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Abstract—Using a statistical linear response theory, we present
a complex phase structure describing ionic conduction through a
nanopore as a function of pore structure. This picture sheds light
on the permeation mechanism, and selectivity between ions of
alike and differing charge; and is calculated explicitly from first
principles via the statistical properties including particle number
fluctuations. We therefore expect the theory to be applicable to
the functionalisation and design of highly selective nanopores.

Index Terms—selective conduction, ionic Coulomb blockade,
resonant conduction

I. INTRODUCTION

Understanding, predicting, and controlling how ions perme-
ate nanoscale pores is increasingly important in the fields of
nano- and biophysics with applications such as water treatment
[1], biological ion channels [2], and health and medicine [3].
In general, pores need to fulfil the following criteria: (i) to
discriminate effectively between ionic species, including ions
that share valence; and (ii) the ability to conduct the selected
ions at a high rate.

In [4, 5], we introduced an equilibrium statistical theory,
relating both the kinetic and thermodynamic properties of
permeation directly to pore structure. It differs from earlier
insightful theories [6, 7, 8, 9] to name a few, which are
often focused on either conductivity or selectivity, and have
neglected the multi-component nature of transport. Briefly, our
theory accounts for the multi-ion and multi-species (including
different valences) nature of conduction, calculating it directly
from the fluctuations in particle number. We have applied this
theory to the selectivity filters of K+ and Na+ biological pores.
By careful comparison with experimental data, we show that
it can model the effect of point mutation on conduction rates,
demonstrating highly selective and efficient conduction, and
thereby resolving the long-standing selectivity-conductivity
paradox, and the complex anomalous mole fraction effect
in Na+ channels. Furthermore, it describes the conduction
mechanism and relates it to ionic Coulomb blockade, an
emergent phenomena observed experimentally [10] and via
simulations [11] in artificial nanopores and biological pores
respectively. Finally, the theoretical framework provides a
basis for the development of non-equilibrium kinetic models
and the calculation of self-consistent transition rates [12].

In this report, we consider a system of 0-1 ions in the
pore; but we allow for the presence of three possible con-
ducting ions K+, Na+, and Cl−. We show that a complex
phase structure exists and that it describes the nature of the
permeation mechanism, and selectivity between ions of alike
and differing charge. This structure is shown as a function of
pore capacitance and charge, strength of chemical interactions,
and bulk concentrations. As such, it allows users to identify
crucial parameters required for a desired pore function.

II. THEORETICAL APPROACH AND RESULTS

We consider two bulk reservoirs with aqueous solutions
containing ionic species s, in this instance K+, Na+, and
Cl−. The reservoirs are diffusively and thermally coupled via a
narrow pore of volume Vc, where due to the narrowness of the
pore, ionic motion is confined to one dimensional conduction.
The pore houses ns ions, although total occupancy is at most
1 ion. As a result there are four discrete energy states, {nj},
corresponding to the pore being empty or being occupied by
one of the ions.

The electrochemical potential in the bulk takes the standard
form [13] i.e. the sum of ideal, excess, and electrostatic parts.
It is a similar picture inside the pore where it is defined from
the discrete difference in the energy to add an ion. As in
[4, 5], we can write an effective grand canonical ensemble
by separating the degrees of freedom from the bulk and pore
phases. If we consider identical concentrations of ionic species
in either bulk, then the total Gibbs free energy reads as,

G({nj};nf ) = E({nj};nf )−
∑
s

ns∆µ̃s

+
∑
s

kT ln (ns)!. (1)

where: k and T are the Boltzmann constant and system
temperature respectively and E provides the electrostatic in-
teraction between ions and wall charges. We shall consider
E in the form E = Uc(nf +

∑
s zsns)

2, originally taken
from [14]. In this expression, the prefactor Uc is inversely
dependent on pore capacitance and thus geometry, and nf is
the total wall charge in the pore. In low capacitance systems
the level of quantisation is high because the Coulomb gap
i.e. Uc ≫ 1kT , in this type of system we would expect to



observe strong Coulomb Blockade [11]. It is of interest to
note that this interaction is identical to that used in electron
transport through quantum dots [15]. In the supplementary
material of [4] we considered an alternative interaction (from
that in [8]) and show comparable results. In the future, we plan
to further validate the theory through comparison to Brownian
dynamics models. The term ∆µ̃s is the summation of the
difference in excess chemical potential between bulk and pore
∆µ̄s = µ̄b

s− µ̄c
s plus the natural logarithm of the mole fraction

of the ionic species. The final term represents the entropy of
mixing. Here, µ̄b

s provides the non-polar (surface tension and
excluded volume) and electrostatic (Born and Debye-Hückel)
contributions to the solvation free energy [13].

The energy barrier ∆G impeding addition an ion to the pore
is

∆G = ∆E −∆µ̃s + kT log(ns + 1). (2)

The final term is relatively small, and so clearly the energy
barrier to add an ion is a balance between the ‘electrostatic’
cost E , and the ‘chemical’ ∆µ̃ cost. We have also shown a
method for connecting ∆µ̃s, to the potential of mean force
(PMF), W . The PMF represents the reversible thermodynamic
work needed to move the ion adiabatically through the pore
[6]. It is measurable in simulations, and we plan to perform
such studies in future work. Given that, at most, only one ion
can occupy the pore at any time, then we have the following
relation,

µ̄c
s = −

(
kT log

(∫
c

dr1e
−W(r1)/kT

)
+∆E

)
. (3)

Note, here that we have reduced ∆µ̃s down to its value
in the pore, by cancelling the bulk electrochemical potential
contribution.

Conductivity at linear response is derived rigorously through
comparison to Kubo and Zwanzig [16, 17]. It is calculated
directly from the fluctuations in particle number, and is directly
proportional to the susceptibility χs which we plot below in
our main results,

χs ∝

∂⟨zsns⟩
∂∆µ̄s

+
∑
j ̸=s

∂⟨zjnj⟩
∂∆µ̄s

 . (4)

As can be seen, the susceptibility and thus conductivity, for a
given species depend on the cross correlations between ions of
different species (the second term), note that z is ionic valence.
Now, these cross-terms become small in the highly selective
limits, but they can be important if the pore is minimally or
non-selective. In the full relation there are ionic diffusivities in
the pore, but the overall difference in value between our three
conducting ions is fairly small and so it is ignored here and a
constant value will be assumed; but it will be included when
we do full comparisons with experiment. Finally, it is worth
noting that if the pore is expanded to include several binding
sites then it is also expanded to include cross correlations
between ions at these sites as well.

Fig. 1. Top, normalised susceptibility (left), and pore occupancy (right).
Bottom, energy spectra of the empty and three possible excited states. In this
figure, blue, red, and yellow curves denote K+, Na+ and Cl− respectively,
and in the energy spectra graph the dashed black line denotes the zeroth
ion i.e. empty state. These plots are made with the following parameters:
∆µ̃K,Na,Cl = −1.5,−5,−5[kT ] and Uc = 10kT , and plotted vs. nf .

III. RESULTS

In Fig. 1 we show the results, in the top left and right figures
we show the normalised susceptibilities (proportional to con-
ductivity) and the pore occupancies respectively, and below
we show the energy spectra in this system, all as functions
of nf . We consider the following parameters ∆µ̃K,Na,Cl =
−1.5,−5,−5[kT ] and Uc = 10kT , thus both Cl− and Na+

face a small chemical barrier relative to K+ of 3.5kT. Sus-
ceptibility peaks, and occupancy steps form as functions of
nf . Peaks maximise when the energy barrier between neigh-
bouring states is minimal corresponding to the midpoint of
the occupancy step and the purple circles in the energy spectra
figure. This is an example of ionic Coulomb Blockade, because
nf plays the role of the gate voltage in electronic systems and
when it reaches the critical value we see resonant n ↔ n+ 1
transitions, and when nf is far from his critical value we
see significantly reduced conduction and even blockade. The
critical value of nf is around half-integer and equal and
opposite in sign to the conducting ion, as it electrostatically
attracts the ion.

To discuss these results further, we first need to understand
the role of selectivity in the system. Broadly speaking, the
properties of the pore can be split into two selective regimes:
cation selectivity for nf < 0 and anion selectivity for nf > 0,
although there are exceptions to this which will be considered
below. As discussed above, there is a chemical barrier imped-
ing entry of both Cl− and Na+. Thus, when nf < 0, Cl−

ions are completely blocked from entering the pore because
the combined chemical and much larger electrostatic barrier
is > 25kT. Similarly, cations face a large electrostatic barrier
when nf > 0, thus prohibiting entry. When nf < 0, Na+ ions
can and do enter the pore, albeit at a reduced rate compared
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Fig. 2. Top, normalised susceptibility (left), and pore occupancy (right).
Bottom, energy spectra of the empty and three possible excited states. Colour
conventions are the same as in Fig. 1. These plots are made with the following
parameters: ∆µ̃K,Na,Cl = −1.5,−5,−5[kT ] and nf = −0.57, and
plotted vs. Uc starting at Uc = 1kT .

to that for positive nf . The Na+ peak is centred at the same
location as K+ because this value of nf still corresponds to
the location with the smallest barrier, however, because this
barrier is 3.5kT Na+ conductivity is exponentially suppressed
by this amount resulting in a selectivity ratio of ≈33:1. An
interesting case occurs when this barrier is smaller but still
non-zero e.g. ∼ 1kT . The location of the peak is not then
at the location of the midpoint of the favoured ion’s step or
barrier-less condition but, rather, at the midpoint of the total
occupancy step.

To see how finely tuned these parameters are, let us consider
the original conditions, except that we fix nf at n∗

f ∼ −0.6
i.e. the resonant conduction point for K+, and we allow Uc

to vary equally amongst all species. We remind readers that
this term is inversely proportional to the pore capacitance,
so that its increase amounts to a decrease in the pore radius
or to an increase in its length. It also governs the level of
quantisation in the pore, and thus the overall importance of the
electrostatics in the pore. In Fig. 2 we again plot normalised
susceptibility and occupancy top left and right respectively and
energy spectra (below). We observe susceptibility peaks and
occupancy steps vs. Uc, again resonating when Uc = 10kT
as we expect, and linear energy spectra. As a result of this
linearity in the energy spectra, the susceptibility peak is
broader and the occupancy step smoother than in Fig. 1. In
the low Uc limit the electrostatic effects become less important
compared to the differences in ∆µ̃; however, the energy barrier
to add Cl− is still above 5kT , and so the ion cannot enter the
pore.

If we now extend this picture, allowing ∆µ̃Cl as well as
nf to vary, then we start to see an interesting and complex
phase structure (see Fig. 3). The fixed parameters here are:
∆µ̃K,Na = −1.5,−5[kT ] and Uc = 10kT . Species-specific

Fig. 3. Complex phase structure of Na+, K+ and Cl− permeation in a
given nanopore. Top, we show the normalised susceptibility (with respect to
maximal Cl− susceptibility in the anion selective limit such that only it is
entering the pore), and (bottom) we show the respective occupancies. All
plots are made with the following parameters: ∆µ̃K,Na = −1.5,−5, [kT ]
and Uc = 10kT , and ∆µ̃Cl and nf are allowed to vary. In this figure,
blue, red, and yellow faces denote K+, Na+ and Cl− respectively, and three
conductivity regimes are identify C1-3. C1 and C2 correspond to anion and
cation selectivity respectively, and C3 corresponds to non-selectivity whereby
K+ and Cl− ions are involved in the conduction process.

susceptibilities (top) and occupancies (bottom) are shown.
The normalisation used is the same as in the earlier figures,
i.e. with respect to maximal Cl− susceptibility in the anion-
selective limit such that only it is entering the pore. As a
result one can immediately identify a region (labelled C3)
where the susceptibility exceeds unity, which will be discussed
below. The colour convention is maintained with blue, red,
and yellow faces denoting K+, Na+ and Cl− respectively.
Three conductivity regimes C1-3 are highlighted, C1 and C2
correspond to anion and cation selectivity respectively with the
properties as described above. An additional point of interest
here is that the Cl− maximal conductivity location shifts in
nf because the value of ∆µ̃Cl is varying.

The final condition, C3, corresponds to an interesting new
phenomena. It occurs for very large positive values of ∆µ̃Cl,
and negative values of nf . The electrostatic penalty to add Cl−

to the negatively charged pore, is then being compensated by
∆µ̃Cl, and as result the pore is non-selective between K+

and Cl−. However, because of the conditions in the pore, the
pore is always occupied with 1 ion, unlike previously where
we had 0-1 ion conduction and so we predict direct K+ ↔
Cl− transitions: the increased susceptibility arises because the
cross-correlation terms are no longer small.

IV. CONCLUSION

We have used a statistical theory, to model selective ionic
conduction through a nanopore. Even in the simple case of 0-1
ions present, complex phenomena and phase structure exists
for varying parameter choices. We consider monovalent ions



Na+, K+ and Cl−, and show regions of resonant conduc-
tivity, blockade (and ionic Coulomb blockade), and variable
selectivity. Each phase, can be described through comparison
of the energy spectra and occupancies within the pore, and
its location can be calculated and predicted from within the
theory. We plan to test this further in future research including
relationship between the only undetermined parameter µ̄c

s and
the measurable PMF, but we expect the theory to be insightful
in the successful design and functionalisation of nano-pores.

To further develop this work, we want to: compare function
to simulations and experiments with known structure, and this
will allow us to test the predictive capability of the theory. We
also want to allow multiple ions into the pore, to investigate the
role that mixed states can play in the conduction mechanism,
and we want to consider divalent selectivity i.e. Ca++/Na+

to ultimately predict the full range of selectivity sequences.
Finally, we would like to explore the relationship of our cross
correlation terms to the cross diffusion coefficient.
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