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Abstract—We report a new phenomenon, calling it resonant
separatrix activation (RSA): a significant decrease of the activa-
tion barrier due to a moderately weak periodic drive of a proper
frequency. The observed decrease greatly exceeds the maximum
decrease caused with the adiabatic drive of the same amplitude.
The RSA is observed in weakly-dissipative systems possessing
two or more saddles. The mechanism is a strong resonant quasi-
regular variation of energy within the area of transient chaos
related to the saddles-associated separatrix(ces) of the undriven
system. The most pronounced RSA occurs when the saddles have
different energies, and this difference ∆E is comparable to the
original activation barrier: the resonant drive provides the inter-
separatrix transport, thus reducing the activation barrier for the
value ∆E. The RSA can be observed in natural systems, e.g. in
fluidic, atmospheric and planetary transport, and can be used in
engineered systems with a large quality factor.

Index Terms—weakly-dissipative systems, separatrix chaos,
zero-dispersion resonance, resonance, noise-induced transitions

I. INTRODUCTION

Weakly dissipative systems are abundant. Examples include
particle transport in fluid, planetary and atmospheric transport,
NEMS/MEMS, ferromagnetic and optomechanical systems.
Studies of noise-induced transitions in them form a subject
of a big scientific and practical interest (see, e.g. [1], [2]
and references therein). An important case is that of weak
noise: a multistable system stays most of time near one of
the stable states while rarely transiting to the vicinity of a
different state. The transition rate r characterises the state’s
stability and depends on the effective “temperature” T in an
activation-like fashion [1], [2]:

r ∝ exp

(
−S

T

)
, T ≪ S , (1)

where S is often called an activation barrier. The activation
barrier depends both on the properties of noise and on noise-
free dynamics. In the archetypical case of Gaussian white
noise in a potential system subjected to linear friction, the
activation barrier merely coincides with the potential barrier.
For the activation control, one can apply an external periodic
drive. There were many works on various types of such a
control. In particular, such control is exploited in stochastic
resonance (see, e.g. [3] and references therein). However, a
weak drive only causes there a weak change in the activation

Fig. 1. Potential U(q) = a(b − sin(q))2 for two sets of parameters. The
dashed black line shows U(q) for a = 0.18, b = 1: it has one barrier per
period. The solid red line shows U(q) for a = 0.5, b = 0.2: it possesses an
additional moderately small barrier ∆c while the larger barrier is the same.

barrier. Some resonant mechanism of the activation barrier
control is suggested in [4], but if the drive is weak, the reduc-
tion of the barrier is still much smaller than the original barrier.
The reduction of the activation barrier in an underdamped
double-well potential system by means of a non-adiabatic
periodic force due to the transient chaos was reported in [5].
However the magnitude of the reduction was of the order of
the amplitude of the periodic force, i.e. it was again small if
the force was weak.

Here we report an observation of a dramatic decrease of
the activation barrier by means of a weak drive, achieved
if the drive frequency is properly tuned. We have uncovered
the physical mechanism of the effect and partially developed
its theory. The effect involves transient chaos, resulting in
the fractal-like mixture of basins of various attractors. The
transient chaos occurs around the destroyed separatrices of
the undriven system. As it was shown before [6]–[9], the
separatrix chaos in the periodically driven dissipationless
systems may occupy a large area in the phase space. We show
here that the great expansion of chaotic area still holds in the
presence of a weak dissipation, with the only difference being
that the transient chaos replaces the dissipationless chaos.
It is, therefore, sufficient for the noise to bring the system
to the lower boundary of the separatrix chaotic layer while
the further transition beyond the separatrix occurs noise-free,
which is equivalent to the decrease of the activation barrier.
Altogether this gave us grounds to call the phenomenon
resonant separatrix activation (RSA). The RSA can be used
for controlling activation in engineered systems (e.g. memory



cells), sensing a weak force and can be relevant for explaining
transport in natural systems. Also, the effect is characterised
by a novel type of escape process.

II. MODEL

To illustrate the RSA, we use the archetypal model of a
multistable potential system [10] subjected to weak linear
friction, weak white noise and weak periodic drive:

q̈ + γq̇ + dU/dq =
√
γTξ(t) + h cos(ωf t), (2)

U(q) = a(b− sin(q))2, γ ≪ Ω ≡
√

amax(1, b),

⟨ξ⟩ = 0, ⟨ξ(t)ξ(0)⟩ = 2δ(t), T ≪ Ω2, h ≪ Ω2.

Fig. 1 shows two potential profiles. If h = 0, a transition from
any of stable states (A or A1 and A2, respectively) beyond
state B has the same activation barrier S = ∆U .

The RSA is possible in both profiles because the necessary
condition for the strong widening of the separatrix chaotic
areas - a presence of at least two saddles [8], [9] - is satisfied
in both cases. However, the RSA in the case with an additional
barrier of a smaller height is more pronounced. It is due to
the fact that the eigenfrequency ω vs energy E ≡ U(q) +
q̇2/2 necessarily possesses a local maximum ωm in the inter-
separatrix range of energy [6], [8], [10] (Fig. 2). If ωf ≈ ωm,
the zero-dispersion nonlinear resonances [6], [8], [10], [11],
which are wide in energy, arise, and they significantly facilitate
the onset of the inter-separatrix transport. We consider below
only such a case, i.e. U(q) shown in Fig. 1 with the solid red
line (see also Fig. 2(a)).

III. RESULTS

We first discuss the case when only periodic driving is
present while dissipation and noise are absent: h ̸= 0, γ = 0,
T = 0. Let us define an inter-separatrix transport (IST) as
a possibility for the system to reach a given separatrix in a
finite time while starting from any state on another separatrix.
It can be shown that, for the system (2), the latter condition
is equivalent to a possibility for the system starting from the
inner saddle (q = π/2, p ≡ q̇ = 0) to reach a coordinate of
any of the two outer saddles, i.e. −π/2 or 3π/2. Fig. 3 shows
the bifurcation diagram in the plane of the driving parameters
which is obtained by means of numerical integration of the
equation of motion with the initial state in the inner saddle
for a very long time: shaded and white areas correspond to
the presence and absence of the IST respectively. Let us fix
a given value of ωf , and denote the lowest value of h at
which the IST occurs as hIST . As function of ωf , hIST

has a very deep minimum at ωf ≈ 0.401 (which is a little
smaller than the maximum eigenfrequency ωm ≈ 0.425):
hIST (ωf = 0.401) ≈ 0.0048 [9]. It is almost 30 times smaller
than the minimal value of the adiabatic driving which provides
for the IST and almost 40 times smaller than that for ωf close
to the eigenfrequency in the minima of U(q) (≈ 0.98). The
origin of such a great facilitation of the IST onset when ωf

is close to ωm is the wide in energy quasi-regular resonant
transport which drastically widens the chaotic layers in the

Fig. 2. Potential U(q) (2) with a = 0.5 and b = 0.2 (a), separatrices in the
phase plane (p ≡ q̇, q) (b), and frequency of eigenoscillation ω vs. energy
E ≡ U(q)+q̇2/2 (c) for the system (2) at the absence of dissipation (γ = 0),
noise (T = 0) and periodic driving (h = 0). Note that, in such a case, energy
E is conserved along a trajectory (in particular along a separatrix).

area of the destroyed separatrices and ultimately connects them
with each other (Fig. 4 ).

When a weak dissipation is added, elliptic points transform
into attractors (limit cycles) while the dissipationless chaotic
layer transforms into the layer of the fractal-like mixture of
basins of attraction of different attractors (Fig. 5). The system
wanders random-like through the layer for a long time before
residing on one of the attractors. The random-like wandering
and the corresponding area are quite similar to those in the
dissipationless case (cf. Fig. 4). The notion IST means in the
weakly dissipative case that the basins of attraction of the limit
cycles associated with A1 and A2 (shown in Fig. 5 by red and
blue colors respectively) are mixed with those of the attractors
situated beyond the coordinate range ]−π/2, 3π/2[ (shown in
Fig. 5 by cyan and green colors).

Finally, we add weak noise. Then it may be of scientific
and practical interest to know rates of direct inter-attractor
transitions or of a direct escape through a given boundary in
the Poincare section (the term “direct”means that only those
paths are considered which do not enter a close vicinity of
any attractor except the initial one). Such rates depend on the
effective temperature T (see (2)) in the activation manner (1).

We show here that, if the given transition or escape necessar-
ily requires for the system to intersect the outer separatrix, then



Fig. 3. The diagram indicating (by shading) areas of the driving parameters
for which the inter-separatrix transport exists. The integration time for each
point of the grid is 12000π.

Fig. 4. The stroboscopic Poincare section (for instants ti = 2πi/ωf with
i = 0, 1, 2, . . . ) of two trajectories of the system (2) with U(q) shown in
Fig.2 at the absence of the dissipation and noise (γ = 0 and T = 0) whilst
h = 0.0055 and ωf = 0.401. The trajectories starting from the inner saddle
(q = π/2, p ≡ q̇ = 0) and from the left outer saddle (q = −π/2, p ≡
q̇ = 0) are drawn in green and blue respectively. The number of points in
each trajectory is equal to 2000. The stable stationary points of the section
which are associated with the nonlinear resonances are indicated by the red
and cyan crosses. It can be seen that the green and blue trajectories merge
with each other.

even a rather weak perioic driving is sufficient for decreasing
the activation barrier S by the factor ∼ 2, provided the driving
frequency is properly fitted: this phenomenon is closely related
to the strong broadening of the resonance energy range near
sepatratrices discussed above in cases without noise.

For the sake of simplicity, we consider in simulation only
the escape problem while the relevant boundary consists
merely of two walls: at q = −3 and q = 5 (note that the range
[−3, 5] fully includes the most relevant range [−π/2, 3π/2]).
The qualitative analysis is generic however. Fig. 6 shows
that, if ωf corresponds to the minimum of the function
hIST (ωf ) (Fig. 3), then, as h increases, the activation barrier
S quickly decreases from the value of the upper potential
barrier E

(2)
b = 0.72 to that of the lower potential barrier

E
(1)
b = 0.32. Thus, S decreases by the factor 2.25 at as

tiny h as hmin ≈ 0.007. The value of h of the adiabatic
drive which would be required for the same barrier reduction,
would be about ≈ 0.08, i.e. ≈ 11 times larger! Even for
rather close frequencies 0.3 and 0.5, the required value of
h is about 6 times larger (Fig. 3). For small temperatures such

Fig. 5. Stationary points within the coordinate range ]−π/2, 3π/2[ and basins
of attraction in the stroboscopic Poincare section for the system (2) with U(q)
shown in Fig. 2(a) in the presence of dissipation (γ = 0.001) and periodic
driving (h = 0.01 and ωf = 0.401) whilst noise is absent (T = 0). Limit
cycles corresponding to the linear response to the periodic driving for the
case when the systems stays close to the states A1 and A2 and saddle cycles
near the states B and C are shown by the same markers as the corresponding
states in Fig. 1. Limit cycles corresponding to the large-aimplitude oscillations
induced by the periodic force are sometimes called as nonlinear resonances,
and they are shown with the marker ’+’. Basins of attraction of the limit
cycles associated with the states A1 and A2 are shown with red and blue colors
respectively. Basins of attraction of the larger-amplitude and smaller-amplitude
nonlinear resonances lying within the coordinate range ] − π/2, 3π/2[ are
shown with pink and golden colors respectively. Basins of attraction of all
limit cycles lying to the left from q = −π/2 are shown with cyan color.
Basins of attraction of all limit cycles lying to the right from q = 3π/2 are
shown with green color. The figure demonstrates a presence of a broad layer
where all basins mentioned above mix with each other in a fractal manner.
Such a layer may be called as the transient chaos layer.

Fig. 6. The function S(h) exctracted from the simulations for three values
of ωf (U(q) and γ are the same as in Fig. 5). The dashed black line marks
the lower barrier level ∆Uc. The inset shows the dependence on ωf for the
escape rate for T = 0.055 and h = 0.01 normalized with its value for h = 0.

a substantial decrease of the activation barrier leads to a huge
increase of the escape rate: see the inset in Fig. 3. The latter
inset also explicitly demonstrates the resonant nature of the
phenomenon.

Let us give a more explicit qualitative explanation of the
phenomenon. The system tends to escape via paths which
provide the minimum of action: it means that the system
moves along noise-free trajectories or close to them whenever



possible. The analysis of typical escape paths shows (cf. Fig. 7)
that the system first slowly diffuses towards the chaotic layer
near the lower barrier and then escapes purely noise-free. The
structure of the noise-free part of the path is as follows. The
system first performs a fast chaotic wandering within the thin
layer about the destroyed inner separatrix. Then it follows a
quasi-regular resonant path until the latter reaches the thin
layer about the destroyed outer separatrix and then reaches
one of the bounadary walls in one or few steps. Thus, the
activation barrier decreases from ∆U = 0.72 at h = 0 to
∆UC = 0.32 at as tiny h as hmin ≈ 0.007 (Fig. 6).

We note also that the statistical distribution of the escape
paths has important differences from all those known before.
It includes a part which neither concentrates near a single 1D
line, often called an optimal trajectory (cf. [4], [12] in case
of a regular motion in a noise-free system and [13] where the
noise-free system possesses the chaotic saddle), nor represents
a smooth distribution of strongly chaotic trajectories within
some 2D area [5]. Rather it represents a smooth distribution
of the quasi-regular trajectories within certain 2D areaof the
Poincare section (cf. Fig. 7).

Finally, we comment that, if h is smaller than hmin (i.e.
the minimal h which provides the IST) while still being
comparable with it, then the resonant driving still provides
a strong increase of energy, thus largely freeing noise from
this work, which is equivalent to a significant decrease of the
activation barrier.(Fig. 6)
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Fig. 7. An example of four subsequently generated noise-induced trajectories
in the Poincare section escaping from the limit cycle associated with A1

directly to one of the walls qi = −2 or qi = 5 (the term “direct”means that
only those trajectories are considered which do not follow a close vicinity of
any other attractor). The trajectory is shown by yellow points connected with
dashed lines for visualisation of the escape path. U(q), γ, h, ωf are the same
as in Fig. 5 and T = 0.02.


