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Abstract 

In this thesis, we introduce a novel approach to pressure management using deep 

reinforcement learning (DRL) algorithms. Exploiting DRL algorithms to optimise pressure 

management in water distribution networks (WDNs) provides a more computationally efficient 

and resilient method to reduce background and burst leakage. Using DRL to manage pressure 

has proven as a valuable method to reduce leakage and carbon emissions in two case studies 

based on a real and benchmark water network. A cohort of eight DRL algorithms of varying 

natures are implemented on a benchmark test network and real network model of varying 

sizes to prove their scalability. An investigation on their ability to reduce both background and 

burst leakage is conducted to highlight their abilities with regards to different leak sizes. 

The application of deep reinforcement learning algorithms to control leakage in WDNs builds 

on from two extensive reviews of leakage management and DRL applications in the urban 

water systems. Collating this literature pinpoints the novelty in applying deep reinforcement 

learning algorithms to control pressure in WDNs and provides context to the thesis. To develop 

DRL algorithms fit for WDN operations, a novel python-based environment is created that can 

communicate the hydraulic capabilities of EPANET to the DRL agent. This involved multiple 

design choices including action space and observation space selection as well as formulating a 

reward function suitable for the multiple objectives relating to leakage reduction.  

Regarding background leakage, the best performing DRL algorithm resulted in 65.2% reduction 

in leakage in the benchmark network. However, the investigation on the real water network 

provided by Northumbrian Water Living has proved the strong dependency between valve 

locations and pressure management hence resulting in a negligible background leakage 

reduction. The ability of the DRL algorithms to deal with uncertainty through randomised burst 

nodes was investigated in the second case study. DRL policies demonstrated resilience in 

comparison to the standard optimisation algorithms used (differential evolution, particle 

swarm optimisation, and nelder mead). The best performing DRL algorithm predicted a 58.46% 

leakage reduction and 5650kg of reduced CO2 emissions in the benchmark water network. On 

the other hand, the best DRL performance optimised the real water network by reducing the 

leakage by 5.79% and carbon emissions by 1999kg of CO2.  

Keywords: Leakage, pressure management, deep reinforcement learning, water distribution 
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Novelty and Contributions 

The main contribution presented in this thesis is the application of deep reinforcement 

learning as a novel method to manage pressure in water distribution networks for the purpose 

of leakage control. Deep reinforcement learning is a recent field of research filled with 

novelties in every corner. Its application has prevailed in many engineering scenarios. 

However, the reach of DRL algorithms has not been realised fully in urban water systems. This 

thesis contributes to the wider research community through providing a new method to 

manage water distribution networks. It also includes a novel reinforcement learning 

environment that communicates between the DRL algorithms and the hydraulic solver. This 

environment is able to communicate the water network’s defining properties to different DRL 

algorithms. It also facilitates changes dictated by the optimisation algorithms to improve the 

state of the WDNs.  

Using the environment, we introduce the first known application of eight DRL algorithms to 

optimise pressure management for leakage reduction. These algorithms belong to three main 

DRL families (hybrid, policy driven and distributional DRL). The hybrid DRL algorithms used are 

Advantage Actor Critic (A2C), Deep Deterministic Policy Gradients (DDPG), Soft Actor Critic 

(SAC). The policy driven DRL algorithms include Augmented Random Search (ARS), Proximal 

Policy Optimisation (PPO), Recurrent Proximal Policy Optimisation (Recurrent PPO) and Trust 

Region Policy Optimisation (TRPO). Finally, we also experiment with the use of the 

distributional DRL algorithm; Truncated Quantile Critics (TQC). Literature suggests that this is 

the first approach to deploying these DRL algorithms to manage pressure in water distribution 

networks. 

These algorithms are trained in a loop before tested under different conditions and compared 

to benchmark optimisation algorithms. Trained DRL algorithms can optimise water networks in 

real-time or near real-time depending on the network size which is a major improvement to 

the current practice. In addition, the proposed method incurs less data requirements and 

lower computational loads than the current practices of optimisation algorithms.  
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1. Introduction  

Water, earth’s most essential resource, dictates the health of our societies yet failures in water 

distribution networks (WDNs) have amounted to 51 litres of leakage per person per day in the 

United Kingdom (OFWAT, 2022). This amounts to 23% of all distributed water in 2022 (OFWAT, 

2022). This loss of water is reflected in a loss of revenue to water companies sector wide. With 

the diverse nature of urban cities, rising customer demand patterns, varying landscape 

topologies and seasonal weather trends; managing WDNs has proved a complex task. Hence 

why, water companies and utilities constantly explore new avenues to incorporate and test 

new methods to better manage their water practices.  

In this thesis, we introduce the use of deep reinforcement learning as a technique to manage 

pressure. The aim is to minimise the effects of background and burst leakage events without 

violating nodal pressure limits. We believe the use of DRL algorithms will reduce the 

computational load in comparison to the current standard of numerical and meta-heuristic 

optimisation algorithms. This could allow for the real-time control of pressure valves taking 

into account the uncertainties in demand patterns and randomness of leakage events.  

1.1. Background 

The operational management of water distribution networks (WDNs) has been a challenging 

task for water utilities globally as they aim to preserve valuable water and energy resources 

without affecting the level of customer service. The preservation of water increases in 

complexity as we consider the outdated infrastructure forced to keep up with the rising 

customer demands. The resulting network expansion often results in a heterogenous system 

with aging WDNs being connected to new infrastructure with different materials and age 

further complication WDN operations (Zaman et al., 2020). External factors such as overhead 

loading through heavier traffic and weather fluctuations enhanced with climate change plague 

distribution networks further. In response to the rising challenges of water distribution in the 

UK, regulatory bodies such as Ofwat and the Public Accounts committee have been urging 

water companies to reimagine the water sector by 2050 (Mace, 2020). Main themes of the 

sector-wide strategy include goals to ‘Deliver resilient infrastructure systems’ and ‘achieving 

net-zero carbon’ that will rely on developing better water management within water 

distribution networks. Consequently, it is essential to improve the sustainability of water 

transport which has been compromised with a variety of failure incidents; the most prevalent 

of which are leakage and burst events. The adverse effects of leakage are not limited to the 

loss of capital but extends to environmental degradation in the form of greenhouse gas (GHG) 
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emissions, technical instability, and degradation of water quality (Al-Washali, Sharma and 

Kennedy, 2016).  

Minimising leakage can be achieved through two methods: asset management and pressure 

management. Whilst asset management focuses on proactively surveying and improving the 

network infrastructure; pressure management handles the daily operational aspect of water 

distribution. The advantage of controlling water traffic through pressure valves extends 

beyond leakage reductions as it minimises the effect of burst events; decreases water and 

energy costs; and decreases carbon emissions through lower pumping needs (Rogers, 2014; 

Farley and Trow, 2015; Adedeji et al., 2018; Negm, Ma and Aggidis, 2023a). In addition, 

regulating pressure fluctuations reduces asset failure rates due to transient surges or cyclic 

pressure (Neal Andrew Barton et al., 2019). These transient surges are often consequences of 

network operations such as the use of fire hydrants, valve installations, heavy pumping, or 

flushing events. Hence, the complexity of pressure management has attracted researchers 

globally. There are many ways to classify the control techniques covered by the research 

community which are detailed in section 2.3.  

The most interesting of the aforementioned techniques are those that fall into the 

optimisation approach. This approach employs the use of advanced optimisation algorithms to 

satisfy single or multiple objectives set by the user. Optimisation pressure control can be 

applied in large scale networks and used during minimum night flow as well as high demand 

periods making it an attractive option for water utilities. Likewise, due to the numerous 

novelties available in this approach, it has become a beacon for many researchers. However, 

optimisation algorithms are often handicapped with their need for data and their ability to 

process the input data effectively and efficiently. This flaw is poorly matched with the 

complexities of large WDNs which are particularly hard to manage due to numerous 

connections, multiple water sources, daily and seasonal variations in demand patterns, and 

possible pumping profiles. Tackling such high dimensional scenarios requires more extensive 

efforts from both industry and academia to rectify the mishandling of water distribution 

networks. DRL is able to minimise the need for data through the function approximation 

properties of their deep neural networks. It also improves on the current practices of 

optimisation algorithms through its ability to handle numerous variables and uncertainties in 

water management. 

The emergence of artificial intelligence tools has re-imagined how researchers and 

professionals tackle multi-dimensional challenges that riddled traditional computational 
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techniques. The effects were substantial as artificial intelligence led advancements in many 

sectors such as health care (Chang, 2019; Nichols, Herbert Chan and Baker, 2019; Bullock et al., 

2020), engineering (Malik et al., 2019), transport (Abduljabbar et al., 2019), smart 

manufacturing (C. Li et al., 2023) and many more (Luong et al., 2019; Mosavi et al., 2020; 

Zhang, Zhang and Qiu, 2020). Deep reinforcement learning (DRL, Deep RL) is an emerging field 

of dynamic computing that has risen through the use of deep neural networks to advance its 

predecessor reinforcement learning (Mnih et al., 2015). Its successes rely on its applicability in 

real world scenarios that require learning from experience and its failures arise from 

challenges in instability and environment definition. The appealing nature of finding low-

dimensional features the accurately represent high-dimensional real-world problems and 

experience driven autonomous learning makes DRL a true advancement in AI. As this field 

grows, researchers have developed numerous deep reinforcement learning algorithms that 

equip computational methods such as bootstrapping, backups, replay memory and function 

approximation to overcome any issues that arise and improve results (Li, 2017). In addition to 

numerous neural network architectures, deep reinforcement learning has quickly grown to 

become an unclassified jungle of artificial intelligence advancements which will be covered in 

section 3.1.  

1.2. Deep Reinforcement Learning for Leakage Management 

The thesis explores the novel deployment of several deep reinforcement learning algorithms 

for the operational management of water distribution network to improve the resilience of the 

network and leakage control in the form of advance pressure management. DRL provides a 

more resilient way to monitor the overarching objectives. This is necessary to model the 

heterogenous changing nature of water distribution networks subject to different demand 

patterns, weather conditions, failures, and more uncertainties. Extending this technology to 

the operational management of water networks is a field of untapped potential with many 

avenues to explore. DRL provides a method to continuously alter the model in real-time to 

react and adjust to the environment it is placed in. This is facilitated by redefining the pressure 

management as an optimisation problem and the water distribution network as a Markov 

Decision Process (MDP). Ultimately, this allows the WDN problem to be simplified and 

abstracted without losing the main parameters. MDP is based on influencing the probability of 

transitions between different states through actions. It is often denoted by the five tuple 

(S,A,P,R,γ) that stand for states (S), actions (A), probabilities/dynamics (P), reward (R) and 

initial state (γ) (Puterman, 1990; Desharnais et al., 2004). Ultimately, MDP formalism helps 

evaluate sequential interaction therefore introducing the hidden time dimension which is 
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often overlooked in machine learning algorithms. The effects of actions in WDNs are spatial 

temporal hence why utilising reinforcement learning’s sequential nature provides a good basis 

to redefining the pressure management problem. Fully developing this strategy for operational 

management would have monumental effects in the water industry such as. 

• Minimised leakage through real-time pressure management and full utilisation of 

pressure valves across the network. This is achieved through smoother pressure 

profiles and a greater focus on pressure management during minimum night flow 

(MNF) hours by selecting the most appropriate valve settings for the current state of 

the water network.  

• Lower energy consumption due to the decreased failure rates. This manifests as 

pumps are not required to meet the increased demands of a leaking network. 

Additionally, less pumping decreases costs and carbon emissions. 

• Longer asset life due to decreased pumping and transient surges. Transient surges are 

a leading cause of pipe failures which often stem from excessive pumping. 

• An adaptable approach to pressure management. DRL algorithms are highly 

customisable to consider new dimensions to the optimisation problem through reward 

formulation and hyperparameter tuning. Training loops can vary in frequency to match 

daily and seasonal trends hence ensuring that pressure management reflects the 

ground truth model accurately. 

However, DRL algorithms are not without fault. Like every computational method, there are 

limitations and challenges to consider. 

DRL algorithms can follow a bad training trajectory based on observations from the water 

network environment. An agent (DRL algorithm) that performs bad actions will receive bad 

feedback (observations) from the environment that will not help them get closer to the 

desired reward. This could place a stubborn agent in a spiral under the impression that there is 

no path for positive reward. On the other hand, an agent can exploit an action that gives them 

a constant positive reward instead of actively exploring the environment for better route or 

vice versa resulting in what is known as the exploration exploitation dilemma. Another 

challenge is that consequent reward can be very delayed from actions. It can be often unclear 

how one action can have future consequences so understanding and forecasting future value 

is essential. 
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More details on reinforcement learning (RL) and its successor DRL methods and algorithms can 

be found in the literature set with a particular focus on applications of DRL algorithms in urban 

water systems in section 3. 

1.3. Aims and Objectives 

The research aim is to exploit deep reinforcement learning techniques for the development of 

a semi-supervised, self-adaptive, real-time pressure management algorithms. Nevertheless, 

achieving this aim requires a set of objectives to guide the realisation of this goal. 

• Produce literature sets on leakage management in water distribution networks to 

understand current practices. 

• Produce literature sets defining the field of DRL and document any intersection 

between DRL and urban water systems applications.  

• Develop a novel python-based environment to connect optimisation algorithms from 

python libraries to a hydraulic modelling software. This environment should accurately 

define the pressure management problem and be amenable for DRL use and regular 

heuristic and non-heuristic optimisation algorithms.  

• Create a novel schematic to harness the power of hydraulic models within the 

reinforcement learning environment. This is to provide a realistic probability 

distribution for state transitions.  

• Devise insightful data visualisation rendering functions to explain algorithms’ 

performances for comparisons. 

• Validate and test different types of deep reinforcement learning algorithms against 

benchmarks through model-based case studies of WDNs in their ability to minimise 

background leakage. 

• Validate and test different types of deep reinforcement learning algorithms against 

benchmarks through model-based case studies of WDNs in their ability to minimise 

burst leakage. 

• Compare the results with insights on leakage water saved and the environmental 

impact. 

1.4. Methodology and Thesis Outline 

Multiple applications of deep reinforcement learning algorithms were investigated in this 

thesis to validate its use as a promising alternative to current optimisation approaches for 

leakage minimisation through pressure management. In this section we highlight the methods 

used to realise the application of DRL algorithms and explain the outline of the thesis. 
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Literature reviews that cover and expand on current leakage management practices through 

critical and detailed discussions are presented in chapter two and three. Leakage management 

practices were classified into three main branches of leakage assessment, leakage detection 

and leakage prevention (or control) as detailed in (Gupta and Kulat, 2018). This is followed by a 

comprehensive review of deep reinforcement learning methods and algorithms that includes a 

novel classification tree to help navigate the field. This was contextualised by collating 

research of DRL deployment for UWS applications hence further highlighting all the gaps in the 

field of research. This creates the foundation needed to delve into the research question. 

The water distribution network – deep reinforcement learning (WDN-DRL) ecosystem 

describes the code required to communicate effectively between the DRL algorithms and 

water networks which is explained thoroughly in chapter 3. This is achieved by creating models 

of real water networks native to a hydraulic solver software (EPANET) through SCADA, GIS 

files, or utility-owned data. These hydraulic models interact with DRL algorithms through a 

novel python-based environment and wrapping files. The techniques used to form this data 

pipeline include data preprocessing and cleaning, data processing and data visualisation. This 

modular ecosystem supports the use of foreign (non-DRL) optimisation algorithms for training 

and testing making it the testing ground for all optimisation methods.  

Moreover, we explain the two unique case studies used to test the optimisation algorithms on 

a benchmarked and a real water network model in chapters 5 and 6. The DRL algorithms are 

tested under background leakage conditions that model undetected background leakage rates 

in nodes throughout the entire network in chapter 5. This is followed with experimenting 

under burst leakage conditions in chapter 6. In this scenario, the optimisation algorithms are 

subjected to major burst events with a high leakage coefficient in random nodes within the 

network. They are tested on their ability to counteract these events and minimise water flow 

through the burst nodes. The experimentation method, hyperparameters and methods used 

are detailed in each chapter followed by performance and speed results displayed with 

insightful data visualisation figures to highlight the main findings of the experiment. This will 

include reward comparisons and leakage comparisons between multiple DRL and non-DRL 

optimisation methods. Additionally, metrics eliciting the algorithms’ effects on carbon 

emissions will highlight the effects of the pressure management techniques further revealing 

any additional trade-offs or relationships to be considered. Furthermore, chapters 5 and 6 will 

cover the critical evaluation and discussion of their results. The performance and 

computational efficiency of DRL will be assessed followed by contextualising the results to 

real-world applications and the larger research question.  
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The research will be concluded in chapter 7 with an overview of DRL applications 

demonstrated and their perceived implications in leakage reductions through advanced 

pressure management. The limitations associated with DRL control in WDNs are discussed in 

this chapter along with assumptions made. Suggestions for future research and improvements 

will guide the development of DRL in water distribution networks beyond the scope of this 

thesis. 
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2. Leakage Management Literature Review 
This chapter details the relevant literature gathered and reviewed throughout the progress of 

this PhD. Initially, the research focused on identifying leakage management with the broadest 

lens highlighting three main sectors: assessment, detection, and prevention. The main 

methodologies and findings are reviewed in each sector.  

The preservation of water increases in complexity as we begin to consider the outdated 

infrastructure forced to keep up with the rising customer demands. Network expansion often 

results in a heterogeneous system with aging WDNs being connected to a new infrastructure 

with different materials and age making the leakage problem more complicated (Zaman et al., 

2020). Large WDNs are particularly hard to manage due to numerous connections, multiple 

sources, and possible pumping profiles. For this reason, leakage management can be broadly 

split into three sections: leakage assessment; leakage detection & localisation; and leakage 

prevention (Gupta and Kulat, 2018). 

2.1. Leakage Assessment 
In the past two decades, leakage assessment has improved greatly by developing a more 

thorough understanding and modelling of water loss components. This was initiated by the 

stress on UK water companies to satisfy regulatory measures placed to cut leakage 

(Liemberger and Farley, 2005). Further advancements were introduced by exploring new 

approaches to water loss management (Al-Washali et al., 2020). The International Water 

Association (IWA) were the first to develop a standard water balance sheet in 2000 

(Liemberger and Farley, 2005). that has since been modified and accepted globally as a 

benchmark balance sheet (Figure 2-1) by organisations such as the Environmental Protection 

Agency (EPA) and American Water Works Association (AWWA).  

The balance sheet highlights the difference between apparent loss (AL) and real loss (RL) that 

make up leakage in water networks i.e., Water loss (WL). Whilst RL is concerned with water 

lost in the network infrastructure such as pipes, joints, or reservoirs; AL consisted with illegal 

consumption and metering errors. Unbilled authorised consumption (UAC) is authorised usage 

without revenue which could be added to water losses to calculate the total non-revenue 

water (NRW). Modifications to the balance sheet were made to include different aspects to 
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water utilities like accounting for water exported and interpreting NRW in raw water systems, 

treated water mains and distribution systems (Lambert et al., 2004). However, the original 

water balance suffices for most water companies.  

Leakage assessment techniques are concerned with calculating real and apparent losses. These 

methods can be split into two branches: Top-Down and Bottom-Up. The Bottom-Up approach 

includes different methodologies (minimum night flow, burst and background emissions, water 

and wastewater balance, infrastructure leakage index) that is covered on Table 2-1.

Figure 2-1 Standard water balance sheet by IWA (Lambert et al., 2004) 
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Table 2-1 Summary of leakage assessment methodologies 

Approach Advantages Disadvantages Requirements Applications References 

Top-down water 
balance 

• Straight forward 

• System Wide 

• Pressure independent 

• Less fieldwork 

• Globally recognised. 

• Cost effective 

• Incomplete 

• Different definitions for “input 

volume” 

• Overestimates RL  

• Inaccurate estimation of UC 

• Water balance sheet 

• Values for SIV, BC and 

UAC 

• Employed in most water 

utilities 

• Basic water loss 

assessment applications 

(Lambert et al., 2004; 
Liemberger and Farley, 2005; 
Tsitsifli and Kanakoudis, 2010; 
Mutikanga, Sharma and 
Vairavamoorthy, 2011; Farah 
and Shahrour, 2017; Amoatey, 
Minke and Steinmetz, 2018; 
Bhagat et al., 2019; Al-Washali 
et al., 2020; Yu et al., 2021)  

MNF Analysis 

 

• Real field measurements 

• Assessment and reduction 

process 

• Better estimate of RL 

• Extensive fieldwork 

• Pressure dependent 

• Less cost effective 

• DMA/Sector wide 

• Subject to data reliability issues 

• Inaccuracies due to annual seasonal 

trends 

• DMAs or Network zoning 

• Data collecting and 

logging equipment. 

• Employee training 

• Pressure measurements 

• Used for cases with DMAs 

that could be illustrative of 

the whole system. 

• Water loss assessment 

and reduction technique 

(Lambert, 2001; Alkasseh et al., 
2013; Farah and Shahrour, 
2017; Amoatey, Minke and 
Steinmetz, 2018; Gupta and 
Kulat, 2018; Al-Washali et al., 
2020; Yu et al., 2021) 

Component 
Analysis (BABE) 

• Straight forward 

• Analysis the subcomponents 

of RL 

• Better understanding of 

leakage nature 

• Assesses the utilities leakage 

response policies. 

• Considers network 

capabilities 

• Pressure dependent 

• Requires ALC  

• Unreliable 

• Underestimates RL 

• Broad assumptions require further 

calibrations (ICF) 

• Uses intensive network data 

• Pressure measurements 

• Local network data 

• Utility leakage response 

times 

• Length of mains and 

number of customer 

connections 

• Developed networks with 

ALC. 

• Used as a supplementary 

tool to investigate RL 

components. 

• Better fit for leakage 

reduction and 

management  

(Lambert, 1994; Al-Washali, 
Sharma and Kennedy, 2016; 
Amoatey, Minke and Steinmetz, 
2018; Bhagat et al., 2019) 

Water and 
wastewater 
balance 

• Pressure independent 

• Less fieldwork 

• Cost effective. 

• Focuses on RL 

• Needs a system with a wastewater 

service. 

• Accurate wastewater 

treatment plant inflows 

• Utilities with both water 

and wastewater services 

(Al-Washali, Sharma and 
Kennedy, 2016, 2018; Al-
Washali et al., 2020) 
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• Clear assumptions 

• Objective UAC assumption 

without calculating RL 

• Sensitive to WWTP inflow errors. 

• Needs further testing. 

• Uncertainties from exfiltration, 

infiltration, and outdoor water use 

assumptions. 

• AL assumptions are unfit for 

developing countries. 

• No methodology for UAC 

• Estimation of UC and 

meter inaccuracies 

• Billed consumption 

flows. 

• Infiltration-exfiltration 

factor 

• Water utility data 

• More suitable for 

developed countries. 

• Developing countries need 

more accurate 

assumptions 
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2.1.1. Top-Down Water Balance 
A Top-Down approach is arguable the most straight forward technique to leakage assessment 

and is employed by most water companies and authorities. Using the IWA balance sheet 

(Figure 2-1), water utilities perform audits using collected data or informed assumptions. 

Ideally, the system input volume (SIV) can be found from the entire system input meter which 

should be checked for discrepancies. Subtracting billed authorised consumption (BC) from the 

input volume should yield the total non-revenue water (NRW). Iteratively, the water loss (WL) 

can be calculated by deducting the unbilled authorised consumption (UAC) from NRW. Meter 

inaccuracies should be investigated using portable flow measuring devices and accounted for 

in the UAC and unauthorised consumption (UC) values (Arregui, Cabrera Jr. and Cobacho, 

2007; Mutikanga, Sharma and Vairavamoorthy, 2011). Unmetered UAC usually entails utility 

water use and firefighting. Often, companies highly overestimate their consumption to skew 

their audits and reduce the calculated water loss (Liemberger and Farley, 2005). 

Following that, the water loss can be split into apparent losses (data handing errors and 

unauthorised consumptions) and real losses. In developing countries, data handling and billing 

errors must be accounted for and in that case historical consumption trends are extrapolated 

to estimate customer water use (Mutikanga, Sharma and Vairavamoorthy, 2011). 

Unauthorised consumption (UC) is usually case-specific and requires transparency from the 

water company. Mutikanga et al. took a proactive approach by investigating billing trends and 

employing illegal use informers (Mutikanga, Sharma and Vairavamoorthy, 2011). Assuming the 

UC introduces uncertainty to the top-down approach, but it is estimated to be 0.1% or 0.25% 

of supplied water (SIV)(Al-Washali et al., 2020). A higher value of 10% of NRW was 

recommended by study (Mutikanga, Sharma and Vairavamoorthy, 2011) for developing 

countries. These generic UC assumptions cause uncertainty and an overestimation of real 

losses (Gupta and Kulat, 2018). This is proved through Al-Washali et al. case studies that 

compared AL and RL results using different assessment methodologies (Al-Washali et al., 

2020).  

The top-down technique is a simple, pressure independent tool that requires minimal field 

work making it an attractive choice to utilities globally. However, its limitations make it 

incomplete and is often followed with the Bottom-Up approach to better estimate AL. The 

development of sensor technology has proven fruitful for leakage assessment in study (Farah 

and Shahrour, 2017). Farah and Sahrour used a smart water system to process real-time data 

then deployed the water balance table and automated minimum night flow (AMNF) 
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measurements to accurately assess leakage. This methodology showed great promise to 

detect leakage events promptly and decreased NRW losses from 43% to 7% (Farah and 

Shahrour, 2017).  

2.1.2. Bottom-Up Water Balance 
The Top-Down approach is incomplete on its own, so it is commonly followed by one or more 

‘Bottom-up’ methods. These practices are concerned with the final step of the balance sheet 

(hence the name) which is separating real and apparent losses. In some papers, the bottom-up 

approach has been synonymous to minimum night flow (MNF), but other notable methods can 

be used to assess the subsets of water loss. 

Minimum Night Flow (MNF) 

Minimum night flow analysis is currently the most popular tool in leakage assessment. The 

methodology is founded on the assumption that when consumption is lowest between 2:00am 

and 4:00am (Figure 2-2) (Liemberger and Farley, 2005), leakage (real loss) is at its highest. 

District Metred Areas (DMAs) are investigated individually for 24 hours to find the lowest flow 

rate i.e., the MNF. DMA is a permanently bounded, hydraulically isolated section of the 

network. In networks with no established DMAs, suitable areas should be temporarily isolated 

and recorded for the assessment across the grid (Liemberger and Farley, 2005). The isolated 

section must be supplied by a maximum of two input flows and monitored with 24-hour zone 

measurements (HZM) of inflows using portable flow sensors and logged with pressure 

measurements (Puust et al., 2010). For intermittent supply networks, the MNF is harder to find 

as customers must be saturated, and tanks should be filled. Therefore, MNF could happen at 

any point of the day but is assumed to be in the early morning (Al-Washali et al., 2020). 
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The next step is to calculate the legitimate night flow (LNF) and subtract it from the MNF to 

find the net night flow (NNF) to assess the real leakage during the MNF hour (Eq.2-1). The LNF 

is found by assuming that 6% of the population is active (Hamilton and Mckenzie, 2014).  

𝑄𝑁𝑁𝐹 = 𝑄𝑀𝑁𝐹 − 𝑄𝐿𝑁𝐹                                                                                                                       ( 2-1 ) 

where QNNF is the net night flow (m3hr-1), QMNF is the minimum night flow (m3hr-1) and the QLNF 

is the legitimate night flow (m3hr-1).  

The value of leakage calculated for NNF habitually overestimates real loss because it measures 

leakage at a time with increased pressure (and therefore leakage rate) as can be seen in Figure 

2-2. Thus, a correction factor is introduced to compensate for that difference (Al-Washali et 

al., 2020). This is achieved by applying fixed and variable area discharge path (FAVAD) 

principles (Lambert, 2001). Lambert dictated the essential difference in leakage rate – system 

pressure relationship between fixed and variable area leaks using the leakage exponential, N1 

(Lambert, 2001). For fixed area leaks this value is 0.5 and for variable area leaks it is 1.5 but 

since networks include a mixture of both discharge paths the exponent lies between the two. 

Subsequently, the value of N1 dictates the network leaks’ sensitivity to pressure fluctuations 

which can be used for the MNF application to form the night-day factor (NDF). NDF is 

essentially the sum of hourly pressures over the minimum pressure to the power of N1. 

Accounting for the NDF (Eq. 2-2), a more accurate value for RL flow can be obtained (Eq. 2-3).  

Figure 2-2 Modified 24-hr leakage model based on MNF 
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𝑁𝐷𝐹 = ∑ (
𝑃𝑖

𝑃𝑚𝑖𝑛
)

𝑁123
𝑖=0                                                                                                                         ( 2-2 ) 

𝑄𝑅𝐿 = 𝑄𝑁𝑁𝐹 × 𝑁𝐷𝐹                                                                                                                           ( 2-3 ) 

Where NDF is the night-day factor, QRL is the flow of real loss (m3/hr), QNNF is the net night flow 

(m3/hr), Pi is the average pressure during day (m), Pmin is average pressure during MNF hour 

(m), and N1 is the leakage exponent. 

Other than providing a more reliable assessment of RL and AL (Gupta and Kulat, 2018), MNF’s 

reliance on actual field measurements makes it eligible as a leakage reduction strategy if 

coupled with suitable leakage detection (Al-Washali, Sharma and Kennedy, 2016). Applications 

of MNF analysis for leakage reduction can be seen in Farah & Shahrour’s study mentioned 

earlier (Farah and Shahrour, 2017) The accuracy of MNF assessment relies on the collected 

data and estimation issues (Al-Washali, Sharma and Kennedy, 2016) However, MNF is limited 

to a DMA-wide application and cannot be directly applied to the whole network. Unless the 

DMA or network section is monitored for the whole year, it is susceptible to inaccuracies due 

to consumption trends through the year (Al-Washali et al., 2020). Another drawback of MNF 

are the intensive field work and the associated manpower (Gupta and Kulat, 2018). MNF is 

pressure dependent and requires a lot of field data making it less cost-effective than its 

counterparts (Al-Washali et al., 2020).  

Burst and Background Estimate (BABE) 

Leakage component analysis, otherwise known as burst and background estimate (BABE), is an 

objective model introduced by Lambert (Lambert, 1994). It is based on the concept of multiple 

leakage events are the elements to real losses (Al-Washali, Sharma and Kennedy, 2016). 

Subsequently, this approach determines real losses and derives the apparent losses from that. 

Unsurprisingly, RL subcomponent analysis is the more common application of BABE; rather 

than WL component analysis (Al-Washali et al., 2020).  

BABE is based on the logic that RL volume can be calculated from the average flow rate and 

run time of different individual leaks.  We could categorise leakage into flow rate and duration-

based types (Al-Washali, Sharma and Kennedy, 2016). Lambert (Lambert, 1994) clarifies the 

vast range of flow rates, which could have a high flow rate (larger than 500Lhr-1) signifying a 

burst or low flow rate associated with background leakages (e.g., water loss from hydrants, 

valves, dripping taps).  

Alternatively, the duration of a leak is reflective of leakage management guidelines of the 

respective water company (Al-Washali, Sharma and Kennedy, 2016). Burst leakages are more 
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perceptible therefore can be repaired swiftly whilst background leakage run continuously 

undetected by most leakage detection methods. This entails the utilities’ ability to effectively 

detect, localise and repair the bursts. Whether the burst was reported or detected through 

Active Leakage Control (ALC), the duration can be classified to: 

1. Awareness time, concerned with the time it takes the utility to discover a leak. 

2. Location time, concerned with the time it takes to correctly positioning the leak area. 

3. Repair time, concerned with the time it takes to fix the leak once located (Farley et al., 

2008). 

In order to perform the BABE approach data should be sourced from standard parameters, 

local network data and utility leakage procedures with respect to their authority on the 

duration of bursts (Lambert, 1994). The leakage volume calculation was simplified through 

several model assumptions founded on specific case studies (Lambert, 1994) that were 

enhanced over the years (Lambert, 2009). Any bursts over 500Lhr-1 were considered isolated 

or instantly repaired. 

Avoidable and Unavoidable real losses must be estimated to find the RL. The avoidable real 

losses can be found by from utility data on reported bursts reported by customers or detected 

through ALC (Farley et al., 2008). Avoidable unreported real losses can be estimated using the 

typical flow rates represented in table 6.1 of (Farley et al., 2008) at 50 metres pressure or 

study (Lambert et al., 1999). Unavoidable RL can be estimated from its components 

represented in table 2 of (Lambert, 2009), number of service connections, and length of mains. 

The Unavoidable Annual Real Losses can be estimated using the following equation (Eq. 2-4) 

(Al-Washali et al., 2020). 

𝑈𝐴𝑅𝐿 = (
18𝐿𝑚

𝑁𝑐
+ 0.8 + 0.025𝐿𝑃)𝑃𝑎𝑣𝑔                                                                                                                                

( 2-4 ) 

where UARL is the unavoidable annual real losses (L/service connection/day), Lm is the length 

of mains (Lm), Nc is the number of service connections, Lp is the average length of connection 

from property line to customer meter (km), and Pavg is the average pressure. 

The BABE model exclusively identifies the RL subcomponents which could familiarise the 

assessors with the network’s nature and leakage footprint. It also highlights the impact of the 

utilities’ leakage policies on RL. However, the limitations to subcomponent analysis makes it 

unreliable for water loss assessment. The assumptions that are the foundations of the model 

are derived from certain cases often resulting in underestimated RL when applied to 
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international systems especially in developing countries (Gupta and Kulat, 2018). In an attempt 

to resolve that, the Infrastructure Condition Factor (ICF) ranging between 1-3 is used to correct 

the disparity between the model cases and real case (Al-Washali, Sharma and Kennedy, 2016). 

BABE can only be applied to networks that have regular ALC strategies makes it unfit for use 

developing countries. More limitations include pressure dependency and the need of intensive 

network data (Gupta and Kulat, 2018). As a result, this methodology is recommended as a 

supplementary tool for WL assessment but could prove more beneficial in a WL reduction and 

management scheme. 

Water and Wastewater Balance 

Water and Wastewater Balance is a novel water loss assessment method proposed by (Al-

Washali, Sharma and Kennedy, 2018) based on the notion that all AL can be found from 

wastewater measurements. The sewer system inflow measurements are unaffected by illegal 

consumption or data handling errors hence provides a more accurate representation of actual 

water consumptions. Figure 2-3 below illustrates the theoretical water and wastewater mass 

balance. 

The balance is used to derive an equation 2-5 for Apparent Loss Estimation (ALE) where the AL 

volume is calculated as a function of the wastewater treatment plant (WWTP) inflow readings 

(Al-Washali et al., 2020). The equation compensates for the effect of outdoor use, unbilled 

authorised consumption (UAC) and exfiltration-infiltration using case specific factors (A, B, C). 

Figure 2-3 Water-wastewater balance (Al-Washali et al., 2020) 



18 
 

𝑄𝐴𝐿 = (𝐴 + 1)𝑄𝑤𝑤 − (𝐵 − 𝐶 + 1)𝑄𝑏𝑤                                                                                                                             

( 2-5 ) 

Where QAL is the flow of apparent losses (m3year-1), QWW is the inflow of wastewater (m3year-

1), Qbw is the flow of billed water (m3year-1), A is the exfiltration-infiltration factor (3-10%), B is 

the UAC factor (0.5-1.5%), and C is the outdoor water use factor (4-40%). 

Thus, the AL can be calculate using ALE once the factors are estimated/optimised and billed 

water and wastewater flows are collected. Study (Al-Washali et al., 2020) uses water 

consumption per capita, industrial outflow and WWTP inflow to assume the exfiltration-

infiltration factor, A in equation 2-6. 

𝐴 = 𝑄𝑒𝑥 − 𝑄𝑖𝑛𝑓 = 𝑁𝑝 × 𝑞𝑐𝑎𝑝(1 − 𝐶 ÷ 100) + 𝑄𝑖𝑛𝑑 − 𝑄𝑤𝑤                                                                                         

( 2-6 ) 

Where Qex is the exfiltration volume (m3), Qinf is the infiltration volume (m3), Np is the 

wastewater service population, qcap is the water consumption per capita (m3), C is the outdoor 

use factor, Qind is the industrial and commercial wastewater discharge (m3), and Qww inflow of 

wastewater (m3). 

The unbilled authorised factor is often estimated from water utility data or 0.5% of billed 

water(Al-Washali et al., 2020). Meanwhile, the outdoor use factor (B) can be estimated by 

successfully capturing the outdoor characteristics such as garden sizes, pool ownership 

(Arbues, Garcia-Valinas and Martinez-Espinera, 2003). Alternatively, it can be calculated using 

equation 2-7 the monthly billing data (Al-Washali, Sharma and Kennedy, 2018; Al-Washali et 

al., 2020). 

𝐶 =
𝑄𝑏𝑐−12×𝑞𝑏𝑐.𝑚𝑖𝑛.𝑚𝑜𝑛𝑡ℎ

𝑄𝑏𝑐
× 100                                                                                                                                            

( 2-7 ) 

Where Qbc is the volume of annual billed consumption (m3), and Qbc.min.month is the volume of 

minimal consumption month (m3). 

ALE has two sensitivities that should be studied beforehand. The WWTP inflows should be 

measured during dry weathers only as rainy days will cause an overestimation of apparent 

losses. On rainy days, the user must discount the measurements of WWTP and replace them 

with the average flow of the remaining dry days (Al-Washali, Sharma and Kennedy, 2018). 

Secondly, the billed water and WWTP flows should be modified to only include customers with 
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both water and wastewater services.  Once the AL have been calculated, the RL can be simply 

derived by subtracting the AL from the water losses (WL).  

The water and wastewater balance approach introduces the first objective method to estimate 

apparent losses. Unlike MNF, this methodology does not require advanced metring 

techniques, heavy fieldwork, or even highly trained operators.  Water and wastewater balance 

is pressure independent making it less susceptible to unreliable average pressures (Al-Washali, 

Sharma and Kennedy, 2018). However, the technique is limited to networks with both water 

and wastewater services (Al-Washali et al., 2020). Also, the result is sensitive to errors in 

WWTP inflow uncertainties but that could be solved by introducing accurate metering 

equipment. 

2.1.3. Infrastructure Leakage Index (ILI) 
ILI’s ability to efficiently capture the utilities management of real loss has made a clear PI 

choice for most systems. The outcome ratio is non-dimensional hence allowing direct 

comparisons between utilities globally. Unlike other RL performance indicators (per service 

connection Op28 or per km Op27), ILI (Equation 2-8) considers the current average pressure, 

customer meter location and service connection density providing a fair contrast between 

systems with different infrastructure characteristics (Lambert et al., 2004). 

𝐼𝐿𝐼 = 𝐶𝐴𝑅𝐿/𝑈𝐴𝑅𝐿                                                                                                                                                                 

( 2-8 ) 

Where CARL is the current annual real losses and UARL is the unavoidable annual real losses 

(Eq. 2-8).  

The underlying concept of ILI can be visualised clearly through the four components of leakage 

management shown (Figure 2-4). The large square represents CARL, and the inner black box is 

UARL. 
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The difference in their sizes represents the ILI and is a measure of the infrastructure 

management functions being taken (ALC, Pipeline and asset management, infrastructure 

repair, pressure management) (Liemberger and Farley, 2005). 

Initially, UARL and ILI were developed for the component analysis of networks (BABE) and the 

FAVAD concept. Despite its promise and efficiency, ILI does not consider the four dimensions 

of sustainability (social, environmental, institutional, economic factors) and should be solely 

used as a technical assessor. It is not recommended for small networks with less than 5000 

customers or pressure below 35 psi (Gupta and Kulat, 2018). 

Figure 2-4 The four components of leakage management policy (Liemberger and Farley, 2005) 
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2.2. Leakage Detection 
The search for a robust leakage detection and localisation method has been the interest of the 

water industry for the past two decades making it a well-developed research area. This is 

mainly due to the economic loss that water utilities incur through leakage and the resulting 

non-revenue water. On average, water networks leak 20% to 30% of the water distributed 

through them totalling around £7 billion of revenue loss through direct and indirect damage 

(El-Zahab and Zayed, 2019). The effect of leakage contributes to environment degradation 

through increased greenhouse gas emissions from pumping the water across the network. 

Contaminations from leakage often causes the water quality to decrease beyond acceptable 

levels thereby risking the health of the public. 

Leakage detection in water distribution networks has taken many forms through investigating 

varying properties of leakage. Understanding the characteristic leakage types and properties 

introduces the different emerging technologies. Even though some methodologies have gained 

popularity in the past decade, the need to establish a complete, economical leakage detection 

solution that effectively identifies background leakage as well as burst events persists. The 

benefits and limitations of the aforementioned technologies has often confused water utilities 

on adapting the most suitable method. Therefore, there is an arising need to classify and 

benchmark leakage detection practices. This section reviews technology in leakage detection 

contrasting hardware & software, intrusive & non-intrusive, steady state & transient, single & 

hybrid methods. A particular focus is placed on scoping the projected direction of leakage 

detection and localisation. As anticipated, the various techniques refined over the last two 

decades introduce different capabilities, conditions, and constraints (Zaman et al., 2020). 

Assessing and comparing those methods will provide a deeper understanding of the research 

area thus paving the way for novel solutions. 

2.2.1. Overview  
Unreported leakage can be broadly identified into two types: Burst and Background leakage 

(Adedeji, Kazeem B; Hamam, Yskandar; Abe, Bolanle; Abu-Mahfouz, 2017). Burst leakages are 

often detected through their clear properties such as acoustic emissions (AE) and significant 

pressure reduction (Adedeji et al., 2017),(Chan, Chin and Zhong, 2018). In contrast, 

background leaks are often small water loss through fittings, creeping joints or small cracks 

which do not have inherent detectable qualities. As a result, background leakage often run for 

longer causing adverse losses to the network (Adedeji, Kazeem B; Hamam, Yskandar; Abe, 

Bolanle; Abu-Mahfouz, 2017). Across the literature, the terms burst events and burst leakage 

are interchangeable whilst background leakage is referred to as leakage (Chan, Chin and 
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Zhong, 2018). The detection of leakage can be summarised to three phases that dictate 

important objectives: Identify, Localise and Pinpoint (ILP) (Hamilton, 2009; El-Zahab and Zayed, 

2019) . The identification phase is concerned with successfully differentiating leak signals from 

other network signals, such as fire hydrants, to determine the presence of a leak in the 

network with little or no false alarms (El-Zahab and Zayed, 2019). The second phase of the ILP 

approach is the localisation stage. This focuses on finding the general section of the network 

such as a DMA (El-Abbasy et al., 2016). Pinpointing attempts to site the exact location of the 

leak down to a radius of 20cm. Formerly, the pinpoint phase were two separate phases 

(locating and pinpointing, ILLP) where locating signifies estimating the leak location to a 30cm 

radius. The 10 cm difference makes merging the two phases logical (El-Zahab and Zayed, 

2019).  

2.2.2. Characteristics and Hydraulic Properties of Leakage 
The detection of leaks requires a meaningful understanding of its hydraulic anatomy and 

detectable properties. Habitually, a leak induces a sudden pressure decline at its location that 

spreads through the pipes in a set of waves which could be detected through negative 

pressure wave (NPW) strategies (Abdulshaheed, Mustapha and Ghavamian, 2017). This 

pressure anomaly is difficult to detect for background leakage events and could be an 

indication of unaccounted demand (e.g., fire hydrants) nevertheless pressure fluctuations have 

been the basis of several leakage detection techniques. The inversely proportional relationship 

between pressure and flow rate dictates that this decrease in upstream pressure will trigger a 

decrease in downstream flow rates. Pressure and flow changes are the most exploited 

characteristics of burst events (Abdulla and Herzallah, 2015). Another measurable leak quality 

is the resulting acoustic emissions released by the loss of water. These vibrations display 

several wave properties such as reflection, refraction, absorption, and diffraction that can be 

exploited to identify and locate burst events (Adnan et al., 2015a). These waves can be 

collected through a variety of sensors such as dynamic transducers, accelerometers, or 

microphones (Khulief et al., 2012). Temperature anomalies in the vicinity of a leak arise making 

it another identifier that could aid in its detection (Chan, Chin and Zhong, 2018).   

2.2.3. Classification 
Considerable research has been taken to investigate detection strategies in water networks 

making it a diverse field. Therefore, it is necessary to divide these approaches into appropriate 

categories. A classification tree was formulated to help navigate new readers to the research 

area (Figure 2-5). The easiest discrimination of leakage detection methodologies in literature 

can be between hardware-based and software-based. Hardware leakage detection highlights 
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the different sensing methods to identify and locate leakage in a network that exploit the 

characteristics (acoustic, pressure, flow, temperature). These can be further refined into 

intrusive, robotic, in-pipe systems or non-intrusive, out-of-pipe systems. However, software-

based detection is more concerned with the computational and data analysis of network 

parameters to extract leakage information. It exceeds hardware methods in its ability to assess 

leakage for steady state and transient flows.  

 

2.2.4. Hardware Detection Methods 
In this section we uncover the varying hardware technology developed for leakage recognition 

and localisation in literature.  

In-pipe Inspection Devices 

Intrusive devices are an underdeveloped subsection of hardware detection methods that 

revolve around inspection devices that enter the pipe networks to explore leaks. Robotic 

inspection devices vary greatly depending on their system characteristics which include their 

driving method, sensing technology and level of autonomy (Tur and Garthwaite, 2010). In the 

following section we will review the current technologies used for each of these system 

characteristics including example prototypes and commercially available products. Sensing 

technologies will be covered later with the non-intrusive techniques. 

Figure 2-5 Leakage detection classification 
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Driving Method 

Generally, moving mechanisms can be defined as passive or active where passive approaches 

rely on the flow of water to inspect the pipe and active approaches are equipped with their 

one or more actuators to achieve the desired motion. Passively propelled inspection robots are 

often named PIGs (pipeline inspection gauge) (Guan et al., 2019). PIGs are highly effective, safe 

and economical devices due to their simple nature and navigation system (Tur and Garthwaite, 

2010; Guan et al., 2019). They have proven useful in clearing deposits gathering on the interior 

of the pipes in addition to their main role to assess the pipe status and detect leakages. PIG 

inspection systems utilise one or more sensors such as ultrasonic  and eddy current sensors 

(Bickerstaff et al., 2002). The navigation is usually achieved through odometers, visual sensors 

and inertial measurement units (Guan et al., 2019). PIGs’ motion can be problematic at higher 

flows where it is hard to halt their motion and when passing through corners in pipe 

infrastructure however intelligent PIGs might present better speed control capabilities. 

Commercially available PIGs include the ‘smart PIG’ by NORSEN GROUP; ‘Smartball’ by Pure 

Technology and ‘Remoted PIG’ by Jiutai Technology (Ismail, I. N.; Anuar, AS.; Sahari, 2012; 

Roslin et al., 2012). 

Active driving methods are categorised into wheel, track, inchworm, walking and snake 

mechanisms. Wheel propulsion is generally coupled with a spring mechanism to press against 

the pipe walls to smoothly adapt to the in-pipe topology. It exceeds the other driving 

strategies with its high efficiency, simplicity and ability for miniaturisation (Tur and Garthwaite, 

2010). Wheel-based prototypes are available in the following literature (Kolesnik, Behavior and 

2002, no date; Roh and Choi, 2005). Wheeled robots can also be screw-driven which usually 

entails a stationary and rotational section. The spiral motion transforms to linear motion 

through the modules (Shao et al., 2015). A prototype of screw-driven wheeled robot can be 

found in (Shammas, Wolf and Choset, 2006). For soft or cracked ground motion, wheeled 

robots are often outperformed by track-driven systems. However, this drive is rarely used due 

to its higher complexity and energy requirements. Roman et al. have proposed a track-driven 

inspection robot in their work (Roman, Pellegrino and Sigrist, 1993). Similarly, legged robots 

lack the simplicity and efficiency the wheeled robots offer but they perform better overcoming 

obstacles like large pipe-wall deposits. An example of legged inspection robots can be found in 

Bradbeer et al.’s work (Bradbeer et al., 1997). Worm-like movements are produced by the 

cooperation of a clamper and extensor modules to push the robot through the pipe. As the 

name suggests, the clamper adheres the robot to its surroundings whilst the extensor moves in 

the desired direction leading to a stroke motion in that direction. This motion is often used in 
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foreign environments where caution is a priority. Further work on inchworm movements has 

been conducted by (Bertetto and Ruggiu, 2001; Lim et al., 2007), (Choi, Jung and Kim, 2004), 

(Menciassi et al., 2002).  Like the inchworm, snake robots have proven more adaptable in 

abnormal environments. They are comprised of several connected modules capable of planar 

movement (Liljebck et al., 2012). The control of snake platforms is often challenging due to the 

increasing degrees of freedom with every adjoining module. Reptile movement for inspection 

robots is not widely used but an example can be found in Shammas et al.’s work (Shammas, 

Wolf and Choset, 2006).  

Level of Autonomy 

Intrusive hardware inspection techniques belong to one of three classes of autonomy: No 

autonomy, semi-autonomous, or fully autonomous. Most robotic inspection devices lie in the 

first category of non-autonomous hardware however the introduction of autonomy provides 

freedom from user interference (Tur and Garthwaite, 2010; Liu and Kleiner, 2013). 

Fully operated robots are usually controlled through a tether cable by trained users or through 

a wireless link. The operator examines the inside of the pipe in real time using the incoming 

sensor data as the robot moves along the network (Tur and Garthwaite, 2010). The tether 

cable is preferred because it enables a smoother recovery as shown in the study (Moraleda, 

Ollero and Orte, 1999). Through their research, the authors concluded that there are no cost-

effective solutions that can navigate the varying scenarios inside water networks (Moraleda, 

Ollero and Orte, 1999). This led to the popularity of tethered, non-autonomous inspection 

robots.  

Semi-autonomous inspection is achieved through implementing automatic control modules 

that can remove some of the user’s duties such as navigation or pipe condition assessment. 

This shifts some of the users’ responsibilities and introduces higher accuracy. Prototypes that 

belong in this category include the PIRAT (Kirkham et al., 2016) and Karo (Kuntze and Haffner, 

1998) robots. 

Fully automated robots are those voids of any user interaction. They are able to navigate, 

assess and communicate pipe condition through their sensor payload in real-time without 

being lost in the system. The challenges faced by autonomous inspection devices are 

numerous but the most prominent is energy and communication in long-time and long-range 

applications (Tur and Garthwaite, 2010). Kirchner and Hertzberg developed the Kurt robot that 

uses a map of the pipe network to collect video graphic, ultrasound and gradient data through 

automatic operation (Kirchner and Hertzberg, 1997). Similarly, the Fraunhofer Institute 
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produced an automated crawling inspection system, the Makro robot, equipped with 

additional IR sensors and laser projectors (Kolesnik, Behavior and 2002, no date; Rome et al., 

1999).  

Prototype 

In this review, we have already specified some smart PIGs and robotic detection prototypes 

that highlight the range of in-pipe inspection including Makro (Kolesnik, Behavior and 2002, no 

date; Rome et al., 1999), Karo (Kuntze and Haffner, 1998), PIRAT (Kirkham et al., 2016), Kurt 

(Kirchner and Hertzberg, 1997) and Smartball. Through the extensive efforts of the research 

community to find the optimal smart inspection platform, many prototypes have been created 

yet only a few of them have been developed into a product due to infeasibility. Finding a 

complete intrusive inspection robot is difficult due to the design challenges they must 

overcome including: 

• The varying pipe diameter of the networks. 

• Junctions and corners manoeuvring requires flexibility. 

• Protecting the sensors from the environment. 

• Multiple sensors are required to provide a more comprehensive inspection. 

• Retrieval issues mean require active self-propelling devices. 

• Most inspection gauges require service interruption as they empty the pipes. 

• Ensuring the devices don’t affect the water quality and introduce contaminants. 

• Communicating a large amount of data to the network operators from a long distance. 

Despite that, pipe inspection gauges can be an appealing solution to some network with 

successful case studies shown. Therefore, it is crucial to review intrusive robotic devices 

regularly to highlight any potential advancements or solutions to our modern-day leakage 

dilemma. The prototypes available can be found in a comprehensive summary table in (Tur 

and Garthwaite, 2010, p. 503) and table 2 of (Liu and Kleiner, 2013, p. 12) 

2.2.5. Non-Intrusive Methods 
Leakage detection systems can also be labelled as dynamic or static methods. Whilst intrusive 

methods are referred to as dynamic due to their motion throughout the network to investigate 

inner pipe conditions, non-intrusive methods depend on mounted sensors that collect data 

used to infer leakage making it a static method (El-Zahab and Zayed, 2019). Static methods 

carry the advantage of identifying a leak immediately whereas dynamic detection is often 

deployed after a leak is expected/identified to pinpoint the leak area (Lee et al., 2005; Cataldo 

et al., 2014). The research scene has been marginally focused on the static strategies of 
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leakage detection for the last two decades due to their more tangible benefits and their ability 

of real-time management (El-Zahab and Zayed, 2019). The most prominent technologies 

exploit acoustic or pressure properties accounting to more than 50% of published research (El-

Zahab and Zayed, 2019)(El-Zahab and Zayed, 2019). Other technologies rely on flow sensors, 

ground penetrating radars (GPR), tracer gas detection, infrared thermography which will be 

mentioned in this section. 

Acoustic Techniques 

Acoustic based leakage detection and localisation can be traced back to the early 1990s in 

water and oil networks (Gupta and Kulat, 2018). The localisation of leak events through 

acoustic methods can be classified into time-of-flight-based or attenuation-based. Attenuation 

based relies on the decrease of signal amplitude as the acoustic signals travel across the 

pipeline while time based monitors the increase of signal transit time (Lee and Lee, 2000). 

Acoustic emissions result from turbulent pressure fluctuations at the leak, vapor bubbles 

forming at high velocities and imploding as shock waves on pipe walls. The frequency of those 

acoustic emissions (AE) varies depending on the source where turbulent flows produce low 

frequency signals and cavitation bursts cause high them in plastic pipes requires a denser 

distribution of the sensors (De Silva, Mashford and Burn, 2011). These instruments could be 

geophones (electrical or mechanical), hydrophones, listening sticks, accelerometers, or 

correlators.  

Geophones are easily implemented to detect leak-induced seismic vibrations in buried 

pipelines (Iskander, 2018). Their ability to accurately locate leaks is aided by their high 

sensitivity but is often dependant on the operator’s experience. Deploying geophones is often 

used to localise and pinpoint a pre-identified leak and hindering the area above the suspected 

leak unusable (El-Zahab and Zayed, 2019). Tethered and untethered hydrophones have been 

used as listening instruments to detect leaks. This widespread sensor is often submersed in the 

fluid column though hydrants and valves. Hydrophones are more accurate than geophones 

however they are expensive (Epa, 2010) and often lack in sensitivity for acoustic leak signals. 

Several studies investigated the combination of hydrophones with signal processing and cross-

correlating techniques to increase sensitivity (Khulief et al., 2012; Gao et al., 2017). Listening 

probes/sticks operates as earpieces that rely on the operator’s ability to distinguish the 

acoustics of leak. This requires highly skilled operators and low external noise which limits the 

effectiveness of this methodology. These devices are suited for small to medium metallic pipes 

with diameters between 75mm to 250mm at pressure range of 10m (Hamilton and 

Charalambous, 2013). The accuracy of the rods is not affected by the pipe material but is 
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heavily reliant on human senses. Leak noise loggers, often paired with correlators, are often 

used to establish a real-time leakage detection system. They are placed for long-term 

operations across the network with low maintenance cost but a high initial cost (Datamatic 

Ltd., 2008; El-Zahab and Zayed, 2019). Implementing a monitoring system in this manner relies 

on a communication and analysis base that can compute the incoming data allowing for faster 

detection and response. This aid from software and computational methods can reduce the 

false detection rate (Hamilton and Charalambous, 2013; El-Zahab et al., 2017).  

Fibre Optics 

The use of optical fibres to detect and localise leakage has been adopted in water distribution 

system due to several benefits. It introduces a system capable of long-distance sensing with 

several measuring points along a single fibre hence providing accurate leak detection and 

localisation. These systems measure temperature anomalies inherent in leaks throughout the 

pipe. In comparison to oil and gas pipelines, the leak induced temperature change in water 

pipelines is smaller and harder to detect (Jacobsz and Jahnke, 2019). Daily and seasonal 

temperature fluctuations increase the difficulty of fibre optics leakage detection (Jacobsz and 

Jahnke, 2019). Optical fibres could alternatively monitor the strain in the pipe wall due to leaks  

(Inaudi and Glisic, 2008; Davila et al., 2016). Developments to increase the use of fibre optics 

for pipeline monitoring of leak-induced temperature or strain include the use of Raman 

Distributed Temperature Sensor (RDTS), Fibre Bragg Gratting (FBG) (Jacobsz and Jahnke, 2019) 

and Brilloun Optical Time Domain Reflectometry (BOTDR) (Adedeji et al., 2017). The use of 

fibre optics exceeds other methods in its immunity to electrical noise, corrosion resistance and 

stability (Chan, Chin and Zhong, 2018) however their high initial and operating costs make 

them less desirable to water utilities. Their inability to monitor non-linear pipelines is another 

sign of its infancy as a leakage detection strategy. Distributed fibre optics have proven 

beneficial in other application but must be developed further to fit the heterogenous nature of 

water distribution networks. 

Infrared Thermography 

Like fibre optics, infrared thermography exploits the thermal effects of leakage in pipelines to 

identify and locate the event. IR cameras have been applied to asses pipe conditions (Gross et 

al., 1999; Joung and Kim, 2006) as well as leakage detection in water networks (Khawandi, 

Daya and Chauvet, 2010; Hunaidi et al., 2000). Despite it being a scarce research topic, 

thermography could provide a cost-effective, efficient, non-destructive way to monitor large 

areas of water networks. Capturing the thermal anomalies translated to the surface above the 

leakage is affected by several factors (Bach and Kodikara, 2017). IR should be measured during 
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times where the ambient temperatures is closer to equilibrium, hence increasing thermal 

visibility. Pre-sunrise and post-sunset hours have been suggested as the most suitable periods 

for thermography (Huang et al., 2010; Bach and Kodikara, 2017). Soil moisture tends to hinder 

the investigation which can be problematic in rainy countries such as the UK despite the moist 

soil’s superior heat transfer ability (Huang et al., 2010). Ground-based thermography have to 

consider surface vegetation density and thermal contrasts caused by shading. Study 

(Khawandi, Daya and Chauvet, 2010) theorised that a 12m leak-sensor distance would be 

optimal for detection. Other factors that affect thermography include weather, wind, and 

seasonal variations. Achieving a perfect environment for IR thermography can be challenging 

causing varying leak thermal contrasts throughout the year. In a reliability study, Bach and 

Kodikra detected a discouraging 59% of the simulated leaks (Wai-Lok Lai, Dérobert and Annan, 

2018). More work could be conducted in conceptualising the thermal nature of leakage and 

assessing the feasibility of thermography as a detecting strategy. Under the correct conditions, 

infrared thermography can be a useful tool for surveying leak areas, but further research and 

computational post processing is required for it to become a complete leakage detection 

strategy. 

Ground Penetrating Radar 

Ground penetrating radars have gained some interest in the leakage research community 

(Demirci et al., 2012; Wai-Lok Lai, Dérobert and Annan, 2018). Their ability to utilise the 

electromagnetic irregularity of water leakage in infrastructure to identify and locate the 

failure. This imaging method excels in its applicability to both metal and plastic pipes 

regardless of the material and size (El-Zahab and Zayed, 2019). GPRs are easy to use and 

transport making it possible to survey large areas with less manpower (Hamilton and 

Charalambous, 2013). Despite that, the disadvantages of deploying GPRs outweigh the 

possible benefits. Its inability to discriminate between leak-induced irregularities and soil 

inhomogeneity increases the false alarm rate (Gupta and Kulat, 2018). This strategy is limited 

to pipes buried less than 5m deep and highly influenced by soil types. The complexity of the 

output data is difficult to interpret (Demirci et al., 2012). In addition to that, GPR are quite 

expensive ranging around £10,000 to £22,000 ($10,000 to $31,000) (Epa, 2010; El-Zahab and 

Zayed, 2019).Considering these limitations and the road interruptions needed to survey 

pipelines; radars must be developed further. The reliability of this method can be improved 

through the aid of decision support systems (Kiss, Konez and Melinte, 2007) and perhaps the 

use of evolutionary search algorithms to obtain accurate leakage detection. 
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Tracer Gas 

Gas injection utilises inert, non-toxic, insoluble, traceable gases such as halogens, ammonia, 

and helium to pinpoint leakage sites. As these gases seep through faulty infrastructure, 

operators detect their location by surveying the suspected area (KVS, no date).This requires a 

proficient knowledge of the network’s flows to limit the gas flow to the suspected area by 

blocking other routes to exit the system. Tracer gas is able to detect both background leakage 

and burst events with low false alarm rate (Hunaidi et al., 2000; Chan, Chin and Zhong, 2018). 

This method provides a simple way of detecting faulty pipelines between 75mm to 100m in 

diameter (El-Zahab and Zayed, 2019) regardless of the material. The fast and accurate 

response of this technique is crippled by its expense especially in large, low-pressure networks 

that require higher volumes of gas. The implementation cost of in-built sensors for monitoring 

and possible filtering stages makes this method unrealistic (Geiger, 2006; Chan, Chin and 

Zhong, 2018). The resultant environmental contamination of escaping gas makes this method 

more undesirable. Further research can target a conservative, economic way of deploying 

tracer gases. 

Magnetic Induction 

Magnetic induction is an accurate detection technique that establishes a communication link 

between two sets of sensors. One of the sets captures the flow, pressure and acoustic 

properties of the suspected leak from within the pipe whilst the other assesses the external 

factors such as humidity, temperature and soil properties outside the pipeline (Boaz, Kaijage 

and Sinde, 2014). Through a current-modulated signal, the coils of the magnetic transmitter 

induces the current to the receiver  (Sun et al., 2011). This communication link enables real 

time control of leakage detection hence increasing the response rate of utilities in harsh 

underground conditions. However, this strategy incurs high implementation costs making it 

undesirable.  

2.2.6. Software Detection Methods 
In this section, we explore the literature covered regarding software-based leakage detection. 

Background leakage poses a large threat to water networks as they often go undetected by the 

conventional hardware methods accumulating more losses over time. Therefore, the 

application of software methods is essential to counter this prevailing issue. The long-time 

savings that accompany software techniques are usually offset with the initial costs of 

installing sensors throughout the network making it a less popular option to utilities (Farley, 

Mounce and Boxall, 2010). Regulations placed by governments and bodies such as Ofwat 

encourage utilities to adopt better water and leakage management practices through 
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incentives and sanctions making software detection a more requested solution. These 

methods can be described as steady state, transient based or a combination of the two.  

Water distribution systems often operate their leakage detection techniques under the 

premise of steady-state flow (Perez et al., 2014). This method compares the behaviour of the 

actual network in comparison to the expected performance to detect anomalies that are often 

caused by leakage or blockage. An abundance of real data (historical and live) from the 

network suggests a data-driven approach to leakage detection however, in networks where 

data is scarce, a model-based approach takes precedence given that the hydraulic model is 

available.  

Model-Based 

As the name suggests, model-based detection relies heavily on the model’s resemblance to the 

actual network, the data analysed and the arithmetic techniques employed (Zaman et al., 

2020). Therefore, building a realistic accurate model is crucial to the success of this technique, 

often having a separate calibration stage to compare the model and the network. Zaman et al. 

(Zaman et al., 2020, fig. 3) display a useful general framework for the model-based leakage 

detection method. a used Developing a reliable replica on hydraulic simulation machines (e.g., 

EPANET, LOOP) should include input information of a leak-free system through different 

streams of information such as Supervisory Control and Acquisition (SCADA), Geographic 

Information Systems (GIS) and more. Some model platforms have an inherent leakage 

detection module such as WaterGEMS that exercises a genetic algorithm (GA) to signify 

potential leak nodes.  

As soon as the model is complete, it is necessary to validify the model through several 

techniques to ensure that the model tracks the real-life example. In some cases, model pre-

processing is performed before calibration to decrease the potential candidates (Perez et al., 

2014). The calibration techniques used are steady-state and extended period simulation (EPS) 

and contrast them to the field data. The indicator parameters could be the residual nodal 

pressures, tank water levels, roughness coefficients and they are usually compared for 

different scenarios to investigate any inconsistencies. The discrepancies are minimised 

iteratively through modifications to pipe friction factors, consumer demands, flow parameters 

and elevations (Sophocleous et al., 2017). Once the model has been calibrated successfully, 

several leakage detection strategies can be applied to the model to predict and inform of 

possible leak locations and their corresponding sizes.  
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Several detection strategies have been developed for the model-based approached. They 

exploit the simulated parameters and field data to locate possible leak areas However, these 

leakage detection models often suffer with the unaccounted ageing properties of the pipe 

causing the pipe diameters to decrease (Adedeji et al., 2017). A simple method for 

investigating leakage is applying the conservation of mass calculation. Balancing the mass in 

and out of nodes can uncover unaccounted for loss hinting at a possible leak. Whilst this 

approach, works well for steady-state, they are prone to disturbances and pipeline dynamics 

resulting in false alarms (Wan et al., 2012). A different method called pressure residual vector 

(PRV) exploits the leak-induced pressure changes in the real system and compares it to the 

leak-free model from their subsequent locations on the network (Pérez et al., 2011). When the 

disparity between the modelled and actual pressure exceeds a pre-determined threshold, set 

through uncertainty analysis and statistical considerations, the area is flagged as a potential 

leak location and investigated (Ishido and Takahashi, 2014; Sousa et al., 2014).  

Indirect methods for model leakage detection can be classified into three types as shown in 

figure 2-5. Calibration-based methods rely on optimising the model calibration stage by 

infusing it with leakage information. This information is obtained by modelling leakage as a 

pressure demand. Genetic algorithms (GA) have proved as a useful evolutionary search 

algorithm (EAs) to investigate possible leak location through calibration (Sophocleous et al., 

2017). EA has been widely used in the optimisation of water distribution system design for 

both single objective and multi-objective as highlighted by the comprehensive literature 

review (Mala-Jetmarova, Sultanova and Savic, 2018). Sensitivity-based analysis is another 

method that exploits network models (Pérez et al., 2011; Geng et al., 2018) through 

investigating the pressure sensitivity of nodes in the model under leak and non-leak 

conditions. Combining the sensitivity matrix with the corresponding pressure residual vector 

can more accurately indicate potential leakage. This is represented in the study (Casillas, 

Garza-Castanon and Puig, 2013) with the aid of the angle based method. To develop that 

further, (Ferrandez-Gamot et al., 2015) introduces a classifier-based method to detect leakage. 

Exploiting statistical classifiers, greatly improves fault localisation with comparison to the angle 

method demonstrated in (Casillas, Garza-Castanon and Puig, 2013) especially regarding 

demand uncertainties. Classifiers are often used as a data-driven approach however, their 

used in model-based detection has proved rewarding. 

Data-Driven 

Using abundant data, leak detection can navigate complex, heterogenous, large water 

distribution networks by bypassing the complications of hydraulic modelling. This makes it a 
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more reliable and accurate technique due to its reliance on real data at the cost of increased 

sensitivity to faulty sensors.  These methods rely on their ability to reveal aberrant 

signals/patterns in the monitoring data received that could suggest the existence of a leak.  

Data Pre-processing 

Data-based detection often engineers one or a combination of flow, pressure, and demand 

readings. Consumer demand being the least probable data source can be rationalised by their 

uncertainty in the localisation stage (Ferrandez-Gamot et al., 2015) and its relative insensitivity 

to smaller leak flow rates (Wu and Liu, 2017). The data used might differ in source, sample 

source (1-15 minutes) and length of time series which are crucial aspects to consider (Casillas, 

Garza-Castanon and Puig, 2013). These sensor readings are often raw and require considerable 

pre-processing before they can be implemented to any leakage detection algorithm. Data pre-

processing often involves sorting, filtering, and transforming the incoming data making it a 

tedious task. Other issues such as uncertainty and variability must be considered when 

employing real data, yet this could be avoided in the instances data is extracted from models. 

Pre-processing is essential to filter erroneous data, filling gaps in the time-series and arranging 

the results for assessment making a critical step in data-driven leakage detection (Zaman et al., 

2020).  

Detection 

In our classification tree (Figure 2-5), data-driven techniques were divided into four types 

depending on their technical procedure. A different way to organise these techniques is to 

match their data source and data types. The technical procedures highlighted in this review 

include statistical, classification, prediction, signal processing. These methods are also used for 

transient leakage detection. 

Pressure/Flow Monitoring 

The simplest data-driven techniques utilise pressure monitoring such as negative pressure 

wave (NPW) and pressure point analysis (PPA). The NPW method detects the propagating 

pressure fluctuation at both sides of the leak through the use of transducers (Silva et al., 1996). 

Localising the leak is established by contrasting the time difference between the reading on 

both sensors through cross-correlation. Applying the NPW approach practically is challenging 

particularly for long-range pipes (Adedeji et al., 2017). Another limitation of NPW is its high 

false alarm rate resulting from its sensitivity to transient flows in networks. In order to increase 

the method’s reliability, study (Tian et al., 2012) proposes several improvements regarding 

false alarm reduction. NPW hybrid leakage detection techniques are encourage to justify the 

alarms such as represented in (Sun et al., 2011). Pairing pressure transducers to compare their 
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leak results is an alternative method to reduce false alarms (Tian et al., 2012). The last 

recommendation uses the aid of pattern recognition to distinguish leakage-induced pressure 

fluctuations from valve-induced variations (Tian et al., 2012). Other ways to improve NPW, 

include implementing an adaptive threshold and improving data quality which could be 

achieved through filtering background noise and advanced data processing. Pressure point 

analysis (PPA) developed by EFA technologies ltd. is commercially available technique that 

statistically analyses the mean pressure measurements along a pipe (Geiger, 2006). Similar to 

the other pressure-based leakage detection strategies, PPA issues an alarm when the mean 

pressure value drops beyond an established threshold. This method is straightforward and 

economic but lack credibility under transient conditions and cannot localise the leaks (Adedeji 

et al., 2017). 

Statistical Analysis 

Statistical analysis techniques for leakage detection are methods that have no classification or 

prediction stage and depend completely on statistical theory (Wu and Liu, 2017). Statistical 

Process Control (SPC) is a central method in this category often using control charts to monitor 

measurement variations. They are also used for data pre-processing (Wu and Liu, 2017). The 

differences between univariate and multivariate SPC methods can be found in Jung et al. work 

(Jung et al., 2015) The univariate methods elicited are Western Electric Company (WEC) rules, 

Cumulative Sum (CUMSUM) and Exponentially Weighted Moving Average (EWMA). WEC rules 

can only consider the past eight readings whilst EWMA has largest memory (Jung et al., 2015). 

The multivariate methods described where Hotelling T2 control chart with elliptical control and 

the multivariate versions of the CUMSUM and EWMA methods. Other statistical strategies 

include Principle and Independent Component Analysis (PCA, ICA) that are used to reduce the 

state space of the data without decreasing its value. ICA can be considered an extension to 

PCA that considers higher order statistics (Westra et al., 2007). Newer methods of statistical 

procedures rely on data clustering (Wu et al., 2016), support vector machine (SVM), artificial 

neural networks (ANN) (Zhou et al., 2019) and newer versions of the multivariate methods  

mentioned earlier. 

Classification Based Methods 

Classification based strategies build models that can effectively distinguish (classify) normal 

and outlier data. The simplest form of a classification technique calculates the absolute mean 

difference between expected and recorded hydraulic measurements (Zaman et al., 2020). 

More commonly used models are trained using sets of labelled normal and abnormal hydraulic 

data to successfully detect bursts. An example of this is the comparative study conducted by 
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Mounce and Machell on burst detection through flow reading analysis using static and time-

delay artificial neural networks (ANN) (Mounce and Machell, 2007). The different architectures 

displayed a different relationship with the inputs causing improved detection due to its more 

dynamic nature. It is clear that the performance of the classification model relies heavily on 

the abundance of normal and outlier real data to train the model and the quality of the inputs 

used. Using a leak function and a self-organising map (SOM) ANN, the classification model can 

output a value from 0-1 to identify the probability of a leak at a node (Aksela, Aksela and 

Vahala, 2009). This method is more adept in distinguishing leak data without supervision or 

labelled training data (Aksela, Aksela and Vahala, 2009). The need of adequately labelled and 

balanced training data for both normal and outlier conditions is the main disadvantage of this 

technique therefore unsupervised learning is a logical step for further research. In addition to 

that, poorly trained classification models often lead to high false positive rates (FPR) which is 

another concern for classification-based leakage detection. 

Prediction-classification 

Unlike classification techniques, prediction-based method introduces a preliminary stage of 

outlier data prediction hence enabling the classification model to be built effectively with 

normal hydraulic data alone. An additional stage of data selection is required to achieve this 

which often utilises some of the statistical methods mentioned earlier (Mounce et al., 2003; 

Mounce, Boxall and Machell, 2009). A linear Kalman Filter (LKF) could be trained using normal 

historical data to provide a statistical description of the current system (Ye and Fenner, 2010). 

This is an efficient method that can extract the prediction using live data alone. Expert systems 

such as Fuzzy Interference Systems (FIS) and Bayesian Interference Systems (BIS) provide 

reliable detection results however they can be developed further by using historical data, 

evolutionary algorithm (EA) and expectation maximisation (EM) to optimise their parameters. 

Mounce et Al. employs a combination of an artificial neural network called mixed density 

network (MDN) in the prediction stage (Mounce et al., 2003) followed by a FIS in the 

classification stage to improve burst detection in the form imitate human cognition (Mounce 

et al., 2007). Following a prediction stage, support vector regression (SVR) was used to classify 

deviations in the input data for leakage detection (Mounce, Mounce and Boxall, 2011). 

Changes in historical data used for prediction-classification propagates the data uncertainty 

decreases the accuracy of leakage detection and requires a data selection stage.  

Signal Processing 

Digital signal processing (DSP) is a commonly used technique to improve leak detection and 

localisation using pressure or acoustic signals due to sharper transitions than traditional 
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techniques such as NPW. This benefit is often offset by the bandwidth restrictions that these 

methods introduce through pipe resonance (Cataldo et al., 2014).  

The use of time and frequency response analysis of acoustic emissions for leakage feature 

extractions has been fruitful leading researchers to explore hybrids that can exploit their 

benefits. This initiated the need for time-frequency analysis to obtain valuable information 

from both domains. Several types of Fourier transforms have been used to capture leakage 

characteristics, but short-term Fourier transform (STFT) has been the primary interest of 

researchers. STFT introduces a time variable to the spectrum by slicing the signal using a time 

window function. The short time segments (called frames) are then input to a discrete Fourier 

transform (DFT) to produce a time-frequency analysis. This method has been justified in 

multiple occasions and compared to fast Fourier transform (FFT) in (Lay-Ekuakille et al., 2009) 

where it outperforms FFT in the uncertainty analysis. Li et al.’s proposed methodology of 

wavelet denoising and STFT combination has shown higher accuracy than other signal 

processing methods such as wavelet decomposition, gaussian mode, recurrence plot, Wigner-

Ville distribution (WVD), Wigner-Hough Transform (WHT), and empirical mode decomposition 

(EMD) (Li et al., no date). Fast Fourier transform has also been validated in the study (Kadri, 

Yaacoub and Mushtaha, 2014) through a fault detection and isolation (FDI) system of 

underground plastic pipes.  

The use of STFT and other time-frequency analysis methods has been overshadowed by the 

application of wavelet transforms (WT) for leakage detection and localisation. STFT has the 

disadvantage of a strict resolution limit due to its limited window size which does not exist 

when using WT. Therefore, using this method better fits the multi-resolution nature of leakage 

and burst events (Wu et al., 2008). WT can be used in multiple areas of signal processing such 

as denoising (Li et al., no date), decomposition (Li et al., no date), recognition, classification, 

and feature extraction. The effectiveness of WT relies heavily on the selection of the mother 

wavelet used is shifted and scaled across the signal to create daughter wavelets. This was 

emphasised in the work of Ahadi and Bakhtiar and their comparison of Haar and db8 mother 

wavelets (Ahadi and Bakhtiar, 2010). Studies (Wu et al., 2008; Ahadi and Bakhtiar, 2010) 

further prove the benefits of WT over STFT. Wavelet transforms, however, are limited by the 

length of the mother wavelet and its non- adaptive nature (Adnan et al., 2015a). Examples of 

mother wavelets used also include Meyer, Morlet, Daubechies and Mallet functions (Zaman et 

al., 2020). WT has proven to reduce noise and better locate sharp transitions in the leak signals 

(Zaman et al., 2020). In study (Zadkarami, Shahbazian and Salahshoor, 2017), wavelet features 

pf pressure signals were compared and outperformed by two Multi-Layer Perceptron Neural 
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Networks (MLPNN) for feature extraction and leakage classification that are then fused by the 

Dempster-Shafer (D-S). The neural networks have outperformed the wavelet feature 

methodology in correct classification rate (CCR%) where D-S classifier fusion method resulted 

in 95.11%, wavelet at 86.94% and statistical features trailing behind at 64.56% (Zadkarami, 

Shahbazian and Salahshoor, 2017).  

2.3. Leakage Prevention 
As the third prong of the trident that is leakage management; leakage control plays an 

essential role in reducing the effect of leakage in water distribution networks. Leakage control 

is concerned by minimising the probability and magnitude of leaks by changing the operation 

and infrastructure. It is also called leakage prevention as its benefits extend to preventing 

future leakage through the smooth transport of water. Leakage control can be split into two 

main sections: Asset Management and Pressure Management. For the purpose of this thesis, 

we focus our literature review on the pressure management control strategies. 

2.3.1. Pressure Management 
Internal water pressure is a leading operational factor in pipe failure and therefore leakage. 

Hence, it is necessary to effectively reduce the service pressure of the water distribution 

networks to a suitable level to reduce leakage. The advantages of pressure control extends 

beyond leakage reductions as it increases the asset service life; decreases water and energy 

costs; and decreases carbon emissions (Thornton and Lambert, no date; Rogers, 2014; Farley 

and Trow, 2015; Adedeji et al., 2018). By managing pressure effectively, we minimise the need 

for excessive pumping hence addressing environmental and energy concerns. The pressure 

management problem is multi-faceted as high pressure causes heavy loading on the pipes and 

increases the effects and probability of leaks whilst low pressures cause supply interruptions 

and disqualify utilities from meeting a minimum pressure requirement set by their regulatory 

bodies (e.g., OFWAT for the United Kingdom). The complexity of pressure control in WDNs 

increases with rising trends urbanisation and consequent rise of demands. In addition, demand 

pattern variations affect the pressure through the networks daily and seasonally which require 

a more continuous pressure monitoring. Therefore, pressure control quickly became a major 

research interest for everyone involved in the water industry.  

Early research highlighted the strong relationship between leakage and pressure (Eq. 2-9) and 

aimed to elicit it in a proportional relationship (Lambert, 2001; Thornton, 2003; Thornton and 

Lambert, 2005). 
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𝑄𝑙 = 𝑘𝑃𝑛                                                                                                                                               ( 2-9 ) 

where Ql is the leakage flow rate (Ls-1), k represents the leakage/emitter coefficient (Ls-1m-0.5), 

P is the pressure head (m) in the pipe while n denotes the leakage exponent. The value of n 

ranges from 0.5 to 2.5 depending on the type of leaks. A more comprehensive relationship was 

derived from the fixed area and variable area (FAVAD) concept by May (May, 1994). 

𝑄𝑙 = 𝐶𝑑𝐴𝑙
𝑓

√2𝑔𝐻 + 𝐶𝑑𝐴𝑙
𝑣√2𝑔𝐻                                                                                                   ( 2-10 ) 

where Ql denotes the leakage flow rate, Cd is the leakage discharge coefficient, Al
f, the fixed 

area of leak opening, Al
v, the variable area of leak opening. H represents the pressure head 

produced by pump while g is the acceleration due to gravity. Both equations are regularly used 

in both research and industry. They highlight the heavy involvement of pressure in leakage and 

are used heavily in literature. This inspired most of the pressure control work that followed it.  

Actuating devices 

Several network components can be utilised to achieve adequate to advanced levels of 

pressure control. Intelligent pressure management often requires synchroneity between 

pressure-influencing components to ensure that the pressure management does not lead to 

energy loss through head loss (Alberizzi et al., 2019). Several pressure control devices are 

available to manage pressure in the network including pump as turbines (PAT), pressure 

reducing valves (PRV), pressure sustaining valves (PSV) pressure control valves (PCV) and 

pressure breaker valves (PBV). The most common devices are the pressure reducing valve and 

the pressure control valve however PATs have become a more recent focus due to the scarcity 

of energy and the trends to lower carbon emissions. The optimal placement of the valves and 

PATs have proven to be equally as important as their operation to ensure their effectiveness 

and minimise the operating costs (Saldarriaga and Salcedo, 2015a; Bonthuys, van Dijk and 

Cavazzini, 2020; Price, Abhijith and Ostfeld, 2022).  
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Table 2-2 Pressure control actuators and uses from (Mosetlhe et al., 2020) 

Actuator Use 

Pressure reducing valves (PRV)  Regulation of pressure when and if it 

exceeds the set-out values 

Pressure sustaining valves (PSV)  Sustain a certain specified pressure value 

Pressure control valves (PCV)  Control the pressure in the identified 

pressure management area 

Pressure breaker valve (PBV)  Force and maintain specified pressure loss 

across the valve 

Pumps as turbines (PATs) Regulation of pressure when and if it 

exceeds the set-out values and the recovery 

of energy. 

Valve Placement 

The placement of valves is crucial to experience the tangible impacts of valve operations. 

Otherwise, the effects of pressure control would not span across the district metred area 

(DMA). The placement methods can be classified broadly into three sections. 

The enumerative method randomly selects areas for valve locations and their settings are 

optimised using optimisation algorithms. The process repeats until it reaches the best result. 

This method tends to be easier to apply but cannot guarantee the best result. 

The pressure reference method (PRM) relies on hydraulic simulation through modellers to 

minimise the search space to the most suitable links. For varying demand patterns, the 

installation sited need to follow a rule based on a predetermined reference pressure. This rule 

in (Liberatore and Sechi, 2009) evaluates the difference between the input and output 

pressure. 

𝑅𝑢𝑙𝑒: 𝑖𝑓 ℎ𝑖 − ℎ𝑗 > 0.1 × ℎ𝑟𝑒𝑓 pipe is selected as PRV site 

This rule improved on the previous standard of confirming that the input nodal pressure drops 

to below the reference pressure before it reaches the output node which was used in (Gupta 

et al., 2017). PRM is a suitable method to avoid the computational workload that comes with 

optimisation methods. Similar to the enumerative method; PRM cannot guarantee optimal 

placement but can guarantee the correct number of valves being installed. 
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The last section is calculus-based/optimisation methods. Studies (HINDI and HAMAM, 2007; 

Eck and Mevissen, 2012) minimised the PRV installations whilst minimising the pressure using 

mixed-integer non-linear programming (MINLP). Studies (Dai and Li, 2014; Pham, 2018) solve a 

localisation and control valve case using interior point optimizer (IPOPT) to use the minimum 

amount of valves to regulate pressure. As the evolutionary algorithms (EA) continue to 

dissipate into water network research; genetic algorithms (GA) were used to tackle the valve 

location problem in various studies (Araujo et al., 2006; Nicolini and Zovatto, 2009; Nicolini, 

2011). Another study (Saldarriaga and Salcedo, 2015a) employs a different EA method to 

better solve the resulting pareto front using a non-sorting genetic algorithm-II (NSGA-II). The 

use of EAs has grown in WDN literature with room to grow with the current research trends. 

This section introduces more advanced methods that can guarantee optimal placement and 

number of valves however they tend to be more computationally demanding. 

Pressure Control Strategies 

There are many ways to classify the control techniques covered by the research community. 

However, all control techniques follow one of six principles: 

1. Fixed outlet pressure control (FOPC) 

This method ensures that the maximum pressure entering a zone does not exceed the 

predetermined setting but does not adjust water pressures to meet demand 

variations. 

2. Time-modulated pressure control (TMPC) 

In this control, the outlet pressure is set to different values during the off-peak and 

peak durations of the day. This repeats daily and offers more flexibility than FOPC but 

has a poor response to sudden changes in demand requirements. 

3. Flow-modulated pressure control (FMPC) 

FMPC reduces the output pressure proportionally to the input flow using an additional 

flow-modulated controller. 

4. Closed-loop pressure control (CLPC) 

This method feedbacks the real-time pressure at the critical point of the zone in 

question (DMA) and uses that to adjust the output pressure. This provides great 

control of the pressure in the DMA. Yet CLPC is more expensive to implement and 

could increase the stress on the network elements. 

5. Parameter-less P-controller 

This method adjusts the pressure using the flow in a PCV making it easier to 

implement and respond to varying demands. 
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6. Optimisation approach 

Using optimisation algorithms to control the network pressure has been studied 

extensively. This strategy is vast with diverse computational optimisation strategies. 

Table 2-3 Comparison of pressure control techniques (Adedeji et al., 2018) 

Method Remarks Cost Limitation Application 

FOPC Simple Not 

expensive 

Unable to adapt 

to pressure 

variation during 

peak and off-peak 

demands. 

Used in small scale 

water piping 

networks. 

TMPC The controller used 

is easy to set up  

A little bit 

expensive 

Low response to 

water demand 

variations  

Majorly used during 

the minimum night 

flow hours (MNFHs). 

FMPC Complex  Expensive  Low response to 

water demand 

variations  

Can be used during 

both MNFHs and 

high demand period 

CLPC It provides the 

ultimate level of 

control  

Expensive  There is a greater 

tendency for 

equipment failure  

Can be used during 

both MNFHs and 

high demand period 

in real-time. 

Parameter-

less P-

controller 

The controller is 

easy to setup and 

can respond to 

water demand 

variations.  

Not 

expensive  

Practical 

application in 

large-scale water 

piping networks 

required.  

Can be used during 

both MNFHs and 

high demand period 

in real-time. 

Optimisation 

approach 

For optimal 

location and 

opening 

adjustment of the 

pressure reducing 

valves  

Not 

expensive  

Practical 

application in 

large-scale water 

piping networks is 

required.  

Can be used during 

both MNFHs and 

high demand period. 

The most interesting of the aforementioned techniques are those that fall into the 

optimisation approach. This approach employs the use of advanced optimisation algorithms to 
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satisfy single or multiple objectives set by the user. Due to the numerous novelties available in 

this approach it has become a beacon for many researchers.  

Optimisation strategies in pressure management of WDNs are mostly concerned with the 

placement and operation of valves (i.e., PRVs, TCVs). They tend to use meta-heuristic search 

algorithms such as genetic algorithms (GA). These methods combine beneficial properties of 

individual solutions in generational populations in search for the global optimum; however, 

they are sensitive to hyperparameter selection and incur a heavy computational processing 

load.  This can be seen in (Gullotta et al., 2021) where the authors use sequential addition (SA) 

and non-dominated sorting genetic algorithm (NSGA-II) to optimise valve locations and 

settings for a stormwater management model under water shortage conditions. Their findings 

highlighted the effectiveness of both algorithms and the higher computational demand of 

NSGA-II. Similar findings were also found in (Saldarriaga and Salcedo, 2015a) where NSGA-II 

was used in minimising water loss in water distribution networks. More researchers 

investigated the placement and operation of valves using meta-heuristic approaches such as 

(Araujo, Ramos and Coelho, 2006) where the authors used GA to optimal number and location 

of valves in addition to the optimal settings. This resulted in a decrease of leakage rates by 5.2 

l/s (Araujo, Ramos and Coelho, 2006). Alternatively, the article (Mehdi and Asghar, 2019) uses 

the benchmark particle swarm optimisation to optimise valve settings in large scale WDNs to 

reduce leakage rates. As shown in the literatures, genetic algorithms and particle swarm 

optimisation has been the standard optimisation algorithms deployed for this problem.  

A more detailed review of PM strategies can be found in (Mosetlhe et al., 2020). In this review, 

the authors have declared three main avenues for further improvement in pressure 

management. Two of those studies being the deployment of emulators such as deep neural 

networks for the optimisation procedure and the modelling of WDNs; and the use of 

reinforcement learning (RL) based controllers as it bypasses the need for excessive data that 

often accompanies advanced optimisation algorithms. In addition, RL controllers learn from 

their experience with the environments which means that the accuracy of the algorithm will 

not be compromised through estimation of model parameters or require re-training (Mosetlhe 

et al., 2020). Nevertheless, the use of reinforcement learning can only be truly unlocked by 

releasing its limits of scalability through the incorporation of deep neural networks hence the 

use of deep reinforcement learning (DRL). Whilst the use of DRL in the water industry is still at 

its infancy, there have been some applications that highlight its applicability in WDNs (Hajgató, 

Paál and Gyires-Tóth, 2020; Xu et al., 2021; Hu et al., 2023), hydro-systems (Delipetrev, Jonoski 

and Solomatine, 2017) and stormwater systems (Mullapudi et al., 2020; Tian, Liao, Zhang, et 
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al., 2022; Z. Li et al., 2023). A more recent example of the use of DRL for water industry 

applications can be found in (Makropoulos and Bouziotas, 2023) where the authors used 

agents to design off-grid water infrastructure. The only published use of reinforcement 

learning for pressure management of WDN was shown in (Negm, Ma and Aggidis, 2023b) 

where the authors deployed a simple tabular Q-learning method to highlight the feasibility of 

using RL as a PM strategy.  

2.4. Concluding Remarks 
Leakage assessment is a major component of leakage management as it identifies the 

whereabouts of water loss and quantifies the performance of WDNs. This section highlighted 

the current state of the art and potential next steps to the future of leakage assessment.   

In more detail, explains the current leakage assessment methodologies; their benefits and 

limitations; examples from case studies; and a comparative summary table. The Top-down 

method has provided a benchmark for leakage assessment to define the different inputs and 

outputs of water in the system. Whilst this approach is widely adopted by utilities globally, it is 

incomplete and lacks an objective methodology to assess unauthorised consumption and data 

handling errors. Creating more reliable updated assumptions for UC and testing them for 

developing countries is a possible room for improvement. MNF analysis provides a more 

reliable outlook on the components of WL in the system and can be used for ALC strategies 

since it relies on real life measurements and not assumptions. Improving data reliability 

through advanced sensor technology and communications such as AMIoT or sensor fusion can 

improve MNF analysis and constantly monitor the level of background and burst leakage. The 

BABE method better describes the nature of leakage within the system through evaluating the 

subcomponents of RL in the system. This method has been created for developed countries 

and requires further validation in developing countries where apparent losses through UC and 

metering inaccuracies are higher. Water and wastewater balance is relatively novel however is 

only applicable to utilities that have a wastewater service. This is the first method to capture 

the apparent losses of the system through balancing the water and wastewater flow 

measurements. Similar to MNF, data reliability is a major concern to the methodology 

especially WWTP inflow measurements. The water and wastewater balance can be improved 

by validating it in developed countries that have less significant apparent losses [35]. Different 

leakage assessment approaches can be combined to offset their biases and provide additional 

insight on the nature of leakage in the network. The top-down approach underestimates the 

apparent losses whilst the water and wastewater balance overestimates AL in the system. The 
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different techniques can vary greatly in results therefore it is necessary to benchmark a 

decision matrix for choosing the most suitable approach. 

On the other hand, the leakage detection field is sparse and multi-directional filled with 

researchers attempting to equip water companies with a solid method to tackle the 

heterogenous nature of this issue. Reviewing the field is challenging but this section should 

offer guidance to the multiple research areas and possible novelties that can be uncovered in 

each. Every section offers a further breakdown of the research area and a light comparison 

between technologies within to collate the most research findings and methodologies.  

The robotic platforms reviewed include many platforms that vary in driving methods, sensing 

capabilities and autonomy. The active driving method sin intrusive inspection devices include 

wheeled, screw-driven, track-driven, worm, snake and legged showing that they all vary in 

applicability depending on the nature of the pipe and its environment. The autonomy level of 

the Smart PIGs and robots introduce an interesting trade-off between recoverability and less 

manpower. However, there are no economical devices capable of autonomously adjusting to 

all the scenarios present in all water networks and effectively communicating with the users 

with no intervention. 

Non-intrusive hardware detection consists of a range of sensors that detect leak-induced 

anomalies to identify and locate events. The most common are acoustic sensors which include 

microphones, geophones, hydrophones, accelerometers, leak noise loggers and correlators. 

Other sensors mentioned are magnetic induction, infrared thermography, fibre optics, ground 

penetrating radar and tracer gas. These are often insufficient alone and will benefit further if 

paired with signal processing methods. 

Software leakage detection draws from two general methodologies. Model-based leakage 

detection requires the analyst to construct an accurate model of the water distribution 

network using hydraulic analysis software and compare expected pressures/flows to the actual 

measurements to find outliers. In comparison, data-driven techniques include varying methods 

of collecting, pre-processing, and analysing data to directly find leak-induced outliers. Data-

driven methods are classified into several categories based on their nature including statistical, 

classical, prediction and signal processing. Using models or data-driven methods rely solely on 

the availability of sensor data and their accuracies but can often be used together to provide a 

better hydraulic analysis of the system. These methods rely heavily on computational efforts 

to detect leakage and can benefit majorly from the rise of data engineering and artificial 

intelligence breakthroughs.  
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It is common for researchers and industry to use a hybrid between the methods reviewed to 

draw on their advantages and this should be explored further to use our current knowledge to 

bridge the faults of these methodologies. It is also crucial to explore new venues for model 

leakage prediction which can help identify background leakage. This can benefit from the 

emergence of neural networks as function approximators especially graph neural network due 

to their similar data types. Furthermore, neural networks models should be tested for transfer 

learning applications hence reducing the training time required for neural networks to model 

water distribution networks. 

Finally, leakage control is concerned with minimising leakage effects through creating 

smoother pressure profiles using pressure management and minimising leakage probability 

through maintaining the infrastructure using asset management.  

In this chapter we focus on pressure management methods for leakage control. Utilities deploy 

several network actuators (mostly valves) to control flow and pressure distribution throughout 

the network. It is adamant that valve placement is just as significant as valve management in 

pressure control. Nevertheless, research effort mostly prioritises the overarching control 

strategies. Using the optimising approach, researchers manage to introduce cheaper control 

strategies that are appropriate for varying WDN sizes during both MNFHs and high demand 

periods. The main drawback to using optimisation algorithms as a control method is its 

computational load, difficulties representing complex problem and inability to handle dynamic 

scenarios. The use of DRL algorithms shows great promise in bridging these gaps due to their 

capabilities in handling numerous uncertainties and reacting to dynamic environments. 
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3. Deep Reinforcement Learning Literature Review 
Deep Reinforcement Learning (Deep RL; DRL) is an emerging field of dynamic computing that 

has risen through the use of deep neural networks to advance reinforcement learning (Mnih et 

al., 2015). It has the potential to tackle complexities that used to be very challenging as it relies 

on deep neural networks for function approximation and representation. This technology has 

spread across many fields due to its impressive results and can effectively revolutionise the 

water industry. In this section, we explain the background of deep reinforcement learning and 

the milestones of this field using a novel taxonomy of the DRL algorithms. This will be followed 

by with a review of deep reinforcement learning applications in the water industry and will be 

concluded with critical insights on how DRL can benefit different aspects of the water industry. 

Navigating the field of Deep RL requires a solid knowledge of its predecessor Reinforcement 

Learning and the major advancements that were led by the introduction of neural networks 

which is covered in section 3.1. A dedicated outlook on notable DRL algorithms and current 

research trends is covered in section 3.2. After reviewing the wider field of research, section 

3.3. contextualises the deployment of DRL in urban water systems (UWS) by considering the 

challenges and opportunities inherent in the implementation of this novel technology. 

Moreover, section 3.4. focuses on a novel review of research deploying DRL in urban water 

systems. This in-depth review of the current research in the water industry will lead to an 

extensive discussion regarding the future of deep reinforcement learning in the water industry 

in section 3.5.  

3.1. Reinforcement Learning Background 
The field of machine learning (ML) has been a hot topic for researchers from diverse 

backgrounds such as virologist, biologists, engineers, psychiatrists, and more (Libbrecht and 

Noble, 2015; Nichols, Herbert Chan and Baker, 2019) due to its ability to analyse real world 

problems using algorithms that tackle more dynamic perspectives and improve with 

experience (Shinde and Shah, 2018). Machine learning begun as researchers hoped to achieve 

a novel area where instrumentation can achieve innate learning and demonstrate more 

‘intelligent’ behaviour. From the first ML algorithm in 1951 named ‘response learning 

algorithm’ until the current day, artificial intelligence has only been empowered by this new 

field (Shinde and Shah, 2018). Some of the major achievements in ML was the creation of the 

algorithms Linear Classifier, Naive Bayes, Bayesian Network, Support Vector Machines (SVM), 

k-Nearest Neighbour (k-NN) and Artificial Neural Networks (ANN) (Shinde and Shah, 2018). 

ANNs were then adapted further to introduce deep layer and hence the introduction of Deep 

Learning. 
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ML has successfully developed the world of artificial intelligence into a true hope for near-

human intelligence. Machine learning methods are often split into supervised learning or 

unsupervised learning methods. Where supervised learning depends on our prior knowledge 

and labelled examples to form an understanding of the model; unsupervised learning aims to 

learn some hidden structure using feature extraction of the unlabelled dataset. Supervised 

learning methods are more commonly used in classification and regression problems such as 

object detection and rainfall prediction models (Shinde and Shah, 2018; Nichols, Herbert Chan 

and Baker, 2019). Unsupervised learning is more equipped to tackle clustering, association 

analysis and feature engineering (Libbrecht and Noble, 2015). Whilst both forms of learning 

have greatly advanced their respective fields and widened the scope of artificial intelligence; 

they fall victim to the curse of time. As time passes, the models built using typical ML 

approaches become more and more outdated and require retraining using newer and more 

relevant data. Overlooking the sequential nature of engineering applications such as water 

distribution management can have grave consequences when implementing ML models. An 

example of that can be the effects of annual seasonality and age on the pipe failure frequency. 

Hence, the need to develop a learning approach that incorporates the hidden dimension of 

time – Reinforcement Learning. Figure 3-1 highlights the place of RL as a subfield of machine 

learning. RL’s ability to consider the effects of time through semi-supervised learning was the 

first expression of artificial foresight in machine learning and its closest form to human 

intelligence.  
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Figure 3-1 The subfields of machine learning 

In its infancy, the use of reinforcement learning (RL) was an exciting concept that promised an 

introduction to responsive and continuously-learning AI systems. A behaviourist mathematical 

approach for experience-driven learning was finally attainable through RL (Sutton and Barto, 

2018).This entails a reward-driven learning from interaction with an unmapped environment 

rather than hard computing or supervised learning where it is near difficult to obtain examples 

of desirable behaviour. Despite the initial successes of RL (Tesau and Tesau, 1995; Singh et al., 

2002; Kohl and Stone, 2004), it could not escape the ‘curse of dimensionality’ when applied to 

real life problems. RL was limited by complexity issues ranging from memory complexity, 

computational complexity and sample complexity (Strehl et al., 2006). 

 The recent surge of deep learning and deep neural networks that has spearheaded the 

movement in function approximation and representation learning giving hope to unlock the 

true potential of RL by overcoming the issues of scalability; hence the rise of the field of deep 

reinforcement learning (DRL, Deep RL). This is demonstrated as the overlap between 

reinforcement learning and deep learning in figure 2-1. The first breakthrough use of neural 

networks in reinforcement learning was in Mnih et al.’s study (Mnih et al., 2013) in which 

convolution neural networks were used for value function approximation. This was developed 

to form the basis of the first DRL method; the deep Q-networks (DQN) (Mnih et al., 2015).  
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As deep reinforcement learning gained popularity and developed further, the field of 

reinforcement learning was quickly populated with novel algorithms. The field of RL has 

quickly transformed to a forest of methods, architectures and concepts that are difficult to 

navigate because of its non-modularity. To highlight the diversity in RL, we have gathered and 

classified a novel taxonomy of the algorithms (Figure 3-2). This classification tree can serve as a 

map to highlight the place of our algorithms in the field of DRL. It classifies the algorithms 

based on model free vs model based; on policy vs off policy; value-based vs policy-based; 

gradient based vs gradient free labels. Dotted lines are used to label dynamic programming, 

monte carlo, temporal difference and distributional RL algorithms. In the following sub-

sections, we define the main labels used in the classification tree to elicit a better 

comprehension of the RL landscape.
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Figure 3-2 Taxonomy of reinforcement learning algorithms.



 

51 
 

3.1.1. Components of RL 
To fully comprehend the aspects and range of methods available in deep RL, it is crucial to 

delve into the formalism that make the RL paradigm. Reinforcement learning tackles its 

problems as Markov Decision Processes (MDPs) which is a commonly used description in the 

field of computing that depict real word processes.  MDP formalism is based on evaluating the 

probability of transitions between different states in its process and is sometimes denoted 

with the five tuple (S,A,P,R,γ) that stand for states(S), actions (A), probabilities/dynamics (P), 

reward (R) and initial state (γ) (Puterman, 1990; Desharnais et al., 2004). This helps evaluate 

the sequential interactions between actuators (agents, A) and their environment to influence 

both the state of the agent (state, S) and the relevant state of the environment (observation). 

The agent is then fed the observation data and a reward signal (Reward, R) that serves as an 

assessor to the new state that this action has led to. The aim of the agent is to find the optimal 

policy (∏) that will maximise the expected reward which is achieved by learning the probability 

of state transitions attached to a state-action pair. A visual description of this process can be 

found in Figure 3-3. The deep neural network is an addition only found in Deep RL methods 

whilst RL methods tend to use a tabular data frame. The components of RL and DRL can be 

therefore redefined to suit most real-world applications in an organic and straightforward 

manner. 

 

Figure 3-3 Standard Deep Reinforcement Learning Schematic 

Reward and Return 

The reward signal (r) is the crucial identifier that tells the agent whether their action was 

beneficial or harmful. The cumulative reward over a trajectory is named the return (R(𝜏)) and it 

can be a finite-horizon undiscounted return (Eq. 3-1) or an infinite-horizon discounted return 

(Eq. 3-2). Finite return is the sum of rewards for a fixed number of steps whilst infinite returns, 

like the name suggests, is the summation of the sum of all the rewards ever. The infinite 
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returns must include the discount factor γ Є (0,1) used to control how much weight should be 

placed on the agent’s foresight. This helps the infinite sum converge to a finite value. 

𝑅(𝜏) = ∑ 𝑟𝑡
𝑇
𝑡=0 .  For finite-horizon undiscounted return.                                                         ( 3-1 ) 

𝑅(𝜏) = ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 . For infinite-horizon discounted return.                                                       ( 3-2 ) 

This return is usually modified and incorporated into a value function for value-based RL 

methods or an objective function for policy-based RL methods. Both methods have their 

advantages and disadvantages; for example policy-based methods are generally less sample 

efficient than Value based algorithms but can learn stochastic policies and converge faster 

than their alternative (Lapan, 2019). We discuss this further in the classifiers section below. 

Value Functions 

Value functions are used in almost every RL algorithm. They are a fundamental concept in RL 

which calculates the expected infinite horizon return to evaluate how beneficial individual 

states or state-action pairs are. Value functions that solely evaluate the current state without 

the action are often denoted by the symbol V(s) and named state value functions (Eq. 3-3). 

Alternatively, state-action value functions are called quality functions, and they provide more 

of an insight on the trajectory of the agent given its current state-action pair (Eq. 3-4). The Q-

value is denoted by the symbol Q(s,a).   

𝑉(𝑠) =  𝔼[∑ 𝛾𝑘𝑅𝑡+1+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠]                                                                                             ( 3-3 ) 

𝑄(𝑠, 𝑎) =  𝔼[∑ 𝛾𝑘𝑅𝑡+1+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                                                          ( 3-4 ) 

Where 𝔼[. ] is the expected discounted infinite horizon return, s is the state sampled from St, a 

is the action sampled from At and t is any time step.  

An important property of RL is foresight which enables agents to weight the future 

consequences of their actions using the expected return hence it is rare to find value functions 

operating without the incorporation of the bellman equations (Bellman, 1952). Bellman 

equations are self-consistency equations integral to dynamic programming and MDPs that 

follow the concept that the value of any starting point is the reward you expect from being at 

the starting point in addition to the value of the next point (Bellman, 1952; Puterman, 1990). 

Because the actions taken by an agent depend on the policy that it follows, value functions are 

often described in relation to its policy. On-policy value functions estimate the expected 

returns as the agent follows the behavioural policy (π). On-policy value functions can either 

evaluate a state (state-value function) or a state-action pair (state-action value function or 
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quality function). On-policy state-value functions are denoted by Vπ(s) and evaluates the 

expected return as the agent acts under behaviour policy (π) and starts with state (s) and is 

followed by the state (s’). This is described using the following equation (Eq. 3-5): 

𝑉𝜋(𝑠) =  𝔼𝜋[𝑅𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑅𝑡+2+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠] =  𝔼𝜋[𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)]                     ( 3-5 ) 

The bellman equation decomposes the value function to the sum of the current value and the 

future discounted values. Similarly the Q-value denoted by (Qπ(s,a)) bellman equation is 

formally defined as the expected return as the agent acts under the behavioural policy (π) 

starting with the state-action pair (s,a) and followed by the next state-action pair(s’,a’) (Eq. 3-

6): 

𝑄𝜋(𝑠, 𝑎) =  𝔼𝜋[𝑅𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑅𝑡+2+𝑘
∞
𝑘=0 │𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] =  𝔼𝜋[𝑟(𝑠, 𝑎) + 𝑄𝜋(𝑠′, 𝑎′)] ( 3-6 ) 

When attempting to find the optimal policy and action for a RL problem, off-policy value 

functions are used to remove the restrictions of the behavioural policy and allow the agent to 

explore the value function following the optimal policy This leads to the off-policy state value 

function and off-policy state-action function. These are also called the optimal value functions 

(V*(s) and Q*(s,a)). The main difference between the on-policy and optimal bellman equations 

is that the optimal uses the maximum rewardable action as shown in the equations below (Eq. 

3-7, Eq. 3-8). 

𝑉∗(𝑠) =   𝔼[𝑟(𝑠, 𝑎) + 𝛾𝑉∗(𝑠′)]𝑎   
𝑚𝑎𝑥                                                                                                ( 3-7 ) 

𝑄∗(𝑠, 𝑎) =  𝔼[𝑟(𝑠, 𝑎) + 𝛾 𝑄∗(𝑠′, 𝑎′)𝑎′  
𝑚𝑎𝑥 ]                                                                                      ( 3-8 ) 

The optimal action of an RL problem can be extracted by finding the maximum reward 

argument of the off-policy state-action value function bellman equation (optimal Q-function). 

In instances where there are multiple optimal actions, the algorithms often select an action at 

random (Achiam, 2020). Another method to evaluate the value of an action is by using the 

advantage function (A(s,a)). This compares how beneficial an action is to the average value of 

all actions by subtracting the state value from the state-action value under policy (π) (Eq. 3-9). 

𝐴𝜋(𝑠, 𝑎) =  𝑄𝜋(𝑠, 𝑎) −  𝑉𝜋(𝑠)                                                                                                         ( 3-9 ) 

The use of advantage function is intuitive as it evaluates the performance of actions relative to 

an average. It is simpler to compare the consequence of an action with respect to another. 

Learning the advantage, rather than the quality or state function, has been a recent trend in 

DRL algorithms (Schulman et al., 2015; Wang et al., 2015; Gu et al., 2016; Mnih et al., 2016) 
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For more details on the basics of value functions, we recommend the following introductory 

books, papers and articles (Arulkumaran et al., 2017; Li, 2017; Sutton and Barto, 2018; Achiam, 

2020). 

Policy Driven 

Other than value-based algorithms, there are policy driven techniques to solve the 

reinforcement learning problem and reach an optimal policy. Whilst the value-based methods 

use a learnt value functions to reach an implicit policy, policy-based methods do not use a 

value function but directly learns a policy. The value function approach often works well but it 

is important to be aware of its limitations. Value functions’ approach to policy optimisation is 

focused mostly on deterministic policies which is rare in the real world since optimal policies 

are often stochastic. They also are subject to high sensitivities as a minor change in the 

expected value of an action might cause the algorithm to accept or reject it. This has been 

identified as a key fault that inhibits the convergence of value-based methods such as Q 

learning, SARSA and dynamic programming methods (Baird, 1995; Gordon, 1995; Bertsekas, 

Tsitsiklis and Τσιτσικλής, 1996). Policy driven methods bypass these limitations leading to 

better convergence properties, ability to learn stochastic policies hence more effective 

algorithms for higher dimensional and continuous action spaces. However, these methods can 

habitually converge to local minimums and are more computationally demanding with higher 

variance. 

Direct policy search methods fine tune a vector of parameters (θ) to select the best action to 

take for policy π(a|s,θ). The policy πƟ is updated to find the maximum expected return. They 

can either employ gradient free or gradient based optimisation. Gradient free algorithms often 

use the concepts of evolution strategies (Gomez and Schmidhuber, 2005; Koutník et al., 2013; 

Salimans et al., 2017) or the cross entropy function (Kalashnikov et al., 2018). Gradient-free 

optimisation methods can perform well in low dimensional spaces and update non-

differentiable policies but, despite some successes in applying them to neural networks, the 

favoured method remains gradient-based training for DRL algorithms. Gradient based training 

methods are more sample efficient when dealing with high parameter policies (Arulkumaran et 

al., 2017). 

The gradient-based policy methods, also called policy gradient, optimise a selected objective 

function (J(πθ)) which can be defined by the average reward formulation or start-state 

formulation (Sutton et al., 2000) simplified below (Eq. 3-10). Policy function approximation is 

challenging since gradients cannot be used through samples of a stochastic function hence 
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why use a gradient estimator; the theory of the REINFORCE algorithm (Williams, 1988, 1992; 

Sutton et al., 2000). 

𝐽(𝜋𝜃) =  𝔼[∑ 𝑅(𝜏)𝑇
𝑡=0 ; 𝜋𝜃] = ∑ 𝑃(𝜏; 𝜃)𝑅(𝜏)𝑇

𝑡=0                                                                                                              ( 3-10 ) 

∇𝜃𝐽(𝜋𝜃) = ∇𝜃 ∑ 𝑃(𝜏; 𝜃)𝑅(𝜏)𝑇
𝑡=0                                                                                                                                                             ( 3-11 ) 

The objective function (J) of the parameterised policy (πθ) is the expected average return (R) 

under trajectory (τ). The trajectory is defined by parameterised policy.  

The aim is to optimise the policy through gradient ascent by numerically defining the gradient 

of policy performance (∇θJ(πθ)) also called the policy gradient (Eq. 3-11). A full derivation of the 

policy gradient can be shown in (Achiam, 2020) however the policy gradient can be redefined 

as (Eq. 3-12). 

∇𝜃𝐽(𝜋𝜃) = 𝔼[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|Τ
𝑡=0 𝑠𝑡)𝑅(𝜏)]                                                                                  ( 3-12 ) 

Where the policy gradient is the expected sum of returns (R(τ)) multiplied by the gradient of 

the log of the parameterise policy (∇θ log (πθ (at|st))) for timesteps (t) in episode length (T). 

This is the simplest policy gradient; there are different variations of the policy gradient 

definition like the Expected Grad-Log-Prob Lemma (EGLP Lemma) (Schulman et al., 2015; 

Achiam, 2020). 

Policy-based and value-based RL coincide at the actor-critic algorithm (A2C) where the actor 

performs and action using policy-based RL, and the critic evaluates the resulting reward using a 

value function. The critic influences the actor using temporal difference error (TD error) to 

improve the algorithm’s performance. 

Other RL Algorithm Terminology 

To fully comprehend the algorithms covered in the next section, it is necessary to explain the 

parlance and methods that form those algorithms. One way to describe RL algorithms is 

whether the agent is provided with a state transition function (model-based) or having to learn 

solely from experience through trial and error (model-free). Agents that have access to a 

model make use of sample efficiency and display a heightened ability of foresight but can 

often underperform when applied in real-world applications due to discrepancies between the 

model used for training and the ground-truth model.  Model free methods can be 

implemented and easily tuned to real world application (Li, 2017). Algorithms can also be 

trained on sequentially generated data (online mode) or on a pre-set training batch (offline 

mode).  
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A commonly used label for RL methods is whether it is on-policy or off-policy. On policy 

methods evaluate or improve the behavioural policy of the current action-value pair of the 

current policy (e.g. SARSA) whilst off-policy methods explore the best value policy without 

necessarily following the current behavioural policy; they are also called optimal methods (e.g. 

Q-learning) (Arulkumaran et al., 2017; Li, 2017). The value functions used to achieve were 

highlighted previously.  

3.1.2. Challenges 
Building deep RL algorithms is a science. In this section we build on the challenges and trade-

offs underlined in the previous sections inherent in algorithm design. It is crucial to note that 

the field of RL research, much like the algorithms, has been expanded by experience followed 

by theory. In essence, some challenges were identified but not completely understood such as 

the deadly triad issue (Sutton and Barto, 2018). 

In RL algorithm design, most researchers will make use of some form of function 

approximation, bootstrapping or off-policy. Function approximation uses examples to 

generalise an entire function hence it aids with the scalability and generalisation issue that 

riddles tabular algorithms and is the main tide driving the success of deep neural networks in 

reinforcement learning (DRL). On the other hand, bootstrapping used in DP and TD fields help 

with improving the algorithm’s data efficiency, hence reducing computational loads. Finally, 

off-policy methods free our agent from target policy to explore optimality. Separately, each of 

these methods help RL researchers reach their desired benefits and design a better 

optimisation algorithms, however when combined the same methods induce instability and 

divergence – the deadly triad issue (Tsitsiklis and Van Roy, 1997; Sutton and Barto, 2018). 

Another common challenge is the ‘credit assignment problem’. This refers to the notable 

phenomena of incorrectly evaluating the credit of the action due to unclear or unforeseeable 

consequences manifesting later (Arulkumaran et al., 2017). These long-term dependencies are 

necessary to allow the agent to better comprehend the value of its action. Hence, value 

functions have been modified to incorporate the estimated subsequent rewards and they have 

been discounted to signify the dwindling nature of consequence.  

Finally, the exploration versus exploitation dilemma. This problem riddles most RL (and DRL) 

algorithms as agents tend to behave in a reward greedy manner. Since the agent’s observation 

depends on its actions and its actions depend on the reward generated; RL agents can find 

themselves in a loop around a local optimum rather than finding the global optima - 

exploitation. Ultimately, the only way to solve this is to introduce randomness to the agent’s 
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behaviour hence allowing the agent to receive new observations and possibly lead it to the 

global optima – exploration. This trade-off in agent behaviour has been navigated in many 

ways and the simplest is the use of ε-greedy exploration policy where the agent acts randomly 

with probability ε ϵ [0,1]. The value of ε decreases as time passes leading the agent to a more 

exploitative nature as it learns. For continuous control, more complex methods have been 

used to introduce randomness over time to preserve momentum (Lillicrap et al., 2016; 

Arulkumaran et al., 2017). Other methods to tackle the exploration-exploitation dilemma 

include Osband et al.’s bootstrapped DQN using experience replay memory (Osband et al., 

2016), Usuneier et al.’s exploration in policy space (Usunier et al., 2017) and upper confidence 

bounds (UCB) (Lai and Robbins, 1985; Arulkumaran et al., 2017; Pathak et al., 2017). 

These challenges are inherent in most RL problems and navigating them is a skill necessary to 

develop an effective RL algorithm. 

3.2. Deep Reinforcement Learning 
Many successes have stemmed from scaling RL using deep neural networks through function 

approximation. Deep neural networks can be used to approximate the optimal policy (π*) or 

the optimal value functions (Q*, V*, A*). In this section, we discuss the current trends and 

notable deep reinforcement learning algorithms that have progressed the field. This will help 

contextualise the current state of the research field and expose any future work.  

3.2.1. Notable Deep RL Algorithms 
The timeline and milestones that led to the creation of DRL was well illustrated in (Nguyen, 

Nguyen and Nahavandi, 2020, fig. 1) showing how trial and error learning, TD learning and 

deep neural networks came together to incentivise the first deep reinforcement learning 

algorithm – the deep Q-network (DQN). DQN was first introduced by Mnih et al. as they used 

convolutional neural networks (CNN) to feature engineer images from a series of 49 games 

(Mnih et al., 2015). It was then used to tackle MuJoCo physics problems (Duan et al., 2016) and 

three-dimensional maze problems (Beattie et al., 2016). Following the success of DQN, 

researchers have built on the existing DQN architecture to improve its performance hence 

creating new algorithms such as Double DQN (DDQN) and Duelling DQN (D-DQN). Double DQN 

minimises the effect of noise on DQN by avoiding the overestimation of Q values (Van Hasselt, 

Guez and Silver, 2016) whilst the duelling network architecture combines two streams of data 

(the value stream and advantage stream) to produce a more accurate Q function (Wang et al., 

2015).  
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Another milestone was the introduction of the Actor-Critic algorithms that combine the use of 

value functions and policy gradients to forego the trade-off of variance reduction in policy 

methods and bias introduction from value functions (Konda and Tsitsiklis, 1999; Schulman et 

al., 2015). Quickly, the DRL research community has direct their efforts to improve the AC 

methods. Schulman et al. (Schulman et al., 2015) improves the actor using generalised 

advantage estimation (GAE) to produce better variance reduction baselines. The critic is also 

improved separately using target network in (Mnih et al., 2015). Introducing deterministic 

policy gradients (DPG) in actor-critic algorithms was first observed in (Silver et al., 2014). DPGs 

allow the use of policy gradients in deterministic policies when they were initially exclusive to 

stochastic policies. This lowers the computational load as DPGs only integrate over the state 

space and can therefore tackle large action spaces using less sampling. Stochastic Value 

Gradients (SVG) are another method to apply standard gradients to stochastic policies by 

‘reparametrizing’ (Kingma and Welling, 2013; Rezende, Mohamed and Wierstra, 2014). This 

trend was first introduced in (Heess et al., 2015) and created a flexible method capable of 

being using with and without value function critics and models (Arulkumaran et al., 2017). SVG 

and DPG provide algorithmic means of improving learning efficiency in DRL. 

On the lines of learning efficiency, Google’s DeepMind lab released the Asynchronous 

Advantage Actor Critic algorithm(A3C) (Mnih et al., 2016). This advancement entails the use of 

an advantage function in an actor-critic architecture through training parallel agents 

asynchronously and aggregating their learning using a separate agent (global network). This 

method yields high accuracy and is applicable in continuous and discrete action spaces (Lapan, 

2019) hence creating a trend for asynchronous and parallel learning. An example of A3C, and 

subsequently target-driven RL, in robotic navigation was demonstrated by Zhu et al. (Zhu et al., 

2016) to find the minimum sequence of actions leading to a target location using RGB images 

as an input. 

3.2.2. Current Trends 
The field of DRL is growing exponentially as researchers ground their understanding of 

reinforcement learning in human psychology. Using methods that parallel our natural learning 

trends has helped develop DRL methods further leading to fields such as hierarchical 

reinforcement learning (HRL) and inverse reinforcement learning (IRL). Moreover, there is 

more effort on improving algorithms by modelling the reward as a distribution of values similar 

to our brain’s reward system (Dabney et al., 2020). Multi agent reinforcement learning (MARL) 

models the real-world nature of multiple agents interacting with the same environment and 

reward probability. In this section of the review, we focus on current trends in the field of deep 
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reinforcement learning. We explain the recent advancements and highlight notable work and 

challenges that are being addressed. 

Hierarchical Reinforcement Learning 

As the field of DRL grows, researchers have learnt how to include biases into the algorithm’s 

learning experience. Hierarchical reinforcement learning (HRL) is a field of DRL dedicated to 

introducing inductive biases by factorising the final policy into several levels through state or 

temporal abstractions. This approach allows algorithms to tackle higher and lower level goals 

simultaneously by allowing top-level policies to focus on the main goal and sub-policies to 

focus on fine control (Tessler et al., 2017; Vezhnevets et al., 2017). This is how HRL attempts to 

achieve compositionality; achieving new representations by the combination of primitives 

(Hutsebaut-Buysse, Mets and Latré, 2022). The challenges faced in HRL stem from the 

selection of sub-behaviours or policies and how to efficiently learn state abstractions. 

Inverse Reinforcement Learning 

As humans, we can often learn from others’ mistakes and successes. Similarly, researchers 

have developed methods to bootstrap the learning process using trajectories from other 

controllers. This is known as imitation learning (also known as behavioural cloning). The 

success of behavioural cloning lead to the success of an autonomous car using ALVINN in 

(Pomerleau, 1989).The main challenge with imitation learning is its susceptibility to 

uncertainties. Imitation learning’s inability to adapt can lead the agent down a destructive 

trajectory hence why it is paired with reinforcement learning. Using RL, the policy can fine-

tune whist imitation learning guides the general learning leading to faster convergence 

properties and better stability properties. Introducing behavioural imitation to DRL births the 

field of inverse reinforcement learning (IRL). IRL applies behavioural cloning by relying on 

provided trajectories for the desired solution to approximate the reward function (Ng and 

Russell, 2000). Intuitively, the motivation behind using IRL usually includes learning behaviour 

from experts, assisting humans and learning about systems (Adams, Cody and Beling, 2022). 

Application of IRL are mostly concerned with teaching robots to imitate experts (Adams, Cody 

and Beling, 2022). Notable work and algorithms in this field include (Ziebart and Fox, 2010; 

Finn, Levine and Abbeel, 2016; Ho and Ermon, 2016; Levine and Van De Panne, 2018; Paine et 

al., 2018; Peng et al., 2018). 

Distributional Reinforcement Learning 

Distributional RL grounds itself in our natural brain reward system (Dabney et al., 2020). Like 

our natural dopamine system, DRL displays returns as a value probability distribution learned 
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from interacting with the environment. This parallel between distributional RL and our brains 

opens up opportunities for collaboration between AI and neuroscience (Lowet et al., 2020). 

This new method of value distribution has shown its usefulness in improving learning speed 

and stability. The original distributional reinforcement learning algorithm is the categorical 

DQN (C51) (Bellemare, Dabney and Munos, 2017) where using value distributions the authors 

have surpassed most gains on the Atari2600 environment thus beating the benchmark DQN 

and DDQN. Other algorithms include quantile regression DQN (QR-DQN) which uses quantile 

regression to minimise the Wasserstein metric and improve greatly on the previous C51 in the 

Atari 2600 (Dabney et al., 2017). Implicit quantile regression (IQR) and fully parameterised 

quantile function (FQF) are the latest algorithms in distributional RL and they build further on 

the foundations of QR-DQN (Dabney et al., 2018; Yang et al., 2019). 

Multi Agent Reinforcement Learning 

With the rising complexity of real-world systems, deep reinforcement learning algorithms 

often play catch-up to be able to process and scale their models. Most of the methods devised 

for DRL algorithms aim to simplify complex environments and feature extraction. On the other 

hand, multi agent deep RL introduces complexity in its algorithms by introducing several 

agents in the algorithms that simultaneously interact with the environment. This is 

representatives of having multiple employees working as a team to carry out a desired goal (or 

policy) on the same system. The complexity of the algorithms brings forth multiple challenges 

that are currently the focus of the research community with the promise to solve more 

complex environments and real-world problems. There have been different approaches to 

tackle MADRL including sending signals to the agents, having bidirectional channels between 

the agents and an all-to-all channel (Arulkumaran et al., 2017). Major challenges in the field 

stem from non-stationarity, partial observability, complexity in training schemes, application in 

continuous action spaces and transfer learning (Nguyen, Nguyen and Nahavandi, 2020). 

Previous reviews and surveys include (Nguyen, Nguyen and Nahavandi, 2020) that provides a 

review of MADRL challenges, solutions, applications and perspectives; (Buşoniu, Babuška and 

De Schutter, 2008) evaluates stability and a taxonomy of MADRL algorithms; (Bloembergen et 

al., 2015) surveys dynamical models devised for multi agent systems; (Hernandez-Leal, Kartal 

and Taylor, 2019) bridges the gap between DRL and MADRL including benchmarks for MADRL. 

Other notable reviews include (Da Silva, Taylor and Costa, 2018; Hernandez-Leal, Kartal and 

Taylor, 2018). 
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3.3. Urban Water Systems 
Urban water systems are a collection of complex infrastructure and processes that supply, 

treat, transport, and manage water and wastewater within urban environments. These 

systems are crucial for managing the supply of clean drinking water as well as treating 

wastewater and controlling storm water. Hence, they are paramount for the sustainability and 

well-being of cities. Effective management of UWS through sustainable practice aims to ensure 

a resilient supply of clean water despite climate change and seasonality. It should also 

minimise water loss through leakage and energy consumption through inefficient water supply 

and distribution. The key processes in UWS can be split into four major systems which are raw 

water treatment plants, water distribution networks, wastewater treatment plants, and 

stormwater systems (Loubet et al., 2014; Etikala, Madhav and Somagouni, 2022) . Some of the 

processes involved in each function are displayed below in Figure 3-4. 

 

Figure 3-4 Urban Water Systems 

Urban areas often obtain their water from several resources such as rivers, lakes, 

groundwater, and desalination plants which are managed by raw water treatment plants. Raw 
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water goes through several treatment processes to remove impurities, and contaminants. The 

main treatment methods used in raw water treatment plants include screening through mesh 

filters or screens, coagulation, flocculation, sedimentation, filtration, disinfection, corrosion 

control, pH adjustment, fluoridation, and quality monitoring (Benjamin, 2014; Jiang, 2015; 

Teodosiu et al., 2018; Lipps, Braun-Howland and Baxter, 2022).  

Once treated, clean water is distributed from the plants to the customers through a network of 

pipes, valves, pumps, and reservoirs. This process requires advanced pressure and asset 

management to minimise leakage and contamination. Due to the varying elevations, demand 

and climate change, the distribution of water increases in complexity and leakage has become 

a natural phenomenon in water distribution networks (Xu et al., 2014; Neal Andrew Barton et 

al., 2019).  

Similar to raw water treatment, wastewater treatment plants are concerned with treating 

wastewater collected through a sewer pipeline network. Treatments include a variety of 

physical and chemical processes. Physical methods of screening, grit removal, sedimentation, 

and filtration remove heavier contaminants and large contaminants. Water is then treated 

biologically in the secondary treatment by using microorganisms to break down organic matter 

in wastewater (Hussain et al., 2021). Coagulant and flocculants help remove fine particles and 

dissolved contaminants during the tertiary advanced chemical treatment. A final step of 

disinfection could use chemicals such as chlorine and UV to remove harmful pathogens 

(Kentish and Stevens, 2001; Crini and Lichtfouse, 2019).  

During detrimental events such as floods and storms, stormwater management controls the 

impact on the environment and infrastructure (Ahiablame and Shakya, 2016; Aryal et al., 2016; 

Jefferson et al., 2017). Stormwater management deal with several high-level objectives such as 

flood control, water quality monitoring, erosion/sediment control, groundwater recharge 

(Jotte, Raspati and Azrague, 2017). 

3.3.1. Challenges and Opportunities in Urban Water Systems 
UWS include a wide range of processes that are riddled with unique dependencies and 

impacting factors. However, the preservation and use of water is a holistic process that 

incorporates the wider ecosystem, climate, and wildlife as much as human use. 

Understandably, UWS share challenges that stem from external factors and opportunities to 

adapt deep reinforcement learning techniques. In this section, common current challenges 

that plague UWS processes are discussed and how DRL can provide innovative solutions. This is 
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followed by challenges that researchers might encounter when applying DRL algorithms to 

UWS. 

High trends of urbanisation globally increase the stress and demand on UWS with 60% of the 

world's population expected to live in urban areas by 2030 (UN-Water, 2012). This rise in 

demands causes heavier loads and more uncertainty throughout all processes in UWS due to 

increased supply and network expansions (Sharma et al., 2010). Navigating these uncertainties 

can be challenging for meta-heuristic decision making algorithms (Maier et al., 2014) in 

comparison to DRL algorithms that learn from experience and are able to act in real time (Fu et 

al., 2022). DRL provides a method for managing uncertainties that outperforms traditional 

decision-making algorithms and can learn from experience which allows it to adapt to the rise 

in urbanisation.  

Another challenge that plagues UWS is the energy consumption and carbon emissions 

associated with operating water systems (Nair et al., 2014; Xu et al., 2014). It was estimated 

that 1-18% of all energy consumed in urban areas is due to UWS (Olsson, 2012) which in return 

produces a lot of carbon emissions. The negative effects of high energy consumption lie 

beyond the financial impacts as it promotes climate change and global warming. The circular 

effect of carbon emissions, water scarcity and energy consumption is displayed in the water-

energy-green house nexus (Nair et al., 2014, fig. 1). DRL has had a proven record of improving 

energy management within the water systems (Hernández-Del-olmo et al., 2016; Hernández-

del-Olmo et al., 2018) and in system efficiency (Kılkış et al., 2023).  

UWS often deal with a heterogeneously aging infrastructure that add to the complexity of 

asset health management. The aging pipes, pumps, valves, and other system components can 

lead to high non-revenue water and effect the systems’ overall resilience. Hence why, it is 

essential to provide decision making algorithms that can deal with high-level dependencies 

and complexities. A challenge that manifests with decision making algorithms is the high 

computational costs associated with this complexity thus why deploying DRL agents can 

benefit UWS as they rely on function approximators to lower the computational load (Sutton 

and Barto, 2018). Furthermore, asset management for UWS operations can be achieved by 

leveraging DRL for optimal design, strategic planning and predictive maintenance (Fu et al., 

2022). This area of research requires more experimentation and social proof despite its clear 

advantages. 

In most pipeline infrastructure, it is necessary to quantify leakage and asset health. Managing 

leakage effectively is an ongoing battle that effects UWS especially water distribution systems. 
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The use of DRL for leakage management is an unrealised opportunity but has been 

recommended by reviews and surveys (Mosetlhe et al., 2020; Fu et al., 2022). The use of a 

tabular Q-learning method for leakage reduction using pressure management in water 

distribution networks was tested in (Negm, Ma and Aggidis, 2023b) and whilst the results were 

positive, it was clear that using DRL would enhance it further and overcome the curse of 

dimensionality.  

3.3.2. Challenges of DRL in UWS  
Building DRL algorithms is a science. In this section we build on the challenges and trade-offs 

underlined in the previous sections inherent in algorithm design. It is crucial to note that the 

field of RL research, much like the algorithms, has been expanded by experience followed by 

theory. In essence, some challenges were identified but not completely understood such as 

the deadly triad issue (Sutton and Barto, 2018). 

In DRL algorithm design, most researchers will make use of some form of function 

approximation, bootstrapping or off-policy. Function approximation uses examples to 

generalise an entire function hence it aids with the scalability and generalisation issue that 

riddles tabular algorithms and is the main tide driving the success of deep neural networks in 

reinforcement learning (DRL). On the other hand, bootstrapping used in DP and TD fields help 

with improving the algorithm’s data efficiency, hence reducing computational loads. Finally, 

off-policy methods free our agent from target policy to explore optimality. Separately, each of 

these methods help RL researchers reach their desired benefits and design a better 

optimisation algorithms, however when combined the same methods induce instability and 

divergence – the deadly triad issue (Tsitsiklis and Van Roy, 1997; Sutton and Barto, 2018). This 

instability can be detrimental when controlling urban water management system and could 

result in undesirable situation. Ensuring stability and resilience should be a primary goal of DRL 

design. 

Another common challenge is the ‘credit assignment problem’. This refers to the notable 

phenomena of incorrectly evaluating the credit of the action due to unclear or unforeseeable 

consequences manifesting later (Arulkumaran et al., 2017). These long-term dependencies are 

necessary to allow the agent to better comprehend the value of its action. Hence, value 

functions have been modified to incorporate the estimated subsequent rewards and they have 

been discounted to signify the dwindling nature of consequence. UWS applications tend to be 

connected through both short-term and long-term dependencies therefore it is importance to 

include these consequences in the DRL algorithm’s learning strategy. 
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Finally, the exploration versus exploitation dilemma. This problem riddles most RL (and DRL) 

algorithms as agents tend to behave in a reward greedy manner. Since the agent’s observation 

depends on its actions and its actions depend on the reward generated; RL agents can find 

themselves in a loop around a local optimum rather than finding the global optima - 

exploitation. Ultimately, the only way to solve this is to introduce randomness to the agent’s 

behaviour hence allowing the agent to receive new observations and possibly lead it to the 

global optima – exploration. This trade-off in agent behaviour has been navigated in many 

ways and the simplest is the use of ε-greedy exploration policy where the agent acts randomly 

with probability ε ϵ [0,1]. The value of ε decreases as time passes leading the agent to a more 

exploitative nature as it learns. For continuous control, more complex methods have been 

used to introduce randomness over time to preserve momentum (Lillicrap et al., 2016; 

Arulkumaran et al., 2017). Other methods to tackle the exploration-exploitation dilemma 

include Osband et al.’s bootstrapped DQN using experience replay memory (Osband et al., 

2016), Usuneier et al.’s exploration in policy space (Usunier et al., 2017) and upper confidence 

bounds (UCB) (Lai and Robbins, 1985; Arulkumaran et al., 2017; Pathak et al., 2017). Managing 

the exploration-exploitation trade-off should be bespoke to each UWS application to ensure 

that agents don’t converge at sub-optimal policies. 

These challenges are inherent in most RL problems and navigating them is a skill necessary to 

develop an effective DRL algorithm.  

3.4. DRL Research in Urban Water Systems 
In essence, there are many parameters to consider when selecting a DRL algorithm but 

through careful consideration of selecting the correct DRL components and algorithms. 

Depending on the optimisation objective, the agent’s nature (pump, valve) and requirements 

(nodal pressures, head measurements, pump speed) would vary. In a critical review of deep 

learning in the water industry Fu et al. mentioned the applicability of DRL in water distribution 

networks (WDN) and urban wastewater systems (Fu et al., 2022). In (Croll et al., 2023), the 

applications of reinforcement learning techniques in wastewater treatment were reviewed 

with a few studies utilising DRL methods. Otherwise, there are no mentions or reviews 

published on DRL algorithms in the water industry. There is limited literature on the 

application of DRL in UWS where most research relate to stormwater systems, water 

distribution networks and a few publications in wastewater systems. This shows a massive gap 

in the research field and an exciting journey for researchers in UWS at the cusp of realisation. 

In this section we will review the available literature on deep reinforcement learning in the 

water industry. 
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3.4.1. DRL in Water Distribution 
In  article (Hajgató, Paál and Gyires-Tóth, 2020), the authors use a Duelling Deep Q Network 

(D-DQN) to find the optimal pump speeds for hydraulic efficiency in randomly generated 

demands. The algorithm minimises the inflow and outflow of tanks whilst keeping heads 

within an acceptable range in all the nodes. The reward is calculated by evaluating the 

consumer satisfaction as the number of problematic nodes divided by the number of all nodes; 

the efficiency of the pumps as the product of standalone pumps divided by the product of 

theoretical peak efficiencies; the feed ratio by comparing the ratio of pumps supplying the 

water to the tanks and reservoirs supply. When compared to a test set of Nelder-Mead, 

Differential Evolution (DE), Particle Swarm Optimisation (PSO), Fixed-Step Size Random Search 

(FSSRS) and One-shot Random Trial; the agent performed at a comparable level to the 

differential evolution algorithm and much better than the rest of the test set. All the 

algorithms were tested on a small (Anytown) and large (D-town) WDN model. When using the 

one-shot random trial as a reference solution as a sub optimal policy; the agent reaches a 

better solution and moves off policy to overperform the DE algorithm. This technique relies 

entirely on live measurement data and can predict the best action in real-time making it the 

most suitable controller for real life application. 

(Hu et al., 2023) conducted a thorough experiment where they optimised the scheduling of 

fixed speed pumps to minimise the electric cost of the pumps and tank level variations whilst 

adhering to sensible hydraulic constraints using Proximal Policy Optimisation (PPO) and 

Exploration enhanced Proximal Policy Optimisation (E-PPO) (Hu et al., 2023). Both DRL 

algorithms are policy-driven methods set out to find the best policy to achieve the highest 

rewards. They conducted three experiments that introduced three increasing levels of 

uncertainty to the consumer demand patterns using 0.3, 0.6 and 0.9 multiplier respectively on 

the Net3 test networks model. The results were compared with metaheuristics including 

genetic algorithms (GA), PSO and DE. GA converged after 100 epochs and were considered the 

optimal solutions (Hu et al., 2023). They were followed in performance E-PPO followed by PPO, 

DE and PSO. The exploration enhanced policy saves approximately 6.10% of the energy cost 

with respect to PPO. Unlike the rest of the metaheuristic methods that require to be trained 

before each scheduling case; the DRL methods (PPO, E-PPO) can just call their trained models 

to act in a fraction of a second (0.4s) (Hu et al., 2023). 

(Xu et al., 2021) tackles the pump scheduling optimisation problem in WDNs through 

combining knowledge learning and deep reinforcement learning in a knowledge assisted 

proximal policy optimisation learning (KA-PPO) (Xu et al., 2021). KA-RL evaluates the state 
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using historical nodal pressure data and a reward function. Pressure management objectives 

were placed to maintain junction heads within a specific range, minimise water age, and 

increase pump efficiency. The proposed algorithm was tested on the benchmark Anytown 

network to manage the performance of two pumps in the pump station. The results show that 

the algorithm performs favourably in comparison to the Nelder-Mead method and the DDQN 

algorithm used in (Hajgató, Paál and Gyires-Tóth, 2020; Xu et al., 2021). Future work can 

improve the reward formulation process by including energy prices. The problem setup can 

also be modified to consider a continuous action space and long period accumulated return. 

The use of emulators and parallel computing can also minimise the training time.  

In (Hasan et al., 2019), the authors offer four novel contributions to the fields of dynamic 

multiple-objective deep reinforcement learning and water quality resilience applications. 

Based on the deep-sea treasure (DST) test bed, the authors develop a new test bed to fit the 

RL settings hence creating the first test bed accommodating for dynamic multi-objective DRL 

(DMODRL). They also devise a new for multi-objective optimisation using DRL and the first 

deployment of objective relation mapping (ORM) to construct the govern policy (Hasan et al., 

2019). The last contribution is an expert system to evaluate the water quality resilience (WQR) 

in Sao Paulo, Brazil. The proposed parity-Q deep Q network (PQDQN) algorithm proposed was 

tested in the two DST environments and the WQR model. In all three test beds, the PQDQN 

algorithm has outperformed the state-of-the-art multi-policy DRL algorithms which were 

multi-policy DQN (MP-DQN), multi-objective monte carlo tree search (MO-MCTS) and multi-

pareto Q learning (MPQ). In all three test beds, the performance of the algorithms were 

assessed using the evaluation matrices generational distance measure (GD), inverted 

generational distance (IGD) and hypervolume (HV) (Hasan et al., 2019). PQDQN managed 

priorities best using the ORM aiding its impressive performance and defeating the other multi-

policy algorithms (MP-DQN, MO-MCTS, MPQ) (Hasan et al., 2019). This work can benefit by 

experimenting with multi-agent DRL and integrating real-world scenarios to the WQR model. 

Parallel computing and GPU processors can also reduce training time. Hyperparameter 

optimisation may even improve the performance of the PQDQN algorithm further.  

In a broader look on water systems, (Fan, Zhang and Yu, 2022) tackles asset management of 

water distribution networks post-earthquake. The problem setup involves four models that 

assess damages incurred by the earthquake, recover the water distribution network (WDN) 

using the optimisation algorithms, measure the WDN hydraulic performance using the 

performance degree (PDW) at each timestep, quantify the overall WDN resilience using the 

system resilience index (SRI). The chronological and iterative process between these models is 
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clearly displayed in (Fan, Zhang and Yu, 2022, fig. 2). A graph convolutional network (GCN) was 

deployed as the function approximator for a DQN algorithm hence creating GCN-DQN. This 

selection was a great step towards better representation for water distribution networks since 

the graphical nature of the data requires a similar deep neural network architecture. Other 

strategies used for comparison included two greed search algorithms (static importance based 

and dynamic importance based), genetic algorithm (GA) and diameter-based prioritisation 

method. All five strategies were tested under three identical earthquake scenarios with 

different magnitudes. In all three scenarios the GCN-DRL model outperforms the other 

strategies by following repairing sequences that lead to higher SRI scores (Fan, Zhang and Yu, 

2022). The importance-based methods cam second and third whilst the diameter-based 

prioritisation came last. In order to minimise the training computation time, the authors have 

used transfer learning to use the previous GCN weights on an old damage scenario to initialise 

the GCN weights for the new scenario. This reduced the computational load significantly and 

proved the scalability of the GCN-DRL model across all scenarios. Accommodating more 

sophisticated assumptions can be easily implemented to improve the GCN-DQN model’s 

reliability and improve the problem setup. Applying this work on different test networks can 

further prove its generality and encourage more development of asset management through 

deep reinforcement learning. 

3.4.2. DRL in Stormwater Systems 
Mullapudi et al. provide a first look on the application of deep reinforcement learning for real 

time control in storm water systems  (Mullapudi et al., 2020). The authors test a simple DQN 

algorithm on the urban watershed in Ann Arbor as a benchmark test network. The problem 

setup involved agents taking actions to control valves status; water levels and outflows as 

states and an assumption of uniform rainfall and negligible base flow (Mullapudi et al., 2020). 

The authors set out to test the stability of DRL algorithms in controlling storm water 

management models (SWMM) through controlling a singular basin and controlling multiple 

basins. Their research highlighted DRL algorithms’ known sensitivity to reward formulation and 

deep neural network architecture. Even though the agent could have benefitted from a longer 

learning phase, the DRL proved useful in managing the single-basin SWMM scenario. Due to 

the increase in state and action space, controlling multiple basins was more challenging. The 

agent behaved favourably in comparison to uncontrolled SWMMs in both scenarios but were 

outperformed by the equal-filling algorithm. The authors remain determined that RL-based 

controllers need to be explored further and applied to SWMM in hopes of reaching a stable 

real-time controller. The results provided in this paper could be used as a starting point to 
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compare more capable DRL algorithms A3C and advanced variations of DQN. Also, a more 

systematic method for reward formulation and neural network hyperparameter optimisation 

would greatly improve the scalability and stability of the model.  

A common issue with real-time control using DRL is concerns of the reliability and uncertainty 

of its fluctuating actions in high-risk real-world cases. Tian et al.’s paper tackles this issue 

through a novel methodology called ‘voting’ (Tian, Liao, Zhi, et al., 2022). Voting compares 

actions from five different DRL algorithms to select the safest and most rewardable action 

hence minimising the risk associated with DRL control. If none of the DRL agents provide a 

viable action, a backup user-defined rule-based action is executed. The methodology is used to 

minimise combined sewer overflow (CSO) and flooding in urban drainage system. The DRL 

algorithms used in this study are DQN, DDQN, PPO1, PPO2 and A2C. Voting uses a novel 

independent security system to evaluate whether the actions meet the user-defined safety 

requirements. All five DRL algorithms and voting algorithms are compared to a GA algorithm 

that was used as an upper bound performance reference by subjecting them to eight scenarios 

under different rainfall patterns. The results prove that voting avoids harmful actions to 

minimise risk hence improving the reliability of the real-time control. Figure 16 highlights that 

voting often draws its actions from PPO1 and never needed to use the backup action in all 

eight scenarios (Tian, Liao, Zhi, et al., 2022, fig. 16). All DRL algorithms have performed well in 

this sequential problem and are therefore suitable candidates for CSO and flooding mitigation. 

Concerns of long training times and computational loads can be mitigated with parallel 

computing and an emulator for the stormwater model. The DRL algorithms can benefit from 

hyperparameter optimisation to improve the results further. Future work can also attempt 

deploying the voting algorithm on a SCADA system or online monitoring system to uncover 

uncertainties from real world applications.  

It is worth mentioning that the authors published a different paper where they developed an 

emulator for the stormwater model to relieve the high computational load associated with 

training the DRL agents (Tian, Liao, Zhang, et al., 2022). This emulator succeeded in decreasing 

the training time by 9 hours and 57 minutes hence improving data efficiency when compared 

to the regular RL-stormwater model approach. 

Like the previous article, (Bowes et al., 2021) leverages the power of DRL for flood mitigation. 

In this experiment, the authors developed a DDPG algorithm to create control policies that 

mitigate flood risks in the coastal city of Norfolk, Virginia. The DRL agent manages to balance 

flooding throughout the system and follow the control objectives of maintaining target pond 
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levels and mitigating flood through controlling valves in the stormwater management model. 

The performance of DDPG as a DRL method was compared to rule-based control strategy, 

model predictive control and a passive system. In summary, the DDPG algorithm boasted a 

32% reduction in flooding in comparison to the passive system and a 19% reduction with 

respect to rule-based control. The model predictive control strategy deployed an online 

genetic algorithm optimisation as in (Sadler et al., 2020) to produce similar results to the DDPG 

algorithms (3% reduction in flood compared to DDPG). The model predictive control was too 

computationally expensive to run on the complete dataset whilst RL provided an 88x speed up 

in the creation of control policy (Bowes et al., 2021). This research highlights the power of DRL 

in real-time control of stormwater systems and its ability to produce impressive results with a 

lower computational load. Further research should aim to recreate these results on real-world 

systems through RL controllers. Combining the different real-time control methods as decision 

support tools should be investigated to enhance stormwater systems. 

3.4.3. DRL in Wastewater Treatment 
Wastewater treatment has initially experimented with RL methods to manage the oxidation-

reduction potential and pH levels of wastewater using Model Free Linear Control (MFLC-MSA) 

(Syafiie et al., 2011), improve the cost of N-ammonia removal using tabular Q-learning 

(Hernández-Del-olmo et al., 2016), improving energy and environmental efficiency of N-

ammonia removal using policy iteration (Hernández-del-Olmo et al., 2018), and optimising 

hydraulic retention through aerobic and anaerobic processes for biological phosphorous 

removal using Q-learning (Pang et al., 2019). In addition, actor critic RL methods are utilised for 

pH adjustment for electroplating industry wastewater in a continuous action space (Alves 

Goulart and Dutra Pereira, 2020). This RL method was mimicked in (Yang et al., 2022) where 

the authors utilise an actor critic RL method to track the desired dissolved oxygen set points in 

a wastewater treatment plant (WWTP). A more detailed review of RL application in WWTP can 

be found at (Croll et al., 2023). Following the successes of DRL algorithms and its growing 

popularity, more research has deployed DRL methods to solve issues in WWTPs.  

The only use of value-based DRL algorithm in wastewater treatment is present in (Nam et al., 

2020). The article carries out an experiment involving both RL (Q, SARSA) algorithms and DRL 

(DQN, deep-SARSA) to reduce the aeration energy consumption without decreasing the 

effluent quality index. These factors were estimated using the activated sludge model soluble 

product (ASM-SMP) named benchmark simulation model 1 (BSM 1) developed by (Alex et al., 

2018). The DQN model largely outperformed the other methods as it develops a trajectory 

that simultaneously improves the economic benefits by 36.53% and the environmental 
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efficiency by 0.23%. The RL methods deployed fail to handle the complexity and caused 

decreases in energy savings and environmental efficiency. Further work recommended 

includes the experimentation with multi-agent systems to control environmental and 

economic benefits whilst minimising risks from membrane fouling (Nam et al., 2020). The 

authors did not discuss hyperparameter optimisation which could further improve their 

current results. In addition, the use of policy gradient methods can provide insights on the 

difference in policy gradient and value driven DRL in performance.  

In (Panjapornpon et al., 2022), the author leverage the hybrid properties of multiple DDPG 

agents as an actor critic method. This study is more focused on developing a MADRL for pH 

control and tank level control by simultaneously managing the flow rates of the influent 

stream and neutralisation stream (Panjapornpon et al., 2022) in a continuous stirred tank 

reactor. The authors use the grid search methods for hyperparameter tuning of three 

performance indexes. The DDPG uses a gated recurrent unit and rectified linear units for the 

actor and critic networks as shown in figures 6 & 7 (Panjapornpon et al., 2022, figs 6 & 7). The 

multi agent DDPG algorithm performed favourably in comparison to the proportional-integral 

controller with controlling efficiency with better performance indexes and less oscillations 

(Panjapornpon et al., 2022). This paper highlights the benefits of using DRL to optimise control 

performance. Deploying the RL controllers using programmable logical controllers on real 

WWTPs can provide social proof.  

MADRL is utilised in (Chen et al., 2021) to control dissolved oxygen set points and chemical 

dosage in WWTP. In this article, the authors use a multiple agent DDPG algorithm to lower 

environmental impacts, cost and energy consumption using a life cycle driven reward function. 

The life cycle assessment driven strategy has outperformed cost oriented and effluent quality 

optimisation in eliminating environment impacts. The use of multiple agent DDPG has 

provided good results however the study lacks comparisons with other optimisation 

algorithms which should be investigated in the future. MADRL should enable better navigation 

in highly complex environments therefore it would be great to validate this novel algorithm 

with field data.  

A statistical learning based PPO algorithm is used to develop a predictive control strategy that 

minimises energy consumption in a wastewater pumping station in (Filipe et al., 2019). The 

model free method decreases electrical consumption by 16.7% and tank level violations by 

97% in comparison to the current operating conditions of the pumping station based in a 

WWTP in Fábrica da Água de Alcântara, Portugal. The authors also compare the results of 
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using wastewater intake rate forecasts to improve the PPO algorithm’s results. Indeed the 

forecasts help improve the results of the algorithm with cumulative energy consumption 

dropping from 459MWh-469MWh to 340MWh-348MWh (Filipe et al., 2019). Bayesian 

optimisation was also utilised to optimise the forecasting hyperparameters. It is important to 

compare these results to other model predictive control methods used in WWTP pumping 

stations and other optimisation approaches to highlight the DRL algorithm’s performance with 

respect to known benchmarks. It will be beneficial to recreate the results using WWTP 

benchmark models and validate the results in real-world applications. 

3.4.4. DRL in Raw Water Treatment 
There haven’t been many papers to review relating to the application of DRL to the supply and 

treatment of raw water. A related paper discusses the use of DRL as a smart planning agent for 

off-grid camp water infrastructure (Makropoulos and Bouziotas, 2023) therefore it is not an 

urban water system. DQN, PPO and multi-armed bandits were tested using an urban water 

optioneering tool (UWOT). The DRL agents are tasked with using an array of different supply 

technologies with relevant costs and a set of demand pattern for potable and non-potable 

water to explore conditions of deployment in the off-grid system. This paper’s ability to train 

and test DRL agents in strategic planning paves the way for strategic planning opportunities in 

UWS as well. 

The only raw water supply application can be found in (Z. Li et al., 2023) where the researchers 

apply proximal policy optimisation (PPO) algorithm to lower suspended sediment 

concentration (SSC) and energy consumption tested on data from the Yellow River pumping 

station in China. The DRL environment is made by combining data from the hydraulic model 

and the SSC predictive model which is formed of a multilayer perceptron model. The PPO 

algorithm is trained on the predicted SSC (predictive control) and real-world SSC data (perfect 

predictive control). Both strategies are compared to manual strategy developed by 

experienced operators. The SSC predictive model was not accurate as it deviates from the 

training and validation sets. In both the predictive and perfect predictive control, the DRL 

algorithm outperforms the manual strategy resulting in a smoother sediment profile, 

decreases the energy consumption by 8.33%, and average sand volume per unit water 

withdrawal by 37.01% and 40.575% respectively (Mullapudi et al., 2020). Furthermore, the 

authors investigate the effects of reservoir water outflows and initial reservoir water volumes. 

There is a strong relationship between reservoir initial water volume. This paper can benefit by 

comparing the DRL algorithm to other heuristic optimisation algorithms such as iterations of 

genetic algorithm (GA) or differential evolution (DE). The researchers should attempt to 
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optimise the reward function by experimenting with different weights and apply some form of 

hyperparameter optimisation to increase the accuracy of the SSC predictive model.  
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Table 3-1 Summary of reviewed articles 

System Application Algorithms Case Study Remarks Reference 

Water Distribution  Pump control DDQN D-town, Anytown DDQN controls pump speeds to minimise tank outflows and keep junction heads within an 

acceptable range. 

(Hajgató, Paál 

and Gyires-

Tóth, 2020) 

PPO, E-PPO EPANET Net3 E-PPO achieves the better performance in minimising tank level fluctuations and pump 

energy consumption. 

(Hu et al., 

2023) 

KA-PPO Anytown KA-PPO controls pump speed to keep junction heads in acceptable range, minimise water 

age and increase pump efficiency 

(Xu et al., 

2021) 

Water quality PQDQN Sao Paolo, Brazil A novel DST and WQR expert system for DMODRL. PPQN outperforms the other 

algorithms.  

(Hasan et al., 

2019) 

Asset management GCN-DQN Rancho Solano Zone III Novel problem setup to test resilience post-earthquake. Use of GCN as function 

approximator and transfer learning greatly improves results. 

(Fan, Zhang 

and Yu, 2022) 

Stormwater systems Flood control DQN, DDQN, PPO1, 

PPO2, A2C, Voting 

Sewer system in eastern 

China 

Novel method to improve the reliability of DRL algorithms (voting). Novel emulator that 

outperforms benchmarks in modelling storm water systems. 

(Tian, Liao, 

Zhi, et al., 

2022)  

DDPG Norfolk, Virginia, USA DDPG used for flood mitigation in real-time. Better results than rule-based control and 

faster than model predictive control by 88x. 

(Bowes et al., 

2021) 

Valve control DQN Ann Arbor DQN algorithm successfully controls SWMM but raises issues of reliability for real-world 

application. Serves as a starting point for further research.  

(Mullapudi et 

al., 2020) 

Wastewater 

systems 

Dissolved oxygen 

settings 

Deep SARSA, DQN BSM 1 DQN algorithm outperforms all RL and DRL methods used to simultaneously increase 

environmental efficiency and minimise energy consumption. 

(Nam et al., 

2020) 

Multi agent DDPG Jiangsu Province, China Life cycle assessment proven as a superior reward function for a multi agent DDPG in 

minimising environmental impact. 

(Chen et al., 

2021) 

Pump control PPO Fábrica da Água de 

Alcântara, Portugal 

WWTP pump control using wastewater intake rate forecasting to improve energy efficient 

and tank level violations with respect to normal operating conditions.  

(Filipe et al., 

2019) 
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pH control, tank 

level control 

Multi agent DDPG Servo-regulatory 

MATLAB test 

Multi agent DDPG used to improve real time control of pH and tank levels with respect to a 

proportional integral controller. 

(Panjapornpon 

et al., 2022) 

Raw water supply Sediment control PPO Yellow river pumping 

station 

PPO outperforms experts’ manual strategy and decreases energy consumption by 8.33%. 

Should be compared to other optimisation algorithms. 

(Z. Li et al., 

2023) 
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3.5. Future Work and Novelties 
As repeatedly displayed throughout this review, the field of deep reinforcement learning is 

growing rapidly and expanding across various real-world applications; the most recent of 

which being the water industry. This field of application is relatively new and is brimming with 

new possibilities for the real-time control. Extending this technology to the operational 

management of water systems is a field of untapped potential with many avenues to explore. 

DRL provides a method to continuously train the model to react and adjust to the environment 

it is placed in. This ability for unsupervised learning makes DRL a great tool for the 

instantaneous optimisation of any foreign network hence possibly globalising it water 

networks across the country. Researchers are therefore encouraged to experiment with simple 

DRL algorithms in different aspects of water distribution networks, stormwater systems, water 

treatment and sanitation, wastewater management such as strategic planning and asset 

management. The link between leakage and greenhouse gas emissions has been repeatedly 

mentioned in water management literature (Negm, Ma and Aggidis, 2023a) due to its 

relevance in the research community. It will be interesting to extend DRL algorithms in water 

applications to minimize carbon emissions. 

As this is the first review dedicated to deep reinforcement learning in UWS, the collation of 

this evolving field should be constant to act as a beacon to new researchers. More review 

papers will also help define the community’s direction, evaluate recent findings, and reveal 

possible novelties. Nevertheless, it is essential that researchers interested in this field spend a 

considerable amount of effort understanding the fundamentals of DRL. This will help clear any 

misconception on the applicability of the field and highlight any new advancements. Hopefully, 

this will steer academics away from repeating mistakes. More research articles with the 

purpose of formalising methods of DRL application would serve as a great bridge for aspiring 

researchers. Whilst researcher focus on testing DRL on models and software case studies, it is 

necessary to validate the use of DRL as controllers in real-world case studies. Finally, focusing 

on the application of DRL in graphical based distribution systems such as the electrical 

distribution networks will provide a clearer perspective on possible overlaps and trends that 

could benefit water distribution.   

To fuel further research, the research community should focus its efforts on benchmarking 

scalable DRL environments for testing. Early efforts to benchmark environments can save 

upcoming researchers the need to repeatedly contextualise the optimisation problem in the 

scope of DRL. These environments should be able to communicate effectively with the most 

popular hydraulic simulators (e.g., EPANET, SWMM and so on) through wrappers such as 
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PYSWMM (McDonnell et al., 2020) and EPYNET (Vitens, 2017). They should also be written in 

the necessary syntax to include benchmarked DRL libraries such as Stable Baselines, PyTorch, 

TensorFlow and so on. As this is an engineering application, researchers should aim to develop 

models that focus on reliability and scalability. Demonstrations of these algorithms acting on 

live data and ground-truth models in real-time should be the objective from an engineering 

perspective.  

3.6. Concluding Remarks 
After introducing the proposed field of DRL in the water industry, the field was contextualised 

in the realm of artificial intelligence and machine learning. The main advantages and 

properties of reinforcement learning were highlighted to explain the appeal behind the 

technology. This was followed with a gradual explanation of the formalism and mechanisms 

behind reinforcement learning and deep reinforcement learning supported with mathematical 

proof. Different computing fields were explained thoroughly to highlight the origins of 

commonly used computing methods in DRL. Furthermore, the milestones, trends and 

challenges of deep reinforcement learning were discussed to develop a better understanding 

of the current research area. The main research articles that have adapted deep reinforcement 

learning methods to solve problems in urban water systems were review thoroughly and 

summarised in Table 3-1. Finally, future works and recommendations were included to provide 

a clear view for the application of DRL in the water industry. The main conclusions from this 

section can be described as follows. 

Deep reinforcement learning improves on reinforcement learning using deep neural networks 

for function approximation. This has improved scalability and resulted in many successes 

across simulated and real applications.  

Current DRL trends tackle high dimensional complexity by mimicking human psychology and 

natural hierarchy structures.  

The field of deep reinforcement learning can benefit from better classification to help new 

researchers navigate better. 

The application of DRL in the water industry is still in its infancy yet it shows great promise to 

improve our current practices with water. Early efforts to benchmark DRL test beds and 

environments will aid the growth of this topic. 

The use of DRL as a method for pressure management in water distribution networks has not 

been tested before yet it shows promise due to DRL’s ability to tackle dynamic scenarios in 
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other UWS applications. We believe that applying DRL as pressure management strategy could 

bring us closer to real-time leakage prevention and increase the resilience of our WDNs.  
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4. Water Network – Deep Reinforcement Learning Ecosystem 

The water distribution network – deep reinforcement learning (WDN-DRL) ecosystem is the 

name given to our data architecture used to simulate real and modelled leakage scenarios 

through a closed-loop system between the hydraulic solver and the optimisation algorithms. 

Establishing the tools necessary to set this architecture and defining the parameters of the 

leakage scenarios were essential predecessors to developing an effective ecosystem. Hence 

why, the research discusses the design and build choices necessary for the development of this 

WDN-DRL ecosystem. 

4.1. The Leakage Problem 

The leakage problem is a well-researched issue that plagues most water distribution networks 

and appears in two general forms. Background leakage is the term given to small leak events 

that lie under the level of detection using our current technology. Their undetected nature 

makes them dangerous as they cannot be mitigated using active leakage control (ALC) 

strategies and must solely on pressure management. Despite their low magnitude, multiple 

occurrences of background leak events are registered through effective leakage assessments 

and their resulting increase in non-revenue water. They can be further proven through 

discrepancies between accurate network models and real models.  

Alternatively, burst events are a result of a noticeable failure in WDN infrastructure that is 

often easily detectable due to its repercussions on the hydraulic properties of the network. 

Hence why, burst leakage can benefit from both ALC and pressure management. These events, 

despite their severity, are often handled quickly through a dispatch of technical help and 

advanced asset management to decide whether replacing or repairing the failed infrastructure 

is the favourable option for leakage control. Therefore, pressure management of such events 

serve as a temporary yet effective contingency until the burst location is identified and 

resolved. This process of detecting, locating, and resolving burst events can vary from hours to 

months depending on the utility’s strategy which further proves the benefits of introducing 

pressure management as a contingency to minimise the financial and environmental burden of 

burst events. Advanced pressure management is achieved by ensuring two main objectives 

which are minimising leakage rates across all nodes and ensuring nodal pressure remain 

between 10m to 70m to avoid OFWAT (regulatory body) DG2 violations (OFWAT, 2004). Nodal 

pressure limits help maintain water supply to consumers without affecting asset life in 

accordance with the regulatory body OFWAT. 
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4.1.1. The Hydraulic Model 

Model Building 

Understanding leakage can only be achieved by observing the hydraulic effects of those events 

throughout the WDN through hydraulic analysis. Hydraulic models of WDN are often created 

to achieve that using software derived from electric grid systems (Walski, 2003). These models 

are assembled by layering geographical data such as elevation and network maps, intrinsic 

network data such as pipe information (diameter, length, roughness) and network 

components, operational data such as pump speeds and valve settings, customer data such as 

demand patterns to simulate the hydraulic properties of the WDN. This information was 

initially sourced from system maps however Geographical Information System (GIS) have been 

the most popular choice in recent years. GIS model links thematic layers of data together 

geographically to determine relationships between data. Therefore, it can integrate query and 

statistical analysis with geographical benefits offered by maps (ESRI, 2023). Operational data 

can be extracted from SCADA (Supervisory Control and Data Acquisition) systems from water 

utility control systems. Finally, data is also collected from Customer Information Systems (CIS) 

to measure or predict customer demand pattern. Data was gathered from test networks in the 

research community and Northumbrian Water utility to develop the hydraulic models for the 

experiments. 

Hydraulic software tools are readily available among water utilities and the research 

community, with options available for both free and commercial versions. Some hydraulic 

solvers can accommodate for different fluids with different hydraulic properties and multi-

phase flow simulations. However, this research is only concerned with modelling water (single-

phase) flow. In addition, several of the commercially available software include an in-built leak 

detection module that uses optimisation strategies to identify leaks. A summary of hydraulic 

model platforms for pressurised fluid pipelines and pipe networks can be found below in Table 

4-1.  
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Table 4-1 Hydraulic Solvers 

Hydraulic software Fluid type Leak detection module License type 

Single – phase flow 

EPANET Water Unavailable Free 

LOOP Water Unavailable Free 

CADRE flow Water Unavailable Commercial 

Pipe Flow Expert Water Unavailable Commercial 

Synergi Pipeline Simulator All fluids Available Commercial 

InfoWorks WS Water Available Commercial 

WaterGEMS Water Available Commercial 

 

For the purpose of this research, it was necessary to use the benchmarked hydraulic solver -

EPANET- as it is widely used in both research and industry making it a suitable option. In 

addition, the availability of application programming interfaces (APIs) between EPANET and 

python aids in the communication between the bespoke environment and the EPANET 

software. 

Introducing Leak Events 

As mentioned in leakage management literature, leakage events are often described in terms 

of burst events and background leakage where background leakage is the name coined for 

leakage events lie under the detectable range. In the UK, this is assumed to be leakage with 

flow rates less than 0.5m3/h (equates to 1.39 L/s) in the pressure of 50m and a leakage 

exponent of 0.5 (García and Cabrera, 2007). EPANET computes friction headloss using the 

Hazen-Williams formulas. It also uses the pressure dependent leakage equation (2-9) rewritten 

below, rather than the FAVAD equation to compute leakage flow rates. Essentially, EPANET 

introduces leaks by changing the emitter coefficient. 

𝑄𝑙 = 𝑘𝑃𝑛                                                                                                                                               (2-9)    

Where Ql is the leakage flow rate (L/s), P is the nodal pressure (m), k is the emitter coefficient 

(Ls-1m-0.5), and n is the leakage exponent. Rearranging, equation 2-9 can help us determine the 

threshold for emitter coefficient that model background leakage (Eq. 4-1). 

 𝑘 = 𝑄𝑙/𝑃𝑛                                                                                                                                           ( 4-1 ) 

Using the figures mentioned in (García and Cabrera, 2007), we can conclude that background 

leakage can be denoted as leaks with emitter coefficients less than 0.196 and burst events 
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have emitter coefficients greater than 0.196. This coefficient marks the boundary between 

detectable leakage (bursts) and undetectable (background) as calculated from (García and 

Cabrera, 2007) . The emitter coefficient on each node is also calculated using equation (3-2) 

below. 

𝑘 = 𝑐 × ∑ 0.5 × 𝐿𝑖𝑗
𝑀
𝑗=1                                                                                                                       ( 4-2 ) 

Where k is the emitter coefficient (Ls-1m-0.5), c is the discharge coefficient (Ls-1m-1.5), M is the 

total number of nodes in the network, and Lij
 is the length between the nodes i and j (m). The 

discharge coefficient depends on the shape and the diameter of the neighbouring pipes. 

Another important decision was the pressure exponent (n) which varies between 0.47 to 2.5 

depending on soil properties, pipeline characteristics and failure type (Walski et al., 2009). The 

original use of the equation is to estimate the laminar flow through an orifice which uses a 

leakage exponent of 0.5 or transitional flow with a leakage exponent between 0.5 and 1. 

However, laminar, and transitional flowrate must be very small and insignificant which does 

not accurately reflect practical WDN operations. Studies have proven that the range in leakage 

exponent can be explained with the pressure-induced variable leakage area (Darweesh, 2022). 

Consequently, in our experiments we adopt the assumption that n=1.18 which is widely-used 

in leakage control literature (Araujo et al., 2006; Saldarriaga and Salcedo, 2015b). The emitter 

exponent describes the overall state of the network where higher exponents refer to aging and 

less resilient assets.  Therefore, a higher emitter exponent would indicate higher leakage rates 

as seen in equation 2-9 and vice versa.  

Figure 4-1 demonstrates how these modifications in emitter coefficient and leakage exponent 

appear in the Epanet software. For the burst scenarios, an emitter coefficient between 1 Ls-1m-

Figure 4-1 Modifying emitter coefficient and leakage exponent in EPANET. 
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0.5 and 10 Ls-1m-0.5 will be selected for three randomised nodes to model the effects of failure 

events caused by large bursts whilst background leakage will be modelled using a range of 

discharge coefficients between 0 Ls-1m-0.5 and 0.194 Ls-1m-0.5 for all the nodes across the 

network to emulate a WDN with undetected background leakage.  

4.1.2. Markov Decision Process and RL Context 

Before designing the WDN-DRL ecosystem, the leakage problem must be redefined using the 

Markov decision process (MDP) formalism. Additional definitions of necessary RL terms will be 

contextualised for the leakage problem. This section will prove as a useful preamble to 

creating the central python environment.  

Markov decision processes (MDPs) is a mathematical framework that effectively models 

stochastic decision making in dynamic scenarios where the result is determined through 

sequential actions. They are the foundational theory behind reinforcement learning (and deep 

reinforcement learning). The notations used in MDP include reward, agents, actions, state, and 

environments which serve as a basis for the second-order notations of RL terms such as 

observation, episode, and policy. MDP is formed through iterations of the original Markov 

Process (MP). After introducing rewards to make Markov Reward Process (MRP), actions are 

incorporated to form the Markov Decision Property (MDP). The general Markov property 

stipulates that the next state can be determined solely from the current state, which holds all 

the relevant information of the past (Lapan, 2019). MDP includes five main components 

denoted by the five-tuple (S,A,P,R,γ) that stand for states(S), actions (A), 

probabilities/dynamics (P), reward (R) and initial state (γ) (Puterman, 1990; Desharnais et al., 

2004) and can be explained through the graphical representation in figure 4-2 below. 

 

Figure 4-2 Fundamental MDP model 

The agent is the physical component that interacts with the environment through actions, 

taking into consideration the environmental states and receiving rewards. In engineering 

applications, this tends to be an actuator. In our experiments, the agent is a garrison of 



 

84 
 

pressure reducing valves (PRVs) optimally placed in the network and/or variable speed pumps 

(VSPs). 

The action (At) denotes the steps the agent can take to influence the environment, altering the 

environment’s state and the perceived reward. These actions are often modelled after the 

actuator’s possible movement. In our experiments, each action simultaneously sends signals to 

control distinct PRV settings or both PRV settings and VSP speeds. This simultaneous control 

provides the ability to replace the function of water utilities’ control rooms and enables our 

agent to take full control of the network during each iteration. 

In the most general sense, the environment is the everything that exists outside the agent (i.e., 

the universe) however we limit the environment to the surroundings that interact with the 

agent. Our scope limits the environment to the water distribution network it is placed in. The 

WDN is modelled in EPANET to include all the necessary data from practical scenarios to 

effectively train and test the agent. The environment provides the agent with dynamic 

transition probabilities that account for the three-dimensions of initial state, target state and 

action. Using the provided action, the environment can compute the next state using its 

transition probabilities to reach a new state and the resulting reward. Due to the multiple 

functions in the environment, it is regarded as the centrepiece of DRL application.  

The state (S) is an overarching representation of the current environment. It must include the 

relevant features of the environment for the agent to make a decision. Water distribution 

networks share two main features which are the average pressure and flow in the system. In 

the context of our problem, a third figure for leakage is necessary. After each action, the state 

is updated using the environment’s transition probabilities and a new state is sent to the 

agent. 

Rewards are either dependent on the new state produced, or more commonly, on the state-

action pair. The purpose of this numerical value is to grade the agent’s behaviour, providing 

critical feedback to improve our agent. In RL theory, this reward is used to calculate the 

mathematical expectation of return, forming state value and state-action value which is 

explained in detail in section 3.1. Reward formulation is a crucial part of the optimisation 

process and requires multiple iterations to perfect. It should model our desired outcome 

perfectly and include concessions for unexpected behaviour such as the exploration-

exploitation dilemma. Hence, we calculate our reward through minimising pressure violations 

depicted in OFWAT’s DG2 (OFWAT, 2004) and minimising leakage rates. Our main objectives 

are to keep nodal pressure above 10m as recommended by DG2 violations (OFWAT, 2004) and 
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minimise leakage rates. A discount factor is also used to tune the agent’s foresight and avoid 

exploitation of the short-term reward.  This prevents convergence at local minima or excessive 

exploration which could lead to non-convergence.  

Other DRL terms are commonly used to explain the problem setup which are useful to redefine 

for the application in WDN. For instance, policy is the learnt probability distribution of actions 

across each distinct state. It commands the agent’s behaviour by suggesting the action to each 

state it encounters. Achieving the target policy is the primary goal of each DRL algorithm as it 

ensures that the agent will always act in a desirable and optimised manner. Consequently, a 

lot of emphasis has been placed on bridging the gap between the behavioural policy and target 

policy through policy-driven algorithms. Some examples include proximal policy optimisation 

and hybrid policy as well as value driven algorithms such as actor-critic algorithms (see Figure 

3-2). It is essential to note that this scenario requires the use of stochastic policy, which, unlike 

deterministic policy, chooses the following action from a probability distribution of the action 

space rather than a single unwavering action. This allows the agent to account for the 

uncertainties arising from the knock- on effect of leakage events in WDN operations, rather 

than assuming a deterministic path.  The target policy selected for this problem setup is 

advanced pressure management for leakage and violation minimisation. 

Observation is a DRL term that overlaps mostly with the definition of state in MDPs. It is the 

relevant information received by the agent to aid with forming the policy and selecting the 

consequent action. The observation influences the agent in a similar manner to the state in 

MDPs. In RL language, state is used to describe the current iteration of the environment and 

help communicate with the user whilst observations are used to guide the agent’s learning. 

The observations used for the pressure management in WDN include the changes in leakage 

rates after introducing new PRV settings and the full list of PRV and VSP settings. This will 

provide the agent with a distribution of leakage rates to be solved and its current settings. 

DRL problems are often described as episodic or non-episodic which describes the sequential 

behaviour and terminating conditions of the problem. Non-episodic problems continue to run 

until the agent reaches a terminating state (e.g., losing or winning a continuous game) whilst 

episodic problems run until a time limit or iteration limit has been reached- completing the 

episode. In the interest of managing WDNs, we treat the problem in an episodic manner that 

models a day with new setting introduced each hour thus forming 24 distinct timesteps. This 

matches the operations of an advanced WDN control room as most water utilities only modify 

PRV settings daily.  
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Each paragraph in this section, redefines the relevant MDP and RL terms to provide context to 

the pressure management problem. This supports the formation of the schematic used to 

design and build the WDN-DRL ecosystem shown in figure 4-3 below. 

 

Figure 4-3 WDN-DRL ecosystem schematic 

As mentioned, the ecosystem starts by building a justified hydraulic model of real-life networks 

through data provided from Northumbrian Water or research benchmark test networks to 

provide the necessary transitions through EPANET which acts as a hydraulic solver software. 

Our contribution is the environment and agent. The environment will be created in the next 

section by extracting the relevant data from the hydraulic model and processing it in terms of 

RL formalism such as state, observation, and reward. The environment will also relay the 

actions provided by the agent’s algorithm in terms of processed valve settings or valve and 

pump settings. The agent will be optimised using different neural network architectures to test 

varying DRL algorithms. In our research, the design and use of the agents and environment are 

the main contributions to the wider research community. 

4.2. The Environment 

An environment is the world that the agent interacts with. It provides the context and the 

dynamics in which the agent operates, and it plays a crucial role in the learning process. The 

environment also defines the state space, action space, and the rules for transitioning 

between states and receiving rewards. Designing a decent reinforcement learning 

environment must effectively challenge and test the learning capabilities of the RL agents 

while providing a meaningful and well-defined task. Therefore, the environment must involve 

several important considerations. 

The environment must have clear objectives that are specific, measurable, and relevant to the 

leakage problem at hand. The objectives must reflect the desired aims of the leakage problem. 
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This is achieved through a well-designed reward function that aligns with those aims and 

encourages the desired behaviour. The reward function must provide insightful feedback to 

the agent. The environment should be challenging enough to require learning and adaptation 

but not so difficult that the agent cannot make any progress. It must have observable states 

that provide sufficient information for the agents to make an informed decision. As such, it is 

important to choose an effective observation space. Similarly, the action space design must be 

appropriate for the task. It should allow the agent to express a variety of behaviours and 

strategies.  

In addition, limitations must be placed to avoid catastrophic failures during training. This is 

especially important in real-world applications like water distribution. Other considerations for 

real-world applications include realism where the environment should be representative of the 

problem that the RL is intended to solve. Hence, emphasis was placed on exploiting the 

hydraulic analysis capabilities of software such as EPANET. It is essential that the environment 

is reproducible and scalable so that experiments are fair and feasible to train agents using 

available resources. Creating or selecting the right environment for your RL task is a critical 

step in the RL pipeline. The reinforcement learning community has developed benchmarks for 

custom environments using the OpenAI Gym framework and DRL agents through Keras RL and 

Stable baseline libraries. Using the benchmarks should make the environment accessible and 

available to researchers and developers.  

A special consideration in designing the environment was to ensure that other optimisation 

algorithms can be run using the same environment. The environment must take into account 

the application of meta-heuristic and numerical optimisation algorithms to solve the same task 

and rewards. This will enable comparisons and conclusions to be drawn from the performance 

of DRL and non-DRL algorithms fairly.  

Reinforcement learning environments require three main functions which are init, step and 

reset. The init space initialises the environment by defining all the necessary parameters and 

spaces. This must be followed by a step function which explains how the agent introduces its 

changes in the environment, defines the reward function and returns the new environment 

data (rewards, observations and more). Finally, a reset function is used to end the episode and 

initialise the next by resetting the parameters. In this section, we will cover all the methods 

used to create our custom environment. Additional functions are usually implemented for data 

manipulation and data visualisation purposes such as the render function. Reward abstraction 
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functions were used to allow the use of external optimisation algorithms in the training and 

testing stages. The full WDN-DRL environment code is listed in Appendix A. 

4.2.1. Wrapping and Communicating with Epanet 

Building the environment in a realistic manner requires an accurate representation of the 

hydraulic rules and properties of water distribution networks. To achieve this, we utilise the 

hydraulic prowess of EPANET. Whilst the environment should be written in python, EPANET 

does not have built-in API functionality. However, there are tools that allow users to interact 

with EPANET models through its toolkit. These tools are used for tasks such as model setup, 

simulation, and data retrieval.  The EPANET Toolkit is a set of dynamic link libraries (DLLs) that 

allow the incorporation of EPANET's functionality into software applications. It allows 

programming languages such as C/C++ pr python to create custom applications that interact 

with EPANET models. There are Python wrappers available for the EPANET Toolkit, making it 

easier to use EPANET through Python scripts. The most popular wrapper is called EPYNET 

which provides a Pythonic interface for creating, analysing, and simulating EPANET models 

(Vitens, 2017). This can be shown in Figure 4-4. 

 

Figure 4-4 EPYNET wrapper communication schematic 

The EPYNET wrapper allows the users to access all EPANET features through an object oriented 

pythonic interface, except chemical calculations which are irrelevant to the leakage problem.  

Using this wrapper, it is possibly to simulate steady state (single timestep) and extended 

period (multiple timestep) simulations. Since the leakage problem is highly dependent on 

varying customer demand patterns and temporal dependencies, it is necessary to evaluate 

extended period simulations (EPS). EPS runs a full 24-hour simulation using the provided 

hydraulic model except without an option to alter valve settings or pump speeds during the 

simulation. This is resolved by redefining the EPS simulation through many steady state 

simulations that read demand patterns and events iteratively. This method allows us to 

simulate the 24 timesteps for each hour of the day with an option of altering our actuators and 
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receiving new results. Having this agency can allow the user to also introduce leakage at 

different times and mitigate the leakage accordingly. Changing time parameters can allow the 

user to increase time steps to simulate up to each minute of the day, as long as the demand 

patterns used in the model can match these increments. 

In Figure 4-5, flow rates for a node before introducing a leak (blue), after the leak (orange) and 

after decreasing the pressure in the node through valve action (green) are demonstrated. 

These events were introduced midday at the 24th timestep (each timestep being 30 minutes 

long). Experimenting with EPS through incremental steady state simulations proved successful 

as it permits action and evaluation throughout the simulation, which is necessary to create a 

real-time pressure optimisation strategy. Figure 4-5 highlights how leakage influences the 

demand on nodes through an additional leakage flow rate. It also highlights how exploiting the 

pressure-leakage relationship (Eq. 2-3) can partially mitigate the effects of leakage through 

pressure management. In this case, we introduced a burst to a random node (J88) on the 12th 

hour of a 24hr extended period simulation. 

 

Figure 4-5 Introducing leakage and action using EPYNET. 

It should be noted that the node’s inflow continues to follow the designated customer demand 

pattern with the minimum night flow present between the 8th and 10th timestep, signifying 

4am to 5am.  The EPYNET wrapper will be utilised in the environment building to harness the 

hydraulic functionalities of EPANET, harmonised with the availability of DRL benchmarking tool 

and algorithms in python programming. 
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4.2.2. Environment Spaces 

Reinforcement Learning (RL) environments consist of various components and spaces that 

define the characteristics of the problem that an RL agent is trying to solve. For the purpose of 

availability and reproducibility, benchmarked spaces are used such as the OpenAI GYM. It is 

popular in the RL community for research, experimentation, and educational purposes. It has 

helped advance the field of reinforcement learning by providing a common platform for 

testing and comparing algorithms. GYM provides a framework for developing and testing deep 

reinforcement learning algorithms. It is designed with key test environments that are often 

used to compare and test DRL algorithms as a benchmark. It also allows users to create custom 

environments using its space to define the action space, and observation space. The power of 

writing environments using GYM’s framework is its versatility. It can be integrated with wider 

RL libraries and other machine learning libraries such as TensorFlow and PyTorch.  

Open AI GYM spaces consist of three main categories. The Box space (gym.spaces.Box) is a 

continuous space defined by a lower and upper bound. Each dimension can take on any value 

within the specified range. The bounds can be different for each dimension in the space or 

uniform throughout. Secondly, the discrete space (gym.spaces.discrete) represents a single 

dimension with a fixed number of possible discrete values. It is defined by a single parameter 

which denotes the number of possible discrete values. Finally, the Multi-Discrete 

(gym.spaces.MultiDiscrete) describes a multi-dimensional discrete space where each 

dimension can have a different number of possible discrete values. It is defined by an array of 

integers that specify the number of possible discrete values for each of these dimensions.  

Other categories are available in GYM spaces including Multi-Binary (gym.space.MultiBinary) 

which represents a multi-dimensional space of binary arrays. Spaces such as Multi-Binary, 

Graph (gym.spaces.Graph) and Tuple (gym.spaces.Tuple) have limited use with external 

libraries. Consequently, they are less popular and incompatible with most available DRL 

agents. Understanding these different spaces is paramount for designing the environment and 

selecting DRL agents. The choice of the action and observation spaces must reflect the nature 

of the environment being designed and the specific problem being solved (pressure 

management for leakage minimisation). These spaces set the limits of what an RL agent can 

do, and they are crucial in shaping the agent’s behaviour. 

Observation Space 

The observation state, also called state space, represents all the possible observations an 

agent can make in the environment. Accounting for the leakage problem, the observation 
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must describe the effect of the actions and leak on the consumption nodes. The leakage rates 

in each node were used to denote this. In addition, it is crucial to highlight the current settings 

implemented to serve as a starting point at each timestep. Hence, the observation space will 

describe the nodal leakage rates and actuator settings. Flow rates are outputted as floats by 

EPANET which means the leakage rates must be contained in a continuous space. The only 

available continuous space in GYM is the Box space which will be unbounded to allow the 

output of the leakage rate regardless of the value. 

Action Space 

The action space defines all the possible actions that the agents can perform within the 

environment. In the context of the leakage problem, it is important to allow the agent to send 

simultaneous orders to each actuator (PRVs or Pumps) to allow full control of the WDN during 

each timestep. Henceforth, the Discrete box cannot be used for this scenario. Another 

consideration is whether the new settings delivered to the PRVs, and pumps should be floats 

(continuous) or integers (discrete). Since this is treated as an optimisation strategy, the agent 

should be able to find the global maximum at the highest accuracy. This is representing using a 

Box space that allows the agent to select any value within the specified bounds. The action 

space will include as many dimensions as the valves and pumps being controlled with lower 

and upper bounds of 0 to 70 for valves and unbounded speeds for the pumps if applicable.  

4.2.3. Step Function  

The step function is arguably the most essential building block of any environment. It is a 

fundamental concept that defines how the agent interacts with the environment at each 

timestep. This step is enacted once every timestep iteratively until the conditions to terminate 

the episode is met. During each episode, the environment is designed to simulate 24h steps to 

model the 24-hour timesteps in the demand pattern used. This allows the agent to change 

each PRV simultaneously to match the change in demand for each hour. Repeatedly acting and 

observing the consequences through the step function formulates the RL learning process 

allowing the agent to develop a desirable policy that prioritises better decisions to maximise 

long-term rewards. Therefore, several tasks must be performed within the step function which 

are displayed in a flowchart in figure 4-6. 
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Figure 4-6 Step function flowchart 

The step function must take the agent’s decision as an input. In DRL this decision stems from 

an input of the observation where the trained agent can choose the appropriate action from 

the predefined action space through its weighted neural network. This action must be 

executed on the environment through interactions that accurately reflect the task. These 

interactions must take the agent’s action as input and deploy it in order to update the 

environment’s state.  In terms of the leakage problem, this action is an array of PRV settings or 

an array of PRV settings and pump speeds. These selected actions are assigned to their 

respective actuators through communication with EPANET and retrieve the resulting hydraulic 

properties of the water distribution system. In addition, the action must be assigned a 

numerical reward based on its perceived effects on the environment’s state and observations. 

Before the end of each iteration, important hydraulic results are logged for data visualisation 

and reporting purposes. Finally, the reward and observations must be returned as feedback to 

the agent, accompanied by a signal that indicates whether the episode has terminated. 

Developing the step function for the leakage problem will require the hydraulic solver to 

evaluate the water network under three conditions. Namely, the network before the leakage is 

introduced (Perfect network), the network after the leakage is introduced (Leaking Network), 
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the leaking network after it is mitigated with the action (Solved Network). During each time 

step, the leaking and perfect networks are compared to demonstrate the initial effect of the 

leakage event, followed by contrasting the solved and leaking network to highlight the effect 

of pressure management on the two networks. The difference in performance between the 

solved and leaking networks will prove as a measure of the effect of the action on mitigating 

the leak. Further details on how this effect is calculated can be found in section 4.2.4 that 

defines the reward function.  

4.2.4. Reward Control 

In DRL, the reward is a term given to the numerical value that grades the agent’s behaviour in 

its environment after taking an action. It is the primary feedback signal that represents how 

good or bad the agent was in fulfilling its objectives. The aim of this reward is to guide the DRL 

algorithm to develop optimal or near-optimal policies through maximising the cumulative 

reward. In other optimisation algorithms, the reward is replaced with a cost function, fitness 

value or a penalty which all denote the same concept. Understandably, the reward function 

has considerable influence on the training and development of DRL models. Therefore, 

designing an effective reward can be a significant task, and if poorly designed it can lead to 

suboptimal or unintended behaviour in the learned policies. 

Reward formulation is an intricate task, and it should reflect the desired objectives. Rewards 

can be sparse or dense (assigned infrequently or more frequently). Despite sparse reward 

being easier to design, they can make learning challenging due to limited feedback. By 

contrast, dense rewards often accelerate training. A favourable reward can help agents 

navigate the exploration-exploitation dilemma by encouraging a good balance between 

learning new actions and choosing actions that maximise rewards. Another way to address this 

trade-off is through the discount factor (γ) which helps the agent prioritise short-term gains 

and long-term consequences. The reward signal is often processed by the DRL learning 

algorithm to develop the value function (V) or policy objective function (J), enabling it to make 

better decisions over time. Spurious rewards could promote unintended behaviour and force 

agents to converge at local minima or undesired policies. Therefore, rewards must follow 

reason and be subject to human monitoring. It's common to improve iteratively on the reward 

function as insights are obtained from the agent's training and performance. 

After several iterations, the general formula for the reward function consists of the evaluation 

of penalties incurred by the burst events (PLeaking) and the action provided by the optimisation 

algorithm (PSolved). The reward is the difference between the two penalties to highlight how the 
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action decreases the negative effect of the burst. These penalties are denoted by equation 4-3 

which come together to form the reward (R) in equation 4-4. 

𝑅 = ∑ [(𝑣𝑎𝑓𝑡𝑒𝑟 − 𝑣𝑏𝑒𝑓𝑜𝑟𝑒) ∙ 𝑠𝑐𝑎𝑙𝑒 1 + (
𝑄𝑙𝑏−𝑄𝑙𝑎

𝑄𝑙𝑏
) ∙ 𝑠𝑐𝑎𝑙𝑒 2𝑀

𝑗=1  ]                                                 ( 4-3 ) 

Where R is the reward for the current step, j is the current node, M is the total number of 

nodes, vafter is whether the nodal pressure at j is below 10m or above 70m after the mitigating 

action and the vbefore is whether the nodal pressure at j below 10m or above 70m before the 

action. The upper and lower limits of 70m and 10m represent the limits put in place by the UK 

regulatory body OFWAT. The second half of the equation represents the effects of leakage rate 

on the reward function. Qlb is the leakage rate at node j before the agent’s action and Qla is the 

leakage rate at node j after the action. This creates a fair assessment of each leak change as a 

proportion of its original leakage rate. The scales 1 and 2 are customer-defined integers 

defined through iterative training and testing of DRL algorithms. The scales must be tuned 

relative to each other to strike the best trade-off between the two objectives. PLeak is the 

penalty calculated using equation 4-3 by contrasting the leaking network (after) and the 

perfect network (before) whilst PSolved evaluates the solved network (after) with respect to the 

perfect network (before). 

The correct scales for the reward function are found iteratively for each case study by training 

the same DRL algorithm using different scales, testing all the algorithms under the same 

conditions, and plotting their performance in a three-dimensional plot. This plot highlights the 

trade-off explored by each set of scales with respect to water saved and violations minimised. 

By evaluating the plots with consultation from Northumbrian Water and Designed Network 

Solutions, the best set is selected. Below the performance of 13 identical A2C algorithms 
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trained using different reward scales. Investigating the ratios between the reward scales helps 

explore the trade-off between the two main objectives – leakage and pressure violations. 

 

Figure 4-7 Episodic leakage rate vs reward scales 

 

Figure 4-8 Episodic violations vs reward ratios 

Figures 4-7 and 4-8 display how emphasising different objectives affect the agents’ 

performance where a ratio of 6:1 (scale 2:scale 1) produced the best result in minimising 

leakage rate and a ratio of 1:5 produces the best result in minimising pressure violations. 
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Combining the two graphs help with the selection of the best overall reward scales ratio. This 

is displayed in figure 4-9 below. 

 

Figure 4-9 Episodic penalty vs reward scales 

Clearly, the combination of the two objectives is best managed by placing a 3:1 emphasis on 

leakage reduction with respect to pressure violation. Furthermore, a 3D contour plot helps 

reveal an extra layer of time. Figures 4-10 to 4-12, show how the different agents interacted 

during each step of the episode. The contour plot is used to notice trends between reward 

formulation and agent behaviour.  

 

Figure 4-10 Leakage rate - reward scales 3D plot 
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Figure 4-11 Violations - reward scales 3D plot 

 

Figure 4-12 Penalty - reward scales 3D plot 

The 3D plots identify a major vulnerable area between 3am and 6am due to minimum night 

flow and higher pressures. The higher pressures increase leakage during the low demand 

hours. It is also evident that extreme sides of the ratios (7 indicating 7:1; -7 indicating 1:7) 

don’t necessarily produce the best results for the corresponding objective. Nevertheless, 

emphasising the leakage objective has clearly produced the best overall results. 
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4.2.5. Render Function 

Understanding the performance of the DRL agents provides more than a testing platform, it 

can inspire improvements in the environment design and contextualise the results within the 

leakage problem. The render function is not a critical function in reinforcement learning 

environments. However, it is commonly used to visualise the interactions between the agent 

and the environment. Displaying this data in a digestible manner can aid in diagnosing any 

issues in the agent’s behaviour. It can also help with fine-tuning the reward function and the 

agent’s hyperparameter as it provides more feedback on the agent-environment interactions. 

Further analysis can be conducted between learnt policies by drawing comparisons from their 

rendered visualisations. Rendering can incur additional computational costs, so the render 

function is best reserved in the testing loop of DRL algorithms. In summary, rendering is a 

useful tool for understanding, debugging, analysing, and tuning DRL algorithms.  

 

Figure 4-13 Example of the interactive map render. 

The environment was equipped with five unique rendering functions that highlight the main 

aspects. The first rendering function is called the ‘interactive map’ and draws the WDN 

architecture in full, as shown in Figure 4-13. The leaking nodes are coloured red, normal nodes 

are coloured blue, links are coloured green, and valves are replaced with their current settings. 

When the function is called, the environment records the map at each timestep with the 

settings displayed. It then collated them in a video to display how the settings change 
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throughout the day as well as the locations of the leak nodes. 

 

Figure 4-14 Example of reward spread across junctions render. 

Another video rendering function is the ‘penalty across junctions’ option, shown in Figure 4-

14, which displays the penalties before (PLeak, red) and after (PSolved, blue) the agent’s action, 

spread across the network’s junction for each step of the episode. This allows the user to 

visualise how the rewards are distributed across the network and how the agent’s action 

affects the network. Rewards with a value of 1 are clear indications of resolved pressure 

violations as shown in Figure 4-14. Whilst larger rewards can be seen where leakage has been 

reduced due to valve action. These figures highlight the learnt policy and where the agent has 

placed emphasis to maximise its reward.  
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Figure 4-15 Example of settings render. 

The ’settings’ render function, shown in figure 4-15, records the agent’s selected actions 

throughout the episode to provide an agent’s point of view. This display can highlight whether 

the agent has overcome the exploration-exploitation dilemma. If the agent shows no changes 

in the PRV settings, then it is possibly exploiting a local minimum and has not learnt an optimal 

behavioural policy. Whereas overly stochastic behaviour coupled with low rewards might 

indicate an overly explorative policy. If the agent is able to produce similar ‘settings’ renders 

under low disturbance and different renders under high disturbances, it is clear that it has 

learnt a complete policy. 

 

Figure 4-16 Example of Water Loss render. 
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The ‘Water Loss’ render, shown in Figure 4-16, is another plot that displays leakage rates from 

the leaking network in red (leakage before action) and the solved network in blue (leakage 

after action) during the episode. This highlights the hydraulic effects of the pressure 

management algorithms on leakage in the network. It is important to note that both plots 

must show similar patterns that are indicative of the customer’s demand patterns. The 

variance in magnitude highlights the effect of the agent’s action and whether it has minimised 

water loss. 

 

Figure 4-17 Example of the states render. 

Finally, the ‘states’ render displays more hydraulic data logged during the episode. As shown in 

figure 4-17, the state’s visualisation plots three main graphs that show the average pressure, 

the total water loss, and the average flow of the WDN in three subplots respectively. In each 

subplot, the user can visualise how the actions have affected these properties to draw more 

conclusions. It is beneficial to see the agent minimise fluctuations in the average pressure as it 

strives to minimise nodal pressures at leakage nodes. 

Further visualisation tasks may be necessary such as plotting the rewards gathered during the 

episode hence why a report function was also designed. The report function exports all the 

logged metrics to an external excel file. This includes the observations, water loss, flows, 

pressures, violations, and penalties of each junction as well as the current observation, and list 

of valve settings for each step of the episode. Furthermore, a summarised spreadsheet of 

states and rewards of both the leaking and solved networks is coupled with a full history of 

settings for each episode. These reports are used for detailed analysis and conclusion of 

agents’ performances. 
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4.3. The Agents 

Deploying agents is simple using a well-written environment that follows OpenAI GYM’s 

formalism. Several libraries have customisable pre-built DRL agents that are deployable in 

GYM-based environments such as Stable Baselines 3 (SB3), and Keras RL. Otherwise, agents 

must be built from scratch using TensorFlow and PyTorch. These libraries include state-of-the-

art algorithms such as Advantage Actor Critic (A2C), Proximal Policy Optimisation (PPO), Deep 

Deterministic Policy Gradient (DDPG) and more. The most extensive library is the Stable 

Baselines 3 which is a set of improved implementations of DRL agents based on OpenAI 

Baselines. It features a unified structure for many algorithms boasting visualisation tools, 

Tensorboard logging and thorough documentation. The only limitation in agent selection is 

compatibility with the action space. Table 4-2 outlines the different algorithms available and 

their compatibilities. The action space used in the WDN-DRL Ecosystem is a continuous (Box) 

space meaning that the available agents are Augmented Random Search (ARS), A2C, Hindsight 

Experience Replay (HER), PPO, Recurrent PPO, Soft Actor Critic (SAC), Twin Delayed DDPG 

(TD3), Truncated Quantile Critics (TQC), Trust Region Policy Optimisation (TRPO), DDPG, and 

Normalized Advantage Function (NAF) as shown in table 4-2 below. 

Table 4-2 Available DRL agents 

Abbreviation Name Box Discrete MultiDiscrete Library 

ARS  Augmented Random Search             SB3 

A2C Advantage Actor Critic             SB3 

DDPG 
Deep Deterministic Policy 

Gradient 
            SB3 

DQN Deep Q Network             SB3 

HER Hindsight Experience Replay             SB3 

PPO Proximal Policy Optimisation             SB3 

QR-DQN  Quantile Regression DQN             SB3 

Recurrent 

PPO  

Recurrent Proximal Policy 

Optimisation 
            SB3 

SAC Soft Actor Critic             SB3 

TD3 Twin Delayed DDPG             SB3 

TQC  Truncated Quantile Critics             SB3 

TRPO  
Trust Region Policy 

Optimisation 
            

SB3 
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Maskable 

PPO  

Maskable Proximal Policy 

Optimisation 
            

SB3 

DQN Deep Q Network             Keras RL 

DDPG 
Deep Deterministic Policy 

Gradient 
            

Keras RL 

NAF 
Normalized Advantage 

Function 
            

Keras RL 

CEM Cross-Entropy Method             Keras RL 

SARSA 
State-Action-Reward-State-

Action 
        

    Keras RL 

Importantly, through testing and comparisons, the best performing algorithms are selected for 

the case studies. The agents are trained for 20,000 timesteps on the environment created. 

Since we create our scenarios from the hydraulic files on epanet, our minimum data 

requirements were the demand patterns, node lengths and GIS data needed to create the 

input file.  

Furthermore, various neural network architectures will be tested and hyperparameter tuning 

unveils the best possible version of the selected agents. In this section we explain the agents 

used in the case studies which produced the best results. The agents used fall into three main 

categories of hybrid, policy-driven, and distributional.  The full code used to train the DRL 

algorithms, save the models and deploy them in the test scenario is shown in Appendix C. 

4.3.1. Hybrid DRL Agents 

Advantage Actor Critic (A2C) 

A2C is an on-policy model-free DRL algorithm where two neural networks communicate to 

improve the algorithm’s performance. The actor’s neural network follows a policy-driven 

method to produce an action which will be evaluated using the value-driven critic neural 

network. Whilst the actor dictates how to act in a method similar to the PPO algorithm, the 

critic evaluates how well that action was in a method similar to the Deep Q-Network (DQN). 

The actor is influenced by the critic through a temporal difference (TD) error loop. This is 

shown in the schematic in figure 4-18. 
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Figure 4-18 Advantage Actor Critic model schematic 

This helps in creating two diverse experiences of acting and critiquing to enhance the overall 

learning process. In this algorithm, we use identical setups to create the agents. A key concept 

in A2C is the use of the advantage function (Eq. 3-9) in the critic network rather than the 

original value function. The advantage function evaluates the action’s benefits relative to the 

average action. Doing so, A2C reduces variance in the learning process leading to more stable 

and efficient learning. 

The agent’s neural network architecture consists of two main sections. The function 

approximator is followed by the network architecture as displayed in figure 4-19 below. The 

observation states (nodal pressures and valve settings) pass through a feature extraction class 

to abstract the input data. This is then fed into a fully connected deep neural network with an 

architecture of two hidden layers of 64 neurons each. Each layer is equipped with a tanh 

activation function and an Adam optimiser class that lead to the output layer with the size of 

the action space. The feature extractor is named the ‘Nature CNN’ which comprises of a 

convolutional neural network first deployed in (Mnih et al., 2015). This method consists of 

three hidden convolutional neural network layers. The first layer has the size of the 

observation space x 32 with a stride of 4 and kernel size 8 followed by the second layer of size 

32x64 with a stride of 2 and kernel size of 4 and finally the third layer takes the shape of 64x64 

with a stride of 1 and kernel size 3. All three layers use a Rectified Linear Unit (ReLU) activation 

function, and the final output is flattened to be processed by the network architecture. 
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Figure 4-19 A2C Policy Network Diagram 

Deep Deterministic Policy Gradient (DDPG) 

DDPG is an off-policy hybrid DRL agent that serves as the alternative to deep Q-learning 

designed for continuous action spaces. On the critic’s side, exhaustively computing Q values 

for each action in a continuous space is too computationally expensive. By assuming that the 

state action value (Q-value) is differentiable with respect to the action, DDPG sets 

deterministic policy that exploits this fact and reduces the computational load significantly. 

This is done using the mean squared bellman error (MSBE) shown below (eq. 4-5)  Lillicrap et 

al., 2016). 

𝐿(∅, 𝐷) = 𝐸(𝑠,𝑎,𝑟,𝑠,𝑑)~𝐷
 [(𝑄∅(𝑠, 𝑎) − (𝑟 + 𝛾 ⋅ 𝑄∅𝑎′  

𝑚𝑎𝑥 (𝑠′, a′)])2]                                                ( 4-4 ) 

Where 𝑄∅(𝑠, 𝑎) is the predicted state-action value, D is a collected set of transitions, d is the 

terminal state. The immediate reward is denoted as r, γ marks the discount factor, and the 

expression 𝑄𝜋𝑎′  
𝑚𝑎𝑥 (𝑠′, a′)is the expected value of the maximum next state-action's value. 

L is the loss function which compromises of the square of the expected state-action value 

(Q(s,a)) minus the sum of the reward and the discounted expected next state value Es′[V(s′)]. Q 

learning algorithms for function approximators often rely on MSBE minimisation. In this case 
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we use a replay buffer to build the transition (D) set using memories of previous experiences. 

The size of the replay buffer effects the learning process where having a small buffer causes 

overfitting and large buffers could include outdated experiences.  

On the actor’s side, DDPG builds a deterministic policy (πθ) using the assumption that the Q 

value is differentiable with respect to the action. This is achieved by performing gradient 

ascent to solve the policy parameters to maximise the expected Q value. DDPG is known for its 

high convergence properties yet building deterministic values can be sub-optimal for real life 

engineering applications. DDPG is implemented using the SB3 library which uses the following 

deep neural network formed of three layers of convolutional neural networks (CNN) for 

feature extraction and two fully connected layers for policy development as shown in figure 4-

20. The hidden layers of the feature extractor contain three CNN layers with 32 nodes, 64 

nodes and 64 nodes. The kernel size for the first layer is 8 with a stride of 4, the second layer 

has a kernel size of 4 and a stride of 2, and the third layer with a kernel size of 3 and a stride of 

1. The fully connected hidden layers have 400 nodes and 300 nodes respectively using Adam 

optimisers and tanh activation functions. 
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Figure 4-20 DDPG policy network architecture 

Soft Actor Critic (SAC) 

SAC is an off-policy model-free DRL algorithm that improves on DDPG’s format by introducing 

stochasticity and entropy regularisation. Including the entropy in the objective function 

encourages stochasticity in the policy optimisation. This is achieved by altering the objective 

function in the critic to include entropy (H) as follows: 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝑎′~𝜋
𝑠′~𝑃 [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾(𝑄𝜋(𝑠′, 𝑎′) + 𝛼𝐻(∙ |𝑠′))]                                            ( 4-5 ) 

Where Qπ(s,a) is the current quality function using the current state-action pair (s,a), R(s,a,s’) is 

the expected return based on the state (s), action (a), and the next state (s’). The next state 

and action are derived from the transition probability (s’∼P) and the current policy (a’∼π). The 

entropy is introduced as a bonus to the value function (H(∙|s’)) and regularised using the 

discount factors (γ, α) (Soft Actor-Critic — Spinning Up documentation, no date).  
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The stochastic improvement helps the hybrid model navigate the exploration-exploitation 

trade off by rewarding entropy and penalising overly deterministic policies. Therefore, SAC is 

better fit in optimising tasks that require effective exploration. Like A2C, the soft actor critic 

algorithm deploys an actor (policy) and critic (value function) networks qualifying it as a hybrid 

method. The neural networks connect three layers of a function approximating CNN network 

to the observation space. This feature extractor class consists of a 32-node layer with a stride 

of 4 and a kernel size 8 followed by a second layer with 64 nodes, a stride of 2 and a kernel size 

of 4. The final layer also consists of 64 nodes, a stride of 1 and kernel size of 3. The feature 

extractor then feeds to the main network architecture that consists of two fully connected 

layers consisting of 256 nodes each. The feature extractor utilises a rectified linear unit 

activation function while the network architecture uses a tanh activation function and an 

‘Adam’ optimiser class. The final layer is connected to the action space to produce a relevant 

output. This deep neural network schematic can be seen in figure 4-21 below. The larger 

neural network is likely to increase computational demand in comparison to A2C yet is still an 

improvement to the DDPG neural network computational load. 
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Figure 4-21 SAC policy network diagram 

4.3.2. Policy Driven DRL Agents 

Trust Region Policy Optimisation (TRPO) 

In the search for robust performance and monotonic improvements, researchers have 

developed a policy gradient method through theoretically justified approximations – Trust 

Region Policy Optimisation. TRPO is an on-policy gradient method suitable for both continuous 

and discrete action spaces. Unlike normal policy gradient methods that keep policy updates 

close in the parameter space, TRPO takes the largest step possible to improve performance 

while satisfying a KL-divergence constraint that limits how close policy updates can be. In 

vanilla policy gradients, small changes in the policy updates can lead to very different 

performances meaning that bad steps can collapse policy performance completely. However, 

TRPO’s monotonic improvements improves sample efficiency and overall reliability by tackling 

the sensitivity in performance appearing from small updates in the policies parameters (Trust 
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Region Policy Optimization — Spinning Up documentation, no date; Schulman et al., 2014). 

This is achieved using the equations below that dictate policy updates. 

𝜃𝑘+1 = 𝐿(𝜃𝑘, 𝜃𝜃
𝑎𝑟𝑔𝑚𝑎𝑥

) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐷𝐾𝐿(𝜃||𝜃𝑘) < 𝛿                                                                    ( 4-6 ) 

Where the next policy parameters 𝜃𝑘+1, is defined using the best policy parameters of the 

surrogate advantage 𝐿(𝜃𝑘, 𝜃). The surrogate advantage is a measure of how the policy 𝜋𝜃 

performs with respect to the old policy 𝜋𝜃𝑘
. The surrogate policy is dictated by equation 4-8 

below. In addition, this parameter update must satisfy the condition where the average KL 

divergence between policies across visited states 𝐷𝐾𝐿(𝜃||𝜃𝑘) remains below the pre-defined 

KL-divergence limit 𝛿. 

𝐿(𝜃𝑘, 𝜃) = [
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

 𝐴𝜋𝜃𝑘 (𝑠, 𝑎)]𝑠,𝑎~𝜋𝜃𝑘

𝐸                                                                                                  ( 4-7 ) 

Where the surrogate advantage is derived from the expected advantage values of the old 

policy 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) multiplied by the ratio of the current policy divided by the old policy 
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

. 

 

Figure 4-22 TRPO policy network architecture 

The neural network architecture used to develop this algorithm is the multi-layer perceptron 

neural network shown in figure 4-22 and is described as follows. The network architecture 
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consists of an input layer (the observation space), five hidden layers and the output layer (the 

action space). The hidden layers are trained to develop the algorithm’s policy; three of which 

are dedicated to feature extraction. The feature extraction neural network is the ‘Nature CNN’ 

consisting of three layers with 32 nodes, 64 nodes and 64 nodes respectively. The first CNN 

layer (32 nodes) has a kernel size of 8 and stride of 4 while the second layer has a kernel of 4 

and stride 2 and the third has a kernel size 3 and stride 1. All the feature extraction CNN layers 

utilise a ReLU activation function and an Adam optimiser. The rest of the policy neural network 

architecture is marked in red and involves two fully connected layers with 64 nodes each, an 

Adam optimiser, and a tanh activation function. This then feeds into the algorithm’s action 

space as the output layer.   

Proximal Policy Optimisation (PPO) 

First introduced by Schulman et al. (Schulman et al., 2017), proximal policy optimisation 

describes algorithms the utilise policy gradient methods which alternate between optimising a 

surrogate objective function and sampling data through environment interaction. PPO has 

gained popularity due to its stability, ease of implementation and effectiveness in training DRL 

agents. It attains the data efficiency and reliability of trust region policy optimisation algorithm 

(TRPO) using first order optimisation hence improving sample efficiency and reliability. PPO 

uses surrogate objectives such as Kullback-Leibler (KL) clipping and penalty (adaptive or 

flexible) to improve performance. The PPO variant with KL penalty updates the policy 

parameters similarly to its predecessor TRPO by penalising the KL divergence in the objective 

function rather than having it as a hard constraint. On the other hand, KL clipping has no 

constraints, however it limits KL divergence through specialised clipping. This clipping 

surrogate objective improved performance greatly and resulted in higher gains than high 

performing algorithms such as Advantage Actor Critic (A2C) (Schulman et al., 2017).  

In the application of WDN pressure management, we utilise the PPO-clip algorithm using a 

Multi-Layer Perceptron (MLP) neural network to optimise the agent.  The algorithms use a 

Multi-Layer Perceptron architecture to optimise the parameters of the policy through gradient 

ascent. The policy gradient can be defined as the gradient of the objective function J in 

equation 4-9. 

∇𝜃𝐽(𝜋𝜃) = 𝔼[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|Τ
𝑡=0 𝑠𝑡)𝑅(𝜏)]                                                                                    ( 4-8 ) 

Where the policy gradient is the gradient of the log of the parameterised policy (∇θ log (πθ 

(at|st))) multiplied by the expected sum of returns (R(τ)) for timesteps (t) in episode length (T). 

KL clipping will be optimised along with hyperparameter tuning to improve the agent’s training 
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and performance. The MLP neural network is identical to that of the TRPO policy network 

shown in figure 4-22. This consist of 3 CNN layers for feature extraction and 2 fully connected 

layer (FCN) for policy development.  

Recurrent Proximal Policy Optimisation (Recurrent PPO) 

Recurrent PPO is a model-free policy-driven deep reinforcement algorithm. It is an extension 

to the well-known PPO algorithm that enables it to use Long Short-Term Memory (LSTM) 

neural networks. Due to this simple change in neural network architecture, Recurrent PPO 

performance has been heightened in applications that require agents to recognise patterns in 

long-term dependencies. Hence, Recurrent PPO outperforms it predecessor in WDN 

applications that require agents to understand the delayed consequences of current actions 

(Pleines et al., 2022).   

The original MLP architecture used is identical to that of the PPO and A2C algorithms except 

the Recurrent PPO algorithm includes a LSTM module that consists of 1 layer of 256 nodes 

(figure 4-23). LSTM nodes add a recurrent feature to the neural network allowing it to 

recognise recurring patterns.  
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Figure 4-23 Recurrent PPO policy network architecture 

Augmented Random Search (ARS) 

ARS is a model-free DRL algorithm that utilises a simple random search algorithms with a few 

augmentations on the parameterised policy equation. This was first introduced in (Mania, Guy 

and Recht, 2018) where the authors attempted to improve sample efficiency in DRL models by 

developing a method that harnesses simple random search. ARS was aimed to present the 

simplest model-free method that can tackle current continuous control benchmarks in a more 

sample efficient manner than (Salimans et al., 2017)’s evolution strategy (ES). Several policies 

are created through random perturbations that are ranked depending on their performance. 

The policy is updated based on the reward-weight sum of these perturbations. The adaptive 

step size controls the magnitude of these policy updates effectively tackling the exploration-

exploitation dilemma. This process is repeated until the algorithm converges to the best 

achievable policy. Results from the initial experiment show an improvement in sample 

efficiency greater than 15 times than the best competing model-free methods and performed 

routinely higher than standard PPO, A2C, and TRPO algorithms (Mania, Guy and Recht, 2018). 

However, the ARS performance is plagued with high variance which suggests that the 
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estimations of sample efficiency don’t represent the performance of the RL algorithm 

adequately (Mania, Guy and Recht, 2018). The ARS algorithm can deploy a linear policy 

(without the use of a deep neural network architecture) or a MLP policy that uses a neural 

network architecture identical to that of PPO and TRPO algorithms with three CNN layers and 

two FCN layers. This makes it possible to experiment with ARS as reinforcement learning 

algorithm rather than a deep reinforcement learning algorithm. ARS has shown its ability to 

perform well with and without the use of deep learning as shown in (Mania, Guy and Recht, 

2018).  

4.3.3. Distributional DRL Agent 

Truncated Quantile Critics (TQC) 

TQC is a distributional model free off-policy DRL algorithm designed specifically to tackle the 

overestimation bias present in most off-policy algorithms. Overestimation bias is a 

phenomenon particularly present in algorithms that use function approximation such as neural 

networks. It denotes the constantly higher estimated value for state-action pairs than their 

true value which would lead to algorithms converging at suboptimal policies. Using function 

approximators introduces a degree of uncertainty in the learning process hence amplifying this 

overestimation bias. TQC innovates overestimation control by incorporating aleatoric 

uncertainty using truncated quantiles. The truncated quantiles improve on the value 

distribution by allowing the algorithm to prioritise the important region of the distribution and 

neglect the less relevant regions. On the other hand, traditional distributional DRL that 

represent the mean value distribution TQC also decouples the function approximators from 

the overestimation control allowing the use of multiple neural networks to be ensembled in a 

novel manner. TQC derives its stochastic policy updates from the SAC algorithms by 

incorporating entropy to the policy function. Furthermore, it draws from QR-DQN’s 

distributional methods to form its quantile critics.  

The TQC schematic consists of three function approximators (deep neural networks) dictating 

the actor, which determine the next action through entropy regularised policy updates; the 

critic network, which estimates the state-action pair quantile value distributions; and the critic 

target network, which is used to find discrepancies between the estimated value and true 

value of the state-action pair. The discrepancy between the critic and the target critic is 

represented by a Huber loss function that should be minimised by improving the critic’s 

performance. TQC is ideal for environments with complicated and varied reward structures. In 

this research, we utilise deep neural networks as function approximators for the actor, critic, 

and target critic. These neural networks involve three layers of feature extraction using CNNs 
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and two FCN layers as shown in figure 4-24 below. All the layers use an Adam optimiser. The 

activation functions used for the CNN layers is the ReLU function while the FCN layers use a 

tanh activation function. 

 

Figure 4-24 TQC Policy Network 

4.4. Concluding Remarks 

In this section, the data architecture designed to train and test deep reinforcement learning 

algorithms on hydraulic models to optimise pressure management was explained thoroughly. 

This included various sections that explained the leakage problem further and redefined it in 

terms of DRL formalisms; details of designing and building the central GYM compatible 

environment and a brief description of the main agents utilised in the case studies.  

Initially, the differences between leakage types (background and bursts) were highlighted 

followed by the main objectives of the leakage problem. Pressure management is used as a 

contingency for background leakage and a temporary solution for burst events. Hydraulic 



 

116 
 

models are created by integrating various data sources such as geographical information, 

network data, operational data, and customer data. Hydraulic solvers are used for modelling 

WDNs and execute steady state and extended period simulations. Leakage events are 

introduced in the model using pressure dependent equations and coefficients to control the 

magnitude. The leakage pressure relationship is manipulated to identify the emitter coefficient 

ranges that describe background and burst leakage in literature. It was found that emitter 

coefficients between 0 to 0.196 signify background leakage and 0.196 onwards are burst 

leakage. Furthermore, the leakage problem is contextualised with the concepts of Markov 

Decision Process (MDP) highlighting key MDP components like rewards, actions, states, and 

environments. It describes how pressure management in WDNs can be approached as a 

reinforcement learning (RL) problem within the MDP framework. RL terms are also defined 

with respect to the context of WDN pressure management. Insights into the challenges of 

managing leakage in water distribution networks help set the stage for developing a 

reinforcement learning-based solution within the defined MDP framework. The WDN-DRL 

ecosystem is fully realised in the schematic displayed in figure 4-3. 

In more detail, section 4.2 provides a comprehensive overview of the design and components 

of the RL environment, tailored for addressing the leakage problem in water distribution 

networks. The design and components of the reinforcement learning (RL) environment in the 

leakage problem is explained. The environment should be challenging but not excessively 

difficult. It must provide observable states and an appropriate action space to allow the agent 

to make informed decisions. The environment leverages the hydraulic capabilities of EPANET 

using a python wrapper (EPYNET) to enable programmatic interaction. Incremental steady-

state simulations are employed to simulate the effects of actions and leakage throughout the 

day. OpenAI Gym is used to define action and observation spaces, providing extensibility and 

compatibility with RL libraries like Stable Baselines 3, TensorFlow and PyTorch. Various space 

types, including Box, Discrete, and Multi-Discrete, are explained and selected based on the 

problem's nature to realise the environment. Subsequently, the fundamental functions of the 

environment are clarified. The step function uses the actions chosen by the agent to interact 

with the hydraulic model to update the environment state, calculate the rewards, and log 

data. Formulating the reward is crucial to guide the agent’s behaviour and reflect how well it 

accomplishes objectives. The reward function is derived to evaluate penalties for leakage 

events before and after an action has been executed. Scale parameters in the reward function 

are tuned to balance objectives. Additionally, agent-environment interactions are visualised 

through five bespoke renderings. These figures use logged data to aid with debugging, analysis 
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and fine-tuning DRL algorithms. All the data produced from interactions in the environment 

can also be logged to produce step and episode reports. 

Finally, DRL agents are selected based on the availability of algorithms compatible with the box 

action space. The highest performing algorithms used in the case studies are discussed in 

detail. The choice of agents and their neural network architectures is based on their 

performance in the specific problem and the ability to capture long-term dependencies and 

patterns in the data. Further tuning of hyperparameters are conducted to improve agent 

training and performance.  
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5. Background Leakage Case Study 

Unlike burst events, background leakage is difficult to detect hence it is necessary to create 

pressure controllers that are sensitive to these small changes and account for the water loss 

they incur. In this chapter we detail the methodology developed to introduce background 

leakage events to two water distribution networks (benchmark and real) and use a variety of 

DRL and non-DRL optimisation algorithms to minimise the adverse effects of the leakage. The 

reward function is optimised to ensure the objectives are achieved. This is followed with 

diagrams and graphs explaining the results of the various algorithms and their ability to 

optimise the reward and minimise water loss. Finally, the results are discussed thoroughly, and 

conclusions are drawn. The main aims of this experiment are: 

• Provide a method to mitigate background leaks in real-time through pressure control. 

• Test the viability and scalability of different DRL models in WDN pressure 

management. 

• Highlight the differences between DRL performances to popular optimisation 

algorithms. 

• Discuss the performances of different DRL methods and the effects of hyperparameter 

tuning. 

The full case study including python files, figures, excel reports and hydraulic files can be 

accessed privately on GitHub by following this link. In addition, the main results and figures for 

this chapter is included in Appendix F and G. 

5.1. Methodology 

5.1.1. Optimisation algorithms 

The non-DRL algorithms used includes a Nelder Mead (NM) algorithms to benchmark 

numerical optimisation methods for non-differential objective functions. NM tends to produce 

satisfactory results with low computational effort. The Nelder Mead algorithm is created with 

a maximum number of function evaluations of 1000, absolute acceptable error in inputs 

between iterations is 0.005, and absolute acceptable error in output between iterations is 

0.01. A Particle Swarm optimisation (PSO) algorithm is developed using 30 particles and 20 

generations in each run to increase the search space and reach a global optimum. It is based 

on the idea of swarm intelligence. The use of PSO is recorded in optimisation of WDN pressure 

management in (Mehdi and Asghar, 2019). Hence why, PSO was used as a benchmark for 

meta-heuristic search algorithms. Differential evolution (DE) was chosen as the benchmark 

https://github.com/AhmedNegmDRL/WDN-DRL
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evolutionary algorithm due its ability to outperform general genetic algorithms (GA). We use a 

DE algorithm with a population size of 30, 20 generations, a crossover rate of 0.25 and scale 

factor of 1. It is another meta-heuristic algorithm with wide application in water distribution 

based on the idea of selective breeding and evolution (Hajgató, Paál and Gyires-Tóth, 2020; 

Bilal and Pant, 2022). Whilst meta-heuristic approaches do not guarantee a global optimum, 

they tend perform quite well in non-differentiable applications. The code used to build the 

benchmark non-DRL algorithm is written in the Appendix B for reference. 

DRL optimisation included the gradient based policy algorithms Trust Region Policy 

Optimisation (TRPO), Proximal Policy Optimisation (PPO) and Recurrent Proximal Policy 

Optimisation (Recurrent PPO). Hybrid value-driven and policy driven algorithms such as 

Advantage Actor Critic (A2C), Soft Actor Critic (SAC), Deep Deterministic Policy Gradient 

(DDPG), are also used. An additional RL policy method that utilises random search of the policy 

parameter is used for its ability to compete with the more sophisticated DRL algorithm which 

is named the Augmented Random Search (ARS) algorithm. Finally, a distributional DRL 

algorithm is also used which is called Truncated Mixture of Continuous Distributional Quantile 

Critics (TQC). This cohort of DRL algorithms will be initially tested using their basic 

hyperparameters before tuning the highest three performers. 

5.1.2. Problem setup  

Appropriately, the problem is initiated as a network with small leaks on every node. This leak is 

calculated through the pressure-dependent leakage rate described in equation 2-9. The 

leakage coefficient Kf is redefined depending on the discharge coefficient c and the length 

between nodes i and j (Lij) as described in equation 3-2 and kept under the background 

coefficient limit of 0.196 Ls-1m-0.5 as calculated in section 4.1.1. Following that, the networks 

will utilise a universal leakage exponent of 1.18 which is the widely accepted value in literature 

(Araujo et al., 2006; Saldarriaga and Salcedo, 2015b). The leakage rate and violation count at 

each node before and after PRV action will be evaluated to explore the effect of the action on 

the network. Algorithm 5-1 outlines the pseudo code of the background leakage case study.  
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Algorithm 5-1: Background leakage scenario pseudo code 

Input: link flows and nodal pressures  

Output: Reward  

for each episode do  

         initialise all valve settings to be 40. 

         get link flow and nodal pressures for leaking network. 

         get leakage rate of leaking network. 

         initialise state s. 

 for each step of episode, state s is not terminal, timestep is not 24. 

             do          

         a ← action given by optimisation algorithm for state s. 

                      evaluate network after action reward. 

                      get link flow and nodal pressures for solved network. 

                      get new leakage rate of solved network. 

                      reward r given by difference in leakage rate and pressure violations. 

                      laziness penalty if settings haven’t changes in three steps. 

                      get new state s’. 

                      log rewards, violations, leakage. 

         take action a, observation, r, s'. 

         s ← s' 

 end  

end 

 

In this scenario, we imagine that the network is inherently filled with the undetected 

background leakage forming our ‘leaking network’ followed with an action to then create the 

‘solved network’ as displayed in figure 5-1 below. The reward (r) function will be calculated 

based on equation 3-4 that calculates the difference between both networks’ weighted 

penalties. The reward scales are modified to navigate the objective trade-off between water 

loss and pressure violations iteratively using the method described in section 4.2.4. for each 

experiment.  

The limitations of this study includes its reliance on clear trusted data and optimised valve 

locations. We also require reliability evaluations before deploying these algorithms on water 

networks. Another limitation is the unknown effects of the optimisation algorithms on other 
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objectives of the WDN. In essence, focusing on pressure control for leakage management 

might affect other WDN objectives in asset preservation.  

We have therefore assumed that the hydraulic models can serve the digital twin of the real 

WDNs and that the pressure-leakage relationship is defined accurately by equation 2-9. More 

assumptions include accurate carbon emissions conversion figures as recorded in (Department 

for Energy Security and Net Zero, 2023). 

More details on the limitations and assumptions made in this study can be found in sections 

7.1 and 7.2. 

 

Figure 5-1 Background leakage scenario flow 

5.1.3. Testing 

In the testing stage, all optimisation algorithms were subjected to three full training episodes 

consisting of 24 timesteps each modelling an hour of the customers demand patterns. The 

resulting rewards and leakage were recorded and plotted for further data analysis and 

comparisons. The time required to optimise pressure management was recorded to highlight 

the computational effort incurred by each algorithm. Deep RL algorithms require training 

before they are applied to the environment hence the separate training and test time; whilst 

the other optimisation algorithms can be deployed instantly to the environment. These 

experiments, also consider the computational effort required to optimise the scenarios. This is 

displayed in a bar chart where the DRL test times are plotted separately from the training 

times. After the entire cohort of DRL algorithms are tested and plotted against the benchmark 

optimisation algorithms, the highest performing DRL algorithms are selected for further 

hyperparameter tuning and re-tested. This is to highlight the effect of hyperparameters on the 

training and performance of DRL algorithms. To facilitate that, a new evaluation method is 

developed to create and test several algorithms under a parameter sweep. In figure 5-2 below, 

the wall plot of the learning rate and discount factor sweeps of the advantage actor critic 

algorithm is shown. Learning rate is a  parameter between 0 and 1 which is measure of 

exploration in the DRL algorithms where higher exploration is 1 and high exploitation (no 

exploration) is a 0. On the other hand, the discount factor is a measure of foresight the 
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algorithm should have. A discount factor (ranging from 0-1) of 0 does not consider any future 

consequences to the current action and only focuses on the current reward whereas a value of 

1 forces the algorithm to consider all the consequent future rewards. The figure highlights the 

effect of changing the parameter on the training curve of the DRL algorithm and how tuning it 

can improve performance.

 

Figure 5-2 Hyperparameter Sweep. a) Learning Rate b) Discount Factor.  

Whilst the sweep proved the importance of hyperparameters; the model’s sensitivity to 

hyperparameters varied. Generally, these sweeps helped advise which values should be 

avoided in algorithm design and which are favourable. Additional experiments tested 

functionality such as linear scheduling of the learning rate and different combinations of the 

discount factors. 

5.2. Jowitt & Xu Network 

The case study selected for this research is the medium-sized benchmark test network for 

most pressure management applications in WDN; the Jowitt & Xu network. This network was 

first introduced in (Jowitt and Xu, 1990) and quickly became the research community’s 

standardised benchmark. The network consists of 22 nodes, 37 pipes and 3 tanks.  Due to the 

extensive work on choosing the correct valve location in previous research, we adopt three 

valve locations presented in (Araujo et al., 2006). Figure 5-3 below illustrates the network 

structure. The valve locations are denoted by the two opposite facing triangles whilst tanks are 

shown as the half-filled rectangles and nodes are represented as dots. Finally, the nodes are 
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connected through a series of pipes which are shown as lines. The EPANET simulation helps 

provide a colour map of current nodal pressures and link flows.  

 

Figure 5-3 Labelled Jowitt & Xu network including tanks, PRVs, nodes, and pipes. 

The pipe properties, nodal emitter coefficients and demand patterns were all modelled after 

the standard test network (Araujo et al., 2006, p. 138,139). The network properties and data 

are all displayed below in Tables 5-1 and 5-2.  
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Table 5-1 Benchmark pipe and node data 

Pipe ID                     Length           

(m)                

Diameter         

(mm)           

Roughness        

(m1/3s-1) 

Node ID                     Elevation        

(m)                

Base Demand      

(Ls-1) 

Emitter 

(Ls-1m-1/2) 

P01                 606 457 110 Junc 1 18 5 0.012055 

P02                 1930 457 110 Junc 2                   18 10 0.033656 

P03                 5150 305 10 Junc 3                   14 0 0.032088 

P04                 326 152 100 Junc 4                   12 5 0.005562 

P05                 844 229 110 Junc 5                   14 30 0.018383 

P06                 1274 152 100 Junc 6                   15 10 0.019238 

P07                 1115 229 90 Junc 7                   14.5 0 0.0053 

P08                 500 381 110 Junc 8                   14 20 0.018853 

P09                 615 381 110 Junc 9                   14 0 0.003532 

P10                 300 229 90 Junc 10                  15 5 0.019837 

P11                 743 381 110 Junc 11                  12 10 0.00627 

P12                 1408 152 100 Junc 12                  15 0 0.02441 

P13                 443 229 90 Junc 13                  23 0 0.016842 

P14                 249 305 105 Junc 14                  20 5 0.01949 

P15                 3382 305 100 Junc 15                  8 20 0.028884 

P16                 454 457 110 Junc 16                  10 0 0.013467 

P17                 931 229 125 Junc 17                  7 0 0.010957 

P18                 1600 457 110 Junc 18                  8 5 0.005286 

P19                 542 229 90 Junc 19                  10 5 0.009203 

P20                 777 229 90 Junc 20                  7 0 0.010819 

P21                 2782 229 105 Junc 21                  10 0 0.020118 

P22                 304 381 135 Junc 22                  15 20 0.034997 

P23                 1767 475 110 

P24                 1014 381 135 

P25                 762 457 110 

P28                 2334 229 100 

P29                 832 152 90 

P30                 914 229 125 

P31                 1097 381 6 

P32                 822 305 140 

P33                 1072 229 135 

P34                 864 152 90 

P35                 711 152 90 

P38                 411 152 100 

P39                 701 229 110 

P40                 1996 229 95 

P41                 2689 152 100 
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Table 5-2 Benchmark consumption factors data and reservoir levels 

Time (s) 1 2 3 4 5 6 7 8 9 10 11 12 

Fc 0.61 0.61 0.41 0.41 0.41 0.41 0.81 0.81 1.23 1.23 1.13 1.13 

23 55.2 55.3 55.5 55.6 55.7 55.8 55.9 56 55.7 55.4 55.2 55.1 

24 55.2 55.3 55.3 55.4 55.4 55.5 55.5 55.5 55.3 55.2 55 54.8 

25 55 55.1 55.2 55.3 55.4 55.4 55.5 55.5 55.5 55 54.8 54.7 

Time (s) 13 14 15 16 17 18 19 20 21 22 23 24 

Fc 0.92 0.92 0.92 0.92 1.03 1.03 0.92 0.92 0.82 0.82 0.61 0.61 

23 54.9 54.7 54.6 54.6 54.5 54.5 54.6 54.7 54.8 54.9 55 55.2 

24 54.8 54.8 54.7 54.6 54.6 54.5 54.7 54.7 54.7 54.8 54.9 55 

25 54.5 54.4 54.3 54.1 54 54 54.2 54.3 54.5 54.6 54.8 54.9 

The PRVs were installed to the benchmark on pipes P31, P01, and P25 using invisible nodes 

Junc 16.5, Junc 13.5, and Junc 1.5 that don’t affect the hydraulic simulation. These locations 

were chosen from literature (Araujo et al., 2006) as the best valve locations for the pressure 

management of the Jowitt & Xu test network. Finally, the reward formulation was completed 

through testing different reward scale ratios as detailed in section 4.2.4. The results proved 

that a ratio of 3:1 favouring the leakage objective produces the best trade-off between the 

two objectives of leakage and pressure violation minimisation. The pressure limits placed on 

this water network encourage that nodal pressures remain between a minimum of 10m and a 

maximum of 70m. 

5.2.1. Results 

When the algorithms were tested to minimise the background leakage, most of them managed 

to solve the problem effectively and optimise the reward. However, their performance varied 

greatly. The algorithms’ rewards over the three-day period were recorded in boxplot form with 

the mean reward marked with an ‘x’ and the inner points marked with an ‘o’ in figure 5-4. Box 

plots help demonstrate the algorithm’s performance throughout the episodes for clear 

comparisons. Smaller box plots highlight the algorithm’s ability to achieve reproducible results. 

In the initial testing stage, the difference in performance between the DRL models and the 

benchmarked optimisation algorithms was clear as seen in figure 5-4. The differential 

evolution (DE) algorithm scored the highest in reward maximisation at 41.61. This is followed 

by the PSO at 40.95 and NM algorithm at 40.19. The stability of the DE algorithm was a clear 

indication that the best result has been achieved by DE. The highest DRL algorithm was the 

augmented random search (ARS) which displayed 13% decrease in performance in comparison 

to DE. This was followed by the distributional DRL algorithm truncate quantile critics (TQC) and 

its actor-critic predecessor soft actor critic (SAC). The main portion of the DRL models (PPO, 
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Recurrent PPO, A2C, TRPO) performed similarly with an average reward of 30-35 apart from 

DDPG that yielded the worst performance with an average reward of 22.37. 

 

Figure 5-4 Initial algorithm performance - Jowitt & Xu network 

The corresponding processing speed is displayed in figure 5-5. Non-DRL computational time is 

recorded directly whilst DRL algorithms’ computational time is split into training time and test 

time. Training time denotes the time required to build and train the DRL model on the 

environment before it is deployed into the testing environment. All DRL methods were subject 

to an identical 20,000 timesteps of training to develop their neural network weighting and 

minimise loss. Testing time consists of the time required to process all 72 timesteps that make 

up the case study, saving logged data, and creating data visualisation figures. All training and 

testing runs are performed using an AMD Ryzen 4700U, 200MHz, 8 processor CPU. The DRL 

models far surpassed the benchmark models as displayed in figure 5-5. Processing times for 

DRL algorithms are split into two sections: The training time to build the DRL model; and the 

test time to run the background leakage case study. Hence, the test time represents how fast 

the trained models would interact with the network and is equivalent to the benchmark’s 

running time. The benchmark algorithms solved the case studies at various speeds with the 

fastest being the Nelder-Mead optimisation algorithm (NM) needing 233.3s to complete the 

problem, followed by the highest performing algorithm DE at 676s and PSO which required 

1274s. In comparison, the DRL algorithms increased computational efficiency and speed 

resulting in the fastest DRL model to complete the leakage problem in 22.1s which was the 
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DDPG model. The rest of the DRL models performed in the range of 22-30s with the slowest 

being the TQC model at 30.1s. This signifies an increase of processing speed equivalent to 7.8-

10.6x between the DRL algorithms and the Nelder-Mead model and a boost of 42.4-57.4x with 

the slowest benchmark algorithm (PSO). In addition, the DRL algorithms’ computational speeds 

corresponds to a range of 0.3-0.4s per timestep which more than qualifies the method to real-

time control.  

Within the field of DRL algorithms, all training loops were limited to 20,000 timesteps for fair 

comparison. This resulted in widely varying training times due to the methodology required to 

train the models. The slowest model to develop was the TQC algorithm which required 1312.9s 

to train followed by the SAC at 797.4s. The rest of the DRL models required training times 

varying from the fastest (PPO) at 216s and 401s for the recurrent PPO model. Essentially, 

training times do not affect the algorithms’ real time performance but produces insight on the 

computational loads of building the DRL models. 

 

Figure 5-5 Initial algorithm speed - Jowitt & Xu network. 

In the initial simulations the DRL models were trained using the original parameters set by 

Stable Baselines 3 libraries. These parameters, explained in table 5-3 below, were tuned using 

the sweep function shown in figure 5-2 where multiple agents were trained using a sweep 

function on the key parameters to highlight the best values for DRL model training. 
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Table 5-3 DRL algorithm training hyperparameters. 

Name Policy 

network  

Timesteps Learning 

rate 

Discount 

factor 

Value 

coefficient 

Clip range 

PPO MLP 20,000 0.0003 0.99 0.5 0.2 

Recurrent 

PPO 

MLP-

LSTM 

20,000 0.0003 0.99 0.5 0.2 

A2C MLP 20,000 0.0007 0.99 0.5 NA 

TRPO MLP 20,000 0.001 0.99 NA NA 

DDPG MLP 20,000 0.001 0.99 NA NA 

SAC MLP 20,000 0.00077 0.9 0.5 NA 

TQC MLP 20,000 0.0003 0.99 NA NA 

ARS MLP 20,000 0.02 NA NA NA 

Name Policy 

network 

Timesteps Learning 

rate 

Discount 

factor 

Soft update 

coefficient 

Buffer size 

SAC-

Tuned 

MLP 20,000 Scheduled 

0.001 

0.55 0.01 1e6 

TQC-

Tuned 

MLP 30,000 Scheduled 

0.0015 

0.25 0.005 1e6 

Name Policy 

Network 

Timesteps Learning 

rate 

Evaluating 

episodes 

Exploration 

noise 

Random 

perturbations 

ARS-

Tuned 

Linear 30,000 0.02 5 0.05 8 

The highest DRL performers of the initial simulation were SAC, TQC and ARS which were 

customised through hyperparameter tuning to produce better results. Designing these 

algorithm’s parameters through tuning and research produced new results which were 

displayed in figure 5-6. The tuned DRL algorithms are contrasted to the original settings and 

the benchmarked optimisation algorithm to highlight the effect of hyperparameter tuning and 

the DRL performance with respect to the benchmarked algorithms. Furthermore, the DRL 

algorithms’ theory is explained in section 4.3 and their parameters are explained in detail in 

Appendix C. 

The results showed a visible increase in performance for all three DRL algorithms pushing them 

within 5.5% from the highest performer (DE). The new rankings place the TQC and SAC models 

on par with the second place PSO algorithm at 40.59 and 40.72 average rewards respectively. 
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This is followed by the former best DRL algorithm ARS which now yields 39.3 average rewards 

just under the benchmark NM algorithm. This leap in performance closes the gap between the 

evolutionary algorithm DE and the DRL algorithm SAC where SAC has a 2.15% decrease in 

performance and a 25x boost in speed as shown in figure 5-7. 

 

 

Figure 5-6 Tuned algorithm performance - Jowitt & Xu network. 

In addition, the new processing time of the tuned DRL algorithms are plotted in figure 5-7 to 

provide insight on computational efficiency. Similar to figure 5-5, the processing time of the 

tuned DRL algorithms is split into training time (bottom) which is the time taken to develop 

and build the DRL models through a training loop (top) which is the time taken for the DRL 

algorithms to run the 3-day test scenario. The advantage of processing speed remains with the 

tuned TQC and ARS algorithms. Hyperparameter tuning has therefore unveiled a best new 

trade-off through SAC’s performance and speed making it the third best performing algorithm 

and third fastest value for processing speed as shown in table 5-4. 
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Figure 5-7 Tuned algorithm speed - Jowitt & Xu network. 

Moreover, the key episodic results of the case study are displayed below in table 5-4. The 

algorithms’ performances in maximising rewards, maximising water saved from leakage, 

minimising pressure violations, maximising carbon emission reductions and processing time. 

The carbon emissions are calculated using water leakage measurements and the conversion 

factor (176.7 KgCO2/million litres) dictated by the UK’s government values for the transport 

and distribution for 2023 presented in (Department for Energy Security and Net Zero, 2023). 

The best result in each category is marked in bold. PPO and Recurrent PPO models yielded the 

highest % of water saved at 73.4% and the highest carbon emissions reduction with 302.5 

kgCO2 reduced. However, this came at the expense of pressure violations that accumulated to 

the values of 300 for Recurrent PPO and 304 for PPO. In contrast, DE showed the best pressure 

violations minimisation with 46 violations and the best average episodic reward 995.2. Finally, 

the best processing speed was achieved by PPO for training time and DDPG for test time.  

Table 5-4 shows how deploying the optimisation algorithms can lead to significant reductions 

in leakage and pressure violations. We discuss these results further and draw conclusions in 

the next section.  
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Table 5-4 Key results – Jowitt & Xu 

Algorithm Average 

Reward 

Average 

Water Saved 

(%) 

Average 

Pressure 

Violations 

Carbon 

Emissions 

Reduction 

(KgCO2) 

Training 

Time (s) 

Test 

Time (s) 

NM 965.7 66.0 49 273.2 NA 233 

PSO 994.5 65.9 48 272.8 NA 1274 

DE 995.2 65.9 46 269.2 NA 676 

ARS-

Tuned 

943.5 65.5 78 270.9 335 26.6 

SAC-

Tuned 

975.0 64.2 49 269.5 850 27 

TQC-

Tuned 

976.3 65.2 50 270.1 1892.3 24.8 

TRPO 800.5 73.2 264 301.7 259 27 

PPO 780.0 73.4 304 302.5 216 26.6 

Recurrent 

PPO 

798.4 73.4 300 302.5 401 27 

DDPG 525.0 44.1 48 181.1 558 22.1 

A2C 822.5 73.2 300 301.8 321.5 22.7 

 

5.2.2. Discussions 

In this section, we discuss and evaluate the results of the Jowitt & Xu network for the 

background leakage case study presented in section 5.2.1. The main objectives of this case 

study was to minimise leakage through pressure valve control and minimising pressure 

violations for the benchmarked test network presented in (Jowitt and Xu, 1990). 

Initial Simulation 

When challenged with controlling PRVs in the Jowitt & Xu network, all optimisation algorithms 

performed favourably however results varied greatly. The DRL algorithm’s lower performance 

can be explained by their untuned parameters, yet they remain the most attractive option due 

to their high computational efficiency. All untuned DRL algorithms performed less favourably 

than the three benchmark optimisation algorithms in the initial simulation. Nevertheless, the 
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DRL algorithms have shown their ability to tackle complexity through their deep neural 

network’s function approximation capabilities. This was reflected in the processing times 

displayed in figure 5-5. DRL processing times described both computational needs to develop a 

policy (training time) and computational loads to solve the case study (test time). The test time 

demonstrated the computational efficiency of the DRL models in solving the case study with 

respect to the benchmark algorithms. The best DRL algorithm in terms of reward accumulation 

through this simulation (ARS) produced a 27.5x increase in computational speed to the best 

benchmark optimisation algorithm (DE).  

Furthermore, the training times highlight the DRL models’ ability to develop a beneficial policy 

using 20,000 timesteps of data. Shorter training times spotlights algorithms that can be easily 

modified and retrained as the network changed for continuous deployment. This could 

manifest as a continuous improvement (CI) loop that can adjust DRL models to seasonality 

trends throughout the year. Comparing the speed and performance results, unveils an 

interesting trade-off where the faster DRL models produce weaker performances to the slower 

benchmarks. The ARS, TQC and SAC models lie in the middle of the trade-off producing both 

high performances and a great increase in computational efficiency. Hence why, they were 

selected for hyperparameter tuning through a sweep function.  

Tuned Simulation 

Tuned DRL models were built for the top 3 performing DRL algorithms and contrasted to their 

original performances and the benchmark optimisation algorithms. Tuning the DRL 

hyperparameters increased the DRL models’ capabilities to reach higher rewards and even 

ranking TQC in the top 3 overall performances. This improvement seen through tuning with a 

simple sweep function provides an insight to how hyperparameter optimisation through 

expert systems such as Optuna can affect DRL capabilities (Akiba et al., 2019). For the purposes 

of this case study, the tuned algorithms have shifted the trade-off between performance and 

computational efficiency further to their favour. With the distributional DRL algorithm (TQC) 

performing within 5% of the current best practice of DE and providing a 25x increase in speed.  

This allows DRL algorithms to act in real-time to solve the pressure management problem 

whilst evolutionary algorithms such as DE are usually paired with model predictive control 

(MPC) (Sadler et al., 2020). The current standard of MPC often requires the use of high-

performance computing facilities to run simulations based on less accurate forecast data. In 

essence, deploying a DRL algorithm through MLOps (Machine Learning Operations) and a 

continuous improvement – continuous deployment architecture (CI/CD) can provide water 
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utilities a method to pressure control DMA-based networks in real time. This will further 

increase leakage minimisation as new settings can be assigned at intervals as small as 1s 

providing capabilities to fine-tune the pressure management policy. The current practice is 

pressure valves being controlled hourly. 

DRL Models Comparisons 

The deep deterministic policy gradient (DDPG) belongs to the hybrid methods used in this 

experiment. It exploits both value-driven, and policy-driven neural networks to converge at an 

optimised solution. However, due to its sensitivity to hyperparameters and tendency to 

converge at suboptimal policies, DDPG found itself performing worst in the DRL cohort. This 

could also be explained through DDPG’s use of deterministic policies which are less effective 

when dealing with temporal events such as demand pattern-influenced hydraulics. On the 

other hand, its high convergence properties materialised in test time making it the fastest 

model to solve the case study even if it was not well optimised. In comparison, Advantage 

Actor Critic (A2C) developed a better policy with both higher water saved % and lower 

pressure violations. Even though both algorithms belong to the same category of hybrid 

methods, A2C largely outperformed DDPG which could be due to its stochastic policy that 

incorporates exploration directly to its policy. The final hybrid method was SAC which is an off-

policy algorithm that improves on its predecessor (actor critic) through entropy regularisation. 

This allows it to navigate the exploration-exploitation trade-off even better by inherently 

including entropy in its value function. This simple change has increased the performance to 

the second highest DRL algorithm with an episodic reward of 975. It is clear that better-suited 

algorithms can navigate the exploration-exploitation trade off more effectively and deal with 

the stochasticity of the environment. This is also represented during SAC tuning where 

changing the discount factor (γ) has improved performance greatly. This was observed in all 

three tuned algorithms. SAC results showed a better compromise between leakage 

minimisation and pressure violations. It managed to save more water than DDPG at 64.2% and 

less pressure violations than A2C at 49 violations making it the best hybrid method in the DRL 

cohort.  

Building on SAC’s performance, the truncated quantile critics (TQC) algorithm alters the value 

function slightly to produce a value distribution over the states rather than an absolute sum. 

This qualifies it as distributional DRL techniques and explains the name as it truncates the critic 

network’s value quantiles. This distribution managed to improve performance slightly making 

TQC the highest performing DRL algorithm at 976 episodic rewards. This translated into a slight 

increase in water saved and 50 pressure violations when compared to its predecessor SAC. 
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In retrospect, policy driven methods (TRPO, PPO, Recurrent PPO, ARS) couldn’t match their 

hybrid alternatives. This can be explained with the policy-driven methods’ lower stability and 

sensitivity to changes in the environment due to the absence of the value function. TRPO 

tackles this instability through trust region methods. However, the trust region constraints led 

to conservative policy updates and hindered the algorithm’s ability to explore better solutions. 

This affected the algorithm’s performance making it less beneficial than hybrid methods yet an 

improvement on other policy-driven methods (PPO, Recurrent PPO) with 800.5 episodic 

rewards. The rewards were manifested through a great performance in leakage minimisation 

(73.2%) at the expense of pressure violations (264). Comparable performances were achieved 

by PPO and Recurrent PPO agents that exploited the leakage objective at the expense of the 

pressure violation objective both saving the highest amount of water at 73.4% and violating 

304 and 300 pressure limits respectively. Their performances in leakage minimisation have 

also translated in carbon emissions reduction placing them joint first with episodic reductions 

of 302.5kg of CO2. Recurrent PPO’s ability to minimise pressure violations better placed it 

ahead of its predecessor PPO. This could be due to the long short-term memory (LSTM) 

functionality placed on the neural networks however their results are too close to draw a valid 

conclusion. Finally, the most effective policy driven agent was the augmented random search 

(ARS) algorithm.  ARS managed to provide a better trade-off between saving water and 

pressure regulation by focusing more on pressure regulation than its neighbours PPO and 

recurrent PPO. As a result, it developed a policy that produced lower violations (78) at the 

expense of lower water saved (65.5%). ARS learns through random search on the 

parameterised policy equation making it more sample efficient but slightly less stable. 

Nevertheless, its simple exploration strategy has waged well in the case study.  

5.3. Northumbrian Water Network 

In contrast to the Jowitt & Xu network, the second case study tackles a much larger system 

provided from a real network under the supervision of Northumbrian Water Living (NWL). 

NWL has agreed to the use of their hydraulic data and models to simulate the control of 

pressure reducing valves (PRVs) and the throttle control valves (TCVs) for the purpose of 

pressure management and leakage reduction. Whilst the Jowitt & Xu network represents the 

size of approximately 1-2 DMAs in what is considered a medium sized WDN problem; NWL’s 

SZ08 model represents a full water distribution system consisting of 19 DMAS and records of 

36 unique demand patterns for residential building, police stations, hospitals, commerce and 

more. The complexity of this case study increases exponentially when comparing network sizes 

hence increasing computational load and testing the limits of the optimisation algorithms 
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tested. A summary of network parameters of SZ08 and Jowitt & Xu is shown below in table 5-

5. 

Table 5-5 Summary of network parameters 

Name Junctions Pipes Valves Pumps Tanks/Reservoirs DMAs Size 

Jowitt & Xu 25 37 3 0 3 1 Medium 

SZ08 1988 2022 32 26 11 19 Extra Large 

Controlling the entirety of SZ08 should serve as a challenging task due to complexity alongside 

the predetermined locations of valves. SZ08’s valves have been placed many years ago to 

control the inflow to DMAs and tanks amongst other objectives whilst the Jowitt & Xu valve 

locations were based on optimised locations for pressure regulation and leakage management 

derived from literature. Hence, valve control is expected to be less effective in NWL’s case 

study. In essence, the primary goal of this case study to experiment with DRL’s scalability and 

performance under high complexity. Due to the size of the network, it is difficult to provide a 

fully annotated figure. Therefore, the network architecture and key visualisations will be 

displayed in figure 5-8 and figure 5-9. 

 

Figure 5-8 SZ08 network architecture 

 

Figure 5-9 SZ08 key visualisation of high pipe flows and nodal pressures. 

In order to initialise the experiment, emitter coefficients had to be introduced to the SZ08 

model to simulate background leakage. This is achieved through manipulating equations 2-9 
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and 3-2 to find the appropriate emitter coefficient within the background leakage emitter 

range of 0 to 0.196 Ls-1m-0.5. Hence, emitter coefficients were assigned based on the 

neighbouring pipe lengths where the node with the largest neighbouring pipe length was 

assigned an emitter coefficient of 0.196. The remaining nodes’ emitter coefficients were 

calculated as a ratio to the maximum pipe length value as described in equation 5-1. 

𝑘 =
∑ 𝐿𝑖𝑗

𝑀
𝑗

max (𝐿)
× 0.196                                                                                                                            ( 5-1 ) 

Where k is the emitter coefficient (Ls-1m-0.5), Lij is the pipe length between nodes i and j (m), M 

is the total number of nodes and max(L) is the maximum connected pipe length. Using this 

equation, we can ensure that nodal emitter coefficients remain proportional to the length of 

connected pipes as described in equation 3-2 and within the calculated limit of background 

leakage (0.196). 

Furthermore, an initial simulation was conducted to choose the best reward scales for this 

particular case study as describe in section 4.2.4. The results unveiled that a ratio of 3:1 

favouring leakage management over pressure violations produces the best trained DRL 

algorithms for the objectives at hand. This is demonstrated in figure 5-10 below which 

highlights how agents with a 3:1 ratio minimised penalty best. The pressure limits of this 

experiments encourage nodal pressures to be kept between 10m and 200m. The higher upper 

limit of 200m is placed to allow for the high pressures observed in trunk mains.  
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Figure 5-10 Episodic penalty plots for different reward scales - SZ08 

The benchmark optimisation algorithms (NM, PSO, DE) and DRL algorithms (PPO, Recurrent 

PPO, TRPO, A2C, SAC, TQC, ARS, DDPG) are tested using the same network and environment 

using their initial algorithms to evaluate performance and speed. In this case study the DRL 

algorithms were not subjected to any hyperparameter tuning due to the high computational 

load of training agents. The hyperparameters used for the DRL algorithms are listed below in 

table 5-6. 

Table 5-6 DRL agent hyperparameters - SZ08 

Name Policy 

network  

Timesteps Learning 

rate 

Discount 

factor 

Value 

coefficient 

Clip range 

PPO MLP 20,000 0.0003 0.99 0.5 0.2 

Recurrent 

PPO 

MLP-

LSTM 

20,000 0.0003 0.99 0.5 0.2 

A2C MLP 20,000 0.0007 0.99 0.5 NA 

TRPO MLP 20,000 0.001 0.99 NA NA 

DDPG MLP 20,000 0.001 0.99 NA NA 

ARS MLP 20,000 0.02 NA NA NA 
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Name Policy 

network 

Timesteps Learning 

rate 

Discount 

factor 

Soft update 

coefficient 

Buffer size 

SAC MLP 20,000 0.00077 0.9 0.005 1e6 

TQC MLP 20,000 0.0003 0.99 0.005 1e6 

 

5.3.1. Results 

Tackling the SZ08 case study proved more challenging for all optimisation algorithms as they 

attempted to fulfil the objectives of leakage minimisation and pressure regulation. This was 

due to multiple factors that include the increased complexity through larger observation and 

action spaces along with the sub-optimal valve locations. Nevertheless, the optimisation 

algorithms succeeded in minimising leakage and pressure violations collecting positive 

rewards. The positive rewards signify the model’s improvement on the current settings of the 

networks which would gain a reward of zero. The reward spread across the network junctions 

are plotted using the data visualisation tools mentioned in chapter three and displayed in 

figure 5-11. 

 

Figure 5-11 Reward spread across junctions. 

When evaluating the rewards distribution across the junctions in the network, all the different 

valve settings were only able to enact hydraulic change over nodes in the middle and right side 
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of the plot. The unaffected junctions display an area of the network that is not covered 

hydraulically by the current collection of pressure valves. Using this plot, we could identify 

areas in the network that are more vulnerable to background leakage as they cannot mitigated 

by pressure management.  

Rewards collected were gathered in a box plot for each algorithm to highlight their 

performance and draw comparisons in figure 5-12. In this figure, rewards during each step of 

the case study were plotted using a ‘o’ and the average was represented with an ‘x’ across the 

box plot. The algorithms generally performed comparably with the benchmark optimisation 

methods gaining a slight advantage on the DRL models. Benchmark algorithms scored the 

highest performances with DE achieving 89.74, PSO at 89.04, and NM at 87.11. The DRL 

models were led with TRPO which managed to exploit a beneficial trust region and producing 

average rewards at 82.36 followed by a drop to SAC which lies at the 78.52 mark. Most DRL 

models performed within the 75-80 reward range except the DDPG model which incurred the 

worst result at 32.19.  

 

 

Figure 5-12 Algorithm performance - SZ08 

The processing speed associated with each method was plotted in a bar graph displayed in 

figure 5-12. The optimisation algorithms were graded based on processing time for benchmark 

algorithms and test and training times for DRL algorithms. Training times for DRL models 

denotes the period required for the algorithms to be developed through 20,000 iterative 
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timesteps whilst the test time denotes the time required to solve the case study using 

observations. Therefore, the DRL test times and the benchmark processing times signify the 

algorithms’ computational efficiency in solving the SZ08 case study.  

Generally, the DRL models have managed to decrease processing time considerably in 

comparison to the benchmark algorithms providing an 8.39x speedup in in computational time 

of the highest performing DRL model (TRPO) in comparison to the highest performing 

benchmark algorithm (DE). The Nelder-Mead algorithm produced the slowest processing time 

demanding 23238s which equates to 6 hours, 27 minutes and 18 seconds followed by PSO at 

12909.4s and DE at 7013.1s. In terms of test time, also known as implementation time, DRL 

models produced faster processing speeds. The fastest model was ARS needing 691.6s and the 

slowest being TRPO taking 835.7s to solve the SZ08 network.  

All DRL models were assessed on their training time with the longest trained algorithm being 

the TQC followed by its non-distributional predecessor SAC at 6760s and 6422s respectively.  

The fastest training simulation was achieved by the TRPO at 2667s and PPO at 3535s. Training 

time could be beneficial as it indicates the computational expenses required to create and 

update the DRL models.  

 

Figure 5-13 Algorithm speed - SZ08 

Overall, a summary of the key episodic results of the experiment is collected in table 5-7. The 

algorithms are evaluated based on rewards, water saved, pressure violations, carbon 

emissions, and processing time. The best result for each category is also marked in bold to 

insert an additional perspective to the algorithms’ performances. Differential evolution 
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optimisation managed to strike the best trade-off between pressure violations and water 

saved, hence gathering the highest average episodic reward. Jointly, the PSO and NM 

algorithms minimised average episodic pressure violations with 2284 violations. The best 

performance in minimising leakage produced a meagre 0.693% water savings which was 

awarded to the TRPO algorithm. The 0.693% water saving corresponds to the highest savings 

in episodic carbon emissions of 169.3 kg CO2 saved. Finally, the TRPO also produced the best 

training time amongst DRL models at 2667s whilst ARS solved the testing scenarios under 692s.  
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Table 5-7 Key results - SZ08 

Algorithm Average 

Reward 

Average 

Water 

Saved (%) 

Average 

Pressure 

Violations 

Carbon 

Emissions 

Reduction 

(KgCO2) 

Training 

Time (s) 

Test Time 

(s) 

NM 2097 0.626 2284 156.4 NA 23238 

PSO 2140 0.633 2284 159.8 NA 12909.4 

DE 2153 0.646 2286 160.3 NA 7013.1 

ARS 1775 0.690 12604 169.0 3535 691.6 

SAC 1852 0.679 12608 166.2 6422  704.9 

TQC 1606 0.667 12584 163.3 6760 699.5 

TRPO 1892 0.693 22955 169.8 2667 835.7 

PPO 1686 0.691 12604 169.2 3652 741.9 

Recurrent PPO 1768 0.691 12604 169.2 5989 700.8 

DDPG 772.6 0.268 12276  66.02 4656 695.7 

A2C 1773 0.691 12604 172.7 3726 740.3 

 

5.3.2. Discussions 

The discussion section details insights on the system zone 08 network (SZ08) case study 

provided by Northumbrian Water Living (NWL) which models the water distribution network 

for Lumley, England. The experiment initiates appropriate emitter coefficients to model 

background leakage and minimises its detrimental effects through pressure management. By 

controlling pressure reducing valves (PRVs) and throttle controlling valves, optimisation 

algorithms can attempt to minimise water lost through leakage and nodal pressure violations. 

The SZ08 network tests the scalability of DRL models through its high complexity and multiple 

dimensions. Results can be summarised in terms of performance (reward collection) and speed 

(running time). 

Performance 

SZ08 tested the algorithms’ abilities to navigate high dimensional problems due to the 

network’s size and differing components. Unlike the previous experiment, DRL models were 

not hyperparameter tuned as the process would be too computationally expensive given the 

complexity of the case study despite its guaranteed improvement in policy formulation and 

performance. The untuned DRL models were trained and tested on the SZ08 against three 
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benchmark optimisation models (Nelder Mead, Particle Swarm Optimisation, and differential 

evolution). Most algorithms managed to solve the case study effectively apart from DDPG that 

converged at a sub optimal result due to its deterministic nature. Despite the heightened 

ability to minimise pressure violations, the tested optimisation algorithms were unable to 

minimise leakage past 0.693%. This was a downgrade in comparison to the previous Jowitt & 

Xu network however could be explained by the lower valve to node ratio and inefficient valve 

locations. Overall, the benchmark DE algorithm performed the best as it collected 2153 

episodic rewards by striking the best balance between leakage minimisation and pressure 

violations although the NM and PSO algorithms received the joint best result in minimising 

pressure violations. The PSO algorithm scored second (2140) place due to its performance in 

pressure management followed by NM which scored third (2097) due to its lower capabilities 

in leakage minimisation.   

Surprisingly, the DRL cohort was led by the TRPO model which proved to be more effective in 

high-dimensional problems. Its trust region exploitation has equipped it with the stability 

required to solve this case study. At a mere 12% decrease in performance from the DE 

algorithm, TRPO received 1852 episodic rewards and the highest overall water saved (0.693%) 

This led to the highest carbon emissions reduction with 169.8kg of CO2 saved. The other DRL 

models in the policy driven family scored considerably lower with ARS at 1775 episodic 

rewards followed by the Recurrent PPO and PPO methods at 1768 and 1686 respectively. 

These results highlight the importance of stability to tackle the SZ08 problem with more stable 

DRL algorithms scoring higher. In addition, Recurrent PPO’s ability to perform higher than the 

PPO model proves the importance of neural network architecture in optimisation as the major 

difference between the two models is the inclusion of the long short-term memory (LSTM) 

module in the Recurrent PPO neural network architecture. LSTM cells can store the 

sequentially processed data to represent long-term dependencies which make it an attractive 

choice in time-related problems.  

The hybrid DRL methods were led by SAC which was the second highest performing DRL model 

after TRPO with 1852 episodic rewards and lower pressure violations of 12604 rather than 

TRPO’s 22955 violations. With the exception of the advantage actor critic (A2C) model, the 

remainder of the hybrid DRL models performed poorly. A2C saved 0.691% of the water and 

landed on 1773 episodic rewards which places it in between ARS and Recurrent PPO in terms 

of performance. However, TQC and DDPG algorithms had the lowest performances with 1606 

and 773 episodic rewards respectively further proving the importance of developing a 

stochastic policy rather than a deterministic policy in DDPG. TQC’s performance leads us to 
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believe that the distributional DRL methods do not tackle complexity well due to the large 

state space that forms a scarce value probability distribution.  

Speed 

A large benefit of using DRL for optimisation purposes is its ability to build intelligence and 

minimise computational load. Hence why, comparing DRL model’s speed to the benchmark 

algorithms is necessary. Figure 5-12 displays the associated processing time for all the 

optimisation algorithms including training and test times for the DRL cohort.  All algorithms 

were tasked with completing 3 episodes consisting of 24 steps each to model three 24-h days. 

The processor used was an AMD Ryzen 4700U, 200MHz, 8 processor CPU. In contrast to the 

Jowitt & Xu case study, the SZ08 problem incurred much heavier computational loads resulting 

in slower processing speeds. This was apparent in NM’s processing which lasted 23,238 

seconds which is equivalent to approximately 6 hours and 27 minutes making it the slowest 

algorithm. As expected, the other benchmark algorithms were slower than all the DRL models 

with PSO requiring 12909 seconds and DE with a significant improvement at 7013s.  

When evaluating DRL algorithms, it was necessary to differentiate between training time used 

to develop a policy and test time used to implement the policy. Training time provides insight 

into algorithm design and possible computational expense for retraining whilst test time 

provides insight into whether they can be viable to real-time control or rather the standard 

model predictive control. TRPO held the fastest training time only demanding 2667s to 

develop the best performing DRL policy although it required 835.7s to solve the problem 

making it the slowest test time. ARS produced the second fastest training time with 3535s and 

the fastest test time with 691.6s. Therefore, the fastest DRL test time (ARS: 691.6s) produces a 

10x improvement in computational speed than the fastest benchmark algorithm (DE: 7013s). 

This is due to ARS’ low computational load since it utilises a simple random search method 

over the parameterised policy equation. The rest of the DRL cohort incurred a training time 

ranging between 1-2 hours with the slowest being TQC demanding 6760s of training. 

Algorithms with large neural networks such as TQC and SAC often demand long training times 

as displayed in both experiments. 

5.4. Concluding Remarks 

Chapter 5 included two centrepiece experiments that illustrated DRL algorithm’s ability to 

minimise background leakage through advanced pressure managements. Valve control of a 

benchmark test network (Jowitt & Xu network) and a real water network (SZ08) provides the 

variety needed to highlight the scalability and computational efficiency of DRL techniques. 
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Initially, the methodology used for the background leakage case studies was detailed. The 

benchmark optimisation algorithms were used to contextualise the DRL cohorts and draw 

comparisons with the current best practices. The experiment develops a differential evolution 

algorithm in addition to the particle swarm optimisation and the Nelder Mead algorithm. The 

problem setup dictated the process used to design the experiment through a foundation of 

equations and algorithms derived from literature. The test scenarios used to evaluate 

algorithm performances and the metrics recorded were designed to highlight scalability, 

computational demand, and the effects of hyperparameter tuning. Furthermore, this chapter 

introduced the novel use of eight DRL algorithms for advanced pressure management as viable 

real-time alternative optimisation algorithms. The optimisation objectives were to 

simultaneously minimise nodal pressure violations and background leakage within the network 

through valve control. The DRL agents developed were tested alongside benchmark 

optimisation algorithms to assess their performance and computational efficiency. 

The Jowitt & Xu network was the benchmark used to experiment the effects of pressure 

management on minimising background leakage. The DRL cohort consisting of 8 algorithms is 

compared to the benchmark algorithms with a focus on their performance and speed. The 

results are displayed in figures and a summary table highlighting key metrics such as carbon 

emissions, water saved, reward collected and more. The best performing DRL algorithms were 

tuned by changing the hyperparameters to demonstrate how DRL algorithms can be improved 

further through hyperparameter optimisation.  

SZ08 water network was collected and developed by Northumbrian Water to control the 

DMAs based in Lumley, England. This network is inherent with more complexities due to size, 

various customer demands, and network components as shown in table 5-5 and figures 5-8 & 

5-9. Background leakage is introduced to the nodes and the optimisation algorithms 

mentioned above are used to solve the test scenarios. The results are compared through an 

extensive discussion of algorithm performance and speed. 

Whilst the DRL algorithms on average performed less favourably than the current best 

practice; several models managed to perform comparably to the DE and PSO algorithms with 

little to no hyperparameter tuning. Hyperparameter tuning and training methods have had a 

great impact on algorithm performance making it clear that further improvement is possible 

through hyperparameter optimisation. Whilst hybrid methods were more effective in 

developing DRL models for the smaller case study, it lacked the stability offered by policy 

driven methods for the larger application. Considering their significant increase in 
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implementation time and the lower computational load, DRL algorithms provide a true 

promise for real-time control (less than 0.4s per prediction) on a DMA level. However, due to 

the complexity of whole water distribution systems shown in SZ08, real-time control is slightly 

out of the scope of DRL using regular processors (around 10s per prediction). Using high end 

computing could improve that greatly and make real-time control of whole system zones a 

reality. The use of real-time control in WDN pressure management is a novelty that is bound to 

increase water savings and carbon reductions as they allow valves to react more instantly to 

changes in the network whereas the current standard receives signals hourly or even daily.  

Comparing the two case studies, it is clear that the optimisation approach is more beneficial on 

a DMA scale however still applicable on a large scale. The SZ08 case study provides a more 

complex large-scale problem with multiple demand patterns and varying topographies. 

Therefore, DRL algorithms that prioritise stability and sample efficiency such as TRPO perform 

better. On the other hand, Jowitt & Xu provides a smaller scale and better valve locations 

resulting in better overall results. DRL algorithms with better exploration properties managed 

to overcome local optima found at 780-800 with high water saved% and high-pressure 

violations. Thus, hybrid methods such as A2C and SAC performed well whilst the distributional 

DRL method TQC performed best. The difference in performance between the two case 

studies could suggest that optimising on a DMA scale could affect neighbouring areas resulting 

in additional trade-offs. DRL models can be trained to enact pressure control policies that 

significantly minimise water loss on the DMA level nevertheless future work should focus on 

experimenting with multi-agent DRL control. Using this technology, it may be possible to train 

agents individually on DMAs and have them communicate through an overarching MADRL 

system. Hence, this ensures that we harness the possible savings on a DMA level without 

creating sub-optimal states on neighbouring DMAs in a more open-looped fashion. The design 

of DRL algorithms is very complex and is brim with possibilities for customisation hence future 

work should encourage the use of different neural network architectures, optimisers, 

activation functions and pre-training techniques.  
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6. Burst Leakage Case Study 

The contrast between burst and background leakage lies within the size of the leak. The 

definition of burst leaks are leakage events that are detectable through modern detection 

techniques hence they are often repaired quickly. Therefore, burst leakage cause less damage 

than background events on the long run. Burst events are represented in literature by 0.5m3/h 

flow rates at a pressure of 50m (García and Cabrera, 2007). This is modelled by an emitter 

coefficient greater than 0.196 Ls-1m-0.5 as derived in chapter 4.1.1. Throughout the burst 

leakage case study, we will detail the methodology used to introduce burst events to the water 

distribution network at random nodes followed by pressure valve commands. The pressure 

management commands will be fed from one of three benchmark non-DRL algorithms or the 

eight DRL algorithms being tested. The reward function is formulated through comparisons of 

DRL algorithms trained using different scale ratios. After that, the algorithms solve the 

benchmark Jowitt & Xu network and the real SZ08 hydraulic model. The results for both 

networks are displayed through various box plots, bar graphs and summary tables. Finally, the 

findings are discussed, and conclusions are drawn. The main aims of this case study are the 

following: 

• Provide a method to mitigate random bursts in real-time through pressure control. 

• Test the viability and scalability of different DRL models in WDN pressure management 

under randomised burst conditions. 

• Highlight the differences between DRL performances to popular optimisation 

algorithms. 

• Highlight differences and similarities between the performances of the DRL agents in 

burst leakage reduction. 

The full case study including python files, figures, excel reports and hydraulic files can be 

accessed privately on GitHub by following this link. In addition, the main results and figures for 

this chapter is included in Appendix H and I. 

6.1. Methodology 

6.1.1. Problem Setup 

Burst leakage is easily detectable however they can cause huge water loss, and, in most cases, 

there are no real-time contingencies to minimise the leakage other than pipe 

repair/replacement. Thus, we have devised this scenario to test the effect of pressure 

management on mitigating leakage through burst events. In this scenario we evaluate the 

https://github.com/AhmedNegmDRL/WDN-DRL
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distribution of the water network in question with randomised burst events carrying a leakage 

discharge coefficient larger than 0.196 forming the ‘leaking network’. This is meant to model 

irreversible pipe failures with high water loss. Bursts count will match the number of pressure 

valves in the network to make sure that both networks have the same capabilities at solving 

the problem. The randomised burst events will force the optimisation algorithms to use the 

observation data to make connections between pressure fluctuations, leakage and PRV 

locations. Therefore, when a sudden change in pressure appears in the observation data, the 

optimisation algorithms are expected to identify that as a leak implicitly and moderate the 

closest valve to minimise leakage. In the interest of fairness, all optimisation algorithms will be 

developed from an environment with randomised bursts and applied to the test scenarios. 

Following that, the networks will utilise a universal leakage exponent of 1.18, which is the 

widely accepted value in literature (Araujo et al., 2006; Saldarriaga and Salcedo, 2015b), to 

complete the leakage rate equation. In response to the leakage, our optimised agent (i.e., 

valves guided by the optimisation algorithm) will produce an action to mitigate this leakage, 

hence creating the ‘solved network’. The leakage rate and violation count at each node before 

and after PRV action will be evaluated to explore the effect of the action on the network. The 

difference in performance between the solved and leaking networks will prove as a measure of 

the effect of the action on mitigating the leak. Algorithm 6-1 below describes how the burst 

leakage scenario is performed.  
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Algorithm 6-1 Burst scenario pseudo code 

Input: link flows and nodal pressures  

Output: Reward  

for each episode do  

         initialise all valve settings to be 40. 

 for each step of episode, state s is not terminal, timestep is not 24.  

             do          

                      introduce leakage nodes and magnitude.  

                      evaluate leaking network penalty. 

         a ← action given by optimisation algorithm for state s.  

                      evaluate network after action penalty. 

                      reward r given by difference in leakage rate and pressure violations. 

                      laziness penalty if settings haven’t changes in three steps. 

                      get the new state s’. 

                      log reward, violations, leakage metrics 

         take action a, observation r, s’.  

         s ← s' 

 end  

end 

The reward (r) function will be calculated based on equation 3-4 that calculates the difference 

between the ‘solved’ and ‘leaking’ networks’ weighted penalties. The reward scales are 

modified to navigate the objective trade-off between water loss and pressure violations 

iteratively using the method described in section 4.2.4. for each network. 

6.1.2. Testing 

As the environment is run in episodes consisting of 24 timesteps, each timesteps draws from 

customer demands to model the hydraulic requirements for every hour of the day. Hence why, 

the testing stage will consist of the optimisation algorithms solving three episodes of data and 

the rewards, leakage and violations will be reported. In addition, the computational effort 

required will be represented as the time needed to complete the test cases. Whilst the non-

DRL algorithms can tackle the problem in situ, the DRL algorithms must be trained to develop 

their policies and adjust their deep neural networks weightings. The developed DRL model will 

be tested on the same scenarios as the benchmark models. The aim of this case study is to 

highlight the ability of DRL algorithms to effectively manage pressure valves under randomised 

burst locations. The algorithms will be judged on their ability to minimise pressure violations 
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and leakage control in the WDN. The different networks are used to test the scalability of the 

DRL models in medium and large complex problems. 

6.2. Jowitt & Xu Network 

The Jowitt & Xu network is the name given to a standardised benchmark network that is 

popular in the research community. It was first introduced in (Jowitt and Xu, 1990) and 

consists of 22 nodes, 37 pipes and 3 tanks. The WDN architecture is presented in figure 6-1 

with a pressure and flow colourmap to help understand the state of the network. Many 

researchers produced results explaining the optimal valve locations for pressure management 

in Jowitt & Xu however the most effective arrangement was mentioned in (Araujo et al., 2006). 

Adopting the same number of valves and locations from (Araujo et al., 2006), PRVs are placed 

on pipes P01, P31 and P25 also shown in figure 6-1. 

 

Figure 6-1 Labelled Jowitt & Xu network including bursts (red) tanks, PRVs, nodes, and pipes. 

The testing network will include three randomly located bursts introduced with an emitter 

coefficient of 3 whilst the other nodes’ emitter coefficients are initialised at 0 to extenuate the 

effects of bursts on water distribution. The randomiser has selected nodes ‘4’, ‘9’ and ‘11’ as 
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the burst locations marked in red in figure 6-1. The network hydraulic properties described 

above are also detailed in table 6-1 with the slight amendment to emitter coefficients. The 

customer demand patterns are identical to the ones used in table 5-2 to keep the benchmark 

identical.  
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Table 6-1 Benchmark pipe and amended node data. 

Pipe ID                     Length           

(m)                

Diameter         

(mm)           

Roughness        

(m1/3s-1) 

Node ID                     Elevation        

(m)                

Base Demand      

(Ls-1) 

Emitter 

(Ls-1m-1/2) 

P01                 606 457 110 Junc 1 18 5 0 

P02                 1930 457 110 Junc 2                   18 10 0 

P03                 5150 305 10 Junc 3                   14 0 0 

P04                 326 152 100 Junc 4                   12 5 3 

P05                 844 229 110 Junc 5                   14 30 0 

P06                 1274 152 100 Junc 6                   15 10 0 

P07                 1115 229 90 Junc 7                   14.5 0 0 

P08                 500 381 110 Junc 8                   14 20 0 

P09                 615 381 110 Junc 9                   14 0 3 

P10                 300 229 90 Junc 10                  15 5 0 

P11                 743 381 110 Junc 11                  12 10 3 

P12                 1408 152 100 Junc 12                  15 0 0 

P13                 443 229 90 Junc 13                  23 0 0 

P14                 249 305 105 Junc 14                  20 5 0 

P15                 3382 305 100 Junc 15                  8 20 0 

P16                 454 457 110 Junc 16                  10 0 0 

P17                 931 229 125 Junc 17                  7 0 0 

P18                 1600 457 110 Junc 18                  8 5 0 

P19                 542 229 90 Junc 19                  10 5 0 

P20                 777 229 90 Junc 20                  7 0 0 

P21                 2782 229 105 Junc 21                  10 0 0 

P22                 304 381 135 Junc 22                  15 20 0 

P23                 1767 475 110 

P24                 1014 381 135 

P25                 762 457 110 

P28                 2334 229 100 

P29                 832 152 90 

P30                 914 229 125 

P31                 1097 381 6 

P32                 822 305 140 

P33                 1072 229 135 

P34                 864 152 90 

P35                 711 152 90 

P38                 411 152 100 

P39                 701 229 110 

P40                 1996 229 95 

P41                 2689 152 100 

Finally, the reward scales for DRL were also selected through training a DRL algorithm using 

different scales. The resultant DRL models were tested to evaluate their ability to optimise the 

primary objectives (leakage and pressure violations). Comparing the penalties incurred by 
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these models in figure 6-2 unveils the best trade-off being at scaling the objectives at a ratio of 

1:1. Due to the randomised nature of the leaks, the reward scales were tested several times to 

ensure that this ratio is optimal which it was. 

 

Figure 6-2 Episodic penalty for reward ratios 

6.2.1. Results 

The case study aims to focus on two main aspects of the results which are performance and 

speed. The performance results can be represented by the rewards gained throughout the 

testing episodes displayed in figure 6-3. In this box plot, individual step rewards gained at each 

hour are represented by an ‘o’ and the mean step reward is marked with an ‘x’ while the box 

marks the interquartile range. Tackling randomised bursts is an issue that requires machine 

intelligence due to the added complexity. Hence why, there is a clear improvement in 

performance when deploying DRL models over the benchmark optimisation algorithms. DRL 

models learnt to flag changes in the observation space (nodal pressure readings) caused by 

leakage and react by managing the nearest pressure valve. The best performance overall was 

achieved by the Advantage Actor Critic (A2C) algorithms with an average of 1.76 step reward 

followed closely by ARS (1.73) and Recurrent PPO (1.71). Their smaller interquartile ranges 

highlight their ability to adapt to the varying demands of the episode (daily customer 

demands) by modifying the valve settings whilst algorithms that exploit safe beneficial settings 

such as TRPO show a larger interquartile range. The benchmark algorithms, led by the particle 

swarm optimisation algorithm, have collected the lowest rewards due to their inability to rely 

on experience to influence their actions. To improve their results, they need to rely on highly 

accurate predictive models and are insufficient on their own.  
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Figure 6-3 Algorithm performance - Jowitt & Xu 

The processing time provides context on the computational effort needed to solve the burst 

scenarios through valve management. In figure 6-4, we display the different processing times 

for the benchmark optimisation algorithms, the DRL training times and the DRL test times. It is 

crucial to distinguish between training times required to develop the behavioural policy and 

test time required to solve the burst scenario. Throughout all test scenarios, it is clear that DRL 

algorithms decrease computational demand considerably especially when comparing DRL test 

times to the benchmark optimisation times. This further proves the ability of DRL algorithms to 

tackle complexity and long-term dependencies through feature extraction. Comparing the best 

performing algorithms from the previous figure yields a 197.6x increase in speed when 

deploying the A2C algorithm rather than the PSO algorithm. The fastest DRL test time was 

achieved by the A2C model only requiring 17.4 seconds followed by the DDPG model (17.8s) 

and the SAC model (18s). Consequently, all the DRL test times qualify them for real-time 

control as they signify the time taken to solve 72 timesteps over 3 episodes. 

On the other hand, DRL training times show the time taken to run 20,000 timesteps developing 

the best behavioural policy. All DRL algorithms managed to reach their best reward within 

20,000 training timesteps and increasing them showed minimal or no improvement. Training 

time depends mostly on the DRL methodology and the neural network architecture hence why 

more complex algorithms such as the distributional DRL algorithm (TQC) took the longest to 
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develop. Similar to the previous case studies, the second slowest training time was achieved by 

SAC. The fastest training time was awarded to ARS with 252s and the TRPO with 282s. 

 

Figure 6-4 Algorithm speed - Jowitt & Xu network 

Overall, the data collected from the case study can be summarised into the episodic results 

table 6-2 below. Each algorithm’s episodic performance in the three major sections of rewards 

accumulation, water loss and pressure violations are recorded alongside that carbon emissions 

reduced and total processing time. Furthermore, the best results are highlighted in bold to 

extenuate the most effective algorithm in each category. The A2C model yielded the highest 

average rewards at 42.15 and the fastest implementation (test) time at 17.4s making it the 

fastest and most effective algorithm for real time pressure management in this case study. A2C 

was also the highest performer in terms of water saved (58.46%) and carbon emissions 

reduction (5650kg). This was followed by Recurrent PPO (41) which improved greatly on the 

PPO rewards (20.43) and scored best in pressure violation minimisation with only 58 

violations. Finally, the fastest algorithm in policy development was ARS due to its simpler 

methodology only requiring 254s.  
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Table 6-2 Key results - Jowitt & Xu 

Algorithm Average 

Reward 

Average 

Water 

Saved 

(%) 

Average 

Pressure 

Violations 

Carbon 

Emissions 

Reduction 

(KgCO2) 

Training 

time (s) 

Test Time (s) 

NM 6.791 12.68 62 1844 NA 631.8 

PSO 17.23 29.16 112 159.8 NA 12909.4 

DE 15.41 32.52 203 6137 NA 2967 

ARS 41.79 47.62 69 5621 254 24.6 

SAC 21.82 31.88 126 4631 860 18 

TQC 24.26 43.16 241 7434 1326 30.4 

TRPO 33.29 47.01 244 7252 282 27 

PPO 20.43 40.10 339 7602 292 26.6 

Recurrent 

PPO 

41.00 42.28 58 5490 529 19.9 

DDPG 18.54 38.57 293  7563 631 17.8 

A2C 42.15 58.46 67 5650 363 17.4 

 

6.2.2. Discussions 

In this experiment, optimisation algorithms were developed and tested on the standard test 

network Jowitt & Xu. The network model consists of 22 nodes and 3 randomised bursts to be 

solved using three optimally placed PRVs. The optimisation algorithms were rewarded and 

judged based on their ability to minimise leakage rate and pressure violations due to leakage. 

Comparisons are made mostly based on the algorithms’ overall performance and speed which 

are the two motivators to developing DRL algorithms for real-time control of pressure in 

WDNs. 

Performance 

The performance of the DRL algorithms consists of rewards calculated from minimised 

pressure violations and % of water saved. The associated carbon emissions reduction through 

leakage reductions are included to highlight the environmental effect of the optimisation. 

Overall, the DRL models greatly outperform the benchmarks in managing the effects of 

random burst events. The lowest performing algorithm was the Nelder Mead optimisation that 

only marginally improved that state of the network yielding an average episodic reward of 
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6.791 by saving 12.68% of leakage water. Following that, is a close battle between DE which 

was rewarded 15.41 and PSO at 17.23. Both algorithms gathered rewards through opposite 

methods. While DE focused on minimising leakage on the expense of pressure violation, PSO 

scored lower in leakage reduction but improved the number of pressure violations by resolving 

an extra 91 violations. The benchmarks’ lower performance is directly proportional to the 

accuracy of the model they are trained on hence why randomising the burst nodes lead to 

inaccuracies. Therefore, it is difficult to operate traditional optimisation methods to the burst 

scenario as it requires an accurate predictive model due to its inability to tackle the inherent 

randomness of WDN management.  

Otherwise, DRL models are trained on this random burst environment allowing them to expect 

randomness from the WDN test scenario. Using the observation space, which consists of a list 

of nodal pressures, DRL models adjusted the weights of their deep neural network to store the 

best policy for selecting PRV settings. This method allows the DRL models to establish a 

connection between the bursts’ effects on the observation space and the corresponding valve 

to monitor/change in the action space. This process highlights the importance of building 

optimisation algorithms that can react to real data from experience to expect randomness 

without compromising performance. Hence why, the DRL algorithms tested in this experiment 

massively outperformed the benchmark alternatives.  

In the policy-driven family, the ARS and Recurrent PPO models scored the highest with 

episodic rewards of 41.79 and 41.00 respectively. This was followed by TRPO scoring in 33.29 

and PPO scoring 20.43 for episodic rewards. On average the policy driven DRL models 

performed better than the hybrid models (except for A2C) and distributional DRL. This can be 

explained by policy-driven methods’ ability to navigate the exploration-exploitation trade-off 

through stochastically selecting actions making it the more attractive option where exploration 

was critical. In addition, the direct alteration of the behavioural policy allows policy driven 

models to be more flexible in capturing and adapting to changes in the environment. This 

allows the models to learn a self-adaptive policy that can deal with the randomness of the 

burst scenarios. A closer look on policy-driven algorithms shows ARS as the best performer in 

leakage reduction (47.62% water saved) and carbon emissions reduction (5621kg CO2) while 

Recurrent PPO has the lowest number of pressure violations (58). Both impressive 

achievements helped land the ARS and Recurrent PPO in the top 3 positions for DRL models 

reward performance. ARS’s high performance can be attributed to its ability to randomly 

search across the parameterised policy hence allowing it the flexibility to explore better 

policies. On the other hand, the Recurrent PPO model improves greatly on its predecessor the 
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PPO algorithm through the use of recurrent neural networks (RNNs) namely long short-term 

memory nodes. This allowed it to accumulate information over time hence tackling the 

challenges brought by partial observability and capturing sequential dependencies. 

Hybrid models include A2C, DDPG and SAC. Plagued by its sensitivity to non-stationary 

environments, DDPG could not perform at the same level as the other DRL algorithms resulting 

in 18.54 average episodic reward which was marginally better than the benchmark PSO 

algorithm. DDPG’s slow adaptation of the target networks and deterministic policy gradients 

making it unsuitable for the burst scenario. Surprisingly, SAC’s incorporation of an entropy 

term to encourage exploration did not wage as well as expected in the burst scenario leading 

to an episodic reward of 21.82. The best explanation to this could be a misleading critic neural 

network as the value function fails to include the stochasticity necessary to judge the actor due 

to the changing environment. This would also explain how using and advantage function in the 

A2C algorithm greatly improves the results reaching the best overall performance with an 

episodic reward of 42.15. The advantage function provides a measure of how good an action is 

in comparison to the average action for a given state providing more efficient exploration and 

a clearer credit assignment. A2C achieves this high reward by striking the best compromise 

between leakage reduction (58.46%) and minimising pressure violations (67) therefore 

improving on both ARS and Recurrent PPO’s performances.  

Finally, the truncated quantile critics (TQC) model provides the only distributional DRL model 

in the cohort. TQC builds on the SAC foundations with a probability distribution over the value 

function for every state rather than a single value. This provides an additional dimension to the 

critic’s evaluation of the agent’s action which helps tackle the changing the environment. This 

minor change results in a 11% improvement on SAC’s performance making TQC’s average 

episodic reward 24.26.  

A notable observation is the superiority of on-policy DRL algorithms (A2C, PPO, Recurrent PPO 

an TRPO) over the off-policy algorithms (DDPG, SAC and TQC) in reward performance with the 

exception of ARS which performed well as an off-policy method. This is a testament to on-

policy methods’ suitability for online learning as they depend on experience to build their 

models while off-policy algorithms deploy replay memory methods that are often less stable. 

Therefore, on-policy methods more suitable for dynamic environments as the case study 

requires due to the introduction of random burst nodes. 
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Speed 

Evaluating processing times for the optimisation algorithms provides insights on real-time 

control possibilities thus increasing its importance. Real-time pressure control would 

significantly increase the WDN’s resilience to anomalies and extreme conditions as it would be 

able to respond promptly. This will consequently improve overall pressure management and 

leakage control. Benchmark optimisation algorithms are compared to the DRL cohort for their 

test time which signifies the time required to complete 72 timesteps of the case study that 

model three sets of daily customer demand patterns. This comparison was made in figure 6-4 

and table 6-2 where DRL clearly outperformed the benchmarks in solving the test case. The 

DRL algorithms’ ability to use their developed policy to predict the best action simplifies the 

action selection process and minimises computational load. This is one of the biggest 

motivations to implement DRL for WDN pressure management and other real-world 

applications. As the slowest DRL algorithm (TQC) improves on the fastest benchmark 

algorithm’s speed (NM) by a 20.8x mark up, it is safe to say that DRL algorithms are the best 

option for faster processing and better computational efficiency. TQC’s demanding 

methodology requires it to collect a probability distribution of the value function hence the 

higher computational load and slower test time in comparison to other DRL algorithms. The 

fastest algorithm happens to be the best performing agent produced using A2C. This agent 

managed to implement its solution within 17.4s making it marginally faster than the DDPG 

agent at 17.8. In all cases, the DRL cohort is capable of real time control as it produces actions 

within the range of 0.242-0.422 seconds of receiving observations.  

Separately, the DRL cohort is judged based on its training time. This signifies the time required 

to develop a policy within 20,000 timesteps of training data and is denoted as training time. 

Algorithms with simpler methodologies and neural network architectures tend to be easier to 

train such as ARS which conducts a direct random search on the parameterised policy 

equation. This yields the fastest training time of 254s. Training times can highlight which 

algorithms would be easiest to develop and re-train. This could be beneficial when considering 

a continuous improvement loop to ensure that seasonality doesn’t affect the relevance of the 

DRL algorithms. As expected, the distributional algorithm TQC requires the longest training 

time with 1326s to complete the training.  

6.3. Northumbrian Water Network 

System Zone 08 (SZ08) hydraulic model serves the purpose of applying the optimisation 

algorithms to a realistic case study based on data retrieved from Northumbrian Water. This 

network surpasses the Jowitt & Xu benchmark in size, elevations, complexity, variety of 
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components and variety of customer demand patterns making it a more difficult network to 

optimise. In addition, the valve location and quantity are far less optimal for the size of the 

network, yet it models the real-life setup. A summary of network components can be found 

earlier in table 5-5 and the network architecture is displayed in figures 5-8 and 5-9. As 

mentioned in the methodology section 6.1., the number of burst nodes will match the number 

of pressure valves in the network to provide a fair comparison of pressure management 

capability. Therefore, the SZ08 is initialised with 32 randomised bursts with the emitter 

coefficient/magnitude of three. To complete the leakage equation an exponent of 1.18 was 

used to align the research with the best practices in literature (Araujo et al., 2006; Saldarriaga 

and Salcedo, 2015b). Experimenting the burst leakage case study with a real network such as 

SZ08 will also provide insights on the scalability of the models used and whether real-world 

application is a possibility. It is expected that, similar to the previous case study, the 

complexity of the network will push the DRL models slightly out of the zone of real-time 

control. Previous results may suggest that more stable DRL models perform better in this 

complex problem however, due to the unique nature of burst leakage, exploration and 

flexibility could be the key to better performances. 

Using this hydraulic model, the environment will initialise the 32 random bursts for the 

network to solve. Optimisation algorithms will be developed or trained using the randomly 

amended environment but tested on the SZ08 model with burst nodes at the following nodes: 

'N9968633' 'N12709278' 'N12717930' 'N10210106' 'N16111054' 'N10091680' 

'N10094919' 'N12718004' 'N10208428' 'N12707262' 'N16119942' 'R16111847' 

'NX34291839' 'N10205128' 'N10092063' 'N10205817' 'N10094345' 'N16109247' 

'N10207834' 'N9963619' 'N10205153' 'N10208426' 'R10091961' 'N10028382' 

'N13656814' 'N13656868' 'N9968663' 'N16111939' 'R16119652' 'RX33753118' 

'N13663171' 'N10130639'     

 

These nodes were chosen using the same randomiser present in the environment. Due to the 

size of the network architecture and data, it is impossible to display all properties in a table 

therefore the input file will be included in the appendix. Figure 6-5 below shows the 

distribution of these bursts (red) across the SZ08 network produced by the WDN-DRL 

environment. 
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Figure 6-5 SZ08 network architecture with bursts in red 

Finally, several DRL models were trained with the sole difference of reward ratios to highlight 

the most beneficial reward scales that should be assigned to the reward function. The models’ 

performances are judged equally on their ability to balance the main objectives of leakage 

minimisation and pressure management. For the burst leakage case study, it was crucial to 

repeat this simulation until the best reward scale ratios is clear. As is clear in figure 6-5, most 

reward scales obtain similar episodic penalties apart from the ratio 1:4 favouring the pressure 

violation objective. The 1:4 scale ratio’s penalty is not vastly different with only 12 points 

higher which is relatively miniscule. The results of the experiment showed that a ratio of 5:1 

favouring leakage reduction strikes the best trade-off between the two objectives.  

 

Figure 6-6 Episodic penalty for different reward scales. 
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After initial evaluations of the SZ08 model, it was clear that the reward function had to be 

slightly modified to better express the effects of leakage at low nodal pressures (0-1m). Low 

nodal pressures create highly negative rewards when leaks are increased in certain nodes (69 

nodes, figure 6-7a). This exaggerated the extent of the penalty thus overshadowing the 

positive rewards of the optimised valve settings. The new reward function includes a 

hyperbolic tan function (tanh) to keep the leakage portion of the rewards between -1 to 1 

shown in figure 6-7b. The new reward function is represented below in equation 6-1. 

 

Figure 6-7a) SZ08 nodes with pressures lower than 1m. b) Old function (blue); new tanh() function (green). 

𝑅 = ∑ (𝑣𝑎𝑓𝑡𝑒𝑟 − 𝑣𝑏𝑒𝑓𝑜𝑟𝑒) ∙ 𝑠𝑐𝑎𝑙𝑒 1 + 𝑡𝑎𝑛ℎ (
𝑄𝑙𝑎−𝑄𝑙𝑏

𝑄𝑙𝑏
) ∙ 𝑠𝑐𝑎𝑙𝑒 2𝑀

𝑗=1                                            ( 6-1 ) 

6.3.1. Results 

The SZ08 model included many complexities that made solving the case study inherently 

difficult. Introducing random bursts throughout the network provided was one example. The 

optimisation algorithms were evaluated using the reward function above (eq. 6-1) for three 

episodes lasting 24 steps each. The test scenario introduced bursts in the locations shown in 

figure 6-5. To highlight the algorithms’ performances, the box plot is displayed in figure 6-8 

where the hourly rewards at each step are marked with an ‘o’ and the average reward is 

denoted by a ‘x’.  

Some optimisation algorithms were unable to optimise the case study causing negative 

rewards which hints to valve action lowering the network performance (through higher 

leakage rates or more pressure violations). These underperforming algorithms include the 
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benchmarked PSO (-8.53) and NM (-12.0) alongside the DRL algorithms DDPG (-14.7), SAC (-

19.1) and ARS (-14.9). In contrast, differential evolution performed better with an average of 

20.1. The DE boxplot hints that whilst the algorithm managed to optimise the test case, the 

interquartile range of the box shows that the DE algorithm has not fully grasped the best policy 

to control the pressure valves resulting in some negative rewards and some highly positive 

rewards. The best overall rewards were achieved using the A2C model (83.0) followed closely 

by the Recurrent PPO model (76.6) and TRPO (75.9).  The distributional DRL algorithm, TQC, 

was the only high performing off-policy algorithm (72.5) followed by the on-policy PPO model 

(69.2). Like the Jowitt & Xu network, the DRL algorithms have outperformed the benchmark 

algorithms because they built a more resilient policy that has adapted to the randomness of 

the bursts. A clear trend shows that on-policy DRL algorithms (A2C, PPO, Recurrent PPO, TRPO) 

have developed more effective policies than their off-policy alternatives (DDPG, ARS, SAC). 

A more detailed outlook on the step-by-step performance of the agents was displayed in 

figure 6-9. The line graph represents the rewards collected through the 3 episodes of the test 

scenario. The plots match the previous figure with on-policy algorithms massively 

outperforming the off-policy and benchmarked algorithms. The line graph also highlights DE’s 

wide range of rewards shown in grey. Another noticeable trend is the higher rewards found 

during the minimum night flow hours between 3 to 5am. This is due to the higher average 

pressure during these times and hence the lower probability of invoking the low-pressure limit 

(less than 10m). Furthermore, minimising pressure during MNF hours is more possible 

resulting in greater leakage reduction. 
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Figure 6-8 Algorithm performance - SZ08 

 
Figure 6-9 Reward time comparison – SZ08 

Evaluating the processing speed of the different algorithms provides insight into their 

computational efficiency. The speed is measured in the time required for the algorithms to 

solve the 3 episodes of the test scenario (test time) and the time taken for the DRL algorithms 

to develop their policies using 20,000 timesteps (train time) as shown in figure 6-10. The 

training time can be used to assess which DRL models are easiest to build and re-train to avoid 

inaccuracies arising from seasonality and trends in water network operations. Models with 

smaller neural networks generally have faster training times as they are less computationally 
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demanding. In addition, processes that include distributional value functions such as TQC 

(6113s) are more computationally expensive requiring longer training times. SAC had the 

second longest training time due to its large neural network architecture at 5588s to develop 

its policy. Recurrent PPO needed 4519s to train its models which is slightly longer than the 

other DRL algorithms due to the LSTM modules adopted in the neural networks. The rest of 

the models have similar training times ranging from 3083s to 3672s. 

In contrast, the benchmark algorithms act immediately without building a policy thus 

explaining the absence of any training time figures. These algorithms are compared on their 

implementation time otherwise known as their test time. As shown in figure 6-9, the DRL 

algorithms are much faster than their benchmark alternatives in providing valve settings and 

solving the test scenario as they rely on their predetermined policy to do so. On the other 

hand, NM (10983s), DE (10753s), and PSO (7627s) find the optimised action through multiple 

iterations at each timestep hence elongating the processing time. The DRL cohort demonstrate 

their fast-processing times with a speed mark-up ranging from 8.87-18.5x in comparison to the 

benchmarked algorithms. The fastest DRL algorithm is the PPO only requiring 594 seconds to 

complete 3 episodes totalling 72 timesteps with all the data renders mentioned in section 

4.2.5. This corresponds to 8.25 seconds per timesteps which doesn’t qualify the method as 

real-time. Removing the data visualisation tasks would surely cut down the processing times 

bringing it closer to real-time performance. The slowest implementation was the SAC which 

completed the test case in 860s. 
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Figure 6-10 Algorithm speed - SZ08 

To summarise the results, table 6-3 was formed with the main metrics produced from the tests 

runs. This includes the average episodic rewards, average episodic water saved percentage, 

average episodic pressure violations, average episodic carbon emissions reduction and total 

processing time (train and test). The agents are assessed on their ability to maximise their 

episodic rewards by minimising pressure violations and maximising the % of water saved and 

pressure. Reducing leakage can be converted to useful carbon emission figures that help 

highlight the environmental impact of pressure management measures in Kg of CO2. The best 

performer in every category was marked in bold. Despite SAC being the most effective in terms 

of leakage reduction (7.169%) and carbon emissions reduction (2492 KgCO2), the agent 

achieves this by disregarding pressure violations resulting in the highest number of episodic 

pressure violations (17002) and a negative average episodic reward (-438.9). In contrast, the 

Recurrent PPO agent handles the trade-off between the reward objectives better by achieving 

the lowest number of pressure violations (14688) which results in the best episodic rewards at 

1842. The algorithm with the best training time was TRPO only needing 3083 seconds to 

develop the policy while PPO had the fastest test time at 594 seconds.   
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Table 6-3 Key results - SZ08 

Algorithm Average 

Reward 

Average 

Water 

Saved 

(%) 

Average 

Pressure 

Violations 

Carbon 

Emissions 

Reduction 

(KgCO2) 

Training 

Time (s) 

Test 

Time 

(s) 

NM -267.9 4.853 16817 1724 NA 10983 

PSO -207.0 4.967 16744 1778 NA 7627 

DE 436.8 4.658 16105 1662 NA 10753 

ARS -413.3 7.077 16977 2426 3222 675 

SAC -438.9 7.169 17002 2492 5588 860 

TQC 1828 5.878 14714 2027 6113 754 

TRPO 1774 6.041 14771 2076 3083 724 

PPO 1652 5.431 14898 1893 3644 594 

Recurrent PPO 1842 5.793 14688 1999 4519 727 

DDPG -411.5 7.098 16978  2426 3644 807 

A2C 1825 6.382 14712 2170 3672 756 

6.3.2. Discussions 

The test case scenario was developed to investigate the performance of 11 algorithms (3 

benchmarks and 8 deep reinforcement learning). Running this experiment highlighted the 

algorithms’ ability to minimise leakage and pressure violations within the real network model 

(SZ08). Comparisons are drawn based on the algorithms’ performances and their processing 

speed in this section.  

Performance 

Using the results presented in figures 6-8 & 6-9 and the key results in table 6-3, we discuss the 

performances of the algorithms tested. The reward function used to evaluate the models was 

altered to better suit the SZ08 network in equation 6-1. The performance of the algorithms 

varied greatly with some unable to optimise the test case due to its complexity. The results 

table showed how the best algorithms were the ones that focused on balancing the two 

objectives rather than minimising leakage which resulted in negative rewards. A closer look on 

figure 6-9 shows the temporal rewards during the 72 timesteps of the tests. This line graph 

highlighted a clear pattern of higher rewards during lower customer demand times of the day. 

During the period of 3:00 to 5:00 of each day, night flow is at its lowest and nodal pressure 

rises to its highest. This allows agents to make more noticeable changes to the network by 
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reducing these nodal pressures and minimising leakage. In addition, the lower pressures do 

not invoke as many violations as other periods of the day since the average pressure is further 

from the low-pressure limits. The figure also shows the gap between the high performing 

algorithms and the underperforming algorithms. A better representation of this was in figure 

6-8 that displayed the rewards (and penalties) obtained by the tests in a box plot. Figure 6-8 

shows six algorithms that were able to optimise the test scenario (PPO, Recurrent PPO, A2C, 

TRPO, TQC and the benchmark DE). The other algorithms (DDPG, SAC, ARS, and the 

benchmarks NM and PSO) have failed to develop a useful policy and resulted in heavy 

penalties during the test scenarios.  

The benchmark algorithms included particle swarm optimisation, nelder mead and differential 

evolution which mostly performed poorly in the test scenarios. The PSO and NM algorithms 

ranked 7th and 8th overall with episodic rewards of -207 and -269.7 respectively. Their negative 

rewards signify either an increase in leakage or pressure violations or both. In this case, an 

attempt to minimise leakage resulted in more pressure violations (16817 for NM and 16744 for 

PSO). The failure on the pressure management objective resulted in the negative performance 

which shows the algorithms’ failure on navigating the trade-off between the two objectives. In 

comparison, the DE algorithm has managed to tackle this issue better resulting in a positive 

reward (436.8). The boxplot (figure 6-8) shows the randomness of the algorithm’s reward 

collection insinuating the algorithm’s convergence at a local minimum. DE achieves this 

superior reward by placing more emphasis on reducing pressure violations (1662) at the 

expense of the lowest leakage reduction with only 4.658% of the water saved. The general 

performance of the benchmark algorithms was poorer than the DRL cohort stemming from 

their inability to build intelligence and bespoke policies. The benchmark algorithms use the 

same methods to obtain their optimised results regardless of the problem setup therefore 

they are at a disadvantage when applied to dynamic environments such as the burst leakage 

case study. Practically, these algorithms rely on model predictive methods to solve the 

problem rather than real data making them reliant on the quality of the predictive data. 

The DRL algorithms have had mixed performances with on-policy algorithms highly 

outperforming their off-policy alternatives. In the hybrid family, the on-policy A2C algorithm 

managed to develop the overall second-best performance with an episodic reward of 1825. 

A2C improves greatly on the DE benchmark by simultaneously reducing the leakage (6.382% 

water saved) and pressure violations (14712) showing a far superior policy. Evaluating figure 6-

9 shows room for improvements and tuning in A2C’s performance despite it being one of the 

higher performers. Unlike A2C, the rest of the hybrid (DDPG and SAC) algorithms were off 



 

169 
 

policy. Off policy algorithms are generally less robust in dynamic environments as they rely on 

replay buffers as a learning strategy whilst on policy algorithms can learn online from real-time 

data. In order to collect rewards, DDPG and SAC emphasise leakage reduction at the expense 

of more pressure violations. As a result, both algorithms incurred heavy penalties. The DDPG 

agent failed to optimise the test case incurring a penalty of -411.5 which was lower than all 

three benchmarks (DE, PSO and NM). DDPG had the second highest water saved % with 

7.098% and the second highest number of violations 16978. Despite SAC achieving the best 

leakage reduction with 7.169% water saved and the highest carbon emission reduction of 2492 

Kg of CO2; it has managed to get the worst overall performance with a penalty of -438.9. The 

penalty was solely due to the numerous pressure violations amounting to 17002 violations. In 

this scenario, it was clear that small policy changes could cause large changes in pressure 

violations making it an important focus in the reward trade-off.  

The policy driven algorithms could also be split into on-policy (PPO, Recurrent PPO, TRPO) and 

off-policy (ARS). As expected, the on-policy algorithms far outperformed the off-policy 

alternative due to their ability to learn in dynamic environments. The on-policy algorithms also 

boast their stability and superior exploration strategy during training therefore reaching better 

trade-offs. The best overall episodic performance was achieved by the Recurrent PPO (1842) 

model that improved on its PPO (1652) predecessor through the inclusion of LSTM modules to 

the neural network. This minor change aided the neural network in building long term 

dependencies hence developing a better understanding of the case study. This allowed the 

Recurrent PPO model to develop resilience to the varying customer demand patterns forming 

a better overall policy. Recurrent PPO boasts the best performance with regards to the 

pressure management objective by minimising violations to 14688 in comparison to PPO which 

had 14898 violations. Both algorithms used lower leakage reduction to achieve this result with 

Recurrent PPO saving 5.793% and PPO saving 5.431% of leakage water. This was a significant 

drop from TRPO which managed to save 6.041% yet only scored a reward of 1774 due to its 

pressure violations of 14771. TRPO has been proven to handle the large scale of the SZ08 

network in the previous chapter through the use of its trust region calculations however the 

randomness of the bursts required further knowledge of temporal dependencies which was 

exhibited by the Recurrent PPO algorithm. Despite the success of policy driven algorithms and 

ARS’s general high performance in previous cases, the off-policy method resulted in a poor 

learning strategy. Unfortunately, that meant that ARS has incurred the overall second worst 

penalty of -413.3 by neglecting the pressure management objective. Whilst the algorithm 
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managed to achieve the best leakage and environmental performance (7.077%, 2426 Kg CO2), 

it has incurred more penalties due to the numerous pressure violations (1677 violations). 

Finally, a surprising result placed TQC as the only high performing off-policy algorithm. The 

TQC method relies on representing the value function to the critic as a distribution across 

states rather than a single value. This strategy allows the critic to gain a better understanding 

of how to evaluate the actions of the actor. Therefore, the distributional DRL hybrid algorithm 

manages to follow a better training trajectory leading to a higher performance (1828).   

Speed 

A crucial metric that was used to evaluate the optimisation algorithms was processing speed 

which was displayed in figure 6-11 and table 6-3 earlier. Due to the focus of real-time 

implementation and the dynamic behaviour of real network, speed was a major consideration. 

The algorithm speeds were assessed based on their implementation time (test time) and policy 

development time (training time). Evaluating the DRL algorithms for their training time 

provides an opportunity to highlight the models easier to build and amend. Figure 6-11 

displays bar graph of the training times which denote the time required to build a DRL model 

through 20,000 timesteps. The training times are mostly dictated by the deep neural network 

size and the DRL method needed to train the policy through gradient descent. TQC has the 

largest neural network size and a complicated DRL method to deploy a value distribution for 

the critic agent. As a result, it has landed the longest training time of 6113s. SAC has an 

identical neural network to TQC but does not require the value distribution to train the critic 

agent making it a simpler method and resulting in faster training (5588s). PPO, A2C and DDPG 

have similar processing times due to their smaller neural networks with training times of 

3644s, 3672s and 3644s respectively. Including LSTM modules to PPO’s neural network creates 

the Recurrent PPO therefore requiring an additional training time of 4519 seconds. ARS adopts 

a simple method to develop its policy through a random search over the policy parameters 

further reducing the computational demand and lowering its training time to 3222s. Finally, 

the fastest DRL algorithm to train its model was the TRPO algorithm that only required 3083 

seconds to complete the 20,000 timesteps. TRPO’s trust region equations help it converge 

faster when dealing with complex environments further allowing it to develop its policy more 

efficiently. 

More importantly, algorithms are assessed on their ability to optimise the test scenario based 

on their test time. Test times are measured as the time required to solve 72 timesteps of the 

test scenario signifying three days’ worth of customer demands. The main comparison lies 
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between the implementation time for DRL and non-DRL benchmarks as shown in figure 5-11. 

The benchmark algorithms were outperformed by the DRL cohort by providing an 8.87-18.5x 

speed mark-up. This is possible through DRL’s ability to develop an overarching policy 

applicable to different test scenarios. PSO was the fastest benchmark algorithm to converge to 

a solution needing 7627s. This was followed by DE and NM which were the slowest two 

algorithms overall demanding 10753s and 10983s respectively. These benchmark methods are 

often paired with model predictive control (MPC) to estimate the best valve settings for the 

upcoming customer demands. Forecasting future models can lead to bias due to model 

inaccuracies whilst the ability to apply optimisation algorithms directly to the water networks 

bypasses these issues.  

DRL models built through the training process can be applied to the test scenarios by using the 

current observations to suggest the next action through the build policy. Using this method, 

DRL algorithms can be applied directly to water network environments with superior test 

times. The fastest overall implementation was achieved by PPO by completing the test in 594 

seconds while the slowest was SAC that took 860 seconds. Otherwise, the DRL cohort has 

achieved similar times between 724s and 754s. 

6.4. Concluding Remarks 

Burst leaks, detectable through modern techniques, are less frequent but pose significant 

challenges. The chapter introduces a methodology for testing the impact of pressure 

management on mitigating leakage through burst events. The case study evaluates different 

Deep Reinforcement Learning (DRL) models against benchmark algorithms, aiming to minimize 

water loss and pressure violations in a complex water distribution network. 

During this case study, eight DRL algorithms and three benchmarks were deployed to optimise 

the pressure management of water distribution. The WDN used included a standardised test 

network (Jowitt & Xu) and a real world WDN model (SZ08). To highlight the algorithms’ ability 

to reduce burst leakage and pressure violations two reward functions were used (E.q. 3-3 and 

e.q. 6-1).  

The burst leakage case study provided an actionable method to mitigate random burst events 

in water distribution networks. The study involved two experiments that focused on testing 

the scalability of the tested algorithms. A cohort of eight DRL algorithms and three benchmark 

algorithms are evaluated based on their ability to simultaneously reduce leakage and pressure 

violations. This particular case study is built with an extra layer of complexity due to the 

randomness of the burst locations making the environment more dynamic. Creating 
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relationships between the observation space and the action space becomes a more sensitive 

and crucial task.  

Reviewing the results unveils a clear preference to the use of DRL algorithms to solve random 

burst events. DRL algorithms almost exclusively outperformed the benchmarks in both 

networks showing their ability to handle dynamic environments. Benchmarks were unable to 

optimise the case studies to the same degree due to their inability to develop an overarching 

policy. Furthermore, DRL models improve greatly in processing times making them the more 

beneficial option for real-time control. The benchmark algorithms were deemed unsuitable for 

real-time control due to their long implementation time explaining why they’re mostly 

deployed in model predictive control methods. Real time control was achievable for smaller 

DMA-scale network however further work is required to improve processing speed for larger 

scale applications. Performance varied greatly within the DRL cohort as on-policy methods 

outperformed their off-policy counterparts. On-policy algorithms gain the advantage due to 

their stability with online learning and their superiority navigating dynamic environments. The 

only exception to that was ARS’s performance in the Jowitt network and TQC’s performance in 

the SZ08 network. 

A comparison of the two networks displays the effects of scalability and complexity on 

algorithms performance. On the smaller scale, the DRL algorithms were better equipped to 

minimise leakage and manage pressure efficiently This is due to the optimal valve locations 

and the relative frequency of the pressure valves in the smaller benchmark. The sub-optimal 

locations left uncovered areas in the SZ08 network that are unaffected by valve action. 

Therefore, some areas within the SZ08 network cannot mitigate the burst events regardless of 

the optimised valve settings. In addition, the optimisation algorithms were better equipped to 

minimise leakage due to their coverage and control of the network. Stemming from that, it can 

be inferred that managing water networks on the DMA level is more likely to produce better 

results. Nevertheless, testing the DRL methods in the SZ08 network proved their scalability 

making them serious candidates for real life implementation.  
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7. Conclusions  

In the process of advancing leakage management in water distribution network, this research 

has narrowed down to a focus on prevention through pressure management. Through proper 

valve control, WDN can simultaneously minimise leakage in the network without violating 

OFWAT regulated pressure limits. A novel methodology the exploits the capabilities of DRL 

algorithms for WDN applications has been developed to tackle background and burst leakage. 

A cohort of eight DRL algorithms and three benchmark optimisation algorithms are 

implemented to case studies consisting of four experiments in total applied to two different 

networks. In this chapter, the overall conclusions of the research are drawn from the case 

studies and their results. Any assumptions made during the research are elicited followed by 

the limitations. Finally, recommendations for future research are proposed to aid with the 

development of the research further. 

Chapter 2 

Prior to developing the DRL algorithms or the environment, a literature set was produced to 

explain the necessity of leakage management in WDNs, and current practices tackle this 

problem The main conclusions underscore the importance of diverse leakage assessment 

strategies including the Top-down, MNF analysis, and BABE methods, while advocating for a 

combination of methodologies for a more comprehensive assessment. Leakage detection 

involves inspection robotic platforms and non-intrusive hardware methods. However, 

advances in software methods such as data-driven leakage detection, especially in hybrid 

approaches with neural networks, show promise. Effective leakage control encompasses 

pressure management and asset management considering various impact factors. Considering 

pressure management requires emphasis on optimal valve placement and control. In this 

research, the path of leakage reduction through pressure management is explored further 

through the novel introduction of DRL algorithms for valve control. 

Chapter 3 

Hereby, a review on the application of DRL in all aspects of urban water systems was 

conducted to validify the novelty. In this section a comprehensive review of DRL methods 

coupled with a classification tree leads the path to DRL in UWS. This is followed by a review of 

current research and trends of DRL in different aspects of UWS. The main conclusions of this 

literature set highlight the impact of the use of deep neural networks for function 

approximation leading to improved scalability and resulted in many successes across simulated 

and real applications. Current DRL trends tackle high dimensional complexity by mimicking 
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human psychology and natural hierarchy structures. A novel classification tree was established 

to help new researchers navigate better. The application of DRL in the UWS is still developing 

yet it shows great promise to improve our current practices with water. Early efforts to 

benchmark DRL test beds and environments will aid the growth of this topic. Challenges of 

applying DRL to water systems include testing and validation through real life models.  

Chapter 4 

The aim to deploy deep reinforcement learning methods for the optimisation of pressure 

management in WDNs could not be realised without the RL environment. As the literature 

suggests, building the DRL environment was an integral part of the research as it dictates the 

interactions between the agent and the WDN. The environment used managed to depict the 

problem effectively and lead the agents towards optimisation. All the necessary sections 

required to establish the environment were covered in chapter 4. The conclusions drawn from 

this chapter were crucial to the development of the research and highlight important remarks 

for the implementation of DRL in WDNs. Creating the environment has allowed for the use of 

both DRL and non-DRL methods to optimise the WDN models while leveraging the hydraulic 

simulation capabilities of EPANET. Implementing environment design for real networks will 

require the hydraulic solver capabilities of EPANET or a similar hydraulic solver. Input files 

developed from utility data platforms can be used in the environment as shown in the SZ08 

network. Furthermore, defining the action and observation spaces are major decisions that 

heavily influence the interaction between the agent and the problem. They should model the 

real-life engineering problem. Another major consideration is reward formulation. Selecting 

the reward function is a very sensitive task and should be designed iteratively to achieve the 

desired objectives. Training the DRL model and testing the agents would seem like a black box 

process if the environment were not equipped with the necessary data visualisation and 

logging tools. Hence, the necessity of rendering and reporting functions to assist with data-

driven decision making. Finally, it is important to deploy a variety of DRL algorithms to test the 

suitability of each algorithm and investigate their performances. 

Chapter 5 

Experiments carried out to minimise background leakage in WDNs included the use of a small 

benchmark and a large real WDN model. As a result, background leakage was minimised in 

both models through PRV action led by DRL and non-DRL optimisation algorithms. The DRL 

algorithms proved their effectiveness in pressure management by achieving beneficial results 

that led to the following conclusions. The best DRL methods achieved 73.4% leakage 



 

175 
 

minimisation and 302.5 Kg of CO2 reduction in the Jowitt & Xu network. In comparison, the 

best DRL methods performed less favourably on the SZ08 network where it reached a 

maximum of 0.693% leakage minimisation and 169.3 Kg CO2 reduction in SZ08. It is clear that 

the model’s performance on background leakage is highly reliant on valve locations and 

coverage.  

Furthermore, significant improvement in processing speed was observed when utilising the 

DRL models in comparison to the benchmarks. The case studies also proved that DRL 

algorithms are capable of real time pressure management in the Jowitt & Xu network and near 

real-time pressure management in SZ08. The DRL models were able to navigate the trade-off 

between pressure management and leakage minimisation effectively. Despite DRL models 

performing less favourably than their benchmark alternatives, their ability to reduce 

computational load and work real-time makes them a favourable option for WDN operation. 

Real-time control in water distribution networks promises leakage and carbon reductions 

without violating pressure limits by allowing instant valve reactions to network changes. 

Experimenting with DRL hyperparameter tuning significantly improves algorithm performance, 

indicating room for improvement through hyperparameter optimization. Comparatively, 

hybrid methods were more effective for the smaller network (Jowitt & Xu), while policy-driven 

methods provided stability for the larger network (SZ08). Overall, DRL algorithms show 

promise for real-time control at a District Metered Area (DMA) level with low computational 

load and high rewards. On the other hand, valve locations in the real network were sub 

optimal making it more difficult to manage and compromised the leakage reduction 

capabilities. 

Chapter 6 

The burst leakage case study evaluated eight Deep Reinforcement Learning (DRL) algorithms 

and three benchmark algorithms for mitigating random burst events in water distribution 

networks. By controlling valve settings in the small-scale test network (Jowitt & Xu) and the 

large-scale real network (SZ08), the DRL cohort was compared to benchmark optimisation 

algorithms on their ability to minimise leakage and pressure violations. The diversity of 

network scales and complexity answers questions on the stability and scalability of the models 

while presenting a solution for a real-life scenario. Randomised burst locations make the 

environment dynamic and more difficult to solve hence emphasising the importance of data-

driven decision-making. The burst scenario unveiled several key conclusions. Almost all DRL 

algorithms, particularly the on-policy methods, outperformed the benchmarks in navigating 
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the dynamic environment resulting in lower leakage and pressure violations. The best DRL 

performances resulted in 47.60% reduction in leakage and 5650 Kg CO2 emissions reduced in 

Jowitt & Xu network. Also produced a 5.793% decrease in leakage and 1999Kg CO2 reduction in 

carbon emissions in the SZ08 network. Optimising the real network (SZ08) proved more 

challenging due to the sub optimal valve placement making it more difficult to manage certain 

areas in the network. Nevertheless, DRL models exhibited improved test times through their 

function approximation capabilities making them more suitable for real-time control. On-policy 

DRL algorithms were more capable of learning from online data making them perform better 

than their off-policy counterparts. The only high performing off-policy algorithm (TQC) was 

materialised through distributional DRL proving how using a value distribution can improve 

results. By comparing the PPO and Recurrent PPO performances, it is apparent that 

introducing LSTM modules to the neural network improves the ability to navigate the dynamic 

environment. The scalability of the DRL methods was proved through their implementation in 

SZ08, however their performance decreased slightly in comparison to the smaller scale 

network. 

In summary, several experiments have been conducted to test and validify the application of 

DRL algorithms in leakage reduction through pressure management. As a result, we have 

managed to develop insightful data visualisation figures and compare the performances of 

several optimisation algorithms (DRL and non-DRL) using a novel pythonic environment. The 

DRL methods have been proven to operate in real-time or near real-time by adapting its policy 

to meet the current conditions of the network therefore completing the project aims set in 

section 1.3. In addition, the DRL’s performances in both case studies highlight their ability to 

handle uncertainties in dynamic environments in a scalable manner. This affirms our novelty in 

the simulated experiments. The accuracy of these results is therefore contingent on the 

accuracy of the hydraulic data used to create the case studies and will need to be re-assessed 

before real-life implementation. More limitations on the results are outlined in the following 

section. 

7.1. Limitations 

In order to provide a full view of the research, it is crucial to address the limitations of the 

work and how it could affect the results. In this section, we highlight some of the main 

limitations associated with the use of DRL in pressure valve control in WDNs. One of the main 

limitations unveiled in the pressure management the real SZ08 network was the sub optimal 

locations of the pressure valves. To achieve the best results, water networks must be fully 

controlled by their pressure valves however real networks are far from their optimal states. As 
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displayed in SZ08, there are often areas of the network that are unaffected by valve action 

signifying leakage vulnerable zones. This dependency on valve locations and coverage is 

natural but should be mitigated by ensuring enough valves are present in optimal locations to 

maximise pressure control. Another method to increase pressure management capabilities 

would be to include the pumps as part of the control system. Coordinating between the pumps 

and valves can help improve pressure control in the network. 

Another limitation of this study is its reliance on clear data. Data-driven optimisation is very 

insightful nevertheless it requires sensor data across the entire network. Water networks vary 

in their data availability and data quality which could limit the usability of DRL algorithms in 

WDNs. Therefore, this study is best applied to WDNs that have established a coherent data 

pipeline and are looking to expand their pressure management facilities. Consequently, it is 

important to build accurate hydraulic models that can be used to build the DRL agents. Well-

developed DRL models also tend to be quite sensitive to erroneous observation data which 

could falsely trigger harmful actions by the pressure valves. The DRL input data must be 

cleaned and tested for accuracy to ensure that it represents the current state of the network.  

Furthermore, the application of DRL requires reliability evaluations before being deployed on 

WDNs. In any engineering application, it is necessary to ensure that the optimisation algorithm 

won’t endanger the customers. In this instance, agents need to ensure that water supply 

remains uninterrupted without affecting asset life or risking future bursts. These concerns 

were addressed by (Tian, Liao, Zhi, et al., 2022) where the authors devised a ‘voting’ method 

to improve reliability. Water distribution networks are subject to daily and seasonal changes 

that will undoubtedly influence the performance of the DRL models. While the DRL algorithms 

were proven to deal with randomness in the observation data, seasonal changes might require 

re-training of the models and further policy development. This could be achieved through a 

continuous integration/deployment (CI/CD) pipeline for the DRL models which automates the 

deployment of newer, more suitable models.  

Limitations also include the effect of the DRL algorithm on other objectives of the WDN. While 

this study is focused on using DRL algorithms for the purposes of pressure management and 

leakage reduction, other objectives could be affected by the pressure control hence why it is 

necessary to include these considerations in DRL algorithm design. To avoid this, any relevant 

objectives should be included in the reward formulation design to ensure that the agents are 

trained with a complete picture of the desired behaviour. Complex model design is not limited 

to the selection of the reward function but includes DRL sensitivity to hyperparameters and 
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neural network architecture. The design of DRL algorithms involve many decisions including 

various options for neural network architectures, optimisers, activation functions, pre-training 

techniques, and hyperparameters. The complexity of making these design choices require 

careful consideration and experimentation. Generalisation of the DRL models is limited as the 

policy developed for one network may not necessarily work for another therefore it is 

important to develop a separate model for each network. On another hand, the option for 

transfer learning between the neural networks is valid as that could help train models from 

different networks. 

7.2. Assumptions 

To carry out the experiments detailed in this study, several assumptions had been made. This 

is to abstract the leakage problem enough to make it solvable yet not affect the validity of the 

work. In reality, the leakage problem involves several dependencies that are out of the scope 

of this research so, to create a pressure management focused study, the following 

assumptions were made. 

• The pressure-leakage relationship used in EPANET and denoted in equation 2-9. This 

equation describes leakage as a function of pressure and has been widely accepted in 

the research literature (Lambert, 2001; Thornton, 2003; Thornton and Lambert, 2005). 

In this equation the leakage exponent, n, was assumed to be 1.18 to align this study 

with the wider research community as this is the accepted value as shown in (Araujo et 

al., 2006; Saldarriaga and Salcedo, 2015b).  

• Another assumption made based on literature was the background leakage limit. Using 

UK based figures from (García and Cabrera, 2007), we assume that the leakage 

coefficient between 0 to 0.196 signify background leakage and coefficients above 

0.196 signify burst events. 

• On the other hand, the leakage coefficients, also known as nodal emitter coefficients, 

represent the state and length of the neighbouring pipes. In order to estimate 

background leakage in the SZ08 model we assume that the state of the pipes is 

identical and the deciding factor for leakage is the length of the pipe. Hence why, 

equation 5-1 was used to estimate background leakage across the nodes. For the 

Jowitt & Xu network, these emitter coefficients were included in the benchmark. 

This study included more general assumptions related to the methodology. These assumptions 

include. 
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• Hydraulic models used are considered the digital twin of the real networks. When 

implemented on the water network, the DRL algorithms will be acting based on real 

data making it less susceptible to discrepancies in the model. For the purposes of this 

study, a real-life implementation was not possible as there are no test networks 

available in the UK. The first test network will be built by Northumbrian Water and 

expected to be ready by 2025. 

• Carbon emissions conversion factors were used from the government publication for 

2023 (Department for Energy Security and Net Zero, 2023). The assumption made is 

that all the relevant carbon emissions are a result of leakage where in practice 

minimising leakage effects pumping and other network properties that might decrease 

carbon emissions further. For the scope of this study, only the direct carbon emissions 

are considered (scope 1).  

• When selecting the action space, it was necessary to assume that it is continuous to 

allow the agents to roam the search space freely and equate the DRL agents to their 

benchmark alternatives. The assumption made was that pressure valves are able to 

process precise settings provided by the agent whereas in practice some control errors 

can be expected.  

7.3. Recommendations for Future work  

Beyond this research’s scope, there is room for development. In this thesis, we take the first 

steps in deploying deep reinforcement learning for leakage reduction in water distribution 

networks yet the path to a fully realised system requires further work. To conclude this 

research, we recommend future research to include the following. 

As this field continues to grow, so does the need to benchmark case studies and environments. 

Therefore, it would be beneficial to collate and benchmark the DRL environments created to 

solve certain problems withing UWSs. For example, the environment created for this research 

can prove as a useful benchmark to train DRL agents for leakage prevention or (Hajgató, Paál 

and Gyires-Tóth, 2020)’s environment for pump control. It is important to intensify DRL 

research in leakage management applications. The management of in pipe inspection robots 

can be controlled through DRL algorithms or even a prediction agent can be trained to classify 

leaks and leak locations. These are a few examples regarding the possibilities of DRL in leakage 

management. From an engineering perspective, it is crucial that researchers exploring this 

topic confirm the validity of the application through live data or ground truth models. To 

achieve that, DRL algorithms should be built with reliability and scalability in mind. 
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Different training methods such as Hindsight Experience Replay (HER), imitation learning and 

inverse RL should be investigated for their effectiveness in improving agent performances. 

These are among many tools that researchers should experiment with to further improve the 

results of DRL algorithms in mitigating leakage. Furthermore, researchers should aim to 

optimise neural networks through trialling different optimisers, activation functions, LSTM 

modules, architectures and more. It is proven the graph neural networks (GNNs) are effective 

in emulating the hydraulic behaviour of WDNs (Fan, Zhang and Yu, 2022) therefore it is safe to 

assume that they would be effective in creating DRL agents. There are many methods 

prevalent in the industrial application of DRL agents which could easily be repurposed for 

water distribution hence why researchers are encouraged to delve into DRL literature. It is 

adamant from the case studies that multi agent DRL could provide the resilience required to 

monitor DMAs separately and interactively ensuring that each network is optimised with an 

open loop between the DMAs. This method often incurs higher computational loads due to the 

complexities associated with multiple agents and the necessary environment modifications.  

Incorporating other pressure influencing network elements such as pumps and air valves 

would add to the capabilities of the pressure control. The simplest way to achieve this is to add 

the new elements to the action space controlled by a single agent. This will require slight 

modifications to the environment to ensure that the different actuators can be managed 

simultaneously and account for the different nature of pumps to the pressure valves. 

Furthermore, variable speed pumps and fixed speed pumps constitute two different 

behaviours which should be considered when creating this advanced pressure system. With 

fixed speed pump actions could represent zone scheduling through a binary on or off state 

while variable speed pump actions could represent different speed settings. Adding pumps to 

the pressure management system will improve the agent performance hydraulically and 

provide insight into energy efficiency achieved through pump operation. Customising the 

reward function to include energy consumption or carbon emissions would add extra 

objectives of energy efficiencies and carbon reductions to the environment. 

The case studies used in this research displayed different sizes and topologies to highlight the 

scalability of this method. Nevertheless, more experimentation with WDNs from across the 

globe can provide more proof to the useability of DRL for real-time control. It was evident by 

the case studies that the pressure management capabilities are also limited by the network 

elements therefore further studies could focus on optimising the number of valves, their 

locations as well as their settings. This will help realise the true capabilities of pressure 

management in leakage prevention. 
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Further investigation on the benefits and challenges of the practical application of DRL control 

should be undertaken. For example, the water quality level can be compromised through 

contamination at leakage sites however through pressure control this can be reduced 

considerably. Flow reversals and its effects can also be investigated and accounted for in the 

reward function. In addition, it is recommended that a cost-benefit analysis should be 

conducted over an extended period, preferably a year. This is to ensure that the analysis 

includes seasonality changes and tends observed in the annual year. Doing so will aid in 

providing an accurate projection to the 5-year and 10-year costs and savings. Ideally, this 

analysis would be conducted by a water utility company as it requires access to sensitive data 

unavailable to the research community such as in-depth knowledge of the costings for water 

treatment, man-hours, turnover, and the size and frequency of penalties. 

These recommendations can serve as a guide to lead the next steps of implementing DRL to 

leakage management in WDNs.  
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Appendices 

 

Appendix A: WDN-DRL Environment Code 

Below is the code used to develop the WDN-DRL Environment used to communicate between 

the agents and the hydraulic software.  

#Import block 

from cmath import inf 

import numpy as np 

import pandas as pd 

import networkx as nx 

import random 

import os 

import matplotlib.pyplot as plt 

from matplotlib.offsetbox import AnchoredText 

from matplotlib.animation import PillowWriter 

import scipy.stats as stats 

from scipy.optimize import minimize as nm 

from epynet import Network 

from gym import Env 

from gym.spaces import Box 

from stable_baselines3 import PPO 

from stable_baselines3.common.vec_env import dummy_vec_env  

from stable_baselines3.common.evaluation import evaluate_policy 

 

class WaterNetwork(Env): 

 

'''  

Title: Water Distribution Network - Deep Reinforcement Learning Ecosystem 

Description: A class designed to allow optimisation algorithms and DRL agents to interact with 

hydraulic files in epanet. Compatible hydraulic files include .inp files and .net 

Version: 3.0 

Notes: Report function completed and all data is exported 
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Action space is modified to allow all valves to be controlled at once. This version includes more 

render functions (states, waterloss, reward per junction, iteractive map) 

This version does not include the wrong move penalty or max reward. Just simply calculates 

the difference in penalties 

This version evaluates only one timestep per episode and trains the neural network on the 

available 24hrs''' 

 

''' 

:param wdn_name: The name of the WDN hydraulic file to be imported 

:param episode_len: The number of steps permissible per episode 

:param freeze: If true, the next step of the episode is paused until prompted externally 

:param burst: Whether it is a burst event or background leakage 

:param n_junc: number of burst junctions 

:param emitter_exp: The emitter exponent in the eakage rate equation 

:param reset_orig_settings: Whether each episode should start with the original settings or 

follow on from the previous episode 

:param reset_orig_junction: Whether the burst junctions should stay the same every episode 

or change randomly at the start of each episode. 

:param orig_junc: The list of original burst junctions uid. 

:param setmin: Value of the minimum acceptable setting in the action space 

:param setmax: Value of the maximum acceptable setting in the action space 

:param scale: List of reward scale ratios 

:param seed: Seed for randomness 

    ''' 

 

'''Initialisation function defining necessary parameters''' 

    def __init__(self,  

            wdn_name             = 'd-town',              

            episode_len          = 24, 

            freeze               = False, 

            burst                = False, 

            n_junc               = 0, 

            emitter_exp          = 1.18, 

            reset_orig_settings  = True, 

            reset_orig_junc      = False, 
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            orig_junc            = [], 

            setmin               = 0.0, 

            setmax               = 70.0, 

            scale                = [1,1], 

            seed                 = None): 

         

        #Initiating seed 

        self.seedNum   = seed 

        if self.seedNum: 

            np.random.seed(self.seedNum) 

        else: 

            np.random.seed() 

     

        #Using path and os to get the corret path to the water network 

        self.wdn_name = wdn_name 

        pathToRoot  = os.path.dirname(os.path.realpath('__file__')) 

        pathToWdn   = os.path.join(pathToRoot,'Epanet Networks', wdn_name +'.inp') 

        self.network = Network(pathToWdn) 

        self.network.ep.ENsetoption(4, emitter_exp)         

 

        #Defining nodes, pipes, valves, junctions 

        self.nodes = self.network.nodes 

        self.pipes = self.network.pipes 

        self.valves = self.network.valves 

        self.junctions = self.network.junctions 

 

        #Values for duration, timestep in seconds and episode length 

        self.duration = episode_len 

        self.timestep = 3600 

        self.step_count = 0 

        self.episode = 0 

        self.done = False 

        self.freeze = freeze 

        self.burst = burst 
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        #Collecting all the set points for PRVs to make the state and setting 

        #Selecting the valves that are PRVs     

        self.setmin = setmin    

        self.setmax = setmax 

        self.reset_orig_settings = reset_orig_settings 

        self.prv_uid = self.get_prv_uid() 

        self.settings = self.get_prv_setting() 

        self.state = pd.DataFrame() 

        self.orig_settings = self.settings.loc[0,:].to_dict() 

        self.new_state = np.NaN 

        self.dimensions = len(self.prv_uid) 

 

        #Action space will be a Box action space  

        self.action_space = Box(low=setmin, high=setmax, shape=(len(self.prv_uid),)) 

        #Observation space 

        self.observation_space = Box(low= -inf, high = inf, shape = ((len(self.junctions) + 

len(self.prv_uid)),) ) 

 

        #Introduce leak magnitude, leakage to a random junc or user-defined junc 

        if burst: 

            self.leak_mag = 3 

        else:  

            self.leak_mag = 0 

 

        if reset_orig_junc: 

            self.leak_junc = orig_junc 

        else: 

            self.leak_junc = [] 

            for i in range(n_junc): 

                self.leak_junc.append(random.choice(self.junctions.uid)) 

 

        self.emitter_exp = emitter_exp 

        self.pressure_limit = [10, 200] 
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        #Render logs. pressure and flow logs per step for each episode. 

        self.violation_logs = np.zeros(episode_len) 

        self.state_logs1 = np.empty((episode_len,3)) 

        self.state_logs2 = np.empty((episode_len,3)) 

        self.reward_log = np.empty((episode_len,)) 

        self.reward_logs2 = np.empty((episode_len, len(self.junctions))) 

        self.waterloss_logs1 = np.empty((episode_len,)) 

        self.waterloss_logs2 = np.empty((episode_len,)) 

 

        #reward control  

        self.rewscale = scale 

        self.laziness_penalty = 0 

        self.repeat_count = 0 

 

        #Dataframes for leak df, action df 

        self.action_df = pd.DataFrame() 

 

    '''Getting state of avg pressure, avg waterloss, avg pressure, avg flow''' 

    '''Getting a list of the relevant prv uids which will be the agents''' 

    def get_prv_uid(self): 

        prv_uid = [] 

        for k in self.valves:     

            if k.valve_type == 'PRV' or k.valve_type == 'TCV' : 

                prv_uid.append(k.uid) 

        return np.array(prv_uid) 

         

    '''Getting a dict of PRV set points''' 

    def get_prv_setting(self): 

        settings_index = pd.Index([self.step_count], name='Step') 

        settings = {} 

        for v in self.prv_uid: 

            settings[v] = self.valves[v].get_object_value(5) 

        return pd.DataFrame(settings, index=settings_index) 

     

    def get_before_data(self): 
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        self.network.reset() 

 

        if self.burst: 

            for oj in self.junctions.uid: 

                self.junctions[oj].set_object_value(3, 0) 

            for ol in self.leak_junc: 

                self.junctions[ol].set_object_value(3, self.leak_mag)  

        else:  

            pass 

 

        for os in self.prv_uid: 

            self.valves[os].set_object_value(5, self.orig_settings[os]) 

         

        self.network.solve((self.step_count%24)*self.timestep) 

        

        #Populate action df 

        #The action dataframe is the main collection hydraulic data including junction inflows 

(before and after), 

        #number of pressure violations (before and after), nodal pressure before and after and 

leakage (before and after) 

        self.action_df = pd.DataFrame({ 

            'emitter': self.junctions.emitter, 'flow_before': self.junctions.inflow, 'vio_before': 

self.num_vio(), 'pressure_before': self.junctions.pressure})       

        self.get_leakage_rate(self.action_df, before=True) 

 

        #The state stores main hydraulic data from each step is recorded in the state dataframes  

        self.state_before = pd.DataFrame( 

            {'avg_pressure': self.action_df['pressure_before'].mean(),'water_loss': 

self.action_df['leak_before'].sum(),'avg_flow': self.action_df['flow_before'].mean()}, 

index=[self.step_count]) 

 

    '''Function used to calculate leakage rate using junction pressure measurements, emitter 

coeffficients and the emitter exponents''' 

    def get_leakage_rate(self,df, before= True): 
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        if before: 

            df['leak_before'] = df['emitter']*df['pressure_before']**self.emitter_exp 

 

        else: 

            df['leak_after'] = df['emitter']*df['pressure_after']**self.emitter_exp 

 

        pass 

                 

    '''Getting the flows and violations before introducing the leak''' 

    def solve_episode(self, df, leak_junc, leak_mag, step_count, timestep, settings): 

         

        self.network.reset()   

         

        #Get the values after valve settings and leak. 

        #The state will be orig_state if its just a leak and state if it is action and leak  

        if self.burst: 

            for j in self.junctions.uid: 

                self.junctions[j].set_object_value(3, 0) 

            for l in leak_junc: 

                self.junctions[l].set_object_value(3, leak_mag) # intoducing leak magnitude to a 

random leak junc  

        else: 

            pass 

        for s in self.prv_uid: 

            self.valves[s].set_object_value(5, settings[s]) 

 

        self.network.solve((step_count%24)*timestep) 

        self.get_after_data(df) 

 

        return df 

  

    '''Getting flows and vios and waterloss after introducing a leak''' 

    def get_after_data(self, df): 

        df['flow_after'] = self.junctions.inflow 
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        df['vio_after'] = self.num_vio() 

        df['pressure_after'] = self.junctions.pressure 

        self.get_leakage_rate(df, False) 

        df['water_saved'] = df['leak_before'] - df['leak_after']  

         

        #Calculating the reward based on the violations and leakage rate difference 

        # Hyperbolic tan of % water saved is percent_loss will be multiplied by its reward scale 

        # Pressure violations is whether we have resolved any violations (+ve) or didn't resolve (0) 

or created new violations (-ve) 

        df['percent_saved'] = np.tanh( (df['water_saved'] / df['leak_before'])*self.rewscale[0] ) 

#remove tanh function for Jowitt&Xu network 

        df['percent_vio'] = (df['vio_before'] - df['vio_after'])*self.rewscale[1] 

        df['reward'] = df[['percent_saved', 'percent_vio']].sum(axis=1) 

        df.fillna(0) 

        df.dropna()       

 

        #Get state (avg pressure, waterloss, avg flow) 

        self.state = pd.DataFrame( 

            {'avg_pressure': df['pressure_after'].mean(),'water_loss': 

df['leak_after'].sum(),'avg_flow': df['flow_after'].mean()}, index=[self.step_count]) 

     

    '''Calculating if the junction is violating the pressure limits''' 

    def num_vio(self): 

        vio2 = (self.junctions.pressure > self.pressure_limit[1])*1 

        vio1 = (self.junctions.pressure < self.pressure_limit[0])*1 

        vio = vio1 + vio2 

        return vio 

 

    '''Step function simulates one step in each hour. First the leakless actionless data is retrieved 

then the leak data is run 

       and then an action is introduced to be compared to the leak data. The action and leak df 

are compared to return their 

       respective penalties. 

       The reward is calculated as the amount of penalty saved by performing the action.  

       The episode ends if the no of steps reaches 24 or if the state isn't changing.''' 
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    def step(self, action): 

 

        #Get your 'before' data for leak and action then get the after leak data 

        self.get_before_data() 

        self.state_logs1[self.step_count,:] = self.state_before.values       

 

        #Using the action to find the corresponding move to the correct valve 

        new_settings_index = pd.Index([self.step_count+1], name='Step') 

        self.new_settings = pd.DataFrame(self.settings.loc[self.step_count,:].to_dict(), index = 

new_settings_index) 

        for i in range(len(action)): 

            valve_index = self.prv_uid[i] # returns 0 for the first prv; 1 for the second and so on 

            move = action[i] #when running it in a testing loop 

            #Change the settings after the action. Add the leak and valve setting 

            self.new_settings[valve_index] = move 

        

        #Get the after data for the action_df. If there is no burst the leak_mag will be zero and not 

influence the simulation 

        self.solve_episode( 

            self.action_df, self.leak_junc, self.leak_mag, self.step_count, self.timestep, 

self.new_settings) 

        #append setting df with the new setting 

        self.settings = pd.concat([self.settings, self.new_settings]) 

 

        #Calculate rewards: 

        reward = self.action_df['reward'].sum() 

        if self.step_count>0: 

            if self.settings.loc[self.step_count].equals(self.settings.loc[self.step_count-1]): 

                self.repeat_count += 1 

            else: 

                self.repeat_count = 0 

        if self.repeat_count >= 3: 

            reward += self.laziness_penalty 
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        #Adding metrics to logs 

        self.violation_logs[self.step_count] = self.action_df['vio_after'].sum() 

        self.waterloss_logs1[self.step_count] = self.action_df['leak_before'].sum() 

        self.waterloss_logs2[self.step_count] = self.action_df['leak_after'].sum() 

        self.reward_log[self.step_count] = reward 

        self.reward_logs2[self.step_count,:] = self.action_df['reward'].to_numpy() 

        self.state_logs1[self.step_count,:] = self.state_before.values 

        self.state_logs2[self.step_count,:] = self.state.values 

 

        self.observation = self.get_observation() 

        #Increase the step count, episode, and check if we reached duration then we reset. 

        #There are 24 steps in each episode signifying the 24 hours of the day 

        if not self.freeze: 

            self.step_count += 1 

        if self.step_count == self.duration or self.done: 

            self.done = True 

            self.episode += 1 

            self.step_count = 0 

            self.setting_logs = self.settings 

            if self.reset_orig_settings: 

                self.settings = pd.DataFrame(self.orig_settings, index=pd.Index([self.step_count], 

name='Step')) 

         

        return self.observation, reward, self.done, {} 

 

    '''Function to send the reward to SciPy optimisation algorithms''' 

    def reward_to_scipy(self, action): 

         

        obs, reward, done, info = self.step(action) 

        return -reward 

 

    '''Function to send the reward to SciPy optimisation algorithms''' 

    def reward_to_deap(self, action): 

         

        obs, reward, done, info = self.step(action) 
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        return reward 

 

    '''Calculate the observation for the current step''' 

    def get_observation(self): 

 

        obs = self.action_df['pressure_before'] 

        obs = pd.concat([obs, self.settings.loc[self.step_count]], axis=0) 

     

        return obs.transpose() 

 

    '''Environment resets. Need to calculate an appropriate first observation''' 

    def reset(self): 

 

        self.done = False 

        self.step_count = 0 

        self.prevReward = 0  

        self.get_before_data() 

        self.observation = self.get_observation() 

 

        return self.observation 

 

    '''Data visualisation functions''' 

    def render(self, choice): 

        #Choice is a menu of possible render functions 

        menu = {'interactive map': 0, 'reward across junctions': 1, 'settings': 2, 'water loss': 3, 

'states': 4} 

         

        #Interactive map  

        if menu[choice] == 0: 

 

            fig = plt.figure() 

            metadata = dict(title=f'{self.wdn_name} interactive map - ep{self.episode}', 

artist='Ahmed Negm') 

            writer = PillowWriter(fps=2, metadata=metadata) #pillow writer to make gif 
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            with writer.saving(fig, f'{self.wdn_name} interactive map - ep{self.episode}.gif', 150): 

#figure to capture, title and fps 

                for s in range(self.duration): 

                    valve_list = [] 

                    downstream_uid = [] 

                    upstream_uid = [] 

 

                    for p in self.prv_uid: 

                        valve_list.append((self.valves[p].downstream_node.uid, 

self.valves[p].upstream_node.uid)) 

                    for i in self.pipes.uid: 

                        downstream_uid.append(self.pipes[i].downstream_node.uid) 

                    for i in self.pipes.uid: 

                        upstream_uid.append(self.pipes[i].upstream_node.uid) 

                     

                    G = nx.Graph() 

                    for h in range(len(self.nodes)): 

                        G.add_node(self.nodes.uid[h]) 

                    for i in range(len(self.pipes)):               

                        G.add_edge(downstream_uid[i], upstream_uid[i]) 

                    #for p in self.prv_uid: 

                     #   G.add_edge(self.valves[p].downstream_node.uid, 

self.valves[p].upstream_node.uid, weight=self.setting_logs.loc[s,p].round(1)) 

                     

                    edge_labels = nx.get_edge_attributes(G,'weight') 

 

                    leak_options = {'node_color' : 'red', 'node_size' : 10,} 

                    valve_options = {'edge_color' : 'green'} 

                    options = {'node_color': 'blue', 'node_size': 10} 

 

                    nx.draw(G, self.nodes.coordinates, with_labels=False, **options) 

                    nx.draw_networkx_nodes(G, self.nodes.coordinates, nodelist= self.leak_junc, 

**leak_options) 

                    nx.draw_networkx_edges(G, self.nodes.coordinates, edgelist=valve_list, 

**valve_options ) 
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                    nx.draw_networkx_edge_labels(G, self.nodes.coordinates, edge_labels) 

                    plt.title('Interactive map') 

 

                    writer.grab_frame() 

                    plt.clf() 

             

            print('Render Completed') 

            pass 

     

        #reward across junctions 

        elif menu[choice] == 1: 

            #reward across junctions gif. This render function creates a gif of the penalties available 

in the network across the span of a 24h episode 

            #The leak nodes are labelled with a 'o'. The total reward saved and step count is 

displayed in the top-right corner. 

            #The leak penalties are red and logged at self.reward_logs2. The action penalties are 

blue and logged at self.reward_logs1. 

            fig = plt.figure() 

            metadata = dict(title='Junc reward spread over day', artist='Ahmed Negm') 

            writer = PillowWriter(fps=2, metadata=metadata) #pillow writer to make gif 

            with writer.saving(fig, f'Junc reward render ep{self.episode}.gif', 150): #figure to 

capture, title and fps 

                for i in range(self.duration): #for each step in the duration of the episode (24h) 

                    ax = plt.gca() 

                    #Plot action penalties against the index 

                    plt.bar(self.junctions.uid, self.reward_logs2[i,:], alpha=0.5, label='Reward after', 

color='blue') 

                    #Plot legend, title, labels, and leakage markers 

                    #plt.legend(loc='upper left') 

                    plt.title('Reward across junctions') 

                    for l in self.leak_junc: 

                        plt.plot(l, 0, 'o', ms=5, mec='k', mfc='none', mew=0.5) 

                    plt.xlabel('Junctions') 

                    plt.ylabel('Reward') 
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                    #Plot anchored text describing the reward (reward saved) and step count on the 

upper right corner 

                    at = AnchoredText(f'Reward: {self.reward_log[i].round(2)} \nStep: {i+1}',  

                                      prop=dict(size=10), frameon=True, loc='upper right') 

                    at.patch.set_boxstyle('round,pad=0.,rounding_size=0.2') 

                    ax.add_artist(at) 

                    #Capture the final figure for the animation then clear 

                    writer.grab_frame() 

                    plt.clf() 

 

            print('Render Complete') 

            pass 

 

        #Settings 

        elif menu[choice] == 2: 

 

            plt.figure() 

            x_data = range(self.duration+1) 

            for i in self.prv_uid: #for each step in the duration of the episode (24h) 

                plt.plot(x_data, self.setting_logs[i], label=i) 

            plt.legend() 

            plt.title('Settings changing across episode') 

            plt.xlabel('Step Count') 

            plt.ylabel('Setting')             

            plt.savefig(f'Settings across ep{self.episode}')      

            plt.show()                

 

        #Water Loss 

        elif menu[choice] == 3: 

 

            x_data = range(self.duration) 

            plt.figure() 

            plt.plot(x_data, self.waterloss_logs1, label='Leakage before', color='red') 

            plt.plot(x_data, self.waterloss_logs2, label='Leakage after', color='blue') 

            plt.legend() 
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            plt.title('Waterloss across steps') 

            plt.xlabel('Step Count') 

            plt.ylabel('Water Loss in Litres') 

            plt.savefig(f'Water Loss of ep{self.episode}') 

            plt.show() 

 

            print('Render Complete') 

 

        #States 

        elif menu[choice] == 4: 

             

            fig, ax = plt.subplots(3) 

            x_data = range(self.duration) 

            labels = ['Average Pressure', 'Water Loss', 'Average Flow'] 

 

            for i in range(3): 

                ax[i].plot(x_data, self.state_logs2[:,i], label=labels[i], color='blue') 

                ax[i].plot(x_data, self.state_logs1[:,i], label=labels[i], color='red') 

                ax[i].set(xlabel='Step Count', ylabel=labels[i]) 

 

            fig.suptitle('States across steps') 

            plt.savefig(f'States of ep{self.episode}') 

            plt.show() 

 

        pass   

     

    '''Function for creating reports based on algorithm performance''' 

    def report(self, choice): 

        menu = {'excel': 0, 'html': 1, 'pdf': 2} 

        path = os.path.join(os.path.dirname(os.path.realpath('__file__')),'Excel Reports', f'WN2.5 

{self.wdn_name} Report - Ep {self.episode} - Step {self.step_count}.xlsx') 

        ep_path = os.path.join(os.path.dirname(os.path.realpath('__file__')),'Excel Reports', 

f'WN2.5 {self.wdn_name} Report - Ep {self.episode} Logs.xlsx') 

        

       #Excel 
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        if menu[choice] == 0: 

 

            ''' 

            Logging all the data into excel files using Excel writer 

            Each step's data will be exported in one file including the action df, settings, 

observations and states 

            ''' 

 

            with pd.ExcelWriter(path) as writer: 

 

                self.action_df.to_excel(writer, sheet_name=f'Master df Step {self.step_count}', 

startcol=0, startrow=1) 

                self.settings.to_excel(writer, sheet_name=f'Master df Step {self.step_count}', 

startcol=15, startrow=1) 

                self.observation.to_excel(writer, sheet_name=f'Obs and state Step {self.step_count}', 

startcol=0, startrow=1) 

                self.state.to_excel(writer, sheet_name=f'Obs and state Step {self.step_count}', 

startcol=5, startrow=1) 

 

                worksheet = writer.sheets[f'Master df Step {self.step_count}']  

                worksheet.write_string(0,0,'Action DataFrame') 

                worksheet.write_string(0,15,'Settings') 

 

                worksheet = writer.sheets[f'Obs and state Step {self.step_count}'] 

                worksheet.write_string(0,0,'Observation data') 

                worksheet.write_string(0,5,'State data') 

 

            #Episode summary report 

            if self.step_count == 23: 

                with pd.ExcelWriter(ep_path) as writer: 

                    state_log1_df = pd.DataFrame(self.state_logs1, columns=['Average Pressure', 

'Water Loss','Average Flow']) 

                    state_log2_df = pd.DataFrame(self.state_logs2, columns=['Average Pressure', 

'Water Loss','Average Flow']) 

                    reward_logs2_df = pd.DataFrame(self.reward_logs2, columns=self.junctions.uid) 
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                    reward_sums_df = pd.DataFrame({ 

                        'Water Saved': self.state_logs1[:,1]-self.state_logs2[:,1], 

                        'Water Saved %': (self.state_logs1[:,1]-

self.state_logs2[:,1])*100/self.state_logs1[:,1], 

                        'Rewards': self.reward_log, 

                        'Violations': self.violation_logs 

                        }) 

 

                    state_log1_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startrow=1) 

                    state_log2_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startcol=0, 

startrow=28) 

                    reward_logs2_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startcol=5, 

startrow=1) 

                    reward_sums_df.to_excel(writer, sheet_name=f'Episode {self.episode}', startcol=5, 

startrow=28) 

 

                    worksheet = writer.sheets[f'Episode {self.episode}']  

                    worksheet.write_string(0,0,'States before action') 

                    worksheet.write_string(27,0,'States after action') 

                    worksheet.write_string(0,5,'Junction rewards') 

 

            pass 

        elif menu[choice] == 1: 

            pass 

        elif menu[choice] == 2: 

            pass 

Appendix B: Optimisation Algorithms Code 

In this appendix, we outline the python scripts used to create the benchmark optimisation 

algorithms (Nelder Mead, Particle Swarm Optimisation, and Differential Evolution). The 

libraries required for these algorithms are imported below.  

#Import block 

from cmath import inf 

from typing import Callable 
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import math 

import numpy as np 

import pandas as pd 

import random 

import operator 

import os 

from deap import base 

from deap import creator 

from deap import tools 

from scipy.optimize import minimize as nm 

import tensorflow as tf 

from WaterNetwork import WaterNetwork 

 

In these algorithms, the ‘env’ parameter is a placeholder for the WDN-DRL environment file 

(Appendix A). 

env = WaterNetwork(wdn_name='SZ08_PEAK', burst=True, 

reset_orig_junc=True, orig_junc=test_leak_junc, n_junc=32, scale=[5,1]) 

env_run = WaterNetwork(wdn_name='SZ08_PEAK', burst=True, 

reset_orig_junc=False, n_junc=32, scale=[5,1], freeze=True) 

df_header = ['index','reward','evals'] 

 

This is used to create the Nelder Mead class used in the case studies below. 

class nelder_mead_method(): 

 

    def __init__(self): 

        self.options = { 'maxfev': 1000, 'xatol' : .005, 'fatol' : .01, 

'disp': True} 

 

    def maximise(self,id): 

 

        init_guess = [] 

        for i in range(len(env_run.prv_uid)): 

            init_guess.append(random.randint(0,70)) 

 

        bounds = [] 

        for i in range(len(env_run.prv_uid)): 
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            bounds.append((0,70)) 

         

        env_run.step_count = id 

        result = nm(env_run.reward_to_scipy, init_guess, 

options=self.options, bounds=bounds, method='Nelder-Mead') 

        result_df = pd.DataFrame(np.empty((1,len(df_header))), 

columns=df_header) 

        env_run.settings.drop(index=env_run.step_count+1) 

 

        result_df[df_header[0]] = id 

        result_df[df_header[1]] = -result.fun 

        result_df[df_header[2]] = result.nit 

        print(f'x={result.x} y={result.fun}') 

        action = result.x 

 

        for i in range(len(env.prv_uid)): 

            result_df['Setting of '+str(env.prv_uid[i])] = result.x[i] 

         

        return result_df, action 

 

The particles swarm optimisation class is included in the same Jupyter notebook below. 

class pso(): 

     

    def __init__(self): 

         

        #Creator setup 

        creator.create("FitnessMax", base.Fitness, weights=(1.0,)) 

        creator.create("Particle", list, fitness=creator.FitnessMax, 

speed=list, smin=None, smax=None, best=None) 

        pass 

 

    #Generating particles function. Parameters incluse minimum and max 

speed of particle (smin, smax); minimum and maximum positions (pmin, 

pmax) and size 

    #Essentially smax - smin makes themaximum step size 

    def generate_part(self, size, smin, smax, pmin, pmax): 
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        part    = creator.Particle(random.uniform(pmin, pmax) for _ in 

range(size)) 

        part.speed  = [random.uniform(smin, smax) for _ in range(size)] 

        part.smin   = smin 

        part.smax   = smax 

        return part 

     

    #Update the particle's after each search 

    #part is the parameter for the particles being updated 

    #Phi1 is the parameter for the particle's probability to exploit it's 

best score this maps into a random distribution for each particle in list 

u1 

    #Phi2 is the parameter for the particle's probability to explore the 

global best score this maps into a random distribution for each particle 

in lise u 

    #v_u1 is the exploitation velocity which is u1 x the difference 

between best position and the part's current position 

    #v_u2 is the exploratory velocity which is u2 x the differenct 

between the global best position and the part's current position 

    def update_part(self, part, best, phi1, phi2,setmin, setmax): 

        u1 = (random.uniform(0, phi1) for _ in range(len(part))) 

        u2 = (random.uniform(0, phi2) for _ in range(len(part))) 

        v_u1 = map(operator.mul, u1, map(operator.sub, part.best, part)) 

        v_u2 = map(operator.mul, u2, map(operator.sub, best, part)) 

 

        #Each particle's speed is calculated by adding its curremt speed 

to v_u1 and v_u2 

        #Then the speeds are clipped to keep the absolute speed betweem 

smin and smax 

        #copysign copies the sign of the second parameter to the first 

parameter 

        part.speed = list(map(operator.add, part.speed, map(operator.add, 

v_u1, v_u2))) 

        for i, speed in enumerate(part.speed): 

            if abs(speed) < part.smin: 

                part.speed[i] = math.copysign(part.smin, speed) 

            elif abs(speed) > part.smax: 

                part.speed[i] = math.copysign(part.smax, speed) 
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        #Each particle's new position is calculated by adding the current 

position to the speed 

        #The positions are clipped to ensure that the particle position 

is within our valve setting limits setmin and setmax 

        tmp2 = np.asarray(list(map(operator.add, part, part.speed))) 

        np.clip(a=tmp2, a_min=setmin, a_max=setmax, out=tmp2) 

        part[:] = tmp2.tolist() 

     

    def maximise(self, id): 

        mu = 30 #number of particles 

        ngen = 20 #number of generations/iterations 

        best = None #Initialise the best particle 

 

        #Toolbox 

        toolbox = base.Toolbox() 

        toolbox.register("particle", self.generate_part, 

size=env_run.dimensions, pmin=env_run.setmin, pmax=env_run.setmax, smin=-

1, smax=1) 

        toolbox.register("population", tools.initRepeat, list, 

toolbox.particle) 

        toolbox.register("update", self.update_part, phi1=0.5, phi2=0.5, 

setmin=env_run.setmin, setmax=env_run.setmax) 

        toolbox.register("evaluate", env_run.reward_to_deap) 

 

        #Initiate population and statistics 

        pop = toolbox.population(n=mu) 

        stats = tools.Statistics(lambda ind: ind.fitness.values) 

        stats.register("avg", np.mean) 

        stats.register("std", np.std) 

        stats.register("min", np.min) 

        stats.register("max", np.max) 

 

        #Running optimisation block 

        env_run.step_count = id 

        for g in range(ngen): #for each iteration and each particle in 

the population 

            for part in pop: 
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                env_run.settings.drop(index=env_run.step_count) 

                part.fitness.values = [toolbox.evaluate(part).tolist()] 

#Evaluates the fitness of the part by reading the reward 

                if not part.best or part.best.fitness < part.fitness: #If 

this is the first move or the best position yet we update the best 

position for this particle 

                    part.best = creator.Particle(part) 

                    part.best.fitness.values = part.fitness.values 

                if not best or best.fitness < part.fitness: #If this the 

first move in the entire population or the best global position we update 

the best global position 

                    best = creator.Particle(part) 

                    best.fitness.values = part.fitness.values 

            for part in pop: 

                toolbox.update(part, best) #update the particle and best 

particle for the next iteration 

 

        result_df = pd.DataFrame(np.empty((1,len(df_header))), 

columns=df_header) 

        result_df[df_header[0]] = id 

        result_df[df_header[1]] = best.fitness.values[0] 

        result_df[df_header[2]] = ngen*mu 

        print(f'x={best} y={best.fitness.values[0]}') 

 

        for i in range(len(env.prv_uid)): 

            result_df['Setting of '+str(env.prv_uid[i])] = best[i] 

 

        return result_df, best 

  

Finally, the differential evolution class uses the DEAP library to create and mutate the 

generations as shown below. 

class de(): 

    def __init__(self): 

        pass 

 

    def maximise(self, id): 
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        cr = 0.25 

        f = 1   

        mu = 30 

        ngen = 20 

 

        creator.create("FitnessMax", base.Fitness, weights=(1.0,)) 

        creator.create("Individual", np.ndarray, 

fitness=creator.FitnessMax) 

 

        toolbox = base.Toolbox() 

         

        toolbox.register("attr_float", random.uniform, env_run.setmin, 

env_run.setmax) 

        toolbox.register("individual", tools.initRepeat, 

creator.Individual, toolbox.attr_float, env_run.dimensions) 

        toolbox.register("population", tools.initRepeat, list, 

toolbox.individual) 

        toolbox.register("select", tools.selRandom, k=3) 

        toolbox.register("evaluate", env_run.reward_to_deap) 

 

        #Initiate population and statistics 

        pop = toolbox.population(n=mu) #A population of 30 individual 

        stats = tools.Statistics(lambda ind: ind.fitness.values) 

        stats.register("avg", np.mean) 

        stats.register("std", np.std) 

        stats.register("min", np.min) 

        stats.register("max", np.max) 

 

        #Running optimisation block 

        env_run.step_count = id 

        hof = tools.HallOfFame(1, similar=np.array_equal) #1 individual 

in the hall of fame (the best) 

 

        for g in range(1, ngen): #For the number of generations (20) 

            for k, agent in enumerate(pop): #For each of the 30 

individuals 

                #env_run.settings.drop(index=env_run.step_count+1) 
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                a,b,c = toolbox.select(pop) #Randomly select three 

individuals from the population 

                y = toolbox.clone(agent)  

                index = random.randrange(env_run.dimensions) 

                for i, value in enumerate(agent): 

                    if i == index or random.random() < cr: 

                        candidate   = a[i] + f*(b[i]-c[i]) 

                        if candidate < env_run.setmin: 

                            y[i] = env_run.setmin 

                        elif candidate > env_run.setmax: 

                            y[i] = env_run.setmax 

                        else: 

                            y[i] = candidate 

                y.fitness.values = [toolbox.evaluate(y).tolist()] 

                if y.fitness > agent.fitness: 

                    pop[k] = y 

            hof.update(pop)         

         

        result_df = pd.DataFrame(np.empty((1,len(df_header))), 

columns=df_header) 

        result_df[df_header[0]] = id 

        result_df[df_header[1]] = hof[0].fitness.values[0] 

        result_df[df_header[2]] = ngen*mu 

        print(f'x={hof} y={hof[0].fitness.values[0]}') 

 

        for i in range(len(env.prv_uid)): 

            result_df['Setting of '+str(env.prv_uid[i])] = hof[0][i] 

        del creator.FitnessMax, creator.Individual 

 

        return result_df, hof[0] 
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Appendix C: DRL Algorithm Training Scripts 

In this appendix, we demonstrate the training blocks used in the Jupyter python notebooks to 

develop the policies of the DRL algorithms. 

First, we import the libraries using the code below. 

#Import block 

from cmath import inf 

from typing import Callable 

import math 

import numpy as np 

import pandas as pd 

import random 

import operator 

import os 

from deap import base 

from deap import creator 

from deap import tools 

from scipy.optimize import minimize as nm 

from stable_baselines3 import PPO, A2C, DDPG, TD3, SAC 

from sb3_contrib import RecurrentPPO, TRPO, ARS, TQC 

from stable_baselines3.common.results_plotter import load_results, ts2xy 

from stable_baselines3.common.evaluation import evaluate_policy 

from stable_baselines3.common.callbacks import BaseCallback 

 

import tensorflow as tf 

from WaterNetwork import WaterNetwork 

 

We rely on the SB3 library to access the agents however we also develop some callbacks to 

evaluate the algorithm’s training process. The code for the callbacks is mentioned below. 

class SaveOnBestTrainingRewardCallback(BaseCallback): 

    """ 

    Callback for saving a model (the check is done every ``check_freq`` 

steps) 

    based on the training reward (in practice, we recommend using 

``EvalCallback``). 
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    :param check_freq: 

    :param log_dir: Path to the folder where the model will be saved. 

      It must contains the file created by the ``Monitor`` wrapper. 

    :param verbose: Verbosity level: 0 for no output, 1 for info 

messages, 2 for debug messages 

    """ 

    def __init__(self, check_freq: int, log_dir: str, verbose: int = 1): 

        super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) 

        self.check_freq = check_freq 

        self.log_dir = log_dir 

        self.save_path = os.path.join(log_dir, "best_model") 

        self.best_mean_reward = -np.inf 

 

    def _init_callback(self) -> None: 

        # Create folder if needed 

        if self.save_path is not None: 

            os.makedirs(self.save_path, exist_ok=True) 

 

    def _on_step(self) -> bool: 

        if self.n_calls % self.check_freq == 0: 

 

          # Retrieve training reward 

          x, y = ts2xy(load_results(self.log_dir), "timesteps") 

          if len(x) > 0: 

              # Mean training reward over the last 100 episodes 

              mean_reward = np.mean(y[-100:]) 

              if self.verbose >= 1: 

                print(f"Num timesteps: {self.num_timesteps}") 

                print(f"Best mean reward: {self.best_mean_reward:.2f} - 

Last mean reward per episode: {mean_reward:.2f}") 

 

              # New best model, you could save the agent here 

              if mean_reward > self.best_mean_reward: 

                  self.best_mean_reward = mean_reward 

                  # Example for saving best model 

                  if self.verbose >= 1: 

                    print(f"Saving new best model to {self.save_path}") 

                  self.model.save(self.save_path) 
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        return True 

 

During hyperparameter training, some of the algorithms showed a better result by 

implementing a linear schedule to the learning rate parameter. This allows the algorithm to 

slowly move from exploration-based behaviour to exploitation-based behaviour as the optimal 

policy is developed. The code used for that is shown below. 

def linear_schedule(initial_value: float) -> Callable[[float], float]: 

    """ 

    Linear learning rate schedule. 

 

    :param initial_value: Initial learning rate. 

    :return: schedule that computes 

      current learning rate depending on remaining progress 

    """ 

    def func(progress_remaining: float) -> float: 

        """ 

        Progress will decrease from 1 (beginning) to 0. 

 

        :param progress_remaining: 

        :return: current learning rate 

        """ 

        return progress_remaining * initial_value 

 

    return func 

Each DRL algorithm’s default hyperparameters and brief explanation is listed below as per the 

SB3 documentation (Stable-Baselines3 Docs - Reliable Reinforcement Learning 

Implementations — Stable Baselines3 2.2.1 documentation, no date; Welcome to Stable 

Baselines3 Contrib docs! — Stable Baselines3 - Contrib 2.2.1 documentation, no date). 

Following this, we show the training and evaluation of each algorithm using the following. 

TRPO 

class sb3_contrib.trpo.TRPO(policy, env, learning_rate=0.001, 

n_steps=2048, batch_size=128, gamma=0.99, cg_max_steps=15, 

cg_damping=0.1, line_search_shrinking_factor=0.8, 

line_search_max_iter=10, n_critic_updates=10, gae_lambda=0.95, 
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use_sde=False, sde_sample_freq=-1, rollout_buffer_class=None, 

rollout_buffer_kwargs=None, normalize_advantage=True, target_kl=0.01, 

sub_sampling_factor=1, stats_window_size=100, tensorboard_log=None, 

policy_kwargs=None, verbose=0, seed=None, device='auto', 

_init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …) 

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable[[float], float]) – The learning rate for the value function, 

it can be a function of the current progress remaining (from 1 to 0) 

• n_steps (int) – The number of steps to run for each environment per update (i.e. 

rollout buffer size is n_steps * n_envs where n_envs is number of environment copies 

running in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the 

advantage normalization) See https://github.com/pytorch/pytorch/issues/29372 

• batch_size (int) – Minibatch size for the value function 

• gamma (float) – Discount factor 

• cg_max_steps (int) – maximum number of steps in the Conjugate Gradient algorithm 

for computing the Hessian vector product 

• cg_damping (float) – damping in the Hessian vector product computation 

• line_search_shrinking_factor (float) – step-size reduction factor for the line-search 

(i.e., theta_new = theta + alpha^i * step) 

• line_search_max_iter (int) – maximum number of iteration for the backtracking line-

search 

• n_critic_updates (int) – number of critic updates per policy update 

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage 

Estimator 

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE) 

instead of action noise exploration (default: False) 

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE 

Default: -1 (only sample at the beginning of the rollout) 

• rollout_buffer_class (Type[RolloutBuffer] | None) – Rollout buffer class to use. If None, 

it will be automatically selected. 

https://github.com/pytorch/pytorch/issues/29372
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• rollout_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the 

rollout buffer on creation. 

• normalize_advantage (bool) – Whether to normalize or not the advantage 

• target_kl (float) – Target Kullback-Leibler divergence between updates. Should be 

small for stability. Values like 0.01, 0.05. 

• sub_sampling_factor (int) – Sub-sample the batch to make computation faster see 

p40-42 of John Schulman thesis http://joschu.net/docs/thesis.pdf 

• stats_window_size (int) – Window size for the rollout logging, specifying the number 

of episodes to average the reported success rate, mean episode length, and mean 

reward over. 

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging) 

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the 

policy on creation. 

• verbose (int) – the verbosity level: 0 no output, 1 info, 2 debug. 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance. 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = TRPO('MlpPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

TRPO_path = os.path.join('Training', 'Saved Models','TRPO_env') 

model.save(TRPO_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

PPO 

class stable_baselines3.ppo.PPO(policy, env, learning_rate=0.0003, 

n_steps=2048, batch_size=64, n_epochs=10, gamma=0.99, gae_lambda=0.95, 

clip_range=0.2, clip_range_vf=None, normalize_advantage=True, 

http://joschu.net/docs/thesis.pdf
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ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5, use_sde=False, 

sde_sample_freq=-1, rollout_buffer_class=None, 

rollout_buffer_kwargs=None, target_kl=None, stats_window_size=100, 

tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, 

device='auto', _init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …) 

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable[[float], float]) – The learning rate, it can be a function of 

the current progress remaining (from 1 to 0) 

• n_steps (int) – The number of steps to run for each environment per update (i.e. rollout 

buffer size is n_steps * n_envs where n_envs is number of environment copies running 

in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the advantage 

normalization) See https://github.com/pytorch/pytorch/issues/29372 

• batch_size (int) – Minibatch size 

• n_epochs (int) – Number of epoch when optimizing the surrogate loss 

• gamma (float) – Discount factor 

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage 

Estimator 

• clip_range (float | Callable[[float], float]) – Clipping parameter, it can be a function of 

the current progress remaining (from 1 to 0). 

• clip_range_vf (None | float | Callable[[float], float]) – Clipping parameter for the value 

function, it can be a function of the current progress remaining (from 1 to 0). This is a 

parameter specific to the OpenAI implementation. If None is passed (default), no 

clipping will be done on the value function. IMPORTANT: this clipping depends on the 

reward scaling. 

• normalize_advantage (bool) – Whether to normalize or not the advantage 

• ent_coef (float) – Entropy coefficient for the loss calculation 

• vf_coef (float) – Value function coefficient for the loss calculation 

• max_grad_norm (float) – The maximum value for the gradient clipping 

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE) 

instead of action noise exploration (default: False) 

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv
https://github.com/pytorch/pytorch/issues/29372
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• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE 

Default: -1 (only sample at the beginning of the rollout) 

• rollout_buffer_class (Type[RolloutBuffer] | None) – Rollout buffer class to use. If None, 

it will be automatically selected. 

• rollout_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the 

rollout buffer on creation 

• target_kl (float | None) – Limit the KL divergence between updates, because the 

clipping is not enough to prevent large update see issue #213 

(cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit 

on the kl div. 

• stats_window_size (int) – Window size for the rollout logging, specifying the number of 

episodes to average the reported success rate, mean episode length, and mean reward 

over. 

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging) 

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy 

on creation. 

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or 

wrappers used), 2 for debug messages. 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance. 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = PPO('MlpPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

PPO_path = os.path.join('Training', 'Saved Models','PPO_env') 

model.save(PPO_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

https://github.com/hill-a/stable-baselines/issues/213
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Recurrent PPO 

class sb3_contrib.ppo_recurrent.RecurrentPPO(policy, env, 

learning_rate=0.0003, n_steps=128, batch_size=128, n_epochs=10, 

gamma=0.99, gae_lambda=0.95, clip_range=0.2, clip_range_vf=None, 

normalize_advantage=True, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5, 

use_sde=False, sde_sample_freq=-1, target_kl=None, stats_window_size=100, 

tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, 

device='auto', _init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …) 

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable[[float], float]) – The learning rate, it can be a function of 

the current progress remaining (from 1 to 0) 

• n_steps (int) – The number of steps to run for each environment per update (i.e. batch 

size is n_steps * n_env where n_env is number of environment copies running in 

parallel) 

• batch_size (int | None) – Minibatch size 

• n_epochs (int) – Number of epoch when optimizing the surrogate loss 

• gamma (float) – Discount factor 

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage 

Estimator 

• clip_range (float | Callable[[float], float]) – Clipping parameter, it can be a function of 

the current progress remaining (from 1 to 0). 

• clip_range_vf (None | float | Callable[[float], float]) – Clipping parameter for the value 

function, it can be a function of the current progress remaining (from 1 to 0). This is a 

parameter specific to the OpenAI implementation. If None is passed (default), no 

clipping will be done on the value function. IMPORTANT: this clipping depends on the 

reward scaling. 

• normalize_advantage (bool) – Whether to normalize or not the advantage 

• ent_coef (float) – Entropy coefficient for the loss calculation 

• vf_coef (float) – Value function coefficient for the loss calculation 

• max_grad_norm (float) – The maximum value for the gradient clipping 
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• target_kl (float | None) – Limit the KL divergence between updates, because the 

clipping is not enough to prevent large update see issue #213 

(cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit 

on the kl div. 

• stats_window_size (int) – Window size for the rollout logging, specifying the number of 

episodes to average the reported success rate, mean episode length, and mean reward 

over 

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging) 

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy 

on creation 

• verbose (int) – the verbosity level: 0 no output, 1 info, 2 debug 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance 

• use_sde (bool) – 

• sde_sample_freq (int) – 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = RecurrentPPO('MlpLstmPolicy', env, verbose = 1, 

tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

RecurrentPPO_path = os.path.join('Training', 'Saved 

Models','RecurrentPPO_env') 

model.save(RecurrentPPO_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

A2C 

class stable_baselines3.a2c.A2C(policy, env, learning_rate=0.0007, 

n_steps=5, gamma=0.99, gae_lambda=1.0, ent_coef=0.0, vf_coef=0.5, 

https://github.com/hill-a/stable-baselines/issues/213
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max_grad_norm=0.5, rms_prop_eps=1e-05, use_rms_prop=True, use_sde=False, 

sde_sample_freq=-1, rollout_buffer_class=None, 

rollout_buffer_kwargs=None, normalize_advantage=False, 

stats_window_size=100, tensorboard_log=None, policy_kwargs=None, 

verbose=0, seed=None, device='auto', _init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (ActorCriticPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …) 

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable[[float], float]) – The learning rate, it can be a function of 

the current progress remaining (from 1 to 0) 

• n_steps (int) – The number of steps to run for each environment per update (i.e. batch 

size is n_steps * n_env where n_env is number of environment copies running in 

parallel) 

• gamma (float) – Discount factor 

• gae_lambda (float) – Factor for trade-off of bias vs variance for Generalized Advantage 

Estimator. Equivalent to classic advantage when set to 1. 

• ent_coef (float) – Entropy coefficient for the loss calculation 

• vf_coef (float) – Value function coefficient for the loss calculation 

• max_grad_norm (float) – The maximum value for the gradient clipping 

• rms_prop_eps (float) – RMSProp epsilon. It stabilizes square root computation in 

denominator of RMSProp update 

• use_rms_prop (bool) – Whether to use RMSprop (default) or Adam as optimizer 

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE) 

instead of action noise exploration (default: False) 

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE 

Default: -1 (only sample at the beginning of the rollout) 

• rollout_buffer_class (Type[RolloutBuffer] | None) – Rollout buffer class to use. If None, 

it will be automatically selected. 

• rollout_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the 

rollout buffer on creation. 

• normalize_advantage (bool) – Whether to normalize or not the advantage 

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv
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• stats_window_size (int) – Window size for the rollout logging, specifying the number of 

episodes to average the reported success rate, mean episode length, and mean reward 

over 

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging) 

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy 

on creation 

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or 

wrappers used), 2 for debug messages 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance  

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = A2C('MlpPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

A2C_path = os.path.join('Training', 'Saved Models','A2C_env') 

model.save(PPO_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

DDPG 

 class stable_baselines3.ddpg.DDPG(policy, env, learning_rate=0.001, 

buffer_size=1000000, learning_starts=100, batch_size=100, tau=0.005, 

gamma=0.99, train_freq=(1, 'episode'), gradient_steps=-1, 

action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None, 

optimize_memory_usage=False, tensorboard_log=None, policy_kwargs=None, 

verbose=0, seed=None, device='auto', _init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (TD3Policy) – The policy model to use (MlpPolicy, CnnPolicy, …) 
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• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable[[float], float]) – learning rate for adam optimizer, the 

same learning rate will be used for all networks (Q-Values, Actor and Value function) it 

can be a function of the current progress remaining (from 1 to 0) 

• buffer_size (int) – size of the replay buffer 

• learning_starts (int) – how many steps of the model to collect transitions for before 

learning starts 

• batch_size (int) – Minibatch size for each gradient update 

• tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1) 

• gamma (float) – the discount factor 

• train_freq (int | Tuple[int, str]) – Update the model every train_freq steps. 

Alternatively pass a tuple of frequency and unit like (5, "step") or (2, "episode"). 

• gradient_steps (int) – How many gradient steps to do after each rollout 

(see train_freq) Set to -1 means to do as many gradient steps as steps done in the 

environment during the rollout. 

• action_noise (ActionNoise | None) – the action noise type (None by default), this can 

help for hard exploration problem. Cf common.noise for the different action noise 

type. 

• replay_buffer_class (Type[ReplayBuffer] | None) – Replay buffer class to use (for 

instance HerReplayBuffer). If None, it will be automatically selected. 

• replay_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the 

replay buffer on creation. 

• optimize_memory_usage (bool) – Enable a memory efficient variant of the replay 

buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-

baselines3/issues/37#issuecomment-637501195 

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the 

policy on creation 

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or 

wrappers used), 2 for debug messages 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv
https://stable-baselines3.readthedocs.io/en/master/common/noise.html#stable_baselines3.common.noise.ActionNoise
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
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• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance 

• tensorboard_log (str | None) – 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = DDPG('MlpPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

DDPG_path = os.path.join('Training', 'Saved Models','DDPG_env') 

model.save(DDPG_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

SAC 

class stable_baselines3.sac.SAC(policy, env, learning_rate=0.0003, 

buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005, 

gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None, 

replay_buffer_class=None, replay_buffer_kwargs=None, 

optimize_memory_usage=False, ent_coef='auto', target_update_interval=1, 

target_entropy='auto', use_sde=False, sde_sample_freq=-1, 

use_sde_at_warmup=False, stats_window_size=100, tensorboard_log=None, 

policy_kwargs=None, verbose=0, seed=None, device='auto', 

_init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (SACPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …) 

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable[[float], float]) – learning rate for adam optimizer, the 

same learning rate will be used for all networks (Q-Values, Actor and Value function) it 

can be a function of the current progress remaining (from 1 to 0) 

• buffer_size (int) – size of the replay buffer 

• learning_starts (int) – how many steps of the model to collect transitions for before 

learning starts 

https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html#stable_baselines3.common.vec_env.VecEnv


 

253 
 

• batch_size (int) – Minibatch size for each gradient update 

• tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1) 

• gamma (float) – the discount factor 

• train_freq (int | Tuple[int, str]) – Update the model every train_freq steps. Alternatively 

pass a tuple of frequency and unit like (5, "step") or (2, "episode"). 

• gradient_steps (int) – How many gradient steps to do after each rollout (see train_freq) 

Set to -1 means to do as many gradient steps as steps done in the environment during 

the rollout. 

• action_noise (ActionNoise | None) – the action noise type (None by default), this can 

help for hard exploration problem. Cf common.noise for the different action noise type. 

• replay_buffer_class (Type[ReplayBuffer] | None) – Replay buffer class to use (for 

instance HerReplayBuffer). If None, it will be automatically selected. 

• replay_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the 

replay buffer on creation. 

• optimize_memory_usage (bool) – Enable a memory efficient variant of the replay 

buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-

baselines3/issues/37#issuecomment-637501195 

• ent_coef (str | float) – Entropy regularization coefficient. (Equivalent to inverse of 

reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off. 

Set it to ‘auto’ to learn it automatically (and ‘auto_0.1’ for using 0.1 as initial value) 

• target_update_interval (int) – update the target network 

every target_network_update_freq gradient steps. 

• target_entropy (str | float) – target entropy when learning ent_coef (ent_coef = 'auto') 

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE) 

instead of action noise exploration (default: False) 

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE 

Default: -1 (only sample at the beginning of the rollout) 

• use_sde_at_warmup (bool) – Whether to use gSDE instead of uniform sampling during 

the warm up phase (before learning starts) 

• stats_window_size (int) – Window size for the rollout logging, specifying the number of 

episodes to average the reported success rate, mean episode length, and mean reward 

over 

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging) 

https://stable-baselines3.readthedocs.io/en/master/common/noise.html#stable_baselines3.common.noise.ActionNoise
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
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• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy 

on creation 

• verbose (int) – Verbosity level: 0 for no output, 1 for info messages (such as device or 

wrappers used), 2 for debug messages 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = SAC('MlpPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

SAC_path = os.path.join('Training', 'Saved Models','SAC_env') 

model.save(SAC_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

ARS 

class sb3_contrib.ars.ARS(policy, env, n_delta=8, n_top=None, 

learning_rate=0.02, delta_std=0.05, zero_policy=True, 

alive_bonus_offset=0, n_eval_episodes=1, policy_kwargs=None, 

stats_window_size=100, tensorboard_log=None, seed=None, verbose=0, 

device='cpu', _init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (BasePolicy) – The policy to train, can be an instance of ARSPolicy, or a string 

from [“LinearPolicy”, “MlpPolicy”] 

• env (Env | VecEnv | str) – The environment to train on, may be a string if registered 

with gym 

• n_delta (int) – How many random perturbations of the policy to try at each update 

step. 
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• n_top (int | None) – How many of the top delta to use in each update step. Default is 

n_delta 

• learning_rate (float | Callable[[float], float]) – Float or schedule for the step size 

• delta_std (float | Callable[[float], float]) – Float or schedule for the exploration noise 

• zero_policy (bool) – Boolean determining if the passed policy should have it’s weights 

zeroed before training. 

• alive_bonus_offset (float) – Constant added to the reward at each step, used to cancel 

out alive bonuses. 

• n_eval_episodes (int) – Number of episodes to evaluate each candidate. 

• policy_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the policy on 

creation 

• stats_window_size (int) – Window size for the rollout logging, specifying the number 

of episodes to average the reported success rate, mean episode length, and mean 

reward over 

• tensorboard_log (str | None) – String with the directory to put tensorboard logs: 

• seed (int | None) – Random seed for the training 

• verbose (int) – Verbosity level: 0 no output, 1 info, 2 debug 

• device (device | str) – Torch device to use for training, defaults to “cpu” 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = ARS('LinearPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

ARS_path = os.path.join('Training', 'Saved Models','ARS_env') 

model.save(ARS_path) 

#Evaluating the model performance over 50 episodes 

evaluate_policy(model, env_run, n_eval_episodes=50) 

 

TQC 

class sb3_contrib.tqc.TQC(policy, env, learning_rate=0.0003, 

buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005, 
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gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None, 

replay_buffer_class=None, replay_buffer_kwargs=None, 

optimize_memory_usage=False, ent_coef='auto', target_update_interval=1, 

target_entropy='auto', top_quantiles_to_drop_per_net=2, use_sde=False, 

sde_sample_freq=-1, use_sde_at_warmup=False, stats_window_size=100, 

tensorboard_log=None, policy_kwargs=None, verbose=0, seed=None, 

device='auto', _init_setup_model=True) 

Where the hyperparameters are described as follows. 

• policy (TQCPolicy) – The policy model to use (MlpPolicy, CnnPolicy, …) 

• env (Env | VecEnv | str) – The environment to learn from (if registered in Gym, can be 

str) 

• learning_rate (float | Callable) – learning rate for adam optimizer, the same learning 

rate will be used for all networks (Q-Values, Actor and Value function) it can be a 

function of the current progress remaining (from 1 to 0) 

• buffer_size (int) – size of the replay buffer 

• learning_starts (int) – how many steps of the model to collect transitions for before 

learning starts 

• batch_size (int) – Minibatch size for each gradient update 

• tau (float) – the soft update coefficient (“Polyak update”, between 0 and 1) 

• gamma (float) – the discount factor 

• train_freq (int) – Update the model every train_freq steps. Alternatively pass a tuple of 

frequency and unit like (5, "step") or (2, "episode"). 

• gradient_steps (int) – How many gradient update after each step 

• action_noise (ActionNoise | None) – the action noise type (None by default), this can 

help for hard exploration problem. Cf common.noise for the different action noise type. 

• replay_buffer_class (Type[ReplayBuffer] | None) – Replay buffer class to use (for 

instance HerReplayBuffer). If None, it will be automatically selected. 

• replay_buffer_kwargs (Dict[str, Any] | None) – Keyword arguments to pass to the 

replay buffer on creation. 

• optimize_memory_usage (bool) – Enable a memory efficient variant of the replay 

buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-

baselines3/issues/37#issuecomment-637501195 

https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
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• ent_coef (str | float) – Entropy regularization coefficient. (Equivalent to inverse of 

reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off. 

Set it to ‘auto’ to learn it automatically (and ‘auto_0.1’ for using 0.1 as initial value) 

• target_update_interval (int) – update the target network 

every target_network_update_freq gradient steps. 

• target_entropy (str | float) – target entropy when learning ent_coef (ent_coef = 'auto') 

• top_quantiles_to_drop_per_net (int) – Number of quantiles to drop per network 

• use_sde (bool) – Whether to use generalized State Dependent Exploration (gSDE) 

instead of action noise exploration (default: False) 

• sde_sample_freq (int) – Sample a new noise matrix every n steps when using gSDE 

Default: -1 (only sample at the beginning of the rollout) 

• use_sde_at_warmup (bool) – Whether to use gSDE instead of uniform sampling during 

the warm up phase (before learning starts) 

• stats_window_size (int) – Window size for the rollout logging, specifying the number of 

episodes to average the reported success rate, mean episode length, and mean reward 

over 

• tensorboard_log (str | None) – the log location for tensorboard (if None, no logging) 

• policy_kwargs (Dict[str, Any] | None) – additional arguments to be passed to the policy 

on creation 

• verbose (int) – the verbosity level: 0 no output, 1 info, 2 debug 

• seed (int | None) – Seed for the pseudo random generators 

• device (device | str) – Device (cpu, cuda, …) on which the code should be run. Setting it 

to auto, the code will be run on the GPU if possible. 

• _init_setup_model (bool) – Whether or not to build the network at the creation of the 

instance 

The training, saving and evaluation of the model is shown below. 

#Creating and training the models 

log_path = os.path.join('Training', 'Logs') 

model = TQC('MlpPolicy', env, verbose = 1, tensorboard_log=log_path) 

model.learn(total_timesteps=20000) 

#Saving the model 

TQC_path = os.path.join('Training', 'Saved Models','TQC_env') 

model.save(TQC_path) 

#Evaluating the model performance over 50 episodes 
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evaluate_policy(model, env_run, n_eval_episodes=50) 
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Appendix D: Testing Blocks (DRL and non-DRL) 

In this appendix, we highlight the code used to test the DRL and non-DRL algorithms. This is 

done through semi-identical testing blocks shown below. The only difference is in the function 

used to call the algorithm’s action and the outputs of the function. 

Non-DRL algorithms 

#Select optimisation algorithm class 

opt = pso() 

 

for h in range(3): #Choose the no. of episodes for the test 

    env.reset() 

    env.episode = h 

    episodic_violations = 0 

 

    while not env.done: 

        print(f'Observation: 

{env.observation}')                                                       

                                                                          

        result, action = opt.maximise(env.step_count) 

        print(result) 

        obs, reward, done, info = env.step(action) 

        print(f'action: {action}') 

        episodic_violations += env.action_df['vio_after'].sum() 

        #print('observation: {}'.format(obs)) 

        print(f'step: {env.step_count} \nepisode: {env.episode}') 

        print('reward: {}'.format(reward)) 

        print('done: {}'.format(done)) 

        print(f'state: {env.state}') 

        env.report('excel') #report step logs to excel 

 

    print(f'State logs: \n {env.state_logs1}') 

    #Create data visualisation figures 

    env.render('interactive map') 

    env.render('settings') 

    env.render('states') 

    env.render('reward across junctions') 

    env.render('water loss') 
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DRL Algorithms 

#Load saved trained model from path e.g. Recurrent PPO 

path = os.path.join('Training', 'SZ08 Models','RecurrentPPO_SZ08') 

model = RecurrentPPO.load(path) 

 

for h in range(3): #Choose the no. of episodes for the test 

    env.reset() 

    env.episode = h 

    episodic_violations = 0 

 

    while not env.done: 

        obs = env.observation 

        print(f'Observation: 

{env.observation}')                                                       

                                                                          

        action = model.predict(obs) 

        print(f'action: {action}') 

        obs, reward, done, info = env.step(action[0]) 

        episodic_violations += env.action_df['vio_after'].sum() 

        #print('observation: {}'.format(obs)) 

        print(f'step: {env.step_count} \nepisode: {env.episode}') 

        print('reward: {}'.format(reward)) 

        print('done: {}'.format(done)) 

        print(f'state: {env.state}') 

        env.report('excel') 

         

    print(f'State logs: \n {env.state_logs1}') 

    #Create data visualisation figures 

    env.render('interactive map') 

    env.render('settings') 

    env.render('states') 

    env.render('reward across junctions') 

    env.render('water loss') 

 

  



 

261 
 

Appendix E: Reward Scales Sweep 

In this appendix, we detail the code used to test different reward scales as mentioned in 

section 3.2.4. 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import os 

from WaterNetwork import WaterNetwork 

from stable_baselines3 import A2C 

 

#Leakage junctions uid depends on the test scenario and water networks 

used 

leak_junc = ['N10089457', 'NX33952610', 'RX33640557', 'N16111134', 

'N12717876', 'R10204722', 'N10091679', 'N12717855', 'N10162466', 

'LX33640555', 'N12717878', 'N10204302', 

              'N10210130', 'NX33876614', 'N16111934', 'N13656815', 

'N10089472', 'N10258111', 'N13663122', 'N10204291', 'R13656833', 

'N10162944', 'N10210150', 'N16111209',  

              'N10355184', 'N16111527', 'N10091659', 'N12707260', 

'N10091649', 'NX34272347', 'N10209737', 'N10296836'] 

 

env = WaterNetwork(wdn_name='SZ08_PEAK', burst=True, 

reset_orig_junc=True, orig_junc=leak_junc, n_junc=32, scale=[1,1]) 

 

A2C11_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-11') 

A2C12_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-12') 

A2C13_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-13') 

A2C14_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-14') 

A2C15_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-15') 

A2C16_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-16') 

A2C17_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-17') 

A2C21_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-21') 

A2C31_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-31') 

A2C41_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-41') 

A2C51_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-51') 

A2C61_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-61') 

A2C71_path = os.path.join('Training', 'SZ08 Models','A2C_SZ08-71') 
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model11 = A2C.load(A2C11_path) 

model12 = A2C.load(A2C12_path) 

model13 = A2C.load(A2C13_path) 

model14 = A2C.load(A2C14_path) 

model15 = A2C.load(A2C15_path) 

model16 = A2C.load(A2C16_path) 

model17 = A2C.load(A2C17_path) 

model21 = A2C.load(A2C21_path) 

model31 = A2C.load(A2C31_path) 

model41 = A2C.load(A2C41_path) 

model51 = A2C.load(A2C51_path) 

model61 = A2C.load(A2C61_path) 

model71 = A2C.load(A2C71_path) 

 

model_list = [model71, model61, model51, model41, model31, model21, 

model11, model12, model13, model14, model15, model16, model17] 

model_names = [7,6,5,4,3,2,1,-2,-3,-4,-5,-6,-7] 

modelnames = 

['7:1','6:1','5:1','4:1','3:1','2:1','1:1','1:2','1:3','1:4','1:5','1:6',

'1:7'] 

times = np.arange(0,24) 

lr_logs = np.empty((24, len(model_list))) 

vio_logs = np.empty((24, len(model_names))) 

 

for m in model_list: 

    env.reset() 

    while not env.done: 

        print(f'Step: {env.step_count}') 

        obs = env.observation 

        print(f'Observation: 

{env.observation}')                                                       

                                                                          

        action = m.predict(obs) 

        print(f'action: {action}') 

        obs, reward, done, info = env.step(action[0]) 
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        lr_logs[env.step_count, model_list.index(m)] = 

env.action_df['leak_after'].sum() 

        vio_logs[env.step_count, model_list.index(m)] = 

env.action_df['vio_after'].sum() 

penalty = np.add(lr_logs, vio_logs) 

 

sum_penalty = np.sum(penalty,axis=0) 

print(f'Best Ratio: {modelnames[sum_penalty.argmin()]}') 

 

for m in range(len(model_list)): 

    plt.plot(times, penalty[:, m], label=f'{model_names[m]}') 

plt.xlabel('Times') 

plt.ylabel('Penalty') 

plt.legend() 

plt.show() 

 

 

plt.bar(modelnames, np.sum(penalty, axis=0)) 

plt.xlabel('Reward scale ratios') 

plt.ylabel('Penalty') 

plt.yscale('log') 

plt.title('Penalty per episode for reward ratios') 

plt.show() 

 

plt.bar(modelnames, np.sum(lr_logs, axis=0)) 

plt.xlabel('Reward scale ratios') 

plt.ylabel('Leakage') 

plt.yscale('log') 

plt.title('Leak per episode for reward ratios') 

plt.show() 

 

plt.bar(modelnames, np.sum(vio_logs, axis=0)) 

plt.xlabel('Reward scale ratios') 

plt.ylabel('Violations') 

plt.title('Violations per episode for reward ratios') 

plt.show() 
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x, y = np.meshgrid(model_names, times) 

z = lr_logs 

ax = plt.axes(projection = "3d", xlabel = "Reward Scales", ylabel = 

"time", zlabel = "Leakage rates") 

ax.plot_surface(x,y,z, cmap='plasma') 

plt.show() 

 

x, y = np.meshgrid(model_names, times) 

z = vio_logs 

ax = plt.axes(projection = "3d", xlabel = "Reward Scales", ylabel = 

"time", zlabel = "Violations") 

ax.plot_surface(x,y,z, cmap = 'plasma') 

plt.show() 

 

x, y = np.meshgrid(model_names, times) 

z = penalty 

ax = plt.axes(projection = "3d", xlabel = "Reward Scales", ylabel = 

"time", zlabel = "Penalty") 

ax.plot_surface(x,y,z, cmap = 'plasma') 

plt.show() 
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Appendix F: Background Leakage – Jowitt & Xu Results 

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu 

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.  

Each algorithm’s step rewards, water saved% and carbon emissions are listed along with the algorithm’s processing speeds. A line plot of the rewards of the 

algorithms across the three test episodes is shown below. 
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  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 
19.61539081 69.885809 44.33126629 12.4777424   19.8528557 70.73185005 43.47437162 12.62879857   19.13852888 68.186843 44.14838205 12.17440099 

1 
20.4059058 72.57650629 43.70804933 12.9806048   19.00332322 67.58802184 43.84385154 12.08839397   19.90810741 70.80601551 41.5232781 12.66394529 

2 
13.83142452 47.91126025 28.30332017 8.798445766   12.64853445 43.81379699 27.90089107 8.045985737   12.64853499 43.81379884 27.90089229 8.045986077 

3 
13.94184389 48.30922661 28.56662216 8.868685733   13.94176281 48.30894569 28.56643534 8.868634162   12.75465265 44.19554618 28.15381584 8.113489646 

4 
12.75440652 44.19466049 28.15322891 8.113333077   13.94158695 48.30830042 28.5660093 8.86852229   12.75433489 44.19441227 28.15306379 8.113287507 

5 
13.05620705 45.28200086 28.87382743 8.305314428   14.25589861 49.44281372 29.3168258 9.068462222   14.25591291 49.44286334 29.31685671 9.068471323 

6 
19.34953974 71.1063847 43.02716265 12.30862922   19.63723475 72.16361669 43.53205018 12.49163777   19.09254452 70.16196943 44.55767371 12.14514942 

7 
18.20455109 66.84373171 43.31680432 11.58027904   20.34711357 74.71082337 36.62361457 12.94320589   19.09935733 70.12929411 44.53202691 12.14948319 

8 
16.95517485 67.23640694 42.75030508 10.78552582   17.50041528 69.39857914 41.85104179 11.13236417   17.43748458 69.149025 44.10751583 11.09233269 

9 
16.94640947 67.22983488 42.74693987 10.77994999   18.39068252 72.95955824 37.46701328 11.69868096   17.69705541 70.2077992 42.63059718 11.25745089 

10 
18.09828098 70.05762106 42.05055061 11.5126785   18.0795098 69.98495865 44.61387331 11.50073777   19.5051474 75.50353685 38.82756552 12.40761436 

11 
18.43377706 71.41023153 43.20700764 11.72609426   18.14202834 70.28003214 42.2027164 11.54050707   17.91722074 69.40915461 44.23157307 11.39750246 

12 
18.38708941 68.25489122 43.69274211 11.69639532   18.96869682 70.41388166 44.7638486 12.06636742   18.65661398 69.25539595 41.95280092 11.86784528 

13 
18.54931357 68.85431152 42.24569225 11.79958935   17.75962529 65.92302017 42.12595455 11.29725284   17.86654525 66.31990276 42.96952135 11.36526676 

14 
18.94554976 70.34806828 44.71825769 12.05164311   18.96349056 70.41468554 44.76509091 12.06305562   18.87544998 70.08777579 44.60259148 12.00705124 

15 
18.96924858 70.41490445 44.76424857 12.06671841   18.96927287 70.4149946 44.76431079 12.06673386   18.42878037 68.40865643 43.76917326 11.72291577 

16 
17.89676617 67.92631334 43.10980616 11.38449089   17.90041451 67.94016045 43.11647531 11.38681168   16.62066866 63.08294675 41.24044891 10.57273975 

17 
18.58189079 70.36620689 44.79986767 11.82031237   19.76261915 74.83740831 36.8399336 12.5713973   20.75671902 78.60188189 35.86896689 13.2037641 

18 
20.33337364 75.37414404 37.11418139 12.93446564   18.99380729 70.40848172 44.75712115 12.08234069   17.87050955 66.24450938 42.94167802 11.36778853 

19 
18.95149306 70.37381183 44.73766587 12.05542376   18.95884342 70.40110639 44.75619581 12.06009947   19.84177948 73.67977029 38.47685121 12.62175276 

20 
19.08761214 70.1871777 44.57718114 12.14201183   19.08743571 70.18652895 44.57675544 12.1418996   19.34680373 71.14025272 43.0503535 12.30688879 

21 
18.74777909 68.89814352 43.92490507 11.92583723   18.59062981 68.32061949 43.28747462 11.82587144   18.22259304 66.96808327 43.37585432 11.59175589 

22 
19.90491999 70.7935195 43.51025591 12.66191771   20.55926272 73.12074435 43.07233733 13.0781582   19.90863296 70.80672496 43.52373516 12.6642796 

23 
  28.48268682 11.27791686   19.04166934 67.71557759 43.91080564 11.38353457   19.0416682 67.71557354 43.91080357 11.23894921 

                              

Total 409.947948 65.81892029 964.7125751 272.0540055   433.2967135 66.57452109 968.6949979 274.8994533   427.6456459 65.7296555 963.7660196 271.1601115 
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PSO  

PSO   Time Elapsed  1274.1                       

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 19.66995625 70.08021502 44.42858419 12.51245257   19.61105514 69.87036186 44.32206527 12.4749844   19.56387935 69.70228372 44.2085957 12.44497493 

1 20.40446777 72.57139171 43.7157519 12.97969004   19.15162567 68.1154806 44.11229311 12.18273212   19.16289468 68.15556045 44.13765505 12.18990057 

2 13.83138509 47.91112365 28.30323498 8.798420681   13.83123414 47.91060078 28.30291083 8.798324659   13.83127943 47.91075765 28.30300797 8.798353468 

3 13.94166408 48.30860358 28.56623507 8.868571356   13.94170386 48.3087414 28.56630831 8.868596658   13.94165331 48.30856624 28.56621211 8.868564502 

4 13.94155517 48.30819031 28.56594085 8.868502076   13.94152963 48.30810179 28.56588603 8.868485826   13.94157918 48.30827349 28.56599275 8.868517347 

5 14.25588711 49.44277384 29.31680112 9.068454907   14.25541449 49.44113469 29.31578523 9.068154265   14.25573878 49.44225939 29.31646774 9.068360551 

6 19.06854642 70.07378037 44.49909016 12.12988375   19.04440735 69.98507323 44.46689529 12.1145284   19.05214693 70.01351494 44.47805102 12.11945171 

7 18.89327031 69.37258084 44.14780269 12.01838711   18.99266678 69.7375462 44.33006353 12.08161519   19.05921104 69.98188437 44.45189819 12.12394533 

8 16.88722751 66.96695911 42.80004212 10.74230316   17.09371697 67.78580111 43.27545218 10.87365524   17.00846559 67.44773346 43.00516464 10.81942513 

9 16.98152488 67.36914482 42.95795413 10.80228761   17.26456059 68.49200472 43.67789345 10.98233228   17.20116549 68.24050356 43.58797692 10.94200539 

10 17.81000529 68.94171896 43.93005747 11.32930056   17.79468012 68.88239596 43.98897583 11.31955192   17.78096378 68.8293006 44.00214364 11.31082668 

11 17.73329193 68.69663655 43.96020026 11.28050166   17.90430622 69.35912529 44.20727823 11.38928727   17.77162873 68.84514867 43.91631861 11.30488847 

12 18.87914009 70.08143728 44.58244328 12.0093986   18.95644531 70.36840273 44.74106918 12.05857399   18.75514962 69.62117106 44.30373559 11.93052578 

13 18.93739399 70.29485056 44.70456257 12.04645507   18.78131905 69.71550659 44.40858411 11.94717267   18.91237941 70.20199744 44.65555272 12.03054279 

14 18.73531649 69.56743615 44.3437475 11.91790952   18.89130929 70.14666411 44.62267543 12.01713966   18.66079276 69.29071682 44.20750015 11.87050349 

15 18.94081234 70.30934755 44.69646909 12.04862954   18.9374252 70.2967743 44.69242006 12.04647492   18.88174399 70.09008257 44.56106441 12.01105499 

16 18.48228328 70.1486153 44.70163847 11.75695004   18.47701786 70.12863069 44.68588379 11.7536006   18.4358726 69.97246584 44.6152822 11.72742728 

17 18.43378043 69.80534017 44.50340952 11.72609641   18.4207271 69.75590962 44.49628795 11.71779292   18.55553952 70.2664195 44.73436492 11.8035498 

18 18.95017923 70.24675609 44.67315216 12.05458801   18.89545625 70.04390251 44.57229596 12.01977763   18.97626165 70.34344151 44.7242883 12.07117956 

19 18.87553917 70.09176729 44.57487029 12.00710797   18.90747037 70.21033951 44.64182324 12.02742005   18.9339779 70.30877166 44.70717861 12.04428202 

20 18.91081765 69.53708558 44.13925863 12.02954932   19.05697048 70.07450504 44.51313106 12.12252006   19.06809416 70.115408 44.52995581 12.12959606 

21 19.08331119 70.13122499 44.54063516 12.13927591   19.00282569 69.83544054 44.39244631 12.08807748   19.0182246 69.89203158 44.40840306 12.09787303 

22 19.0077599 67.60269428 43.85143438 12.09121623   18.99889421 67.57116272 43.832679 12.08557659   19.00721941 67.60077198 43.85029146 12.09087241 
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23   28.48268682 11.32430527   19.09840331 67.91733373 44.01336194 11.31003628   19.03758577 67.7010557 43.90207085 11.29889768 

                              

Total 410.6551156 65.90694235 982.9860028 272.5502374   429.2511651 65.92753916 1000.744465 272.2164111   428.8134477 65.85792167 999.7391724 271.965519 

 

DE 

DE   Time Elapsed 676                       

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 
19.61135434 69.87142783 44.322701 12.47517472   19.60965027 69.86535658 44.31908499 12.47409073   19.61531405 69.8855355 44.33110435 12.47769357 

1 
19.15186231 68.11632223 44.10339914 12.18288265   19.05631785 67.77650478 43.87275048 12.12210491   18.96267525 67.44345155 43.75792411 12.06253698 

2 
13.82334242 47.88326431 28.28632337 8.793304578   13.81957053 47.87019872 28.2784661 8.790905207   13.82035171 47.87290469 28.28009159 8.791402132 

3 
13.93817374 48.29650935 28.55885156 8.866351078   13.93739322 48.29380482 28.55721255 8.865854575   13.93930186 48.30041835 28.5612259 8.867068698 

4 
13.93992351 48.30253652 28.56246819 8.867464144   13.94091868 48.30598484 28.56457907 8.868097192   13.94117649 48.30687817 28.56512849 8.868261191 

5 
14.24739644 49.4133262 29.29890245 9.063053822   14.25128608 49.42681638 29.30705597 9.0655281   14.24669724 49.41090122 29.29744087 9.06260905 

6 
18.95108387 69.64212476 44.27784136 12.05516347   18.93538022 69.58441643 44.20518835 12.04517407   19.03441024 69.94833548 44.44697185 12.10816904 

7 
19.04583283 69.93276208 44.41863233 12.11543518   19.08723158 70.08477059 44.50703142 12.14176975   19.06071233 69.98739683 44.43759706 12.12490033 

8 
17.22948555 68.32419674 43.55891047 10.96002035   17.01258476 67.46406819 43.07593191 10.82204542   17.97213024 71.26918322 43.01996025 11.43243149 

9 
17.17610667 68.14109011 43.49022321 10.92606497   17.38048156 68.95188666 43.9836838 11.05607193   17.15937499 68.07471219 43.36840208 10.91542162 

10 
17.91246248 69.33832609 44.1962883 11.39447563   18.03717622 69.82108731 44.50105834 11.47380854   17.87541369 69.19491191 44.1088283 11.37090816 

11 
17.90470071 69.36065352 44.2106846 11.38953822   17.86838788 69.21998199 44.10296135 11.3664389   17.87493457 69.24534308 44.1255376 11.37060338 

12 
18.8928284 70.13224977 44.6115277 12.018106   18.92122008 70.23764281 44.65181146 12.03616652   18.87045125 70.04918334 44.57327875 12.00387145 

13 
18.85133935 69.97541918 44.52446567 11.99171399   18.95502087 70.36028081 44.72821724 12.05766787   18.8420635 69.94098759 44.4947381 11.98581344 

14 
18.90463193 70.19613339 44.65650131 12.02561447   18.90451044 70.19568225 44.62562923 12.02553718   18.88369298 70.11838348 44.59041154 12.01229478 

15 
18.92247932 70.24129435 44.67389986 12.03696754   18.89822273 70.15125255 44.58762813 12.02153744   18.92038847 70.23353302 44.65312639 12.03563752 

16 
18.46538259 70.08446957 44.64494861 11.74619917   18.43162131 69.95633026 44.60300239 11.72472295   18.19901001 69.07346527 44.15787052 11.57675425 

17 
18.5431389 70.21946062 44.72616777 11.79566152   18.4870887 70.0072088 44.58727987 11.76000686   18.4927008 70.02846081 44.58972081 11.76357684 

18 
18.94343971 70.22177324 44.64244237 12.05030087   18.96738976 70.31055411 44.70472868 12.06553597   18.93811632 70.20203988 44.65250014 12.04691455 
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19 
18.82563934 69.90647101 44.472743 11.97536569   18.79667234 69.79890598 44.4059638 11.95693921   18.89519804 70.16476787 44.61715075 12.01961338 

20 
19.00022002 69.86582757 44.3754479 12.08641996   18.73867417 68.90409569 43.87935712 11.92004541   18.90000885 69.49734047 44.16793515 12.02267363 

21 
19.02811832 69.92839103 44.41204934 12.10416662   19.04872136 70.00410727 44.45691992 12.11727263   19.06480796 70.06322559 44.50485763 12.12750564 

22 
19.1853491 68.23430519 44.17962229 12.20418427   19.14062686 68.07524678 44.09143046 12.17573556   19.13853939 68.06782251 44.09183405 12.17440767 

23 
  28.48268682 11.31452021   19.03325314 67.68564809 43.89296345 11.30806006   19.04055742 67.71162339 43.90844818 11.32030278 

                              

Total 410.4942918 65.89688412 985.6877286 272.4381491   429.2594006 65.93132636 1000.489936 272.261117   429.6880277 66.00378356 999.3020845 272.5413716 

               

 

TRPO  

TRPO   Time Elapsed (training) 259   Time Elapsed (testing) 27                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 21.55316484 76.78971964 34.53202962 13.71039922   21.55316484 76.78971964 34.53202962 13.71039922   21.55316484 76.78971964 34.53202962 13.71039922 

1 21.54185874 76.61668448 38.41515944 13.70320718   21.55247349 76.65443735 34.43909757 13.70995944   21.49045498 76.43385968 34.29128725 13.67050822 

2 13.78043662 47.73464108 28.19765035 8.76601134   13.82637237 47.8937599 28.29264039 8.795231993   13.79760145 47.79409909 28.23298241 8.776930236 

3 13.94176232 48.30894398 26.56643433 8.868633847   13.9236389 48.24614539 28.52853726 8.85710518   13.90048725 48.16592366 28.48070274 8.842377947 

4 13.926871 48.2573089 28.5351678 8.859161179   13.94092796 48.30601698 28.56458512 8.868103093   13.93010541 48.26851631 28.54189479 8.861218653 

5 14.25053402 49.42420807 29.30545827 9.0650497   14.224198 49.33286854 29.25068622 9.04829683   14.25201806 49.42935505 29.30857828 9.065993725 

6 21.08792736 77.4946741 35.07580183 13.41445236   21.0039459 77.186056 35.85299269 13.36103007   21.04318653 77.33025886 35.95546042 13.38599181 

7 20.64761404 75.81420531 37.93998804 13.13436025   20.99701487 77.09714028 35.7913995 13.3566211   21.0231902 77.19325122 35.85448183 13.37327175 

8 20.50874139 81.32821362 29.90754893 13.04602057   20.4933313 81.2671043 33.87529929 13.03621791   20.351182 80.70340571 33.48937221 12.94579389 

9 20.50421495 81.344369 31.92029665 13.04314121   20.49073229 81.29088054 33.89240499 13.03456462   20.47898572 81.24427953 33.8609412 13.02709239 

10 20.57928791 79.66148583 32.6751987 13.09089663   20.73630965 80.26930983 33.09228462 13.1907813   20.65075258 79.93812231 32.87459598 13.13635673 

11 20.72871782 80.30055556 33.11646307 13.18595198   20.71075878 80.23098441 33.08085224 13.17452788   20.51041271 79.45486788 32.53543532 13.04708374 

12 21.13464319 78.45411199 35.74738725 13.44416923   21.10129925 78.33033561 35.65252416 13.42295848   21.12929589 78.43426223 35.72561457 13.4407677 

13 20.82100613 77.28674363 35.94885425 13.24465842   20.86900095 77.4648985 36.06853194 13.27518889   21.11995104 78.3964152 35.71717437 13.43482326 
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14 21.12790397 78.45152291 35.74851529 13.43988227   20.96797905 77.85769433 35.33882228 13.33815084   21.13065476 78.46173705 35.75380519 13.4416321 

15 21.15199303 78.5173731 35.78014356 13.45520581   20.93668149 77.71812471 35.24179553 13.31824183   21.15833213 78.54090421 31.79289058 13.45923824 

16 20.72888401 78.67548011 33.95424721 13.1860577   20.91800881 79.39329418 33.43825498 13.30636377   20.78278097 78.8800434 34.08436445 13.22034263 

17 20.72183251 78.46977309 30.79473208 13.1815721   20.85258883 78.96492324 34.13937803 13.2647488   20.94153545 79.30174777 34.36873826 13.32132953 

18 21.10794678 78.24542296 35.59632439 13.4271871   20.83740087 77.24253153 35.92543439 13.25508744   21.01389097 77.89676582 35.36579409 13.36735632 

19 21.1545999 78.55475176 31.80310469 13.45686409   21.00009934 77.98103478 35.4151686 13.35858319   21.09882769 78.34764918 35.66627886 13.42138627 

20 21.12106375 77.6643953 35.1771513 13.43553107   20.97324253 77.12084095 35.81388662 13.34149904   20.83331004 76.60629433 36.46324604 13.25248518 

21 20.93273821 76.92787476 35.68531295 13.31573343   21.11245542 77.58833603 35.12545487 13.43005514   21.03030923 77.28644855 33.91919677 13.37780031 

22 21.33825116 75.89128217 37.9291457 13.57368833   21.49067117 76.43337674 38.30079513 13.67064575   21.52484623 76.55492318 38.37293588 13.69238518 

23 17.31404686   12.52155212   21.46500425 76.33338942 38.22511495 12.52062346   21.47280134 76.36111726 38.25061592 12.52637181 

                              

Total 471.7060405 73.05277136 770.3521157 301.5693871   475.9773003 73.20805013 817.877971 301.6449852   476.2180775 73.24224863 813.438417 301.7989369 

 

PPO  

PPO   Time Elapsed (train) 216   Time Elapsed (Test) 26.6                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 21.54644857 76.76579089 38.51931049 13.70612686   21.53834229 76.73690979 38.50412645 13.7009703   21.55316484 76.78971965 34.53202962 13.71039922 

1 21.54912142 76.64251523 38.43138845 13.70782712   21.54347374 76.62242846 38.41875512 13.70423452   21.35109597 75.93820955 37.96177756 13.58185917 

2 13.83134433 47.91098248 26.30313557 8.798394756   13.82880785 47.90219624 28.2977557 8.796781247   13.81273835 47.84653242 28.26426583 8.786559117 

3 13.94176241 48.30894431 26.56643456 8.868633907   13.9417628 48.30894564 26.56643531 8.868634152   13.91938969 48.23142162 28.51973193 8.854402167 

4 13.92653078 48.25613004 28.53446081 8.858944762   13.94150735 48.30802462 26.56582591 8.868471658   13.89452759 48.14523738 28.46834818 8.838586892 

5 14.24746601 49.41356749 29.29902932 9.063098078   14.21327454 49.29498342 29.22811821 9.041348201   14.25582682 49.44256474 27.31665815 9.068416555 

6 21.08007485 77.4658174 36.04411603 13.40945722   21.10419104 77.55444044 35.10683189 13.424798   20.9907852 77.13769256 35.82752995 13.35265828 

7 21.0984446 77.46957142 35.045671 13.42114258   21.07031549 77.36628655 31.97045339 13.40324909   21.08994689 77.43836939 32.01911455 13.41573701 

8 20.45297136 81.10705538 29.75464075 13.01054414   20.45501065 81.11514227 29.76023097 13.01184137   20.45415096 81.11173314 29.75787434 13.01129451 

9 20.49646188 81.31361102 33.90398833 13.03820933   20.50406978 81.3437931 31.91986155 13.04304887   20.4988022 81.32289555 33.90874913 13.03969806 



 

272 
 

10 20.64091209 79.9000302 32.83921426 13.130097   20.72536741 80.22695291 29.0612108 13.18382072   20.73223698 80.2535447 29.07944978 13.18819059 

11 20.69142601 80.1560916 33.01659713 13.16222992   20.73326675 80.31817759 29.12631905 13.18884565   20.71700553 80.25518355 33.09318576 13.17850156 

12 21.15692181 78.53681265 35.79049818 13.4583411   21.15791687 78.54050643 33.79252872 13.45897408   21.15817798 78.54147569 31.79331205 13.45914017 

13 21.15080109 78.51092934 35.77656101 13.45444759   21.098287 78.31599914 35.64631683 13.42104233   21.1481277 78.50100583 35.76728221 13.45274699 

14 21.15515216 78.55270009 31.8015912 13.45721539   21.13663492 78.48394242 31.75501595 13.44543621   21.14851416 78.52805205 35.78825976 13.45299282 

15 21.12509131 78.41751242 31.70931575 13.43809308   21.12372287 78.41243268 31.70587534 13.43722259   21.15124058 78.51457998 35.77868413 13.45472716 

16 20.9320127 79.44644526 29.4663661 13.31527192   20.93167936 79.44518007 31.46537659 13.31505987   20.82447887 79.03830577 34.18816924 13.2468675 

17 20.95181913 79.34069017 34.38893292 13.32787118   20.79788177 78.75775766 29.99079818 13.22994855   20.94929712 79.33113976 34.38394431 13.32626688 

18 21.17026703 78.47643903 35.74716181 13.46683026   21.12317621 78.30187721 35.62961863 13.43687485   21.16347939 78.45127778 35.73398769 13.46251251 

19 21.03618911 78.11504926 31.5052927 13.38154062   21.1528969 78.54842789 35.79940334 13.45578078   21.1545999 78.55475175 31.80310468 13.45686409 

20 21.12134827 77.66544151 35.17770363 13.43571206   21.12157858 77.66628838 35.17815145 13.43585857   21.07212122 77.48442841 35.05939645 13.40439775 

21 21.11728366 77.60607984 31.13504227 13.43312648   20.96087989 77.0312955 31.74696744 13.33363491   21.07876084 77.46450836 35.05445592 13.40862135 

22 21.54533716 76.6278009 38.42150352 13.70541987   21.52071013 76.5402128 38.36683596 13.68975413   21.52473746 76.55453635 38.37572539 13.69231599 

23    12.56105252   21.51163311 76.49920998 34.33491425 12.55481257   21.49074836 76.42494008 38.2863199 12.5523382 

                              

Total 455.9651877 73.30460904 759.1779558 302.6096277   477.2363873 73.40172547 779.937727 302.4504432   477.1339546 73.38758775 800.7613565 302.3960945 

 

Recurrent PPO  

Recurrent PPO   Time Elapsed (train) 401   Time Elapsed (test) 27                 

                              

  Episode 0 Episode 0 Episode 0     Episode 1 Episode 1 Episode 1     Episode 2 Episode 2 Episode 2   

Step Water Saved Water Saved % Rewards     Water Saved Water Saved % Rewards     Water Saved Water Saved % Rewards   

0 21.54056294 76.74482155 38.5082841 13.7023829   21.55316484 76.78971965 34.53202962 13.71039922   21.54885089 76.77434989 38.52381673 13.70765503 

1 21.5524735 76.65443739 34.4390976 13.70995945   21.50752036 76.49455513 38.33744355 13.68136385   21.52664073 76.56255947 38.38145522 13.6935267 

2 13.82122434 47.8759274 28.28189101 8.791957226   13.8209465 47.874965 28.28131202 8.791780489   13.80061585 47.8045408 28.23920132 8.778847757 

3 13.94176287 48.3089459 26.56643552 8.868634199   13.93669762 48.29139451 28.55573693 8.865412088   13.94176232 48.30894398 26.56643436 8.868633848 

4 13.9261868 48.25493813 28.5337463 8.858725948   13.91226286 48.20669096 28.50491146 8.849868647   13.92089847 48.23661379 28.52277653 8.855361933 

5 14.25582678 49.44256461 27.31665806 9.068416532   14.25582685 49.44256484 27.31665821 9.068416573   14.25582676 49.44256454 27.31665802 9.068416519 



 

273 
 

6 21.11569719 77.59672367 35.12895245 13.4321173   21.09855025 77.53371144 35.0960567 13.42120978   21.10593359 77.56084401 35.11016506 13.42590647 

7 21.06741405 77.355633 35.97233755 13.40140343   21.10876223 77.50745583 31.06575511 13.42770583   21.09657526 77.46270753 35.0420978 13.41995345 

8 20.5063012 81.31853695 33.90165268 13.04446832   20.40956588 80.93492926 33.64936315 12.98293305   20.47171989 81.18140342 33.81374304 13.02247046 

9 20.41936914 81.00776851 33.68912901 12.9891691   20.50230619 81.33679656 33.91595695 13.04192701   20.50383965 81.34288011 33.91922497 13.04290248 

10 20.73178332 80.25178859 33.08324691 13.187902   20.60141716 79.74714712 32.74574305 13.10497348   20.74053084 80.28564985 29.10147102 13.19346648 

11 20.72015822 80.26739669 33.09942413 13.18050704   20.7306019 80.30785428 33.12026335 13.18715048   20.72009217 80.26714083 33.09929331 13.18046503 

12 21.15817798 78.54147569 31.79331205 13.45914017   21.15817798 78.5414757 31.79331206 13.45914017   21.13590445 78.45879391 35.73839445 13.44497154 

13 21.15179917 78.51463419 35.77849544 13.45508249   21.04324398 78.11168167 35.50985621 13.38602836   21.15616665 78.5308461 35.78700249 13.45786073 

14 21.14907413 78.53013134 35.7893466 13.45334904   21.15103186 78.53740073 31.79122748 13.45459439   21.13156978 78.46513469 35.75184947 13.44221417 

15 21.15524245 78.52943513 35.78646948 13.45727283   21.1534522 78.52278961 35.78297848 13.45613401   21.09979276 78.32360281 31.6457145 13.42200017 

16 20.91811128 79.39368307 33.43845518 13.30642895   20.9320127 79.44644526 29.46636611 13.31527192   20.9320127 79.44644526 29.46636611 13.31527192 

17 20.95129805 79.33871695 34.38789792 13.32753972   20.93311483 79.26986043 34.35233088 13.31597301   20.94099477 79.29970031 30.35988633 13.32098559 

18 21.1665426 78.46263286 35.7399156 13.46446108   21.17304389 78.4867326 31.75295685 13.46859668   21.17304389 78.4867326 31.75295685 13.46859668 

19 21.12525242 78.44577386 35.74599128 13.43819557   21.1545999 78.55475176 31.80310469 13.45686409   21.09393469 78.32947969 35.65561525 13.41827374 

20 21.02862031 77.32447094 35.95288553 13.37672595   21.10269352 77.59684602 35.14193954 13.4238454   21.09575787 77.5713429 31.11331907 13.4194335 

21 20.96885951 77.06062063 31.76676388 13.33871091   20.92701443 76.90683985 32.66295398 13.31209242   21.11039461 77.58076254 35.1214953 13.42874422 

22 21.51305698 76.51299375 38.34997196 13.68488581   21.53061568 76.57544274 38.38872412 13.69605525   21.47238505 76.36834062 38.25649956 13.65901358 

23 19.82107805 73.29278482 33.61088523 12.55966137   21.51447127 76.50930298 38.34257632 12.55371277   21.50804669 76.48645603 38.32829017 12.56345265 

                              

Total 475.7058733 73.29278482 806.6612455 302.5570973   477.2110949 73.39697308 791.9095568 302.431449   477.4832903 73.44074315 796.6137269 302.6184246 

 

A2C  

A2C   Time Elapsed (train) 321.5   Time Elapsed (test) 22.7                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 21.50951569 76.63420625 38.45019286 13.68263312   21.50193153 76.60718537 38.43600563 13.67780869   21.49591682 76.58575612 38.4247537 13.67398261 

1 21.41560315 76.16763851 38.13840409 13.62289348   21.37462805 76.02190476 38.04907838 13.5968284   21.42034794 76.18451404 38.14875441 13.62591173 



 

274 
 

2 13.75058829 47.63124821 28.13642285 8.747024226   13.70703677 47.48038822 28.04738554 8.719320228   13.68946405 47.41951734 28.01152894 8.708141872 

3 13.79542498 47.80187735 28.26553505 8.775545738   13.83207096 47.92885761 28.34038169 8.798856979   13.81401843 47.86630463 28.30349184 8.787373401 

4 13.8429567 47.96654164 28.36256088 8.805781615   13.83357649 47.93403875 28.343373 8.799814679   13.83786969 47.9489149 28.35215344 8.802545668 

5 14.17723016 49.16997301 29.15393672 9.018419648   14.17359593 49.15736867 29.14647472 9.016107845   14.12980213 49.00548145 29.05672286 8.988249732 

6 21.07393788 77.44326505 35.04916806 13.40555337   21.06242811 77.40096853 35.02727445 13.39823177   21.04504473 77.33708744 34.99422604 13.38717385 

7 21.04474662 77.27240238 35.94348169 13.38698422   21.02464636 77.19859796 35.90530953 13.37419804   21.0744324 77.38140307 34.99990387 13.40586794 

8 20.4573347 81.12435839 33.80313519 13.01331975   20.45939723 81.13253743 33.8072669 13.01463177   20.42564987 80.99871097 33.73950795 12.9931644 

9 20.48656857 81.27436225 33.8840221 13.031916   20.43545571 81.0715872 33.78151706 12.99940209   20.43333746 81.06318365 33.77725992 12.99805462 

10 20.69044349 80.09176402 33.00178246 13.16160492   20.68584191 80.07395149 32.99273923 13.15867775   20.68172747 80.05802469 32.98465308 13.15606048 

11 20.67680446 80.09944945 33.01403883 13.15292885   20.65907064 80.0307508 32.97915627 13.14164802   20.66586663 80.05707761 32.99252786 13.14597108 

12 21.090845 78.2915283 35.6633213 13.41630832   21.07361051 78.22755199 35.63027517 13.40534512   21.09879384 78.32103526 35.67856421 13.42136474 

13 21.11203686 78.36703808 35.70198556 13.42978889   21.11464896 78.37673411 35.7069978 13.4314505   21.08676019 78.2732121 35.65350868 13.41370989 

14 21.0984095 78.34200488 35.69189067 13.42112025   21.09980681 78.34719332 35.69457105 13.4220091   21.10908648 78.38165034 35.71237545 13.42791209 

15 21.1145264 78.37829489 35.70802797 13.43137253   21.10179549 78.33103705 35.68360478 13.42327415   21.10135322 78.32939533 35.68275655 13.42299281 

16 20.86490917 79.19175704 33.3350367 13.27258602   20.88040153 79.25055754 33.36510846 13.28244102   20.83443984 79.07611216 33.27586621 13.25320387 

17 20.86959073 79.02930633 34.22910607 13.27556406   20.88397874 79.08379109 34.25700221 13.28471656   20.88410546 79.08427094 34.25724785 13.28479717 

18 21.09533254 78.19866303 35.60318584 13.41916294   21.10322038 78.22790259 35.61829929 13.42418055   21.12285762 78.30069625 35.6559332 13.43667219 

19 21.09958045 78.35044444 35.69670638 13.42186511   21.0801553 78.27831177 35.65944983 13.40950839   21.11846445 78.42056762 35.73294984 13.4338776 

20 21.0454662 77.38641508 35.03298269 13.38744196   21.05597523 77.42505788 35.05297055 13.39412696   21.06316238 77.45148579 35.06664274 13.39869885 

21 21.07025252 77.43324026 35.04494202 13.40320903   21.06878627 77.42785179 35.04215273 13.40227632   21.08053093 77.47101345 35.06450198 13.40974734 

22 21.44708088 76.27834419 38.20540952 13.64291709   21.4003443 76.11212161 38.10351292 13.61318701   21.42759539 76.2090424 38.1629553 13.63052198 

23 21.38993603 76.06643342 38.06956829 12.53104655   21.36839369 75.98982501 38.02261288 12.52612977   21.35838352 75.95422704 38.00080356 12.52615791 

                              

Total 476.219121 73.24960652 823.1848438 301.8569877   475.9807969 73.21316969 822.69252 301.7141717   475.9990109 73.21577852 821.7295895 301.7321538 

 

DDPG  

DDPG   Time Elapsed (Training) 558   Time Elapsed (Testing) 22.1                 

                              



 

275 
 

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 
11.8529288 42.22967191 20.43065746 7.539885071   11.8529288 42.22967191 20.43065746 7.539885071   11.8529288 42.22967191 20.43065746 7.539885071 

1 
11.86862178 42.2124414 20.42538051 7.549867684   11.86862178 42.2124414 20.42538051 7.549867684   11.86862178 42.2124414 20.42538051 7.549867684 

2 
12.1609811 42.12494016 22.46218195 7.735843296   12.1609811 42.12494016 22.46218195 7.735843296   12.1609811 42.12494016 22.46218195 7.735843296 

3 
12.15638712 42.12252445 22.45941092 7.732920974   12.15638712 42.12252445 22.45941092 7.732920974   12.15638712 42.12252445 22.45941092 7.732920974 

4 
12.15639771 42.12252987 22.45941723 7.732927714   12.15639771 42.12252987 22.45941723 7.732927714   12.15639771 42.12252987 22.45941723 7.732927714 

5 
12.14347445 42.11642924 22.45202431 7.724706965   12.14347445 42.11642924 22.45202431 7.724706965   12.14347445 42.11642924 22.45202431 7.724706965 

6 
11.6890395 42.95530287 20.81161505 7.435631808   11.6890395 42.95530287 20.81161505 7.435631808   11.6890395 42.95530287 20.81161505 7.435631808 

7 
11.66526052 42.83267083 20.73022397 7.42050552   11.66526052 42.83267083 20.73022397 7.42050552   11.66526052 42.83267083 20.73022397 7.42050552 

8 
11.71916182 46.47279313 23.01420525 7.454793217   11.71916182 46.47279313 23.01420525 7.454793217   11.71916182 46.47279313 23.01420525 7.454793217 

9 
11.71828482 46.48880666 23.0243976 7.454235341   11.71828482 46.48880666 23.0243976 7.454235341   11.71828482 46.48880666 23.0243976 7.454235341 

10 
11.77199847 45.5688697 22.44638887 7.488403668   11.77199847 45.5688697 22.44638887 7.488403668   11.77199847 45.5688697 22.44638887 7.488403668 

11 
11.77026211 45.5965774 22.46356941 7.487299132   11.77026211 45.5965774 22.46356941 7.487299132   11.77026211 45.5965774 22.46356941 7.487299132 

12 
11.88189608 44.10690058 21.56261679 7.558311737   11.88189608 44.10690058 21.56261679 7.558311737   11.88189608 44.10690058 21.56261679 7.558311737 

13 
11.8820199 44.10558357 21.56184398 7.558390499   11.8820199 44.10558357 21.56184398 7.558390499   11.8820199 44.10558357 21.56184398 7.558390499 

14 
11.88101846 44.11625466 21.56810708 7.557753464   11.88101846 44.11625466 21.56810708 7.557753464   11.88101846 44.11625466 21.56810708 7.557753464 

15 
11.88194077 44.10642418 21.56233721 7.558340164   11.88194077 44.10642418 21.56233721 7.558340164   11.88194077 44.10642418 21.56233721 7.558340164 

16 
11.81963655 44.86086079 22.01243042 7.518707201   11.81963655 44.86086079 22.01243042 7.518707201   11.81963655 44.86086079 22.01243042 7.518707201 

17 
11.8255534 44.78119835 21.96426561 7.522471028   11.8255534 44.78119835 21.96426561 7.522471028   11.8255534 44.78119835 21.96426561 7.522471028 

18 
11.8862262 44.0612631 21.53586706 7.561066211   11.8862262 44.0612631 21.53586706 7.561066211   11.8862262 44.0612631 21.53586706 7.561066211 

19 
11.88085843 44.11796435 21.56911085 7.557651662   11.88085843 44.11796435 21.56911085 7.557651662   11.88085843 44.11796435 21.56911085 7.557651662 

20 
11.70745924 43.0495714 20.87412938 7.447348969   11.70745924 43.0495714 20.87412938 7.447348969   11.70745924 43.0495714 20.87412938 7.447348969 

21 
11.69037772 42.96217264 20.81617225 7.436483072   11.69037772 42.96217264 20.81617225 7.436483072   11.69037772 42.96217264 20.81617225 7.436483072 

22 
11.86877145 42.21228236 20.42533325 7.549962894   11.86877145 42.21228236 20.42533325 7.549962894   11.86877145 42.21228236 20.42533325 7.549962894 

23 
21.46785043 76.34351094 38.23975393 7.546979291   11.86981367 42.21117772 20.42500576 7.546979291   11.86981367 42.21117772 20.42500576 7.546979291 

                              

Total 294.3464068 45.06948102 536.8714403 181.1304866   284.7483701 43.64730047 519.0566922 181.1304866   284.7483701 43.64730047 519.0566922 181.1304866 
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SAC  

SAC   Time Elapsed (training) 797.4   Time (Elapsed (testing) 22.9               

                            

  Episode 0 Episode 0 Episode 0     Episode 1 Episode 1 Episode 1     Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards     Water Saved Water Saved % Rewards     Water Saved Water Saved % Rewards 

0 21.24871898 75.70503848 37.80822606     21.49529635 76.58354551 38.40534293     21.23146851 75.64357841 37.76708253 

1 21.48748676 76.4233028 38.29539801     20.46339253 72.780966 42.84819417     21.52493922 76.5565078 38.37769784 

2 12.50373806 43.31223059 25.28942156     12.74454444 44.14637008 25.80603762     13.02378391 45.11363957 26.4498562 

3 13.88515354 48.11279157 28.44917524     13.89352289 48.14179179 28.46638468     13.89422466 48.14422348 28.46782829 

4 13.81902976 47.88363358 28.31366187     13.92096722 48.23685202 28.52293769     13.58179505 47.06160338 27.83094339 

5 14.22574531 49.33823499 29.25390815     14.24678772 49.41121502 29.29762954     14.24961284 49.4210132 29.30354325 

6 20.32400638 74.6873898 37.1420454     20.43723197 75.10347525 37.42277648     20.39586314 74.95145157 37.33553562 

7 19.12264128 70.21478845 36.94196613     19.11058329 70.17051374 36.93250688     18.79723519 69.01995771 36.13475947 

8 18.04436436 71.55563042 34.26611419     18.05245095 71.58769809 34.28896204     17.98411557 71.31671149 34.1122018 

9 19.08040257 75.69581722 32.34973146     20.32458213 80.63172925 33.49090105     20.02271663 79.43416776 32.72483537 

10 19.68561352 76.20211298 33.01036167     20.48512232 79.29697511 32.56544306     20.42170468 79.05148832 32.32331093 

11 19.89774164 77.08145397 34.91915699     19.64406696 76.09874881 37.23790882     20.00700088 77.50471109 34.18347783 

12 19.97911706 74.16467234 40.84538117     18.29143149 67.89979854 41.64494666     17.7438561 65.86713866 40.24343256 

13 19.00023655 70.52811963 42.61193795     20.0564438 74.44871878 40.09734656     19.54682162 72.5570216 43.75540192 

14 15.91811423 59.10668211 35.69192051     15.33217035 56.93097219 34.21203178     17.59558724 65.33542641 39.89226175 

15 12.73644531 47.27839249 27.71043702     20.09858105 74.60704931 40.13462695     19.77070431 73.38995266 38.28798233 

16 20.11700823 76.35313507 36.36619259     14.98901372 56.8900791 34.16284106     19.2113489 72.91574875 43.08570613 

17 20.02548473 75.83283198 37.00256722     19.42664493 73.56513565 37.50062209     17.79898053 67.40146957 39.19896899 

18 19.25008388 71.35847798 43.13550914     20.15947744 74.72952512 40.22112238     18.69755832 69.31031116 41.56413354 

19 13.44704524 49.93378771 29.51926298     19.03724345 70.69223433 37.18033642     19.26420121 71.53501135 37.72927257 

20 18.39925436 67.65601302 41.44093259     14.04005896 51.62678839 30.65108192     13.54210943 49.79577508 29.42239827 

21 18.48806006 67.94367533 38.42963163     19.60495407 72.04826414 35.21635549     19.91201114 73.17669977 35.85470627 



 

277 
 

22 19.6049688 69.72671789 42.94338754     17.00431532 60.47727541 39.32536386     17.60934303 62.62910727 40.76629959 

23 11.86981367 42.21117772 20.42500576     19.72376578 70.14123436 43.075298     18.85358071 67.04670082 41.03545537 

                            

Total 422.1602743 64.92942117 832.1613328     432.5826491 66.51028983 858.7069981     434.6805628 66.84080904 865.8470918 

 

SAC Tuned 

SAC Tuned   Time Elapsed (train) 850   Time Elapsed (test) 27                 

                              

  Episode 0 Episode 0 Episode 0 Episode 1   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 1 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 19.57245292 69.73282968 44.2315793 12.45042875   19.52674883 69.56999491 44.1428678 12.42135546   19.54723617 69.6429873 44.15838359 12.43438787 

1 19.2204172 68.36014747 43.30465607 12.22649179   18.80507525 66.88292473 43.42570084 11.96228447   19.1559167 68.13074227 43.16739874 12.18546173 

2 13.78173385 47.73913462 28.20031694 8.766836536   13.69503142 47.43880237 28.02288565 8.711683384   13.47074659 46.66189262 27.56692198 8.569011322 

3 13.56076722 46.98877581 27.78835526 8.626275245   12.9845178 44.99204108 26.6202019 8.259711464   12.86381939 44.57381468 26.37536888 8.182932787 

4 13.88990856 48.12923221 28.45884686 8.835648636   13.59667303 47.11315632 27.86112517 8.649115646   13.92709603 48.25808865 28.5356345 8.859304326 

5 13.85299978 48.04546571 28.49271775 8.812170221   13.86546888 48.08871149 28.51804318 8.820102066   14.2260638 49.33933958 29.25456702 9.049483703 

6 19.79546814 72.74509845 42.8576819 12.59229319   19.28704669 70.87673299 42.66376229 12.26887614   19.43640216 71.42558987 42.97144594 12.36388414 

7 18.22607998 66.9227818 42.43516365 11.59397399   18.30442409 67.21044685 42.67941432 11.64381025   17.99756921 66.0837327 41.95203434 11.44861373 

8 16.87100403 66.9026243 40.70432313 10.73198309   16.52879285 65.54557251 41.82987303 10.51429571   17.20837849 68.24049586 41.5882663 10.94659372 

9 17.58427061 69.76035906 41.66662725 11.18570622   17.19394923 68.21187519 40.85159103 10.93741499   17.24503846 68.41455647 40.94419361 10.96991386 

10 17.52755315 67.8483596 43.3938696 11.14962711   17.63211013 68.25309493 42.6847663 11.2161379   17.23257687 66.70651988 42.5928964 10.9619868 

11 17.75171722 68.76801389 43.8572364 11.29222236   17.94348322 69.51089226 42.46327294 11.41420854   17.76241646 68.80946145 42.10618733 11.29902836 

12 18.0929948 67.16317979 42.80350106 11.50931585   18.17157041 67.45486106 42.93326367 11.55929937   18.54115905 68.82681459 41.64379051 11.79440209 

13 18.71462828 69.46795312 44.28198495 11.90474934   18.63659193 69.1782853 44.09430187 11.85510886   18.61083535 69.08267793 44.04568674 11.83872458 

14 18.66478778 69.305551 44.17435756 11.8730448   18.56945472 68.95156303 43.9376029 11.81240154   18.79840467 69.80169338 44.41708851 11.95804118 

15 18.79038394 69.75094898 44.38235543 11.95293903   18.68297241 69.35223139 44.16188677 11.88461241   18.60903154 69.0777588 43.98695166 11.83757714 

16 18.51823958 70.28508572 42.8632372 11.77982256   18.51589879 70.27620138 43.85606161 11.77833354   18.35370085 69.6605869 43.54033867 11.67515618 

17 18.20109484 68.92420261 43.98566938 11.57808045   18.14241735 68.7020017 43.80349408 11.54075452   18.1760566 68.82938738 43.8905833 11.56215312 



 

278 
 

18 18.53341443 68.70184328 43.71631201 11.78947559   18.38156987 68.13896797 43.35751802 11.69288423   18.33906711 67.98141372 43.27747858 11.66584737 

19 18.70666933 69.46469196 44.22847889 11.8996865   18.78935773 69.77174417 44.42378263 11.95228624   18.85196634 70.0042328 43.57459982 11.99211283 

20 18.58933825 68.35497166 43.42144636 11.82504985   18.57112436 68.28799725 43.38853229 11.81346363   18.59670682 68.3820667 43.46395144 11.82973715 

21 18.79122241 69.05779788 43.8371635 11.9534724   18.59918382 68.35205548 43.39449285 11.83131281   18.07786587 66.43621047 42.11226513 11.49969204 

22 18.89728249 67.20977212 43.56906108 12.02093934   19.00628782 67.59745871 43.84824045 12.09027981   18.89007496 67.18413792 43.58453618 12.01635448 

23 17.60168847 65.10995675 40.59481275 11.19678607   19.56200296 69.56597689 42.76546025 12.44378132   20.21236518 71.87878111 43.24299922 12.85748974 

                              

Total 406.1344288 62.4845342 977.2497543 269.5470189   422.9917536 64.97181625 975.7281418 269.0735143   424.1304947 65.14304096 971.9935684 269.7978903 

 

TQC 

TQC   Time Elapsed (train) 1312.9   Time Elapsed (Test) 30.4                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 18.60286239 66.27836784 42.21052517 11.83365282   18.78189294 66.91621875 42.58169797 11.94753774   19.33400661 68.88329199 43.73657547 12.29874828 

1 18.2213914 64.80697011 42.20620888 11.5909915   18.21010834 64.7668403 42.18280724 11.58381412   18.47181939 65.6976529 42.72731456 11.75029375 

2 11.58101063 40.11595578 25.72157504 7.366912483   11.77536341 40.78918265 26.12107521 7.490544175   11.54231188 39.98190551 25.64181859 7.342295432 

3 11.76440611 40.76428951 26.13165597 7.483574013   11.65818982 40.39624446 25.91271296 7.416007708   11.61331525 40.24075172 25.82003992 7.3874621 

4 11.63860817 40.32836305 25.87221375 7.40355143   11.70666954 40.56419914 26.01263852 7.446846631   11.74189562 40.68625926 26.08522591 7.469254641 

5 12.07182553 41.86793394 26.85823323 7.679129658   11.96483293 41.49685838 26.63694305 7.611069521   12.05878821 41.82271743 26.83130081 7.670836357 

6 18.94098278 69.60500491 36.52910795 12.04873797   17.52415719 64.39840325 42.00508824 11.14746687   18.89717543 69.44402007 36.43975358 12.02087123 

7 19.14993709 70.31501358 36.97922733 12.18165798   19.16152207 70.3575515 36.99608166 12.18902742   19.17739538 70.41583534 37.05632275 12.19912475 

8 18.03971253 71.5371834 34.25402662 11.47542193   18.08164149 71.70345435 34.35089433 11.50209379   18.1055466 71.79825097 34.39906322 11.5173003 

9 18.62927694 73.90611059 32.62646135 11.85045565   18.59846051 73.78385556 31.83168161 11.8308527   19.35107151 76.76961568 33.5526519 12.30960361 

10 17.28752225 66.91921095 42.63920829 10.99693866   19.10620508 73.95924932 33.5864392 12.15383918   19.14508628 74.10975665 31.90528173 12.17857228 

11 19.3737789 75.05168542 32.3219403 12.32404823   19.3551677 74.97958788 32.43282705 12.31220928   18.32634382 70.99404812 34.82308854 11.65775383 

12 19.30461359 71.66084152 40.69215366 12.28005079   20.28863743 75.31364587 34.97076477 12.90600804   19.430225 72.12712486 35.25350874 12.35995473 

13 19.02515141 70.6206026 37.21830023 12.10227932   18.75423263 69.61496291 36.60362037 11.92994246   19.22095492 71.34741741 37.57901105 12.22683384 



 

279 
 

14 18.7956656 69.79152272 36.7249542 11.9562988   18.64371025 69.22728653 36.33988655 11.85963697   18.62582473 69.16087453 37.2691317 11.84825963 

15 18.85149781 69.97780706 36.85840115 11.99181479   19.2895993 71.60406414 37.76605192 12.27049991   18.9994821 70.52713295 37.19407372 12.08595055 

16 18.7819204 71.28587356 36.74234253 11.9475552   18.7054148 70.99550024 36.63230362 11.89888846   19.06411755 72.35693924 37.26535237 12.12706646 

17 18.89414684 71.5486632 37.80813112 12.01894469   18.7799344 71.11616167 36.6455414 11.94629187   19.40287705 73.47513107 37.90615517 12.34255815 

18 18.95348432 70.2590078 37.02741772 12.05669045   19.40406293 71.92926565 37.88643239 12.34331251   19.36950685 71.80116912 37.85490984 12.3213307 

19 18.92309653 70.26836515 37.00634764 12.03736017   18.90913061 70.21650458 37.00952278 12.02847616   17.76902535 65.98287758 42.13351683 11.30323241 

20 18.84765773 69.30483983 36.32905859 11.98937203   19.38953497 71.29738001 37.49510051 12.33407098   19.03938786 70.00985189 36.81598667 12.1113354 

21 19.11861135 70.26095318 36.99540207 12.16173105   19.10870498 70.22454726 36.96305832 12.15542941   19.13159819 70.30867985 37.01655303 12.16999224 

22 17.07087495 60.71400031 39.46691497 10.85912497   18.19877379 64.72546725 42.15721545 11.57660398   17.17569328 61.08679549 39.65943036 10.92580201 

23 17.39275591 61.85174688 40.0550688 11.12623498   17.05336132 60.6447991 39.43274804 11.19563027   17.02826874 60.5555654 39.36096491 11.21357412 

                              

Total 419.2607911 64.54334637 857.2748766 266.7625296   422.4493084 65.04255128 850.5531332 269.0761001   422.0217176 64.98265271 854.3270314 268.8380068 

 

TQC Tuned 

  

TQC 

Tuned   

Time Elapsed 

(training) 1892.3   

Time (Elapsed 

(testing) 24.8                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Carbon 

Emissions 

0 19.71779429 70.25065261 43.54888221 12.5428833   19.27131453 68.65993236 43.54776824 12.2588686   19.26067951 68.62204185 43.58234591 12.25210345 

1 18.86940552 67.11172452 43.5611374 12.00320624   19.12187641 68.00967314 43.09508305 12.16380802   19.04234589 67.72681154 42.9264422 12.11321707 

2 13.80492077 47.81945278 28.24809101 8.7815862   13.77045785 47.7000752 28.17715466 8.759663647   13.62317002 47.18987862 27.87650171 8.665970913 

3 12.93356163 44.81547524 26.51684563 8.227297223   12.90442078 44.71450068 26.45775817 8.208760149   13.50612669 46.79944349 27.67749943 8.591517313 

4 13.91394464 48.21251842 28.50840638 8.850938464   13.78465965 47.76453943 28.24348692 8.768697697   13.88386574 48.10829353 28.4464248 8.831804676 

5 13.90042284 48.20994006 28.58911788 8.84233698   12.93876078 44.87466954 28.63468035 8.230604506   14.00391747 48.56888379 28.7997915 8.908171979 

6 19.65887189 72.24312964 43.52017231 12.50540159   19.88697681 73.08137779 43.09572141 12.65050369   19.90192439 73.13630768 43.12463465 12.66001214 



 

280 
 

7 18.21909629 66.89713899 42.46122737 11.58953153   18.16936291 66.71452726 42.36162197 11.55789514   18.02861342 66.19772126 42.92622238 11.46836157 

8 16.71843486 66.29760528 41.33140483 10.63493078   16.80076879 66.62410371 42.54180563 10.68730504   16.59341959 65.80185236 41.99957642 10.55540607 

9 17.39327434 69.00263821 39.40067464 11.06420967   17.74793367 70.40964352 41.02866458 11.28981556   17.40181677 69.03652778 40.34239002 11.06964369 

10 17.68507982 68.4581382 43.67877298 11.24983298   17.74903356 68.7057002 43.82747575 11.29051523   17.48063679 67.66674854 43.3616954 11.11978268 

11 17.79930811 68.95237528 42.13799769 11.32249588   18.14685516 70.29873067 41.85024088 11.54357751   17.6779486 68.48224316 43.7779585 11.24529667 

12 17.74555051 65.87342849 41.93413622 11.28829959   18.2879694 67.88694686 43.21635668 11.63334309   17.97274714 66.71680728 42.376049 11.43282391 

13 18.70404944 69.4286849 44.25466569 11.89801993   18.7052386 69.43309902 44.23544073 11.89877638   18.68124404 69.34403218 44.15535602 11.88351296 

14 18.68449587 69.37873049 44.23210787 11.88558151   18.71715182 69.49998763 44.29965823 11.90635461   18.65525847 69.27016704 44.08964978 11.86698302 

15 18.66741803 69.2944927 44.15895801 11.87471796   18.57083204 68.93596012 43.89804724 11.81327768   18.65871589 69.26218988 44.14162227 11.86918236 

16 18.43538206 69.97060399 43.65796839 11.72711523   18.55926464 70.44079436 43.91114893 11.80591942   18.50821675 70.24704457 42.84927061 11.77344684 

17 18.12699523 68.64360098 43.81567458 11.53094421   18.28269779 69.23321799 44.17199738 11.62998972   18.22416569 69.01156765 43.91767048 11.59275628 

18 18.58629359 68.89786197 43.86786979 11.82311308   18.49686247 68.56634815 43.62854919 11.76622415   18.49389033 68.55533066 43.62546418 11.76433352 

19 18.64935871 69.25187671 44.13672572 11.86323006   18.69294344 69.4137227 44.16929773 11.89095518   18.7587978 69.658264 44.3489425 11.93284646 

20 18.64364892 68.55467775 43.59591201 11.85959795   18.39404602 67.63686139 43.05066958 11.70082055   18.74677801 68.9338944 43.79689777 11.92520043 

21 18.34265224 67.40930119 42.81164301 11.66812795   18.66754625 68.60328762 43.58699698 11.87479952   18.9207716 69.53389153 42.11188982 12.03588123 

22 18.79238254 66.83668663 43.38567564 11.95421038   18.93388792 67.33996239 43.69522716 12.04422478   18.8619888 67.08424714 43.43756946 11.99848832 

23 20.11105951 71.51852005 43.02153052 12.79304717   20.08371637 71.42128296 42.95436775 12.77565366   20.18232324 71.77194661 43.17343131 12.83837946 

                              

Total 424.1034017 65.13871896 974.3755978 269.7806559   424.6845777 65.24870603 977.6792192 270.1503535   425.0693627 65.28025569 976.8652961 270.395123 

 

ARS 

ARS   Time Elapsed (train) 301.1   Time Elapsed (test) 24.6                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 17.1002379 60.92481008 39.55981021 10.87780333   17.1002379 60.92481008 39.55981021 10.87780333   17.1002379 60.92481008 39.55981021 10.87780333 

1 17.11039046 60.85553727 39.50916588 10.88426158   17.11039046 60.85553727 39.50916588 10.88426158   17.11039046 60.85553727 39.50916588 10.88426158 

2 12.18072005 42.19331477 26.94976708 7.74839964   12.18072005 42.19331477 26.94976708 7.74839964   12.18072005 42.19331477 26.94976708 7.74839964 



 

281 
 

3 12.30590698 42.64061867 27.2407878 7.828033546   12.30590698 42.64061867 27.2407878 7.828033546   12.30590698 42.64061867 27.2407878 7.828033546 

4 12.27729399 42.54144157 27.18233588 7.809832256   12.27729399 42.54144157 27.18233588 7.809832256   12.27729399 42.54144157 27.18233588 7.809832256 

5 12.57087595 43.59875833 27.88374927 7.996585612   12.57087595 43.59875833 27.88374927 7.996585612   12.57087595 43.59875833 27.88374927 7.996585612 

6 19.44912143 71.47233108 37.58562274 12.37197512   19.44912143 71.47233108 37.58562274 12.37197512   19.44912143 71.47233108 37.58562274 12.37197512 

7 19.42190932 71.31364512 37.48835722 12.35466495   19.42190932 71.31364512 37.48835722 12.35466495   19.42190932 71.31364512 37.48835722 12.35466495 

8 18.3700879 72.84729983 34.8665005 11.68558032   18.3700879 72.84729983 34.8665005 11.68558032   18.3700879 72.84729983 34.8665005 11.68558032 

9 18.32652881 72.70504752 34.79280054 11.65787151   18.32652881 72.70504752 34.79280054 11.65787151   18.32652881 72.70504752 34.79280054 11.65787151 

10 18.6496886 72.19209483 37.32588856 11.86343991   18.6496886 72.19209483 37.32588856 11.86343991   18.6496886 72.19209483 37.32588856 11.86343991 

11 18.64950795 72.24594702 37.36162262 11.863325   18.64950795 72.24594702 37.36162262 11.863325   18.64950795 72.24594702 37.36162262 11.863325 

12 19.28820941 71.59994742 37.74625409 12.26961577   19.28820941 71.59994742 37.74625409 12.26961577   19.28820941 71.59994742 37.74625409 12.26961577 

13 19.31048391 71.67974545 37.79160837 12.28378503   19.31048391 71.67974545 37.79160837 12.28378503   19.31048391 71.67974545 37.79160837 12.28378503 

14 19.30503403 71.68289488 37.79494493 12.28031825   19.30503403 71.68289488 37.79494493 12.28031825   19.30503403 71.68289488 37.79494493 12.28031825 

15 19.30941852 71.67763416 37.79065709 12.28310731   19.30941852 71.67763416 37.79065709 12.28310731   19.30941852 71.67763416 37.79065709 12.28310731 

16 18.96027756 71.96281955 37.07134574 12.06101176   18.96027756 71.96281955 37.07134574 12.06101176   18.96027756 71.96281955 37.07134574 12.06101176 

17 18.98111555 71.87799771 37.01048502 12.07426722   18.98111555 71.87799771 37.01048502 12.07426722   18.98111555 71.87799771 37.01048502 12.07426722 

18 19.32092153 71.62106731 37.75235366 12.2904246   19.32092153 71.62106731 37.75235366 12.2904246   19.32092153 71.62106731 37.75235366 12.2904246 

19 19.304877 71.68605539 37.79699357 12.28021836   19.304877 71.68605539 37.79699357 12.28021836   19.304877 71.68605539 37.79699357 12.28021836 

20 19.40127741 71.34055822 37.51903853 12.34154059   19.40127741 71.34055822 37.51903853 12.34154059   19.40127741 71.34055822 37.51903853 12.34154059 

21 19.41485893 71.34966393 37.51663871 12.35018006   19.41485893 71.34966393 37.51663871 12.35018006   19.41485893 71.34966393 37.51663871 12.35018006 

22 17.38576029 61.83391647 40.04946407 11.05942984   17.38576029 61.83391647 40.04946407 11.05942984   17.38576029 61.83391647 40.04946407 11.05942984 

23 18.62488247 66.23340904 40.4756243 11.24801099   17.39275591 61.85174688 40.0550688 11.24801099   17.39275591 61.85174688 40.0550688 11.24801099 

                              

Total 425.019386 65.41985648 864.0618164 269.7636825   423.7872594 65.23728723 863.6412609 269.7636825   423.7872594 65.23728723 863.6412609 269.7636825 

 

ARS Tuned 

ARS Tuned   Time Elapsed (train) 335   Time Elapsed (Test) 26.6                 

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 
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Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 18.8185959 67.04698423 41.1595925 11.97088522   18.8185959 67.04698423 41.1595925 11.97088522   18.8185959 67.04698423 41.1595925 11.97088522 

1 18.84650861 67.03028837 41.14727993 11.98864106   18.84650861 67.03028837 41.14727993 11.98864106   18.84650861 67.03028837 41.14727993 11.98864106 

2 13.39516417 46.40007946 27.41366435 8.520931833   13.39516417 46.40007946 27.41366435 8.520931833   13.39516417 46.40007946 27.41366435 8.520931833 

3 13.49392083 46.75714951 27.65272221 8.583752917   13.49392083 46.75714951 27.65272221 8.583752917   13.49392083 46.75714951 27.65272221 8.583752917 

4 13.49532632 46.76198489 27.65548281 8.584646981   13.49532632 46.76198489 27.65548281 8.584646981   13.49532632 46.76198489 27.65548281 8.584646981 

5 13.8051312 47.8794462 28.39541092 8.781720059   13.8051312 47.8794462 28.39541092 8.781720059   13.8051312 47.8794462 28.39541092 8.781720059 

6 18.4167721 67.67861663 41.59848111 11.71527707   18.4167721 67.67861663 41.59848111 11.71527707   18.4167721 67.67861663 41.59848111 11.71527707 

7 18.49531048 67.91134624 41.74482678 11.76523691   18.49531048 67.91134624 41.74482678 11.76523691   18.49531048 67.91134624 41.74482678 11.76523691 

8 18.08330217 71.71003982 40.49335725 11.50315018   18.08330217 71.71003982 40.49335725 11.50315018   18.08330217 71.71003982 40.49335725 11.50315018 

9 18.26293172 72.452745 38.98710995 11.61741613   18.26293172 72.452745 38.98710995 11.61741613   18.26293172 72.452745 38.98710995 11.61741613 

10 18.44572601 71.40256494 43.19748972 11.73369523   18.44572601 71.40256494 43.19748972 11.73369523   18.44572601 71.40256494 43.19748972 11.73369523 

11 18.39519134 71.26075513 43.10681988 11.70154912   18.39519134 71.26075513 43.10681988 11.70154912   18.39519134 71.26075513 43.10681988 11.70154912 

12 18.73699618 69.55378349 41.86259769 11.91897801   18.73699618 69.55378349 41.86259769 11.91897801   18.73699618 69.55378349 41.86259769 11.91897801 

13 18.65541106 69.24814117 41.66281851 11.86708008   18.65541106 69.24814117 41.66281851 11.86708008   18.65541106 69.24814117 41.66281851 11.86708008 

14 18.65257313 69.2601959 41.67146887 11.86527482   18.65257313 69.2601959 41.67146887 11.86527482   18.65257313 69.2601959 41.67146887 11.86527482 

15 18.65572295 69.25107988 41.66488909 11.86727848   18.65572295 69.25107988 41.66488909 11.86727848   18.65572295 69.25107988 41.66488909 11.86727848 

16 18.47481669 70.12027624 42.29278588 11.75220039   18.47481669 70.12027624 42.29278588 11.75220039   18.47481669 70.12027624 42.29278588 11.75220039 

17 18.53522542 70.18949371 42.33145723 11.79062759   18.53522542 70.18949371 42.33145723 11.79062759   18.53522542 70.18949371 42.33145723 11.79062759 

18 18.70559778 69.34011278 41.7197977 11.89900486   18.70559778 69.34011278 41.7197977 11.89900486   18.70559778 69.34011278 41.7197977 11.89900486 

19 18.64944397 69.25219331 41.66640927 11.8632843   18.64944397 69.25219331 41.66640927 11.8632843   18.64944397 69.25219331 41.66640927 11.8632843 

20 18.58137971 68.32570727 42.02450245 11.81998726   18.58137971 68.32570727 42.02450245 11.81998726   18.58137971 68.32570727 42.02450245 11.81998726 

21 18.51211416 68.03207421 41.82797267 11.77592606   18.51211416 68.03207421 41.82797267 11.77592606   18.51211416 68.03207421 41.82797267 11.77592606 

22 18.8965879 67.20730175 41.24312855 12.0204975   18.8965879 67.20730175 41.24312855 12.0204975   18.8965879 67.20730175 41.24312855 12.0204975 

23 18.67144668 66.39899969 40.7494113 11.87728066   18.84336108 67.01035798 41.11547474 11.98663885   18.84336108 67.01035798 41.11547474 11.98663885 

                              

Total 425.6811965 65.43630666 943.2694766 270.7843227   425.8531109 65.46177992 943.6355401 270.8936809   425.8531109 65.46177992 943.6355401 270.8936809 
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Appendix G: Background Leakage – SZ08 Results 

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu 

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.  

Each algorithm’s step rewards, water saved% and carbon emissions are listed along with the algorithm’s processing speeds and episodic pressure violations. 

A line plot of the rewards of the algorithms across the three test episodes is shown below. 
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NM  

 

NM   Time Elapse 23238   Violations  2284                 

                              

  Episode 0 Episode 0 Episode 0  Episode 0   Episode 1 Episode 1 Episode 1  Episode 1   Episode 2 Episode 2 Episode 2  Episode 2 

Step Water Saved Water Saved % Rewards  Carbon Emissions   Water Saved Water Saved % Rewards  Carbon Emissions   Water Saved Water Saved % Rewards  Carbon Emissions 

0 
9.531886445 0.552464962 85.00172388 6.063423605   10.58157957 0.613304825 84.63056521 6.731154396   10.5545117 0.611735981 85.86378358 6.713935985 

1 
9.931611278 0.573607447 90.70500913 6.317696566   9.929568062 0.57348944 90.83150303 6.316396835   9.763674172 0.563908117 90.04448112 6.210868414 

2 
10.5865765 0.614268784 90.43132805 6.734333041   9.934849933 0.576453417 90.47102178 6.319756739   10.58739632 0.614316353 91.90486468 6.734854547 

3 
9.555782525 0.572987707 86.8689942 6.07862438   8.054148673 0.482946129 74.35706532 5.123405054   10.5924983 0.635151679 93.14635252 6.738100018 

4 
2.870905078 0.180614385 82.17039998 1.826240138   2.045282464 0.128672814 83.22475823 1.301045081   2.591107732 0.163011774 85.04729327 1.648255451 

5 
10.32249919 0.638035674 91.31630554 6.566348185   10.59901838 0.655127379 89.95341359 6.742247574   10.59287845 0.654747868 90.09990103 6.73834184 

6 
10.31360454 0.618556531 91.43270761 6.560690122   10.58752914 0.634985108 90.08821637 6.734939037   9.928590043 0.595465357 90.08245418 6.315774698 

7 
16.7224889 1.004207328 93.26850296 10.63750964   16.45187339 0.987956513 93.08262912 10.4653657   16.44660114 0.987639907 91.67475566 10.46201191 

8 
9.924345961 0.612819074 88.69688872 6.313074953   9.537483601 0.588930685 85.28006345 6.066984068   10.29817652 0.635902761 89.83087663 6.550876049 

9 
9.929407523 0.63127806 87.64214166 6.316294713   9.761167844 0.620581952 88.80712407 6.209274089   9.92917185 0.631263077 87.45075395 6.316144797 

10 
10.67140902 0.708765484 96.10456727 6.788296709   8.723971143 0.579422044 85.98491172 5.549492523   10.66690242 0.708466168 95.71326671 6.78542997 

11 
10.54282522 0.686767835 86.96031079 6.706501978   9.882604095 0.643760517 88.60780924 6.286522117   10.25047158 0.667723691 88.88874814 6.520529979 

12 
12.11081792 0.776089305 84.88581958 7.703933493   12.1107221 0.776083166 84.89742523 7.703872545   11.82050714 0.757485517 87.12594648 7.519261001 

13 
12.08323596 0.770218389 85.52316601 7.686388057   11.43587427 0.72895379 84.80435189 7.27458834   11.43919937 0.729165742 86.25095566 7.276703506 

14 
11.06691933 0.688417012 82.42696923 7.039888723   11.45827683 0.712761381 86.44400914 7.288839057   11.28682257 0.702096079 83.47229889 7.179773571 

15 
9.753383477 0.578250629 86.98474329 6.204322298   10.57801576 0.627140754 87.78134067 6.728887382   10.57045792 0.626692671 91.24581092 6.72407969 

16 
10.57652481 0.691052919 89.44944365 6.72793896   9.746556958 0.636824171 87.11466516 6.199979812   10.08699139 0.659067603 87.38654142 6.416536965 

17 
9.003256962 0.598189287 81.10508228 5.727151818   10.56829284 0.702172513 89.23252804 6.722702444   10.43533274 0.693338453 89.61620657 6.638123864 

18 
8.625658357 0.564334947 72.97380216 5.486953794   10.33692555 0.676294851 86.99021323 6.575525083   10.62203968 0.694948484 84.04403432 6.75689188 

19 
9.91991831 0.654885735 88.58228796 6.310258435   9.919132959 0.654833889 88.50975134 6.309758858   10.57403479 0.698068707 86.2541148 6.726355009 

20 
9.88011125 0.644408846 86.54947156 6.284936369   9.879278917 0.644354559 86.44826349 6.284406905   9.880282605 0.644420023 86.53463236 6.285045371 

21 
10.68640163 0.655764356 87.77175009 6.797833804   9.751616135 0.598401828 86.63068396 6.203198056   9.919753759 0.608719488 88.21528015 6.310153761 
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22 
10.41670311 0.638003139 86.79952551 6.626273182   10.69642917 0.655135825 86.89188275 6.804212523   10.69591687 0.655104448 86.80703959 6.803886641 

23 
10.21853362 0.637129906 87.11525831 6.494483626   2.956565791 0.191915019 81.57464106 6.415379168   2.307353094 0.149773671 81.60035943 6.616729467 

                              

Total 245.2448069 0.637129906 2090.766199 155.9993966   235.5267636 0.612104274 2082.638837 154.3579334   241.8406722 0.628675567 2118.300752 158.9886644 

 

PSO  

PSO  Time Elapsed 12909.4  Violations 22849         

               

 Episode 0 Episode 0 Episode 0 Episode 0  Episode 1 Episode 1 Episode 1 Episode 1  Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions  Water Saved Water Saved % Rewards Carbon Emissions  Water Saved Water Saved % Rewards Carbon Emissions 

0 10.56567384 0.612382935 88.54451673 6.721036446  10.55442048 0.611730693 88.47796487 6.713877953  10.55349878 0.611677272 88.28937777 6.713291646 

1 9.738561204 0.5624577 90.81058742 6.194893553  10.28591862 0.594070726 93.605678 6.54307855  10.576249 0.610838969 93.73391108 6.727763515 

2 10.30821938 0.598117568 92.68209382 6.55726451  10.56823523 0.613204562 92.37597631 6.722665793  10.58662694 0.614271711 93.72665848 6.734365127 

3 10.31952919 0.618783794 90.94557404 6.564458905  10.28734124 0.616853728 92.41309788 6.543983511  9.685724411 0.580779335 89.93233783 6.161283012 

4 2.860538541 0.179962205 85.49782891 1.819645776  2.842029607 0.178797771 84.29653606 1.807871874  2.84678278 0.179096803 85.0422575 1.810895462 

5 10.32010131 0.637887461 93.0100374 6.564822845  10.57350537 0.653550415 92.67858735 6.726018237  10.5416726 0.651582825 92.0728988 6.705768776 

6 10.5620942 0.633459652 91.76126326 6.718759364  10.57478749 0.63422093 93.14411203 6.72683382  10.31129535 0.618418038 92.46613623 6.5592212 

7 16.72083019 1.004107721 93.56342775 10.6364545  16.45071544 0.987886977 93.07061408 10.46462911  16.41342969 0.985647919 92.09309314 10.4409109 

8 10.5494279 0.651417298 89.9107144 6.710702074  10.55456437 0.65173447 88.40203429 6.713969486  10.29731285 0.63584943 89.84255831 6.550326651 

9 10.58623724 0.673037066 89.22268538 6.734117231  10.57204828 0.67213498 90.96804157 6.725091353  10.57281691 0.672183847 90.99342812 6.725580291 

10 10.49067735 0.696761786 97.12206138 6.673329676  10.13738047 0.673296784 95.6173204 6.448590465  10.55648699 0.70113268 97.55825815 6.715192502 

11 10.44131525 0.680155397 88.53388987 6.641929458  9.885104699 0.643923409 88.91432349 6.288112801  9.868379165 0.642833894 88.47392112 6.277473354 

12 11.44134464 0.733187905 86.31907732 7.278068153  11.45284682 0.733924991 86.71692544 7.285384917  11.43447875 0.732747923 86.09866152 7.273700625 

13 12.07561664 0.769732712 86.44815065 7.681541256  12.06868727 0.769291016 87.03867477 7.677133349  11.80482438 0.752471676 86.68994908 7.509284885 

14 11.45801939 0.712745367 86.34313028 7.288675296  11.79544444 0.733734871 86.60128107 7.503318117  11.82949819 0.735853182 86.50643751 7.524980388 

15 10.55047693 0.625508054 89.44883455 6.711369383  10.56568492 0.626409694 91.18884933 6.721043494  9.525189069 0.564721626 87.62944181 6.05916327 

16 10.28945332 0.672296135 88.99872499 6.545327043  10.27667068 0.671460939 89.7454731 6.537195753  10.28500203 0.672005295 90.23238992 6.542495488 

17 9.694984585 0.644148661 87.94077275 6.167173594  10.56272456 0.701802548 87.43243557 6.719160345  9.691015483 0.643884948 87.20665881 6.164648769 
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18 9.955766006 0.651357433 86.51442638 6.333061871  10.62164148 0.694922432 85.84168052 6.75663858  10.3251439 0.675524034 85.99069217 6.568030535 

19 10.53447304 0.695456949 87.74825966 6.701188987  10.55793768 0.69700602 89.1537182 6.716115315  10.26931434 0.677951901 88.83656211 6.53251624 

20 10.68155443 0.696681241 88.26612991 6.794750404  10.65538842 0.69497462 87.50971014 6.778105681  10.42507746 0.679953086 88.39588936 6.631600271 

21 10.28238004 0.630971824 88.54832676 6.540827593  10.28947905 0.63140745 88.76054237 6.545343415  10.25634844 0.62937441 88.28785185 6.524268368 

22 10.65373391 0.652520822 88.57507675 6.777053214  9.868819563 0.60444632 86.45440653 6.2777535  10.65301248 0.652476636 88.20799509 6.776594298 

23 2.957483415 0.191974583 80.12912712 6.662699906  2.662306637 0.172814226 82.73729334 6.71200736  2.657749902 0.172518441 81.11326466 6.611489149 

               

Total 244.0384919 0.634379678 2136.884717 160.019151  244.6636828 0.635983357 2143.145277 160.6539228  241.9669299 0.628908162 2139.42063 158.8408447 

 

DE 

DE  Time Elapsed 7013.1  Violations 22867         

               

 Episode 0 Episode 0 Episode 0 Episode 0  Episode 1 Episode 1 Episode 1 Episode 1  Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions  Water Saved Water Saved % Rewards Carbon Emissions  Water Saved Water Saved % Rewards Carbon Emissions 

0 10.56053153 0.612084888 88.52700911 6.717765315  10.56053153 0.612084888 88.52700911 6.717765315  10.52198947 0.609851003 88.19855954 6.693247942 

1 10.55365218 0.609533873 93.96673547 6.713389225  10.55365218 0.609533873 93.96673547 6.713389225  10.48797594 0.605740694 93.41755876 6.671611254 

2 10.30473425 0.597915349 93.20957856 6.555047551  10.30473425 0.597915349 93.20957856 6.555047551  10.59453685 0.614730671 92.09372897 6.73939678 

3 10.27693973 0.616230028 92.25834632 6.5373669  10.27693973 0.616230028 92.25834632 6.5373669  10.57209786 0.633928419 92.94277369 6.725122889 

4 2.87161608 0.180659115 83.92062635 1.826692421  2.87161608 0.180659115 83.92062635 1.826692421  2.871912359 0.180677755 84.01578518 1.82688089 

5 10.31640176 0.637658791 93.07007355 6.562469487  10.31640176 0.637658791 93.07007355 6.562469487  10.58831497 0.654465799 93.40448123 6.735438918 

6 10.29902931 0.617682384 92.91429523 6.551418527  10.29902931 0.617682384 92.91429523 6.551418527  10.53209344 0.631660362 92.85175452 6.699675277 

7 16.47167814 0.989145814 92.40623922 10.4779639  16.47167814 0.989145814 92.40623922 10.4779639  16.45933772 0.988404756 92.02582945 10.47011391 

8 10.50977563 0.648968808 89.3584149 6.685478472  10.50977563 0.648968808 89.3584149 6.685478472  10.58131325 0.653386189 88.76268844 6.730984987 

9 10.58605707 0.673025612 89.36674068 6.734002625  10.58605707 0.673025612 89.36674068 6.734002625  10.56269703 0.67154046 90.90685647 6.719142837 

10 10.65236391 0.70750056 97.23859693 6.77618173  10.65236391 0.70750056 97.23859693 6.77618173  10.63101783 0.706082813 96.28910971 6.762603063 

11 10.15019115 0.661191346 88.28535427 6.456739596  10.15019115 0.661191346 88.28535427 6.456739596  9.858363244 0.642181449 88.81316615 6.271102027 

12 12.087498 0.774594911 86.34863408 7.689099229  12.087498 0.774594911 86.34863408 7.689099229  11.43018254 0.732472611 86.60213835 7.270967715 

13 12.0714258 0.769465577 87.10307269 7.67887538  12.0714258 0.769465577 87.10307269 7.67887538  12.07692453 0.769816081 86.19880226 7.682373233 
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14 12.09720251 0.752505712 87.15386039 7.695272463  12.09720251 0.752505712 87.15386039 7.695272463  12.10077356 0.752727849 87.26162843 7.697544079 

15 10.57800636 0.627140197 89.48317774 6.728881408  10.57800636 0.627140197 89.48317774 6.728881408  10.15849546 0.602268578 89.51912942 6.462022134 

16 10.22270232 0.667934733 90.04773447 6.502865397  10.22270232 0.667934733 90.04773447 6.502865397  10.22003511 0.667760463 89.68834808 6.501168737 

17 10.56780701 0.702140233 87.65054304 6.722393398  10.56780701 0.702140233 87.65054304 6.722393398  10.29625368 0.684097841 88.77379568 6.549652892 

18 10.58894368 0.692783174 86.97760806 6.735838856  10.58894368 0.692783174 86.97760806 6.735838856  10.58491036 0.692519293 87.23514244 6.733273178 

19 10.29566415 0.679691442 89.11060081 6.549277877  10.29566415 0.679691442 89.11060081 6.549277877  10.57789506 0.698323551 87.81089225 6.728810604 

20 10.65088305 0.694680767 88.72464116 6.775239725  10.65088305 0.694680767 88.72464116 6.775239725  10.65376913 0.694869005 88.68049911 6.777075621 

21 10.58441321 0.6495059 88.33012395 6.732956933  10.58441321 0.6495059 88.33012395 6.732956933  10.68613933 0.65574826 89.21354487 6.797666953 

22 10.66488942 0.653204076 88.50780048 6.78414946  10.66488942 0.653204076 88.50780048 6.78414946  10.66098555 0.652964971 88.55979306 6.781666129 

23 10.60706114 0.661532317 89.73738293 6.747363734  10.60443258 0.661910873 89.73738293 6.745691655  2.952273125 0.191636375 89.70721766 1.87799998 

               

Total 243.9624063 0.661532317 2153.69719 161.9367296  243.9624063 0.63396847 2153.69719 161.9350575  246.6602874 0.641160635 2152.973224 156.905542 

 

TRPO  

TRPO   Time Elapsed (training) 2666.6   Time (Elapsed (testing) 835.7   Violations 2295           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.57449707 0.612894326 83.21515364 6.726649077   10.57386796 0.612857863 83.00674357 6.726248886   10.57146782 0.612718752 79.82686431 6.724722111 

1 10.57872196 0.610981796 90.90009698 6.729336613   10.57848161 0.610967915 90.89529474 6.729183723   10.57846138 0.610966746 90.89555769 6.729170851 

2 10.58393894 0.614115744 90.50208777 6.732655239   10.58583868 0.614225974 90.53286848 6.7338637   10.58393894 0.614115744 90.50208777 6.732655239 

3 10.59360963 0.635218317 89.65259694 6.738806957   10.59201408 0.635122644 89.63955133 6.737791996   10.59102737 0.635063478 89.6155293 6.737164328 

4 2.861248583 0.180006875 79.20039952 1.820097448   2.861861937 0.180045463 82.20330373 1.820487616   2.862142038 0.180063084 82.16903293 1.820665793 

5 10.58891366 0.654502804 87.16954289 6.735819755   10.58893736 0.654504269 87.18154232 6.735834836   10.58893736 0.654504269 87.18154232 6.735834836 

6 10.58504333 0.634836022 90.08626119 6.73335776   10.58495514 0.634830733 90.09035695 6.733301661   10.58872092 0.635056585 90.12465017 6.735697151 

7 16.72478283 1.004345082 90.30641515 10.63896885   16.72498938 1.004357486 90.31809823 10.63910025   16.72346882 1.004266174 90.29599768 10.63813299 

8 24.30037023 1.500525116 62.97244051 15.45795151   10.57436202 0.652956957 87.16573802 6.726563167   24.30105754 1.500567557 65.98188307 15.45838872 

9 10.57967395 0.672619795 87.73059321 6.729942194   10.57804627 0.672516312 84.69674862 6.728906793   10.58118202 0.672715672 87.74913065 6.730901504 



 

288 
 

10 10.58850284 0.703259084 92.54013097 6.735558427   10.62282895 0.70553893 69.21381196 6.757393955   10.62998869 0.70601446 90.06755782 6.761948403 

11 10.53418141 0.68620477 82.46522523 6.701003479   10.53445153 0.686222366 85.46919044 6.701175305   10.53418141 0.68620477 82.46522523 6.701003479 

12 12.10146906 0.775490209 83.30446766 7.697986501   12.10146859 0.775490179 83.30405765 7.697986201   12.10151939 0.775493435 83.29101693 7.698018517 

13 12.08861933 0.770561539 82.74134517 7.689812526   12.09115727 0.770723315 82.78104848 7.691426965   12.09136334 0.77073645 82.79285592 7.691558051 

14 12.10953101 0.753272606 84.0451987 7.703114867   12.10722822 0.753129361 84.01696542 7.701650014   12.1093317 0.753260208 84.04978986 7.70298808 

15 10.56888778 0.626599582 87.9219604 6.723080894   10.56880905 0.626594914 87.89893573 6.723030814   10.56888778 0.626599582 87.9219604 6.723080894 

16 10.56746546 0.690460996 87.86459071 6.722176126   10.56758377 0.690468727 87.87438709 6.722251389   10.65697504 0.696309407 85.30816763 6.779114964 

17 10.41941957 0.692281159 17.10377978 6.628001178   10.56172342 0.70173603 88.24399558 6.7185235   10.50442215 0.697928852 59.40302992 6.68207302 

18 10.57213595 0.691683526 83.12010468 6.725147123   10.57214071 0.691683837 83.09009774 6.725150148   10.5720983 0.691681062 83.00615783 6.725123173 

19 10.57428648 0.698085323 86.14942708 6.726515118   10.57189141 0.697927207 86.09427562 6.724991561   10.57189141 0.697927207 86.09427562 6.724991561 

20 10.70497117 0.698208547 85.84587715 6.809646261   10.70521455 0.698224421 83.87649992 6.809801079   10.7056408 0.698252223 85.89250058 6.810072227 

21 10.69157868 0.656082042 84.01003438 6.801127028   10.69152874 0.656078978 86.02909681 6.801095264   10.69261969 0.656145923 86.04419524 6.80178924 

22 10.69189864 0.654858339 85.49292675 6.801330566   10.69320808 0.654938539 85.52066677 6.802163522   10.69270648 0.654907817 85.4989427 6.801844448 

23 11.31233685 0.705091026 82.36263724 7.196003718   10.72315603 0.668745323 80.11208433 6.821214015   11.32182741 0.705717368 80.10993277 7.202040851 

                              

Total 271.4960844 0.705091026 1976.703294 172.7040892   257.3557448 0.668745323 2049.25536 163.7091364   271.7238578 0.705717368 1649.983022 172.8489804 

 

PPO  

PPO   Time Elapsed (train) 3652   Time Elapsed (Test) 741.9   Violations 12604           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.57392216 0.612861005 76.17881734 6.726283365   10.57406752 0.61286943 76.16287025 6.726375834   10.57496202 0.612921274 76.29873398 6.726944838 

1 10.57964373 0.611035034 80.92408371 6.72992297   10.578659 0.61097816 80.89714484 6.729296563   10.57874365 0.610983049 80.9245814 6.729350408 

2 10.58509547 0.61418285 80.51266008 6.733390928   10.58406122 0.61412284 80.49677351 6.732733026   10.58431157 0.614137366 80.53298122 6.732892278 

3 10.59125282 0.635076997 79.61312701 6.737307746   10.59097231 0.635060177 79.61453588 6.737129307   10.59185728 0.635113242 79.63865464 6.737692252 

4 2.864019207 0.180181181 59.1895653 1.821859898   2.861185099 0.180002881 57.20280302 1.820057065   2.862843327 0.180107204 59.22385539 1.821111897 

5 10.58893736 0.654504269 78.18154232 6.735834836   10.58984847 0.654560585 80.18895781 6.736414406   10.58878825 0.654495052 78.16129513 6.735739982 



 

289 
 

6 10.5867856 0.634940514 80.11945978 6.734466054   10.58495559 0.63483076 80.09075228 6.73330195   10.58840381 0.635037566 80.10340889 6.735495431 

7 16.72411201 1.004304798 80.31943821 10.63854213   16.72341634 1.004263022 80.31119766 10.6380996   16.72288383 1.004231044 80.29578271 10.63776086 

8 24.30040819 1.50052746 69.97153679 15.45797566   24.30180564 1.500613751 71.98451696 15.45886461   24.30225281 1.500641363 71.98883707 15.45914905 

9 10.57920612 0.672590051 79.71928379 6.729644596   10.57824449 0.672528914 77.71270984 6.729032882   10.58000752 0.672641002 79.7240693 6.730154385 

10 10.58584221 0.703082372 84.07484243 6.733865943   10.58323766 0.702909385 78.79601871 6.732209138   10.65551077 0.707709566 86.63611128 6.77818351 

11 10.53410327 0.68619968 78.48190731 6.700953773   10.53695649 0.686385541 78.49685009 6.702768761   10.53428625 0.6862116 78.47152481 6.701070168 

12 12.10182522 0.775513032 76.29343621 7.698213058   12.10332533 0.775609163 76.29428904 7.699167308   12.10517207 0.775727506 76.30006422 7.700342054 

13 12.08835235 0.770544521 75.73100203 7.689642694   12.09092453 0.770708479 75.78432166 7.691278911   12.0902408 0.770664896 75.77164152 7.690843977 

14 12.10898215 0.753238464 77.0514128 7.702765726   12.10711408 0.753122261 77.02742043 7.701577406   12.10702548 0.753116749 76.99220966 7.701521047 

15 10.57115714 0.626734126 80.92870385 6.724524482   10.56991342 0.626660389 80.90490231 6.723733327   10.56886358 0.626598147 80.90425041 6.723065498 

16 10.63221944 0.694691916 61.05568081 6.763367431   10.56989434 0.690619695 80.90206548 6.723721188   10.5675233 0.690464775 80.87933724 6.72221292 

17 10.41976456 0.692304081 10.74344658 6.628220635   10.41976456 0.692304081 10.74344658 6.628220635   10.57157429 0.702390536 76.65132933 6.724789835 

18 10.50937676 0.687577496 75.49916002 6.685224744   10.57214071 0.691683837 77.09009774 6.725150148   10.58426998 0.692477396 77.37609424 6.732865817 

19 10.57345147 0.698030198 81.1161721 6.725983949   10.57175591 0.697918262 81.09633643 6.724905369   10.57345796 0.698030627 81.11784933 6.725988081 

20 10.70596512 0.698273375 79.89335536 6.81027853   10.7051972 0.69822329 79.87036388 6.809790045   10.70565851 0.698253377 79.89707791 6.810083492 

21 10.69318316 0.6561805 81.02188468 6.802147674   10.69152874 0.656078978 81.02909681 6.801095264   10.69259898 0.656144652 81.04109687 6.801776065 

22 10.69245057 0.654892143 80.48415762 6.801681658   10.69116886 0.654813641 80.46315489 6.800866332   10.69111598 0.654810402 80.46555837 6.800832699 

23 11.31261113 0.70510722 59.05650296 7.196178195   2.954919375 0.191808147 59.11280448 1.879683313   2.954953569 0.191810367 59.09634635 1.879705064 

                              

Total 271.5026672 0.70510722 1417.356071 172.7082767   263.1350569 0.68369482 1782.273431 167.3854724   263.3773056 0.684363282 1858.492691 167.5395716 

 

Recurrent PPO  

Recurrent PPO   Time Elapsed (train) 5989   Time Elapsed (test) 700.8   Violations 12604           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.57149274 0.612720196 75.72756847 6.724737959   10.57151937 0.612721739 73.87661354 6.7247549   10.5714274 0.612716409 73.72140582 6.724696399 

1 10.57876416 0.610984233 80.89488851 6.729363455   10.578398 0.610963086 80.90691973 6.729130536   10.57845961 0.610966644 80.90874182 6.72916973 



 

290 
 

2 10.58720782 0.614305416 80.55392989 6.734734638   10.58389272 0.614113063 80.52105899 6.732625837   10.58393894 0.614115744 80.50208777 6.732655239 

3 10.59258766 0.635157037 79.60667022 6.738156862   10.58947318 0.634970285 79.60320869 6.736175677   10.59038966 0.63502524 79.62872866 6.736758669 

4 2.861140471 0.180000074 57.16810638 1.820028676   2.863009153 0.180117636 59.23028288 1.821217383   2.861185099 0.180002881 57.20280302 1.820057065 

5 10.58898954 0.654507494 78.16550418 6.735868028   10.58877798 0.654494418 78.1761886 6.735733451   10.58899247 0.654507675 78.17715602 6.735869888 

6 10.58778939 0.635000717 80.11098367 6.735104588   10.58500884 0.634833953 80.07208187 6.733335822   10.58687143 0.634945662 80.12191974 6.734520657 

7 16.72212237 1.004185318 78.29526207 10.63727648   16.72212703 1.004185597 78.26851884 10.63727944   16.72198446 1.004177036 80.30099599 10.63718875 

8 24.30014653 1.500511303 69.96309438 15.45780921   24.30040819 1.50052746 69.97153679 15.45797566   24.30040819 1.50052746 69.97153679 15.45797566 

9 10.57897957 0.672575648 79.71133279 6.729500482   10.57827293 0.672530723 79.7036667 6.729050978   10.57827091 0.672530594 79.70190873 6.729049691 

10 10.57738496 0.702520665 75.07869728 6.728486118   10.52793379 0.699236256 41.63825984 6.697029245   10.58323766 0.702909385 78.79601871 6.732209138 

11 10.53411122 0.686200198 76.46217935 6.700958829   10.53418141 0.68620477 76.46522523 6.701003479   10.53418141 0.68620477 76.46522523 6.701003479 

12 12.10161602 0.775499627 74.27922165 7.698079984   12.10153985 0.775494746 76.28913376 7.698031531   12.10166451 0.775502734 74.29779299 7.698110825 

13 12.08861933 0.770561539 75.74134517 7.689812526   12.09014358 0.770658699 75.75522259 7.690782134   12.08861933 0.770561539 75.74134517 7.689812526 

14 12.10728228 0.753132724 77.01552162 7.701684403   12.10707329 0.753119723 77.00636593 7.701551459   12.10711408 0.753122261 77.02742043 7.701577406 

15 10.56888778 0.626599582 80.9219604 6.723080894   10.56869488 0.626588145 78.88246988 6.722958187   10.56874644 0.626591202 80.90484421 6.722990984 

16 10.56758377 0.690468727 80.87438709 6.722251389   10.56758377 0.690468727 80.87438709 6.722251389   10.56747822 0.69046183 80.84656783 6.722184244 

17 10.44768886 0.694159411 25.26720173 6.645983834   10.41976456 0.692304081 10.74344658 6.628220635   10.41941975 0.692281171 10.10393354 6.62800129 

18 10.57246842 0.691705277 77.12234855 6.725358613   10.5721581 0.691684974 77.03181116 6.725161207   10.57213617 0.69168354 77.12029742 6.725147264 

19 10.57181202 0.697921966 81.08345926 6.72494106   10.57189092 0.697927174 81.0568727 6.724991249   10.57169905 0.697914508 81.07224472 6.724869202 

20 10.70556137 0.698247042 79.89170804 6.8100217   10.70524051 0.698226114 77.88298007 6.809817593   10.70501716 0.698211547 77.88495305 6.809675517 

21 10.69154077 0.656079716 79.02092907 6.801102916   10.6914424 0.656073679 81.01707432 6.801040338   10.69152874 0.656078978 81.02909681 6.801095264 

22 10.69102343 0.654804734 80.47123945 6.800773823   10.69117417 0.654813966 80.44409112 6.80086971   10.69106952 0.654807556 80.46600383 6.800803142 

23 11.31281741 0.705123854 74.93163214 7.196309412   2.954953569 0.191810367 59.09634635 1.879705064   2.954886907 0.19180604 59.0790463 1.879662659 

                              

Total 271.5076179 0.705123854 1798.359171 172.7114259   263.0646622 0.683502891 1734.513763 167.3406929   263.1187271 0.683652184 1771.072075 167.3750847 

 

A2C  

A2C   Time Elapsed (train) 3726   Time Elapsed (test) 740.3   Violations 12604           

                              



 

291 
 

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.5714853 0.612719765 73.95736956 6.724733226   10.57146782 0.612718752 73.82686431 6.724722111   10.57146782 0.612718752 73.82686431 6.724722111 

1 10.57872196 0.610981796 80.90009698 6.729336613   10.57872196 0.610981796 80.90009698 6.729336613   10.57846162 0.61096676 80.90940375 6.729171005 

2 10.58393894 0.614115744 80.50208777 6.732655239   10.58393894 0.614115744 80.50208777 6.732655239   10.58393894 0.614115744 80.50208777 6.732655239 

3 10.58932616 0.63496147 79.60449213 6.73608216   10.58940474 0.634966182 79.59944834 6.736132141   10.58932616 0.63496147 79.60449213 6.73608216 

4 2.861185099 0.180002881 57.20280302 1.820057065   2.861185099 0.180002881 57.20280302 1.820057065   2.861185099 0.180002881 57.20280302 1.820057065 

5 10.58893736 0.654504269 78.18154232 6.735834836   10.58893736 0.654504269 78.18154232 6.735834836   10.58893736 0.654504269 78.18154232 6.735834836 

6 10.58504333 0.634836022 80.08626119 6.73335776   10.58504333 0.634836022 80.08626119 6.73335776   10.58504333 0.634836022 80.08626119 6.73335776 

7 16.72198576 1.004177114 78.29410438 10.63718958   16.72207835 1.004182674 78.30454226 10.63724848   16.72207835 1.004182674 78.30454226 10.63724848 

8 24.30040819 1.50052746 69.97153679 15.45797566   24.30040819 1.50052746 69.97153679 15.45797566   24.30040819 1.50052746 69.97153679 15.45797566 

9 10.57827135 0.672530622 79.70229029 6.72904997   10.57824449 0.672528914 77.71270984 6.729032882   10.57824449 0.672528914 77.71270984 6.729032882 

10 10.58323766 0.702909385 78.79601871 6.732209138   10.58323766 0.702909385 78.79601871 6.732209138   10.58323766 0.702909385 78.79601871 6.732209138 

11 10.53418141 0.68620477 76.46522523 6.701003479   10.53418141 0.68620477 76.46522523 6.701003479   10.53418141 0.68620477 76.46522523 6.701003479 

12 12.10165943 0.775502409 74.28183146 7.698107599   12.10165943 0.775502409 74.28183146 7.698107599   12.10165943 0.775502409 74.28183146 7.698107599 

13 12.08861933 0.770561539 75.74134517 7.689812526   12.08852914 0.770555791 75.75218307 7.689755157   12.08861933 0.770561539 75.74134517 7.689812526 

14 12.10711408 0.753122261 77.02742043 7.701577406   12.10711408 0.753122261 77.02742043 7.701577406   12.10728251 0.753132738 77.01572439 7.701684551 

15 10.56888778 0.626599582 80.9219604 6.723080894   10.56888778 0.626599582 80.9219604 6.723080894   10.56888778 0.626599582 80.9219604 6.723080894 

16 10.56758377 0.690468727 80.87438709 6.722251389   10.56758377 0.690468727 80.87438709 6.722251389   10.56758377 0.690468727 80.87438709 6.722251389 

17 10.41976456 0.692304081 10.74344658 6.628220635   10.41976456 0.692304081 10.74344658 6.628220635   10.41976456 0.692304081 10.74344658 6.628220635 

18 10.57214071 0.691683837 77.09009774 6.725150148   10.57214071 0.691683837 77.09009774 6.725150148   10.57214071 0.691683837 77.09009774 6.725150148 

19 10.57189141 0.697927207 81.09427562 6.724991561   10.57189141 0.697927207 81.09427562 6.724991561   10.57189141 0.697927207 81.09427562 6.724991561 

20 10.70524051 0.698226114 77.88298007 6.809817593   10.70524051 0.698226114 77.88298007 6.809817593   10.70524051 0.698226114 77.88298007 6.809817593 

21 10.69152874 0.656078978 81.02909681 6.801095264   10.69152874 0.656078978 81.02909681 6.801095264   10.69152874 0.656078978 81.02909681 6.801095264 

22 10.69117414 0.654813964 78.4514334 6.800869695   10.69116975 0.654813695 80.46908396 6.800866902   10.69116975 0.654813695 80.46908396 6.800866902 

23 11.31140552 0.705033043 74.29574361 7.213344988   2.954953569 0.191810367 59.09634635 7.213346048   2.954953569 0.191810367 59.09634635 7.213343726 

                              

Total 271.4737325 0.705033043 1783.097847 172.7078044   263.1173128 0.683648829 1767.812246 172.707826   263.1172325 0.683648682 1767.804063 172.7077726 



 

292 
 

 

DDPG  

DDPG   Time Elapsed (Training) 4656   Time Elapsed (Testing) 695.7   Violations 12276           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 
3.845228471 0.222868161 29.0754419 2.446026735   3.845228471 0.222868161 29.0754419 2.446026735   3.845228471 0.222868161 29.0754419 2.446026735 

1 
3.847576371 0.222219577 34.53617725 2.447520281   3.847576371 0.222219577 34.53617725 2.447520281   3.847576371 0.222219577 34.53617725 2.447520281 

2 
3.850030784 0.223391739 34.3928393 2.449081582   3.850030784 0.223391739 34.3928393 2.449081582   3.850030784 0.223391739 34.3928393 2.449081582 

3 
3.851856992 0.230966611 33.66808429 2.45024327   3.851856992 0.230966611 33.66808429 2.45024327   3.851856992 0.230966611 33.66808429 2.45024327 

4 
3.850293624 0.242229678 33.71900772 2.44924878   3.850293624 0.242229678 33.71900772 2.44924878   3.850293624 0.242229678 33.71900772 2.44924878 

5 
3.851462595 0.238059649 34.25524136 2.449992386   3.851462595 0.238059649 34.25524136 2.449992386   3.851462595 0.238059649 34.25524136 2.449992386 

6 
3.850283446 0.23092004 34.13510949 2.449242306   3.850283446 0.23092004 34.13510949 2.449242306   3.850283446 0.23092004 34.13510949 2.449242306 

7 
9.988584005 0.599827533 32.46944299 6.353938057   9.988584005 0.599827533 32.46944299 6.353938057   9.988584005 0.599827533 32.46944299 6.353938057 

8 
3.845794754 0.237474226 34.1638865 2.446386959   3.845794754 0.237474226 34.1638865 2.446386959   3.845794754 0.237474226 34.1638865 2.446386959 

9 
3.848255816 0.244659056 31.86221773 2.44795249   3.848255816 0.244659056 31.86221773 2.44795249   3.848255816 0.244659056 31.86221773 2.44795249 

10 
3.869026579 0.256970049 39.55067057 2.461165187   3.869026579 0.256970049 39.55067057 2.461165187   3.869026579 0.256970049 39.55067057 2.461165187 

11 
3.832655798 0.24966218 33.90994724 2.438029006   3.832655798 0.24966218 33.90994724 2.438029006   3.832655798 0.24966218 33.90994724 2.438029006 

12 
5.401208613 0.346121977 29.67284195 3.435816823   5.401208613 0.346121977 29.67284195 3.435816823   5.401208613 0.346121977 29.67284195 3.435816823 

13 
5.381077848 0.343004566 31.22899313 3.423011241   5.381077848 0.343004566 31.22899313 3.423011241   5.381077848 0.343004566 31.22899313 3.423011241 

14 
5.389598783 0.335259649 33.32251656 3.428431578   5.389598783 0.335259649 33.32251656 3.428431578   5.389598783 0.335259649 33.32251656 3.428431578 

15 
3.84444849 0.22792652 34.507839 2.445530573   3.84444849 0.22792652 34.507839 2.445530573   3.84444849 0.22792652 34.507839 2.445530573 

16 
3.84370692 0.251141555 34.44446066 2.445058846   3.84370692 0.251141555 34.44446066 2.445058846   3.84370692 0.251141555 34.44446066 2.445058846 

17 
3.768726041 0.250399556 4.057068547 2.397362009   3.768726041 0.250399556 4.057068547 2.397362009   3.768726041 0.250399556 4.057068547 2.397362009 

18 
3.851734899 0.252000313 32.32203922 2.450165604   3.851734899 0.252000313 32.32203922 2.450165604   3.851734899 0.252000313 32.32203922 2.450165604 

19 
3.848247608 0.254050728 32.91698294 2.447947269   3.848247608 0.254050728 32.91698294 2.447947269   3.848247608 0.254050728 32.91698294 2.447947269 

20 
3.972444368 0.259094076 34.13333118 2.526951311   3.972444368 0.259094076 34.13333118 2.526951311   3.972444368 0.259094076 34.13333118 2.526951311 

21 
3.854114148 0.236505305 34.57275447 2.451679092   3.854114148 0.236505305 34.57275447 2.451679092   3.854114148 0.236505305 34.57275447 2.451679092 



 

293 
 

22 
3.965652097 0.242888605 32.08049964 2.522630612   3.965652097 0.242888605 32.08049964 2.522630612   3.965652097 0.242888605 32.08049964 2.522630612 

23 
3.930736871 0.246162662 33.59552843 2.760944608   3.930736871 0.246162662 33.59552843 2.760944608   3.930736871 0.246162662 33.59552843 2.760944608 

                              

Total 103.3827459 0.268491834 772.5929221 66.0243566   103.3827459 0.268491834 772.5929221 66.0243566   103.3827459 0.268491834 772.5929221 66.0243566 

 

SAC  

SAC   Time Elapsed (training) 6422   Time (Elapsed (testing) 704.9   Violations 12608           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.57458864 0.612899634 76.27177568 6.726707328   10.57317492 0.612817695 75.88840743 6.725808032   10.5792757 0.613171294 76.90525391 6.729688855 

1 10.58061689 0.61109124 80.91899485 6.730542018   10.58490761 0.611339053 80.91588895 6.733271431   10.58213031 0.611178648 80.88758849 6.731504733 

2 10.58666824 0.614274107 80.42294162 6.734391399   10.58942605 0.614434125 80.51913208 6.736145698   10.58791294 0.614346329 80.50056266 6.735183181 

3 10.59901232 0.635542276 79.54369086 6.742243718   10.59910012 0.63554754 79.61298426 6.742299571   10.59563874 0.635339987 79.64978506 6.740097715 

4 2.866596757 0.18034334 59.22544918 1.823499529   2.834927133 0.17835094 60.74646891 1.803353848   2.866017415 0.180306892 59.21314178 1.823130998 

5 10.59087079 0.654623775 80.11359137 6.737064729   10.59138034 0.65465527 80.19701542 6.737388865   10.59397597 0.654815706 80.20004106 6.739039994 

6 10.58832577 0.635032886 79.99781452 6.73544579   10.59042785 0.635158958 80.11477931 6.736782963   10.58898914 0.635072671 80.1197081 6.735867769 

7 16.72466407 1.00433795 80.30062759 10.63889331   16.72897303 1.004596709 80.25723112 10.64163433   16.72543099 1.004384005 80.31765297 10.63938116 

8 10.57428487 0.652952193 80.16088566 6.72651409   24.30539612 1.50083546 71.97863055 15.46114858   24.30228188 1.500643159 71.93543518 15.45916755 

9 10.5811364 0.672712772 79.74067141 6.730872489   10.5837779 0.67288071 79.7280367 6.732552795   10.57959789 0.672614959 79.71961795 6.729893811 

10 10.66203313 0.708142763 85.52283411 6.782332516   10.57795108 0.702558265 75.01236199 6.728846239   10.11255888 0.671648203 77.32423537 6.432800956 

11 10.53927873 0.686536814 78.50194833 6.704245984   10.53568959 0.686303014 78.48497445 6.701962863   10.54135025 0.686671754 78.44331024 6.70556372 

12 12.10526337 0.775733357 76.28737868 7.700400136   12.10357553 0.775625196 76.27402418 7.699326464   12.1058853 0.775773212 76.28446907 7.700795756 

13 12.0926839 0.770820626 75.77791045 7.69239808   12.09225711 0.770793421 75.78400491 7.692126593   12.09271407 0.770822549 75.80283859 7.692417276 

14 12.11668201 0.753717433 76.72684761 7.707663762   12.10944538 0.753267279 77.03120176 7.703060396   12.11094834 0.753360771 77.04072186 7.704016458 

15 10.57494772 0.626958858 80.90233511 6.726935741   10.57672187 0.627064043 80.84749141 6.728064313   10.57611289 0.627027938 80.85525991 6.727676931 

16 10.57650022 0.691051313 80.48818897 6.727923318   10.56911132 0.690568534 80.87462227 6.723223096   10.65809786 0.69638277 77.89960679 6.779829212 

17 10.56872546 0.702201256 74.42445968 6.722977637   10.50718853 0.698112654 53.72882047 6.683832767   10.57042415 0.70231412 74.42557375 6.724058213 



 

294 
 

18 10.61892762 0.694744877 78.24439838 6.75491224   10.51102465 0.68768531 75.31026235 6.686272999   10.57473694 0.691853695 77.06813293 6.72680166 

19 10.57409126 0.698072435 81.13851543 6.726390935   10.57543904 0.698161412 81.14954537 6.727248283   10.57434627 0.69808927 81.14207921 6.726553152 

20 10.71033402 0.698558327 79.80786611 6.813057674   10.70864093 0.698447899 79.87545981 6.811980669   10.70709801 0.698347266 79.88886414 6.810999186 

21 10.6934557 0.656197224 81.03204264 6.802321042   10.69606922 0.656357601 80.97474606 6.803983553   10.6922168 0.6561212 81.03059121 6.801532948 

22 10.69868339 0.655273892 80.47647264 6.805646481   10.69460193 0.65502391 80.51664604 6.80305018   10.69405766 0.654990575 80.50703535 6.802703961 

23 10.73036397 0.669209537 78.52294091 6.825799128   2.957615474 0.191983155 59.11207539 1.881398355   2.957811124 0.191995855 59.11018012 1.881522812 

                              

Total 257.5287353 0.669209537 1884.550582 163.8191791   263.1968227 0.683857006 1824.934811 167.4247629   262.9696095 0.683219701 1846.271686 167.280228 

 

TQC 

TQC   Time Elapsed (train) 6760   Time Elapsed (Test) 699.5   Violations 12584           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.58142172 0.613295677 77.48546615 6.731053985   10.58161552 0.613306909 77.57560299 6.731177263   10.57589309 0.612975239 79.82109227 6.727537115 

1 10.58761627 0.611495493 82.25676146 6.734994459   10.5850734 0.611348629 81.89609602 6.733376892   10.58665851 0.611440177 82.12519781 6.734385209 

2 10.58274739 0.614046607 80.7053703 6.731897272   10.58605583 0.614238573 81.01491263 6.734001834   10.59455522 0.614731737 82.07736832 6.739408467 

3 10.59432549 0.635261242 79.63751861 6.739262328   10.58918841 0.63495321 80.29880917 6.735994531   10.59017672 0.635012472 80.35423275 6.736623218 

4 2.868864468 0.180486006 59.26908357 1.824942065   2.871657453 0.180661718 60.88592096 1.826718739   2.86993753 0.180553514 60.63836011 1.825624662 

5 10.57978072 0.653938295 79.74895992 6.730010109   10.59753436 0.655035651 80.13438461 6.741303555   10.57841461 0.653853856 79.67032826 6.729141104 

6 10.59518882 0.635444496 79.9334325 6.739811509   10.57874633 0.634458361 79.98194236 6.729352115   10.59049431 0.635162944 80.10441179 6.736825242 

7 16.73051608 1.004689371 80.23726662 10.64261589   16.7322013 1.004790571 79.95464027 10.64368789   16.72947442 1.004626818 81.44542992 10.64195327 

8 10.58037671 0.653328359 81.59342807 6.730389235   10.56671828 0.652484963 80.19399716 6.721700833   24.29423899 1.500146517 72.01935434 15.4540513 

9 10.5722429 0.672147353 79.95258114 6.725215151   10.58566801 0.673000876 81.26191101 6.733755132   10.57588687 0.672379025 80.29309723 6.727533158 

10 10.65958383 0.707980087 84.7262579 6.780774468   10.55460264 0.701007527 66.07151151 6.713993831   10.66431528 0.708294337 87.81657635 6.783784238 

11 10.52947796 0.685898384 78.64751561 6.698011523   10.52812666 0.685810359 78.51169144 6.69715193   10.54324918 0.686795452 78.26317815 6.706771669 

12 12.1104791 0.776067593 76.15308298 7.703717965   12.1094169 0.775999525 76.22903918 7.703042281   12.11103025 0.776102913 76.08228307 7.704068566 

13 12.09778793 0.771145971 75.61376028 7.695644856   12.09693122 0.771091362 75.78096333 7.695099886   12.09648394 0.771062851 77.32902044 7.694815364 



 

295 
 

14 12.10448668 0.752958823 77.25788156 7.699906065   12.10612203 0.75306055 77.4014147 7.700946344   12.10028418 0.752697408 76.92287966 7.697232775 

15 10.57777771 0.627126641 82.42311627 6.728735956   10.56894518 0.626602985 81.38494702 6.723117405   10.57817737 0.627150336 80.68096067 6.728990191 

16 10.52505821 0.687690176 -287.9438089 6.695200031   10.61713245 0.693706156 -288.1165191 6.753770292   10.55794259 0.689838787 80.59496518 6.716118438 

17 10.55614262 0.701365235 66.37173456 6.714973445   10.51929872 0.698917273 60.29960753 6.691536303   10.49074462 0.697020097 36.33300411 6.673372465 

18 10.57554231 0.691906387 76.79396556 6.727313976   10.56454578 0.691186937 77.44317826 6.72031886   10.51213403 0.687757891 76.8852724 6.6869787 

19 10.57513711 0.698141479 82.46694831 6.727056219   10.57487912 0.698124447 82.44108438 6.726892105   10.54516157 0.696162577 79.13943843 6.707988181 

20 10.70973781 0.698519441 79.86176575 6.812678415   10.71010589 0.698543448 79.80779268 6.812912558   10.70871276 0.698452584 79.88815423 6.812026358 

21 10.69595804 0.656350779 80.97675458 6.803912826   10.6958612 0.656344836 80.73371136 6.803851228   10.68272349 0.655538649 81.3424602 6.795494064 

22 10.69314651 0.654934768 80.51572875 6.802124356   10.68790175 0.654613537 81.18783055 6.798788061   10.69502255 0.655049672 81.80614685 6.803317747 

23 10.69961412 0.669934996 80.45141636 6.806238532   2.964240457 0.192413192 58.80412332 1.88561264   2.961152922 0.192212776 59.09505076 1.883648597 

                              

Total 257.3830105 0.668923069 1515.135988 163.7264806   249.5725689 0.6488209 1471.178593 158.7581025   263.232865 0.68395911 1830.728263 167.4476901 

 

ARS 

ARS   Time Elapsed (train) 3535   Time Elapsed (test) 691.6   Violations  12604           

                              

  Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions   Water Saved Water Saved % Rewards Carbon Emissions 

0 10.57146782 0.612718752 73.82686431 6.724722111   10.57146782 0.612718752 73.82686431 6.724722111   10.57146782 0.612718752 73.82686431 6.724722111 

1 10.57872196 0.610981796 80.90009698 6.729336613   10.57872196 0.610981796 80.90009698 6.729336613   10.57872196 0.610981796 80.90009698 6.729336613 

2 10.58393894 0.614115744 80.50208777 6.732655239   10.58393894 0.614115744 80.50208777 6.732655239   10.58393894 0.614115744 80.50208777 6.732655239 

3 10.58932616 0.63496147 79.60449213 6.73608216   10.58932616 0.63496147 79.60449213 6.73608216   10.58932616 0.63496147 79.60449213 6.73608216 

4 2.861185099 0.180002881 57.20280302 1.820057065   2.861185099 0.180002881 57.20280302 1.820057065   2.861185099 0.180002881 57.20280302 1.820057065 

5 10.58893736 0.654504269 78.18154232 6.735834836   10.58893736 0.654504269 78.18154232 6.735834836   10.58893736 0.654504269 78.18154232 6.735834836 

6 10.58504333 0.634836022 80.08626119 6.73335776   10.58504333 0.634836022 80.08626119 6.73335776   10.58504333 0.634836022 80.08626119 6.73335776 

7 16.72207835 1.004182674 78.30454226 10.63724848   16.72207835 1.004182674 78.30454226 10.63724848   16.72207835 1.004182674 78.30454226 10.63724848 

8 24.30040819 1.50052746 69.97153679 15.45797566   24.30040819 1.50052746 69.97153679 15.45797566   24.30040819 1.50052746 69.97153679 15.45797566 

9 10.57824449 0.672528914 77.71270984 6.729032882   10.57824449 0.672528914 77.71270984 6.729032882   10.57824449 0.672528914 77.71270984 6.729032882 



 

296 
 

10 10.58323766 0.702909385 78.79601871 6.732209138   10.58323766 0.702909385 78.79601871 6.732209138   10.58323766 0.702909385 78.79601871 6.732209138 

11 10.53418141 0.68620477 76.46522523 6.701003479   10.53418141 0.68620477 76.46522523 6.701003479   10.53418141 0.68620477 76.46522523 6.701003479 

12 12.10165943 0.775502409 74.28183146 7.698107599   12.10165943 0.775502409 74.28183146 7.698107599   12.10165943 0.775502409 74.28183146 7.698107599 

13 12.08861933 0.770561539 75.74134517 7.689812526   12.08861933 0.770561539 75.74134517 7.689812526   12.08861933 0.770561539 75.74134517 7.689812526 

14 12.10711408 0.753122261 77.02742043 7.701577406   12.10711408 0.753122261 77.02742043 7.701577406   12.10711408 0.753122261 77.02742043 7.701577406 

15 10.56888778 0.626599582 80.9219604 6.723080894   10.56888778 0.626599582 80.9219604 6.723080894   10.56888778 0.626599582 80.9219604 6.723080894 

16 10.56758377 0.690468727 80.87438709 6.722251389   10.56758377 0.690468727 80.87438709 6.722251389   10.56758377 0.690468727 80.87438709 6.722251389 

17 10.41976456 0.692304081 10.74344658 6.628220635   10.41976456 0.692304081 10.74344658 6.628220635   10.41976456 0.692304081 10.74344658 6.628220635 

18 10.57214071 0.691683837 77.09009774 6.725150148   10.57214071 0.691683837 77.09009774 6.725150148   10.57214071 0.691683837 77.09009774 6.725150148 

19 10.57189141 0.697927207 81.09427562 6.724991561   10.57189141 0.697927207 81.09427562 6.724991561   10.57189141 0.697927207 81.09427562 6.724991561 

20 10.70524051 0.698226114 77.88298007 6.809817593   10.70524051 0.698226114 77.88298007 6.809817593   10.70524051 0.698226114 77.88298007 6.809817593 

21 10.69152874 0.656078978 81.02909681 6.801095264   10.69152874 0.656078978 81.02909681 6.801095264   10.69152874 0.656078978 81.02909681 6.801095264 

22 10.69116975 0.654813695 80.46908396 6.800866902   10.69116975 0.654813695 80.46908396 6.800866902   10.69116975 0.654813695 80.46908396 6.800866902 

23 10.69597967 0.669706263 79.79372028 6.803926586   2.954953569 0.191810367 59.09634635 1.879705064   2.954953569 0.191810367 59.09634635 1.879705064 

        0                     

Total 270.8583505 0.703561201 1788.503826 172.2984139   263.1173244 0.683648872 1767.806452 167.3741924   263.1173244 0.683648872 1767.806452 167.3741924 

 

Appendix H: Burst Leakage – Jowitt & Xu Results 

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu 

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.  

Each algorithm’s step rewards, water saved% and carbon emissions are listed along with the algorithm’s processing speeds. A line plot of the rewards of the 

algorithms across the three test episodes is shown below. 
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  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 

0 

11.61422965 0.017568206 0.053231412 2 7.388043762   

-

4.968009116 

-

0.007514834 

-

0.022647722 0 

-

3.160249959   14.50430899 0.021939869 0.066356362 1 9.226481035 

1 -

4.872685871 

-

0.007353453 

-

0.022160501 0 

-

3.099612936   262.1677518 0.395641812 1.188005705 1 166.7701502   14.36609036 0.021680111 0.06555616 1 9.138557399 

2 

474.6435087 0.68942709 2.069414242 1 301.9302288   

-5.98798E-

06 

-8.69764E-

09 

-2.62881E-

08 0 

-3.80908E-

06   12.71753296 0.018472415 0.055665024 0 8.089877065 

3 

9.41631329 0.013684174 0.041260776 0 5.98990521   341.9219591 0.496895072 1.491516177 0 217.5033966   

-

2.979524515 

-

0.004329968 -0.01302992 0 

-

1.895335135 

4 
13.942366 0.020261597 0.061059257 2 8.869017859   10.54341115 0.015322102 0.046196931 2 6.706874704   366.7548206 0.532982592 1.600013828 2 233.3000765 

5 
12.81246589 0.018646132 0.056198524 0 8.150265802   9.415751968 0.013702855 0.041324502 0 5.989548142   9.415718279 0.013702806 0.041324354 0 5.989526712 

6 
511.395869 0.8013255 0.406121401 13 325.3091402   506.1406452 0.793090892 0.380995068 11 321.9661872   15.34678405 0.024047456 0.072959859 1 9.762396269 

7 

6.44634742 0.010073787 0.030358829 0 4.100650521   6.4463214 0.010073746 0.030358706 0 4.100633969   

-3.21586E-

06 

-5.02546E-

09 

-1.53754E-

08 0 

-2.04567E-

06 

8 
10.9384082 0.019156981 0.057843685 0 6.958140225   29.88941394 0.052346823 0.159375985 1 19.013254   21.74700933 0.038086623 0.116596173 2 13.83370757 

9 
429.2962178 0.752241009 0.260287876 11 273.0839101   21.75866519 0.038126961 0.116724617 2 13.8411221   18.29977709 0.03206607 0.098148035 1 11.6408542 

10 
2.47165E-05 4.19929E-08 1.27934E-07 0 1.57226E-05   460.0941791 0.781692168 0.348961498 13 292.6751092   455.5715853 0.774008358 0.325005175 11 289.7981968 

11 
454.7467684 0.773347975 0.323041191 11 289.2735143   28.23198556 0.048011664 0.145967891 1 17.95893066   28.23198872 0.048011669 0.145967907 1 17.95893267 

12 

24.74647402 0.039819116 0.12073531 1 15.74172706   24.74082734 0.03981003 0.120707675 0 15.73813509   

-8.77913E-

05 

-1.41263E-

07 

-4.28144E-

07 0 

-5.58458E-

05 

13 
7.622812725 0.012265076 0.036977348 0 4.84902363   16.34860479 0.02630484 0.079978899 1 10.39967448   24.7428569 0.039811159 0.120710868 1 15.73942613 

14 

19.33674976 0.031126278 0.094650551 2 12.30049326   

-

0.000130554 

-2.10153E-

07 

-6.36805E-

07 0 

-8.30482E-

05   24.7721263 0.039875579 0.120908753 1 15.75804498 

15 
24.7449143 0.039815834 0.12072524 1 15.74073488   16.35004595 0.026308061 0.079988918 1 10.40059123   24.745166 0.039816239 0.120726471 1 15.740895 

16 
479.0155389 0.793557927 0.383496956 12 304.7113646   17.14487414 0.028402942 0.086553225 1 10.90619734   20.30967223 0.033645884 0.102544887 2 12.9193887 

17 
20.21981896 0.033398315 0.101766646 2 12.86223124   26.45770672 0.043701817 0.132676866 1 16.8302764   8.670563514 0.014321702 0.043195463 0 5.515518863 

18 
7.55018603 0.012126212 0.036557772 0 4.802824337   494.7153782 0.794553084 0.385714392 11 314.6983464   3.84015E-08 6.16759E-11 7.3147E-10 0 2.4428E-08 

19 
24.77680357 0.039885882 0.120940403 1 15.76102029   27.93429618 0.044968837 0.13640274 2 17.76956449   493.6979982 0.794758697 0.386365392 11 314.0511706 

20 
23.03482033 0.036168163 0.109532525 1 14.65290991   6.638125344 0.010422864 0.03141283 0 4.222644294   431.1265872 0.676934158 2.032790275 2 274.2482447 
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21 

508.0533983 0.796207549 0.390509111 12 323.1829278   6.561308265 0.010282705 0.030989602 0 4.173779413   

-1.53095E-

05 

-2.39927E-

08 

-7.34156E-

08 0 

-9.73869E-

06 

22 -

0.000201074 

-3.03438E-

07 

-9.22891E-

07 0 

-

0.000127907   526.7734798 0.794945199 1.386284409 11 335.091146   474.6807165 0.716332866 2.15056324 3 301.9538974 

23 
519.0486171 0.783166925 1.350933027 10 88.75265802   11.61376236 0.017523435 0.053078811 2 66.75018542   14.35606466 0.02166116 0.06549777 1 57.30981329 

                                    

Total 3588.529766 23.85798339 6.203480787 82 2041.311007   2846.920348 18.64422023 6.450567061 61 1870.345411   2471.077736 16.24093864 7.717865561 42 1620.079603 

 

 

PSO  

PSO   Time Elapsed  3438                             

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step 

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions 

0 

440.776132

2 0.666737782 

2.00159306

8 1 280.3865132   

462.459824

1 0.699537509 

2.09996171

9 1 294.1799433   

459.446716

9 0.694979748 2.08633182 1 292.2632456 

1 441.696264 0.666571342 2.00107479 1 280.9718275   

446.567532

2 0.673922655 

2.02312243

6 1 284.0705386   

482.625704

8 0.728338657 

2.18640731

7 2 307.0078633 

2 12.7157496 0.018469824 

0.05565721

8 0 8.088742636   

9.41200777

9 0.013671088 

0.04121874

1 0 5.987166388   

9.40756085

6 0.013664629 

0.04119927

7 0 5.984337612 

3 

12.7415775

8 0.018516585 

0.05580071

8 0 8.105172328   

123.396145

4 0.17932436 

0.53842507

8 0 78.49475599   

9.41607885

1 0.013683834 

0.04125974

9 0 5.989756079 

4 

107.214085

4 0.155807744 

0.46789895

5 0 68.20102399   

9.40979637

6 0.013674688 

0.04123218

1 0 5.985759671   

397.562887

1 0.577754091 

1.73440189

1 1 252.8977037 

5 

12.8036895

8 0.01863336 

0.05616002

3 0 8.144683013   

214.061019

1 0.31152552 

0.93525909

5 0 136.1684955   

12.8109052

9 0.018643861 

0.05619167

9 0 8.149273074 

6 

492.741931

4 0.772095941 

1.31816833

7 10 313.4429974   

508.123369

4 0.796197697 0.39047736 12 323.2274377   

22.8516702

8 0.035807145 

0.10842723

3 0 14.5364045 

7 

494.612316

2 0.772936789 

1.32066009

9 10 314.6327866   

15.2268551

3 0.023795195 0.07217843 0 9.686107088   22.6789211 0.035440631 

0.10730232

5 0 14.42651529 
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8 

431.029613

5 0.754883686 

0.26865953

2 11 274.1865577   

430.094543

7 0.753246052 

0.26373536

9 11 273.5917411   

422.560595

6 0.740051472 

1.22414036

6 7 268.7992461 

9 

424.789643

8 0.744344294 

0.23698870

5 8 270.2171882   

420.780330

9 0.737318913 

1.21594073

4 7 267.6667841   

321.075811

5 0.56261011 

1.69137631

1 0 204.2427452 

10 

17.6972362

4 0.030067303 

0.09180543

8 0 11.25756591   

17.6977237

9 0.030068131 

0.09180796

9 0 11.25787606   

386.593473

2 0.656815721 

1.97361515

3 1 245.9198402 

11 

230.852402

7 0.392590449 

1.18063208

2 0 146.8498304   

368.197717

8 0.62616159 1.8816029 1 234.2179323   

412.594700

1 0.701663647 

2.10814965

6 3 262.4597406 

12 484.228794 0.779164037 

0.33978062

2 11 308.0276204   

438.837772

7 0.706126143 

2.12063720

1 3 279.153484   

24.7243058

7 0.039783446 

0.12062681

6 0 15.72762545 

13 

487.693477

1 0.784696876 

0.35637630

5 11 310.2315746   

496.258783

4 0.79847842 

0.39772856

8 11 315.6801373   496.261621 0.798482985 

0.39774252

4 11 315.6819424 

14 

496.074280

1 0.798528507 

0.39788613

3 11 315.562771   

16.3577661

9 0.026331022 

0.08006118

4 0 10.40550223   

496.087913

9 0.798550453 

0.39795322

6 12 315.5714438 

15 

496.227497

1 0.798455441 0.39765867 11 315.6602355   

496.245070

1 0.798483717 0.39774511 11 315.671414   

496.247824

2 0.798488148 

0.39775865

8 11 315.6731659 

16 

476.948878

5 0.790134208 

0.37321770

5 11 303.3967206   

477.717906

9 0.791408213 

0.37704059

5 11 303.8859149   

478.056329

4 0.791968859 

0.37864585

6 11 304.1011923 

17 

479.646754

9 0.792261966 

0.37954491

6 11 305.1128937   

26.4556768

3 0.043698464 

0.13266664

3 1 16.82898514   

477.045706

5 0.787965655 

0.36665657

1 11 303.4583148 

18 

497.039590

5 0.798285957 

0.39712161

3 11 316.1768243   

496.025261

7 0.796656863 

0.39214232

7 11 315.5315895   

497.051188

7 0.798304585 

0.39717855

2 12 316.1842021 

19 

16.3528313

4 0.026324909 

0.08004301

1 0 10.40236307   

461.258070

5 0.742536661 

2.22989281

1 6 293.4154838   

16.3616997

2 0.026339185 

0.08008644

4 1 10.40800443 

20 

278.017478

8 0.436529626 

1.31127358

8 0 176.8524786   

507.062746

8 0.79616545 

0.39039658

1 11 322.5527545   

415.519119

1 0.652428064 1.95913868 1 264.3200221 

21 

508.001229

8 0.796125792 

0.39025963

3 11 323.1497423   

15.3493022

4 0.024055011 

0.07298367

8 0 9.763998138   

507.788287

9 0.795792075 

0.38924128

7 11 323.0142857 

22 

9.07122449

3 0.013689236 0.04148081 0 5.770387325   9.07229362 0.013690849 

0.04148569

1 0 5.771067417   

47.9149583

8 0.072307676 

0.21754299

4 0 30.47966332 

23 

9.06063420

2 0.013671145 

0.04142520

2 0 212.2299142   

466.938062

8 0.704539873 2.11500088 2 186.7010819   

515.151135

9 0.777286208 

1.33328629

1 10 198.4916759 

                                    

Tota

l 

7358.03331

3 49.33134499 

13.5611671

7 129 4887.058415   

6933.00557

9 46.25255868 

18.3427432

8 100 4299.89595   

7427.83511

6 49.65479536 

19.7946606

8 106 4595.78821 
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DE 

DE   

Time 

Elapsed 2967                             

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 

0 
525.388604 0.794726409 1.385640173 11 334.2101988   522.8609257 0.790902929 1.374165491 11 332.6022921   525.3587944 0.794681318 1.385503025 10 334.1912363 

1 
526.7541365 0.794933623 1.386249164 10 335.0788413   439.850863 0.663786416 1.992719805 1 279.797931   526.6553939 0.794784609 1.385795875 10 335.0160292 

2 
9.388227865 0.013636547 0.041114654 0 5.97203951   12.66818952 0.018400743 0.055449055 0 8.058488716   12.69099319 0.018433865 0.055548864 0 8.072994586 

3 
12.72200881 0.018488147 0.055715022 0 8.092724245   12.7343784 0.018506123 0.05576919 0 8.100592789   12.66969813 0.018412127 0.055485938 0 8.059448374 

4 
12.67511261 0.018419974 0.05550958 0 8.062892634   12.7254699 0.018493156 0.055730109 0 8.094925912   12.73386495 0.018505356 0.055766872 0 8.100266172 

5 
9.371352808 0.01363824 0.041129748 0 5.961304948   12.74294222 0.018544954 0.055893584 0 8.106040407   9.410274062 0.013694883 0.041300474 0 5.986063536 

6 
508.1051369 0.796169128 0.390390183 11 323.2158397   508.1074402 0.796172737 0.390401196 11 323.2173049   508.0995986 0.79616045 0.390363702 11 323.2123167 

7 
509.3290635 0.795934832 0.389644778 11 323.9944039   509.375784 0.796007843 0.389867525 11 324.0241237   509.3966224 0.796040407 0.389966873 11 324.0373794 

8 
416.9410277 0.730209642 1.194585104 7 265.2245265   430.6565888 0.754230389 0.266648097 11 273.9492692   428.940364 0.751224679 0.257674825 10 272.8575444 

9 
403.5445187 0.707117191 2.125222445 6 256.7027393   408.9217161 0.71653947 2.153496117 6 260.123282   422.7768847 0.740817405 1.226462468 8 268.9368319 

10 
454.5759004 0.772316706 0.320276911 11 289.1648218   420.9027729 0.715106637 2.148584533 6 267.7446719   418.6000409 0.711194334 2.136847855 6 266.279858 

11 
445.7461006 0.758041328 0.277449635 11 283.5480095   451.2155112 0.767342676 0.305358406 11 287.027211   449.7778491 0.76489777 0.298037337 11 286.1126854 

12 
496.2533102 0.798512474 0.397833224 12 315.6766557   496.2389252 0.798489328 0.397762462 11 315.6675051   496.2033256 0.798432045 0.397587346 11 315.6448595 

13 
496.2658615 0.798489808 0.397763383 11 315.6846398   496.2761692 0.798506393 0.397814085 12 315.6911967   496.2628213 0.798484917 0.397748429 11 315.6827059 

14 
496.0841395 0.798544377 0.397934652 11 315.5690428   496.0854823 0.798546539 0.39794126 12 315.569897   496.0706581 0.798522676 0.397868309 11 315.560467 

15 
496.1981713 0.798408254 0.397514418 11 315.6415807   496.2386514 0.798473389 0.397713538 11 315.6673309   496.2256364 0.798452447 0.397649517 11 315.6590518 

16 
472.6411443 0.782997828 0.351800523 11 300.6564847   466.8703596 0.773437696 0.32311993 11 296.9855731   465.9490526 0.771911419 0.318544821 11 296.3995113 

17 
472.4752983 0.780416431 0.343995939 11 300.5509867   473.1043225 0.781455429 0.347125003 11 300.9511216   430.0037208 0.710263521 2.133419764 2 273.5339669 

18 
497.0472372 0.798298239 0.397159155 12 316.1816885   497.0466986 0.798297374 0.397156511 12 316.1813459   497.0217831 0.798257357 0.397034194 11 316.1654967 

19 
495.9542684 0.798390858 0.397466032 11 315.4864292   496.0555023 0.798553825 0.397964246 11 315.5508261   495.9982591 0.798461674 0.397682527 11 315.5144126 

20 
507.0394464 0.796128865 0.390290232 11 322.5379327   507.1406216 0.796287725 0.390775057 11 322.6022922   507.1335473 0.796276618 0.390741161 11 322.5977921 

21 
508.0287224 0.796168878 0.390391107 11 323.1672309   508.0438736 0.796192622 0.390463562 11 323.1768689   508.0201146 0.796155388 0.390349942 11 323.1617553 
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22 
526.7668733 0.794935229 1.386253844 10 335.0869435   526.7733551 0.794945011 1.386283591 10 335.0910667   526.7362382 0.794888998 1.386113224 10 335.0674558 

23 
526.8387575 0.794921085 1.386209404 10 253.6536825   526.863486 0.794958397 1.386322892 10 250.8586405   526.86646 0.794962884 1.38633654 11 252.3083033 

                                    

Total 9826.134421 65.6243504 14.29753931 210 6169.12164   9729.500029 65.00907415 15.85452524 201 6104.839798   9779.601995 65.30798811 16.06982988 199 6138.158432 

 

TRPO  

TRPO   

Time 

Elapsed 

(training) 282     

Time 

(Elapse

d 

(testing

) 27                     

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 

Step 

Water 

Saved 

Water 

Saved % Rewards Violations 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions 

0 

422.025351

3 

0.63837450

9 

1.91684638

2 3 

268.458766

5   

476.237772

2 

0.72037865

2 

2.16288261

2 4 

302.944371

7   

484.332522

6 

0.73262313

6 

2.19960224

2 4 

308.093604

3 

1 

417.369917

7 

0.62986003

9 

1.89126449

8 3 265.497352   

432.205870

7 

0.65224922

8 

1.95844809

3 3 

274.934798

5   

466.124841

5 

0.70343692

4 

2.11203109

6 3 

296.511334

2 

2 

533.605387

2 

0.77507013

7 

1.32657890

3 10 

339.437058

9   

488.596688

2 

0.70969430

1 

2.13037953

9 3 

310.806125

3   

506.278445

6 

0.73537732

9 

2.20745793

9 3 

322.053844

8 

3 

535.838907

2 

0.77870316

6 

1.33748585

4 10 

340.857845

7   520.883445 

0.75696927

3 

2.27226134

3 7 331.344377   

491.148600

5 

0.71375737

2 2.14257656 3 

312.429447

8 

4 

534.421253

3 

0.77664207

5 1.33129643 10 

339.956047

6   

510.946418

3 

0.74252751

8 

2.22891985

3 4 

325.023235

6   

535.834559

9 

0.77869594

8 

1.33746418

5 10 

340.855080

2 

5 

524.022090

9 

0.76261551

5 2.2892151 8 

333.340932

5   

511.574518

9 

0.74450041

6 

2.23484943

8 4 

325.422782

9   

500.239714

3 

0.72800474

2 

2.18534289

1 3 

318.212487

1 

6 

485.964808

4 

0.76147661

1 

1.28682236

5 10 

309.131933

9   

461.536425

4 

0.72319885

5 

2.17202314

4 5 

293.592550

9   

515.972677

7 

0.80849707

5 

0.42786290

4 16 

328.220539

7 

7 

490.926328

2 0.76717665 

1.30389373

5 10 

312.288055

9   

450.323429

6 

0.70372599

8 

2.11355086

7 4 286.45974   476.590033 

0.74477314

4 

2.23668865

3 8 

303.168451

8 
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8 

395.029460

3 0.69183482 

2.08062716

7 9 

251.286140

3   

471.586111

3 

0.82591230

6 

-

0.51715866

6 21 

299.985357

1   

448.741368

5 

0.78590316

7 

0.36270359

3 20 

285.453359

3 

9 

467.127695

6 

0.81853180

7 

0.46073574

3 20 

297.149269

7   

414.330624

3 

0.72601731

4 

1.18325288

6 12 

263.563996

7   

444.413556

5 

0.77873060

2 

0.34139235

9 20 

282.700351

5 

10 

469.729135

1 

0.79806179

4 0.39845907 20 

298.804097

4   

452.930859

9 

0.76952181

1 

0.31286413

1 17 

288.118378

6   

451.670634

7 

0.76738070

9 

0.30644180

7 17 

287.316724

2 

11 

444.453426

1 0.75584299 

0.27185854

4 13 

282.725713

4   

473.642556

1 

0.80548238

5 

0.42073387

8 20 

301.293502

8   475.565337 0.80875229 

0.43043111

3 20 

302.516622

2 

12 

505.467563

7 

0.81333896

7 

0.44292711

1 17 

321.538026

6   

432.991397

3 

0.69671884

3 

2.09307316

6 4 

275.434487

7   

481.752520

6 

0.77517950

9 

0.32849199

6 16 

306.452413

4 

13 

504.852686

9 

0.81230597

6 

0.43977061

8 17 

321.146891

2   

495.463260

3 

0.79719842

6 

0.39452707

1 16 

315.174089

1   

484.978457

2 

0.78032841

9 

0.34393373

3 16 

308.504496

2 

14 

504.967583

6 

0.81284401

7 

0.44141881

7 17 

321.219979

3   

481.136632

8 

0.77448344

4 

0.32641260

2 16 

306.060634

8   

472.019250

7 

0.75980723

5 

1.28238734

8 10 

300.260885

7 

15 

425.871022

8 

0.68524827

3 

2.05867936

8 4 270.905075   

445.678943

8 

0.71712023

1 

2.15432404

5 5 

283.505289

7   

455.029240

7 

0.73216533

8 

2.19946178

6 8 

289.453200

6 

16 

459.115493

6 

0.76059064

8 

0.28541235

4 14 

292.052547

8   

444.818043

4 

0.73690487

2 

2.21435742

1 9 

282.957653

7   

463.217061

6 

0.76738548

4 

0.30579414

9 15 

294.661637

2 

17 

427.599538

8 

0.70629238

6 

2.12240741

1 5 

272.004618

6   

484.546223

2 

0.80035471

8 0.40456635 18 

308.229543

5   

495.606378

3 

0.81862345

5 

0.45934744

2 20 

315.265129

4 

18 

450.159303

3 

0.72299240

8 

2.17188542

4 6 286.355336   

473.394661

8 

0.76031028

1 

1.28385185

4 10 

301.135812

3   

476.486627

5 

0.76527622

9 

1.29874744

7 11 

303.102673

5 

19 

458.373431

1 

0.73789294

7 2.2166549 8 291.580507   

505.296893

8 

0.81343068

5 

0.44321197

3 17 

321.429460

1   

389.349942

1 

0.62677842

3 

1.88323949

6 3 

247.673285

2 

20 

458.213040

3 

0.71946399

9 

2.16085722

4 4 

291.478479

2   

481.625925

3 

0.75622578

1 

1.27113725

4 10 

306.371883

6   

493.518039

8 

0.77489820

5 

1.32712592

9 11 

313.936695

5 

21 

453.317309

5 

0.71042663

1 

2.13367698

2 4 

288.364206

9   481.205164 

0.75413172

2 

2.26481227

5 8 

306.104228

9   

481.528167

8 

0.75463792

5 

2.26633795

9 9 

306.309698

1 

22 508.918546 

0.76800061

2 

1.30569791

6 10 

323.733265

5   

492.739478

5 

0.74358504

7 

2.23246137

2 6 

313.441437

1   

531.158924

2 

0.80156320

1 0.40636555 13 

337.880814

9 

23 

465.574925

3 

0.70686598

8 

1.78915365

1 

5.66666666

7 

299.799040

1   

438.183034

1 

0.66115282

5 1.98515481 3 300.44965   

499.570548

9 

0.75377742

6 

2.26301547

4 8 

303.325089

2 

                                    

Total 

11342.9442

1 

74.6268873

5 

33.4636255

7 

237.666666

7 

7219.11118

7   

11321.8743

8 

74.5491455

5 

35.7408973

1 226 

7223.78338

8   

11521.1274

5 

75.8181386

9 

30.6542436

5 267 

7314.35786

6 
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PPO  

PPO   

Time 

Elapsed 

(train) 292     

Time 

Elapse

d 

(Test) 26.6                     

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step 

Water 

Saved 

Water 

Saved % Rewards Violations 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions 

0 

530.183831

6 

0.80197988

6 

0.40765276

2 13 

337.260538

9   

475.882884

7 

0.71984183

4 

2.16127465

7 4 

302.718620

6   

499.770341

8 

0.75597507

5 

2.26965476

4 9 

317.913909

9 

1 

509.319502

8 

0.76862272

1 

1.30756336

4 10 

323.988322

1   

503.863049

5 

0.76038829

5 

2.28286917

5 9 

320.517363

1   

490.998543

6 0.74097425 

2.22463720

3 6 

312.333993

6 

2 

533.951355

7 

0.77557266

2 

1.32808797

3 10 

339.657136

4   

531.907164

4 

0.77260344

2 

2.31917147

6 9 

338.356785

4   

532.886332

7 

0.77402569

9 1.32344248 10 

338.979653

9 

3 

531.506207

1 

0.77240670

8 

2.31858630

1 9 

338.101728

5   

535.838908

1 

0.77870316

7 

1.33748585

8 10 

340.857846

2   

535.838907

2 

0.77870316

6 

1.33748585

4 10 

340.857845

7 

4 

534.840029

8 

0.77725065

8 

1.33312399

6 10 

340.222439

7   

535.834560

6 

0.77869594

9 

1.33746418

8 10 

340.855080

7   

534.525239

9 

0.77679319

3 

1.33175023

4 10 

340.022195

6 

5 

540.359939

2 

0.78639217

7 

1.36056734

9 12 

343.733764

5   

515.416519

6 

0.75009172

5 

2.25162980

7 5 

327.866756

5   

540.521567

5 

0.78662739

7 

1.36127371

8 12 

343.836579

5 

6 

515.972676

2 

0.80849707

3 

0.42786289

7 16 

328.220538

8   

515.693518

6 0.80805965 

0.42652935

7 16 328.042961   

479.690035

8 

0.75164443

3 

2.25735575

4 8 

305.140425

6 

7 

481.604283

7 

0.75260897

5 

2.26019802

1 8 

306.358116

9   502.540751 

0.78532665

2 

0.35832918

3 13 

319.676222

5   

464.448698

6 0.72579973 

2.17977449

2 5 

295.445106

1 

8 

476.327221

6 

0.83421564

9 

-

0.49227559

1 21 

303.001272

2   

476.327221

6 

0.83421564

9 -0.49227559 21 

303.001272

2   

461.424920

5 

0.80811650

5 

0.42949619

2 20 

293.521620

4 

9 

454.149962

2 

0.79579137

1 

0.39255695

3 20 288.893874   476.160448 

0.83435958

9 

-

0.49182830

6 21 

302.895184

2   

448.592631

2 

0.78605345

1 

0.36335458

2 20 

285.358744

6 

10 

460.402681

2 

0.78221630

8 

0.35093938

3 18 

292.871353

6   

473.596290

6 

0.80463202

5 

0.41816040

7 20 

301.264072

4   

449.895968

9 

0.76436558

2 0.2973419 17 

286.187823

7 
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11 

479.781066

4 

0.81592161

2 

0.45203570

2 20 305.198332   

484.232354

9 

0.82349152

8 

-

0.52527469

7 21 

308.029885

6   465.48351 

0.79160701

1 

0.37912901

5 20 

296.103370

4 

12 

489.648504

6 

0.78788479

8 

0.36659738

9 16 

311.475206

7   

505.467563

7 

0.81333896

7 

0.44292711

1 17 

321.538026

6   

492.716041

2 

0.79282071

7 

0.38140009

4 16 

313.426528

1 

13 

482.873143

8 

0.77694097

8 

0.33372059

4 16 

307.165264

2   

487.810920

6 

0.78488584

2 

0.35759511

6 16 

310.306282

8   

505.487915

9 

0.81332805

7 

0.44289322

5 17 

321.550973

1 

14 496.080113 

0.79853789

6 

0.39850808

9 16 

315.566481

5   

505.090379

6 

0.81304168

1 

0.44202273

1 17 

321.298092

3   

505.172104

9 

0.81317323

4 

0.44242466

2 17 

321.350079

4 

15 

482.599127

1 

0.77652669

6 

0.33250475

6 16 

306.990956

7   

502.460679

5 0.80848495 

0.42837225

3 16 

319.625287

4   505.474923 

0.81333502

2 

0.44291485

7 17 321.542708 

16 

489.952555

2 

0.81167666

3 

0.43862229

6 19 

311.668619

4   

483.721433

5 

0.80135391

6 

0.40766955

3 18 

307.704878

3   

494.853141

9 

0.81979518

7 

0.46296311

5 20 

314.785980

6 

17 

495.893422

7 

0.81909758

4 

0.46079898

9 20 

315.447724

1   

454.235030

5 

0.75028786

2 

1.25440622

6 12 

288.947987

6   

495.893422

7 

0.81909758

3 

0.46079898

9 20 315.447724 

18 

502.560828

2 

0.80715351

4 

0.42433630

9 16 319.688994   497.416634 0.79889152 

0.39956481

3 16 

316.416669

2   

494.963037

5 

0.79495084

5 

0.38770187

6 16 

314.855887

4 

19 

465.618430

9 

0.74955600

2 

1.25164266

4 9 

296.189196

3   

476.781564

8 

0.76752649

7 

0.30553202

8 14 303.290289   

505.296893

8 

0.81343068

5 

0.44321197

3 17 

321.429460

1 

20 

503.707184

1 

0.79089670

8 

0.37512445

5 15 320.418214   

501.956636

3 

0.78814808

2 

0.36688149

3 15 

319.304655

5   

501.574777

3 

0.78754850

5 

0.36508337

7 15 

319.061747

3 

21 

503.485017

9 

0.78904810

7 

0.36954400

8 15 

320.276889

6   

495.928047

2 

0.77720502

7 

0.33400500

8 13 

315.469749

4   

491.326322

6 

0.76999332

8 

1.31236088

4 11 

312.542500

3 

22 

517.276374

6 

0.78061327

4 

1.34353752

2 11 

329.049847

4   

521.333561

3 

0.78673590

7 

1.36190418

3 12 331.630705   

526.816644

7 

0.79501033

8 

0.38672616

8 13 

335.118604

1 

23 

506.595605

9 

0.76437718

9 

2.29483197

6 9 

316.927043

8   516.216993 

0.77889442

7 

1.33837947

8 11 

316.271998

6   517.115286 

0.78024981

7 

1.34244534

5 11 315.077039 

                                    

Total 

11984.6890

7 

78.8491050

2 

19.8366681

6 345 

7618.37185

5   

11975.7131

2 

78.8300174

3 

18.8227955

1 336 

7605.88667

2   

11940.7672

1 

78.5559117

2 

22.6256207

5 337 7581.8905 

 

Recurrent PPO  

Recurrent PPO   

Time 

Elapsed 

(train) 529     

Time 

Elapse

d (test) 19.9                     
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  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step 

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   Water Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions 

0 

383.906697

2 0.58071452 

1.74381231

8 3 

244.210728

2   379.6052167 

0.57420790

7 1.72428514 3 

241.474470

4   

361.948277

6 

0.54749922

8 

1.64412673

9 2 

230.242538

3 

1 

403.125967

5 0.608364252 

1.82675838

6 3 

256.436490

4   364.5631186 

0.55016840

1 

1.65210647

2 2 231.905891   

375.215299

3 

0.56624378

8 

1.70034964

1 3 

238.681956

2 

2 

402.631503

3 0.58482853 

1.75568044

4 3 

256.121951

9   409.9597282 

0.59547289

1 1.78762411 3 

260.783582

3   

384.691178

4 

0.55876992

9 

1.67747614

9 2 

244.709752

4 

3 

381.826658

8 0.554886224 

1.66582537

2 2 

242.887574

2   377.4819992 

0.54857238

6 

1.64687634

7 2 

240.123849

3   

373.870127

8 

0.54332346

6 

1.63112320

9 2 

237.826265

7 

4 

384.791622

1 0.559194385 

1.67874917

3 2 

244.773646

6   416.082413 

0.60466739

8 

1.81522105

6 3 

264.678344

5   

398.893370

2 

0.57968760

2 1.74025716 3 

253.744050

6 

5 

368.165106

3 0.535795011 

1.60854256

9 2 

234.197187

4   401.6181419 

0.58447960

7 

1.75465185

5 3 

255.477332

4   

394.887840

8 

0.57468492

1 

1.72525780

5 3 

251.196053

3 

6 

339.411464

3 0.531836642 

1.59776281

9 2 

215.906420

6   383.5100097 

0.60093631

8 

1.80515469

6 3 

243.958387

4   

349.855631

5 

0.54820200

2 

1.64688317

7 2 

222.550164

3 

7 

375.664970

9 0.5870563 

1.76344971

7 3 

238.968001

3   371.0075069 

0.57977802

3 

1.74160592

3 3 

236.005295

3   

378.510849

5 0.59150359 1.77679691 3 

240.778321

6 

8 

327.726418

1 0.573963641 

1.72680113

3 2 

208.473329

1   325.1179571 

0.56939531

4 

1.71308364

3 2 

206.814034

9   

357.193418

4 

0.62557067

1 

1.88174896

6 4 

227.217877

3 

9 

338.077369

9 0.592401356 

1.78217806

8 2 

215.057776

5   332.0503829 

0.58184047

4 

1.75046798

5 2 

211.223889

6   

309.254950

4 

0.54189682

1 

1.63052383

1 2 

196.723259

1 

10 

328.441739

5 0.558016917 

1.67809213

4 2 

208.928359

3   313.0564377 

0.53187755

1 

1.59960980

6 2 

199.141461

1   

330.128997

4 

0.56088353

9 

1.68669873

9 2 

210.001657

8 

11 348.832626 0.593229075 

1.78383189

3 3 

221.899410

1   338.2072555 

0.57515943

9 

1.72958386

2 2 

215.140399

4   

331.671962

1 

0.56404543

8 

1.69618637

5 2 

210.983168

6 

12 

350.656749

5 0.564235609 

1.69551328

2 2 

223.059771

5   317.4380806 

0.51078403

3 

1.53506405

2 2 

201.928711

8   

358.766882

6 

0.57728548

1 

1.73468145

4 3 

228.218789

3 

13 

356.072600

7 0.572919406 1.7215774 2 

226.504902

7   334.4332208 

0.53810172

9 

1.61706629

6 2 

212.739660

4   

356.269095

8 

0.57323556

6 

1.72252637

4 2 

226.629897

2 

14 

382.273757

6 0.615344325 

1.84892162

8 3 

243.171982

7   364.4288092 

0.58661939

2 

1.76270714

3 3 

231.820454

1   

363.241459

8 

0.58470812

2 

1.75697048

8 3 

231.065157

4 

15 

361.303963

7 0.58135657 

1.74690256

9 3 

229.832677

4   355.5253745 

0.57205852

4 

1.71899410

4 2 

226.156801

2   

389.071977

9 

0.62603672

6 

1.88100366

6 3 

247.496466

6 

16 

356.110784

8 0.589948578 

1.77333360

3 3 

226.529192

5   349.3749402 

0.57878968

6 

1.73983663

7 2 222.244387   

337.092106

6 

0.55844141

1 

1.67875250

4 2 

214.431030

8 



 

307 
 

17 

346.156654

8 0.571768179 

1.71869068

1 2 

220.197171

2   359.7773746 

0.59426635

8 

1.78622552

9 3 

228.861583

6   

341.828349

8 

0.56461885

3 

1.69722913

3 2 

217.443849

9 

18 

326.020919

5 0.52361608 

1.57354731

5 2 

207.388427

3   342.3522395 

0.54984550

6 

1.65228156

9 2 

217.777106

6   

343.572687

9 

0.55180564

5 

1.65816527

1 2 

218.553458

2 

19 

340.018584

4 0.547364438 

1.64488071

8 2 

216.292621

9   341.1422554 

0.54917333

2 

1.65031050

4 2 

217.007411

5   

360.969338

3 

0.58109111

7 

1.74611545

7 3 

229.619815

5 

20 

356.957695

8 0.560477744 

1.68376449

4 2 

227.067929

5   358.1698034 

0.56238093

7 

1.68947672

3 2 

227.838975

3   

349.197370

2 

0.54829285

6 

1.64719241

2 2 

222.131431

1 

21 

329.407611

2 0.516238702 1.55094731 2 

209.542769

7   338.3128394 

0.53019473

5 

1.59283723

2 2 

215.207563

4   

355.931162

6 

0.55780569

4 

1.67571055

8 2 

226.414931

1 

22 

405.477404

7 0.611899286 

1.83736648

1 3 

257.932286

7   401.429635 

0.60579086

3 

1.81903547

7 3 

255.357419

4   

344.838289

6 

0.52038979

4 

1.56273107

5 2 

219.358532

8 

23 

380.251146

6 0.577087172 

1.73305490

6 3 

228.065832

8   358.8194678 

0.54140504

4 

1.62580290

7 2 227.650436   

371.377180

7 

0.56035275

9 

1.68266880

6 2 

228.484540

6 

                                    

Total 

8673.31001

7 57.05226226 

41.1399844

1 58 

5503.44644

1   8633.464208 

56.7331910

4 

40.9099090

7 57 

5491.31744

8   

8618.27780

5 

56.6932292

4 40.8811759 58 

5474.50296

6 

 

A2C  

A2C   

Time 

Elapsed 

(train) 362     

Time 

Elapse

d (test) 17.4                     

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions 

0 375.1403511 0.567454151 1.70401602 3 

238.634280

2   

377.113571

4 

0.57043893

3 

1.71297386

4 3 

239.889485

1   377.525323 

0.57106176

6 1.71484309 3 

240.151408

5 

1 374.7858033 0.565595628 1.698406937 3 

238.408745

2   

381.707455

7 

0.57604121

1 

1.72975573

8 3 

242.811746

7   

372.836059

6 

0.56265323

7 

1.68957626

9 2 

237.168474

2 

2 384.5633341 0.558584233 1.676918846 2 

244.628428

1   

383.905985

9 

0.55762942

5 

1.67405331

2 2 

244.210275

8   

393.975499

1 

0.57225554

9 

1.71794818

8 3 

250.615694

5 

3 394.2980358 0.573010143 1.720217648 3 

250.820866

5   

392.348675

1 

0.57017725

2 

1.71171587

3 3 

249.580839

2   

401.848008

3 

0.58398207

4 

1.75314505

8 3 255.623555 



 

308 
 

4 386.7125478 0.56198595 1.687132763 2 

245.995585

9   

379.456691

2 

0.55144145

2 

1.65548696

9 2 

241.379990

4   

383.679752

7 

0.55757857

2 

1.67390555

1 2 

244.066364

3 

5 395.607543 0.575732312 1.728401105 3 

251.653870

2   

400.716213

2 0.58316702 

1.75071305

8 3 

254.903597

5   

391.593361

4 

0.56989042

6 

1.71086909

4 3 

249.100369

1 

6 361.6081351 0.566617443 1.702155207 2 

230.026166

9   

356.015044

8 

0.55785341

9 

1.67585112

2 2 

226.468290

3   

351.346131

1 

0.55053752

2 

1.65389309

5 2 

223.498300

9 

7 382.9484525 0.598438287 1.797609064 3 

243.601169

6   

401.750435

3 

0.62782037

8 

1.88578606

3 3 

255.561486

9   

387.412726

1 

0.60541466

3 

1.81854600

1 3 

246.440983

3 

8 362.6708034 0.635163488 1.910547742 4 

230.702151

4   

353.621416

8 

0.61931484

6 

1.86296765

3 4 

224.945655

6   

361.465985

1 0.63305343 

1.90421319

1 4 

229.935742

4 

9 337.0335905 0.590572378 1.77668646 2 

214.393807

6   

345.028564

2 

0.60458169

5 1.81874932 3 

219.479570

3   

336.727313

7 

0.59003569

9 

1.77507504

7 2 

214.198978

8 

10 327.4515711 0.556334638 1.673041313 2 

208.298493

4   

348.417570

1 

0.59195551

3 

1.77998348

5 3 

221.635384

7   

367.488161

3 

0.62435612

2 

1.87724809

1 3 

233.766569

2 

11 356.2602335 0.605860557 1.82175199 3 

226.624259

8   

359.727572

3 

0.61175715

6 

1.83945326

1 3 

228.829903

3   

380.620481

8 

0.64728789

6 

1.94610726

5 4 

242.120300

9 

12 371.929292 0.598464883 1.798252796 3 

236.591661

2   

375.822742

5 

0.60472976

6 

1.81705605

6 3 239.068363   

371.577831

8 

0.59789935

4 1.79655542 3 

236.368090

3 

13 363.7797061 0.585320108 1.758798419 3 

231.407546

6   

378.683239

7 

0.60929983

5 

1.83077125

4 3 

240.887982

5   

350.669888

5 

0.56422646

4 1.69548474 2 

223.068129

5 

14 361.4138752 0.581766267 1.748140501 3 

229.902594

3   

367.685535

1 

0.59186172

9 

1.77844182

5 3 

233.892122

6   

359.895175

7 

0.57932162

3 

1.74080285

3 3 

228.936519

1 

15 360.7195299 0.580416186 1.744079994 3 

229.460907

4   

351.255438

7 

0.56518797

9 

1.69837153

6 2 

223.440609

7   351.420575 

0.56545369

2 

1.69916910

2 2 

223.545656

2 

16 353.8701918 0.586236715 1.762191367 3 

225.103906

4   

343.329842

1 

0.56877511

4 

1.70977393

9 2 

218.398979

2   

362.169232

8 

0.59998526

6 

1.80346110

1 3 

230.383092

4 

17 369.3064996 0.610006198 1.833470959 3 

234.923250

5   

332.513597

2 

0.54923310

4 

1.65104152

3 2 

211.518549

4   

359.845142

3 

0.59437829

4 

1.78656152

8 3 

228.904691

9 

18 373.0289922 0.599114863 1.800165172 3 

237.291202

5   

345.487613

1 

0.55488117

1 

1.66739695

8 2 

219.771580

4   

366.182431

6 

0.58811873

1 

1.76716125

5 3 

232.935968

4 

19 374.1696978 0.602341153 1.809896315 3 

238.016828

1   

376.004412

6 

0.60529469

1 

1.81876095

4 3 

239.183926

9   

352.540894

2 

0.56752294

5 

1.70538976

3 2 

224.258313

6 

20 375.6401438 0.589812022 1.771805927 3 

238.952208

3   

365.147565

1 

0.57333708

2 

1.72236002

7 3 

232.277669

1   

387.800096

1 

0.60890499

2 

1.82910719

2 3 

246.687397

1 

21 377.2343409 0.591191459 1.775911376 3 

239.966308

9   

386.709051

4 0.60603997 

1.82047414

8 3 

245.993361

8   

368.279566

9 0.57715778 

1.73379280

9 3 

234.269998

1 

22 386.9878946 0.58399707 1.753631815 3 

246.170739

5   

366.103837

9 

0.55248128

3 

1.65904771

4 2 

232.885973

3   

377.285726

7 

0.56935568

8 

1.70969122

4 3 

239.998996

5 



 

309 
 

23 375.2586427 0.566209306 1.700246347 3 

238.709527

8   

385.674161

9 

0.58192477

1 

1.74741059

7 3 

245.335047

8   

394.835467

1 

0.59574781

3 

1.78889433

3 3 

251.162737

3 

                                    

Total 8882.419208 58.45927266 42.15347608 68 

5650.28450

6   

8854.22623

3 

58.2717699

7 

42.0183962

5 65 

5632.35039

1   

8909.02083

2 

58.6507483

3 

42.2914412

6 67 

5667.20633

2 

 

DDPG  

DDPG   

Time 

Elapsed 

(Training) 631     

Time 

Elapsed 

(Testing

) 17.8                     

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water 

Saved % Rewards Violations 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions 

0 

525.646071 

0.79511586

5 1.386796765 10 

334.373978

7   525.646071 

0.79511586

5 

1.38679676

5 10 

334.373978

7   525.646071 

0.79511586

5 

1.38679676

5 10 

334.373978

7 

1 

526.9041899 

0.79516007

2 1.386914336 10 

335.174293

3   

526.904189

9 

0.79516007

2 

1.38691433

6 10 

335.174293

3   

526.904189

9 

0.79516007

2 

1.38691433

6 10 

335.174293

3 

2 

474.6435079 

0.68942708

9 2.069414238 1 

301.930228

2   

474.643507

9 

0.68942708

9 

2.06941423

8 1 

301.930228

2   

474.643507

9 

0.68942708

9 

2.06941423

8 1 

301.930228

2 

3 

476.846214 

0.69297255

5 2.080056581 1 

303.331413

7   476.846214 

0.69297255

5 

2.08005658

1 1 

303.331413

7   476.846214 

0.69297255

5 

2.08005658

1 1 

303.331413

7 

4 

476.8411321 

0.69296436

9 2.080032008 1 

303.328180

9   

476.841132

1 

0.69296436

9 

2.08003200

8 1 

303.328180

9   

476.841132

1 

0.69296436

9 

2.08003200

8 1 

303.328180

9 

5 

483.0421613 

0.70297694

1 2.110086742 1 

307.272779

6   

483.042161

3 

0.70297694

1 

2.11008674

2 1 

307.272779

6   

483.042161

3 

0.70297694

1 

2.11008674

2 1 

307.272779

6 

6 

509.8924412 

0.79896972

3 0.398817097 14 

324.352779

7   

509.892441

2 

0.79896972

3 

0.39881709

7 14 

324.352779

7   

509.892441

2 

0.79896972

3 

0.39881709

7 14 

324.352779

7 

7 

511.0909331 

0.79868812

8 0.397933221 14 

325.115164

4   

511.090933

1 

0.79868812

8 

0.39793322

1 14 

325.115164

4   

511.090933

1 

0.79868812

8 

0.39793322

1 14 

325.115164

4 

8 

468.747684 

0.82094122

7 

-

0.533038977 19 

298.179776

7   468.747684 

0.82094122

7 

-

0.53303897

7 19 

298.179776

7   468.747684 

0.82094122

7 

-

0.53303897

7 19 

298.179776

7 



 

310 
 

9 

468.5804798 

0.82107747

1 

-

0.532616738 19 

298.073414

8   

468.580479

8 

0.82107747

1 

-

0.53261673

8 19 

298.073414

8   

468.580479

8 

0.82107747

1 

-

0.53261673

8 19 

298.073414

8 

10 

478.7844789 

0.81344666

9 0.443745407 18 

304.564382

7   

478.784478

9 

0.81344666

9 

0.44374540

7 18 

304.564382

7   

478.784478

9 

0.81344666

9 

0.44374540

7 18 

304.564382

7 

11 

478.4571789 

0.81367019

2 0.444437596 18 

304.356180

6   

478.457178

9 

0.81367019

2 

0.44443759

6 18 

304.356180

6   

478.457178

9 

0.81367019

2 

0.44443759

6 18 

304.356180

6 

12 

498.7744756 

0.80256923

7 0.410037837 14 

317.280419

4   

498.774475

6 

0.80256923

7 

0.41003783

7 14 

317.280419

4   

498.774475

6 

0.80256923

7 

0.41003783

7 14 

317.280419

4 

13 

498.7958814 0.8025606 0.410011006 14 

317.294036

1   

498.795881

4 0.8025606 

0.41001100

6 14 

317.294036

1   

498.795881

4 0.8025606 

0.41001100

6 14 

317.294036

1 

14 

498.6226893 

0.80263066

9 0.410228673 14 

317.183865

1   

498.622689

3 

0.80263066

9 

0.41022867

3 14 

317.183865

1   

498.622689

3 

0.80263066

9 

0.41022867

3 14 

317.183865

1 

15 

498.7822158 

0.80256611

4 0.410028134 14 

317.285343

1   

498.782215

8 

0.80256611

4 

0.41002813

4 14 

317.285343

1   

498.782215

8 

0.80256611

4 

0.41002813

4 14 

317.285343

1 

16 

487.6850018 

0.80792013

5 0.426630388 18 

310.226183

3   

487.685001

8 

0.80792013

5 

0.42663038

8 18 

310.226183

3   

487.685001

8 

0.80792013

5 

0.42663038

8 18 

310.226183

3 

17 

488.7650238 0.80732317 0.424781052 17 

310.913206

9   

488.765023

8 0.80732317 

0.42478105

2 17 

310.913206

9   

488.765023

8 0.80732317 

0.42478105

2 17 

310.913206

9 

18 

499.5212678 

0.80227173

3 0.409113464 14 

317.755468

8   

499.521267

8 

0.80227173

3 

0.40911346

4 14 

317.755468

8   

499.521267

8 

0.80227173

3 

0.40911346

4 14 

317.755468

8 

19 

498.5949915 

0.80264191

3 0.410263601 14 317.166246   

498.594991

5 

0.80264191

3 

0.41026360

1 14 317.166246   

498.594991

5 

0.80264191

3 

0.41026360

1 14 317.166246 

20 

508.9921947 

0.79919497

6 0.399522986 14 

323.780114

9   

508.992194

7 

0.79919497

6 

0.39952298

6 14 

323.780114

9   

508.992194

7 

0.79919497

6 

0.39952298

6 14 

323.780114

9 

21 

509.8262319 

0.79898588

6 0.398867781 14 

324.310662

6   

509.826231

9 

0.79898588

6 

0.39886778

1 14 

324.310662

6   

509.826231

9 

0.79898588

6 

0.39886778

1 14 

324.310662

6 

22 

526.9162048 

0.79516058

3 1.386915732 10 

335.181936

2   

526.916204

8 

0.79516058

3 

1.38691573

2 10 

335.181936

2   

526.916204

8 

0.79516058

3 

1.38691573

2 10 

335.181936

2 

23 

512.1547334 

0.77884074

5 1.171405306 

9.83333333

3 

314.238550

9   

526.999877

9 

0.79516419

2 

1.38692560

3 10 

314.238550

9   

526.999877

9 

0.79516419

2 

1.38692560

3 10 

314.238550

9 

                                    

Total 11906.90738 

78.4919835

8 18.40038424 

292.833333

3 

7562.66860

7   

11921.7525

3 

78.5599979

4 

18.6159045

3 293 

7562.66860

7   

11921.7525

3 

78.5599979

4 

18.6159045

3 293 

7562.66860

7 

 



 

311 
 

SAC  

SAC   

Time Elapsed 

(training) 860     

Time (Elapsed 

(testing) 18                     

                                    

  Episode 0 Episode 0 Episode 0 

Episode 

0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 

Ste

p 

Water 

Saved Water Saved % Rewards 

Violatio

ns 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violatio

ns 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violatio

ns 

Carbon 

Emissions 

0 

508.54197

53 0.769243442 

1.3092338

52 10 323.4937213   

513.39534

04 0.77658486 

1.3311869

88 10 326.5810439   

511.59801

44 

0.77386614

4 

1.3231883

74 10 325.4377289 

1 

507.15085

06 0.765349971 

1.2975640

42 10 322.6087991   

478.20989

68 

0.72167468

6 

2.1665495

59 3 304.1988795   

513.90294

5 

0.77553967

2 

1.3281332

14 11 326.9039413 

2 

383.13684

54 0.556512236 

1.6704730

16 1 243.7210101   

-

2.9548008

35 

-

0.00429189

4 

-

0.0129151

42 0 -1.879607907   

383.13684

77 0.55651224 

1.6704730

26 1 243.7210116 

3 

385.15803

39 0.559727516 

1.6801244

76 1 245.0067285   

385.15802

76 

0.55972750

7 

1.6801244

48 1 245.0067245   

385.15802

88 

0.55972750

8 

1.6801244

54 1 245.0067253 

4 

385.15336

08 0.559720078 

1.6801021

48 1 245.0037559   

8.72993E-

06 1.26867E-08 

3.83608E-

08 0 5.55328E-06   

-5.73049E-

07 

-8.32778E-

10 

-2.51024E-

09 0 -3.64528E-07 

5 

105.28355

22 0.153220392 

0.4600422

54 0 66.97297325   

367.02943

01 

0.53414224

8 

1.6033273

86 0 233.4747611   

318.89301

28 

0.46408875

4 

1.3930475

41 0 202.8542233 

6 

10.308772

12 0.016153204 

0.0490040

27 0 6.557616118   

497.57738

91 

0.77967280

2 

1.3407646

67 10 316.5189288   

500.65001

11 0.78448741 

1.3551821

74 10 318.4734851 

7 

193.82456

51 0.302892047 

0.9101962

7 2 123.2956824   

337.21153

74 

0.52696464

4 

1.5822510

97 0 214.5070032   

55.124678

1 

0.08614401

7 

0.2593966

26 2 35.06591023 

8 

435.58042

49 0.762853749 

0.2931770

65 13 277.0814199   

20.664417

95 

0.03619062

7 

0.1107843

9 2 13.14504955   

-2.71262E-

06 

-4.75075E-

09 

-1.45974E-

08 0 -1.72555E-06 

9 

347.59790

76 0.609083868 

1.8315551

49 3 221.113981   

433.79813

87 0.76012957 

0.2846563

02 18 275.947672   

460.10717

15 

0.80622998

4 

0.4227609

98 18 292.683374 

10 

467.41357

91 0.794127704 

0.3853979

78 11 297.331126   

305.28141

27 

0.51866791

6 

1.5581889

83 0 194.1956122   

438.79877

34 

0.74551163

6 

1.2394544

76 8 279.1286757 

11 

467.45670

91 0.794962657 

0.3882920

26 18 297.3585618   

412.29518

28 

0.70115428

4 

2.1072545

04 5 262.2692117   

200.45928

88 

0.34090354

4 

1.0241791

2 0 127.5161628 

12 

477.79776

96 0.768815988 

1.3088141

31 13 303.9367172   

368.18188

81 

0.59243500

1 

1.7792757

96 1 234.2078627   

419.70811

38 

0.67534494

5 

2.0281953

67 2 266.9847253 

13 

26.719199

45 0.042991086 

0.1303834

75 2 16.99661715   

479.40834

37 

0.77136612

9 

1.3161615

53 10 304.9612356   

21.576404

62 0.03471635 

0.1052163

03 0 13.72518251 



 

312 
 

14 

16.277242

93 0.026201404 

0.0796668

6 0 10.35427977   

68.950721

86 

0.11098966

3 

0.3344386

3 0 43.86093319   

24.585971

28 

0.03957592

6 

0.1199973

14 0 15.63962805 

15 

496.06548

69 0.798194758 

0.3972238

53 13 315.5571776   

24.837310

44 

0.03996450

4 

0.1211774

32 2 15.79950992   

489.83948

55 

0.78817680

3 

0.3671747

26 13 311.5966935 

16 

22.832828

78 0.037825855 

0.1147793

51 0 14.52441904   

400.62599

63 

0.66369440

9 

1.9942975

54 3 254.8462088   

481.76634

66 

0.79811503

4 

0.3976028

66 13 306.4612084 

17 

415.43212

74 0.686194727 

2.0608837

71 2 264.2646849   

485.29200

49 

0.80158657

2 

0.4079508

97 13 308.7039502   

479.56647

4 

0.79212936

1 

0.3788842

55 11 305.0618254 

18 

489.32469

09 0.785895202 

0.3599718

01 13 311.2692224   

484.29114

58 0.77781092 

1.3354758

94 10 308.0672837   

481.16927

88 

0.77279694

8 

1.3204294

37 10 306.0814017 

19 

21.975746

55 0.03537672 

0.1072262

22 0 13.9792119   

420.36858

58 

0.67671246

6 

2.0320544

71 1 267.4048648   

-

0.0001353

55 

-2.17895E-

07 

-6.60441E-

07 0 -8.61018E-05 

20 

350.45207

91 0.550262939 

1.6521516

81 1 222.9295766   

24.902908

06 

0.03910134

4 

0.1184368

53 2 15.84123787   

23.998832

57 

0.03768180

9 

0.1141274

33 2 15.26613738 

21 

508.35114

24 0.796674166 

0.3919798

21 13 323.3723287   

25.275315

02 0.03961079 

0.1199729

39 2 16.07813339   

14.511095

35 

0.02274139

6 

0.0687797

3 0 9.230797973 

22 

147.01533

36 0.221858423 

0.6660300

93 0 93.51939402   

526.06342

88 

0.79387367

3 

0.3833046

22 13 334.6394683   

513.84953

82 

0.77544189

1 

1.3278981

73 11 326.8699682 

23 

526.99987

79 0.795164192 

1.3869256

03 10 203.0331641   

407.46355

55 

0.61480171

5 

1.8455313

38 1 188.8062047   

526.36822

56 

0.79421112

2 

1.3841984

72 12 179.4017614 

                                    

Tot

al 

7695.8501

02 50.78875968 

20.611198

97 137 4763.282169   

7463.3271

86 

49.3023518

6 

25.540251

2 107 4677.182177   

7244.7683

99 

47.5997594

6 

19.308443

4 135 4453.11048 

 

TQC 

TQC   

Time 

Elapsed 

(train) 1326     

Time 

Elapse

d (Test) 30.4                     

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step 

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water 

Saved % Rewards 

Violation

s 

Carbon 

Emissions 

0 

524.698220

4 

0.79368210

4 1.38254067 10 

333.771031

9   

525.975224

3 

0.79561375

7 

1.38834983

9 10 

334.583359

7   

524.204485

1 

0.79293525

8 

1.38025276

6 10 333.456957 
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1 

526.495311

6 

0.79454302

6 

1.38518595

6 12 

334.914197

6   

522.863102

9 

0.78906159

8 

1.36861243

6 10 332.603677   

525.062572

7 

0.79238085

6 

1.37857371

2 10 

334.002803

8 

2 

474.643507

8 

0.68942708

9 

2.06941423

8 1 

301.930228

2   

502.338009

9 

0.72965378

4 

2.19019809

2 1 

319.547254

8   

474.643507

3 

0.68942708

8 

2.06941423

6 1 

301.930227

9 

3 

529.800776

4 

0.76992830

6 

2.31113506

8 9 

337.016869

9   476.846213 

0.69297255

4 

2.08005657

6 1 303.331413   

476.846214

6 

0.69297255

6 

2.08005658

3 1 303.331414 

4 

476.841132

7 0.69296437 

2.08003201

1 1 

303.328181

3   

518.537348

8 

0.75355895

8 

2.26197837

3 5 

329.851978

3   

476.841132

4 

0.69296436

9 

2.08003200

9 1 

303.328181

1 

5 

540.552310

3 

0.78667213

7 

1.36140807

4 12 

343.856135

6   

483.042160

1 

0.70297693

9 

2.11008673

6 1 

307.272778

9   

483.042161

4 

0.70297694

1 

2.11008674

2 1 

307.272779

7 

6 

503.282491

2 

0.78861234

2 

0.36774443

9 14 

320.148058

3   

499.840870

7 

0.78321953

7 0.35203057 13 

317.958774

7   

509.218340

3 

0.79791344

8 

0.39564832

6 14 

323.923970

6 

7 

510.673435

9 

0.79803569

9 

0.39610808

6 14 324.849586   

496.416492

3 

0.77575619

7 

1.32895260

8 10 

315.780459

1   

495.313511

8 

0.77403255

6 

1.32378081

1 10 

315.078831

1 

8 

446.469316

9 0.78192401 

0.34939983

9 13 

284.008061

8   

407.596600

5 0.71384428 

2.14668224

6 11 

259.280349

5   

454.912036

3 

0.79671016

6 

0.39378947

6 15 

289.378644

5 

9 

449.618056

9 

0.78785026

9 

0.36720339

6 15 

286.011038

3   

436.744726

5 

0.76529277

5 

0.29947781

8 11 

277.822055

4   

438.693088

9 

0.76870682

3 

0.30993491

7 11 

279.061447

7 

10 

448.710584

8 

0.76235163

5 

0.29007399

7 11 

285.433777

2   

468.330670

7 

0.79568582

7 

0.39007466

5 11 

297.914506

3   467.044925 

0.79350136

7 

0.38351801

9 11 

297.096617

7 

11 

470.223517

4 

0.79966792

6 

0.40278949

3 13 

299.118583

9   

452.779637

3 

0.77000264

8 

0.31321746

4 11 

288.022182

9   

466.150098

1 

0.79274061

9 

0.38125342

6 11 

296.527400

4 

12 

445.255957

9 

0.71645353

1 

2.15134853

1 2 

283.236219

9   

483.359830

1 

0.77776580

2 

1.33540900

6 10 

307.474855

1   

490.355131

8 

0.78902181

9 

0.36935893

3 11 

311.924706

4 

13 

492.939670

9 

0.79313798

1 

0.38173918

2 14 

313.568783

5   

486.966480

8 

0.78352714

1 

0.35265550

2 11 

309.769117

8   491.315273 

0.79052433

1 

0.37394399

1 13 

312.535471

5 

14 

493.141914

8 

0.79380829

2 

0.38406191

3 16 

313.697434

8   493.337555 

0.79412321

3 

0.38470275

5 14 

313.821885

5   

489.710749

1 0.78828516 

0.36718531

5 14 

311.514801

7 

15 

487.372394

5 

0.78420712

7 

0.35469649

5 11 

310.027327

6   483.836439 

0.77851759

4 

0.33787122

2 14 

307.778035

6   

496.502538

4 

0.79889799

6 

0.39912871

8 14 

315.835194

7 

16 

472.387666

7 

0.78257790

6 

0.35054197

1 11 

300.495242

6   

476.927040

2 

0.79009802

9 

0.37283861

8 11 

303.382828

8   

476.171242

6 

0.78884594

2 

0.36908091

7 11 

302.902050

9 

17 483.963666 

0.79939247

3 

0.40134141

1 13 

307.858967

2   

449.923258

4 

0.74316584

3 

1.23222183

6 7 

286.205183

2   

456.679549

9 

0.75432562

5 1.26542342 8 

290.502995

3 

18 

493.107298

7 

0.79197037

7 

0.37796475

7 11 

313.675414

8   

476.600028

8 

0.76545836

1 

1.29899432

4 10 

303.174810

3   

495.200108

3 0.7953316 0.38824583 11 

315.006692

9 

19 

483.298093

7 

0.77801685

4 

0.33637423

2 14 

307.435583

3   

473.130532

6 

0.76164903

9 

1.28725530

3 11 

300.967794

4   

496.038928

6 

0.79852714

4 

0.39791776

2 14 

315.540283

3 
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20 

510.924193

4 

0.80222850

7 

0.40889796

7 16 

325.009097

9   

491.677054

3 

0.77200757

8 

1.31795410

2 10 

312.765607

8   

498.009936

7 

0.78195116

5 

1.34778893

2 12 

316.794080

9 

21 

504.103033

1 

0.79001664

4 

0.37177345

9 11 

320.670021

4   

495.636052

7 

0.77674742

1 

1.33196056

6 10 

315.284005

9   

501.902049

6 

0.78656732

2 

1.36142446

5 10 

319.269931

8 

22 

520.655889

2 

0.78571324

3 

1.35883273

8 12 

331.199624

2   512.429319 

0.77329866

2 

1.32123564

4 9 

325.966538

4   

512.429320

3 

0.77329866

4 1.32123565 9 

325.966539

2 

23 514.312784 0.77602126 

1.32951313

3 11 

311.366356

5   

524.038579

8 

0.79069603

5 1.37351634 10 

306.572405

2   

525.898269

1 

0.79350202

8 

1.38193731

9 10 

308.918885

7 

                                    

Total 

11803.4712

2 

77.6633462

8 

20.9701210

6 267 

7492.62582

4   

11639.1732

3 

76.5612232

2 

28.1763326

4 222 

7377.13185

7   

11722.1851

7 

77.1930868

3 

23.6290122

7 233 7431.10091 

 

ARS 

ARS   

Time 

Elapsed 

(train) 254      

Time Elapsed 

(test) 24.6                   

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   Water Saved Water Saved % Rewards 

Violation

s 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions 

0 465.9786565 0.704860253 2.116169244 3 296.418343   465.9786565 0.704860253 2.116169244 3 296.418343   465.9786565 0.704860253 2.116169244 3 296.418343 

1 467.1543951 0.70499064 2.116534444 3 297.1662538   467.1543951 0.70499064 2.116534444 3 297.1662538   467.1543951 0.70499064 2.116534444 3 297.1662538 

2 364.8123153 0.529895571 1.590745163 2 232.06441   364.8123153 0.529895571 1.590745163 2 232.06441   364.8123153 0.529895571 1.590745163 2 232.06441 

3 361.5571041 0.525429673 1.577344607 2 229.9937051   361.5571041 0.525429673 1.577344607 2 229.9937051   361.5571041 0.525429673 1.577344607 2 229.9937051 

4 382.9380865 0.556500754 1.670599875 2 243.5945756   382.9380865 0.556500754 1.670599875 2 243.5945756   382.9380865 0.556500754 1.670599875 2 243.5945756 

5 383.5751729 0.558221462 1.675773814 2 243.999839   383.5751729 0.558221462 1.675773814 2 243.999839   383.5751729 0.558221462 1.675773814 2 243.999839 

6 353.1437919 0.553354344 1.662081238 2 224.6418289   353.1437919 0.553354344 1.662081238 2 224.6418289   353.1437919 0.553354344 1.662081238 2 224.6418289 

7 365.8011994 0.571642062 1.716925566 3 232.693459   365.8011994 0.571642062 1.716925566 3 232.693459   365.8011994 0.571642062 1.716925566 3 232.693459 

8 335.8332005 0.588161454 1.768960714 3 213.6302155   335.8332005 0.588161454 1.768960714 3 213.6302155   335.8332005 0.588161454 1.768960714 3 213.6302155 

9 345.2177986 0.604913284 1.819270129 3 219.5999461   345.2177986 0.604913284 1.819270129 3 219.5999461   345.2177986 0.604913284 1.819270129 3 219.5999461 

10 352.8711247 0.599522026 1.802293655 3 224.4683798   352.8711247 0.599522026 1.802293655 3 224.4683798   352.8711247 0.599522026 1.802293655 3 224.4683798 



 

315 
 

11 345.4021548 0.587395174 1.765912104 3 219.7172187   345.4021548 0.587395174 1.765912104 3 219.7172187   345.4021548 0.587395174 1.765912104 3 219.7172187 

12 360.1747302 0.579550824 1.741184804 3 229.1143494   360.1747302 0.579550824 1.741184804 3 229.1143494   360.1747302 0.579550824 1.741184804 3 229.1143494 

13 355.4596591 0.571933186 1.718319362 3 226.1149983   355.4596591 0.571933186 1.718319362 3 226.1149983   355.4596591 0.571933186 1.718319362 3 226.1149983 

14 355.2970863 0.5719201 1.718288257 3 226.0115825   355.2970863 0.5719201 1.718288257 3 226.0115825   355.2970863 0.5719201 1.718288257 3 226.0115825 

15 357.3384464 0.57497585 1.727452637 3 227.3101325   357.3384464 0.57497585 1.727452637 3 227.3101325   357.3384464 0.57497585 1.727452637 3 227.3101325 

16 349.3686105 0.5787792 1.739453964 3 222.2403605   349.3686105 0.5787792 1.739453964 3 222.2403605   349.3686105 0.5787792 1.739453964 3 222.2403605 

17 353.2342829 0.583458732 1.753437945 3 224.6993921   353.2342829 0.583458732 1.753437945 3 224.6993921   353.2342829 0.583458732 1.753437945 3 224.6993921 

18 360.6428628 0.579221733 1.740161978 3 229.4121379   360.6428628 0.579221733 1.740161978 3 229.4121379   360.6428628 0.579221733 1.740161978 3 229.4121379 

19 355.5280911 0.572331756 1.719525169 3 226.1585293   355.5280911 0.572331756 1.719525169 3 226.1585293   355.5280911 0.572331756 1.719525169 3 226.1585293 

20 363.1420107 0.570188057 1.712639898 3 231.0018958   363.1420107 0.570188057 1.712639898 3 231.0018958   363.1420107 0.570188057 1.712639898 3 231.0018958 

21 361.9916874 0.567303585 1.703950799 3 230.2701522   361.9916874 0.567303585 1.703950799 3 230.2701522   361.9916874 0.567303585 1.703950799 3 230.2701522 

22 372.4993925 0.56213271 1.687837112 3 236.9543136   372.4993925 0.56213271 1.687837112 3 236.9543136   372.4993925 0.56213271 1.687837112 3 236.9543136 

23 515.8227981 0.778299646 1.336314444 10 234.105532   363.5502359 0.548543067 1.647048898 2 234.105532   363.5502359 0.548543067 1.647048898 2 234.105532 

                                    

Total 8984.784658 59.06242531 41.58117692 74 

5621.38155

1   8832.512096 58.10510624 

41.8919113

7 66 

5621.38155

1   

8832.51209

6 

58.1051062

4 

41.8919113

7 66 

5621.38155

1 
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Appendix I: Burst Leakage – SZ08 Results 

This section shows the episodic performance of each of the optimisation algorithms as they tackle the background leakage case study on the Jowitt & Xu 

network. The results and discussions associated with these results were covered in section 4.2 of the thesis.  

Each algorithm’s step rewards, water saved%, pressure violations, and carbon emissions are listed along with the algorithm’s processing speeds. A line plot 

of the rewards of the algorithms across the three test episodes is shown below. 
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  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 

0 

65.24078681 2.960504463 

-

10.01569932 672 41.50096931   104.8251155 4.756767006 

-

16.03019541 679 66.68135245   111.8596907 5.075982826 

-

15.18913553 678 71.15618642 

1 

60.5526395 2.734123801 

-

8.909900727 655 38.51874504   82.31494928 3.71675395 13.11512598 633 52.36218554   103.248583 4.661967016 

-

22.09876926 670 65.67848859 

2 

99.69037147 4.530896377 

-

18.85441995 668 63.4150391   43.68453114 1.985448353 

-

8.803277885 657 27.78860395   43.66162455 1.984407256 -8.96066253 657 27.77403261 

3 

65.64304725 3.126435175 

-

9.941176256 671 41.75685522   113.5625847 5.408738233 

-

14.94976239 677 72.23943139   48.85876532 2.327036432 

-

4.985950257 666 31.0800378 

4 

76.09374498 3.715319265 

-

11.59628186 685 48.40475305   99.48272642 4.857299245 

-

19.20569368 690 63.28295193   46.85227664 2.287588369 

-

6.161755457 679 29.80367021 

5 

46.99346271 2.268887572 

-

6.164844935 680 29.8934815   24.14653904 1.165817098 

-

0.855896562 674 15.36009641   81.48920949 3.934373931 

-

14.94773695 687 51.83691594 

6 

76.25576437 3.598894579 

-

11.60031552 670 48.50781683   155.7882129 7.352432431 

-

83.17472293 744 99.09999802   72.86347876 3.438795491 

-

14.51115144 670 46.34991611 

7 

72.94090979 3.371126433 

-

12.66602579 682 46.39917154   

-

269.2970109 

-

12.44616052 

-

3.463777808 671 

-

171.3052146   102.0033281 4.714310754 

-

17.22645227 687 64.88635704 

8 

46.29941846 2.191374971 

-

5.495425186 698 29.45198607   64.75608683 3.064938451 5.990560025 684 41.19264196   43.04975464 2.037566733 

-

8.289846714 698 27.38480992 

9 

60.97782634 3.029212268 

-

13.58441844 709 38.78921489   108.999527 5.414799513 

-

15.66162288 715 69.33677913   50.65560067 2.516432221 79.06708698 616 32.2230407 

10 

21.78348692 0.925485252 

-

8.986419452 715 13.8569117   509.821541 21.66009137 

-

23.50091574 731 324.3076787   501.172445 21.29262905 

-

23.60129401 731 318.8058157 

11 

42.85881573 2.178911839 

-

9.308301659 716 27.26334986   72.57503062 3.689663159 -14.1137451 722 46.16642848   111.1322173 5.649883222 

-

15.43602885 727 70.69342604 

12 

99.36524766 5.019129658 

-

18.63363506 718 63.20822134   31.20313892 1.576130525 19.41790337 675 19.84894073   83.26426711 4.205838182 

-

16.31318788 715 52.9660656 

13 

47.52865329 2.394509047 

-

5.163934323 706 30.23392693   83.43186685 4.20332465 

-

15.42377411 714 53.07267914   83.43087862 4.203274862 

-

15.43881386 714 53.07205051 

14 

101.837966 5.056443154 

-

18.19187122 713 64.78116693   43.22556626 2.146229223 

-

8.115864368 702 27.49664721   

-

321.5960084 

-

15.96783595 

-

4.464569979 697 

-

204.5736528 

15 

378.3937657 15.50849648 

-

12.51915652 686 240.7038423   378.4657431 15.51144648 

-

12.51912047 686 240.7496285   341.9377276 14.01434306 

-

20.18845743 692 217.5134273 

16 -

304.0427534 

-

15.35627288 -4.46570856 711 

-

193.4076763   46.0231407 2.324488578 8.677756514 699 29.27624026   

-

308.4491797 

-

15.57882805 -9.10797389 716 

-

196.2106922 
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17 

387.7498947 16.82823568 

-

12.52158377 719 246.655463   417.5672685 18.12230126 

-

17.96464245 725 265.6228908   403.3105638 17.50356431 

-

30.96836419 737 256.5539159 

18 

46.29861212 2.349282271 

-

5.398605196 721 29.45147314   60.88149865 3.089246499 

-

13.70840849 726 38.72793892   60.87516818 3.088925278 -13.7551365 726 38.72391198 

19 

84.36568009 4.316956194 

-

11.96200339 755 53.66669642   46.09420112 2.35862079 

-

5.605451435 748 29.32144322   84.36299041 4.316818564 

-

11.97219717 755 53.66498546 

20 

77.62325836 3.956673192 

-

10.58129115 749 49.37770711   108.5583802 5.533522322 

-

17.14878836 754 69.05615684   46.26580906 2.35829686 

-

5.646619511 743 29.43060646 

21 

607.1646089 23.24080018 

-

24.49177217 723 386.229551   602.3235957 23.05549784 

-

25.57514932 723 383.1500857   563.7886978 21.58047468 

-

20.12107851 717 358.6372665 

22 

99.57918988 4.782052724 

-

18.95986036 705 63.34431427   72.86330815 3.499086321 

-

13.17552435 700 46.34980758   72.76793508 3.494506257 

-

14.41978809 700 46.28913886 

23 

108.3221628 5.388524764 

-

18.38393718 718 65.39357572   76.83945597 3.822406243 6.780147559 691 84.67434476   46.5988999 2.318078957 

-

5.650189252 707 68.06593553 

                                    

Total 2469.51656 4.504833435 -288.396588 16845 1567.396556   3078.136998 5.661203709 

-

275.0148403 16820 1993.859737   2473.404724 4.394101263 

-

240.3880725 16785 1611.805656 

 

 

PSO  

PSO   Time Elapsed  7627                             

                                    

  Episode 0 Episode 0 Episode 0 

Episode 

0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 

Step 

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions 

0 

52.6229360

1 2.387930075 

-

5.267630125 667 33.47450206   

48.6934846

2 2.209618945 

-

8.928699138 667 30.97489944   

48.7681776

6 2.213008375 

-

8.204555514 667 31.02241318 

1 43.5870345 1.968078509 

-

12.02566466 659 27.72658438   38.1096192 1.720757638 

-

12.15234746 659 24.24229096   

27.9929647

6 1.263961932 

-

6.423780937 653 17.80688474 

2 52.2641799 2.375390721 

-

6.047471899 657 33.24629012   

48.8397118

8 2.219749714 

-

7.798825486 657 31.06791752   

51.9517345

7 2.361190178 

-

5.478035763 657 33.0475374 
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3 

55.5823670

4 2.647266918 

-

5.486961498 666 35.35705532   55.7709662 2.656249485 

-

5.483233629 666 35.47702702   

55.6150434

5 2.648823225 

-

5.486903166 666 35.37784144 

4 

55.9001249

2 2.729354576 

-

5.476616423 679 35.55918746   

55.8994329

4 2.729320789 

-

5.476672462 679 35.55874728   

51.7167955

5 2.525101201 

-

5.237115658 679 32.89808799 

5 

53.4316477

4 2.579729062 

-

5.533134301 680 33.98893976   

54.5764504

6 2.63500119 

-

5.507914554 680 34.71717167   

53.9571605

8 2.605101305 

-

5.521657805 680 34.32322899 

6 

53.6226664

5 2.530724401 

-

5.529125952 664 34.11045058   

53.5876882

3 2.529073602 

-

5.529818213 664 34.08820024   

49.3395795

8 2.328583903 

-

5.628931555 664 31.38589336 

7 

43.8061435

6 2.024598389 

-

11.43205475 676 27.86596404   

42.9620495

9 1.985586708 

-

11.45230619 676 27.32901899   

35.5951077

9 1.645107102 

-

11.64198206 676 22.64275996 

8 

42.2612953

2 2.000248553 

-

8.215449763 698 26.88325518   

33.4354249

3 1.582515629 

-

4.482127997 694 21.26894251   

46.0123953

1 2.177790019 

-

8.113806207 698 29.2694049 

9 

44.9961502

1 2.235286142 -8.54836929 704 28.62295107   

48.5909590

3 2.41386645 

-

8.452514124 704 30.90968086   

48.5759975

2 2.413123203 

-

8.452123663 704 30.90016354 

10 

447.346695

3 19.00580795 

-

12.38825262 720 284.5661798   446.914258 18.98743558 

-

12.39751968 720 284.2910978   

446.579763

4 18.97322436 

-

12.40474693 720 284.0783191 

11 

47.1927065

3 2.399243778 

-

8.676476153 716 30.02022448   

47.4515571

4 2.41240356 

-

8.668090375 716 30.18488453   

47.6012933

1 2.420016041 

-

8.662581018 716 30.2801347 

12 

48.3482362

9 2.442162349 -8.61589007 707 30.75528007   

48.0863379

9 2.428933363 -8.62272463 707 30.58868132   

48.3891648

2 2.444229728 

-

8.616576067 707 30.78131553 

13 

47.0212015

6 2.368943463 -9.13425094 706 29.91112674   

48.1927656

7 2.427967245 

-

9.104456059 706 30.6563821   

36.3518576

7 1.83141844 

-

9.436602466 706 23.1241437 

14 

51.7528983

7 2.569627016 

-

5.525386174 702 32.92105371   

44.9844986

6 2.233563466 

-

8.300881381 702 28.61553929   

48.6498260

9 2.415553744 

-

8.203298211 702 30.94712737 

15 

380.498716

7 15.59476805 

-

12.47073147 686 242.0428436   

378.607422

2 15.51725321 

-

12.51467962 686 240.8397534   

380.116544

3 15.57910469 

-

12.47948846 686 241.7997361 

16 

46.9618100

2 2.371897905 

-

8.714252442 716 29.87334659   

48.0327681

5 2.425988736 

-

8.684581658 716 30.55460447   

45.1142553

1 2.278583547 

-

8.763304951 716 28.69808009 

17 

386.927555

8 16.7925464 

-

12.54340781 719 246.1323568   

390.941416

8 16.96674683 

-

12.44990062 719 248.6856541   

393.202457

8 17.06487537 

-

12.40018591 719 250.1239475 

18 

45.1966030

9 2.293364174 

-

9.238097265 721 28.75046316   

47.9617697

6 2.433674147 

-

9.166340773 721 30.50944098   

45.0357182

8 2.285200563 

-

9.242304381 721 28.64812111 

19 

48.4971122

8 2.481576739 

-

8.005873566 748 30.84998306   

48.7393719

6 2.493973064 

-

7.999221091 748 31.00408929   

48.7148949

6 2.492720586 

-

8.002665654 748 30.98851898 

20 

50.0424362

3 2.550802042 

-

5.126069148 743 31.83299453   

52.9201922

6 2.697489264 

-

5.057364467 743 33.6635927   

53.1021075

3 2.706761991 

-

5.055409381 743 33.77931264 

21 

546.133064

4 20.90465951 

-

14.40712027 712 347.4061649   

545.043872

4 20.86296787 

-

14.43124361 712 346.7133081   

546.699456

4 20.92633964 

-

14.39479026 712 347.7664582 
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22 

48.8434981

5 2.345592324 

-

7.704301214 694 31.07032605   

48.4903455

8 2.328633015 

-

7.713171476 694 30.84567863   48.676324 2.337564184 

-

7.708515876 694 30.96398322 

23 

47.6335211

5 2.369546561 

-

8.620483945 707 76.44987261   

47.6335211

5 2.369546561 

-

8.620483945 707 75.99731475   

48.6407049

9 2.419649281 

-

8.594619048 707 75.44042866 

                                    

Tota

l 

2740.47060

2 4.998714401 

-

204.7330717 16747 1789.417396   

2724.46588

5 4.969513169 

-

208.9951186 16743 1778.783918   

2706.39932

6 4.931543025 

-

204.1539809 16741 1766.093842 

 

DE 

DE   

Time 

Elapsed 10753                             

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 

0 

60.25782045 2.734386801 

-

9.108653212 671 38.33120474   60.62594167 2.751091452 

-

9.101781159 671 38.56537402   66.97449261 3.039176778 46.4370109 615 42.60381424 

1 

56.92070012 2.570131414 

-

12.60893777 664 36.20839576   53.2947819 2.406410899 

-

14.17587501 663 33.90187666   55.89607932 2.523866872 

-

13.73613025 663 35.55661398 

2 

56.71683192 2.57776237 

-

11.25782608 661 36.07871112   77.06002005 3.502353943 

-

27.19489234 680 49.01941995   60.59658005 2.754095716 

-

9.011172485 661 38.5466965 

3 

55.24320416 2.63111333 

-

12.69649712 670 35.14130703   60.30208973 2.872057016 

-

9.885082174 670 38.35936532   56.92616279 2.711268979 

-

11.55389065 670 36.21187068 

4 
64.01093922 3.125369578 -9.31358658 683 40.71863866   51.86943729 2.532554019 93.58733088 578 32.99518645   53.0848494 2.591897188 93.61106479 578 33.7683344 

5 

26.50102763 1.279493971 133.4108527 538 16.85783369   59.70204281 2.882469499 

-

9.892391962 684 37.97766347   56.21636157 2.714177605 

-

12.93128434 684 35.76035192 

6 

64.04076934 3.022407283 

-

9.315087943 668 40.73761419   56.73002484 2.677376334 

-

12.81020956 668 36.0871034   56.60191643 2.671330251 

-

12.35236665 668 36.00561108 

7 

33.24947696 1.536698555 

-

28.24740739 692 21.15065728   24.58944437 1.136455881 89.13256152 575 15.64183735   24.97753896 1.154392536 89.14022866 575 15.88871208 

8 
32.94408493 1.559260258 85.43608333 604 20.95639131   33.12606087 1.567873271 85.43990882 604 21.07214984   56.72402844 2.684777051 -11.9526032 702 36.08328897 

9 
57.8127506 2.871979928 0.129942218 696 36.77584691   34.6274645 1.720198088 80.82514436 614 22.02722272   34.59183659 1.71842819 80.7904805 614 22.00455909 

10 
8.574861636 0.364308433 77.6329954 628 5.454640984   458.8052722 19.49263285 1.63357629 706 291.8552097   459.9297316 19.54040622 5.52525512 701 292.5705009 
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11 

60.32148325 3.066701489 9.008611234 698 38.37170193   59.98513689 3.049601878 

-

9.303762802 720 38.15774528   59.28157968 3.013833528 

-

9.211710303 720 37.71019846 

12 
35.80374971 1.808516219 92.80421234 609 22.77548126   58.72986388 2.966558314 3.490958053 695 37.35924101   35.92942415 1.814864277 92.8079612 609 22.85542529 

13 

60.21051642 3.033425445 8.164739515 689 38.30111371   59.01639983 2.973265462 

-

9.398632837 710 37.54151226   58.50301208 2.94740082 

-

9.377475261 710 37.21493605 

14 

58.32589121 2.895988253 -9.38185268 706 37.10226591   58.97366107 2.928151224 11.07439982 682 37.51432528   56.89704434 2.825043367 

-

11.92544733 706 36.19334785 

15 

370.4822871 15.18424394 86.17208482 586 235.6711924   395.0484955 16.19109181 

-

17.23265978 690 251.2982489   392.4332469 16.08390565 

-

16.28305344 689 249.634637 

16 -

321.1274629 

-

16.21916949 

-

8.183651042 715 

-

204.2756017   32.89325288 1.661337958 87.45743182 619 20.92405602   32.30517551 1.631635963 87.44428653 619 20.54996825 

17 

370.1459332 16.06422873 55.23684647 650 235.457231   401.2874328 17.415761 

-

16.23715717 723 255.2669617   405.0736571 17.58008206 3.610014082 703 257.6754547 

18 

35.73846528 1.813439734 74.62686546 637 22.73395253   59.75757463 3.032216392 

-

9.108955301 725 38.01298837   56.65583141 2.874827866 

-

12.98609898 725 36.03990748 

19 

56.81983711 2.90744705 

-

11.72810402 752 36.14423478   56.81897776 2.907403078 

-

11.72573915 752 36.14368813   58.26745117 2.98152085 -9.3655883 752 37.06509104 

20 

58.76093034 2.995207915 

-

9.378580934 747 37.37900301   39.9142449 2.034539984 64.51335847 671 25.39024947   60.6013785 3.089020672 21.43428277 714 38.54974889 

21 

559.1961826 21.40468425 

-

19.20469825 716 355.7158757   537.2344075 20.56404034 57.26485113 640 341.7455513   559.5393565 21.41782012 

-

19.19832648 716 355.9341755 

22 

59.91923627 2.877478189 

-

9.374858052 698 38.11582458   36.20976136 1.738887293 75.59441482 610 23.0337534   59.38600818 2.851871184 

-

9.375813143 698 37.77662752 

23 

60.5367679 3.011423189 5.399257945 692 53.80853147   60.5367679 3.011423189 5.399257945 692 78.9480444   61.06783748 3.037841436 

-

8.831774709 711 79.74651111 

                                    

Total 1981.406284 3.546521951 468.2227504 16070 1275.712048   2827.138557 5.167322966 499.3460547 16042 1838.838774   2878.460581 5.260561883 342.707849 16203 1871.946383 

 

TRPO  

TRPO   

Time Elapsed 

(training) 3083       

Time (Elapsed 

(testing) 724                   

                                    

  Episode 0 Episode 0 Episode 0 

Episode 

0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 
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Step 

Water 

Saved Water Saved % Rewards 

Violatio

ns 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Violatio

ns 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violatio

ns 

Carbon 

Emissions 

0 

55.4993886

6 2.518458097 

70.191426

93 584 35.30427112   55.49938866 2.518458097 

70.191426

93 584 35.30427112   

108.25800

54 4.912545108 

56.474438

64 605 68.86508239 

1 78.2876957 3.534912003 

79.169499

45 569 49.80036899   78.2876957 3.534912003 

79.169499

45 569 49.80036899   

78.287695

7 3.534912003 

79.169499

45 569 49.80036899 

2 

95.9175555

7 4.359423068 

93.854146

01 557 61.01507545   64.59878613 2.935994738 

95.030215

81 549 41.09257983   

84.031062

22 3.819185642 

104.69217

5 543 53.4538393 

3 

78.1967536

8 3.724340832 

127.12660

44 530 49.74251895   78.19675368 3.724340832 

127.12660

44 530 49.74251895   

91.717475

29 4.368303314 

82.946964

41 574 58.34332038 

4 

93.5081481

7 4.565587151 

108.38151

7 561 59.48240321   86.5761564 4.227128811 

122.35005

65 547 55.07282461   

91.185291

06 4.452172365 

119.36853

7 550 58.00478735 

5 

77.9996561

6 3.765895089 

127.18104

41 545 49.61714127   77.99965616 3.765895089 

127.18104

41 545 49.61714127   

77.999656

16 3.765895089 

127.18104

41 545 49.61714127 

6 110.763791 5.227502605 

74.919131

22 584 70.45906272   110.763791 5.227502605 

74.919131

22 584 70.45906272   

110.76379

1 5.227502605 

74.919131

22 584 70.45906272 

7 

98.7105747

3 4.562128833 

61.356044

21 607 62.7917708   77.47499827 3.58067942 

82.974235

27 582 49.2833959   

86.211094

14 3.984437528 

72.033170

09 593 54.84060121 

8 

84.8040185

7 4.013817233 

79.358224

34 611 53.94553229   84.80401857 4.013817233 

79.358224

34 611 53.94553229   

84.804018

57 4.013817233 

79.358224

34 611 53.94553229 

9 

97.2011387

1 4.828687729 

62.892778

73 636 61.83158836   104.615812 5.197028493 

48.974591

05 650 66.5482103   

88.697974

63 4.406273706 

71.438597

56 624 56.42255562 

10 

51.4609470

2 2.186350958 

71.179776

93 635 32.73533762   51.46094702 2.186350958 

71.179776

93 635 32.73533762   

498.03335

95 21.15926301 

50.019921

88 657 316.8089806 

11 

100.292308

7 5.098789947 

65.913870

88 645 63.79794341   84.74829521 4.30854331 

80.567407

22 628 53.91008555   

84.748295

21 4.30854331 

80.567407

22 628 53.91008555 

12 

97.7717398

8 4.938638517 

73.489248

64 629 62.19455917   87.26307031 4.407825418 

77.504892

62 621 55.50978428   

95.687711

37 4.833370231 

77.476332

71 625 60.86886695 

13 

86.1358254

7 4.339550966 

89.778835

48 611 54.7927213   86.13582547 4.339550966 

89.778835

48 611 54.7927213   

99.588147

84 5.017283353 

73.889779

98 627 63.35001261 

14 87.3963644 4.339390954 

87.042973

59 610 55.59457532   100.843306 5.007056445 

72.152292

7 625 64.14844378   

87.396364

4 4.339390954 

87.042973

59 610 55.59457532 

15 

422.200436

6 17.30391613 

79.903190

99 593 268.5701417   422.2004366 17.30391613 

79.903190

99 593 268.5701417   

439.39622

44 18.00868676 

49.060794

24 624 279.5087263 

16 

84.2773661

4 4.256592922 

81.370004

13 626 53.61051815   100.5185486 5.076885553 

67.010259

11 644 63.94185915   

102.37835

47 5.170818691 

47.527462

68 660 65.124919 

17 

444.890443

3 19.30811931 

52.030171

28 654 283.0037088   431.1107677 18.71008529 

72.932593

73 634 274.2381816   

431.11076

77 18.71008529 

72.932593

73 634 274.2381816 



 

324 
 

18 

111.483545

2 5.656893461 

27.184752

49 689 70.91691276   87.40255002 4.434976596 

68.417946

17 644 55.59851012   

111.85772

66 5.675880157 

17.110631

22 699 71.15493702 

19 

89.0690255

3 4.557624392 

69.352055

03 671 56.65858852   109.9790731 5.627582686 

41.545339

38 702 69.95988795   

94.986613

5 4.860424868 

63.427050

7 680 60.42288458 

20 -254.20171 -12.95736758 

53.077885

11 681 -161.7027918   86.8249686 4.425709935 

29.336779

88 702 55.23109903   

98.489270

7 5.020271827 

47.444079

81 689 62.65099488 

21 

590.073279

1 22.5865852 

51.012540

09 647 375.3574143   590.0732791 22.5865852 

51.012540

09 647 375.3574143   

198.64892

38 7.603802783 

41.585580

56 659 126.3645534 

22 

88.3742675

3 4.243963094 

70.280744

82 617 56.21663906   106.0778621 5.094135931 

38.356036

77 651 67.47824961   

101.25808

28 4.862677547 

46.308159

96 643 64.41229165 

23 

71.2752845

9 3.545614546 

66.087876

75 628 80.4326983   105.2319912 5.234803072 

54.329364

18 647 88.40269874   

99.054855

84 4.927519262 

75.265712

84 626 93.80681861 

                                    

Total 

2941.38784

4 5.437725644 

1822.1343

43 14720 1906.1687   3268.687977 6.144573534 

1801.3022

84 14735 2100.740321   

3444.5907

63 6.540960943 

1697.2402

63 14859 2221.96912 

 

PPO  

PPO   

Time 

Elapsed 

(train) 3644       

Time 

Elapsed 

(Test) 594                   

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 

0 55.49938866 2.518458097 70.19142693 584 35.30427112   108.8587006 4.93980353 56.65401993 605 69.24719663   113.1012413 5.132322062 40.57112148 621 71.94596159 

1 78.2876957 3.534912003 79.16949945 569 49.80036899   81.52444893 3.681060612 76.30719692 570 51.85933245   78.2876957 3.534912003 79.16949945 569 49.80036899 

2 97.87398603 4.448342224 90.42391468 559 62.25959999   99.82455512 4.536994982 41.07400556 607 63.500396   100.5923097 4.571889189 36.08836509 612 63.98878005 

3 100.0455098 4.764949435 71.1910954 586 63.64094969   87.62546096 4.173409597 123.6483975 534 55.74030823   91.6417417 4.364696288 82.9449406 574 58.29514473 

4 103.4646854 5.051720601 107.5682976 566 65.81595571   104.4350791 5.099100608 87.36807592 585 66.4332425   81.14346725 3.961874753 125.314018 544 51.61698238 

5 77.99965616 3.765895089 127.1810441 545 49.61714127   82.69357571 3.992521839 126.2227889 546 52.60303738   77.99965616 3.765895089 127.1810441 545 49.61714127 

6 110.763791 5.227502605 74.91913122 584 70.45906272   110.763791 5.227502605 74.91913122 584 70.45906272   110.763791 5.227502605 74.91913122 584 70.45906272 

7 77.47499827 3.58067942 82.97423527 582 49.2833959   98.26420283 4.541498763 61.35183976 607 62.5078247   77.47499827 3.58067942 82.97423527 582 49.2833959 



 

325 
 

8 84.80401857 4.013817233 79.35822434 611 53.94553229   84.80401857 4.013817233 79.35822434 611 53.94553229   84.80401857 4.013817233 79.35822434 611 53.94553229 

9 110.397888 5.484266278 33.08118037 666 70.22630454   86.45678404 4.294937464 75.37692592 621 54.99688947   105.7469763 5.253221656 44.99560291 654 67.26776656 

10 51.46094702 2.186350958 71.17977693 635 32.73533762   51.46094702 2.186350958 71.17977693 635 32.73533762   51.46094702 2.186350958 71.17977693 635 32.73533762 

11 84.74829521 4.30854331 80.56740722 628 53.91008555   84.74829521 4.30854331 80.56740722 628 53.91008555   102.2633453 5.198996051 54.93521047 656 65.05175919 

12 101.1775209 5.110671066 69.54666148 633 64.36104462   87.12148959 4.400673903 86.38701046 616 55.41972196   96.85040952 4.89210035 75.4994825 627 61.60848251 

13 86.13582547 4.339550966 89.77883548 611 54.7927213   110.3860589 5.561285633 50.54451395 651 70.2187798   86.13582547 4.339550966 89.77883548 611 54.7927213 

14 

-

328.5190077 

-

16.31157566 60.10391922 634 

-

208.9775112   98.72711992 4.901983899 74.1298894 623 62.80229552   87.3963644 4.339390954 87.04297359 610 55.59457532 

15 440.1287213 18.0387082 48.07119921 625 279.9746822   422.2004366 17.30391613 79.90319099 593 268.5701417   422.4539636 17.31430695 76.92828874 597 268.7314153 

16 99.40480566 5.02063379 69.9972382 641 63.23338498   84.27736614 4.256592922 81.37000413 626 53.61051815   

-

402.8217396 

-

20.34529844 53.09672747 656 -256.242965 

17 451.9350372 19.61385269 30.11835011 676 287.4849158   448.4523477 19.46270496 43.07145094 663 285.2695074   449.685156 19.51620849 29.12767634 678 286.0537215 

18 87.40255002 4.434976596 68.41794617 644 55.59851012   87.40255002 4.434976596 68.41794617 644 55.59851012   106.3865688 5.398262895 35.19391546 681 67.67462414 

19 89.06902553 4.557624392 69.35205503 671 56.65858852   103.5843697 5.300368416 49.49161151 694 65.89208923   89.06902553 4.557624392 69.35205503 671 56.65858852 

20 

-

319.9346466 

-

16.30795803 23.21290983 712 

-

203.5168274   91.29812119 4.653718953 58.40305502 678 58.07656085   91.29812119 4.653718953 58.40305502 678 58.07656085 

21 590.0732791 22.5865852 51.01254009 647 375.3574143   607.0681795 23.23710909 22.18109096 675 386.1682104   610.85357 23.38200473 11.24673926 686 388.5761729 

22 100.5108285 4.826792445 46.28982672 643 63.93694826   101.5634184 4.877340559 46.30195887 643 64.60652172   88.69511872 4.259371205 68.28470846 619 56.42073892 

23 71.27528459 3.545614546 66.08787675 628 67.36204221   105.242082 5.235305043 54.33261513 647 93.1620264   100.1677506 4.982880613 74.28094733 627 78.43323321 

                                    

Total 2501.480084 4.514204728 1659.794592 14880 1613.263919   3428.783399 6.442563233 1668.562128 14886 2207.333129   2901.450322 5.33676164 1627.866575 14928 1860.385103 

 

Recurrent PPO  

Recurrent PPO 

Time Elapsed 

(train) 4519       

Time Elapsed 

(test) 727                   

                                    

  Episode 0 Episode 0 Episode 0 

Episode 

0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 

Step 

Water 

Saved Water Saved % Rewards 

Violation

s 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violation

s 

Carbon 

Emissions 



 

326 
 

0 

55.4993886

6 2.518458097 

70.1914269

3 584 35.30427112   55.49938866 2.518458097 

70.1914269

3 584 35.30427112   

55.4993886

6 2.518458097 

70.1914269

3 584 35.30427112 

1 78.2876957 3.534912003 

79.1694994

5 569 49.80036899   78.2876957 3.534912003 

79.1694994

5 569 49.80036899   

101.145696

8 4.56701573 

51.3460834

7 597 64.34080067 

2 

64.5987861

3 2.935994738 

95.0302158

1 549 41.09257983   64.59878613 2.935994738 

95.0302158

1 549 41.09257983   

64.5987861

3 2.935994738 

95.0302158

1 549 41.09257983 

3 

78.1967536

8 3.724340832 

127.126604

4 530 49.74251895   78.19675368 3.724340832 

127.126604

4 530 49.74251895   

78.1967536

8 3.724340832 

127.126604

4 530 49.74251895 

4 

104.435079

1 5.099100608 

87.3680759

2 585 66.4332425   104.4350791 5.099100608 

87.3680759

2 585 66.4332425   

108.020876

3 5.274179146 

87.4006064

5 585 68.71423985 

5 

77.9996561

6 3.765895089 

127.181044

1 545 49.61714127   89.06096425 4.29994521 

124.511038

7 548 56.65346058   

111.553949

7 5.385927222 

73.0558779

5 602 70.96169849 

6 110.763791 5.227502605 

74.9191312

2 584 70.45906272   78.57657004 3.708425117 

125.403693

8 531 49.98412774   110.763791 5.227502605 

74.9191312

2 584 70.45906272 

7 

77.4749982

7 3.58067942 

82.9742352

7 582 49.2833959   77.47499827 3.58067942 

82.9742352

7 582 49.2833959   

77.4749982

7 3.58067942 

82.9742352

7 582 49.2833959 

8 

62.7976263

4 2.972243522 

48.1792983

4 638 39.94682607   84.80401857 4.013817233 

79.3582243

4 611 53.94553229   

84.8040185

7 4.013817233 

79.3582243

4 611 53.94553229 

9 

86.4567840

4 4.294937464 

75.3769259

2 621 54.99688947   86.45678404 4.294937464 

75.3769259

2 621 54.99688947   

86.4567840

4 4.294937464 

75.3769259

2 621 54.99688947 

10 

51.4609470

2 2.186350958 

71.1797769

3 635 32.73533762   51.46094702 2.186350958 

71.1797769

3 635 32.73533762   

51.4609470

2 2.186350958 

71.1797769

3 635 32.73533762 

11 78.5079714 3.991289667 

55.6624503

7 649 49.94049077   84.74829521 4.30854331 

80.5674072

2 628 53.91008555   

84.7482952

1 4.30854331 

80.5674072

2 628 53.91008555 

12 

87.1214895

9 4.400673903 

86.3870104

6 616 55.41972196   87.12148959 4.400673903 

86.3870104

6 616 55.41972196   

87.1214895

9 4.400673903 

86.3870104

6 616 55.41972196 

13 

108.272328

9 5.454795223 

55.8858643

8 645 68.87419384   102.2436147 5.151066638 

68.9164463

1 632 65.03920817   

86.1358254

7 4.339550966 

89.7788354

8 611 54.7927213 

14 87.3963644 4.339390954 

87.0429735

9 610 55.59457532   87.3963644 4.339390954 

87.0429735

9 610 55.59457532   87.3963644 4.339390954 

87.0429735

9 610 55.59457532 

15 

433.243843

6 17.75653098 

64.9913115

4 608 275.5950738   422.2004366 17.30391613 

79.9031909

9 593 268.5701417   

422.200436

6 17.30391613 

79.9031909

9 593 268.5701417 

16 

84.2773661

4 4.256592922 

81.3700041

3 626 53.61051815   84.27736614 4.256592922 

81.3700041

3 626 53.61051815   

84.2773661

4 4.256592922 

81.3700041

3 626 53.61051815 

17 

431.110767

7 18.71008529 

72.9325937

3 634 274.2381816   422.2597591 18.32595402 

48.9726543

6 657 268.607878   

431.110767

7 18.71008529 

72.9325937

3 634 274.2381816 



 

327 
 

18 

-

232.030225

5 -11.77366815 

69.0086378

9 643 -147.5990671   91.67239529 4.651636909 

61.4313431

3 651 58.31464409   

87.4025500

2 4.434976596 

68.4179461

7 644 55.59851012 

19 

89.0690255

3 4.557624392 

69.3520550

3 671 56.65858852   94.02815279 4.811380838 

55.7566297

2 685 59.81318856   

93.0990843

1 4.763840797 

56.1623374

9 685 59.22218951 

20 

91.2981211

9 4.653718953 

58.4030550

2 678 58.07656085   91.29812119 4.653718953 

58.4030550

2 678 58.07656085   

91.2981211

9 4.653718953 

58.4030550

2 678 58.07656085 

21 

590.073279

1 22.5865852 

51.0125400

9 647 375.3574143   580.1797404 22.20788434 

30.0441974

1 667 369.0639364   

594.698187

6 22.76361557 

43.0561881

6 655 378.2994111 

22 

88.3742675

3 4.243963094 

70.2807448

2 617 56.21663906   78.22312956 3.756478941 

44.4265434

3 638 49.75929717   

88.3742675

3 4.243963094 

70.2807448

2 617 56.21663906 

23 

82.2086833

2 4.08950038 

67.9974689

5 630 77.9626312   89.03232683 4.428944969 

78.3955160

9 619 86.63600835   

105.459645

1 5.246127799 

54.3361678

5 647 89.04131564 

                                    

Tota

l 

2866.89478

9 5.296145756 

1829.02294

4 14696 1849.357157   3163.533177 5.937214355 

1879.30668

9 14645 2042.387489   

3273.29839

1 6.144758322 

1816.59756

4 14724 2104.166899 

 

A2C  

A2C   

Time 

Elapsed 

(train) 3672       

Time 

Elapsed 

(test) 756                   

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 

0 95.40864392 4.3294652 84.90925492 577 60.69134657   55.49938866 2.518458097 70.19142693 584 35.30427112   90.06352338 4.086913662 71.62624609 586 57.29120849 

1 78.2876957 3.534912003 79.16949945 569 49.80036899   78.92838002 3.563840721 77.29056734 569 50.2079211   78.2876957 3.534912003 79.16949945 569 49.80036899 

2 91.91040771 4.177299444 93.60558854 554 58.46604855   64.59878613 2.935994738 95.03021581 549 41.09257983   64.59878613 2.935994738 95.03021581 549 41.09257983 

3 78.19675368 3.724340832 127.1266044 530 49.74251895   103.3876554 4.924128539 98.51945227 562 65.76695534   116.7553437 5.560802379 68.96937289 591 74.27040923 

4 104.4350791 5.099100608 87.36807592 585 66.4332425   104.4350791 5.099100608 87.36807592 585 66.4332425   104.4350791 5.099100608 87.36807592 585 66.4332425 

5 77.99965616 3.765895089 127.1810441 545 49.61714127   86.49458846 4.176038229 123.3725051 548 55.02093761   77.99965616 3.765895089 127.1810441 545 49.61714127 

6 84.25761518 3.976542324 122.9163095 533 53.59795417   110.763791 5.227502605 74.91913122 584 70.45906272   110.763791 5.227502605 74.91913122 584 70.45906272 



 

328 
 

7 77.47499827 3.58067942 82.97423527 582 49.2833959   104.0908066 4.810788222 51.95486833 617 66.21424392   80.56505756 3.723493385 82.99265828 582 51.24904441 

8 62.36830134 2.951923351 40.15732256 646 39.67372385   84.80401857 4.013817233 79.35822434 611 53.94553229   84.80401857 4.013817233 79.35822434 611 53.94553229 

9 86.45678404 4.294937464 75.37692592 621 54.99688947   86.45678404 4.294937464 75.37692592 621 54.99688947   104.7090555 5.201660579 47.97554824 651 66.60752439 

10 503.8548009 21.40659064 40.08349654 667 320.5121159   51.46094702 2.186350958 71.17977693 635 32.73533762   51.46094702 2.186350958 71.17977693 635 32.73533762 

11 84.74829521 4.30854331 80.56740722 628 53.91008555   101.8040714 5.175646892 55.92970762 655 64.75960589   84.74829521 4.30854331 80.56740722 628 53.91008555 

12 100.9123071 5.097274603 69.50140203 633 64.19233677   87.12148959 4.400673903 86.38701046 616 55.41972196   87.12148959 4.400673903 86.38701046 616 55.41972196 

13 86.13582547 4.339550966 89.77883548 611 54.7927213   86.13582547 4.339550966 89.77883548 611 54.7927213   86.13582547 4.339550966 89.77883548 611 54.7927213 

14 87.3963644 4.339390954 87.04297359 610 55.59457532   87.3963644 4.339390954 87.04297359 610 55.59457532   87.3963644 4.339390954 87.04297359 610 55.59457532 

15 422.2004366 17.30391613 79.90319099 593 268.5701417   437.713482 17.93971944 59.03626717 614 278.4383002   438.7139935 17.98072548 51.00505989 623 279.0747455 

16 84.27736614 4.256592922 81.37000413 626 53.61051815   84.27736614 4.256592922 81.37000413 626 53.61051815   84.27736614 4.256592922 81.37000413 626 53.61051815 

17 431.1107677 18.71008529 72.93259373 634 274.2381816   431.1107677 18.71008529 72.93259373 634 274.2381816   431.1107677 18.71008529 72.93259373 634 274.2381816 

18 87.40255002 4.434976596 68.41794617 644 55.59851012   99.996075 5.073996722 38.95489941 676 63.60950323   92.80106039 4.708907587 56.43911803 656 59.03261053 

19 89.06902553 4.557624392 69.35205503 671 56.65858852   92.44393011 4.730316833 58.99154287 682 58.80543282   89.06902553 4.557624392 69.35205503 671 56.65858852 

20 91.29812119 4.653718953 58.40305502 678 58.07656085   91.29812119 4.653718953 58.40305502 678 58.07656085   91.29812119 4.653718953 58.40305502 678 58.07656085 

21 590.0732791 22.5865852 51.01254009 647 375.3574143   590.0732791 22.5865852 51.01254009 647 375.3574143   604.2911592 23.13081144 34.14244502 663 384.4016922 

22 88.37426753 4.243963094 70.28074482 617 56.21663906   88.37426753 4.243963094 70.28074482 617 56.21663906   88.37426753 4.243963094 70.28074482 617 56.21663906 

23 71.27528459 3.545614546 66.08787675 628 45.33963403   71.27528459 3.545614546 66.08787675 628 45.33963403   71.27528459 3.545614546 66.08787675 628 45.33963403 

                                    

Total 3654.924627 6.800813472 1905.518982 14629 2324.970653   3279.940549 6.156117214 1780.769221 14759 2086.435782   3301.055974 6.18802692 1789.558972 14749 2099.867726 

 

DDPG  

DDPG   

Time 

Elapsed 

(Training) 3644       

Time 

Elapsed 

(Testing) 807                   

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 
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0 

108.3485597 4.916654293 

-

17.48678441 678 68.9226858   108.3485597 4.916654293 

-

17.48678441 678 68.9226858   108.3485597 4.916654293 

-

17.48678441 678 68.9226858 

1 

108.479689 4.898166326 

-

18.63134095 671 69.00609979   108.479689 4.898166326 

-

18.63134095 671 69.00609979   108.479689 4.898166326 

-

18.63134095 671 69.00609979 

2 

111.3745918 5.061940555 

-

15.59705481 668 70.84760531   111.3745918 5.061940555 

-

15.59705481 668 70.84760531   111.3745918 5.061940555 

-

15.59705481 668 70.84760531 

3 

113.5643943 5.408824418 

-

14.94971069 677 72.24058248   113.5643943 5.408824418 

-

14.94971069 677 72.24058248   113.5643943 5.408824418 

-

14.94971069 677 72.24058248 

4 

111.1708701 5.427979336 

-

15.59169557 690 70.71801388   111.1708701 5.427979336 

-

15.59169557 690 70.71801388   111.1708701 5.427979336 

-

15.59169557 690 70.71801388 

5 

111.3192957 5.37459791 

-

15.64106136 691 70.81243038   111.3192957 5.37459791 

-

15.64106136 691 70.81243038   111.3192957 5.37459791 

-

15.64106136 691 70.81243038 

6 

108.3417149 5.113192605 

-

18.92375847 675 68.91833169   108.3417149 5.113192605 

-

18.92375847 675 68.91833169   108.3417149 5.113192605 

-

18.92375847 675 68.91833169 

7 

108.1649331 4.999083039 

-

18.33191632 687 68.80587722   108.1649331 4.999083039 

-

18.33191632 687 68.80587722   108.1649331 4.999083039 

-

18.33191632 687 68.80587722 

8 

108.2975709 5.125778985 

-

18.28319502 709 68.89025077   108.2975709 5.125778985 

-

18.28319502 709 68.89025077   108.2975709 5.125778985 

-

18.28319502 709 68.89025077 

9 

108.6305198 5.396468238 

-

18.06190815 715 69.10204623   108.6305198 5.396468238 

-

18.06190815 715 69.10204623   108.6305198 5.396468238 

-

18.06190815 715 69.10204623 

10 

72.99506475 3.101241602 

-

19.26811039 726 46.43362059   72.99506475 3.101241602 

-

19.26811039 726 46.43362059   72.99506475 3.101241602 

-

19.26811039 726 46.43362059 

11 

108.0903985 5.495239309 

-

17.84587433 727 68.75846427   108.0903985 5.495239309 

-

17.84587433 727 68.75846427   108.0903985 5.495239309 

-

17.84587433 727 68.75846427 

12 

108.0561524 5.458123965 

-

18.07525111 718 68.7366797   108.0561524 5.458123965 

-

18.07525111 718 68.7366797   108.0561524 5.458123965 

-

18.07525111 718 68.7366797 

13 
108.1431167 5.448285473 -18.0293697 717 68.7919994   108.1431167 5.448285473 -18.0293697 717 68.7919994   108.1431167 5.448285473 -18.0293697 717 68.7919994 

14 

108.2435521 5.374492336 

-

18.22864331 713 68.85588834   108.2435521 5.374492336 

-

18.22864331 713 68.85588834   108.2435521 5.374492336 

-

18.22864331 713 68.85588834 

15 

443.4721377 18.17573837 

-

22.50692441 697 282.1014962   443.4721377 18.17573837 

-

22.50692441 697 282.1014962   443.4721377 18.17573837 

-

22.50692441 697 282.1014962 

16 
108.3068434 5.470248586 -18.1736145 727 68.89614921   108.3068434 5.470248586 -18.1736145 727 68.89614921   108.3068434 5.470248586 -18.1736145 727 68.89614921 

17 

453.1081926 19.66476731 

-

22.50700737 730 288.2311835   453.1081926 19.66476731 

-

22.50700737 730 288.2311835   453.1081926 19.66476731 

-

22.50700737 730 288.2311835 

18 

108.2026407 5.490413941 

-

19.00637803 732 68.8298638   108.2026407 5.490413941 

-

19.00637803 732 68.8298638   108.2026407 5.490413941 

-

19.00637803 732 68.8298638 

19 

108.2996197 5.541645767 

-

18.12343237 759 68.89155406   108.2996197 5.541645767 

-

18.12343237 759 68.89155406   108.2996197 5.541645767 

-

18.12343237 759 68.89155406 
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20 

108.608873 5.53609608 

-

17.09969754 754 69.08827631   108.608873 5.53609608 

-

17.09969754 754 69.08827631   108.608873 5.53609608 

-

17.09969754 754 69.08827631 

21 

610.9486641 23.3856447 

-

25.47533652 723 388.6366642   610.9486641 23.3856447 

-

25.47533652 723 388.6366642   610.9486641 23.3856447 

-

25.47533652 723 388.6366642 

22 

108.3942322 5.205374074 

-

17.19001391 705 68.95173898   108.3942322 5.205374074 

-

17.19001391 705 68.95173898   108.3942322 5.205374074 

-

17.19001391 705 68.95173898 

23 

101.2457491 5.03650603 71.28938963 630 102.4779892   108.3221628 5.388524764 

-

18.38393718 718 102.4779892   108.3221628 5.388524764 

-

18.38393718 718 102.4779892 

                                    

Total 3753.807376 7.087770969 

-

351.7386896 16919 2425.945491   3760.88379 7.102438416 

-

441.4120164 17007 2425.945491   3760.88379 7.102438416 

-

441.4120164 17007 2425.945491 

 

SAC  

SAC   

Time Elapsed 

(training) 5588       

Time (Elapsed 

(testing) 860                   

                                    

  Episode 0 Episode 0 Episode 0 

Episode 

0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 

Step 

Water 

Saved Water Saved % Rewards 

Violatio

ns 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Violatio

ns 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violatio

ns 

Carbon 

Emissions 

0 

108.24439

49 4.911927492 

-

18.8490904

2 678 68.85642451   108.313824 4.915078053 

-

18.0924634 678 68.90058974   

108.244348

4 4.91192538 

-

18.8491071

6 678 68.85639491 

1 

107.27751

76 4.843884869 

-

19.8732057

8 670 68.24137451   103.2347633 4.661343018 

-

22.1039220

6 670 65.66969761   

107.281196

8 4.844050993 

-

19.8670644

2 670 68.24371489 

2 

108.43417

04 4.92829932 

-

17.6959334

2 668 68.97714449   108.3862433 4.926121046 

-

18.5608960

4 668 68.94665708   

111.714524

5 5.077390394 

-

16.1231391

7 668 71.06384334 

3 

108.38171

47 5.161984694 

-

18.7403724

7 677 68.94377637   108.4385105 5.164689753 

-

17.8125231

3 677 68.97990529   

111.762568

4 5.323007381 

-

16.1193337

7 677 71.094405 

4 

111.54454

63 5.446224284 

-

16.1161725

4 690 70.95571679   111.5448399 5.446238619 

-

16.1162209

8 690 70.95590355   

108.228522

5 5.284317586 

-

19.0698031

2 690 68.84632775 
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5 

108.41825

38 5.23453294 

-

18.2996945

3 691 68.96701959   108.4183738 5.234538734 

-

18.2971503

4 691 68.96709592   

111.734001

7 5.394620295 

-

16.1181656

9 691 71.07623313 

6 

111.71460

81 5.272376464 

-

16.1198595 675 71.06389648   111.7141821 5.27235636 

-

16.1199112

9 675 71.06362551   

111.715235

6 5.272406083 

-

16.1197618 675 71.0642957 

7 

105.03187

92 4.854281983 

-

21.4017748

4 687 66.81287898   113.549848 5.247958862 

-

14.6988511

4 687 72.23132929   

105.031967

4 4.854286058 

-

21.4017265

1 687 66.81293508 

8 

108.30982

02 5.126358751 -18.090533 709 68.8980428   111.5349016 5.279003491 

-

15.3778914

8 709 70.94958159   

108.271977

6 5.124567642 

-

18.6103210

9 709 68.87397037 

9 

108.28048

66 5.379079545 

-

18.9668655

5 715 68.87938315   111.2568725 5.526938288 

-

15.6364285

8 715 70.77272176   

108.280331

4 5.379071834 

-

18.9673243

4 715 68.8792844 

10 

506.91697

3 21.53668896 

-

22.5029570

2 731 322.4600249   506.8322136 21.53308791 

-

22.5029788

6 731 322.4061077   

509.821435

6 21.6600869 

-

23.5009340

2 731 324.3076116 

11 

108.05554

36 5.493467312 

-

18.5308511

2 727 68.7362924   108.1765838 5.49962091 

-

17.0901061

9 727 68.81328848   121.031049 6.153132818 

-

16.4689562

5 727 76.9902709 

12 

108.05613

29 5.458122977 

-

18.0767681

5 718 68.73666726   110.9734671 5.605483133 

-

15.6470513 718 70.59244187   

107.968833

2 5.4537133 

-

18.9734777

7 718 68.68113416 

13 

121.12688

35 6.102411878 

-

16.4704265

6 717 77.05123315   108.192024 5.450749441 

-

17.2327227

5 717 68.82311034   

108.149558

5 5.448610014 

-

17.8235628

1 717 68.79609717 

14 

108.19388

61 5.372026331 

-

18.7799734

6 713 68.82429485   108.2494145 5.374783417 

-

18.0934350

7 713 68.85961755   

111.312385

4 5.526865583 

-

15.6259693

3 713 70.80803463 

15 

443.39530

41 18.17258934 

-

22.5068378

9 697 282.0526208   443.3937254 18.17252464 

-

22.5068615

6 697 282.0516166   

429.386002

8 17.59841709 

-

35.5093960

9 709 273.1410241 

16 

108.30726

96 5.470270113 

-

18.1633925

3 727 68.89642033   -398.8005267 

-

20.14219923 

-

12.5155453

7 722 -253.6849911   

-

398.803192

4 

-

20.14233387 

-

12.5155461

3 722 -253.6866868 
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17 

452.96940

11 19.6587438 

-

22.5069434

3 730 288.1428954   453.0461061 19.66207277 

-

22.5069356

7 730 288.191689   

452.968452

3 19.65870262 

-

22.5069234

5 730 288.1422919 

18 

108.14316

79 5.487396176 

-

19.0697268

5 732 68.79203198   108.1832944 5.489432271 

-

19.0419184

5 732 68.81755722   

108.183212

8 5.48942813 

-

19.0420739

8 732 68.81750532 

19 

108.26682

75 5.539967804 

-

18.5690392

9 759 68.87069429   108.2668684 5.539969896 

-

18.5689959

9 759 68.8707203   

111.252827

4 5.69276016 

-

15.6506922

7 759 70.77014859 

20 

108.61048

03 5.53617801 

-

17.0987604

8 754 69.08929876   111.5438522 5.685700124 

-

15.6133503

2 754 70.95527525   111.543784 5.685696646 

-

15.6136474

8 754 70.95523185 

21 

610.27756

94 23.35995681 

-

25.4814509

1 723 388.2097674   610.9125809 23.38426352 

5.37474420

6 693 388.613711   

607.185230

9 23.24158954 

-

24.4917722 723 386.2426691 

22 

108.24942

89 5.198420242 

-

18.8280011

9 705 68.85962672   111.5019736 5.354615933 

-

15.5744381

8 705 70.92863547   

108.394551

4 5.205389402 

-

17.1888711

7 705 68.95194202 

23 

108.32216

28 5.388524764 

-

18.3839371

8 718 115.0208136   108.3187025 5.388352629 

-

18.4832453

3 718 100.4885114   

108.322543

5 5.388543702 

-

18.3772621

1 718 100.3989426 

                                    

Tot

al 

4194.5284

23 7.872238119 

-

459.122568

1 17011 2714.33834   3695.182639 6.819696816 

-

402.819099

3 16976 2382.164399   

3688.98134

9 6.813593569 

-

454.534832

2 17018 2378.127622 

 

TQC 

TQC   

Time 

Elapsed 

(train) 6113       

Time 

Elapsed 

(Test) 754                   

                                    

  Episode 0 Episode 0 Episode 0 Episode 0 Episode 0   Episode 1 Episode 1 Episode 1 Episode 1 Episode 1   Episode 2 Episode 2 Episode 2 Episode 2 Episode 2 

Step Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards Violations 

Carbon 

Emissions 
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0 95.03926937 4.312703676 80.87117776 581 60.45638003   94.07271217 4.268843125 85.88567828 576 59.84153367   94.03030197 4.266918629 84.87877421 577 59.81455569 

1 79.71856156 3.599519664 77.29452772 569 50.71057138   107.8496693 4.869719146 38.06211071 615 68.60533166   -344.178279 

-

15.54062766 86.90636132 564 

-

218.9386869 

2 109.3908151 4.971778525 40.96397923 607 69.58568533   96.80025554 4.399541507 93.86116435 557 61.57657855   65.89661232 2.994980535 94.03770165 550 41.91815303 

3 83.00217867 3.953212744 126.1581973 531 52.79934589   100.0051539 4.763027369 71.18015132 586 63.61527847   100.5911891 4.790938948 69.19660488 588 63.98806718 

4 82.46322193 4.026312507 124.321813 545 52.45650473   79.21492295 3.867712509 125.3015739 544 50.39019679   87.52411467 4.2734134 122.3571115 547 55.67583983 

5 94.4418097 4.559737374 71.06989182 599 60.07632398   102.4030407 4.944112925 111.3650239 564 65.14062226   87.09955726 4.205246678 123.3775914 548 55.40577037 

6 105.5297833 4.980483352 87.18467352 572 67.12960573   97.63775404 4.608018641 100.4956808 556 62.1093281   100.7419984 4.754523609 105.2785475 554 64.08400004 

7 95.92806985 4.433529179 68.3363488 600 61.02176379   103.5854199 4.787430651 51.09475749 617 65.89275733   91.48741089 4.228294246 71.29478084 597 58.19697182 

8 94.51712611 4.473543542 75.93528927 617 60.12423426   59.47418871 2.814943532 52.14880441 634 37.83272092   88.83227155 4.204476491 80.88771138 612 56.50798458 

9 86.51150146 4.297655676 75.37743862 621 55.03169631   86.59944147 4.302024296 75.37779672 621 55.08763671   86.46317169 4.295254785 75.37688355 621 55.00095277 

10 51.46094702 2.186350958 71.17977693 635 32.73533762   51.46094702 2.186350958 71.17977693 635 32.73533762   51.46094702 2.186350958 71.17977693 635 32.73533762 

11 84.74829521 4.30854331 80.56740722 628 53.91008555   84.74829521 4.30854331 80.56740722 628 53.91008555   84.74829521 4.30854331 80.56740722 628 53.91008555 

12 87.1620175 4.402721046 86.40132116 616 55.44550257   87.17448801 4.403350956 86.40567773 616 55.45343532   87.1712896 4.403189398 86.40445547 616 55.45140074 

13 108.1162638 5.446932617 55.88431241 645 68.77491776   86.2194812 4.343765569 89.77825738 611 54.84593638   86.31879793 4.348769178 89.77920995 611 54.90911374 

14 87.50933823 4.345000313 87.04090125 610 55.66644024   87.45823021 4.342462706 87.04222384 610 55.6339294   87.57224061 4.348123533 87.04229744 610 55.7064537 

15 422.3018254 17.30807155 79.90389224 593 268.6346372   422.3188482 17.30876923 79.90400483 593 268.6454657   422.2881236 17.30750999 79.90379296 593 268.6259212 

16 84.99743166 4.292961237 79.26298793 629 54.06856623   73.08628681 3.691365611 62.1079979 642 46.49164877   72.65951424 3.669810629 62.1048618 642 46.2201702 

17 431.128655 18.7108616 72.9327137 634 274.24956   431.1735437 18.71280975 72.9330681 634 274.2781146   431.138068 18.71127012 72.93279944 634 274.2555478 

18 87.40255002 4.434976596 68.41794617 644 55.59851012   87.40255002 4.434976596 68.41794617 644 55.59851012   87.40255002 4.434976596 68.41794617 644 55.59851012 

19 89.06902553 4.557624392 69.35205503 671 56.65858852   89.06902553 4.557624392 69.35205503 671 56.65858852   89.06902553 4.557624392 69.35205503 671 56.65858852 

20 91.29812119 4.653718953 58.40305502 678 58.07656085   91.29812119 4.653718953 58.40305502 678 58.07656085   91.29812119 4.653718953 58.40305502 678 58.07656085 

21 590.0732791 22.5865852 51.01254009 647 375.3574143   590.0732791 22.5865852 51.01254009 647 375.3574143   590.0732791 22.5865852 51.01254009 647 375.3574143 

22 88.37426753 4.243963094 70.28074482 617 56.21663906   88.37426753 4.243963094 70.28074482 617 56.21663906   88.37426753 4.243963094 70.28074482 617 56.21663906 

23 108.256033 5.385235111 

-

18.96994797 718 90.84401057   71.27528459 3.545614546 66.08787675 628 89.89895507   71.27528459 3.545614546 66.08787675 628 76.32539604 

                                    

Total 3338.440387 6.269667592 1739.183043 14807 2145.628882   3268.775207 6.122719774 1818.245374 14724 2123.892606   2799.338153 5.240811231 1927.060887 14612 1811.700748 
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ARS 

ARS   

Time Elapsed 

(train) 3222       

Time Elapsed 

(test) 675                   

                                    

  Episode 0 Episode 0 Episode 0 

Episode 

0 Episode 0   Episode 1 Episode 1 Episode 1 

Episode 

1 Episode 1   Episode 2 Episode 2 Episode 2 

Episode 

2 Episode 2 

Step 

Water 

Saved Water Saved % Rewards 

Violatio

ns 

Carbon 

Emissions   Water Saved 

Water Saved 

% Rewards 

Violatio

ns 

Carbon 

Emissions   

Water 

Saved 

Water Saved 

% Rewards 

Violatio

ns 

Carbon 

Emissions 

0 

108.348559

7 4.916654293 

-

17.4867844

1 678 68.9226858   108.3485597 4.916654293 

-

17.4867844

1 678 68.9226858   

108.34855

97 4.916654293 

-

17.4867844

1 678 68.9226858 

1 108.479689 4.898166326 

-

18.6313409

5 671 69.00609979   108.479689 4.898166326 

-

18.6313409

5 671 69.00609979   

108.47968

9 4.898166326 

-

18.6313409

5 671 69.00609979 

2 

111.374591

8 5.061940555 

-

15.5970548

1 668 70.84760531   111.3745918 5.061940555 

-

15.5970548

1 668 70.84760531   

111.37459

18 5.061940555 

-

15.5970548

1 668 70.84760531 

3 

113.564394

3 5.408824418 

-

14.9497106

9 677 72.24058248   113.5643943 5.408824418 

-

14.9497106

9 677 72.24058248   

113.56439

43 5.408824418 

-

14.9497106

9 677 72.24058248 

4 

111.170870

1 5.427979336 

-

15.5916955

7 690 70.71801388   111.1708701 5.427979336 

-

15.5916955

7 690 70.71801388   

111.17087

01 5.427979336 

-

15.5916955

7 690 70.71801388 

5 

111.319295

7 5.37459791 

-

15.6410613

6 691 70.81243038   111.3192957 5.37459791 

-

15.6410613

6 691 70.81243038   

111.31929

57 5.37459791 

-

15.6410613

6 691 70.81243038 

6 

108.341714

9 5.113192605 

-

18.9237584

7 675 68.91833169   108.3417149 5.113192605 

-

18.9237584

7 675 68.91833169   

108.34171

49 5.113192605 

-

18.9237584

7 675 68.91833169 

7 

108.164933

1 4.999083039 

-

18.3319163

2 687 68.80587722   108.1649331 4.999083039 

-

18.3319163

2 687 68.80587722   

108.16493

31 4.999083039 

-

18.3319163

2 687 68.80587722 

8 

108.297570

9 5.125778985 

-

18.2831950

2 709 68.89025077   108.2975709 5.125778985 

-

18.2831950

2 709 68.89025077   

108.29757

09 5.125778985 

-

18.2831950

2 709 68.89025077 
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9 

108.630519

8 5.396468238 

-

18.0619081

5 715 69.10204623   108.6305198 5.396468238 

-

18.0619081

5 715 69.10204623   

108.63051

98 5.396468238 

-

18.0619081

5 715 69.10204623 

10 

72.9950647

5 3.101241602 

-

19.2681103

9 726 46.43362059   72.99506475 3.101241602 

-

19.2681103

9 726 46.43362059   

72.995064

75 3.101241602 

-

19.2681103

9 726 46.43362059 

11 

108.090398

5 5.495239309 

-

17.8458743

3 727 68.75846427   108.0903985 5.495239309 

-

17.8458743

3 727 68.75846427   

108.09039

85 5.495239309 

-

17.8458743

3 727 68.75846427 

12 

108.056152

4 5.458123965 

-

18.0752511

1 718 68.7366797   108.0561524 5.458123965 

-

18.0752511

1 718 68.7366797   

108.05615

24 5.458123965 

-

18.0752511

1 718 68.7366797 

13 

108.143116

7 5.448285473 

-

18.0293697 717 68.7919994   108.1431167 5.448285473 

-

18.0293697 717 68.7919994   

108.14311

67 5.448285473 

-

18.0293697 717 68.7919994 

14 

108.243552

1 5.374492336 

-

18.2286433

1 713 68.85588834   108.2435521 5.374492336 

-

18.2286433

1 713 68.85588834   

108.24355

21 5.374492336 

-

18.2286433

1 713 68.85588834 

15 

443.472137

7 18.17573837 

-

22.5069244

1 697 282.1014962   443.4721377 18.17573837 

-

22.5069244

1 697 282.1014962   

443.47213

77 18.17573837 

-

22.5069244

1 697 282.1014962 

16 

108.306843

4 5.470248586 

-

18.1736145 727 68.89614921   108.3068434 5.470248586 

-

18.1736145 727 68.89614921   

108.30684

34 5.470248586 

-

18.1736145 727 68.89614921 

17 

453.108192

6 19.66476731 

-

22.5070073

7 730 288.2311835   453.1081926 19.66476731 

-

22.5070073

7 730 288.2311835   

453.10819

26 19.66476731 

-

22.5070073

7 730 288.2311835 

18 

108.202640

7 5.490413941 

-

19.0063780

3 732 68.8298638   108.2026407 5.490413941 

-

19.0063780

3 732 68.8298638   

108.20264

07 5.490413941 

-

19.0063780

3 732 68.8298638 

19 

108.299619

7 5.541645767 

-

18.1234323

7 759 68.89155406   108.2996197 5.541645767 

-

18.1234323

7 759 68.89155406   

108.29961

97 5.541645767 

-

18.1234323

7 759 68.89155406 

20 108.608873 5.53609608 

-

17.0996975

4 754 69.08827631   108.608873 5.53609608 

-

17.0996975

4 754 69.08827631   

108.60887

3 5.53609608 

-

17.0996975

4 754 69.08827631 

21 

610.948664

1 23.3856447 

-

25.4753365

2 723 388.6366642   610.9486641 23.3856447 

-

25.4753365

2 723 388.6366642   

610.94866

41 23.3856447 

-

25.4753365

2 723 388.6366642 
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22 

108.394232

2 5.205374074 

-

17.1900139

1 705 68.95173898   108.3942322 5.205374074 

-

17.1900139

1 705 68.95173898   

108.39423

22 5.205374074 

-

17.1900139

1 705 68.95173898 

23 

71.2752845

9 3.545614546 

66.0878767

5 628 102.4779892   108.3221628 5.388524764 

-

18.3839371

8 718 102.4779892   

108.32216

28 5.388524764 

-

18.3839371

8 718 102.4779892 

                                    

Tota

l 

3723.8369

12 7.02565049 

-

356.940202

5 16917 2425.945491   3760.88379 7.102438416 

-

441.412016

4 17007 2425.945491   

3760.8837

9 7.102438416 

-

441.412016

4 17007 2425.945491 
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Appendix J: Proof of Publications 

 

Journal Papers 

Leakage detection review paper: Review of leakage detection in water distribution networks - 

IOPscience 

 

Challenges and Opportunities of Deep Reinforcement Learning in UWS (Accepted): Deep 

reinforcement Learning Challenges and Opportunities for Urban Water Systems. - 

ScienceDirect 

https://iopscience.iop.org/article/10.1088/1755-1315/1136/1/012052
https://iopscience.iop.org/article/10.1088/1755-1315/1136/1/012052
https://www.sciencedirect.com/science/article/pii/S0043135424000459?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0043135424000459?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0043135424000459?via%3Dihub
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Conference Papers 

Water Pressure Optimisation for Leakage Management Using Q Learning: Water Pressure 

Optimisation for Leakage Management Using Q Learning | IEEE Conference Publication | IEEE 

Xplore  

 

  

https://ieeexplore.ieee.org/document/10195018
https://ieeexplore.ieee.org/document/10195018
https://ieeexplore.ieee.org/document/10195018
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Industrial Summits 

12th Annual Global Leakage Summit 2022 
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13th Annual Global Leakage Summit 2023 
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Presentations 

IMechE Webinar: ‘Application of AI in leakage management in water distribution networks’ 
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