Rotation to Sparse Loadings Using $$L^p$$ Losses and Related Inference Problems

Wallin, Gabriel (2023) Rotation to Sparse Loadings Using $$L^p$$ Losses and Related Inference Problems. Psychometrika, 88 (2). pp. 527-553. ISSN 0033-3123

[thumbnail of s11336-023-09911-y (6)]
Text (s11336-023-09911-y (6))
s11336-023-09911-y_6_.pdf - Published Version
Available under License Creative Commons Attribution.

Download (712kB)

Abstract

Researchers have widely used exploratory factor analysis (EFA) to learn the latent structure underlying multivariate data. Rotation and regularised estimation are two classes of methods in EFA that they often use to find interpretable loading matrices. In this paper, we propose a new family of oblique rotations based on component-wise L p loss functions (0 < p≤ 1) that is closely related to an L p regularised estimator. We develop model selection and post-selection inference procedures based on the proposed rotation method. When the true loading matrix is sparse, the proposed method tends to outperform traditional rotation and regularised estimation methods in terms of statistical accuracy and computational cost. Since the proposed loss functions are nonsmooth, we develop an iteratively reweighted gradient projection algorithm for solving the optimisation problem. We also develop theoretical results that establish the statistical consistency of the estimation, model selection, and post-selection inference. We evaluate the proposed method and compare it with regularised estimation and traditional rotation methods via simulation studies. We further illustrate it using an application to the Big Five personality assessment.

Item Type:
Journal Article
Journal or Publication Title:
Psychometrika
Uncontrolled Keywords:
Research Output Funding/yes_externally_funded
Subjects:
?? yes - externally fundedgeneral psychologyapplied mathematicspsychology(all) ??
ID Code:
217015
Deposited By:
Deposited On:
04 Apr 2024 14:15
Refereed?:
Yes
Published?:
Published
Last Modified:
22 Sep 2024 01:01