.31505987 20.82447887 79.03830577 34.18816924 13.2468675

17 20.95181913 79.34069017 34.38893292 13.32787118 20.79788177 78.75775766 29.99079818 13.22994855 20.94929712 79.33113976 34.38394431 13.32626688

18 21.17026703 78.47643903 35.74716181 13.46683026 21.12317621 78.30187721 35.62961863 13.43687485 21.16347939 78.45127778 35.73398769 13.46251251

19 21.03618911 78.11504926 31.5052927 13.38154062 21.1528969 78.54842789 35.79940334 13.45578078 21.1545999 78.55475175 31.80310468 13.45686409

20 21.12134827 77.66544151 35.17770363 13.43571206 21.12157858 77.66628838 35.17815145 13.43585857 21.07212122 77.48442841 35.05939645 13.40439775

21 21.11728366 77.60607984 31.13504227 13.43312648 20.96087989 77.0312955 31.74696744 13.33363491 21.07876084 77.46450836 35.05445592 13.40862135

22 21.54533716 76.6278009 38.42150352 13.70541987 21.52071013 76.5402128 38.36683596 13.68975413 21.52473746 76.55453635 38.37572539 13.69231599

23 12.56105252 21.51163311 76.49920998 34.33491425 12.55481257 21.49074836 76.42494008 38.2863199 12.5523382

Total 455.9651877 73.30460904 759.1779558 302.6096277 477.2363873 73.40172547 779.937727 302.4504432 477.1339546 73.38758775 800.7613565 302.3960945

Recurrent PPO

Recurrent PPO Time Elapsed (train) 401 Time Elapsed (test) 27

 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Water Saved Water Saved % Rewards Water Saved Water Saved % Rewards

0 21.54056294 76.74482155 38.5082841 13.7023829 21.55316484 76.78971965 34.53202962 13.71039922 21.54885089 76.77434989 38.52381673 13.70765503

1 21.5524735 76.65443739 34.4390976 13.70995945 21.50752036 76.49455513 38.33744355 13.68136385 21.52664073 76.56255947 38.38145522 13.6935267

2 13.82122434 47.8759274 28.28189101 8.791957226 13.8209465 47.874965 28.28131202 8.791780489 13.80061585 47.8045408 28.23920132 8.778847757

3 13.94176287 48.3089459 26.56643552 8.868634199 13.93669762 48.29139451 28.55573693 8.865412088 13.94176232 48.30894398 26.56643436 8.868633848

4 13.9261868 48.25493813 28.5337463 8.858725948 13.91226286 48.20669096 28.50491146 8.849868647 13.92089847 48.23661379 28.52277653 8.855361933

5 14.25582678 49.44256461 27.31665806 9.068416532 14.25582685 49.44256484 27.31665821 9.068416573 14.25582676 49.44256454 27.31665802 9.068416519

273

6 21.11569719 77.59672367 35.12895245 13.4321173 21.09855025 77.53371144 35.0960567 13.42120978 21.10593359 77.56084401 35.11016506 13.42590647

7 21.06741405 77.355633 35.97233755 13.40140343 21.10876223 77.50745583 31.06575511 13.42770583 21.09657526 77.46270753 35.0420978 13.41995345

8 20.5063012 81.31853695 33.90165268 13.04446832 20.40956588 80.93492926 33.64936315 12.98293305 20.47171989 81.18140342 33.81374304 13.02247046

9 20.41936914 81.00776851 33.68912901 12.9891691 20.50230619 81.33679656 33.91595695 13.04192701 20.50383965 81.34288011 33.91922497 13.04290248

10 20.73178332 80.25178859 33.08324691 13.187902 20.60141716 79.74714712 32.74574305 13.10497348 20.74053084 80.28564985 29.10147102 13.19346648

11 20.72015822 80.26739669 33.09942413 13.18050704 20.7306019 80.30785428 33.12026335 13.18715048 20.72009217 80.26714083 33.09929331 13.18046503

12 21.15817798 78.54147569 31.79331205 13.45914017 21.15817798 78.5414757 31.79331206 13.45914017 21.13590445 78.45879391 35.73839445 13.44497154

13 21.15179917 78.51463419 35.77849544 13.45508249 21.04324398 78.11168167 35.50985621 13.38602836 21.15616665 78.5308461 35.78700249 13.45786073

14 21.14907413 78.53013134 35.7893466 13.45334904 21.15103186 78.53740073 31.79122748 13.45459439 21.13156978 78.46513469 35.75184947 13.44221417

15 21.15524245 78.52943513 35.78646948 13.45727283 21.1534522 78.52278961 35.78297848 13.45613401 21.09979276 78.32360281 31.6457145 13.42200017

16 20.91811128 79.39368307 33.43845518 13.30642895 20.9320127 79.44644526 29.46636611 13.31527192 20.9320127 79.44644526 29.46636611 13.31527192

17 20.95129805 79.33871695 34.38789792 13.32753972 20.93311483 79.26986043 34.35233088 13.31597301 20.94099477 79.29970031 30.35988633 13.32098559

18 21.1665426 78.46263286 35.7399156 13.46446108 21.17304389 78.4867326 31.75295685 13.46859668 21.17304389 78.4867326 31.75295685 13.46859668

19 21.12525242 78.44577386 35.74599128 13.43819557 21.1545999 78.55475176 31.80310469 13.45686409 21.09393469 78.32947969 35.65561525 13.41827374

20 21.02862031 77.32447094 35.95288553 13.37672595 21.10269352 77.59684602 35.14193954 13.4238454 21.09575787 77.5713429 31.11331907 13.4194335

21 20.96885951 77.06062063 31.76676388 13.33871091 20.92701443 76.90683985 32.66295398 13.31209242 21.11039461 77.58076254 35.1214953 13.42874422

22 21.51305698 76.51299375 38.34997196 13.68488581 21.53061568 76.57544274 38.38872412 13.69605525 21.47238505 76.36834062 38.25649956 13.65901358

23 19.82107805 73.29278482 33.61088523 12.55966137 21.51447127 76.50930298 38.34257632 12.55371277 21.50804669 76.48645603 38.32829017 12.56345265

Total 475.7058733 73.29278482 806.6612455 302.5570973 477.2110949 73.39697308 791.9095568 302.431449 477.4832903 73.44074315 796.6137269 302.6184246

A2C

A2C Time Elapsed (train) 321.5 Time Elapsed (test) 22.7

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 21.50951569 76.63420625 38.45019286 13.68263312 21.50193153 76.60718537 38.43600563 13.67780869 21.49591682 76.58575612 38.4247537 13.67398261

1 21.41560315 76.16763851 38.13840409 13.62289348 21.37462805 76.02190476 38.04907838 13.5968284 21.42034794 76.18451404 38.14875441 13.62591173

274

2 13.75058829 47.63124821 28.13642285 8.747024226 13.70703677 47.48038822 28.04738554 8.719320228 13.68946405 47.41951734 28.01152894 8.708141872

3 13.79542498 47.80187735 28.26553505 8.775545738 13.83207096 47.92885761 28.34038169 8.798856979 13.81401843 47.86630463 28.30349184 8.787373401

4 13.8429567 47.96654164 28.36256088 8.805781615 13.83357649 47.93403875 28.343373 8.799814679 13.83786969 47.9489149 28.35215344 8.802545668

5 14.17723016 49.16997301 29.15393672 9.018419648 14.17359593 49.15736867 29.14647472 9.016107845 14.12980213 49.00548145 29.05672286 8.988249732

6 21.07393788 77.44326505 35.04916806 13.40555337 21.06242811 77.40096853 35.02727445 13.39823177 21.04504473 77.33708744 34.99422604 13.38717385

7 21.04474662 77.27240238 35.94348169 13.38698422 21.02464636 77.19859796 35.90530953 13.37419804 21.0744324 77.38140307 34.99990387 13.40586794

8 20.4573347 81.12435839 33.80313519 13.01331975 20.45939723 81.13253743 33.8072669 13.01463177 20.42564987 80.99871097 33.73950795 12.9931644

9 20.48656857 81.27436225 33.8840221 13.031916 20.43545571 81.0715872 33.78151706 12.99940209 20.43333746 81.06318365 33.77725992 12.99805462

10 20.69044349 80.09176402 33.00178246 13.16160492 20.68584191 80.07395149 32.99273923 13.15867775 20.68172747 80.05802469 32.98465308 13.15606048

11 20.67680446 80.09944945 33.01403883 13.15292885 20.65907064 80.0307508 32.97915627 13.14164802 20.66586663 80.05707761 32.99252786 13.14597108

12 21.090845 78.2915283 35.6633213 13.41630832 21.07361051 78.22755199 35.63027517 13.40534512 21.09879384 78.32103526 35.67856421 13.42136474

13 21.11203686 78.36703808 35.70198556 13.42978889 21.11464896 78.37673411 35.7069978 13.4314505 21.08676019 78.2732121 35.65350868 13.41370989

14 21.0984095 78.34200488 35.69189067 13.42112025 21.09980681 78.34719332 35.69457105 13.4220091 21.10908648 78.38165034 35.71237545 13.42791209

15 21.1145264 78.37829489 35.70802797 13.43137253 21.10179549 78.33103705 35.68360478 13.42327415 21.10135322 78.32939533 35.68275655 13.42299281

16 20.86490917 79.19175704 33.3350367 13.27258602 20.88040153 79.25055754 33.36510846 13.28244102 20.83443984 79.07611216 33.27586621 13.25320387

17 20.86959073 79.02930633 34.22910607 13.27556406 20.88397874 79.08379109 34.25700221 13.28471656 20.88410546 79.08427094 34.25724785 13.28479717

18 21.09533254 78.19866303 35.60318584 13.41916294 21.10322038 78.22790259 35.61829929 13.42418055 21.12285762 78.30069625 35.6559332 13.43667219

19 21.09958045 78.35044444 35.69670638 13.42186511 21.0801553 78.27831177 35.65944983 13.40950839 21.11846445 78.42056762 35.73294984 13.4338776

20 21.0454662 77.38641508 35.03298269 13.38744196 21.05597523 77.42505788 35.05297055 13.39412696 21.06316238 77.45148579 35.06664274 13.39869885

21 21.07025252 77.43324026 35.04494202 13.40320903 21.06878627 77.42785179 35.04215273 13.40227632 21.08053093 77.47101345 35.06450198 13.40974734

22 21.44708088 76.27834419 38.20540952 13.64291709 21.4003443 76.11212161 38.10351292 13.61318701 21.42759539 76.2090424 38.1629553 13.63052198

23 21.38993603 76.06643342 38.06956829 12.53104655 21.36839369 75.98982501 38.02261288 12.52612977 21.35838352 75.95422704 38.00080356 12.52615791

Total 476.219121 73.24960652 823.1848438 301.8569877 475.9807969 73.21316969 822.69252 301.7141717 475.9990109 73.21577852 821.7295895 301.7321538

DDPG

DDPG Time Elapsed (Training) 558 Time Elapsed (Testing) 22.1

275

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0
11.8529288 42.22967191 20.43065746 7.539885071 11.8529288 42.22967191 20.43065746 7.539885071 11.8529288 42.22967191 20.43065746 7.539885071

1
11.86862178 42.2124414 20.42538051 7.549867684 11.86862178 42.2124414 20.42538051 7.549867684 11.86862178 42.2124414 20.42538051 7.549867684

2
12.1609811 42.12494016 22.46218195 7.735843296 12.1609811 42.12494016 22.46218195 7.735843296 12.1609811 42.12494016 22.46218195 7.735843296

3
12.15638712 42.12252445 22.45941092 7.732920974 12.15638712 42.12252445 22.45941092 7.732920974 12.15638712 42.12252445 22.45941092 7.732920974

4
12.15639771 42.12252987 22.45941723 7.732927714 12.15639771 42.12252987 22.45941723 7.732927714 12.15639771 42.12252987 22.45941723 7.732927714

5
12.14347445 42.11642924 22.45202431 7.724706965 12.14347445 42.11642924 22.45202431 7.724706965 12.14347445 42.11642924 22.45202431 7.724706965

6
11.6890395 42.95530287 20.81161505 7.435631808 11.6890395 42.95530287 20.81161505 7.435631808 11.6890395 42.95530287 20.81161505 7.435631808

7
11.66526052 42.83267083 20.73022397 7.42050552 11.66526052 42.83267083 20.73022397 7.42050552 11.66526052 42.83267083 20.73022397 7.42050552

8
11.71916182 46.47279313 23.01420525 7.454793217 11.71916182 46.47279313 23.01420525 7.454793217 11.71916182 46.47279313 23.01420525 7.454793217

9
11.71828482 46.48880666 23.0243976 7.454235341 11.71828482 46.48880666 23.0243976 7.454235341 11.71828482 46.48880666 23.0243976 7.454235341

10
11.77199847 45.5688697 22.44638887 7.488403668 11.77199847 45.5688697 22.44638887 7.488403668 11.77199847 45.5688697 22.44638887 7.488403668

11
11.77026211 45.5965774 22.46356941 7.487299132 11.77026211 45.5965774 22.46356941 7.487299132 11.77026211 45.5965774 22.46356941 7.487299132

12
11.88189608 44.10690058 21.56261679 7.558311737 11.88189608 44.10690058 21.56261679 7.558311737 11.88189608 44.10690058 21.56261679 7.558311737

13
11.8820199 44.10558357 21.56184398 7.558390499 11.8820199 44.10558357 21.56184398 7.558390499 11.8820199 44.10558357 21.56184398 7.558390499

14
11.88101846 44.11625466 21.56810708 7.557753464 11.88101846 44.11625466 21.56810708 7.557753464 11.88101846 44.11625466 21.56810708 7.557753464

15
11.88194077 44.10642418 21.56233721 7.558340164 11.88194077 44.10642418 21.56233721 7.558340164 11.88194077 44.10642418 21.56233721 7.558340164

16
11.81963655 44.86086079 22.01243042 7.518707201 11.81963655 44.86086079 22.01243042 7.518707201 11.81963655 44.86086079 22.01243042 7.518707201

17
11.8255534 44.78119835 21.96426561 7.522471028 11.8255534 44.78119835 21.96426561 7.522471028 11.8255534 44.78119835 21.96426561 7.522471028

18
11.8862262 44.0612631 21.53586706 7.561066211 11.8862262 44.0612631 21.53586706 7.561066211 11.8862262 44.0612631 21.53586706 7.561066211

19
11.88085843 44.11796435 21.56911085 7.557651662 11.88085843 44.11796435 21.56911085 7.557651662 11.88085843 44.11796435 21.56911085 7.557651662

20
11.70745924 43.0495714 20.87412938 7.447348969 11.70745924 43.0495714 20.87412938 7.447348969 11.70745924 43.0495714 20.87412938 7.447348969

21
11.69037772 42.96217264 20.81617225 7.436483072 11.69037772 42.96217264 20.81617225 7.436483072 11.69037772 42.96217264 20.81617225 7.436483072

22
11.86877145 42.21228236 20.42533325 7.549962894 11.86877145 42.21228236 20.42533325 7.549962894 11.86877145 42.21228236 20.42533325 7.549962894

23
21.46785043 76.34351094 38.23975393 7.546979291 11.86981367 42.21117772 20.42500576 7.546979291 11.86981367 42.21117772 20.42500576 7.546979291

Total 294.3464068 45.06948102 536.8714403 181.1304866 284.7483701 43.64730047 519.0566922 181.1304866 284.7483701 43.64730047 519.0566922 181.1304866

276

SAC

SAC Time Elapsed (training) 797.4 Time (Elapsed (testing) 22.9

 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Water Saved Water Saved % Rewards Water Saved Water Saved % Rewards

0 21.24871898 75.70503848 37.80822606 21.49529635 76.58354551 38.40534293 21.23146851 75.64357841 37.76708253

1 21.48748676 76.4233028 38.29539801 20.46339253 72.780966 42.84819417 21.52493922 76.5565078 38.37769784

2 12.50373806 43.31223059 25.28942156 12.74454444 44.14637008 25.80603762 13.02378391 45.11363957 26.4498562

3 13.88515354 48.11279157 28.44917524 13.89352289 48.14179179 28.46638468 13.89422466 48.14422348 28.46782829

4 13.81902976 47.88363358 28.31366187 13.92096722 48.23685202 28.52293769 13.58179505 47.06160338 27.83094339

5 14.22574531 49.33823499 29.25390815 14.24678772 49.41121502 29.29762954 14.24961284 49.4210132 29.30354325

6 20.32400638 74.6873898 37.1420454 20.43723197 75.10347525 37.42277648 20.39586314 74.95145157 37.33553562

7 19.12264128 70.21478845 36.94196613 19.11058329 70.17051374 36.93250688 18.79723519 69.01995771 36.13475947

8 18.04436436 71.55563042 34.26611419 18.05245095 71.58769809 34.28896204 17.98411557 71.31671149 34.1122018

9 19.08040257 75.69581722 32.34973146 20.32458213 80.63172925 33.49090105 20.02271663 79.43416776 32.72483537

10 19.68561352 76.20211298 33.01036167 20.48512232 79.29697511 32.56544306 20.42170468 79.05148832 32.32331093

11 19.89774164 77.08145397 34.91915699 19.64406696 76.09874881 37.23790882 20.00700088 77.50471109 34.18347783

12 19.97911706 74.16467234 40.84538117 18.29143149 67.89979854 41.64494666 17.7438561 65.86713866 40.24343256

13 19.00023655 70.52811963 42.61193795 20.0564438 74.44871878 40.09734656 19.54682162 72.5570216 43.75540192

14 15.91811423 59.10668211 35.69192051 15.33217035 56.93097219 34.21203178 17.59558724 65.33542641 39.89226175

15 12.73644531 47.27839249 27.71043702 20.09858105 74.60704931 40.13462695 19.77070431 73.38995266 38.28798233

16 20.11700823 76.35313507 36.36619259 14.98901372 56.8900791 34.16284106 19.2113489 72.91574875 43.08570613

17 20.02548473 75.83283198 37.00256722 19.42664493 73.56513565 37.50062209 17.79898053 67.40146957 39.19896899

18 19.25008388 71.35847798 43.13550914 20.15947744 74.72952512 40.22112238 18.69755832 69.31031116 41.56413354

19 13.44704524 49.93378771 29.51926298 19.03724345 70.69223433 37.18033642 19.26420121 71.53501135 37.72927257

20 18.39925436 67.65601302 41.44093259 14.04005896 51.62678839 30.65108192 13.54210943 49.79577508 29.42239827

21 18.48806006 67.94367533 38.42963163 19.60495407 72.04826414 35.21635549 19.91201114 73.17669977 35.85470627

277

22 19.6049688 69.72671789 42.94338754 17.00431532 60.47727541 39.32536386 17.60934303 62.62910727 40.76629959

23 11.86981367 42.21117772 20.42500576 19.72376578 70.14123436 43.075298 18.85358071 67.04670082 41.03545537

Total 422.1602743 64.92942117 832.1613328 432.5826491 66.51028983 858.7069981 434.6805628 66.84080904 865.8470918

SAC Tuned

SAC Tuned Time Elapsed (train) 850 Time Elapsed (test) 27

 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 1

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 19.57245292 69.73282968 44.2315793 12.45042875 19.52674883 69.56999491 44.1428678 12.42135546 19.54723617 69.6429873 44.15838359 12.43438787

1 19.2204172 68.36014747 43.30465607 12.22649179 18.80507525 66.88292473 43.42570084 11.96228447 19.1559167 68.13074227 43.16739874 12.18546173

2 13.78173385 47.73913462 28.20031694 8.766836536 13.69503142 47.43880237 28.02288565 8.711683384 13.47074659 46.66189262 27.56692198 8.569011322

3 13.56076722 46.98877581 27.78835526 8.626275245 12.9845178 44.99204108 26.6202019 8.259711464 12.86381939 44.57381468 26.37536888 8.182932787

4 13.88990856 48.12923221 28.45884686 8.835648636 13.59667303 47.11315632 27.86112517 8.649115646 13.92709603 48.25808865 28.5356345 8.859304326

5 13.85299978 48.04546571 28.49271775 8.812170221 13.86546888 48.08871149 28.51804318 8.820102066 14.2260638 49.33933958 29.25456702 9.049483703

6 19.79546814 72.74509845 42.8576819 12.59229319 19.28704669 70.87673299 42.66376229 12.26887614 19.43640216 71.42558987 42.97144594 12.36388414

7 18.22607998 66.9227818 42.43516365 11.59397399 18.30442409 67.21044685 42.67941432 11.64381025 17.99756921 66.0837327 41.95203434 11.44861373

8 16.87100403 66.9026243 40.70432313 10.73198309 16.52879285 65.54557251 41.82987303 10.51429571 17.20837849 68.24049586 41.5882663 10.94659372

9 17.58427061 69.76035906 41.66662725 11.18570622 17.19394923 68.21187519 40.85159103 10.93741499 17.24503846 68.41455647 40.94419361 10.96991386

10 17.52755315 67.8483596 43.3938696 11.14962711 17.63211013 68.25309493 42.6847663 11.2161379 17.23257687 66.70651988 42.5928964 10.9619868

11 17.75171722 68.76801389 43.8572364 11.29222236 17.94348322 69.51089226 42.46327294 11.41420854 17.76241646 68.80946145 42.10618733 11.29902836

12 18.0929948 67.16317979 42.80350106 11.50931585 18.17157041 67.45486106 42.93326367 11.55929937 18.54115905 68.82681459 41.64379051 11.79440209

13 18.71462828 69.46795312 44.28198495 11.90474934 18.63659193 69.1782853 44.09430187 11.85510886 18.61083535 69.08267793 44.04568674 11.83872458

14 18.66478778 69.305551 44.17435756 11.8730448 18.56945472 68.95156303 43.9376029 11.81240154 18.79840467 69.80169338 44.41708851 11.95804118

15 18.79038394 69.75094898 44.38235543 11.95293903 18.68297241 69.35223139 44.16188677 11.88461241 18.60903154 69.0777588 43.98695166 11.83757714

16 18.51823958 70.28508572 42.8632372 11.77982256 18.51589879 70.27620138 43.85606161 11.77833354 18.35370085 69.6605869 43.54033867 11.67515618

17 18.20109484 68.92420261 43.98566938 11.57808045 18.14241735 68.7020017 43.80349408 11.54075452 18.1760566 68.82938738 43.8905833 11.56215312

278

18 18.53341443 68.70184328 43.71631201 11.78947559 18.38156987 68.13896797 43.35751802 11.69288423 18.33906711 67.98141372 43.27747858 11.66584737

19 18.70666933 69.46469196 44.22847889 11.8996865 18.78935773 69.77174417 44.42378263 11.95228624 18.85196634 70.0042328 43.57459982 11.99211283

20 18.58933825 68.35497166 43.42144636 11.82504985 18.57112436 68.28799725 43.38853229 11.81346363 18.59670682 68.3820667 43.46395144 11.82973715

21 18.79122241 69.05779788 43.8371635 11.9534724 18.59918382 68.35205548 43.39449285 11.83131281 18.07786587 66.43621047 42.11226513 11.49969204

22 18.89728249 67.20977212 43.56906108 12.02093934 19.00628782 67.59745871 43.84824045 12.09027981 18.89007496 67.18413792 43.58453618 12.01635448

23 17.60168847 65.10995675 40.59481275 11.19678607 19.56200296 69.56597689 42.76546025 12.44378132 20.21236518 71.87878111 43.24299922 12.85748974

Total 406.1344288 62.4845342 977.2497543 269.5470189 422.9917536 64.97181625 975.7281418 269.0735143 424.1304947 65.14304096 971.9935684 269.7978903

TQC

TQC Time Elapsed (train) 1312.9 Time Elapsed (Test) 30.4

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 18.60286239 66.27836784 42.21052517 11.83365282 18.78189294 66.91621875 42.58169797 11.94753774 19.33400661 68.88329199 43.73657547 12.29874828

1 18.2213914 64.80697011 42.20620888 11.5909915 18.21010834 64.7668403 42.18280724 11.58381412 18.47181939 65.6976529 42.72731456 11.75029375

2 11.58101063 40.11595578 25.72157504 7.366912483 11.77536341 40.78918265 26.12107521 7.490544175 11.54231188 39.98190551 25.64181859 7.342295432

3 11.76440611 40.76428951 26.13165597 7.483574013 11.65818982 40.39624446 25.91271296 7.416007708 11.61331525 40.24075172 25.82003992 7.3874621

4 11.63860817 40.32836305 25.87221375 7.40355143 11.70666954 40.56419914 26.01263852 7.446846631 11.74189562 40.68625926 26.08522591 7.469254641

5 12.07182553 41.86793394 26.85823323 7.679129658 11.96483293 41.49685838 26.63694305 7.611069521 12.05878821 41.82271743 26.83130081 7.670836357

6 18.94098278 69.60500491 36.52910795 12.04873797 17.52415719 64.39840325 42.00508824 11.14746687 18.89717543 69.44402007 36.43975358 12.02087123

7 19.14993709 70.31501358 36.97922733 12.18165798 19.16152207 70.3575515 36.99608166 12.18902742 19.17739538 70.41583534 37.05632275 12.19912475

8 18.03971253 71.5371834 34.25402662 11.47542193 18.08164149 71.70345435 34.35089433 11.50209379 18.1055466 71.79825097 34.39906322 11.5173003

9 18.62927694 73.90611059 32.62646135 11.85045565 18.59846051 73.78385556 31.83168161 11.8308527 19.35107151 76.76961568 33.5526519 12.30960361

10 17.28752225 66.91921095 42.63920829 10.99693866 19.10620508 73.95924932 33.5864392 12.15383918 19.14508628 74.10975665 31.90528173 12.17857228

11 19.3737789 75.05168542 32.3219403 12.32404823 19.3551677 74.97958788 32.43282705 12.31220928 18.32634382 70.99404812 34.82308854 11.65775383

12 19.30461359 71.66084152 40.69215366 12.28005079 20.28863743 75.31364587 34.97076477 12.90600804 19.430225 72.12712486 35.25350874 12.35995473

13 19.02515141 70.6206026 37.21830023 12.10227932 18.75423263 69.61496291 36.60362037 11.92994246 19.22095492 71.34741741 37.57901105 12.22683384

279

14 18.7956656 69.79152272 36.7249542 11.9562988 18.64371025 69.22728653 36.33988655 11.85963697 18.62582473 69.16087453 37.2691317 11.84825963

15 18.85149781 69.97780706 36.85840115 11.99181479 19.2895993 71.60406414 37.76605192 12.27049991 18.9994821 70.52713295 37.19407372 12.08595055

16 18.7819204 71.28587356 36.74234253 11.9475552 18.7054148 70.99550024 36.63230362 11.89888846 19.06411755 72.35693924 37.26535237 12.12706646

17 18.89414684 71.5486632 37.80813112 12.01894469 18.7799344 71.11616167 36.6455414 11.94629187 19.40287705 73.47513107 37.90615517 12.34255815

18 18.95348432 70.2590078 37.02741772 12.05669045 19.40406293 71.92926565 37.88643239 12.34331251 19.36950685 71.80116912 37.85490984 12.3213307

19 18.92309653 70.26836515 37.00634764 12.03736017 18.90913061 70.21650458 37.00952278 12.02847616 17.76902535 65.98287758 42.13351683 11.30323241

20 18.84765773 69.30483983 36.32905859 11.98937203 19.38953497 71.29738001 37.49510051 12.33407098 19.03938786 70.00985189 36.81598667 12.1113354

21 19.11861135 70.26095318 36.99540207 12.16173105 19.10870498 70.22454726 36.96305832 12.15542941 19.13159819 70.30867985 37.01655303 12.16999224

22 17.07087495 60.71400031 39.46691497 10.85912497 18.19877379 64.72546725 42.15721545 11.57660398 17.17569328 61.08679549 39.65943036 10.92580201

23 17.39275591 61.85174688 40.0550688 11.12623498 17.05336132 60.6447991 39.43274804 11.19563027 17.02826874 60.5555654 39.36096491 11.21357412

Total 419.2607911 64.54334637 857.2748766 266.7625296 422.4493084 65.04255128 850.5531332 269.0761001 422.0217176 64.98265271 854.3270314 268.8380068

TQC Tuned

TQC

Tuned

Time Elapsed

(training) 1892.3

Time (Elapsed

(testing) 24.8

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards

Carbon

Emissions Water Saved

Water Saved

% Rewards

Carbon

Emissions Water Saved

Water Saved

% Rewards

Carbon

Emissions

0 19.71779429 70.25065261 43.54888221 12.5428833 19.27131453 68.65993236 43.54776824 12.2588686 19.26067951 68.62204185 43.58234591 12.25210345

1 18.86940552 67.11172452 43.5611374 12.00320624 19.12187641 68.00967314 43.09508305 12.16380802 19.04234589 67.72681154 42.9264422 12.11321707

2 13.80492077 47.81945278 28.24809101 8.7815862 13.77045785 47.7000752 28.17715466 8.759663647 13.62317002 47.18987862 27.87650171 8.665970913

3 12.93356163 44.81547524 26.51684563 8.227297223 12.90442078 44.71450068 26.45775817 8.208760149 13.50612669 46.79944349 27.67749943 8.591517313

4 13.91394464 48.21251842 28.50840638 8.850938464 13.78465965 47.76453943 28.24348692 8.768697697 13.88386574 48.10829353 28.4464248 8.831804676

5 13.90042284 48.20994006 28.58911788 8.84233698 12.93876078 44.87466954 28.63468035 8.230604506 14.00391747 48.56888379 28.7997915 8.908171979

6 19.65887189 72.24312964 43.52017231 12.50540159 19.88697681 73.08137779 43.09572141 12.65050369 19.90192439 73.13630768 43.12463465 12.66001214

280

7 18.21909629 66.89713899 42.46122737 11.58953153 18.16936291 66.71452726 42.36162197 11.55789514 18.02861342 66.19772126 42.92622238 11.46836157

8 16.71843486 66.29760528 41.33140483 10.63493078 16.80076879 66.62410371 42.54180563 10.68730504 16.59341959 65.80185236 41.99957642 10.55540607

9 17.39327434 69.00263821 39.40067464 11.06420967 17.74793367 70.40964352 41.02866458 11.28981556 17.40181677 69.03652778 40.34239002 11.06964369

10 17.68507982 68.4581382 43.67877298 11.24983298 17.74903356 68.7057002 43.82747575 11.29051523 17.48063679 67.66674854 43.3616954 11.11978268

11 17.79930811 68.95237528 42.13799769 11.32249588 18.14685516 70.29873067 41.85024088 11.54357751 17.6779486 68.48224316 43.7779585 11.24529667

12 17.74555051 65.87342849 41.93413622 11.28829959 18.2879694 67.88694686 43.21635668 11.63334309 17.97274714 66.71680728 42.376049 11.43282391

13 18.70404944 69.4286849 44.25466569 11.89801993 18.7052386 69.43309902 44.23544073 11.89877638 18.68124404 69.34403218 44.15535602 11.88351296

14 18.68449587 69.37873049 44.23210787 11.88558151 18.71715182 69.49998763 44.29965823 11.90635461 18.65525847 69.27016704 44.08964978 11.86698302

15 18.66741803 69.2944927 44.15895801 11.87471796 18.57083204 68.93596012 43.89804724 11.81327768 18.65871589 69.26218988 44.14162227 11.86918236

16 18.43538206 69.97060399 43.65796839 11.72711523 18.55926464 70.44079436 43.91114893 11.80591942 18.50821675 70.24704457 42.84927061 11.77344684

17 18.12699523 68.64360098 43.81567458 11.53094421 18.28269779 69.23321799 44.17199738 11.62998972 18.22416569 69.01156765 43.91767048 11.59275628

18 18.58629359 68.89786197 43.86786979 11.82311308 18.49686247 68.56634815 43.62854919 11.76622415 18.49389033 68.55533066 43.62546418 11.76433352

19 18.64935871 69.25187671 44.13672572 11.86323006 18.69294344 69.4137227 44.16929773 11.89095518 18.7587978 69.658264 44.3489425 11.93284646

20 18.64364892 68.55467775 43.59591201 11.85959795 18.39404602 67.63686139 43.05066958 11.70082055 18.74677801 68.9338944 43.79689777 11.92520043

21 18.34265224 67.40930119 42.81164301 11.66812795 18.66754625 68.60328762 43.58699698 11.87479952 18.9207716 69.53389153 42.11188982 12.03588123

22 18.79238254 66.83668663 43.38567564 11.95421038 18.93388792 67.33996239 43.69522716 12.04422478 18.8619888 67.08424714 43.43756946 11.99848832

23 20.11105951 71.51852005 43.02153052 12.79304717 20.08371637 71.42128296 42.95436775 12.77565366 20.18232324 71.77194661 43.17343131 12.83837946

Total 424.1034017 65.13871896 974.3755978 269.7806559 424.6845777 65.24870603 977.6792192 270.1503535 425.0693627 65.28025569 976.8652961 270.395123

ARS

ARS Time Elapsed (train) 301.1 Time Elapsed (test) 24.6

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 17.1002379 60.92481008 39.55981021 10.87780333 17.1002379 60.92481008 39.55981021 10.87780333 17.1002379 60.92481008 39.55981021 10.87780333

1 17.11039046 60.85553727 39.50916588 10.88426158 17.11039046 60.85553727 39.50916588 10.88426158 17.11039046 60.85553727 39.50916588 10.88426158

2 12.18072005 42.19331477 26.94976708 7.74839964 12.18072005 42.19331477 26.94976708 7.74839964 12.18072005 42.19331477 26.94976708 7.74839964

281

3 12.30590698 42.64061867 27.2407878 7.828033546 12.30590698 42.64061867 27.2407878 7.828033546 12.30590698 42.64061867 27.2407878 7.828033546

4 12.27729399 42.54144157 27.18233588 7.809832256 12.27729399 42.54144157 27.18233588 7.809832256 12.27729399 42.54144157 27.18233588 7.809832256

5 12.57087595 43.59875833 27.88374927 7.996585612 12.57087595 43.59875833 27.88374927 7.996585612 12.57087595 43.59875833 27.88374927 7.996585612

6 19.44912143 71.47233108 37.58562274 12.37197512 19.44912143 71.47233108 37.58562274 12.37197512 19.44912143 71.47233108 37.58562274 12.37197512

7 19.42190932 71.31364512 37.48835722 12.35466495 19.42190932 71.31364512 37.48835722 12.35466495 19.42190932 71.31364512 37.48835722 12.35466495

8 18.3700879 72.84729983 34.8665005 11.68558032 18.3700879 72.84729983 34.8665005 11.68558032 18.3700879 72.84729983 34.8665005 11.68558032

9 18.32652881 72.70504752 34.79280054 11.65787151 18.32652881 72.70504752 34.79280054 11.65787151 18.32652881 72.70504752 34.79280054 11.65787151

10 18.6496886 72.19209483 37.32588856 11.86343991 18.6496886 72.19209483 37.32588856 11.86343991 18.6496886 72.19209483 37.32588856 11.86343991

11 18.64950795 72.24594702 37.36162262 11.863325 18.64950795 72.24594702 37.36162262 11.863325 18.64950795 72.24594702 37.36162262 11.863325

12 19.28820941 71.59994742 37.74625409 12.26961577 19.28820941 71.59994742 37.74625409 12.26961577 19.28820941 71.59994742 37.74625409 12.26961577

13 19.31048391 71.67974545 37.79160837 12.28378503 19.31048391 71.67974545 37.79160837 12.28378503 19.31048391 71.67974545 37.79160837 12.28378503

14 19.30503403 71.68289488 37.79494493 12.28031825 19.30503403 71.68289488 37.79494493 12.28031825 19.30503403 71.68289488 37.79494493 12.28031825

15 19.30941852 71.67763416 37.79065709 12.28310731 19.30941852 71.67763416 37.79065709 12.28310731 19.30941852 71.67763416 37.79065709 12.28310731

16 18.96027756 71.96281955 37.07134574 12.06101176 18.96027756 71.96281955 37.07134574 12.06101176 18.96027756 71.96281955 37.07134574 12.06101176

17 18.98111555 71.87799771 37.01048502 12.07426722 18.98111555 71.87799771 37.01048502 12.07426722 18.98111555 71.87799771 37.01048502 12.07426722

18 19.32092153 71.62106731 37.75235366 12.2904246 19.32092153 71.62106731 37.75235366 12.2904246 19.32092153 71.62106731 37.75235366 12.2904246

19 19.304877 71.68605539 37.79699357 12.28021836 19.304877 71.68605539 37.79699357 12.28021836 19.304877 71.68605539 37.79699357 12.28021836

20 19.40127741 71.34055822 37.51903853 12.34154059 19.40127741 71.34055822 37.51903853 12.34154059 19.40127741 71.34055822 37.51903853 12.34154059

21 19.41485893 71.34966393 37.51663871 12.35018006 19.41485893 71.34966393 37.51663871 12.35018006 19.41485893 71.34966393 37.51663871 12.35018006

22 17.38576029 61.83391647 40.04946407 11.05942984 17.38576029 61.83391647 40.04946407 11.05942984 17.38576029 61.83391647 40.04946407 11.05942984

23 18.62488247 66.23340904 40.4756243 11.24801099 17.39275591 61.85174688 40.0550688 11.24801099 17.39275591 61.85174688 40.0550688 11.24801099

Total 425.019386 65.41985648 864.0618164 269.7636825 423.7872594 65.23728723 863.6412609 269.7636825 423.7872594 65.23728723 863.6412609 269.7636825

ARS Tuned

ARS Tuned Time Elapsed (train) 335 Time Elapsed (Test) 26.6

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

282

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 18.8185959 67.04698423 41.1595925 11.97088522 18.8185959 67.04698423 41.1595925 11.97088522 18.8185959 67.04698423 41.1595925 11.97088522

1 18.84650861 67.03028837 41.14727993 11.98864106 18.84650861 67.03028837 41.14727993 11.98864106 18.84650861 67.03028837 41.14727993 11.98864106

2 13.39516417 46.40007946 27.41366435 8.520931833 13.39516417 46.40007946 27.41366435 8.520931833 13.39516417 46.40007946 27.41366435 8.520931833

3 13.49392083 46.75714951 27.65272221 8.583752917 13.49392083 46.75714951 27.65272221 8.583752917 13.49392083 46.75714951 27.65272221 8.583752917

4 13.49532632 46.76198489 27.65548281 8.584646981 13.49532632 46.76198489 27.65548281 8.584646981 13.49532632 46.76198489 27.65548281 8.584646981

5 13.8051312 47.8794462 28.39541092 8.781720059 13.8051312 47.8794462 28.39541092 8.781720059 13.8051312 47.8794462 28.39541092 8.781720059

6 18.4167721 67.67861663 41.59848111 11.71527707 18.4167721 67.67861663 41.59848111 11.71527707 18.4167721 67.67861663 41.59848111 11.71527707

7 18.49531048 67.91134624 41.74482678 11.76523691 18.49531048 67.91134624 41.74482678 11.76523691 18.49531048 67.91134624 41.74482678 11.76523691

8 18.08330217 71.71003982 40.49335725 11.50315018 18.08330217 71.71003982 40.49335725 11.50315018 18.08330217 71.71003982 40.49335725 11.50315018

9 18.26293172 72.452745 38.98710995 11.61741613 18.26293172 72.452745 38.98710995 11.61741613 18.26293172 72.452745 38.98710995 11.61741613

10 18.44572601 71.40256494 43.19748972 11.73369523 18.44572601 71.40256494 43.19748972 11.73369523 18.44572601 71.40256494 43.19748972 11.73369523

11 18.39519134 71.26075513 43.10681988 11.70154912 18.39519134 71.26075513 43.10681988 11.70154912 18.39519134 71.26075513 43.10681988 11.70154912

12 18.73699618 69.55378349 41.86259769 11.91897801 18.73699618 69.55378349 41.86259769 11.91897801 18.73699618 69.55378349 41.86259769 11.91897801

13 18.65541106 69.24814117 41.66281851 11.86708008 18.65541106 69.24814117 41.66281851 11.86708008 18.65541106 69.24814117 41.66281851 11.86708008

14 18.65257313 69.2601959 41.67146887 11.86527482 18.65257313 69.2601959 41.67146887 11.86527482 18.65257313 69.2601959 41.67146887 11.86527482

15 18.65572295 69.25107988 41.66488909 11.86727848 18.65572295 69.25107988 41.66488909 11.86727848 18.65572295 69.25107988 41.66488909 11.86727848

16 18.47481669 70.12027624 42.29278588 11.75220039 18.47481669 70.12027624 42.29278588 11.75220039 18.47481669 70.12027624 42.29278588 11.75220039

17 18.53522542 70.18949371 42.33145723 11.79062759 18.53522542 70.18949371 42.33145723 11.79062759 18.53522542 70.18949371 42.33145723 11.79062759

18 18.70559778 69.34011278 41.7197977 11.89900486 18.70559778 69.34011278 41.7197977 11.89900486 18.70559778 69.34011278 41.7197977 11.89900486

19 18.64944397 69.25219331 41.66640927 11.8632843 18.64944397 69.25219331 41.66640927 11.8632843 18.64944397 69.25219331 41.66640927 11.8632843

20 18.58137971 68.32570727 42.02450245 11.81998726 18.58137971 68.32570727 42.02450245 11.81998726 18.58137971 68.32570727 42.02450245 11.81998726

21 18.51211416 68.03207421 41.82797267 11.77592606 18.51211416 68.03207421 41.82797267 11.77592606 18.51211416 68.03207421 41.82797267 11.77592606

22 18.8965879 67.20730175 41.24312855 12.0204975 18.8965879 67.20730175 41.24312855 12.0204975 18.8965879 67.20730175 41.24312855 12.0204975

23 18.67144668 66.39899969 40.7494113 11.87728066 18.84336108 67.01035798 41.11547474 11.98663885 18.84336108 67.01035798 41.11547474 11.98663885

Total 425.6811965 65.43630666 943.2694766 270.7843227 425.8531109 65.46177992 943.6355401 270.8936809 425.8531109 65.46177992 943.6355401 270.8936809

283

Appendix G: Background Leakage – SZ08 Results

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.

Each algorithm’s step rewards, water saved% and carbon emissions are listed along with the algorithm’s processing speeds and episodic pressure violations.

A line plot of the rewards of the algorithms across the three test episodes is shown below.

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

R
ew

ar
d

s

Time

Reward Comparisons
NM

PSO

DE

TRPO

PPO

Recurrent PPO

A2C

DDPG

SAC

TQC

ARS

284

NM

NM Time Elapse 23238 Violations 2284

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0
9.531886445 0.552464962 85.00172388 6.063423605 10.58157957 0.613304825 84.63056521 6.731154396 10.5545117 0.611735981 85.86378358 6.713935985

1
9.931611278 0.573607447 90.70500913 6.317696566 9.929568062 0.57348944 90.83150303 6.316396835 9.763674172 0.563908117 90.04448112 6.210868414

2
10.5865765 0.614268784 90.43132805 6.734333041 9.934849933 0.576453417 90.47102178 6.319756739 10.58739632 0.614316353 91.90486468 6.734854547

3
9.555782525 0.572987707 86.8689942 6.07862438 8.054148673 0.482946129 74.35706532 5.123405054 10.5924983 0.635151679 93.14635252 6.738100018

4
2.870905078 0.180614385 82.17039998 1.826240138 2.045282464 0.128672814 83.22475823 1.301045081 2.591107732 0.163011774 85.04729327 1.648255451

5
10.32249919 0.638035674 91.31630554 6.566348185 10.59901838 0.655127379 89.95341359 6.742247574 10.59287845 0.654747868 90.09990103 6.73834184

6
10.31360454 0.618556531 91.43270761 6.560690122 10.58752914 0.634985108 90.08821637 6.734939037 9.928590043 0.595465357 90.08245418 6.315774698

7
16.7224889 1.004207328 93.26850296 10.63750964 16.45187339 0.987956513 93.08262912 10.4653657 16.44660114 0.987639907 91.67475566 10.46201191

8
9.924345961 0.612819074 88.69688872 6.313074953 9.537483601 0.588930685 85.28006345 6.066984068 10.29817652 0.635902761 89.83087663 6.550876049

9
9.929407523 0.63127806 87.64214166 6.316294713 9.761167844 0.620581952 88.80712407 6.209274089 9.92917185 0.631263077 87.45075395 6.316144797

10
10.67140902 0.708765484 96.10456727 6.788296709 8.723971143 0.579422044 85.98491172 5.549492523 10.66690242 0.708466168 95.71326671 6.78542997

11
10.54282522 0.686767835 86.96031079 6.706501978 9.882604095 0.643760517 88.60780924 6.286522117 10.25047158 0.667723691 88.88874814 6.520529979

12
12.11081792 0.776089305 84.88581958 7.703933493 12.1107221 0.776083166 84.89742523 7.703872545 11.82050714 0.757485517 87.12594648 7.519261001

13
12.08323596 0.770218389 85.52316601 7.686388057 11.43587427 0.72895379 84.80435189 7.27458834 11.43919937 0.729165742 86.25095566 7.276703506

14
11.06691933 0.688417012 82.42696923 7.039888723 11.45827683 0.712761381 86.44400914 7.288839057 11.28682257 0.702096079 83.47229889 7.179773571

15
9.753383477 0.578250629 86.98474329 6.204322298 10.57801576 0.627140754 87.78134067 6.728887382 10.57045792 0.626692671 91.24581092 6.72407969

16
10.57652481 0.691052919 89.44944365 6.72793896 9.746556958 0.636824171 87.11466516 6.199979812 10.08699139 0.659067603 87.38654142 6.416536965

17
9.003256962 0.598189287 81.10508228 5.727151818 10.56829284 0.702172513 89.23252804 6.722702444 10.43533274 0.693338453 89.61620657 6.638123864

18
8.625658357 0.564334947 72.97380216 5.486953794 10.33692555 0.676294851 86.99021323 6.575525083 10.62203968 0.694948484 84.04403432 6.75689188

19
9.91991831 0.654885735 88.58228796 6.310258435 9.919132959 0.654833889 88.50975134 6.309758858 10.57403479 0.698068707 86.2541148 6.726355009

20
9.88011125 0.644408846 86.54947156 6.284936369 9.879278917 0.644354559 86.44826349 6.284406905 9.880282605 0.644420023 86.53463236 6.285045371

21
10.68640163 0.655764356 87.77175009 6.797833804 9.751616135 0.598401828 86.63068396 6.203198056 9.919753759 0.608719488 88.21528015 6.310153761

285

22
10.41670311 0.638003139 86.79952551 6.626273182 10.69642917 0.655135825 86.89188275 6.804212523 10.69591687 0.655104448 86.80703959 6.803886641

23
10.21853362 0.637129906 87.11525831 6.494483626 2.956565791 0.191915019 81.57464106 6.415379168 2.307353094 0.149773671 81.60035943 6.616729467

Total 245.2448069 0.637129906 2090.766199 155.9993966 235.5267636 0.612104274 2082.638837 154.3579334 241.8406722 0.628675567 2118.300752 158.9886644

PSO

PSO Time Elapsed 12909.4 Violations 22849

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.56567384 0.612382935 88.54451673 6.721036446 10.55442048 0.611730693 88.47796487 6.713877953 10.55349878 0.611677272 88.28937777 6.713291646

1 9.738561204 0.5624577 90.81058742 6.194893553 10.28591862 0.594070726 93.605678 6.54307855 10.576249 0.610838969 93.73391108 6.727763515

2 10.30821938 0.598117568 92.68209382 6.55726451 10.56823523 0.613204562 92.37597631 6.722665793 10.58662694 0.614271711 93.72665848 6.734365127

3 10.31952919 0.618783794 90.94557404 6.564458905 10.28734124 0.616853728 92.41309788 6.543983511 9.685724411 0.580779335 89.93233783 6.161283012

4 2.860538541 0.179962205 85.49782891 1.819645776 2.842029607 0.178797771 84.29653606 1.807871874 2.84678278 0.179096803 85.0422575 1.810895462

5 10.32010131 0.637887461 93.0100374 6.564822845 10.57350537 0.653550415 92.67858735 6.726018237 10.5416726 0.651582825 92.0728988 6.705768776

6 10.5620942 0.633459652 91.76126326 6.718759364 10.57478749 0.63422093 93.14411203 6.72683382 10.31129535 0.618418038 92.46613623 6.5592212

7 16.72083019 1.004107721 93.56342775 10.6364545 16.45071544 0.987886977 93.07061408 10.46462911 16.41342969 0.985647919 92.09309314 10.4409109

8 10.5494279 0.651417298 89.9107144 6.710702074 10.55456437 0.65173447 88.40203429 6.713969486 10.29731285 0.63584943 89.84255831 6.550326651

9 10.58623724 0.673037066 89.22268538 6.734117231 10.57204828 0.67213498 90.96804157 6.725091353 10.57281691 0.672183847 90.99342812 6.725580291

10 10.49067735 0.696761786 97.12206138 6.673329676 10.13738047 0.673296784 95.6173204 6.448590465 10.55648699 0.70113268 97.55825815 6.715192502

11 10.44131525 0.680155397 88.53388987 6.641929458 9.885104699 0.643923409 88.91432349 6.288112801 9.868379165 0.642833894 88.47392112 6.277473354

12 11.44134464 0.733187905 86.31907732 7.278068153 11.45284682 0.733924991 86.71692544 7.285384917 11.43447875 0.732747923 86.09866152 7.273700625

13 12.07561664 0.769732712 86.44815065 7.681541256 12.06868727 0.769291016 87.03867477 7.677133349 11.80482438 0.752471676 86.68994908 7.509284885

14 11.45801939 0.712745367 86.34313028 7.288675296 11.79544444 0.733734871 86.60128107 7.503318117 11.82949819 0.735853182 86.50643751 7.524980388

15 10.55047693 0.625508054 89.44883455 6.711369383 10.56568492 0.626409694 91.18884933 6.721043494 9.525189069 0.564721626 87.62944181 6.05916327

16 10.28945332 0.672296135 88.99872499 6.545327043 10.27667068 0.671460939 89.7454731 6.537195753 10.28500203 0.672005295 90.23238992 6.542495488

17 9.694984585 0.644148661 87.94077275 6.167173594 10.56272456 0.701802548 87.43243557 6.719160345 9.691015483 0.643884948 87.20665881 6.164648769

286

18 9.955766006 0.651357433 86.51442638 6.333061871 10.62164148 0.694922432 85.84168052 6.75663858 10.3251439 0.675524034 85.99069217 6.568030535

19 10.53447304 0.695456949 87.74825966 6.701188987 10.55793768 0.69700602 89.1537182 6.716115315 10.26931434 0.677951901 88.83656211 6.53251624

20 10.68155443 0.696681241 88.26612991 6.794750404 10.65538842 0.69497462 87.50971014 6.778105681 10.42507746 0.679953086 88.39588936 6.631600271

21 10.28238004 0.630971824 88.54832676 6.540827593 10.28947905 0.63140745 88.76054237 6.545343415 10.25634844 0.62937441 88.28785185 6.524268368

22 10.65373391 0.652520822 88.57507675 6.777053214 9.868819563 0.60444632 86.45440653 6.2777535 10.65301248 0.652476636 88.20799509 6.776594298

23 2.957483415 0.191974583 80.12912712 6.662699906 2.662306637 0.172814226 82.73729334 6.71200736 2.657749902 0.172518441 81.11326466 6.611489149

Total 244.0384919 0.634379678 2136.884717 160.019151 244.6636828 0.635983357 2143.145277 160.6539228 241.9669299 0.628908162 2139.42063 158.8408447

DE

DE Time Elapsed 7013.1 Violations 22867

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.56053153 0.612084888 88.52700911 6.717765315 10.56053153 0.612084888 88.52700911 6.717765315 10.52198947 0.609851003 88.19855954 6.693247942

1 10.55365218 0.609533873 93.96673547 6.713389225 10.55365218 0.609533873 93.96673547 6.713389225 10.48797594 0.605740694 93.41755876 6.671611254

2 10.30473425 0.597915349 93.20957856 6.555047551 10.30473425 0.597915349 93.20957856 6.555047551 10.59453685 0.614730671 92.09372897 6.73939678

3 10.27693973 0.616230028 92.25834632 6.5373669 10.27693973 0.616230028 92.25834632 6.5373669 10.57209786 0.633928419 92.94277369 6.725122889

4 2.87161608 0.180659115 83.92062635 1.826692421 2.87161608 0.180659115 83.92062635 1.826692421 2.871912359 0.180677755 84.01578518 1.82688089

5 10.31640176 0.637658791 93.07007355 6.562469487 10.31640176 0.637658791 93.07007355 6.562469487 10.58831497 0.654465799 93.40448123 6.735438918

6 10.29902931 0.617682384 92.91429523 6.551418527 10.29902931 0.617682384 92.91429523 6.551418527 10.53209344 0.631660362 92.85175452 6.699675277

7 16.47167814 0.989145814 92.40623922 10.4779639 16.47167814 0.989145814 92.40623922 10.4779639 16.45933772 0.988404756 92.02582945 10.47011391

8 10.50977563 0.648968808 89.3584149 6.685478472 10.50977563 0.648968808 89.3584149 6.685478472 10.58131325 0.653386189 88.76268844 6.730984987

9 10.58605707 0.673025612 89.36674068 6.734002625 10.58605707 0.673025612 89.36674068 6.734002625 10.56269703 0.67154046 90.90685647 6.719142837

10 10.65236391 0.70750056 97.23859693 6.77618173 10.65236391 0.70750056 97.23859693 6.77618173 10.63101783 0.706082813 96.28910971 6.762603063

11 10.15019115 0.661191346 88.28535427 6.456739596 10.15019115 0.661191346 88.28535427 6.456739596 9.858363244 0.642181449 88.81316615 6.271102027

12 12.087498 0.774594911 86.34863408 7.689099229 12.087498 0.774594911 86.34863408 7.689099229 11.43018254 0.732472611 86.60213835 7.270967715

13 12.0714258 0.769465577 87.10307269 7.67887538 12.0714258 0.769465577 87.10307269 7.67887538 12.07692453 0.769816081 86.19880226 7.682373233

287

14 12.09720251 0.752505712 87.15386039 7.695272463 12.09720251 0.752505712 87.15386039 7.695272463 12.10077356 0.752727849 87.26162843 7.697544079

15 10.57800636 0.627140197 89.48317774 6.728881408 10.57800636 0.627140197 89.48317774 6.728881408 10.15849546 0.602268578 89.51912942 6.462022134

16 10.22270232 0.667934733 90.04773447 6.502865397 10.22270232 0.667934733 90.04773447 6.502865397 10.22003511 0.667760463 89.68834808 6.501168737

17 10.56780701 0.702140233 87.65054304 6.722393398 10.56780701 0.702140233 87.65054304 6.722393398 10.29625368 0.684097841 88.77379568 6.549652892

18 10.58894368 0.692783174 86.97760806 6.735838856 10.58894368 0.692783174 86.97760806 6.735838856 10.58491036 0.692519293 87.23514244 6.733273178

19 10.29566415 0.679691442 89.11060081 6.549277877 10.29566415 0.679691442 89.11060081 6.549277877 10.57789506 0.698323551 87.81089225 6.728810604

20 10.65088305 0.694680767 88.72464116 6.775239725 10.65088305 0.694680767 88.72464116 6.775239725 10.65376913 0.694869005 88.68049911 6.777075621

21 10.58441321 0.6495059 88.33012395 6.732956933 10.58441321 0.6495059 88.33012395 6.732956933 10.68613933 0.65574826 89.21354487 6.797666953

22 10.66488942 0.653204076 88.50780048 6.78414946 10.66488942 0.653204076 88.50780048 6.78414946 10.66098555 0.652964971 88.55979306 6.781666129

23 10.60706114 0.661532317 89.73738293 6.747363734 10.60443258 0.661910873 89.73738293 6.745691655 2.952273125 0.191636375 89.70721766 1.87799998

Total 243.9624063 0.661532317 2153.69719 161.9367296 243.9624063 0.63396847 2153.69719 161.9350575 246.6602874 0.641160635 2152.973224 156.905542

TRPO

TRPO Time Elapsed (training) 2666.6 Time (Elapsed (testing) 835.7 Violations 2295

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.57449707 0.612894326 83.21515364 6.726649077 10.57386796 0.612857863 83.00674357 6.726248886 10.57146782 0.612718752 79.82686431 6.724722111

1 10.57872196 0.610981796 90.90009698 6.729336613 10.57848161 0.610967915 90.89529474 6.729183723 10.57846138 0.610966746 90.89555769 6.729170851

2 10.58393894 0.614115744 90.50208777 6.732655239 10.58583868 0.614225974 90.53286848 6.7338637 10.58393894 0.614115744 90.50208777 6.732655239

3 10.59360963 0.635218317 89.65259694 6.738806957 10.59201408 0.635122644 89.63955133 6.737791996 10.59102737 0.635063478 89.6155293 6.737164328

4 2.861248583 0.180006875 79.20039952 1.820097448 2.861861937 0.180045463 82.20330373 1.820487616 2.862142038 0.180063084 82.16903293 1.820665793

5 10.58891366 0.654502804 87.16954289 6.735819755 10.58893736 0.654504269 87.18154232 6.735834836 10.58893736 0.654504269 87.18154232 6.735834836

6 10.58504333 0.634836022 90.08626119 6.73335776 10.58495514 0.634830733 90.09035695 6.733301661 10.58872092 0.635056585 90.12465017 6.735697151

7 16.72478283 1.004345082 90.30641515 10.63896885 16.72498938 1.004357486 90.31809823 10.63910025 16.72346882 1.004266174 90.29599768 10.63813299

8 24.30037023 1.500525116 62.97244051 15.45795151 10.57436202 0.652956957 87.16573802 6.726563167 24.30105754 1.500567557 65.98188307 15.45838872

9 10.57967395 0.672619795 87.73059321 6.729942194 10.57804627 0.672516312 84.69674862 6.728906793 10.58118202 0.672715672 87.74913065 6.730901504

288

10 10.58850284 0.703259084 92.54013097 6.735558427 10.62282895 0.70553893 69.21381196 6.757393955 10.62998869 0.70601446 90.06755782 6.761948403

11 10.53418141 0.68620477 82.46522523 6.701003479 10.53445153 0.686222366 85.46919044 6.701175305 10.53418141 0.68620477 82.46522523 6.701003479

12 12.10146906 0.775490209 83.30446766 7.697986501 12.10146859 0.775490179 83.30405765 7.697986201 12.10151939 0.775493435 83.29101693 7.698018517

13 12.08861933 0.770561539 82.74134517 7.689812526 12.09115727 0.770723315 82.78104848 7.691426965 12.09136334 0.77073645 82.79285592 7.691558051

14 12.10953101 0.753272606 84.0451987 7.703114867 12.10722822 0.753129361 84.01696542 7.701650014 12.1093317 0.753260208 84.04978986 7.70298808

15 10.56888778 0.626599582 87.9219604 6.723080894 10.56880905 0.626594914 87.89893573 6.723030814 10.56888778 0.626599582 87.9219604 6.723080894

16 10.56746546 0.690460996 87.86459071 6.722176126 10.56758377 0.690468727 87.87438709 6.722251389 10.65697504 0.696309407 85.30816763 6.779114964

17 10.41941957 0.692281159 17.10377978 6.628001178 10.56172342 0.70173603 88.24399558 6.7185235 10.50442215 0.697928852 59.40302992 6.68207302

18 10.57213595 0.691683526 83.12010468 6.725147123 10.57214071 0.691683837 83.09009774 6.725150148 10.5720983 0.691681062 83.00615783 6.725123173

19 10.57428648 0.698085323 86.14942708 6.726515118 10.57189141 0.697927207 86.09427562 6.724991561 10.57189141 0.697927207 86.09427562 6.724991561

20 10.70497117 0.698208547 85.84587715 6.809646261 10.70521455 0.698224421 83.87649992 6.809801079 10.7056408 0.698252223 85.89250058 6.810072227

21 10.69157868 0.656082042 84.01003438 6.801127028 10.69152874 0.656078978 86.02909681 6.801095264 10.69261969 0.656145923 86.04419524 6.80178924

22 10.69189864 0.654858339 85.49292675 6.801330566 10.69320808 0.654938539 85.52066677 6.802163522 10.69270648 0.654907817 85.4989427 6.801844448

23 11.31233685 0.705091026 82.36263724 7.196003718 10.72315603 0.668745323 80.11208433 6.821214015 11.32182741 0.705717368 80.10993277 7.202040851

Total 271.4960844 0.705091026 1976.703294 172.7040892 257.3557448 0.668745323 2049.25536 163.7091364 271.7238578 0.705717368 1649.983022 172.8489804

PPO

PPO Time Elapsed (train) 3652 Time Elapsed (Test) 741.9 Violations 12604

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.57392216 0.612861005 76.17881734 6.726283365 10.57406752 0.61286943 76.16287025 6.726375834 10.57496202 0.612921274 76.29873398 6.726944838

1 10.57964373 0.611035034 80.92408371 6.72992297 10.578659 0.61097816 80.89714484 6.729296563 10.57874365 0.610983049 80.9245814 6.729350408

2 10.58509547 0.61418285 80.51266008 6.733390928 10.58406122 0.61412284 80.49677351 6.732733026 10.58431157 0.614137366 80.53298122 6.732892278

3 10.59125282 0.635076997 79.61312701 6.737307746 10.59097231 0.635060177 79.61453588 6.737129307 10.59185728 0.635113242 79.63865464 6.737692252

4 2.864019207 0.180181181 59.1895653 1.821859898 2.861185099 0.180002881 57.20280302 1.820057065 2.862843327 0.180107204 59.22385539 1.821111897

5 10.58893736 0.654504269 78.18154232 6.735834836 10.58984847 0.654560585 80.18895781 6.736414406 10.58878825 0.654495052 78.16129513 6.735739982

289

6 10.5867856 0.634940514 80.11945978 6.734466054 10.58495559 0.63483076 80.09075228 6.73330195 10.58840381 0.635037566 80.10340889 6.735495431

7 16.72411201 1.004304798 80.31943821 10.63854213 16.72341634 1.004263022 80.31119766 10.6380996 16.72288383 1.004231044 80.29578271 10.63776086

8 24.30040819 1.50052746 69.97153679 15.45797566 24.30180564 1.500613751 71.98451696 15.45886461 24.30225281 1.500641363 71.98883707 15.45914905

9 10.57920612 0.672590051 79.71928379 6.729644596 10.57824449 0.672528914 77.71270984 6.729032882 10.58000752 0.672641002 79.7240693 6.730154385

10 10.58584221 0.703082372 84.07484243 6.733865943 10.58323766 0.702909385 78.79601871 6.732209138 10.65551077 0.707709566 86.63611128 6.77818351

11 10.53410327 0.68619968 78.48190731 6.700953773 10.53695649 0.686385541 78.49685009 6.702768761 10.53428625 0.6862116 78.47152481 6.701070168

12 12.10182522 0.775513032 76.29343621 7.698213058 12.10332533 0.775609163 76.29428904 7.699167308 12.10517207 0.775727506 76.30006422 7.700342054

13 12.08835235 0.770544521 75.73100203 7.689642694 12.09092453 0.770708479 75.78432166 7.691278911 12.0902408 0.770664896 75.77164152 7.690843977

14 12.10898215 0.753238464 77.0514128 7.702765726 12.10711408 0.753122261 77.02742043 7.701577406 12.10702548 0.753116749 76.99220966 7.701521047

15 10.57115714 0.626734126 80.92870385 6.724524482 10.56991342 0.626660389 80.90490231 6.723733327 10.56886358 0.626598147 80.90425041 6.723065498

16 10.63221944 0.694691916 61.05568081 6.763367431 10.56989434 0.690619695 80.90206548 6.723721188 10.5675233 0.690464775 80.87933724 6.72221292

17 10.41976456 0.692304081 10.74344658 6.628220635 10.41976456 0.692304081 10.74344658 6.628220635 10.57157429 0.702390536 76.65132933 6.724789835

18 10.50937676 0.687577496 75.49916002 6.685224744 10.57214071 0.691683837 77.09009774 6.725150148 10.58426998 0.692477396 77.37609424 6.732865817

19 10.57345147 0.698030198 81.1161721 6.725983949 10.57175591 0.697918262 81.09633643 6.724905369 10.57345796 0.698030627 81.11784933 6.725988081

20 10.70596512 0.698273375 79.89335536 6.81027853 10.7051972 0.69822329 79.87036388 6.809790045 10.70565851 0.698253377 79.89707791 6.810083492

21 10.69318316 0.6561805 81.02188468 6.802147674 10.69152874 0.656078978 81.02909681 6.801095264 10.69259898 0.656144652 81.04109687 6.801776065

22 10.69245057 0.654892143 80.48415762 6.801681658 10.69116886 0.654813641 80.46315489 6.800866332 10.69111598 0.654810402 80.46555837 6.800832699

23 11.31261113 0.70510722 59.05650296 7.196178195 2.954919375 0.191808147 59.11280448 1.879683313 2.954953569 0.191810367 59.09634635 1.879705064

Total 271.5026672 0.70510722 1417.356071 172.7082767 263.1350569 0.68369482 1782.273431 167.3854724 263.3773056 0.684363282 1858.492691 167.5395716

Recurrent PPO

Recurrent PPO Time Elapsed (train) 5989 Time Elapsed (test) 700.8 Violations 12604

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.57149274 0.612720196 75.72756847 6.724737959 10.57151937 0.612721739 73.87661354 6.7247549 10.5714274 0.612716409 73.72140582 6.724696399

1 10.57876416 0.610984233 80.89488851 6.729363455 10.578398 0.610963086 80.90691973 6.729130536 10.57845961 0.610966644 80.90874182 6.72916973

290

2 10.58720782 0.614305416 80.55392989 6.734734638 10.58389272 0.614113063 80.52105899 6.732625837 10.58393894 0.614115744 80.50208777 6.732655239

3 10.59258766 0.635157037 79.60667022 6.738156862 10.58947318 0.634970285 79.60320869 6.736175677 10.59038966 0.63502524 79.62872866 6.736758669

4 2.861140471 0.180000074 57.16810638 1.820028676 2.863009153 0.180117636 59.23028288 1.821217383 2.861185099 0.180002881 57.20280302 1.820057065

5 10.58898954 0.654507494 78.16550418 6.735868028 10.58877798 0.654494418 78.1761886 6.735733451 10.58899247 0.654507675 78.17715602 6.735869888

6 10.58778939 0.635000717 80.11098367 6.735104588 10.58500884 0.634833953 80.07208187 6.733335822 10.58687143 0.634945662 80.12191974 6.734520657

7 16.72212237 1.004185318 78.29526207 10.63727648 16.72212703 1.004185597 78.26851884 10.63727944 16.72198446 1.004177036 80.30099599 10.63718875

8 24.30014653 1.500511303 69.96309438 15.45780921 24.30040819 1.50052746 69.97153679 15.45797566 24.30040819 1.50052746 69.97153679 15.45797566

9 10.57897957 0.672575648 79.71133279 6.729500482 10.57827293 0.672530723 79.7036667 6.729050978 10.57827091 0.672530594 79.70190873 6.729049691

10 10.57738496 0.702520665 75.07869728 6.728486118 10.52793379 0.699236256 41.63825984 6.697029245 10.58323766 0.702909385 78.79601871 6.732209138

11 10.53411122 0.686200198 76.46217935 6.700958829 10.53418141 0.68620477 76.46522523 6.701003479 10.53418141 0.68620477 76.46522523 6.701003479

12 12.10161602 0.775499627 74.27922165 7.698079984 12.10153985 0.775494746 76.28913376 7.698031531 12.10166451 0.775502734 74.29779299 7.698110825

13 12.08861933 0.770561539 75.74134517 7.689812526 12.09014358 0.770658699 75.75522259 7.690782134 12.08861933 0.770561539 75.74134517 7.689812526

14 12.10728228 0.753132724 77.01552162 7.701684403 12.10707329 0.753119723 77.00636593 7.701551459 12.10711408 0.753122261 77.02742043 7.701577406

15 10.56888778 0.626599582 80.9219604 6.723080894 10.56869488 0.626588145 78.88246988 6.722958187 10.56874644 0.626591202 80.90484421 6.722990984

16 10.56758377 0.690468727 80.87438709 6.722251389 10.56758377 0.690468727 80.87438709 6.722251389 10.56747822 0.69046183 80.84656783 6.722184244

17 10.44768886 0.694159411 25.26720173 6.645983834 10.41976456 0.692304081 10.74344658 6.628220635 10.41941975 0.692281171 10.10393354 6.62800129

18 10.57246842 0.691705277 77.12234855 6.725358613 10.5721581 0.691684974 77.03181116 6.725161207 10.57213617 0.69168354 77.12029742 6.725147264

19 10.57181202 0.697921966 81.08345926 6.72494106 10.57189092 0.697927174 81.0568727 6.724991249 10.57169905 0.697914508 81.07224472 6.724869202

20 10.70556137 0.698247042 79.89170804 6.8100217 10.70524051 0.698226114 77.88298007 6.809817593 10.70501716 0.698211547 77.88495305 6.809675517

21 10.69154077 0.656079716 79.02092907 6.801102916 10.6914424 0.656073679 81.01707432 6.801040338 10.69152874 0.656078978 81.02909681 6.801095264

22 10.69102343 0.654804734 80.47123945 6.800773823 10.69117417 0.654813966 80.44409112 6.80086971 10.69106952 0.654807556 80.46600383 6.800803142

23 11.31281741 0.705123854 74.93163214 7.196309412 2.954953569 0.191810367 59.09634635 1.879705064 2.954886907 0.19180604 59.0790463 1.879662659

Total 271.5076179 0.705123854 1798.359171 172.7114259 263.0646622 0.683502891 1734.513763 167.3406929 263.1187271 0.683652184 1771.072075 167.3750847

A2C

A2C Time Elapsed (train) 3726 Time Elapsed (test) 740.3 Violations 12604

291

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.5714853 0.612719765 73.95736956 6.724733226 10.57146782 0.612718752 73.82686431 6.724722111 10.57146782 0.612718752 73.82686431 6.724722111

1 10.57872196 0.610981796 80.90009698 6.729336613 10.57872196 0.610981796 80.90009698 6.729336613 10.57846162 0.61096676 80.90940375 6.729171005

2 10.58393894 0.614115744 80.50208777 6.732655239 10.58393894 0.614115744 80.50208777 6.732655239 10.58393894 0.614115744 80.50208777 6.732655239

3 10.58932616 0.63496147 79.60449213 6.73608216 10.58940474 0.634966182 79.59944834 6.736132141 10.58932616 0.63496147 79.60449213 6.73608216

4 2.861185099 0.180002881 57.20280302 1.820057065 2.861185099 0.180002881 57.20280302 1.820057065 2.861185099 0.180002881 57.20280302 1.820057065

5 10.58893736 0.654504269 78.18154232 6.735834836 10.58893736 0.654504269 78.18154232 6.735834836 10.58893736 0.654504269 78.18154232 6.735834836

6 10.58504333 0.634836022 80.08626119 6.73335776 10.58504333 0.634836022 80.08626119 6.73335776 10.58504333 0.634836022 80.08626119 6.73335776

7 16.72198576 1.004177114 78.29410438 10.63718958 16.72207835 1.004182674 78.30454226 10.63724848 16.72207835 1.004182674 78.30454226 10.63724848

8 24.30040819 1.50052746 69.97153679 15.45797566 24.30040819 1.50052746 69.97153679 15.45797566 24.30040819 1.50052746 69.97153679 15.45797566

9 10.57827135 0.672530622 79.70229029 6.72904997 10.57824449 0.672528914 77.71270984 6.729032882 10.57824449 0.672528914 77.71270984 6.729032882

10 10.58323766 0.702909385 78.79601871 6.732209138 10.58323766 0.702909385 78.79601871 6.732209138 10.58323766 0.702909385 78.79601871 6.732209138

11 10.53418141 0.68620477 76.46522523 6.701003479 10.53418141 0.68620477 76.46522523 6.701003479 10.53418141 0.68620477 76.46522523 6.701003479

12 12.10165943 0.775502409 74.28183146 7.698107599 12.10165943 0.775502409 74.28183146 7.698107599 12.10165943 0.775502409 74.28183146 7.698107599

13 12.08861933 0.770561539 75.74134517 7.689812526 12.08852914 0.770555791 75.75218307 7.689755157 12.08861933 0.770561539 75.74134517 7.689812526

14 12.10711408 0.753122261 77.02742043 7.701577406 12.10711408 0.753122261 77.02742043 7.701577406 12.10728251 0.753132738 77.01572439 7.701684551

15 10.56888778 0.626599582 80.9219604 6.723080894 10.56888778 0.626599582 80.9219604 6.723080894 10.56888778 0.626599582 80.9219604 6.723080894

16 10.56758377 0.690468727 80.87438709 6.722251389 10.56758377 0.690468727 80.87438709 6.722251389 10.56758377 0.690468727 80.87438709 6.722251389

17 10.41976456 0.692304081 10.74344658 6.628220635 10.41976456 0.692304081 10.74344658 6.628220635 10.41976456 0.692304081 10.74344658 6.628220635

18 10.57214071 0.691683837 77.09009774 6.725150148 10.57214071 0.691683837 77.09009774 6.725150148 10.57214071 0.691683837 77.09009774 6.725150148

19 10.57189141 0.697927207 81.09427562 6.724991561 10.57189141 0.697927207 81.09427562 6.724991561 10.57189141 0.697927207 81.09427562 6.724991561

20 10.70524051 0.698226114 77.88298007 6.809817593 10.70524051 0.698226114 77.88298007 6.809817593 10.70524051 0.698226114 77.88298007 6.809817593

21 10.69152874 0.656078978 81.02909681 6.801095264 10.69152874 0.656078978 81.02909681 6.801095264 10.69152874 0.656078978 81.02909681 6.801095264

22 10.69117414 0.654813964 78.4514334 6.800869695 10.69116975 0.654813695 80.46908396 6.800866902 10.69116975 0.654813695 80.46908396 6.800866902

23 11.31140552 0.705033043 74.29574361 7.213344988 2.954953569 0.191810367 59.09634635 7.213346048 2.954953569 0.191810367 59.09634635 7.213343726

Total 271.4737325 0.705033043 1783.097847 172.7078044 263.1173128 0.683648829 1767.812246 172.707826 263.1172325 0.683648682 1767.804063 172.7077726

292

DDPG

DDPG Time Elapsed (Training) 4656 Time Elapsed (Testing) 695.7 Violations 12276

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0
3.845228471 0.222868161 29.0754419 2.446026735 3.845228471 0.222868161 29.0754419 2.446026735 3.845228471 0.222868161 29.0754419 2.446026735

1
3.847576371 0.222219577 34.53617725 2.447520281 3.847576371 0.222219577 34.53617725 2.447520281 3.847576371 0.222219577 34.53617725 2.447520281

2
3.850030784 0.223391739 34.3928393 2.449081582 3.850030784 0.223391739 34.3928393 2.449081582 3.850030784 0.223391739 34.3928393 2.449081582

3
3.851856992 0.230966611 33.66808429 2.45024327 3.851856992 0.230966611 33.66808429 2.45024327 3.851856992 0.230966611 33.66808429 2.45024327

4
3.850293624 0.242229678 33.71900772 2.44924878 3.850293624 0.242229678 33.71900772 2.44924878 3.850293624 0.242229678 33.71900772 2.44924878

5
3.851462595 0.238059649 34.25524136 2.449992386 3.851462595 0.238059649 34.25524136 2.449992386 3.851462595 0.238059649 34.25524136 2.449992386

6
3.850283446 0.23092004 34.13510949 2.449242306 3.850283446 0.23092004 34.13510949 2.449242306 3.850283446 0.23092004 34.13510949 2.449242306

7
9.988584005 0.599827533 32.46944299 6.353938057 9.988584005 0.599827533 32.46944299 6.353938057 9.988584005 0.599827533 32.46944299 6.353938057

8
3.845794754 0.237474226 34.1638865 2.446386959 3.845794754 0.237474226 34.1638865 2.446386959 3.845794754 0.237474226 34.1638865 2.446386959

9
3.848255816 0.244659056 31.86221773 2.44795249 3.848255816 0.244659056 31.86221773 2.44795249 3.848255816 0.244659056 31.86221773 2.44795249

10
3.869026579 0.256970049 39.55067057 2.461165187 3.869026579 0.256970049 39.55067057 2.461165187 3.869026579 0.256970049 39.55067057 2.461165187

11
3.832655798 0.24966218 33.90994724 2.438029006 3.832655798 0.24966218 33.90994724 2.438029006 3.832655798 0.24966218 33.90994724 2.438029006

12
5.401208613 0.346121977 29.67284195 3.435816823 5.401208613 0.346121977 29.67284195 3.435816823 5.401208613 0.346121977 29.67284195 3.435816823

13
5.381077848 0.343004566 31.22899313 3.423011241 5.381077848 0.343004566 31.22899313 3.423011241 5.381077848 0.343004566 31.22899313 3.423011241

14
5.389598783 0.335259649 33.32251656 3.428431578 5.389598783 0.335259649 33.32251656 3.428431578 5.389598783 0.335259649 33.32251656 3.428431578

15
3.84444849 0.22792652 34.507839 2.445530573 3.84444849 0.22792652 34.507839 2.445530573 3.84444849 0.22792652 34.507839 2.445530573

16
3.84370692 0.251141555 34.44446066 2.445058846 3.84370692 0.251141555 34.44446066 2.445058846 3.84370692 0.251141555 34.44446066 2.445058846

17
3.768726041 0.250399556 4.057068547 2.397362009 3.768726041 0.250399556 4.057068547 2.397362009 3.768726041 0.250399556 4.057068547 2.397362009

18
3.851734899 0.252000313 32.32203922 2.450165604 3.851734899 0.252000313 32.32203922 2.450165604 3.851734899 0.252000313 32.32203922 2.450165604

19
3.848247608 0.254050728 32.91698294 2.447947269 3.848247608 0.254050728 32.91698294 2.447947269 3.848247608 0.254050728 32.91698294 2.447947269

20
3.972444368 0.259094076 34.13333118 2.526951311 3.972444368 0.259094076 34.13333118 2.526951311 3.972444368 0.259094076 34.13333118 2.526951311

21
3.854114148 0.236505305 34.57275447 2.451679092 3.854114148 0.236505305 34.57275447 2.451679092 3.854114148 0.236505305 34.57275447 2.451679092

293

22
3.965652097 0.242888605 32.08049964 2.522630612 3.965652097 0.242888605 32.08049964 2.522630612 3.965652097 0.242888605 32.08049964 2.522630612

23
3.930736871 0.246162662 33.59552843 2.760944608 3.930736871 0.246162662 33.59552843 2.760944608 3.930736871 0.246162662 33.59552843 2.760944608

Total 103.3827459 0.268491834 772.5929221 66.0243566 103.3827459 0.268491834 772.5929221 66.0243566 103.3827459 0.268491834 772.5929221 66.0243566

SAC

SAC Time Elapsed (training) 6422 Time (Elapsed (testing) 704.9 Violations 12608

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.57458864 0.612899634 76.27177568 6.726707328 10.57317492 0.612817695 75.88840743 6.725808032 10.5792757 0.613171294 76.90525391 6.729688855

1 10.58061689 0.61109124 80.91899485 6.730542018 10.58490761 0.611339053 80.91588895 6.733271431 10.58213031 0.611178648 80.88758849 6.731504733

2 10.58666824 0.614274107 80.42294162 6.734391399 10.58942605 0.614434125 80.51913208 6.736145698 10.58791294 0.614346329 80.50056266 6.735183181

3 10.59901232 0.635542276 79.54369086 6.742243718 10.59910012 0.63554754 79.61298426 6.742299571 10.59563874 0.635339987 79.64978506 6.740097715

4 2.866596757 0.18034334 59.22544918 1.823499529 2.834927133 0.17835094 60.74646891 1.803353848 2.866017415 0.180306892 59.21314178 1.823130998

5 10.59087079 0.654623775 80.11359137 6.737064729 10.59138034 0.65465527 80.19701542 6.737388865 10.59397597 0.654815706 80.20004106 6.739039994

6 10.58832577 0.635032886 79.99781452 6.73544579 10.59042785 0.635158958 80.11477931 6.736782963 10.58898914 0.635072671 80.1197081 6.735867769

7 16.72466407 1.00433795 80.30062759 10.63889331 16.72897303 1.004596709 80.25723112 10.64163433 16.72543099 1.004384005 80.31765297 10.63938116

8 10.57428487 0.652952193 80.16088566 6.72651409 24.30539612 1.50083546 71.97863055 15.46114858 24.30228188 1.500643159 71.93543518 15.45916755

9 10.5811364 0.672712772 79.74067141 6.730872489 10.5837779 0.67288071 79.7280367 6.732552795 10.57959789 0.672614959 79.71961795 6.729893811

10 10.66203313 0.708142763 85.52283411 6.782332516 10.57795108 0.702558265 75.01236199 6.728846239 10.11255888 0.671648203 77.32423537 6.432800956

11 10.53927873 0.686536814 78.50194833 6.704245984 10.53568959 0.686303014 78.48497445 6.701962863 10.54135025 0.686671754 78.44331024 6.70556372

12 12.10526337 0.775733357 76.28737868 7.700400136 12.10357553 0.775625196 76.27402418 7.699326464 12.1058853 0.775773212 76.28446907 7.700795756

13 12.0926839 0.770820626 75.77791045 7.69239808 12.09225711 0.770793421 75.78400491 7.692126593 12.09271407 0.770822549 75.80283859 7.692417276

14 12.11668201 0.753717433 76.72684761 7.707663762 12.10944538 0.753267279 77.03120176 7.703060396 12.11094834 0.753360771 77.04072186 7.704016458

15 10.57494772 0.626958858 80.90233511 6.726935741 10.57672187 0.627064043 80.84749141 6.728064313 10.57611289 0.627027938 80.85525991 6.727676931

16 10.57650022 0.691051313 80.48818897 6.727923318 10.56911132 0.690568534 80.87462227 6.723223096 10.65809786 0.69638277 77.89960679 6.779829212

17 10.56872546 0.702201256 74.42445968 6.722977637 10.50718853 0.698112654 53.72882047 6.683832767 10.57042415 0.70231412 74.42557375 6.724058213

294

18 10.61892762 0.694744877 78.24439838 6.75491224 10.51102465 0.68768531 75.31026235 6.686272999 10.57473694 0.691853695 77.06813293 6.72680166

19 10.57409126 0.698072435 81.13851543 6.726390935 10.57543904 0.698161412 81.14954537 6.727248283 10.57434627 0.69808927 81.14207921 6.726553152

20 10.71033402 0.698558327 79.80786611 6.813057674 10.70864093 0.698447899 79.87545981 6.811980669 10.70709801 0.698347266 79.88886414 6.810999186

21 10.6934557 0.656197224 81.03204264 6.802321042 10.69606922 0.656357601 80.97474606 6.803983553 10.6922168 0.6561212 81.03059121 6.801532948

22 10.69868339 0.655273892 80.47647264 6.805646481 10.69460193 0.65502391 80.51664604 6.80305018 10.69405766 0.654990575 80.50703535 6.802703961

23 10.73036397 0.669209537 78.52294091 6.825799128 2.957615474 0.191983155 59.11207539 1.881398355 2.957811124 0.191995855 59.11018012 1.881522812

Total 257.5287353 0.669209537 1884.550582 163.8191791 263.1968227 0.683857006 1824.934811 167.4247629 262.9696095 0.683219701 1846.271686 167.280228

TQC

TQC Time Elapsed (train) 6760 Time Elapsed (Test) 699.5 Violations 12584

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.58142172 0.613295677 77.48546615 6.731053985 10.58161552 0.613306909 77.57560299 6.731177263 10.57589309 0.612975239 79.82109227 6.727537115

1 10.58761627 0.611495493 82.25676146 6.734994459 10.5850734 0.611348629 81.89609602 6.733376892 10.58665851 0.611440177 82.12519781 6.734385209

2 10.58274739 0.614046607 80.7053703 6.731897272 10.58605583 0.614238573 81.01491263 6.734001834 10.59455522 0.614731737 82.07736832 6.739408467

3 10.59432549 0.635261242 79.63751861 6.739262328 10.58918841 0.63495321 80.29880917 6.735994531 10.59017672 0.635012472 80.35423275 6.736623218

4 2.868864468 0.180486006 59.26908357 1.824942065 2.871657453 0.180661718 60.88592096 1.826718739 2.86993753 0.180553514 60.63836011 1.825624662

5 10.57978072 0.653938295 79.74895992 6.730010109 10.59753436 0.655035651 80.13438461 6.741303555 10.57841461 0.653853856 79.67032826 6.729141104

6 10.59518882 0.635444496 79.9334325 6.739811509 10.57874633 0.634458361 79.98194236 6.729352115 10.59049431 0.635162944 80.10441179 6.736825242

7 16.73051608 1.004689371 80.23726662 10.64261589 16.7322013 1.004790571 79.95464027 10.64368789 16.72947442 1.004626818 81.44542992 10.64195327

8 10.58037671 0.653328359 81.59342807 6.730389235 10.56671828 0.652484963 80.19399716 6.721700833 24.29423899 1.500146517 72.01935434 15.4540513

9 10.5722429 0.672147353 79.95258114 6.725215151 10.58566801 0.673000876 81.26191101 6.733755132 10.57588687 0.672379025 80.29309723 6.727533158

10 10.65958383 0.707980087 84.7262579 6.780774468 10.55460264 0.701007527 66.07151151 6.713993831 10.66431528 0.708294337 87.81657635 6.783784238

11 10.52947796 0.685898384 78.64751561 6.698011523 10.52812666 0.685810359 78.51169144 6.69715193 10.54324918 0.686795452 78.26317815 6.706771669

12 12.1104791 0.776067593 76.15308298 7.703717965 12.1094169 0.775999525 76.22903918 7.703042281 12.11103025 0.776102913 76.08228307 7.704068566

13 12.09778793 0.771145971 75.61376028 7.695644856 12.09693122 0.771091362 75.78096333 7.695099886 12.09648394 0.771062851 77.32902044 7.694815364

295

14 12.10448668 0.752958823 77.25788156 7.699906065 12.10612203 0.75306055 77.4014147 7.700946344 12.10028418 0.752697408 76.92287966 7.697232775

15 10.57777771 0.627126641 82.42311627 6.728735956 10.56894518 0.626602985 81.38494702 6.723117405 10.57817737 0.627150336 80.68096067 6.728990191

16 10.52505821 0.687690176 -287.9438089 6.695200031 10.61713245 0.693706156 -288.1165191 6.753770292 10.55794259 0.689838787 80.59496518 6.716118438

17 10.55614262 0.701365235 66.37173456 6.714973445 10.51929872 0.698917273 60.29960753 6.691536303 10.49074462 0.697020097 36.33300411 6.673372465

18 10.57554231 0.691906387 76.79396556 6.727313976 10.56454578 0.691186937 77.44317826 6.72031886 10.51213403 0.687757891 76.8852724 6.6869787

19 10.57513711 0.698141479 82.46694831 6.727056219 10.57487912 0.698124447 82.44108438 6.726892105 10.54516157 0.696162577 79.13943843 6.707988181

20 10.70973781 0.698519441 79.86176575 6.812678415 10.71010589 0.698543448 79.80779268 6.812912558 10.70871276 0.698452584 79.88815423 6.812026358

21 10.69595804 0.656350779 80.97675458 6.803912826 10.6958612 0.656344836 80.73371136 6.803851228 10.68272349 0.655538649 81.3424602 6.795494064

22 10.69314651 0.654934768 80.51572875 6.802124356 10.68790175 0.654613537 81.18783055 6.798788061 10.69502255 0.655049672 81.80614685 6.803317747

23 10.69961412 0.669934996 80.45141636 6.806238532 2.964240457 0.192413192 58.80412332 1.88561264 2.961152922 0.192212776 59.09505076 1.883648597

Total 257.3830105 0.668923069 1515.135988 163.7264806 249.5725689 0.6488209 1471.178593 158.7581025 263.232865 0.68395911 1830.728263 167.4476901

ARS

ARS Time Elapsed (train) 3535 Time Elapsed (test) 691.6 Violations 12604

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions Water Saved Water Saved % Rewards Carbon Emissions

0 10.57146782 0.612718752 73.82686431 6.724722111 10.57146782 0.612718752 73.82686431 6.724722111 10.57146782 0.612718752 73.82686431 6.724722111

1 10.57872196 0.610981796 80.90009698 6.729336613 10.57872196 0.610981796 80.90009698 6.729336613 10.57872196 0.610981796 80.90009698 6.729336613

2 10.58393894 0.614115744 80.50208777 6.732655239 10.58393894 0.614115744 80.50208777 6.732655239 10.58393894 0.614115744 80.50208777 6.732655239

3 10.58932616 0.63496147 79.60449213 6.73608216 10.58932616 0.63496147 79.60449213 6.73608216 10.58932616 0.63496147 79.60449213 6.73608216

4 2.861185099 0.180002881 57.20280302 1.820057065 2.861185099 0.180002881 57.20280302 1.820057065 2.861185099 0.180002881 57.20280302 1.820057065

5 10.58893736 0.654504269 78.18154232 6.735834836 10.58893736 0.654504269 78.18154232 6.735834836 10.58893736 0.654504269 78.18154232 6.735834836

6 10.58504333 0.634836022 80.08626119 6.73335776 10.58504333 0.634836022 80.08626119 6.73335776 10.58504333 0.634836022 80.08626119 6.73335776

7 16.72207835 1.004182674 78.30454226 10.63724848 16.72207835 1.004182674 78.30454226 10.63724848 16.72207835 1.004182674 78.30454226 10.63724848

8 24.30040819 1.50052746 69.97153679 15.45797566 24.30040819 1.50052746 69.97153679 15.45797566 24.30040819 1.50052746 69.97153679 15.45797566

9 10.57824449 0.672528914 77.71270984 6.729032882 10.57824449 0.672528914 77.71270984 6.729032882 10.57824449 0.672528914 77.71270984 6.729032882

296

10 10.58323766 0.702909385 78.79601871 6.732209138 10.58323766 0.702909385 78.79601871 6.732209138 10.58323766 0.702909385 78.79601871 6.732209138

11 10.53418141 0.68620477 76.46522523 6.701003479 10.53418141 0.68620477 76.46522523 6.701003479 10.53418141 0.68620477 76.46522523 6.701003479

12 12.10165943 0.775502409 74.28183146 7.698107599 12.10165943 0.775502409 74.28183146 7.698107599 12.10165943 0.775502409 74.28183146 7.698107599

13 12.08861933 0.770561539 75.74134517 7.689812526 12.08861933 0.770561539 75.74134517 7.689812526 12.08861933 0.770561539 75.74134517 7.689812526

14 12.10711408 0.753122261 77.02742043 7.701577406 12.10711408 0.753122261 77.02742043 7.701577406 12.10711408 0.753122261 77.02742043 7.701577406

15 10.56888778 0.626599582 80.9219604 6.723080894 10.56888778 0.626599582 80.9219604 6.723080894 10.56888778 0.626599582 80.9219604 6.723080894

16 10.56758377 0.690468727 80.87438709 6.722251389 10.56758377 0.690468727 80.87438709 6.722251389 10.56758377 0.690468727 80.87438709 6.722251389

17 10.41976456 0.692304081 10.74344658 6.628220635 10.41976456 0.692304081 10.74344658 6.628220635 10.41976456 0.692304081 10.74344658 6.628220635

18 10.57214071 0.691683837 77.09009774 6.725150148 10.57214071 0.691683837 77.09009774 6.725150148 10.57214071 0.691683837 77.09009774 6.725150148

19 10.57189141 0.697927207 81.09427562 6.724991561 10.57189141 0.697927207 81.09427562 6.724991561 10.57189141 0.697927207 81.09427562 6.724991561

20 10.70524051 0.698226114 77.88298007 6.809817593 10.70524051 0.698226114 77.88298007 6.809817593 10.70524051 0.698226114 77.88298007 6.809817593

21 10.69152874 0.656078978 81.02909681 6.801095264 10.69152874 0.656078978 81.02909681 6.801095264 10.69152874 0.656078978 81.02909681 6.801095264

22 10.69116975 0.654813695 80.46908396 6.800866902 10.69116975 0.654813695 80.46908396 6.800866902 10.69116975 0.654813695 80.46908396 6.800866902

23 10.69597967 0.669706263 79.79372028 6.803926586 2.954953569 0.191810367 59.09634635 1.879705064 2.954953569 0.191810367 59.09634635 1.879705064

 0

Total 270.8583505 0.703561201 1788.503826 172.2984139 263.1173244 0.683648872 1767.806452 167.3741924 263.1173244 0.683648872 1767.806452 167.3741924

Appendix H: Burst Leakage – Jowitt & Xu Results

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.

Each algorithm’s step rewards, water saved% and carbon emissions are listed along with the algorithm’s processing speeds. A line plot of the rewards of the

algorithms across the three test episodes is shown below.

297

NM

NM Time Elapse 631.8

-1

-0.5

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time

Reward Comparisons

NM

PSO

DE

TRPO

PPO

Recurrent
PPO
A2C

DDPG

SAC

TQC

ARS

298

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

0

11.61422965 0.017568206 0.053231412 2 7.388043762

-

4.968009116

-

0.007514834

-

0.022647722 0

-

3.160249959 14.50430899 0.021939869 0.066356362 1 9.226481035

1 -

4.872685871

-

0.007353453

-

0.022160501 0

-

3.099612936 262.1677518 0.395641812 1.188005705 1 166.7701502 14.36609036 0.021680111 0.06555616 1 9.138557399

2

474.6435087 0.68942709 2.069414242 1 301.9302288

-5.98798E-

06

-8.69764E-

09

-2.62881E-

08 0

-3.80908E-

06 12.71753296 0.018472415 0.055665024 0 8.089877065

3

9.41631329 0.013684174 0.041260776 0 5.98990521 341.9219591 0.496895072 1.491516177 0 217.5033966

-

2.979524515

-

0.004329968 -0.01302992 0

-

1.895335135

4
13.942366 0.020261597 0.061059257 2 8.869017859 10.54341115 0.015322102 0.046196931 2 6.706874704 366.7548206 0.532982592 1.600013828 2 233.3000765

5
12.81246589 0.018646132 0.056198524 0 8.150265802 9.415751968 0.013702855 0.041324502 0 5.989548142 9.415718279 0.013702806 0.041324354 0 5.989526712

6
511.395869 0.8013255 0.406121401 13 325.3091402 506.1406452 0.793090892 0.380995068 11 321.9661872 15.34678405 0.024047456 0.072959859 1 9.762396269

7

6.44634742 0.010073787 0.030358829 0 4.100650521 6.4463214 0.010073746 0.030358706 0 4.100633969

-3.21586E-

06

-5.02546E-

09

-1.53754E-

08 0

-2.04567E-

06

8
10.9384082 0.019156981 0.057843685 0 6.958140225 29.88941394 0.052346823 0.159375985 1 19.013254 21.74700933 0.038086623 0.116596173 2 13.83370757

9
429.2962178 0.752241009 0.260287876 11 273.0839101 21.75866519 0.038126961 0.116724617 2 13.8411221 18.29977709 0.03206607 0.098148035 1 11.6408542

10
2.47165E-05 4.19929E-08 1.27934E-07 0 1.57226E-05 460.0941791 0.781692168 0.348961498 13 292.6751092 455.5715853 0.774008358 0.325005175 11 289.7981968

11
454.7467684 0.773347975 0.323041191 11 289.2735143 28.23198556 0.048011664 0.145967891 1 17.95893066 28.23198872 0.048011669 0.145967907 1 17.95893267

12

24.74647402 0.039819116 0.12073531 1 15.74172706 24.74082734 0.03981003 0.120707675 0 15.73813509

-8.77913E-

05

-1.41263E-

07

-4.28144E-

07 0

-5.58458E-

05

13
7.622812725 0.012265076 0.036977348 0 4.84902363 16.34860479 0.02630484 0.079978899 1 10.39967448 24.7428569 0.039811159 0.120710868 1 15.73942613

14

19.33674976 0.031126278 0.094650551 2 12.30049326

-

0.000130554

-2.10153E-

07

-6.36805E-

07 0

-8.30482E-

05 24.7721263 0.039875579 0.120908753 1 15.75804498

15
24.7449143 0.039815834 0.12072524 1 15.74073488 16.35004595 0.026308061 0.079988918 1 10.40059123 24.745166 0.039816239 0.120726471 1 15.740895

16
479.0155389 0.793557927 0.383496956 12 304.7113646 17.14487414 0.028402942 0.086553225 1 10.90619734 20.30967223 0.033645884 0.102544887 2 12.9193887

17
20.21981896 0.033398315 0.101766646 2 12.86223124 26.45770672 0.043701817 0.132676866 1 16.8302764 8.670563514 0.014321702 0.043195463 0 5.515518863

18
7.55018603 0.012126212 0.036557772 0 4.802824337 494.7153782 0.794553084 0.385714392 11 314.6983464 3.84015E-08 6.16759E-11 7.3147E-10 0 2.4428E-08

19
24.77680357 0.039885882 0.120940403 1 15.76102029 27.93429618 0.044968837 0.13640274 2 17.76956449 493.6979982 0.794758697 0.386365392 11 314.0511706

20
23.03482033 0.036168163 0.109532525 1 14.65290991 6.638125344 0.010422864 0.03141283 0 4.222644294 431.1265872 0.676934158 2.032790275 2 274.2482447

299

21

508.0533983 0.796207549 0.390509111 12 323.1829278 6.561308265 0.010282705 0.030989602 0 4.173779413

-1.53095E-

05

-2.39927E-

08

-7.34156E-

08 0

-9.73869E-

06

22 -

0.000201074

-3.03438E-

07

-9.22891E-

07 0

-

0.000127907 526.7734798 0.794945199 1.386284409 11 335.091146 474.6807165 0.716332866 2.15056324 3 301.9538974

23
519.0486171 0.783166925 1.350933027 10 88.75265802 11.61376236 0.017523435 0.053078811 2 66.75018542 14.35606466 0.02166116 0.06549777 1 57.30981329

Total 3588.529766 23.85798339 6.203480787 82 2041.311007 2846.920348 18.64422023 6.450567061 61 1870.345411 2471.077736 16.24093864 7.717865561 42 1620.079603

PSO

PSO Time Elapsed 3438

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

0

440.776132

2 0.666737782

2.00159306

8 1 280.3865132

462.459824

1 0.699537509

2.09996171

9 1 294.1799433

459.446716

9 0.694979748 2.08633182 1 292.2632456

1 441.696264 0.666571342 2.00107479 1 280.9718275

446.567532

2 0.673922655

2.02312243

6 1 284.0705386

482.625704

8 0.728338657

2.18640731

7 2 307.0078633

2 12.7157496 0.018469824

0.05565721

8 0 8.088742636

9.41200777

9 0.013671088

0.04121874

1 0 5.987166388

9.40756085

6 0.013664629

0.04119927

7 0 5.984337612

3

12.7415775

8 0.018516585

0.05580071

8 0 8.105172328

123.396145

4 0.17932436

0.53842507

8 0 78.49475599

9.41607885

1 0.013683834

0.04125974

9 0 5.989756079

4

107.214085

4 0.155807744

0.46789895

5 0 68.20102399

9.40979637

6 0.013674688

0.04123218

1 0 5.985759671

397.562887

1 0.577754091

1.73440189

1 1 252.8977037

5

12.8036895

8 0.01863336

0.05616002

3 0 8.144683013

214.061019

1 0.31152552

0.93525909

5 0 136.1684955

12.8109052

9 0.018643861

0.05619167

9 0 8.149273074

6

492.741931

4 0.772095941

1.31816833

7 10 313.4429974

508.123369

4 0.796197697 0.39047736 12 323.2274377

22.8516702

8 0.035807145

0.10842723

3 0 14.5364045

7

494.612316

2 0.772936789

1.32066009

9 10 314.6327866

15.2268551

3 0.023795195 0.07217843 0 9.686107088 22.6789211 0.035440631

0.10730232

5 0 14.42651529

300

8

431.029613

5 0.754883686

0.26865953

2 11 274.1865577

430.094543

7 0.753246052

0.26373536

9 11 273.5917411

422.560595

6 0.740051472

1.22414036

6 7 268.7992461

9

424.789643

8 0.744344294

0.23698870

5 8 270.2171882

420.780330

9 0.737318913

1.21594073

4 7 267.6667841

321.075811

5 0.56261011

1.69137631

1 0 204.2427452

10

17.6972362

4 0.030067303

0.09180543

8 0 11.25756591

17.6977237

9 0.030068131

0.09180796

9 0 11.25787606

386.593473

2 0.656815721

1.97361515

3 1 245.9198402

11

230.852402

7 0.392590449

1.18063208

2 0 146.8498304

368.197717

8 0.62616159 1.8816029 1 234.2179323

412.594700

1 0.701663647

2.10814965

6 3 262.4597406

12 484.228794 0.779164037

0.33978062

2 11 308.0276204

438.837772

7 0.706126143

2.12063720

1 3 279.153484

24.7243058

7 0.039783446

0.12062681

6 0 15.72762545

13

487.693477

1 0.784696876

0.35637630

5 11 310.2315746

496.258783

4 0.79847842

0.39772856

8 11 315.6801373 496.261621 0.798482985

0.39774252

4 11 315.6819424

14

496.074280

1 0.798528507

0.39788613

3 11 315.562771

16.3577661

9 0.026331022

0.08006118

4 0 10.40550223

496.087913

9 0.798550453

0.39795322

6 12 315.5714438

15

496.227497

1 0.798455441 0.39765867 11 315.6602355

496.245070

1 0.798483717 0.39774511 11 315.671414

496.247824

2 0.798488148

0.39775865

8 11 315.6731659

16

476.948878

5 0.790134208

0.37321770

5 11 303.3967206

477.717906

9 0.791408213

0.37704059

5 11 303.8859149

478.056329

4 0.791968859

0.37864585

6 11 304.1011923

17

479.646754

9 0.792261966

0.37954491

6 11 305.1128937

26.4556768

3 0.043698464

0.13266664

3 1 16.82898514

477.045706

5 0.787965655

0.36665657

1 11 303.4583148

18

497.039590

5 0.798285957

0.39712161

3 11 316.1768243

496.025261

7 0.796656863

0.39214232

7 11 315.5315895

497.051188

7 0.798304585

0.39717855

2 12 316.1842021

19

16.3528313

4 0.026324909

0.08004301

1 0 10.40236307

461.258070

5 0.742536661

2.22989281

1 6 293.4154838

16.3616997

2 0.026339185

0.08008644

4 1 10.40800443

20

278.017478

8 0.436529626

1.31127358

8 0 176.8524786

507.062746

8 0.79616545

0.39039658

1 11 322.5527545

415.519119

1 0.652428064 1.95913868 1 264.3200221

21

508.001229

8 0.796125792

0.39025963

3 11 323.1497423

15.3493022

4 0.024055011

0.07298367

8 0 9.763998138

507.788287

9 0.795792075

0.38924128

7 11 323.0142857

22

9.07122449

3 0.013689236 0.04148081 0 5.770387325 9.07229362 0.013690849

0.04148569

1 0 5.771067417

47.9149583

8 0.072307676

0.21754299

4 0 30.47966332

23

9.06063420

2 0.013671145

0.04142520

2 0 212.2299142

466.938062

8 0.704539873 2.11500088 2 186.7010819

515.151135

9 0.777286208

1.33328629

1 10 198.4916759

Tota

l

7358.03331

3 49.33134499

13.5611671

7 129 4887.058415

6933.00557

9 46.25255868

18.3427432

8 100 4299.89595

7427.83511

6 49.65479536

19.7946606

8 106 4595.78821

301

DE

DE

Time

Elapsed 2967

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

0
525.388604 0.794726409 1.385640173 11 334.2101988 522.8609257 0.790902929 1.374165491 11 332.6022921 525.3587944 0.794681318 1.385503025 10 334.1912363

1
526.7541365 0.794933623 1.386249164 10 335.0788413 439.850863 0.663786416 1.992719805 1 279.797931 526.6553939 0.794784609 1.385795875 10 335.0160292

2
9.388227865 0.013636547 0.041114654 0 5.97203951 12.66818952 0.018400743 0.055449055 0 8.058488716 12.69099319 0.018433865 0.055548864 0 8.072994586

3
12.72200881 0.018488147 0.055715022 0 8.092724245 12.7343784 0.018506123 0.05576919 0 8.100592789 12.66969813 0.018412127 0.055485938 0 8.059448374

4
12.67511261 0.018419974 0.05550958 0 8.062892634 12.7254699 0.018493156 0.055730109 0 8.094925912 12.73386495 0.018505356 0.055766872 0 8.100266172

5
9.371352808 0.01363824 0.041129748 0 5.961304948 12.74294222 0.018544954 0.055893584 0 8.106040407 9.410274062 0.013694883 0.041300474 0 5.986063536

6
508.1051369 0.796169128 0.390390183 11 323.2158397 508.1074402 0.796172737 0.390401196 11 323.2173049 508.0995986 0.79616045 0.390363702 11 323.2123167

7
509.3290635 0.795934832 0.389644778 11 323.9944039 509.375784 0.796007843 0.389867525 11 324.0241237 509.3966224 0.796040407 0.389966873 11 324.0373794

8
416.9410277 0.730209642 1.194585104 7 265.2245265 430.6565888 0.754230389 0.266648097 11 273.9492692 428.940364 0.751224679 0.257674825 10 272.8575444

9
403.5445187 0.707117191 2.125222445 6 256.7027393 408.9217161 0.71653947 2.153496117 6 260.123282 422.7768847 0.740817405 1.226462468 8 268.9368319

10
454.5759004 0.772316706 0.320276911 11 289.1648218 420.9027729 0.715106637 2.148584533 6 267.7446719 418.6000409 0.711194334 2.136847855 6 266.279858

11
445.7461006 0.758041328 0.277449635 11 283.5480095 451.2155112 0.767342676 0.305358406 11 287.027211 449.7778491 0.76489777 0.298037337 11 286.1126854

12
496.2533102 0.798512474 0.397833224 12 315.6766557 496.2389252 0.798489328 0.397762462 11 315.6675051 496.2033256 0.798432045 0.397587346 11 315.6448595

13
496.2658615 0.798489808 0.397763383 11 315.6846398 496.2761692 0.798506393 0.397814085 12 315.6911967 496.2628213 0.798484917 0.397748429 11 315.6827059

14
496.0841395 0.798544377 0.397934652 11 315.5690428 496.0854823 0.798546539 0.39794126 12 315.569897 496.0706581 0.798522676 0.397868309 11 315.560467

15
496.1981713 0.798408254 0.397514418 11 315.6415807 496.2386514 0.798473389 0.397713538 11 315.6673309 496.2256364 0.798452447 0.397649517 11 315.6590518

16
472.6411443 0.782997828 0.351800523 11 300.6564847 466.8703596 0.773437696 0.32311993 11 296.9855731 465.9490526 0.771911419 0.318544821 11 296.3995113

17
472.4752983 0.780416431 0.343995939 11 300.5509867 473.1043225 0.781455429 0.347125003 11 300.9511216 430.0037208 0.710263521 2.133419764 2 273.5339669

18
497.0472372 0.798298239 0.397159155 12 316.1816885 497.0466986 0.798297374 0.397156511 12 316.1813459 497.0217831 0.798257357 0.397034194 11 316.1654967

19
495.9542684 0.798390858 0.397466032 11 315.4864292 496.0555023 0.798553825 0.397964246 11 315.5508261 495.9982591 0.798461674 0.397682527 11 315.5144126

20
507.0394464 0.796128865 0.390290232 11 322.5379327 507.1406216 0.796287725 0.390775057 11 322.6022922 507.1335473 0.796276618 0.390741161 11 322.5977921

21
508.0287224 0.796168878 0.390391107 11 323.1672309 508.0438736 0.796192622 0.390463562 11 323.1768689 508.0201146 0.796155388 0.390349942 11 323.1617553

302

22
526.7668733 0.794935229 1.386253844 10 335.0869435 526.7733551 0.794945011 1.386283591 10 335.0910667 526.7362382 0.794888998 1.386113224 10 335.0674558

23
526.8387575 0.794921085 1.386209404 10 253.6536825 526.863486 0.794958397 1.386322892 10 250.8586405 526.86646 0.794962884 1.38633654 11 252.3083033

Total 9826.134421 65.6243504 14.29753931 210 6169.12164 9729.500029 65.00907415 15.85452524 201 6104.839798 9779.601995 65.30798811 16.06982988 199 6138.158432

TRPO

TRPO

Time

Elapsed

(training) 282

Time

(Elapse

d

(testing

) 27

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

Step

Water

Saved

Water

Saved % Rewards Violations

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

0

422.025351

3

0.63837450

9

1.91684638

2 3

268.458766

5

476.237772

2

0.72037865

2

2.16288261

2 4

302.944371

7

484.332522

6

0.73262313

6

2.19960224

2 4

308.093604

3

1

417.369917

7

0.62986003

9

1.89126449

8 3 265.497352

432.205870

7

0.65224922

8

1.95844809

3 3

274.934798

5

466.124841

5

0.70343692

4

2.11203109

6 3

296.511334

2

2

533.605387

2

0.77507013

7

1.32657890

3 10

339.437058

9

488.596688

2

0.70969430

1

2.13037953

9 3

310.806125

3

506.278445

6

0.73537732

9

2.20745793

9 3

322.053844

8

3

535.838907

2

0.77870316

6

1.33748585

4 10

340.857845

7 520.883445

0.75696927

3

2.27226134

3 7 331.344377

491.148600

5

0.71375737

2 2.14257656 3

312.429447

8

4

534.421253

3

0.77664207

5 1.33129643 10

339.956047

6

510.946418

3

0.74252751

8

2.22891985

3 4

325.023235

6

535.834559

9

0.77869594

8

1.33746418

5 10

340.855080

2

5

524.022090

9

0.76261551

5 2.2892151 8

333.340932

5

511.574518

9

0.74450041

6

2.23484943

8 4

325.422782

9

500.239714

3

0.72800474

2

2.18534289

1 3

318.212487

1

6

485.964808

4

0.76147661

1

1.28682236

5 10

309.131933

9

461.536425

4

0.72319885

5

2.17202314

4 5

293.592550

9

515.972677

7

0.80849707

5

0.42786290

4 16

328.220539

7

7

490.926328

2 0.76717665

1.30389373

5 10

312.288055

9

450.323429

6

0.70372599

8

2.11355086

7 4 286.45974 476.590033

0.74477314

4

2.23668865

3 8

303.168451

8

303

8

395.029460

3 0.69183482

2.08062716

7 9

251.286140

3

471.586111

3

0.82591230

6

-

0.51715866

6 21

299.985357

1

448.741368

5

0.78590316

7

0.36270359

3 20

285.453359

3

9

467.127695

6

0.81853180

7

0.46073574

3 20

297.149269

7

414.330624

3

0.72601731

4

1.18325288

6 12

263.563996

7

444.413556

5

0.77873060

2

0.34139235

9 20

282.700351

5

10

469.729135

1

0.79806179

4 0.39845907 20

298.804097

4

452.930859

9

0.76952181

1

0.31286413

1 17

288.118378

6

451.670634

7

0.76738070

9

0.30644180

7 17

287.316724

2

11

444.453426

1 0.75584299

0.27185854

4 13

282.725713

4

473.642556

1

0.80548238

5

0.42073387

8 20

301.293502

8 475.565337 0.80875229

0.43043111

3 20

302.516622

2

12

505.467563

7

0.81333896

7

0.44292711

1 17

321.538026

6

432.991397

3

0.69671884

3

2.09307316

6 4

275.434487

7

481.752520

6

0.77517950

9

0.32849199

6 16

306.452413

4

13

504.852686

9

0.81230597

6

0.43977061

8 17

321.146891

2

495.463260

3

0.79719842

6

0.39452707

1 16

315.174089

1

484.978457

2

0.78032841

9

0.34393373

3 16

308.504496

2

14

504.967583

6

0.81284401

7

0.44141881

7 17

321.219979

3

481.136632

8

0.77448344

4

0.32641260

2 16

306.060634

8

472.019250

7

0.75980723

5

1.28238734

8 10

300.260885

7

15

425.871022

8

0.68524827

3

2.05867936

8 4 270.905075

445.678943

8

0.71712023

1

2.15432404

5 5

283.505289

7

455.029240

7

0.73216533

8

2.19946178

6 8

289.453200

6

16

459.115493

6

0.76059064

8

0.28541235

4 14

292.052547

8

444.818043

4

0.73690487

2

2.21435742

1 9

282.957653

7

463.217061

6

0.76738548

4

0.30579414

9 15

294.661637

2

17

427.599538

8

0.70629238

6

2.12240741

1 5

272.004618

6

484.546223

2

0.80035471

8 0.40456635 18

308.229543

5

495.606378

3

0.81862345

5

0.45934744

2 20

315.265129

4

18

450.159303

3

0.72299240

8

2.17188542

4 6 286.355336

473.394661

8

0.76031028

1

1.28385185

4 10

301.135812

3

476.486627

5

0.76527622

9

1.29874744

7 11

303.102673

5

19

458.373431

1

0.73789294

7 2.2166549 8 291.580507

505.296893

8

0.81343068

5

0.44321197

3 17

321.429460

1

389.349942

1

0.62677842

3

1.88323949

6 3

247.673285

2

20

458.213040

3

0.71946399

9

2.16085722

4 4

291.478479

2

481.625925

3

0.75622578

1

1.27113725

4 10

306.371883

6

493.518039

8

0.77489820

5

1.32712592

9 11

313.936695

5

21

453.317309

5

0.71042663

1

2.13367698

2 4

288.364206

9 481.205164

0.75413172

2

2.26481227

5 8

306.104228

9

481.528167

8

0.75463792

5

2.26633795

9 9

306.309698

1

22 508.918546

0.76800061

2

1.30569791

6 10

323.733265

5

492.739478

5

0.74358504

7

2.23246137

2 6

313.441437

1

531.158924

2

0.80156320

1 0.40636555 13

337.880814

9

23

465.574925

3

0.70686598

8

1.78915365

1

5.66666666

7

299.799040

1

438.183034

1

0.66115282

5 1.98515481 3 300.44965

499.570548

9

0.75377742

6

2.26301547

4 8

303.325089

2

Total

11342.9442

1

74.6268873

5

33.4636255

7

237.666666

7

7219.11118

7

11321.8743

8

74.5491455

5

35.7408973

1 226

7223.78338

8

11521.1274

5

75.8181386

9

30.6542436

5 267

7314.35786

6

304

PPO

PPO

Time

Elapsed

(train) 292

Time

Elapse

d

(Test) 26.6

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step

Water

Saved

Water

Saved % Rewards Violations

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

0

530.183831

6

0.80197988

6

0.40765276

2 13

337.260538

9

475.882884

7

0.71984183

4

2.16127465

7 4

302.718620

6

499.770341

8

0.75597507

5

2.26965476

4 9

317.913909

9

1

509.319502

8

0.76862272

1

1.30756336

4 10

323.988322

1

503.863049

5

0.76038829

5

2.28286917

5 9

320.517363

1

490.998543

6 0.74097425

2.22463720

3 6

312.333993

6

2

533.951355

7

0.77557266

2

1.32808797

3 10

339.657136

4

531.907164

4

0.77260344

2

2.31917147

6 9

338.356785

4

532.886332

7

0.77402569

9 1.32344248 10

338.979653

9

3

531.506207

1

0.77240670

8

2.31858630

1 9

338.101728

5

535.838908

1

0.77870316

7

1.33748585

8 10

340.857846

2

535.838907

2

0.77870316

6

1.33748585

4 10

340.857845

7

4

534.840029

8

0.77725065

8

1.33312399

6 10

340.222439

7

535.834560

6

0.77869594

9

1.33746418

8 10

340.855080

7

534.525239

9

0.77679319

3

1.33175023

4 10

340.022195

6

5

540.359939

2

0.78639217

7

1.36056734

9 12

343.733764

5

515.416519

6

0.75009172

5

2.25162980

7 5

327.866756

5

540.521567

5

0.78662739

7

1.36127371

8 12

343.836579

5

6

515.972676

2

0.80849707

3

0.42786289

7 16

328.220538

8

515.693518

6 0.80805965

0.42652935

7 16 328.042961

479.690035

8

0.75164443

3

2.25735575

4 8

305.140425

6

7

481.604283

7

0.75260897

5

2.26019802

1 8

306.358116

9 502.540751

0.78532665

2

0.35832918

3 13

319.676222

5

464.448698

6 0.72579973

2.17977449

2 5

295.445106

1

8

476.327221

6

0.83421564

9

-

0.49227559

1 21

303.001272

2

476.327221

6

0.83421564

9 -0.49227559 21

303.001272

2

461.424920

5

0.80811650

5

0.42949619

2 20

293.521620

4

9

454.149962

2

0.79579137

1

0.39255695

3 20 288.893874 476.160448

0.83435958

9

-

0.49182830

6 21

302.895184

2

448.592631

2

0.78605345

1

0.36335458

2 20

285.358744

6

10

460.402681

2

0.78221630

8

0.35093938

3 18

292.871353

6

473.596290

6

0.80463202

5

0.41816040

7 20

301.264072

4

449.895968

9

0.76436558

2 0.2973419 17

286.187823

7

305

11

479.781066

4

0.81592161

2

0.45203570

2 20 305.198332

484.232354

9

0.82349152

8

-

0.52527469

7 21

308.029885

6 465.48351

0.79160701

1

0.37912901

5 20

296.103370

4

12

489.648504

6

0.78788479

8

0.36659738

9 16

311.475206

7

505.467563

7

0.81333896

7

0.44292711

1 17

321.538026

6

492.716041

2

0.79282071

7

0.38140009

4 16

313.426528

1

13

482.873143

8

0.77694097

8

0.33372059

4 16

307.165264

2

487.810920

6

0.78488584

2

0.35759511

6 16

310.306282

8

505.487915

9

0.81332805

7

0.44289322

5 17

321.550973

1

14 496.080113

0.79853789

6

0.39850808

9 16

315.566481

5

505.090379

6

0.81304168

1

0.44202273

1 17

321.298092

3

505.172104

9

0.81317323

4

0.44242466

2 17

321.350079

4

15

482.599127

1

0.77652669

6

0.33250475

6 16

306.990956

7

502.460679

5 0.80848495

0.42837225

3 16

319.625287

4 505.474923

0.81333502

2

0.44291485

7 17 321.542708

16

489.952555

2

0.81167666

3

0.43862229

6 19

311.668619

4

483.721433

5

0.80135391

6

0.40766955

3 18

307.704878

3

494.853141

9

0.81979518

7

0.46296311

5 20

314.785980

6

17

495.893422

7

0.81909758

4

0.46079898

9 20

315.447724

1

454.235030

5

0.75028786

2

1.25440622

6 12

288.947987

6

495.893422

7

0.81909758

3

0.46079898

9 20 315.447724

18

502.560828

2

0.80715351

4

0.42433630

9 16 319.688994 497.416634 0.79889152

0.39956481

3 16

316.416669

2

494.963037

5

0.79495084

5

0.38770187

6 16

314.855887

4

19

465.618430

9

0.74955600

2

1.25164266

4 9

296.189196

3

476.781564

8

0.76752649

7

0.30553202

8 14 303.290289

505.296893

8

0.81343068

5

0.44321197

3 17

321.429460

1

20

503.707184

1

0.79089670

8

0.37512445

5 15 320.418214

501.956636

3

0.78814808

2

0.36688149

3 15

319.304655

5

501.574777

3

0.78754850

5

0.36508337

7 15

319.061747

3

21

503.485017

9

0.78904810

7

0.36954400

8 15

320.276889

6

495.928047

2

0.77720502

7

0.33400500

8 13

315.469749

4

491.326322

6

0.76999332

8

1.31236088

4 11

312.542500

3

22

517.276374

6

0.78061327

4

1.34353752

2 11

329.049847

4

521.333561

3

0.78673590

7

1.36190418

3 12 331.630705

526.816644

7

0.79501033

8

0.38672616

8 13

335.118604

1

23

506.595605

9

0.76437718

9

2.29483197

6 9

316.927043

8 516.216993

0.77889442

7

1.33837947

8 11

316.271998

6 517.115286

0.78024981

7

1.34244534

5 11 315.077039

Total

11984.6890

7

78.8491050

2

19.8366681

6 345

7618.37185

5

11975.7131

2

78.8300174

3

18.8227955

1 336

7605.88667

2

11940.7672

1

78.5559117

2

22.6256207

5 337 7581.8905

Recurrent PPO

Recurrent PPO

Time

Elapsed

(train) 529

Time

Elapse

d (test) 19.9

306

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions Water Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

0

383.906697

2 0.58071452

1.74381231

8 3

244.210728

2 379.6052167

0.57420790

7 1.72428514 3

241.474470

4

361.948277

6

0.54749922

8

1.64412673

9 2

230.242538

3

1

403.125967

5 0.608364252

1.82675838

6 3

256.436490

4 364.5631186

0.55016840

1

1.65210647

2 2 231.905891

375.215299

3

0.56624378

8

1.70034964

1 3

238.681956

2

2

402.631503

3 0.58482853

1.75568044

4 3

256.121951

9 409.9597282

0.59547289

1 1.78762411 3

260.783582

3

384.691178

4

0.55876992

9

1.67747614

9 2

244.709752

4

3

381.826658

8 0.554886224

1.66582537

2 2

242.887574

2 377.4819992

0.54857238

6

1.64687634

7 2

240.123849

3

373.870127

8

0.54332346

6

1.63112320

9 2

237.826265

7

4

384.791622

1 0.559194385

1.67874917

3 2

244.773646

6 416.082413

0.60466739

8

1.81522105

6 3

264.678344

5

398.893370

2

0.57968760

2 1.74025716 3

253.744050

6

5

368.165106

3 0.535795011

1.60854256

9 2

234.197187

4 401.6181419

0.58447960

7

1.75465185

5 3

255.477332

4

394.887840

8

0.57468492

1

1.72525780

5 3

251.196053

3

6

339.411464

3 0.531836642

1.59776281

9 2

215.906420

6 383.5100097

0.60093631

8

1.80515469

6 3

243.958387

4

349.855631

5

0.54820200

2

1.64688317

7 2

222.550164

3

7

375.664970

9 0.5870563

1.76344971

7 3

238.968001

3 371.0075069

0.57977802

3

1.74160592

3 3

236.005295

3

378.510849

5 0.59150359 1.77679691 3

240.778321

6

8

327.726418

1 0.573963641

1.72680113

3 2

208.473329

1 325.1179571

0.56939531

4

1.71308364

3 2

206.814034

9

357.193418

4

0.62557067

1

1.88174896

6 4

227.217877

3

9

338.077369

9 0.592401356

1.78217806

8 2

215.057776

5 332.0503829

0.58184047

4

1.75046798

5 2

211.223889

6

309.254950

4

0.54189682

1

1.63052383

1 2

196.723259

1

10

328.441739

5 0.558016917

1.67809213

4 2

208.928359

3 313.0564377

0.53187755

1

1.59960980

6 2

199.141461

1

330.128997

4

0.56088353

9

1.68669873

9 2

210.001657

8

11 348.832626 0.593229075

1.78383189

3 3

221.899410

1 338.2072555

0.57515943

9

1.72958386

2 2

215.140399

4

331.671962

1

0.56404543

8

1.69618637

5 2

210.983168

6

12

350.656749

5 0.564235609

1.69551328

2 2

223.059771

5 317.4380806

0.51078403

3

1.53506405

2 2

201.928711

8

358.766882

6

0.57728548

1

1.73468145

4 3

228.218789

3

13

356.072600

7 0.572919406 1.7215774 2

226.504902

7 334.4332208

0.53810172

9

1.61706629

6 2

212.739660

4

356.269095

8

0.57323556

6

1.72252637

4 2

226.629897

2

14

382.273757

6 0.615344325

1.84892162

8 3

243.171982

7 364.4288092

0.58661939

2

1.76270714

3 3

231.820454

1

363.241459

8

0.58470812

2

1.75697048

8 3

231.065157

4

15

361.303963

7 0.58135657

1.74690256

9 3

229.832677

4 355.5253745

0.57205852

4

1.71899410

4 2

226.156801

2

389.071977

9

0.62603672

6

1.88100366

6 3

247.496466

6

16

356.110784

8 0.589948578

1.77333360

3 3

226.529192

5 349.3749402

0.57878968

6

1.73983663

7 2 222.244387

337.092106

6

0.55844141

1

1.67875250

4 2

214.431030

8

307

17

346.156654

8 0.571768179

1.71869068

1 2

220.197171

2 359.7773746

0.59426635

8

1.78622552

9 3

228.861583

6

341.828349

8

0.56461885

3

1.69722913

3 2

217.443849

9

18

326.020919

5 0.52361608

1.57354731

5 2

207.388427

3 342.3522395

0.54984550

6

1.65228156

9 2

217.777106

6

343.572687

9

0.55180564

5

1.65816527

1 2

218.553458

2

19

340.018584

4 0.547364438

1.64488071

8 2

216.292621

9 341.1422554

0.54917333

2

1.65031050

4 2

217.007411

5

360.969338

3

0.58109111

7

1.74611545

7 3

229.619815

5

20

356.957695

8 0.560477744

1.68376449

4 2

227.067929

5 358.1698034

0.56238093

7

1.68947672

3 2

227.838975

3

349.197370

2

0.54829285

6

1.64719241

2 2

222.131431

1

21

329.407611

2 0.516238702 1.55094731 2

209.542769

7 338.3128394

0.53019473

5

1.59283723

2 2

215.207563

4

355.931162

6

0.55780569

4

1.67571055

8 2

226.414931

1

22

405.477404

7 0.611899286

1.83736648

1 3

257.932286

7 401.429635

0.60579086

3

1.81903547

7 3

255.357419

4

344.838289

6

0.52038979

4

1.56273107

5 2

219.358532

8

23

380.251146

6 0.577087172

1.73305490

6 3

228.065832

8 358.8194678

0.54140504

4

1.62580290

7 2 227.650436

371.377180

7

0.56035275

9

1.68266880

6 2

228.484540

6

Total

8673.31001

7 57.05226226

41.1399844

1 58

5503.44644

1 8633.464208

56.7331910

4

40.9099090

7 57

5491.31744

8

8618.27780

5

56.6932292

4 40.8811759 58

5474.50296

6

A2C

A2C

Time

Elapsed

(train) 362

Time

Elapse

d (test) 17.4

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

0 375.1403511 0.567454151 1.70401602 3

238.634280

2

377.113571

4

0.57043893

3

1.71297386

4 3

239.889485

1 377.525323

0.57106176

6 1.71484309 3

240.151408

5

1 374.7858033 0.565595628 1.698406937 3

238.408745

2

381.707455

7

0.57604121

1

1.72975573

8 3

242.811746

7

372.836059

6

0.56265323

7

1.68957626

9 2

237.168474

2

2 384.5633341 0.558584233 1.676918846 2

244.628428

1

383.905985

9

0.55762942

5

1.67405331

2 2

244.210275

8

393.975499

1

0.57225554

9

1.71794818

8 3

250.615694

5

3 394.2980358 0.573010143 1.720217648 3

250.820866

5

392.348675

1

0.57017725

2

1.71171587

3 3

249.580839

2

401.848008

3

0.58398207

4

1.75314505

8 3 255.623555

308

4 386.7125478 0.56198595 1.687132763 2

245.995585

9

379.456691

2

0.55144145

2

1.65548696

9 2

241.379990

4

383.679752

7

0.55757857

2

1.67390555

1 2

244.066364

3

5 395.607543 0.575732312 1.728401105 3

251.653870

2

400.716213

2 0.58316702

1.75071305

8 3

254.903597

5

391.593361

4

0.56989042

6

1.71086909

4 3

249.100369

1

6 361.6081351 0.566617443 1.702155207 2

230.026166

9

356.015044

8

0.55785341

9

1.67585112

2 2

226.468290

3

351.346131

1

0.55053752

2

1.65389309

5 2

223.498300

9

7 382.9484525 0.598438287 1.797609064 3

243.601169

6

401.750435

3

0.62782037

8

1.88578606

3 3

255.561486

9

387.412726

1

0.60541466

3

1.81854600

1 3

246.440983

3

8 362.6708034 0.635163488 1.910547742 4

230.702151

4

353.621416

8

0.61931484

6

1.86296765

3 4

224.945655

6

361.465985

1 0.63305343

1.90421319

1 4

229.935742

4

9 337.0335905 0.590572378 1.77668646 2

214.393807

6

345.028564

2

0.60458169

5 1.81874932 3

219.479570

3

336.727313

7

0.59003569

9

1.77507504

7 2

214.198978

8

10 327.4515711 0.556334638 1.673041313 2

208.298493

4

348.417570

1

0.59195551

3

1.77998348

5 3

221.635384

7

367.488161

3

0.62435612

2

1.87724809

1 3

233.766569

2

11 356.2602335 0.605860557 1.82175199 3

226.624259

8

359.727572

3

0.61175715

6

1.83945326

1 3

228.829903

3

380.620481

8

0.64728789

6

1.94610726

5 4

242.120300

9

12 371.929292 0.598464883 1.798252796 3

236.591661

2

375.822742

5

0.60472976

6

1.81705605

6 3 239.068363

371.577831

8

0.59789935

4 1.79655542 3

236.368090

3

13 363.7797061 0.585320108 1.758798419 3

231.407546

6

378.683239

7

0.60929983

5

1.83077125

4 3

240.887982

5

350.669888

5

0.56422646

4 1.69548474 2

223.068129

5

14 361.4138752 0.581766267 1.748140501 3

229.902594

3

367.685535

1

0.59186172

9

1.77844182

5 3

233.892122

6

359.895175

7

0.57932162

3

1.74080285

3 3

228.936519

1

15 360.7195299 0.580416186 1.744079994 3

229.460907

4

351.255438

7

0.56518797

9

1.69837153

6 2

223.440609

7 351.420575

0.56545369

2

1.69916910

2 2

223.545656

2

16 353.8701918 0.586236715 1.762191367 3

225.103906

4

343.329842

1

0.56877511

4

1.70977393

9 2

218.398979

2

362.169232

8

0.59998526

6

1.80346110

1 3

230.383092

4

17 369.3064996 0.610006198 1.833470959 3

234.923250

5

332.513597

2

0.54923310

4

1.65104152

3 2

211.518549

4

359.845142

3

0.59437829

4

1.78656152

8 3

228.904691

9

18 373.0289922 0.599114863 1.800165172 3

237.291202

5

345.487613

1

0.55488117

1

1.66739695

8 2

219.771580

4

366.182431

6

0.58811873

1

1.76716125

5 3

232.935968

4

19 374.1696978 0.602341153 1.809896315 3

238.016828

1

376.004412

6

0.60529469

1

1.81876095

4 3

239.183926

9

352.540894

2

0.56752294

5

1.70538976

3 2

224.258313

6

20 375.6401438 0.589812022 1.771805927 3

238.952208

3

365.147565

1

0.57333708

2

1.72236002

7 3

232.277669

1

387.800096

1

0.60890499

2

1.82910719

2 3

246.687397

1

21 377.2343409 0.591191459 1.775911376 3

239.966308

9

386.709051

4 0.60603997

1.82047414

8 3

245.993361

8

368.279566

9 0.57715778

1.73379280

9 3

234.269998

1

22 386.9878946 0.58399707 1.753631815 3

246.170739

5

366.103837

9

0.55248128

3

1.65904771

4 2

232.885973

3

377.285726

7

0.56935568

8

1.70969122

4 3

239.998996

5

309

23 375.2586427 0.566209306 1.700246347 3

238.709527

8

385.674161

9

0.58192477

1

1.74741059

7 3

245.335047

8

394.835467

1

0.59574781

3

1.78889433

3 3

251.162737

3

Total 8882.419208 58.45927266 42.15347608 68

5650.28450

6

8854.22623

3

58.2717699

7

42.0183962

5 65

5632.35039

1

8909.02083

2

58.6507483

3

42.2914412

6 67

5667.20633

2

DDPG

DDPG

Time

Elapsed

(Training) 631

Time

Elapsed

(Testing

) 17.8

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water

Saved % Rewards Violations

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

0

525.646071

0.79511586

5 1.386796765 10

334.373978

7 525.646071

0.79511586

5

1.38679676

5 10

334.373978

7 525.646071

0.79511586

5

1.38679676

5 10

334.373978

7

1

526.9041899

0.79516007

2 1.386914336 10

335.174293

3

526.904189

9

0.79516007

2

1.38691433

6 10

335.174293

3

526.904189

9

0.79516007

2

1.38691433

6 10

335.174293

3

2

474.6435079

0.68942708

9 2.069414238 1

301.930228

2

474.643507

9

0.68942708

9

2.06941423

8 1

301.930228

2

474.643507

9

0.68942708

9

2.06941423

8 1

301.930228

2

3

476.846214

0.69297255

5 2.080056581 1

303.331413

7 476.846214

0.69297255

5

2.08005658

1 1

303.331413

7 476.846214

0.69297255

5

2.08005658

1 1

303.331413

7

4

476.8411321

0.69296436

9 2.080032008 1

303.328180

9

476.841132

1

0.69296436

9

2.08003200

8 1

303.328180

9

476.841132

1

0.69296436

9

2.08003200

8 1

303.328180

9

5

483.0421613

0.70297694

1 2.110086742 1

307.272779

6

483.042161

3

0.70297694

1

2.11008674

2 1

307.272779

6

483.042161

3

0.70297694

1

2.11008674

2 1

307.272779

6

6

509.8924412

0.79896972

3 0.398817097 14

324.352779

7

509.892441

2

0.79896972

3

0.39881709

7 14

324.352779

7

509.892441

2

0.79896972

3

0.39881709

7 14

324.352779

7

7

511.0909331

0.79868812

8 0.397933221 14

325.115164

4

511.090933

1

0.79868812

8

0.39793322

1 14

325.115164

4

511.090933

1

0.79868812

8

0.39793322

1 14

325.115164

4

8

468.747684

0.82094122

7

-

0.533038977 19

298.179776

7 468.747684

0.82094122

7

-

0.53303897

7 19

298.179776

7 468.747684

0.82094122

7

-

0.53303897

7 19

298.179776

7

310

9

468.5804798

0.82107747

1

-

0.532616738 19

298.073414

8

468.580479

8

0.82107747

1

-

0.53261673

8 19

298.073414

8

468.580479

8

0.82107747

1

-

0.53261673

8 19

298.073414

8

10

478.7844789

0.81344666

9 0.443745407 18

304.564382

7

478.784478

9

0.81344666

9

0.44374540

7 18

304.564382

7

478.784478

9

0.81344666

9

0.44374540

7 18

304.564382

7

11

478.4571789

0.81367019

2 0.444437596 18

304.356180

6

478.457178

9

0.81367019

2

0.44443759

6 18

304.356180

6

478.457178

9

0.81367019

2

0.44443759

6 18

304.356180

6

12

498.7744756

0.80256923

7 0.410037837 14

317.280419

4

498.774475

6

0.80256923

7

0.41003783

7 14

317.280419

4

498.774475

6

0.80256923

7

0.41003783

7 14

317.280419

4

13

498.7958814 0.8025606 0.410011006 14

317.294036

1

498.795881

4 0.8025606

0.41001100

6 14

317.294036

1

498.795881

4 0.8025606

0.41001100

6 14

317.294036

1

14

498.6226893

0.80263066

9 0.410228673 14

317.183865

1

498.622689

3

0.80263066

9

0.41022867

3 14

317.183865

1

498.622689

3

0.80263066

9

0.41022867

3 14

317.183865

1

15

498.7822158

0.80256611

4 0.410028134 14

317.285343

1

498.782215

8

0.80256611

4

0.41002813

4 14

317.285343

1

498.782215

8

0.80256611

4

0.41002813

4 14

317.285343

1

16

487.6850018

0.80792013

5 0.426630388 18

310.226183

3

487.685001

8

0.80792013

5

0.42663038

8 18

310.226183

3

487.685001

8

0.80792013

5

0.42663038

8 18

310.226183

3

17

488.7650238 0.80732317 0.424781052 17

310.913206

9

488.765023

8 0.80732317

0.42478105

2 17

310.913206

9

488.765023

8 0.80732317

0.42478105

2 17

310.913206

9

18

499.5212678

0.80227173

3 0.409113464 14

317.755468

8

499.521267

8

0.80227173

3

0.40911346

4 14

317.755468

8

499.521267

8

0.80227173

3

0.40911346

4 14

317.755468

8

19

498.5949915

0.80264191

3 0.410263601 14 317.166246

498.594991

5

0.80264191

3

0.41026360

1 14 317.166246

498.594991

5

0.80264191

3

0.41026360

1 14 317.166246

20

508.9921947

0.79919497

6 0.399522986 14

323.780114

9

508.992194

7

0.79919497

6

0.39952298

6 14

323.780114

9

508.992194

7

0.79919497

6

0.39952298

6 14

323.780114

9

21

509.8262319

0.79898588

6 0.398867781 14

324.310662

6

509.826231

9

0.79898588

6

0.39886778

1 14

324.310662

6

509.826231

9

0.79898588

6

0.39886778

1 14

324.310662

6

22

526.9162048

0.79516058

3 1.386915732 10

335.181936

2

526.916204

8

0.79516058

3

1.38691573

2 10

335.181936

2

526.916204

8

0.79516058

3

1.38691573

2 10

335.181936

2

23

512.1547334

0.77884074

5 1.171405306

9.83333333

3

314.238550

9

526.999877

9

0.79516419

2

1.38692560

3 10

314.238550

9

526.999877

9

0.79516419

2

1.38692560

3 10

314.238550

9

Total 11906.90738

78.4919835

8 18.40038424

292.833333

3

7562.66860

7

11921.7525

3

78.5599979

4

18.6159045

3 293

7562.66860

7

11921.7525

3

78.5599979

4

18.6159045

3 293

7562.66860

7

311

SAC

SAC

Time Elapsed

(training) 860

Time (Elapsed

(testing) 18

 Episode 0 Episode 0 Episode 0

Episode

0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

Ste

p

Water

Saved Water Saved % Rewards

Violatio

ns

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violatio

ns

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violatio

ns

Carbon

Emissions

0

508.54197

53 0.769243442

1.3092338

52 10 323.4937213

513.39534

04 0.77658486

1.3311869

88 10 326.5810439

511.59801

44

0.77386614

4

1.3231883

74 10 325.4377289

1

507.15085

06 0.765349971

1.2975640

42 10 322.6087991

478.20989

68

0.72167468

6

2.1665495

59 3 304.1988795

513.90294

5

0.77553967

2

1.3281332

14 11 326.9039413

2

383.13684

54 0.556512236

1.6704730

16 1 243.7210101

-

2.9548008

35

-

0.00429189

4

-

0.0129151

42 0 -1.879607907

383.13684

77 0.55651224

1.6704730

26 1 243.7210116

3

385.15803

39 0.559727516

1.6801244

76 1 245.0067285

385.15802

76

0.55972750

7

1.6801244

48 1 245.0067245

385.15802

88

0.55972750

8

1.6801244

54 1 245.0067253

4

385.15336

08 0.559720078

1.6801021

48 1 245.0037559

8.72993E-

06 1.26867E-08

3.83608E-

08 0 5.55328E-06

-5.73049E-

07

-8.32778E-

10

-2.51024E-

09 0 -3.64528E-07

5

105.28355

22 0.153220392

0.4600422

54 0 66.97297325

367.02943

01

0.53414224

8

1.6033273

86 0 233.4747611

318.89301

28

0.46408875

4

1.3930475

41 0 202.8542233

6

10.308772

12 0.016153204

0.0490040

27 0 6.557616118

497.57738

91

0.77967280

2

1.3407646

67 10 316.5189288

500.65001

11 0.78448741

1.3551821

74 10 318.4734851

7

193.82456

51 0.302892047

0.9101962

7 2 123.2956824

337.21153

74

0.52696464

4

1.5822510

97 0 214.5070032

55.124678

1

0.08614401

7

0.2593966

26 2 35.06591023

8

435.58042

49 0.762853749

0.2931770

65 13 277.0814199

20.664417

95

0.03619062

7

0.1107843

9 2 13.14504955

-2.71262E-

06

-4.75075E-

09

-1.45974E-

08 0 -1.72555E-06

9

347.59790

76 0.609083868

1.8315551

49 3 221.113981

433.79813

87 0.76012957

0.2846563

02 18 275.947672

460.10717

15

0.80622998

4

0.4227609

98 18 292.683374

10

467.41357

91 0.794127704

0.3853979

78 11 297.331126

305.28141

27

0.51866791

6

1.5581889

83 0 194.1956122

438.79877

34

0.74551163

6

1.2394544

76 8 279.1286757

11

467.45670

91 0.794962657

0.3882920

26 18 297.3585618

412.29518

28

0.70115428

4

2.1072545

04 5 262.2692117

200.45928

88

0.34090354

4

1.0241791

2 0 127.5161628

12

477.79776

96 0.768815988

1.3088141

31 13 303.9367172

368.18188

81

0.59243500

1

1.7792757

96 1 234.2078627

419.70811

38

0.67534494

5

2.0281953

67 2 266.9847253

13

26.719199

45 0.042991086

0.1303834

75 2 16.99661715

479.40834

37

0.77136612

9

1.3161615

53 10 304.9612356

21.576404

62 0.03471635

0.1052163

03 0 13.72518251

312

14

16.277242

93 0.026201404

0.0796668

6 0 10.35427977

68.950721

86

0.11098966

3

0.3344386

3 0 43.86093319

24.585971

28

0.03957592

6

0.1199973

14 0 15.63962805

15

496.06548

69 0.798194758

0.3972238

53 13 315.5571776

24.837310

44

0.03996450

4

0.1211774

32 2 15.79950992

489.83948

55

0.78817680

3

0.3671747

26 13 311.5966935

16

22.832828

78 0.037825855

0.1147793

51 0 14.52441904

400.62599

63

0.66369440

9

1.9942975

54 3 254.8462088

481.76634

66

0.79811503

4

0.3976028

66 13 306.4612084

17

415.43212

74 0.686194727

2.0608837

71 2 264.2646849

485.29200

49

0.80158657

2

0.4079508

97 13 308.7039502

479.56647

4

0.79212936

1

0.3788842

55 11 305.0618254

18

489.32469

09 0.785895202

0.3599718

01 13 311.2692224

484.29114

58 0.77781092

1.3354758

94 10 308.0672837

481.16927

88

0.77279694

8

1.3204294

37 10 306.0814017

19

21.975746

55 0.03537672

0.1072262

22 0 13.9792119

420.36858

58

0.67671246

6

2.0320544

71 1 267.4048648

-

0.0001353

55

-2.17895E-

07

-6.60441E-

07 0 -8.61018E-05

20

350.45207

91 0.550262939

1.6521516

81 1 222.9295766

24.902908

06

0.03910134

4

0.1184368

53 2 15.84123787

23.998832

57

0.03768180

9

0.1141274

33 2 15.26613738

21

508.35114

24 0.796674166

0.3919798

21 13 323.3723287

25.275315

02 0.03961079

0.1199729

39 2 16.07813339

14.511095

35

0.02274139

6

0.0687797

3 0 9.230797973

22

147.01533

36 0.221858423

0.6660300

93 0 93.51939402

526.06342

88

0.79387367

3

0.3833046

22 13 334.6394683

513.84953

82

0.77544189

1

1.3278981

73 11 326.8699682

23

526.99987

79 0.795164192

1.3869256

03 10 203.0331641

407.46355

55

0.61480171

5

1.8455313

38 1 188.8062047

526.36822

56

0.79421112

2

1.3841984

72 12 179.4017614

Tot

al

7695.8501

02 50.78875968

20.611198

97 137 4763.282169

7463.3271

86

49.3023518

6

25.540251

2 107 4677.182177

7244.7683

99

47.5997594

6

19.308443

4 135 4453.11048

TQC

TQC

Time

Elapsed

(train) 1326

Time

Elapse

d (Test) 30.4

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water

Saved % Rewards

Violation

s

Carbon

Emissions

0

524.698220

4

0.79368210

4 1.38254067 10

333.771031

9

525.975224

3

0.79561375

7

1.38834983

9 10

334.583359

7

524.204485

1

0.79293525

8

1.38025276

6 10 333.456957

313

1

526.495311

6

0.79454302

6

1.38518595

6 12

334.914197

6

522.863102

9

0.78906159

8

1.36861243

6 10 332.603677

525.062572

7

0.79238085

6

1.37857371

2 10

334.002803

8

2

474.643507

8

0.68942708

9

2.06941423

8 1

301.930228

2

502.338009

9

0.72965378

4

2.19019809

2 1

319.547254

8

474.643507

3

0.68942708

8

2.06941423

6 1

301.930227

9

3

529.800776

4

0.76992830

6

2.31113506

8 9

337.016869

9 476.846213

0.69297255

4

2.08005657

6 1 303.331413

476.846214

6

0.69297255

6

2.08005658

3 1 303.331414

4

476.841132

7 0.69296437

2.08003201

1 1

303.328181

3

518.537348

8

0.75355895

8

2.26197837

3 5

329.851978

3

476.841132

4

0.69296436

9

2.08003200

9 1

303.328181

1

5

540.552310

3

0.78667213

7

1.36140807

4 12

343.856135

6

483.042160

1

0.70297693

9

2.11008673

6 1

307.272778

9

483.042161

4

0.70297694

1

2.11008674

2 1

307.272779

7

6

503.282491

2

0.78861234

2

0.36774443

9 14

320.148058

3

499.840870

7

0.78321953

7 0.35203057 13

317.958774

7

509.218340

3

0.79791344

8

0.39564832

6 14

323.923970

6

7

510.673435

9

0.79803569

9

0.39610808

6 14 324.849586

496.416492

3

0.77575619

7

1.32895260

8 10

315.780459

1

495.313511

8

0.77403255

6

1.32378081

1 10

315.078831

1

8

446.469316

9 0.78192401

0.34939983

9 13

284.008061

8

407.596600

5 0.71384428

2.14668224

6 11

259.280349

5

454.912036

3

0.79671016

6

0.39378947

6 15

289.378644

5

9

449.618056

9

0.78785026

9

0.36720339

6 15

286.011038

3

436.744726

5

0.76529277

5

0.29947781

8 11

277.822055

4

438.693088

9

0.76870682

3

0.30993491

7 11

279.061447

7

10

448.710584

8

0.76235163

5

0.29007399

7 11

285.433777

2

468.330670

7

0.79568582

7

0.39007466

5 11

297.914506

3 467.044925

0.79350136

7

0.38351801

9 11

297.096617

7

11

470.223517

4

0.79966792

6

0.40278949

3 13

299.118583

9

452.779637

3

0.77000264

8

0.31321746

4 11

288.022182

9

466.150098

1

0.79274061

9

0.38125342

6 11

296.527400

4

12

445.255957

9

0.71645353

1

2.15134853

1 2

283.236219

9

483.359830

1

0.77776580

2

1.33540900

6 10

307.474855

1

490.355131

8

0.78902181

9

0.36935893

3 11

311.924706

4

13

492.939670

9

0.79313798

1

0.38173918

2 14

313.568783

5

486.966480

8

0.78352714

1

0.35265550

2 11

309.769117

8 491.315273

0.79052433

1

0.37394399

1 13

312.535471

5

14

493.141914

8

0.79380829

2

0.38406191

3 16

313.697434

8 493.337555

0.79412321

3

0.38470275

5 14

313.821885

5

489.710749

1 0.78828516

0.36718531

5 14

311.514801

7

15

487.372394

5

0.78420712

7

0.35469649

5 11

310.027327

6 483.836439

0.77851759

4

0.33787122

2 14

307.778035

6

496.502538

4

0.79889799

6

0.39912871

8 14

315.835194

7

16

472.387666

7

0.78257790

6

0.35054197

1 11

300.495242

6

476.927040

2

0.79009802

9

0.37283861

8 11

303.382828

8

476.171242

6

0.78884594

2

0.36908091

7 11

302.902050

9

17 483.963666

0.79939247

3

0.40134141

1 13

307.858967

2

449.923258

4

0.74316584

3

1.23222183

6 7

286.205183

2

456.679549

9

0.75432562

5 1.26542342 8

290.502995

3

18

493.107298

7

0.79197037

7

0.37796475

7 11

313.675414

8

476.600028

8

0.76545836

1

1.29899432

4 10

303.174810

3

495.200108

3 0.7953316 0.38824583 11

315.006692

9

19

483.298093

7

0.77801685

4

0.33637423

2 14

307.435583

3

473.130532

6

0.76164903

9

1.28725530

3 11

300.967794

4

496.038928

6

0.79852714

4

0.39791776

2 14

315.540283

3

314

20

510.924193

4

0.80222850

7

0.40889796

7 16

325.009097

9

491.677054

3

0.77200757

8

1.31795410

2 10

312.765607

8

498.009936

7

0.78195116

5

1.34778893

2 12

316.794080

9

21

504.103033

1

0.79001664

4

0.37177345

9 11

320.670021

4

495.636052

7

0.77674742

1

1.33196056

6 10

315.284005

9

501.902049

6

0.78656732

2

1.36142446

5 10

319.269931

8

22

520.655889

2

0.78571324

3

1.35883273

8 12

331.199624

2 512.429319

0.77329866

2

1.32123564

4 9

325.966538

4

512.429320

3

0.77329866

4 1.32123565 9

325.966539

2

23 514.312784 0.77602126

1.32951313

3 11

311.366356

5

524.038579

8

0.79069603

5 1.37351634 10

306.572405

2

525.898269

1

0.79350202

8

1.38193731

9 10

308.918885

7

Total

11803.4712

2

77.6633462

8

20.9701210

6 267

7492.62582

4

11639.1732

3

76.5612232

2

28.1763326

4 222

7377.13185

7

11722.1851

7

77.1930868

3

23.6290122

7 233 7431.10091

ARS

ARS

Time

Elapsed

(train) 254

Time Elapsed

(test) 24.6

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions Water Saved Water Saved % Rewards

Violation

s

Carbon

Emissions Water Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

0 465.9786565 0.704860253 2.116169244 3 296.418343 465.9786565 0.704860253 2.116169244 3 296.418343 465.9786565 0.704860253 2.116169244 3 296.418343

1 467.1543951 0.70499064 2.116534444 3 297.1662538 467.1543951 0.70499064 2.116534444 3 297.1662538 467.1543951 0.70499064 2.116534444 3 297.1662538

2 364.8123153 0.529895571 1.590745163 2 232.06441 364.8123153 0.529895571 1.590745163 2 232.06441 364.8123153 0.529895571 1.590745163 2 232.06441

3 361.5571041 0.525429673 1.577344607 2 229.9937051 361.5571041 0.525429673 1.577344607 2 229.9937051 361.5571041 0.525429673 1.577344607 2 229.9937051

4 382.9380865 0.556500754 1.670599875 2 243.5945756 382.9380865 0.556500754 1.670599875 2 243.5945756 382.9380865 0.556500754 1.670599875 2 243.5945756

5 383.5751729 0.558221462 1.675773814 2 243.999839 383.5751729 0.558221462 1.675773814 2 243.999839 383.5751729 0.558221462 1.675773814 2 243.999839

6 353.1437919 0.553354344 1.662081238 2 224.6418289 353.1437919 0.553354344 1.662081238 2 224.6418289 353.1437919 0.553354344 1.662081238 2 224.6418289

7 365.8011994 0.571642062 1.716925566 3 232.693459 365.8011994 0.571642062 1.716925566 3 232.693459 365.8011994 0.571642062 1.716925566 3 232.693459

8 335.8332005 0.588161454 1.768960714 3 213.6302155 335.8332005 0.588161454 1.768960714 3 213.6302155 335.8332005 0.588161454 1.768960714 3 213.6302155

9 345.2177986 0.604913284 1.819270129 3 219.5999461 345.2177986 0.604913284 1.819270129 3 219.5999461 345.2177986 0.604913284 1.819270129 3 219.5999461

10 352.8711247 0.599522026 1.802293655 3 224.4683798 352.8711247 0.599522026 1.802293655 3 224.4683798 352.8711247 0.599522026 1.802293655 3 224.4683798

315

11 345.4021548 0.587395174 1.765912104 3 219.7172187 345.4021548 0.587395174 1.765912104 3 219.7172187 345.4021548 0.587395174 1.765912104 3 219.7172187

12 360.1747302 0.579550824 1.741184804 3 229.1143494 360.1747302 0.579550824 1.741184804 3 229.1143494 360.1747302 0.579550824 1.741184804 3 229.1143494

13 355.4596591 0.571933186 1.718319362 3 226.1149983 355.4596591 0.571933186 1.718319362 3 226.1149983 355.4596591 0.571933186 1.718319362 3 226.1149983

14 355.2970863 0.5719201 1.718288257 3 226.0115825 355.2970863 0.5719201 1.718288257 3 226.0115825 355.2970863 0.5719201 1.718288257 3 226.0115825

15 357.3384464 0.57497585 1.727452637 3 227.3101325 357.3384464 0.57497585 1.727452637 3 227.3101325 357.3384464 0.57497585 1.727452637 3 227.3101325

16 349.3686105 0.5787792 1.739453964 3 222.2403605 349.3686105 0.5787792 1.739453964 3 222.2403605 349.3686105 0.5787792 1.739453964 3 222.2403605

17 353.2342829 0.583458732 1.753437945 3 224.6993921 353.2342829 0.583458732 1.753437945 3 224.6993921 353.2342829 0.583458732 1.753437945 3 224.6993921

18 360.6428628 0.579221733 1.740161978 3 229.4121379 360.6428628 0.579221733 1.740161978 3 229.4121379 360.6428628 0.579221733 1.740161978 3 229.4121379

19 355.5280911 0.572331756 1.719525169 3 226.1585293 355.5280911 0.572331756 1.719525169 3 226.1585293 355.5280911 0.572331756 1.719525169 3 226.1585293

20 363.1420107 0.570188057 1.712639898 3 231.0018958 363.1420107 0.570188057 1.712639898 3 231.0018958 363.1420107 0.570188057 1.712639898 3 231.0018958

21 361.9916874 0.567303585 1.703950799 3 230.2701522 361.9916874 0.567303585 1.703950799 3 230.2701522 361.9916874 0.567303585 1.703950799 3 230.2701522

22 372.4993925 0.56213271 1.687837112 3 236.9543136 372.4993925 0.56213271 1.687837112 3 236.9543136 372.4993925 0.56213271 1.687837112 3 236.9543136

23 515.8227981 0.778299646 1.336314444 10 234.105532 363.5502359 0.548543067 1.647048898 2 234.105532 363.5502359 0.548543067 1.647048898 2 234.105532

Total 8984.784658 59.06242531 41.58117692 74

5621.38155

1 8832.512096 58.10510624

41.8919113

7 66

5621.38155

1

8832.51209

6

58.1051062

4

41.8919113

7 66

5621.38155

1

316

Appendix I: Burst Leakage – SZ08 Results

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.

Each algorithm’s step rewards, water saved%, pressure violations, and carbon emissions are listed along with the algorithm’s processing speeds. A line plot

of the rewards of the algorithms across the three test episodes is shown below.

317

NM

NM

Time

Elapsed 10983

-100

-50

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time

Reward Comparisons

NM

PSO

DE

TRPO

PPO

Recurrent
PPO

A2C

DDPG

SAC

TQC

ARS

318

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

0

65.24078681 2.960504463

-

10.01569932 672 41.50096931 104.8251155 4.756767006

-

16.03019541 679 66.68135245 111.8596907 5.075982826

-

15.18913553 678 71.15618642

1

60.5526395 2.734123801

-

8.909900727 655 38.51874504 82.31494928 3.71675395 13.11512598 633 52.36218554 103.248583 4.661967016

-

22.09876926 670 65.67848859

2

99.69037147 4.530896377

-

18.85441995 668 63.4150391 43.68453114 1.985448353

-

8.803277885 657 27.78860395 43.66162455 1.984407256 -8.96066253 657 27.77403261

3

65.64304725 3.126435175

-

9.941176256 671 41.75685522 113.5625847 5.408738233

-

14.94976239 677 72.23943139 48.85876532 2.327036432

-

4.985950257 666 31.0800378

4

76.09374498 3.715319265

-

11.59628186 685 48.40475305 99.48272642 4.857299245

-

19.20569368 690 63.28295193 46.85227664 2.287588369

-

6.161755457 679 29.80367021

5

46.99346271 2.268887572

-

6.164844935 680 29.8934815 24.14653904 1.165817098

-

0.855896562 674 15.36009641 81.48920949 3.934373931

-

14.94773695 687 51.83691594

6

76.25576437 3.598894579

-

11.60031552 670 48.50781683 155.7882129 7.352432431

-

83.17472293 744 99.09999802 72.86347876 3.438795491

-

14.51115144 670 46.34991611

7

72.94090979 3.371126433

-

12.66602579 682 46.39917154

-

269.2970109

-

12.44616052

-

3.463777808 671

-

171.3052146 102.0033281 4.714310754

-

17.22645227 687 64.88635704

8

46.29941846 2.191374971

-

5.495425186 698 29.45198607 64.75608683 3.064938451 5.990560025 684 41.19264196 43.04975464 2.037566733

-

8.289846714 698 27.38480992

9

60.97782634 3.029212268

-

13.58441844 709 38.78921489 108.999527 5.414799513

-

15.66162288 715 69.33677913 50.65560067 2.516432221 79.06708698 616 32.2230407

10

21.78348692 0.925485252

-

8.986419452 715 13.8569117 509.821541 21.66009137

-

23.50091574 731 324.3076787 501.172445 21.29262905

-

23.60129401 731 318.8058157

11

42.85881573 2.178911839

-

9.308301659 716 27.26334986 72.57503062 3.689663159 -14.1137451 722 46.16642848 111.1322173 5.649883222

-

15.43602885 727 70.69342604

12

99.36524766 5.019129658

-

18.63363506 718 63.20822134 31.20313892 1.576130525 19.41790337 675 19.84894073 83.26426711 4.205838182

-

16.31318788 715 52.9660656

13

47.52865329 2.394509047

-

5.163934323 706 30.23392693 83.43186685 4.20332465

-

15.42377411 714 53.07267914 83.43087862 4.203274862

-

15.43881386 714 53.07205051

14

101.837966 5.056443154

-

18.19187122 713 64.78116693 43.22556626 2.146229223

-

8.115864368 702 27.49664721

-

321.5960084

-

15.96783595

-

4.464569979 697

-

204.5736528

15

378.3937657 15.50849648

-

12.51915652 686 240.7038423 378.4657431 15.51144648

-

12.51912047 686 240.7496285 341.9377276 14.01434306

-

20.18845743 692 217.5134273

16 -

304.0427534

-

15.35627288 -4.46570856 711

-

193.4076763 46.0231407 2.324488578 8.677756514 699 29.27624026

-

308.4491797

-

15.57882805 -9.10797389 716

-

196.2106922

319

17

387.7498947 16.82823568

-

12.52158377 719 246.655463 417.5672685 18.12230126

-

17.96464245 725 265.6228908 403.3105638 17.50356431

-

30.96836419 737 256.5539159

18

46.29861212 2.349282271

-

5.398605196 721 29.45147314 60.88149865 3.089246499

-

13.70840849 726 38.72793892 60.87516818 3.088925278 -13.7551365 726 38.72391198

19

84.36568009 4.316956194

-

11.96200339 755 53.66669642 46.09420112 2.35862079

-

5.605451435 748 29.32144322 84.36299041 4.316818564

-

11.97219717 755 53.66498546

20

77.62325836 3.956673192

-

10.58129115 749 49.37770711 108.5583802 5.533522322

-

17.14878836 754 69.05615684 46.26580906 2.35829686

-

5.646619511 743 29.43060646

21

607.1646089 23.24080018

-

24.49177217 723 386.229551 602.3235957 23.05549784

-

25.57514932 723 383.1500857 563.7886978 21.58047468

-

20.12107851 717 358.6372665

22

99.57918988 4.782052724

-

18.95986036 705 63.34431427 72.86330815 3.499086321

-

13.17552435 700 46.34980758 72.76793508 3.494506257

-

14.41978809 700 46.28913886

23

108.3221628 5.388524764

-

18.38393718 718 65.39357572 76.83945597 3.822406243 6.780147559 691 84.67434476 46.5988999 2.318078957

-

5.650189252 707 68.06593553

Total 2469.51656 4.504833435 -288.396588 16845 1567.396556 3078.136998 5.661203709

-

275.0148403 16820 1993.859737 2473.404724 4.394101263

-

240.3880725 16785 1611.805656

PSO

PSO Time Elapsed 7627

 Episode 0 Episode 0 Episode 0

Episode

0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

Step

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

0

52.6229360

1 2.387930075

-

5.267630125 667 33.47450206

48.6934846

2 2.209618945

-

8.928699138 667 30.97489944

48.7681776

6 2.213008375

-

8.204555514 667 31.02241318

1 43.5870345 1.968078509

-

12.02566466 659 27.72658438 38.1096192 1.720757638

-

12.15234746 659 24.24229096

27.9929647

6 1.263961932

-

6.423780937 653 17.80688474

2 52.2641799 2.375390721

-

6.047471899 657 33.24629012

48.8397118

8 2.219749714

-

7.798825486 657 31.06791752

51.9517345

7 2.361190178

-

5.478035763 657 33.0475374

320

3

55.5823670

4 2.647266918

-

5.486961498 666 35.35705532 55.7709662 2.656249485

-

5.483233629 666 35.47702702

55.6150434

5 2.648823225

-

5.486903166 666 35.37784144

4

55.9001249

2 2.729354576

-

5.476616423 679 35.55918746

55.8994329

4 2.729320789

-

5.476672462 679 35.55874728

51.7167955

5 2.525101201

-

5.237115658 679 32.89808799

5

53.4316477

4 2.579729062

-

5.533134301 680 33.98893976

54.5764504

6 2.63500119

-

5.507914554 680 34.71717167

53.9571605

8 2.605101305

-

5.521657805 680 34.32322899

6

53.6226664

5 2.530724401

-

5.529125952 664 34.11045058

53.5876882

3 2.529073602

-

5.529818213 664 34.08820024

49.3395795

8 2.328583903

-

5.628931555 664 31.38589336

7

43.8061435

6 2.024598389

-

11.43205475 676 27.86596404

42.9620495

9 1.985586708

-

11.45230619 676 27.32901899

35.5951077

9 1.645107102

-

11.64198206 676 22.64275996

8

42.2612953

2 2.000248553

-

8.215449763 698 26.88325518

33.4354249

3 1.582515629

-

4.482127997 694 21.26894251

46.0123953

1 2.177790019

-

8.113806207 698 29.2694049

9

44.9961502

1 2.235286142 -8.54836929 704 28.62295107

48.5909590

3 2.41386645

-

8.452514124 704 30.90968086

48.5759975

2 2.413123203

-

8.452123663 704 30.90016354

10

447.346695

3 19.00580795

-

12.38825262 720 284.5661798 446.914258 18.98743558

-

12.39751968 720 284.2910978

446.579763

4 18.97322436

-

12.40474693 720 284.0783191

11

47.1927065

3 2.399243778

-

8.676476153 716 30.02022448

47.4515571

4 2.41240356

-

8.668090375 716 30.18488453

47.6012933

1 2.420016041

-

8.662581018 716 30.2801347

12

48.3482362

9 2.442162349 -8.61589007 707 30.75528007

48.0863379

9 2.428933363 -8.62272463 707 30.58868132

48.3891648

2 2.444229728

-

8.616576067 707 30.78131553

13

47.0212015

6 2.368943463 -9.13425094 706 29.91112674

48.1927656

7 2.427967245

-

9.104456059 706 30.6563821

36.3518576

7 1.83141844

-

9.436602466 706 23.1241437

14

51.7528983

7 2.569627016

-

5.525386174 702 32.92105371

44.9844986

6 2.233563466

-

8.300881381 702 28.61553929

48.6498260

9 2.415553744

-

8.203298211 702 30.94712737

15

380.498716

7 15.59476805

-

12.47073147 686 242.0428436

378.607422

2 15.51725321

-

12.51467962 686 240.8397534

380.116544

3 15.57910469

-

12.47948846 686 241.7997361

16

46.9618100

2 2.371897905

-

8.714252442 716 29.87334659

48.0327681

5 2.425988736

-

8.684581658 716 30.55460447

45.1142553

1 2.278583547

-

8.763304951 716 28.69808009

17

386.927555

8 16.7925464

-

12.54340781 719 246.1323568

390.941416

8 16.96674683

-

12.44990062 719 248.6856541

393.202457

8 17.06487537

-

12.40018591 719 250.1239475

18

45.1966030

9 2.293364174

-

9.238097265 721 28.75046316

47.9617697

6 2.433674147

-

9.166340773 721 30.50944098

45.0357182

8 2.285200563

-

9.242304381 721 28.64812111

19

48.4971122

8 2.481576739

-

8.005873566 748 30.84998306

48.7393719

6 2.493973064

-

7.999221091 748 31.00408929

48.7148949

6 2.492720586

-

8.002665654 748 30.98851898

20

50.0424362

3 2.550802042

-

5.126069148 743 31.83299453

52.9201922

6 2.697489264

-

5.057364467 743 33.6635927

53.1021075

3 2.706761991

-

5.055409381 743 33.77931264

21

546.133064

4 20.90465951

-

14.40712027 712 347.4061649

545.043872

4 20.86296787

-

14.43124361 712 346.7133081

546.699456

4 20.92633964

-

14.39479026 712 347.7664582

321

22

48.8434981

5 2.345592324

-

7.704301214 694 31.07032605

48.4903455

8 2.328633015

-

7.713171476 694 30.84567863 48.676324 2.337564184

-

7.708515876 694 30.96398322

23

47.6335211

5 2.369546561

-

8.620483945 707 76.44987261

47.6335211

5 2.369546561

-

8.620483945 707 75.99731475

48.6407049

9 2.419649281

-

8.594619048 707 75.44042866

Tota

l

2740.47060

2 4.998714401

-

204.7330717 16747 1789.417396

2724.46588

5 4.969513169

-

208.9951186 16743 1778.783918

2706.39932

6 4.931543025

-

204.1539809 16741 1766.093842

DE

DE

Time

Elapsed 10753

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

0

60.25782045 2.734386801

-

9.108653212 671 38.33120474 60.62594167 2.751091452

-

9.101781159 671 38.56537402 66.97449261 3.039176778 46.4370109 615 42.60381424

1

56.92070012 2.570131414

-

12.60893777 664 36.20839576 53.2947819 2.406410899

-

14.17587501 663 33.90187666 55.89607932 2.523866872

-

13.73613025 663 35.55661398

2

56.71683192 2.57776237

-

11.25782608 661 36.07871112 77.06002005 3.502353943

-

27.19489234 680 49.01941995 60.59658005 2.754095716

-

9.011172485 661 38.5466965

3

55.24320416 2.63111333

-

12.69649712 670 35.14130703 60.30208973 2.872057016

-

9.885082174 670 38.35936532 56.92616279 2.711268979

-

11.55389065 670 36.21187068

4
64.01093922 3.125369578 -9.31358658 683 40.71863866 51.86943729 2.532554019 93.58733088 578 32.99518645 53.0848494 2.591897188 93.61106479 578 33.7683344

5

26.50102763 1.279493971 133.4108527 538 16.85783369 59.70204281 2.882469499

-

9.892391962 684 37.97766347 56.21636157 2.714177605

-

12.93128434 684 35.76035192

6

64.04076934 3.022407283

-

9.315087943 668 40.73761419 56.73002484 2.677376334

-

12.81020956 668 36.0871034 56.60191643 2.671330251

-

12.35236665 668 36.00561108

7

33.24947696 1.536698555

-

28.24740739 692 21.15065728 24.58944437 1.136455881 89.13256152 575 15.64183735 24.97753896 1.154392536 89.14022866 575 15.88871208

8
32.94408493 1.559260258 85.43608333 604 20.95639131 33.12606087 1.567873271 85.43990882 604 21.07214984 56.72402844 2.684777051 -11.9526032 702 36.08328897

9
57.8127506 2.871979928 0.129942218 696 36.77584691 34.6274645 1.720198088 80.82514436 614 22.02722272 34.59183659 1.71842819 80.7904805 614 22.00455909

10
8.574861636 0.364308433 77.6329954 628 5.454640984 458.8052722 19.49263285 1.63357629 706 291.8552097 459.9297316 19.54040622 5.52525512 701 292.5705009

322

11

60.32148325 3.066701489 9.008611234 698 38.37170193 59.98513689 3.049601878

-

9.303762802 720 38.15774528 59.28157968 3.013833528

-

9.211710303 720 37.71019846

12
35.80374971 1.808516219 92.80421234 609 22.77548126 58.72986388 2.966558314 3.490958053 695 37.35924101 35.92942415 1.814864277 92.8079612 609 22.85542529

13

60.21051642 3.033425445 8.164739515 689 38.30111371 59.01639983 2.973265462

-

9.398632837 710 37.54151226 58.50301208 2.94740082

-

9.377475261 710 37.21493605

14

58.32589121 2.895988253 -9.38185268 706 37.10226591 58.97366107 2.928151224 11.07439982 682 37.51432528 56.89704434 2.825043367

-

11.92544733 706 36.19334785

15

370.4822871 15.18424394 86.17208482 586 235.6711924 395.0484955 16.19109181

-

17.23265978 690 251.2982489 392.4332469 16.08390565

-

16.28305344 689 249.634637

16 -

321.1274629

-

16.21916949

-

8.183651042 715

-

204.2756017 32.89325288 1.661337958 87.45743182 619 20.92405602 32.30517551 1.631635963 87.44428653 619 20.54996825

17

370.1459332 16.06422873 55.23684647 650 235.457231 401.2874328 17.415761

-

16.23715717 723 255.2669617 405.0736571 17.58008206 3.610014082 703 257.6754547

18

35.73846528 1.813439734 74.62686546 637 22.73395253 59.75757463 3.032216392

-

9.108955301 725 38.01298837 56.65583141 2.874827866

-

12.98609898 725 36.03990748

19

56.81983711 2.90744705

-

11.72810402 752 36.14423478 56.81897776 2.907403078

-

11.72573915 752 36.14368813 58.26745117 2.98152085 -9.3655883 752 37.06509104

20

58.76093034 2.995207915

-

9.378580934 747 37.37900301 39.9142449 2.034539984 64.51335847 671 25.39024947 60.6013785 3.089020672 21.43428277 714 38.54974889

21

559.1961826 21.40468425

-

19.20469825 716 355.7158757 537.2344075 20.56404034 57.26485113 640 341.7455513 559.5393565 21.41782012

-

19.19832648 716 355.9341755

22

59.91923627 2.877478189

-

9.374858052 698 38.11582458 36.20976136 1.738887293 75.59441482 610 23.0337534 59.38600818 2.851871184

-

9.375813143 698 37.77662752

23

60.5367679 3.011423189 5.399257945 692 53.80853147 60.5367679 3.011423189 5.399257945 692 78.9480444 61.06783748 3.037841436

-

8.831774709 711 79.74651111

Total 1981.406284 3.546521951 468.2227504 16070 1275.712048 2827.138557 5.167322966 499.3460547 16042 1838.838774 2878.460581 5.260561883 342.707849 16203 1871.946383

TRPO

TRPO

Time Elapsed

(training) 3083

Time (Elapsed

(testing) 724

 Episode 0 Episode 0 Episode 0

Episode

0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

323

Step

Water

Saved Water Saved % Rewards

Violatio

ns

Carbon

Emissions Water Saved

Water Saved

% Rewards

Violatio

ns

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violatio

ns

Carbon

Emissions

0

55.4993886

6 2.518458097

70.191426

93 584 35.30427112 55.49938866 2.518458097

70.191426

93 584 35.30427112

108.25800

54 4.912545108

56.474438

64 605 68.86508239

1 78.2876957 3.534912003

79.169499

45 569 49.80036899 78.2876957 3.534912003

79.169499

45 569 49.80036899

78.287695

7 3.534912003

79.169499

45 569 49.80036899

2

95.9175555

7 4.359423068

93.854146

01 557 61.01507545 64.59878613 2.935994738

95.030215

81 549 41.09257983

84.031062

22 3.819185642

104.69217

5 543 53.4538393

3

78.1967536

8 3.724340832

127.12660

44 530 49.74251895 78.19675368 3.724340832

127.12660

44 530 49.74251895

91.717475

29 4.368303314

82.946964

41 574 58.34332038

4

93.5081481

7 4.565587151

108.38151

7 561 59.48240321 86.5761564 4.227128811

122.35005

65 547 55.07282461

91.185291

06 4.452172365

119.36853

7 550 58.00478735

5

77.9996561

6 3.765895089

127.18104

41 545 49.61714127 77.99965616 3.765895089

127.18104

41 545 49.61714127

77.999656

16 3.765895089

127.18104

41 545 49.61714127

6 110.763791 5.227502605

74.919131

22 584 70.45906272 110.763791 5.227502605

74.919131

22 584 70.45906272

110.76379

1 5.227502605

74.919131

22 584 70.45906272

7

98.7105747

3 4.562128833

61.356044

21 607 62.7917708 77.47499827 3.58067942

82.974235

27 582 49.2833959

86.211094

14 3.984437528

72.033170

09 593 54.84060121

8

84.8040185

7 4.013817233

79.358224

34 611 53.94553229 84.80401857 4.013817233

79.358224

34 611 53.94553229

84.804018

57 4.013817233

79.358224

34 611 53.94553229

9

97.2011387

1 4.828687729

62.892778

73 636 61.83158836 104.615812 5.197028493

48.974591

05 650 66.5482103

88.697974

63 4.406273706

71.438597

56 624 56.42255562

10

51.4609470

2 2.186350958

71.179776

93 635 32.73533762 51.46094702 2.186350958

71.179776

93 635 32.73533762

498.03335

95 21.15926301

50.019921

88 657 316.8089806

11

100.292308

7 5.098789947

65.913870

88 645 63.79794341 84.74829521 4.30854331

80.567407

22 628 53.91008555

84.748295

21 4.30854331

80.567407

22 628 53.91008555

12

97.7717398

8 4.938638517

73.489248

64 629 62.19455917 87.26307031 4.407825418

77.504892

62 621 55.50978428

95.687711

37 4.833370231

77.476332

71 625 60.86886695

13

86.1358254

7 4.339550966

89.778835

48 611 54.7927213 86.13582547 4.339550966

89.778835

48 611 54.7927213

99.588147

84 5.017283353

73.889779

98 627 63.35001261

14 87.3963644 4.339390954

87.042973

59 610 55.59457532 100.843306 5.007056445

72.152292

7 625 64.14844378

87.396364

4 4.339390954

87.042973

59 610 55.59457532

15

422.200436

6 17.30391613

79.903190

99 593 268.5701417 422.2004366 17.30391613

79.903190

99 593 268.5701417

439.39622

44 18.00868676

49.060794

24 624 279.5087263

16

84.2773661

4 4.256592922

81.370004

13 626 53.61051815 100.5185486 5.076885553

67.010259

11 644 63.94185915

102.37835

47 5.170818691

47.527462

68 660 65.124919

17

444.890443

3 19.30811931

52.030171

28 654 283.0037088 431.1107677 18.71008529

72.932593

73 634 274.2381816

431.11076

77 18.71008529

72.932593

73 634 274.2381816

324

18

111.483545

2 5.656893461

27.184752

49 689 70.91691276 87.40255002 4.434976596

68.417946

17 644 55.59851012

111.85772

66 5.675880157

17.110631

22 699 71.15493702

19

89.0690255

3 4.557624392

69.352055

03 671 56.65858852 109.9790731 5.627582686

41.545339

38 702 69.95988795

94.986613

5 4.860424868

63.427050

7 680 60.42288458

20 -254.20171 -12.95736758

53.077885

11 681 -161.7027918 86.8249686 4.425709935

29.336779

88 702 55.23109903

98.489270

7 5.020271827

47.444079

81 689 62.65099488

21

590.073279

1 22.5865852

51.012540

09 647 375.3574143 590.0732791 22.5865852

51.012540

09 647 375.3574143

198.64892

38 7.603802783

41.585580

56 659 126.3645534

22

88.3742675

3 4.243963094

70.280744

82 617 56.21663906 106.0778621 5.094135931

38.356036

77 651 67.47824961

101.25808

28 4.862677547

46.308159

96 643 64.41229165

23

71.2752845

9 3.545614546

66.087876

75 628 80.4326983 105.2319912 5.234803072

54.329364

18 647 88.40269874

99.054855

84 4.927519262

75.265712

84 626 93.80681861

Total

2941.38784

4 5.437725644

1822.1343

43 14720 1906.1687 3268.687977 6.144573534

1801.3022

84 14735 2100.740321

3444.5907

63 6.540960943

1697.2402

63 14859 2221.96912

PPO

PPO

Time

Elapsed

(train) 3644

Time

Elapsed

(Test) 594

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

0 55.49938866 2.518458097 70.19142693 584 35.30427112 108.8587006 4.93980353 56.65401993 605 69.24719663 113.1012413 5.132322062 40.57112148 621 71.94596159

1 78.2876957 3.534912003 79.16949945 569 49.80036899 81.52444893 3.681060612 76.30719692 570 51.85933245 78.2876957 3.534912003 79.16949945 569 49.80036899

2 97.87398603 4.448342224 90.42391468 559 62.25959999 99.82455512 4.536994982 41.07400556 607 63.500396 100.5923097 4.571889189 36.08836509 612 63.98878005

3 100.0455098 4.764949435 71.1910954 586 63.64094969 87.62546096 4.173409597 123.6483975 534 55.74030823 91.6417417 4.364696288 82.9449406 574 58.29514473

4 103.4646854 5.051720601 107.5682976 566 65.81595571 104.4350791 5.099100608 87.36807592 585 66.4332425 81.14346725 3.961874753 125.314018 544 51.61698238

5 77.99965616 3.765895089 127.1810441 545 49.61714127 82.69357571 3.992521839 126.2227889 546 52.60303738 77.99965616 3.765895089 127.1810441 545 49.61714127

6 110.763791 5.227502605 74.91913122 584 70.45906272 110.763791 5.227502605 74.91913122 584 70.45906272 110.763791 5.227502605 74.91913122 584 70.45906272

7 77.47499827 3.58067942 82.97423527 582 49.2833959 98.26420283 4.541498763 61.35183976 607 62.5078247 77.47499827 3.58067942 82.97423527 582 49.2833959

325

8 84.80401857 4.013817233 79.35822434 611 53.94553229 84.80401857 4.013817233 79.35822434 611 53.94553229 84.80401857 4.013817233 79.35822434 611 53.94553229

9 110.397888 5.484266278 33.08118037 666 70.22630454 86.45678404 4.294937464 75.37692592 621 54.99688947 105.7469763 5.253221656 44.99560291 654 67.26776656

10 51.46094702 2.186350958 71.17977693 635 32.73533762 51.46094702 2.186350958 71.17977693 635 32.73533762 51.46094702 2.186350958 71.17977693 635 32.73533762

11 84.74829521 4.30854331 80.56740722 628 53.91008555 84.74829521 4.30854331 80.56740722 628 53.91008555 102.2633453 5.198996051 54.93521047 656 65.05175919

12 101.1775209 5.110671066 69.54666148 633 64.36104462 87.12148959 4.400673903 86.38701046 616 55.41972196 96.85040952 4.89210035 75.4994825 627 61.60848251

13 86.13582547 4.339550966 89.77883548 611 54.7927213 110.3860589 5.561285633 50.54451395 651 70.2187798 86.13582547 4.339550966 89.77883548 611 54.7927213

14

-

328.5190077

-

16.31157566 60.10391922 634

-

208.9775112 98.72711992 4.901983899 74.1298894 623 62.80229552 87.3963644 4.339390954 87.04297359 610 55.59457532

15 440.1287213 18.0387082 48.07119921 625 279.9746822 422.2004366 17.30391613 79.90319099 593 268.5701417 422.4539636 17.31430695 76.92828874 597 268.7314153

16 99.40480566 5.02063379 69.9972382 641 63.23338498 84.27736614 4.256592922 81.37000413 626 53.61051815

-

402.8217396

-

20.34529844 53.09672747 656 -256.242965

17 451.9350372 19.61385269 30.11835011 676 287.4849158 448.4523477 19.46270496 43.07145094 663 285.2695074 449.685156 19.51620849 29.12767634 678 286.0537215

18 87.40255002 4.434976596 68.41794617 644 55.59851012 87.40255002 4.434976596 68.41794617 644 55.59851012 106.3865688 5.398262895 35.19391546 681 67.67462414

19 89.06902553 4.557624392 69.35205503 671 56.65858852 103.5843697 5.300368416 49.49161151 694 65.89208923 89.06902553 4.557624392 69.35205503 671 56.65858852

20

-

319.9346466

-

16.30795803 23.21290983 712

-

203.5168274 91.29812119 4.653718953 58.40305502 678 58.07656085 91.29812119 4.653718953 58.40305502 678 58.07656085

21 590.0732791 22.5865852 51.01254009 647 375.3574143 607.0681795 23.23710909 22.18109096 675 386.1682104 610.85357 23.38200473 11.24673926 686 388.5761729

22 100.5108285 4.826792445 46.28982672 643 63.93694826 101.5634184 4.877340559 46.30195887 643 64.60652172 88.69511872 4.259371205 68.28470846 619 56.42073892

23 71.27528459 3.545614546 66.08787675 628 67.36204221 105.242082 5.235305043 54.33261513 647 93.1620264 100.1677506 4.982880613 74.28094733 627 78.43323321

Total 2501.480084 4.514204728 1659.794592 14880 1613.263919 3428.783399 6.442563233 1668.562128 14886 2207.333129 2901.450322 5.33676164 1627.866575 14928 1860.385103

Recurrent PPO

Recurrent PPO

Time Elapsed

(train) 4519

Time Elapsed

(test) 727

 Episode 0 Episode 0 Episode 0

Episode

0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

Step

Water

Saved Water Saved % Rewards

Violation

s

Carbon

Emissions Water Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violation

s

Carbon

Emissions

326

0

55.4993886

6 2.518458097

70.1914269

3 584 35.30427112 55.49938866 2.518458097

70.1914269

3 584 35.30427112

55.4993886

6 2.518458097

70.1914269

3 584 35.30427112

1 78.2876957 3.534912003

79.1694994

5 569 49.80036899 78.2876957 3.534912003

79.1694994

5 569 49.80036899

101.145696

8 4.56701573

51.3460834

7 597 64.34080067

2

64.5987861

3 2.935994738

95.0302158

1 549 41.09257983 64.59878613 2.935994738

95.0302158

1 549 41.09257983

64.5987861

3 2.935994738

95.0302158

1 549 41.09257983

3

78.1967536

8 3.724340832

127.126604

4 530 49.74251895 78.19675368 3.724340832

127.126604

4 530 49.74251895

78.1967536

8 3.724340832

127.126604

4 530 49.74251895

4

104.435079

1 5.099100608

87.3680759

2 585 66.4332425 104.4350791 5.099100608

87.3680759

2 585 66.4332425

108.020876

3 5.274179146

87.4006064

5 585 68.71423985

5

77.9996561

6 3.765895089

127.181044

1 545 49.61714127 89.06096425 4.29994521

124.511038

7 548 56.65346058

111.553949

7 5.385927222

73.0558779

5 602 70.96169849

6 110.763791 5.227502605

74.9191312

2 584 70.45906272 78.57657004 3.708425117

125.403693

8 531 49.98412774 110.763791 5.227502605

74.9191312

2 584 70.45906272

7

77.4749982

7 3.58067942

82.9742352

7 582 49.2833959 77.47499827 3.58067942

82.9742352

7 582 49.2833959

77.4749982

7 3.58067942

82.9742352

7 582 49.2833959

8

62.7976263

4 2.972243522

48.1792983

4 638 39.94682607 84.80401857 4.013817233

79.3582243

4 611 53.94553229

84.8040185

7 4.013817233

79.3582243

4 611 53.94553229

9

86.4567840

4 4.294937464

75.3769259

2 621 54.99688947 86.45678404 4.294937464

75.3769259

2 621 54.99688947

86.4567840

4 4.294937464

75.3769259

2 621 54.99688947

10

51.4609470

2 2.186350958

71.1797769

3 635 32.73533762 51.46094702 2.186350958

71.1797769

3 635 32.73533762

51.4609470

2 2.186350958

71.1797769

3 635 32.73533762

11 78.5079714 3.991289667

55.6624503

7 649 49.94049077 84.74829521 4.30854331

80.5674072

2 628 53.91008555

84.7482952

1 4.30854331

80.5674072

2 628 53.91008555

12

87.1214895

9 4.400673903

86.3870104

6 616 55.41972196 87.12148959 4.400673903

86.3870104

6 616 55.41972196

87.1214895

9 4.400673903

86.3870104

6 616 55.41972196

13

108.272328

9 5.454795223

55.8858643

8 645 68.87419384 102.2436147 5.151066638

68.9164463

1 632 65.03920817

86.1358254

7 4.339550966

89.7788354

8 611 54.7927213

14 87.3963644 4.339390954

87.0429735

9 610 55.59457532 87.3963644 4.339390954

87.0429735

9 610 55.59457532 87.3963644 4.339390954

87.0429735

9 610 55.59457532

15

433.243843

6 17.75653098

64.9913115

4 608 275.5950738 422.2004366 17.30391613

79.9031909

9 593 268.5701417

422.200436

6 17.30391613

79.9031909

9 593 268.5701417

16

84.2773661

4 4.256592922

81.3700041

3 626 53.61051815 84.27736614 4.256592922

81.3700041

3 626 53.61051815

84.2773661

4 4.256592922

81.3700041

3 626 53.61051815

17

431.110767

7 18.71008529

72.9325937

3 634 274.2381816 422.2597591 18.32595402

48.9726543

6 657 268.607878

431.110767

7 18.71008529

72.9325937

3 634 274.2381816

327

18

-

232.030225

5 -11.77366815

69.0086378

9 643 -147.5990671 91.67239529 4.651636909

61.4313431

3 651 58.31464409

87.4025500

2 4.434976596

68.4179461

7 644 55.59851012

19

89.0690255

3 4.557624392

69.3520550

3 671 56.65858852 94.02815279 4.811380838

55.7566297

2 685 59.81318856

93.0990843

1 4.763840797

56.1623374

9 685 59.22218951

20

91.2981211

9 4.653718953

58.4030550

2 678 58.07656085 91.29812119 4.653718953

58.4030550

2 678 58.07656085

91.2981211

9 4.653718953

58.4030550

2 678 58.07656085

21

590.073279

1 22.5865852

51.0125400

9 647 375.3574143 580.1797404 22.20788434

30.0441974

1 667 369.0639364

594.698187

6 22.76361557

43.0561881

6 655 378.2994111

22

88.3742675

3 4.243963094

70.2807448

2 617 56.21663906 78.22312956 3.756478941

44.4265434

3 638 49.75929717

88.3742675

3 4.243963094

70.2807448

2 617 56.21663906

23

82.2086833

2 4.08950038

67.9974689

5 630 77.9626312 89.03232683 4.428944969

78.3955160

9 619 86.63600835

105.459645

1 5.246127799

54.3361678

5 647 89.04131564

Tota

l

2866.89478

9 5.296145756

1829.02294

4 14696 1849.357157 3163.533177 5.937214355

1879.30668

9 14645 2042.387489

3273.29839

1 6.144758322

1816.59756

4 14724 2104.166899

A2C

A2C

Time

Elapsed

(train) 3672

Time

Elapsed

(test) 756

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

0 95.40864392 4.3294652 84.90925492 577 60.69134657 55.49938866 2.518458097 70.19142693 584 35.30427112 90.06352338 4.086913662 71.62624609 586 57.29120849

1 78.2876957 3.534912003 79.16949945 569 49.80036899 78.92838002 3.563840721 77.29056734 569 50.2079211 78.2876957 3.534912003 79.16949945 569 49.80036899

2 91.91040771 4.177299444 93.60558854 554 58.46604855 64.59878613 2.935994738 95.03021581 549 41.09257983 64.59878613 2.935994738 95.03021581 549 41.09257983

3 78.19675368 3.724340832 127.1266044 530 49.74251895 103.3876554 4.924128539 98.51945227 562 65.76695534 116.7553437 5.560802379 68.96937289 591 74.27040923

4 104.4350791 5.099100608 87.36807592 585 66.4332425 104.4350791 5.099100608 87.36807592 585 66.4332425 104.4350791 5.099100608 87.36807592 585 66.4332425

5 77.99965616 3.765895089 127.1810441 545 49.61714127 86.49458846 4.176038229 123.3725051 548 55.02093761 77.99965616 3.765895089 127.1810441 545 49.61714127

6 84.25761518 3.976542324 122.9163095 533 53.59795417 110.763791 5.227502605 74.91913122 584 70.45906272 110.763791 5.227502605 74.91913122 584 70.45906272

328

7 77.47499827 3.58067942 82.97423527 582 49.2833959 104.0908066 4.810788222 51.95486833 617 66.21424392 80.56505756 3.723493385 82.99265828 582 51.24904441

8 62.36830134 2.951923351 40.15732256 646 39.67372385 84.80401857 4.013817233 79.35822434 611 53.94553229 84.80401857 4.013817233 79.35822434 611 53.94553229

9 86.45678404 4.294937464 75.37692592 621 54.99688947 86.45678404 4.294937464 75.37692592 621 54.99688947 104.7090555 5.201660579 47.97554824 651 66.60752439

10 503.8548009 21.40659064 40.08349654 667 320.5121159 51.46094702 2.186350958 71.17977693 635 32.73533762 51.46094702 2.186350958 71.17977693 635 32.73533762

11 84.74829521 4.30854331 80.56740722 628 53.91008555 101.8040714 5.175646892 55.92970762 655 64.75960589 84.74829521 4.30854331 80.56740722 628 53.91008555

12 100.9123071 5.097274603 69.50140203 633 64.19233677 87.12148959 4.400673903 86.38701046 616 55.41972196 87.12148959 4.400673903 86.38701046 616 55.41972196

13 86.13582547 4.339550966 89.77883548 611 54.7927213 86.13582547 4.339550966 89.77883548 611 54.7927213 86.13582547 4.339550966 89.77883548 611 54.7927213

14 87.3963644 4.339390954 87.04297359 610 55.59457532 87.3963644 4.339390954 87.04297359 610 55.59457532 87.3963644 4.339390954 87.04297359 610 55.59457532

15 422.2004366 17.30391613 79.90319099 593 268.5701417 437.713482 17.93971944 59.03626717 614 278.4383002 438.7139935 17.98072548 51.00505989 623 279.0747455

16 84.27736614 4.256592922 81.37000413 626 53.61051815 84.27736614 4.256592922 81.37000413 626 53.61051815 84.27736614 4.256592922 81.37000413 626 53.61051815

17 431.1107677 18.71008529 72.93259373 634 274.2381816 431.1107677 18.71008529 72.93259373 634 274.2381816 431.1107677 18.71008529 72.93259373 634 274.2381816

18 87.40255002 4.434976596 68.41794617 644 55.59851012 99.996075 5.073996722 38.95489941 676 63.60950323 92.80106039 4.708907587 56.43911803 656 59.03261053

19 89.06902553 4.557624392 69.35205503 671 56.65858852 92.44393011 4.730316833 58.99154287 682 58.80543282 89.06902553 4.557624392 69.35205503 671 56.65858852

20 91.29812119 4.653718953 58.40305502 678 58.07656085 91.29812119 4.653718953 58.40305502 678 58.07656085 91.29812119 4.653718953 58.40305502 678 58.07656085

21 590.0732791 22.5865852 51.01254009 647 375.3574143 590.0732791 22.5865852 51.01254009 647 375.3574143 604.2911592 23.13081144 34.14244502 663 384.4016922

22 88.37426753 4.243963094 70.28074482 617 56.21663906 88.37426753 4.243963094 70.28074482 617 56.21663906 88.37426753 4.243963094 70.28074482 617 56.21663906

23 71.27528459 3.545614546 66.08787675 628 45.33963403 71.27528459 3.545614546 66.08787675 628 45.33963403 71.27528459 3.545614546 66.08787675 628 45.33963403

Total 3654.924627 6.800813472 1905.518982 14629 2324.970653 3279.940549 6.156117214 1780.769221 14759 2086.435782 3301.055974 6.18802692 1789.558972 14749 2099.867726

DDPG

DDPG

Time

Elapsed

(Training) 3644

Time

Elapsed

(Testing) 807

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

329

0

108.3485597 4.916654293

-

17.48678441 678 68.9226858 108.3485597 4.916654293

-

17.48678441 678 68.9226858 108.3485597 4.916654293

-

17.48678441 678 68.9226858

1

108.479689 4.898166326

-

18.63134095 671 69.00609979 108.479689 4.898166326

-

18.63134095 671 69.00609979 108.479689 4.898166326

-

18.63134095 671 69.00609979

2

111.3745918 5.061940555

-

15.59705481 668 70.84760531 111.3745918 5.061940555

-

15.59705481 668 70.84760531 111.3745918 5.061940555

-

15.59705481 668 70.84760531

3

113.5643943 5.408824418

-

14.94971069 677 72.24058248 113.5643943 5.408824418

-

14.94971069 677 72.24058248 113.5643943 5.408824418

-

14.94971069 677 72.24058248

4

111.1708701 5.427979336

-

15.59169557 690 70.71801388 111.1708701 5.427979336

-

15.59169557 690 70.71801388 111.1708701 5.427979336

-

15.59169557 690 70.71801388

5

111.3192957 5.37459791

-

15.64106136 691 70.81243038 111.3192957 5.37459791

-

15.64106136 691 70.81243038 111.3192957 5.37459791

-

15.64106136 691 70.81243038

6

108.3417149 5.113192605

-

18.92375847 675 68.91833169 108.3417149 5.113192605

-

18.92375847 675 68.91833169 108.3417149 5.113192605

-

18.92375847 675 68.91833169

7

108.1649331 4.999083039

-

18.33191632 687 68.80587722 108.1649331 4.999083039

-

18.33191632 687 68.80587722 108.1649331 4.999083039

-

18.33191632 687 68.80587722

8

108.2975709 5.125778985

-

18.28319502 709 68.89025077 108.2975709 5.125778985

-

18.28319502 709 68.89025077 108.2975709 5.125778985

-

18.28319502 709 68.89025077

9

108.6305198 5.396468238

-

18.06190815 715 69.10204623 108.6305198 5.396468238

-

18.06190815 715 69.10204623 108.6305198 5.396468238

-

18.06190815 715 69.10204623

10

72.99506475 3.101241602

-

19.26811039 726 46.43362059 72.99506475 3.101241602

-

19.26811039 726 46.43362059 72.99506475 3.101241602

-

19.26811039 726 46.43362059

11

108.0903985 5.495239309

-

17.84587433 727 68.75846427 108.0903985 5.495239309

-

17.84587433 727 68.75846427 108.0903985 5.495239309

-

17.84587433 727 68.75846427

12

108.0561524 5.458123965

-

18.07525111 718 68.7366797 108.0561524 5.458123965

-

18.07525111 718 68.7366797 108.0561524 5.458123965

-

18.07525111 718 68.7366797

13
108.1431167 5.448285473 -18.0293697 717 68.7919994 108.1431167 5.448285473 -18.0293697 717 68.7919994 108.1431167 5.448285473 -18.0293697 717 68.7919994

14

108.2435521 5.374492336

-

18.22864331 713 68.85588834 108.2435521 5.374492336

-

18.22864331 713 68.85588834 108.2435521 5.374492336

-

18.22864331 713 68.85588834

15

443.4721377 18.17573837

-

22.50692441 697 282.1014962 443.4721377 18.17573837

-

22.50692441 697 282.1014962 443.4721377 18.17573837

-

22.50692441 697 282.1014962

16
108.3068434 5.470248586 -18.1736145 727 68.89614921 108.3068434 5.470248586 -18.1736145 727 68.89614921 108.3068434 5.470248586 -18.1736145 727 68.89614921

17

453.1081926 19.66476731

-

22.50700737 730 288.2311835 453.1081926 19.66476731

-

22.50700737 730 288.2311835 453.1081926 19.66476731

-

22.50700737 730 288.2311835

18

108.2026407 5.490413941

-

19.00637803 732 68.8298638 108.2026407 5.490413941

-

19.00637803 732 68.8298638 108.2026407 5.490413941

-

19.00637803 732 68.8298638

19

108.2996197 5.541645767

-

18.12343237 759 68.89155406 108.2996197 5.541645767

-

18.12343237 759 68.89155406 108.2996197 5.541645767

-

18.12343237 759 68.89155406

330

20

108.608873 5.53609608

-

17.09969754 754 69.08827631 108.608873 5.53609608

-

17.09969754 754 69.08827631 108.608873 5.53609608

-

17.09969754 754 69.08827631

21

610.9486641 23.3856447

-

25.47533652 723 388.6366642 610.9486641 23.3856447

-

25.47533652 723 388.6366642 610.9486641 23.3856447

-

25.47533652 723 388.6366642

22

108.3942322 5.205374074

-

17.19001391 705 68.95173898 108.3942322 5.205374074

-

17.19001391 705 68.95173898 108.3942322 5.205374074

-

17.19001391 705 68.95173898

23

101.2457491 5.03650603 71.28938963 630 102.4779892 108.3221628 5.388524764

-

18.38393718 718 102.4779892 108.3221628 5.388524764

-

18.38393718 718 102.4779892

Total 3753.807376 7.087770969

-

351.7386896 16919 2425.945491 3760.88379 7.102438416

-

441.4120164 17007 2425.945491 3760.88379 7.102438416

-

441.4120164 17007 2425.945491

SAC

SAC

Time Elapsed

(training) 5588

Time (Elapsed

(testing) 860

 Episode 0 Episode 0 Episode 0

Episode

0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

Step

Water

Saved Water Saved % Rewards

Violatio

ns

Carbon

Emissions Water Saved

Water Saved

% Rewards

Violatio

ns

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violatio

ns

Carbon

Emissions

0

108.24439

49 4.911927492

-

18.8490904

2 678 68.85642451 108.313824 4.915078053

-

18.0924634 678 68.90058974

108.244348

4 4.91192538

-

18.8491071

6 678 68.85639491

1

107.27751

76 4.843884869

-

19.8732057

8 670 68.24137451 103.2347633 4.661343018

-

22.1039220

6 670 65.66969761

107.281196

8 4.844050993

-

19.8670644

2 670 68.24371489

2

108.43417

04 4.92829932

-

17.6959334

2 668 68.97714449 108.3862433 4.926121046

-

18.5608960

4 668 68.94665708

111.714524

5 5.077390394

-

16.1231391

7 668 71.06384334

3

108.38171

47 5.161984694

-

18.7403724

7 677 68.94377637 108.4385105 5.164689753

-

17.8125231

3 677 68.97990529

111.762568

4 5.323007381

-

16.1193337

7 677 71.094405

4

111.54454

63 5.446224284

-

16.1161725

4 690 70.95571679 111.5448399 5.446238619

-

16.1162209

8 690 70.95590355

108.228522

5 5.284317586

-

19.0698031

2 690 68.84632775

331

5

108.41825

38 5.23453294

-

18.2996945

3 691 68.96701959 108.4183738 5.234538734

-

18.2971503

4 691 68.96709592

111.734001

7 5.394620295

-

16.1181656

9 691 71.07623313

6

111.71460

81 5.272376464

-

16.1198595 675 71.06389648 111.7141821 5.27235636

-

16.1199112

9 675 71.06362551

111.715235

6 5.272406083

-

16.1197618 675 71.0642957

7

105.03187

92 4.854281983

-

21.4017748

4 687 66.81287898 113.549848 5.247958862

-

14.6988511

4 687 72.23132929

105.031967

4 4.854286058

-

21.4017265

1 687 66.81293508

8

108.30982

02 5.126358751 -18.090533 709 68.8980428 111.5349016 5.279003491

-

15.3778914

8 709 70.94958159

108.271977

6 5.124567642

-

18.6103210

9 709 68.87397037

9

108.28048

66 5.379079545

-

18.9668655

5 715 68.87938315 111.2568725 5.526938288

-

15.6364285

8 715 70.77272176

108.280331

4 5.379071834

-

18.9673243

4 715 68.8792844

10

506.91697

3 21.53668896

-

22.5029570

2 731 322.4600249 506.8322136 21.53308791

-

22.5029788

6 731 322.4061077

509.821435

6 21.6600869

-

23.5009340

2 731 324.3076116

11

108.05554

36 5.493467312

-

18.5308511

2 727 68.7362924 108.1765838 5.49962091

-

17.0901061

9 727 68.81328848 121.031049 6.153132818

-

16.4689562

5 727 76.9902709

12

108.05613

29 5.458122977

-

18.0767681

5 718 68.73666726 110.9734671 5.605483133

-

15.6470513 718 70.59244187

107.968833

2 5.4537133

-

18.9734777

7 718 68.68113416

13

121.12688

35 6.102411878

-

16.4704265

6 717 77.05123315 108.192024 5.450749441

-

17.2327227

5 717 68.82311034

108.149558

5 5.448610014

-

17.8235628

1 717 68.79609717

14

108.19388

61 5.372026331

-

18.7799734

6 713 68.82429485 108.2494145 5.374783417

-

18.0934350

7 713 68.85961755

111.312385

4 5.526865583

-

15.6259693

3 713 70.80803463

15

443.39530

41 18.17258934

-

22.5068378

9 697 282.0526208 443.3937254 18.17252464

-

22.5068615

6 697 282.0516166

429.386002

8 17.59841709

-

35.5093960

9 709 273.1410241

16

108.30726

96 5.470270113

-

18.1633925

3 727 68.89642033 -398.8005267

-

20.14219923

-

12.5155453

7 722 -253.6849911

-

398.803192

4

-

20.14233387

-

12.5155461

3 722 -253.6866868

332

17

452.96940

11 19.6587438

-

22.5069434

3 730 288.1428954 453.0461061 19.66207277

-

22.5069356

7 730 288.191689

452.968452

3 19.65870262

-

22.5069234

5 730 288.1422919

18

108.14316

79 5.487396176

-

19.0697268

5 732 68.79203198 108.1832944 5.489432271

-

19.0419184

5 732 68.81755722

108.183212

8 5.48942813

-

19.0420739

8 732 68.81750532

19

108.26682

75 5.539967804

-

18.5690392

9 759 68.87069429 108.2668684 5.539969896

-

18.5689959

9 759 68.8707203

111.252827

4 5.69276016

-

15.6506922

7 759 70.77014859

20

108.61048

03 5.53617801

-

17.0987604

8 754 69.08929876 111.5438522 5.685700124

-

15.6133503

2 754 70.95527525 111.543784 5.685696646

-

15.6136474

8 754 70.95523185

21

610.27756

94 23.35995681

-

25.4814509

1 723 388.2097674 610.9125809 23.38426352

5.37474420

6 693 388.613711

607.185230

9 23.24158954

-

24.4917722 723 386.2426691

22

108.24942

89 5.198420242

-

18.8280011

9 705 68.85962672 111.5019736 5.354615933

-

15.5744381

8 705 70.92863547

108.394551

4 5.205389402

-

17.1888711

7 705 68.95194202

23

108.32216

28 5.388524764

-

18.3839371

8 718 115.0208136 108.3187025 5.388352629

-

18.4832453

3 718 100.4885114

108.322543

5 5.388543702

-

18.3772621

1 718 100.3989426

Tot

al

4194.5284

23 7.872238119

-

459.122568

1 17011 2714.33834 3695.182639 6.819696816

-

402.819099

3 16976 2382.164399

3688.98134

9 6.813593569

-

454.534832

2 17018 2378.127622

TQC

TQC

Time

Elapsed

(train) 6113

Time

Elapsed

(Test) 754

 Episode 0 Episode 0 Episode 0 Episode 0 Episode 0 Episode 1 Episode 1 Episode 1 Episode 1 Episode 1 Episode 2 Episode 2 Episode 2 Episode 2 Episode 2

Step Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions Water Saved

Water Saved

% Rewards Violations

Carbon

Emissions

333

0 95.03926937 4.312703676 80.87117776 581 60.45638003 94.07271217 4.268843125 85.88567828 576 59.84153367 94.03030197 4.266918629 84.87877421 577 59.81455569

1 79.71856156 3.599519664 77.29452772 569 50.71057138 107.8496693 4.869719146 38.06211071 615 68.60533166 -344.178279

-

15.54062766 86.90636132 564

-

218.9386869

2 109.3908151 4.971778525 40.96397923 607 69.58568533 96.80025554 4.399541507 93.86116435 557 61.57657855 65.89661232 2.994980535 94.03770165 550 41.91815303

3 83.00217867 3.953212744 126.1581973 531 52.79934589 100.0051539 4.763027369 71.18015132 586 63.61527847 100.5911891 4.790938948 69.19660488 588 63.98806718

4 82.46322193 4.026312507 124.321813 545 52.45650473 79.21492295 3.867712509 125.3015739 544 50.39019679 87.52411467 4.2734134 122.3571115 547 55.67583983

5 94.4418097 4.559737374 71.06989182 599 60.07632398 102.4030407 4.944112925 111.3650239 564 65.14062226 87.09955726 4.205246678 123.3775914 548 55.40577037

6 105.5297833 4.980483352 87.18467352 572 67.12960573 97.63775404 4.608018641 100.4956808 556 62.1093281 100.7419984 4.754523609 105.2785475 554 64.08400004

7 95.92806985 4.433529179 68.3363488 600 61.02176379 103.5854199 4.787430651 51.09475749 617 65.89275733 91.48741089 4.228294246 71.29478084 597 58.19697182

8 94.51712611 4.473543542 75.93528927 617 60.12423426 59.47418871 2.814943532 52.14880441 634 37.83272092 88.83227155 4.204476491 80.88771138 612 56.50798458

9 86.51150146 4.297655676 75.37743862 621 55.03169631 86.59944147 4.302024296 75.37779672 621 55.08763671 86.46317169 4.295254785 75.37688355 621 55.00095277

10 51.46094702 2.186350958 71.17977693 635 32.73533762 51.46094702 2.186350958 71.17977693 635 32.73533762 51.46094702 2.186350958 71.17977693 635 32.73533762

11 84.74829521 4.30854331 80.56740722 628 53.91008555 84.74829521 4.30854331 80.56740722 628 53.91008555 84.74829521 4.30854331 80.56740722 628 53.91008555

12 87.1620175 4.402721046 86.40132116 616 55.44550257 87.17448801 4.403350956 86.40567773 616 55.45343532 87.1712896 4.403189398 86.40445547 616 55.45140074

13 108.1162638 5.446932617 55.88431241 645 68.77491776 86.2194812 4.343765569 89.77825738 611 54.84593638 86.31879793 4.348769178 89.77920995 611 54.90911374

14 87.50933823 4.345000313 87.04090125 610 55.66644024 87.45823021 4.342462706 87.04222384 610 55.6339294 87.57224061 4.348123533 87.04229744 610 55.7064537

15 422.3018254 17.30807155 79.90389224 593 268.6346372 422.3188482 17.30876923 79.90400483 593 268.6454657 422.2881236 17.30750999 79.90379296 593 268.6259212

16 84.99743166 4.292961237 79.26298793 629 54.06856623 73.08628681 3.691365611 62.1079979 642 46.49164877 72.65951424 3.669810629 62.1048618 642 46.2201702

17 431.128655 18.7108616 72.9327137 634 274.24956 431.1735437 18.71280975 72.9330681 634 274.2781146 431.138068 18.71127012 72.93279944 634 274.2555478

18 87.40255002 4.434976596 68.41794617 644 55.59851012 87.40255002 4.434976596 68.41794617 644 55.59851012 87.40255002 4.434976596 68.41794617 644 55.59851012

19 89.06902553 4.557624392 69.35205503 671 56.65858852 89.06902553 4.557624392 69.35205503 671 56.65858852 89.06902553 4.557624392 69.35205503 671 56.65858852

20 91.29812119 4.653718953 58.40305502 678 58.07656085 91.29812119 4.653718953 58.40305502 678 58.07656085 91.29812119 4.653718953 58.40305502 678 58.07656085

21 590.0732791 22.5865852 51.01254009 647 375.3574143 590.0732791 22.5865852 51.01254009 647 375.3574143 590.0732791 22.5865852 51.01254009 647 375.3574143

22 88.37426753 4.243963094 70.28074482 617 56.21663906 88.37426753 4.243963094 70.28074482 617 56.21663906 88.37426753 4.243963094 70.28074482 617 56.21663906

23 108.256033 5.385235111

-

18.96994797 718 90.84401057 71.27528459 3.545614546 66.08787675 628 89.89895507 71.27528459 3.545614546 66.08787675 628 76.32539604

Total 3338.440387 6.269667592 1739.183043 14807 2145.628882 3268.775207 6.122719774 1818.245374 14724 2123.892606 2799.338153 5.240811231 1927.060887 14612 1811.700748

334

ARS

ARS

Time Elapsed

(train) 3222

Time Elapsed

(test) 675

 Episode 0 Episode 0 Episode 0

Episode

0 Episode 0 Episode 1 Episode 1 Episode 1

Episode

1 Episode 1 Episode 2 Episode 2 Episode 2

Episode

2 Episode 2

Step

Water

Saved Water Saved % Rewards

Violatio

ns

Carbon

Emissions Water Saved

Water Saved

% Rewards

Violatio

ns

Carbon

Emissions

Water

Saved

Water Saved

% Rewards

Violatio

ns

Carbon

Emissions

0

108.348559

7 4.916654293

-

17.4867844

1 678 68.9226858 108.3485597 4.916654293

-

17.4867844

1 678 68.9226858

108.34855

97 4.916654293

-

17.4867844

1 678 68.9226858

1 108.479689 4.898166326

-

18.6313409

5 671 69.00609979 108.479689 4.898166326

-

18.6313409

5 671 69.00609979

108.47968

9 4.898166326

-

18.6313409

5 671 69.00609979

2

111.374591

8 5.061940555

-

15.5970548

1 668 70.84760531 111.3745918 5.061940555

-

15.5970548

1 668 70.84760531

111.37459

18 5.061940555

-

15.5970548

1 668 70.84760531

3

113.564394

3 5.408824418

-

14.9497106

9 677 72.24058248 113.5643943 5.408824418

-

14.9497106

9 677 72.24058248

113.56439

43 5.408824418

-

14.9497106

9 677 72.24058248

4

111.170870

1 5.427979336

-

15.5916955

7 690 70.71801388 111.1708701 5.427979336

-

15.5916955

7 690 70.71801388

111.17087

01 5.427979336

-

15.5916955

7 690 70.71801388

5

111.319295

7 5.37459791

-

15.6410613

6 691 70.81243038 111.3192957 5.37459791

-

15.6410613

6 691 70.81243038

111.31929

57 5.37459791

-

15.6410613

6 691 70.81243038

6

108.341714

9 5.113192605

-

18.9237584

7 675 68.91833169 108.3417149 5.113192605

-

18.9237584

7 675 68.91833169

108.34171

49 5.113192605

-

18.9237584

7 675 68.91833169

7

108.164933

1 4.999083039

-

18.3319163

2 687 68.80587722 108.1649331 4.999083039

-

18.3319163

2 687 68.80587722

108.16493

31 4.999083039

-

18.3319163

2 687 68.80587722

8

108.297570

9 5.125778985

-

18.2831950

2 709 68.89025077 108.2975709 5.125778985

-

18.2831950

2 709 68.89025077

108.29757

09 5.125778985

-

18.2831950

2 709 68.89025077

335

9

108.630519

8 5.396468238

-

18.0619081

5 715 69.10204623 108.6305198 5.396468238

-

18.0619081

5 715 69.10204623

108.63051

98 5.396468238

-

18.0619081

5 715 69.10204623

10

72.9950647

5 3.101241602

-

19.2681103

9 726 46.43362059 72.99506475 3.101241602

-

19.2681103

9 726 46.43362059

72.995064

75 3.101241602

-

19.2681103

9 726 46.43362059

11

108.090398

5 5.495239309

-

17.8458743

3 727 68.75846427 108.0903985 5.495239309

-

17.8458743

3 727 68.75846427

108.09039

85 5.495239309

-

17.8458743

3 727 68.75846427

12

108.056152

4 5.458123965

-

18.0752511

1 718 68.7366797 108.0561524 5.458123965

-

18.0752511

1 718 68.7366797

108.05615

24 5.458123965

-

18.0752511

1 718 68.7366797

13

108.143116

7 5.448285473

-

18.0293697 717 68.7919994 108.1431167 5.448285473

-

18.0293697 717 68.7919994

108.14311

67 5.448285473

-

18.0293697 717 68.7919994

14

108.243552

1 5.374492336

-

18.2286433

1 713 68.85588834 108.2435521 5.374492336

-

18.2286433

1 713 68.85588834

108.24355

21 5.374492336

-

18.2286433

1 713 68.85588834

15

443.472137

7 18.17573837

-

22.5069244

1 697 282.1014962 443.4721377 18.17573837

-

22.5069244

1 697 282.1014962

443.47213

77 18.17573837

-

22.5069244

1 697 282.1014962

16

108.306843

4 5.470248586

-

18.1736145 727 68.89614921 108.3068434 5.470248586

-

18.1736145 727 68.89614921

108.30684

34 5.470248586

-

18.1736145 727 68.89614921

17

453.108192

6 19.66476731

-

22.5070073

7 730 288.2311835 453.1081926 19.66476731

-

22.5070073

7 730 288.2311835

453.10819

26 19.66476731

-

22.5070073

7 730 288.2311835

18

108.202640

7 5.490413941

-

19.0063780

3 732 68.8298638 108.2026407 5.490413941

-

19.0063780

3 732 68.8298638

108.20264

07 5.490413941

-

19.0063780

3 732 68.8298638

19

108.299619

7 5.541645767

-

18.1234323

7 759 68.89155406 108.2996197 5.541645767

-

18.1234323

7 759 68.89155406

108.29961

97 5.541645767

-

18.1234323

7 759 68.89155406

20 108.608873 5.53609608

-

17.0996975

4 754 69.08827631 108.608873 5.53609608

-

17.0996975

4 754 69.08827631

108.60887

3 5.53609608

-

17.0996975

4 754 69.08827631

21

610.948664

1 23.3856447

-

25.4753365

2 723 388.6366642 610.9486641 23.3856447

-

25.4753365

2 723 388.6366642

610.94866

41 23.3856447

-

25.4753365

2 723 388.6366642

336

22

108.394232

2 5.205374074

-

17.1900139

1 705 68.95173898 108.3942322 5.205374074

-

17.1900139

1 705 68.95173898

108.39423

22 5.205374074

-

17.1900139

1 705 68.95173898

23

71.2752845

9 3.545614546

66.0878767

5 628 102.4779892 108.3221628 5.388524764

-

18.3839371

8 718 102.4779892

108.32216

28 5.388524764

-

18.3839371

8 718 102.4779892

Tota

l

3723.8369

12 7.02565049

-

356.940202

5 16917 2425.945491 3760.88379 7.102438416

-

441.412016

4 17007 2425.945491

3760.8837

9 7.102438416

-

441.412016

4 17007 2425.945491

337

Appendix J: Proof of Publications

Journal Papers

Leakage detection review paper: Review of leakage detection in water distribution networks -

IOPscience

Challenges and Opportunities of Deep Reinforcement Learning in UWS (Accepted): Deep

reinforcement Learning Challenges and Opportunities for Urban Water Systems. -

ScienceDirect

https://iopscience.iop.org/article/10.1088/1755-1315/1136/1/012052
https://iopscience.iop.org/article/10.1088/1755-1315/1136/1/012052
https://www.sciencedirect.com/science/article/pii/S0043135424000459?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0043135424000459?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0043135424000459?via%3Dihub

338

Conference Papers

Water Pressure Optimisation for Leakage Management Using Q Learning: Water Pressure

Optimisation for Leakage Management Using Q Learning | IEEE Conference Publication | IEEE

Xplore

https://ieeexplore.ieee.org/document/10195018
https://ieeexplore.ieee.org/document/10195018
https://ieeexplore.ieee.org/document/10195018

339

Industrial Summits

12th Annual Global Leakage Summit 2022

340

13th Annual Global Leakage Summit 2023

341

Presentations

IMechE Webinar: ‘Application of AI in leakage management in water distribution networks’

	Abstract
	Novelty and Contributions
	Publications
	Journal Papers
	Conference Papers
	Industrial Summits
	Presentations
	Posters

	Acknowledgements
	Declaration
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Background
	1.2. Deep Reinforcement Learning for Leakage Management
	1.3. Aims and Objectives
	1.4. Methodology and Thesis Outline

	2. Leakage Management Literature Review
	2.1. Leakage Assessment
	2.1.1. Top-Down Water Balance
	2.1.2. Bottom-Up Water Balance
	Minimum Night Flow (MNF)
	Burst and Background Estimate (BABE)
	Water and Wastewater Balance

	2.1.3. Infrastructure Leakage Index (ILI)

	2.2. Leakage Detection
	2.2.1. Overview
	2.2.2. Characteristics and Hydraulic Properties of Leakage
	2.2.3. Classification
	2.2.4. Hardware Detection Methods
	In-pipe Inspection Devices
	Driving Method
	Level of Autonomy
	Prototype

	2.2.5. Non-Intrusive Methods
	Acoustic Techniques
	Fibre Optics
	Infrared Thermography
	Ground Penetrating Radar
	Tracer Gas
	Magnetic Induction

	2.2.6. Software Detection Methods
	Model-Based
	Data-Driven
	Data Pre-processing
	Detection
	Pressure/Flow Monitoring
	Statistical Analysis
	Classification Based Methods
	Prediction-classification
	Signal Processing

	2.3. Leakage Prevention
	2.3.1. Pressure Management
	Actuating devices
	Valve Placement
	Pressure Control Strategies

	2.4. Concluding Remarks

	3. Deep Reinforcement Learning Literature Review
	3.1. Reinforcement Learning Background
	3.1.1. Components of RL
	Reward and Return
	Value Functions
	Policy Driven
	Other RL Algorithm Terminology

	3.1.2. Challenges

	3.2. Deep Reinforcement Learning
	3.2.1. Notable Deep RL Algorithms
	3.2.2. Current Trends
	Hierarchical Reinforcement Learning
	Inverse Reinforcement Learning
	Distributional Reinforcement Learning
	Multi Agent Reinforcement Learning

	3.3. Urban Water Systems
	3.3.1. Challenges and Opportunities in Urban Water Systems
	3.3.2. Challenges of DRL in UWS

	3.4. DRL Research in Urban Water Systems
	3.4.1. DRL in Water Distribution
	3.4.2. DRL in Stormwater Systems
	3.4.3. DRL in Wastewater Treatment
	3.4.4. DRL in Raw Water Treatment

	3.5. Future Work and Novelties
	3.6. Concluding Remarks

	4. Water Network – Deep Reinforcement Learning Ecosystem
	4.1. The Leakage Problem
	4.1.1. The Hydraulic Model
	Model Building
	Introducing Leak Events

	4.1.2. Markov Decision Process and RL Context

	4.2. The Environment
	4.2.1. Wrapping and Communicating with Epanet
	4.2.2. Environment Spaces
	Observation Space
	Action Space

	4.2.3. Step Function
	4.2.4. Reward Control
	4.2.5. Render Function

	4.3. The Agents
	4.3.1. Hybrid DRL Agents
	Advantage Actor Critic (A2C)
	Deep Deterministic Policy Gradient (DDPG)
	Soft Actor Critic (SAC)

	4.3.2. Policy Driven DRL Agents
	Trust Region Policy Optimisation (TRPO)
	Proximal Policy Optimisation (PPO)
	Recurrent Proximal Policy Optimisation (Recurrent PPO)
	Augmented Random Search (ARS)

	4.3.3. Distributional DRL Agent
	Truncated Quantile Critics (TQC)

	4.4. Concluding Remarks

	5. Background Leakage Case Study
	5.1. Methodology
	5.1.1. Optimisation algorithms
	5.1.2. Problem setup
	5.1.3. Testing

	5.2. Jowitt & Xu Network
	5.2.1. Results
	5.2.2. Discussions
	Initial Simulation
	Tuned Simulation
	DRL Models Comparisons

	5.3. Northumbrian Water Network
	5.3.1. Results
	5.3.2. Discussions
	Performance
	Speed

	5.4. Concluding Remarks

	6. Burst Leakage Case Study
	6.1. Methodology
	6.1.1. Problem Setup
	6.1.2. Testing

	6.2. Jowitt & Xu Network
	6.2.1. Results
	6.2.2. Discussions
	Performance
	Speed

	6.3. Northumbrian Water Network
	6.3.1. Results
	6.3.2. Discussions
	Performance
	Speed

	6.4. Concluding Remarks

	7. Conclusions
	7.1. Limitations
	7.2. Assumptions
	7.3. Recommendations for Future work

	References
	Appendices
	Appendix A: WDN-DRL Environment Code
	Appendix B: Optimisation Algorithms Code
	Appendix C: DRL Algorithm Training Scripts
	TRPO
	PPO
	Recurrent PPO
	A2C
	DDPG
	SAC
	ARS
	TQC

	Appendix D: Testing Blocks (DRL and non-DRL)
	Non-DRL algorithms
	DRL Algorithms

	Appendix E: Reward Scales Sweep
	Appendix F: Background Leakage – Jowitt & Xu Results
	NM
	PSO
	DE
	TRPO
	PPO
	Recurrent PPO
	A2C
	DDPG
	SAC
	SAC Tuned
	TQC
	TQC Tuned
	ARS
	ARS Tuned

	Appendix G: Background Leakage – SZ08 Results
	NM
	PSO
	DE
	TRPO
	PPO
	Recurrent PPO
	A2C
	DDPG
	SAC
	TQC
	ARS

	Appendix H: Burst Leakage – Jowitt & Xu Results
	NM
	PSO
	DE
	TRPO
	PPO
	Recurrent PPO
	A2C
	DDPG
	SAC
	TQC
	ARS

	Appendix I: Burst Leakage – SZ08 Results
	NM
	PSO
	DE
	TRPO
	PPO
	Recurrent PPO
	A2C
	DDPG
	SAC
	TQC
	ARS

	Appendix J: Proof of Publications
	Journal Papers
	Conference Papers
	Industrial Summits
	Presentations

