
Article

Applied Psychological Measurement
2021, Vol. 45(7-8) 518–535
© The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/01466216211040486
journals.sagepub.com/home/apm

How Important is the Choice of
Bandwidth in Kernel Equating?

Gabriel Wallin1, Jenny Häggström1
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Abstract
Kernel equating uses kernel smoothing techniques to continuize the discrete score distributions
when equating test scores from an assessment test. The degree of smoothness of the continuous
approximations is determined by the bandwidth. Four bandwidth selection methods are currently
available for kernel equating, but no thorough comparison has been made between these
methods. The overall aim is to compare these four methods together with two additional
methods based on cross-validation in a simulation study. Both equivalent and non-equivalent
group designs are used and the number of test takers, test length, and score distributions are all
varied. The results show that sample size and test length are important factors for equating
accuracy and precision. However, all bandwidth selection methods perform similarly with regards
to the mean squared error and the differences in terms of equated scores are small, suggesting that
the choice of bandwidth is not critical. The different bandwidth selection methods are also il-
lustrated using real testing data from a college admissions test. Practical implications of the results
from the simulation study and the empirical study are discussed.
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Introduction

Kernel equating (KE) is an observed-score equating framework aiming at making test scores from
standardized tests comparable between administrations (von Davier et al., 2004). Based on the
scores from two test administrations, the objective is to find equivalent scores in terms of the latent
trait the test is constructed to measure. Following the Braun and Holland (1982) definition of
equivalent scores, KEmakes use of the equipercentile transformation to equate the test scores. It is
functionally composed of two cumulative distribution functions (CDFs), each representing the
respective distribution of the test scores to be equated. For the equipercentile transformation to be
properly defined, these functions need to be continuous and monotonically increasing. This is
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generally not true since test scores most often are discrete. For this reason, KE employs smoothing
techniques where a, usually Gaussian, kernel function approximates the discrete CDFs with
continuous functions. Regardless of the choice of kernel function (e.g. Gaussian, uniform, and
logistic) one needs to select a bandwidth which determines the smoothness of the continuous
approximations and ultimately, the equated scores. Since undersmoothing results in estimated
distributions that suffer from excessive sampling noise and oversmoothed distributions will blur
the characteristics of the underlying density, it is of interest to investigate to what extent the choice
of bandwidth influences the KE estimator.

The overall aim of this study is to examine if and how the bandwidth choice affects the equated
scores, and if specific bandwidth selection methods are more suitable for certain test scenarios.
The bandwidth selection in KE is particularly interesting to investigate since it defines the main
difference to traditional equating methods. If the influence of the bandwidth on the equated scores
is strong, it is important to know which bandwidth selection method to use. If the choice is not
sensitive, it could encourage practitioners that are lacking strong theoretical training to consider
using KE. In the KE literature to date, four different bandwidth selection methods have been
proposed: the penalty method (von Davier et al., 2004), the double smoothing (DS) method
(Häggström &Wiberg, 2014), the cross-validation (CV) method (Liang & von Davier, 2014), and
the Silverman’s rule of thumb (SRT) method (Andersson & von Davier, 2014). For clarity, the
cross-validation method in Liang and von Davier (2014) is hereinafter referred to as the likelihood
cross-validation method (LiCV). In Häggström and Wiberg (2014), comparisons between the DS
and penalty method showed slight differences in terms of mean squared error (MSE) of the
estimated mean of the equated scores. The largest differences were seen for skewed score dis-
tributions. They considered symmetric and skewed data, using both the equivalent groups (EG)
design and the non-equivalent groups with anchor test (NEAT) design. In Liang and von Davier
(2014), comparisons between the LiCV method and the penalty method showed small differences
in terms of bias of the density estimate, but the former was the preferred choice for symmetric data.
They considered the EG design for both symmetric, skewed, and bimodal data. In Andersson and
von Davier (2014), comparisons between the SRTand penalty method showed great similarities in
terms of the equated scores. They considered symmetric and skewed data under both the EG and
NEAT design. The DS, LiCV, and SRT methods have thus only been compared with the penalty
method and never with each other. Furthermore, the previous studies on bandwidth selection in
KE have used different data collection designs and evaluation criteria, making it even harder to
compare the results between the studies.

Outside the KE literature, leave-one-out cross-validation (LCV) has been widely discussed in
density estimation, see for example Jones et al. (1996), Sheather (2004), and Wasserman (2006).
LCV is often used as a benchmark method for novel bandwidth selection methods within the
kernel density and kernel regression frameworks, see for example Park and Marron (1990) and
Häggström and De Luna (2010). Thus, in addition to the four currently available bandwidth
selection methods in KE, LCV as well as a penalized LCV are included in the comparison for
completeness.

The six bandwidth methods will be evaluated and compared with each other in a simulation
study where the test length, number of test takers, and distributions of the test scores are varied for
both the EG and NEAT design. All methods will also be illustrated empirically with real test data
from a college admissions test.

The rest of the paper is structured as follows. First, a brief review of KE is given, then the six
bandwidth selection methods are described. This is followed by the simulation study and the
empirical illustration. The paper is concluded with a discussion together with some practical
recommendations.
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The Kernel Equating Framework

KE comprises five steps: (1) Presmoothing the score distributions; (2) Estimating the score
probabilities; (3) Continuizing the estimated score distributions; (4) Equating; and (5) Evaluating
the estimated equating function (e.g., by calculating the standard error of equating [SEE]; von
Davier et al. (2004); González and Wiberg (2017)). In this paper, the third step, for which KE
offers a unique solution in comparison with other equating methods, will be examined.

The test scores from test forms X and Yare denoted by X and Y, respectively, with realizations
xj, j = 1,…, J and yk, k = 1,…,K. The scores X and Yare viewed as random variables with CDFs FX

(�) and GY (�), respectively. In the NEAT design, anchor scores Awith realizations al, l = 1, …, L,
are also measured. The equipercentile transformation φY(x) that equates test form X to test form Y
is defined as

y ¼ φY ðxÞ ¼ G�1
Y ðFX ðxÞÞ (1)

To define the KE estimator of φY(x) in equation (1), we introduce the following notation: Let σ2X
denote the variance of X, rj = Pr (X = xj|T), the xj score probability on the target population T, and Z
a standard normal random variable. Define a2X ¼ σ2X =ðσ2X þ h2X Þ, where hX is the bandwidth of the
X score kernel density estimate and μX =

P
jxjrj. Using a Gaussian kernel, the discrete score

variable X is replaced by X (hX) = aX (X + hXZ) + (1� aX)μX, where X (hX) is a continuous random
variable constructed to preserve the first two moments of X. By letting r ¼ ðr1,…,rJ Þu and Φ(z)
denote the standard normal distribution function, it can be shown that the CDF of X (hX) is given by

FhX ðx; rÞ ¼ PrðX ðhX Þ ≤ xÞ

¼
X
j

rjΦ

�
x� aX xj � ð1� aX ÞμX

aX hX

�
:

(2)

The continuized CDF of Y, denotedGhY ðy; sÞ, is defined analogously using s ¼ ðs1,…,sKÞu and
sk = Pr(Y = yk|T). By letting FhX ðx;brÞ ¼ bFhX ðxÞ and GhYðy;bsÞ ¼ bGhYðyÞ , the KE estimator of the
equipercentile transformation in equation (1) is defined as

bφY ðxÞ ¼ bG�1

hY

�bFhX ðxÞ
�

(3)

Equations (2) and (3) show the dependence of the equated scores on the bandwidth through
their dependence on the continuized score CDFs. Optimal choices of the bandwidths hX and hY
would thus find the members of the family of continuous distributions fbFhX , hX > 0g and
fbGhY , hY > 0g that, composed as bφY ðxÞ, yield the best estimator of φY(x).

The most common evaluation measure of the equating estimator given in equation (3) is the
SEE (von Davier et al., 2004). The estimated SEE consists of three components; the Jacobian of
the estimated equating transformation, denoted bJφY , the Jacobian of the design function which
maps the (presmoothed) score distributions into r and s, denoted bJDF, and a matrixC that relates to
the covariance matrix of the (presmoothed) score distributions. The SEE of bφY ðxÞ is formed by
combining these three components and calculating the length of the resulting vector, that is,

SEEY ðxÞ ¼
����bJφYbJDFC���� (4)
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Another common measure is the Percent Relative Error (PRE; von Davier et al. 2004), which
measures the discrepancy between the p:th moment of the equated scores and that of the Y scores.
Letting μpðY Þ ¼

P
kðykÞpsk and bμpðφY ðX ÞÞ ¼PjðbφY ðxjÞÞprj, the PRE is defined as

PREðpÞ ¼ 100

0@bμpðφY ðX ÞÞ � μpðY Þ
μpðY Þ

1A

Bandwidth Selection Methods in Kernel Equating

We consider data-driven selection of one bandwidth per test score density estimator. Note, it is also
possible to manually select bandwidths that fulfill certain objectives. For example, when selecting
a very large bandwidth the KE estimator is similar to the linear equating transformation, and when
setting the bandwidths equal to 0.33 the KE estimator will approximate the traditional equi-
percentile transformation that uses linear interpolation (von Davier et al., 2004). Another pos-
sibility is to use adaptive kernels (González & von Davier, 2017) which allow for different
bandwidths along the data points. All expressions in this section are in terms of the X scores, but
expressions for the Y scores are analogous.

The Penalty Method

The most common way of selecting the bandwidth in KE is by minimizing the sum of the squared
distances between the estimated score probabilities brj, j = 1, …, J, and the estimated density
function bf hX ðxjÞ, j = 1, …, J, where bf hX denotes the derivative of bFhX . To ensure smoothness, a
penalty function can be added to the loss function which prevents the estimated density from
exhibiting large fluctuations. The penalty method thus selects the bandwidth that minimizes

PENðhX Þ ¼
X
j

�brj � bf hX�xj��2

þ κ �
X
j

Aj (5)

where Aj = 1 if " bf 0
hX

�
xj � w

�
> 0

!
\
 bf 0

hX

�
xj þ w

�
< 0

!#

or " bf 0
hX

�
xj � w

�
< 0

!
\
 bf 0

hX

�
xj þ w

�
> 0

!#
,

and Aj = 0 otherwise (Lee & von Davier, 2011; von Davier, 2013). The term κ is a weight that
determines the size of each penalty, bf 0

hX
ðxjÞ is the derivative of bf hX ðxjÞ, and w is a constant that

determines the neighborhood of xj for which the penalty function will penalize choices of hX
that let bf 0

hX
ðxjÞ change sign. Typically w = 0.25 (see e.g., von Davier et al. (2004), Häggström and

Wiberg (2014) and Andersson and von Davier (2014)).
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Silverman’s Rule of Thumb

A common loss function when selecting bandwidth in density estimation is the asymptotic mean
integrated squared error (AMISE; Jones et al., 1996). For a normally distributed random variable,
minimizing the AMISE with respect to the bandwidth results in the approximation known as
Silverman’s rule of thumb (Scott, 1992). Andersson and von Davier (2014) implemented this
bandwidth for KE which, adjusted for aX, equals

SRTðhX Þ ¼ 9σXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100n2=5X � 81

q :

Double Smoothing

DS was introduced by Hall et al. (1992) for nonparametric density estimation and implemented
within KE by Häggström and Wiberg (2014). Within KE, the procedure starts by using a large,
subjectively chosen pilot bandwidth qX to estimate fqX at the score values and the values halfway
between them, that is, at the points x∗ ¼ fx∗l g ¼ ½x1; x1 þ 0:5; x2,…; xJ � 0:5; xJ �u , l = 1,…, 2J�
1. Next, fhX is estimated at x* using bf qX at the actual score values x ¼ ½x1; x2,…; xJ �u instead of
using the estimated score probabilities brj. Thus, a DS estimate bf ∗

hX
is obtained. The bandwidth that

minimizes the sum of the squared difference between the lth DS estimate bf ∗

hX
ðxÞ and br∗l is selected,

where

bf ∗

hX
ðxÞ ¼

XJ
j¼1

bf qX�xj�f
 
x� baX xj � �1� baX	bμX

hXbaX
!

1

hXbaX ,
f(z) denotes the standard normal density function,

bf qX ðxÞ ¼XJ
j¼1

rjf

0@x� baqXX xj �
�
1� baqXX 	bμX

qXbaqXX
1A 1

qXbaqXX ,

with baqXX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2X =ðbσ2X þ q2X Þ

q
and br∗l ¼ br∗lþ1=2 if l is even and br∗l ¼ bf ∗

hX
ðx∗l Þ if l is odd.

The DS criterion can be written as

DSðhX Þ ¼
X2J�1

l¼1

�br∗l � bf ∗

hX

�
x∗l
��2

:

The Likelihood Cross-Validation Method

LiCV applied to KE was suggested by Liang and von Davier (2014), and their method of
bandwidth selection starts by randomly splitting the data into two subsamples. The first subsample
is used to estimate a set of Gaussian kernel densities,
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bf ð1ÞhX
¼
X
j

brjf
 
x� baX xj � �1� baX	bμXbaX hX

!

for a set of bandwidths h = [0.01, 0.02, …, 5], where the “(1)” notation indicates that the
quantities are calculated using only the first subsample. The density for each value of h is then used
as an intensity parameter in a set of Poisson likelihood functions, where the score frequencies are
taken from the second subsample. The value of h that maximizes the likelihood function is stored.
The criterion of the LiCV method can be expressed as

LiCVðhX Þ ¼ max
h

L

�
nxj;bf ð1ÞhX

�
¼ max

h
∏
J

j¼1

e�N ð1Þ
X
bf ð1Þ
hX ðxjÞ

�
N ð1Þ

X
bf ð1ÞhX

�
xj
��nð2Þxj

nð2Þxj !

where N ð1Þ
X is the number of test takers in the first subsample, and nð2Þxj is the number of test takers

with X = xj in the second subsample. This procedure of randomly splitting the data set and
selecting the bandwidth that maximizes the Poisson likelihood function is repeated 1000 times and
the median of the resulting 1000 bandwidths is selected as the optimal bandwidth.

Penalized Leave-One-Out Cross-Validation

There are two objectives when estimating the distribution of X (hX); bf hX should both be a good
estimate of the true density f but also track the shape of the relative score frequencies. Regarding
the first objective, Stone (1984) showed thatZ �

f ðxÞ � bf hCV ðxÞ�2

dx

inf
h

Z �
f ðxÞ � bf hðxÞ�2

dx

→
a:s:

1

wherebf hCV ðxÞ is the kernel density estimator of fwith bandwidth hCV selected using LCV. To make
sure that the estimated density of X (hX) also tracks the estimated probabilities the following
criterion, for a Gaussian kernel, can be minimized

LCVðhX Þ ¼ 1

J

XJ
j¼1

�brj � bf �j

hX

�
xj
��2

(6)

where

bf �j

hX

�
xj
� ¼XJ

l¼1
l ≠ j

brlf
 
xj � baX xl � �1� baX	bμX

hXbaX
!

1

hXbaX ,
is the estimate of f (xj) based on the subsample with ðxj,brjÞ left out. The estimated quantities baX andbμX are based on the full sample. Note that the expression in equation (6) is analogous to the first
term in equation (5), the criterion of the penalty method. By the same argument used to motivate
the second term of the penalty method, we propose to modify the LCV method by adding the
penalty function Aj. A penalized LCV criterion is thus defined as
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PLCVðhX Þ ¼ 1

J

XJ
j¼1

�brj � bf �j

hX

�
xj
��2

þ κ �
XJ
j¼1

Aj:

Simulation Study

A simulation study is conducted under both the EG and NEAT design to evaluate 1) how big the
differences are between the bandwidths described in the previous section and 2) if any such
differences are reflected in the equated scores. Most of the presented results are based on the NEAT
design since it is a very common design in practice. Additionally, the EG results are often in line
with those of the NEAT design except when indicated.

Simulation Design

All simulations are repeated with 1000 iterations each, with sample sizes of n = {100, 1000,
5000}, test lengths of J � 1 = K � 1 = {40, 80}, and anchor test lengths of L � 1 = {20, 40}. For
the two smallest sample sizes, both test lengths {40, 80} are considered in combination with both
anchor test lengths {20, 40}, and for n = 5000, a test length of 80 together with an anchor test
length of 40 is considered. By altering the test lengths in this fashion, it is possible to explore how
the equating function is affected by a changing number of observed-score frequencies, both on the
main test and on the anchor test. It should be noted that relatively long tests can suffer from other
issues as well, like a changing shape of the score distributions and a weaker correlation between
the anchor and the test scores. These factors are assumed to be negligible in this study.

Data generation and all computations are performed with the software R (R Core Team, 2018)
and the R package kequate (Andersson et al., 2013) is used for kernel equating. R code for the
simulation study can be obtained from the corresponding author upon request.

The data generating process (DGP) described below was chosen in an attempt to mimic the
characteristics of real testing data. The scores of the test takers from population P who are given
test form X are denoted X and the scores of the test takers from population Q who are given test
form Y are denoted Y, where we consider number-correct scoring. In the EG design of this study,
the two samples of test takers are only randomly different from each other, that is, P = Q. In the
NEAT design, P ≠ Q and a population weight of 0.5 is used for the target population, that is, T =
0.5P + 0.5Q. Since previous studies on bandwidth selection in KE have used post-stratification in
the NEAT design to form the equipercentile transformation function (von Davier et al., 2004), this
is the approach here as well to allow the results to be more easily compared. We now describe the
DGP for test form X.

1. Generating true score probabilities rj = Pr (X = xj) and pjl = Pr (X = xj \ A = al), j = 1, …,
J, l = 1, …, L.

Generate auxiliary variable(s) according to:
For EG

Ui ∼Betaðα; βÞ,
And for NEAT
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Ui,Vi ∼Normal copula bivariate distribution with Betaðα, βÞ
marginal, correlation set to ρ ¼ 0:75 and i ¼ 1,…,n:

Then individual scores, to be used for generating rj and pjl, are calculated by rounding the
auxiliary variable(s) times the test length to the nearest integer, X ∗

i ¼ bðJ � 1ÞUie and for NEAT
also A∗

i ¼ bðL� 1ÞVie, i ¼ 1,…; n:We use a combination of floor and ceiling notation to denote
rounding to the nearest integer. The floor function of a variable x, PxR, returns the greatest integer
less than or equal to x, and the ceiling function QxS returns the smallest integer greater than or equal
to x. Under both the EG and NEAT design, the shape parameters for the beta distributions are set to
(α, β) = {(5, 5), (5, 2), (2, 5)} to produce symmetric, negatively skewed and positively skewed
score data, respectively. To produce bimodal score data, a mixture of Beta distributions with (α,
β) = (25, 15) and (α, β) = (15, 25) is used. In the NEAT design, the correlation between the test
score and anchor test score is set to ρ = 0.75, since it operationally has been standard practice to
aim for anchor tests with strong correlation to the total test scores. The R package copula (Yan,
2007) is used to generate data from a Normal copula bivariate distribution with Beta marginals.

Let n∗J ¼ fn∗j ¼
Pn

i¼1IðX ∗
i ¼ xjÞg and n∗JL ¼ fn∗jl ¼

Pn
i¼1IðX ∗

i ¼ xj\A∗
i ¼ alÞg , j = 1, …, J

and l = 1, …, L. For the EG design, log-linear models regressing n∗j on a function of xj are fitted.
The Akaike information criterion (AIC; Akaike, 1998) is used for model selection under the EG
design and the Bayesian information criterion (BIC; Schwarz, 1978) is used for model selection
under the NEAT design, aiming at parsimonious models. The choice of criteria are based on
previous research where the AIC has been shown to be a suitable model-fit measure for univariate
log-linear models (Moses & Holland, 2009) and the BIC has been shown to be effective for
bivariate smoothing (Moses & Holland, 2010). The fitted values from the AIC/BIC selected
models are used as true score probabilities. A similar procedure is used to generate the fitted
probabilities under the NEAT design (for details, see Section 11.1 in von Davier et al., 2004). The
procedure of using fitted values from estimated log-linear models as true score probabilities
follows the approach in both Liang and von Davier (2014) and Häggström and Wiberg (2014).
Note that this step is only performed once (per simulation configuration) and the same true
probabilities are then used in all simulation iterations.

2. Generating test score frequencies

For each simulation iteration, using the true score probabilities generated in step 1, we generate
test score sample frequencies as

nJ ∼Multinomialðn; ðr1,…; rJ ÞuÞ and nJL ∼Multinomialðn; ðp11,…; pJLÞuÞ
The DGP for test form Y is analogous to that of test form Xwith exception that under the NEAT

design, the data from populationQ is shifted by five units along the score axis. This means that for
the symmetric, negative, and bimodal distributional scenarios the test form taken by the Q sample
is more difficult than that taken by the P sample, and vice versa for the positive distributional
scenario. Figure 1 illustrates the score distributions considered under the EG design.

For the EG design, the log-linear models in step 1 in the DGP preserved the first two and three
moments, respectively, of the X and Y scores for the symmetric and skewed distributions, and the
first three moments for the bimodal distributions. For the NEAT design, the models preserved the
first four moments of the X, Y, and A scores, respectively, and the first and second cross-moment
for the symmetric and negatively skewed distributions. The models for the positively skewed
and bimodal distributions preserved the first two moments of the X, Y, and A scores, and the first
cross-moment. An alternative would have been to preserve the same number of moments for the
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different data collection designs. However, we have chosen to use the best fitting model according
to the AIC/BICwhich we believe to be a better reflection of equating done in practice. Lastly, since
it is very common to presmooth the score distributions, the sampled data from step 2 were
presmoothed in each simulation iteration using the same models as the ones used to generate the
true score probabilities. Finally, note that since the populations of test takers have been created
using two random samples from the beta distribution, the identity function is not the true equating
function for any of the considered data collection designs.

Evaluation Criteria

To evaluate the equating results generated by the different bandwidth methods, a comparison
between the distribution of bφY ðX Þ, the estimated KE transformation evaluated at the discrete X
score points, and the distribution of Y was made for each KE estimator. Let μY =

P
kyksk , bμY ¼P

jbφY ðxjÞrj and let bμðgÞY ¼PjbφðgÞY ðxjÞrj denote the estimator of the mean based on the gth replicate.
The MSE of bμY over 1000 replications was calculated as

MSE
�bμY	 ¼

"
1

1000

X1000
g¼1

�bμðgÞY � μY
	#2

þ 1

1000� 1

X1000
g¼1

"bμðgÞY � 1

1000

X1000
g¼1

bμðgÞY

#2
Letting φY ðxjÞ ¼ 1

1000

P1000
g¼1
bφðgÞY ðxjÞ, the standard error (SE) of bφY ðxjÞ was calculated as

SE
�bφY

�
xj
�	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000� 1

X1000
g¼1

�bφðgÞ
Y

�
xj
�� φY

�
xj
�	2vuut

For both the MSE and SE, the corrected sample standard deviation formula is applied, for
which the squared distances are divided by G � 1 = 1000 � 1. For each method and scenario, the
PRE of the first 10 moments were also calculated. Furthermore, the mean equating transformation
of the 1000 replicates was calculated for every estimator together with the difference that matters

Figure 1. The distributional settings under the EG design in the simulation study.
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(DTM; Dorans & Feigenbaum, 1994) which is referring to all differences larger than half a raw
score unit.

Lastly, to judge the validity of the analytical SEEs in equation (4), bootstrap standard errors
were calculated under the EG design with symmetric data in an additional simulation. Here, the
sample size was n = 10,000, the test length was 40 and no presmoothing was conducted. 1000
bootstrap samples were drawn from each data set.

Simulation Results

The mean of the bandwidths for each scenario and method were calculated and are found in the
supplemental material. Generally speaking, for a given scenario, the bandwidth methods result in
very different bandwidths. For example, for the symmetric scenario under the EG design, using 80
items and a sample size of 100, the smallest mean bandwidth for the X scores is 0.34 (LCV) and the
largest mean bandwidth equals 4.84 (SRT). For the negatively skewed data under the NEAT
design with 1000 test takers, 80 items and 20 anchor items, the mean bandwidths for the X scores
were 0.59 (Penalty), 2.96 (SRT), 0.57 (DS), 3.09 (LiCV), 0.32 (LCV), and 1.05 (PLCV). This kind
of spread between the different bandwidth selection methods were typical for all scenarios, see the
supplemental material for the full table. The variances of the bandwidths were also calculated and
the differences between the methods were mostly small. Generally, the variances of the SRT and
PLCV methods were the largest under the EG design and the variance of the LiCV method were
the largest under the NEAT design. The LCV method had the lowest variance for every scenario
and data design.

Table 1 shows the MSE of bμY for the symmetrical distribution scenario under the NEAT design.
For a given sample size the MSE increases when the test length increases, and for a given test
length, the MSE decreases when the sample size increases. For these sample size and test length
effects, the MSE is decreasing by more when the sample size grows from 100 to 1000 than what it
is increasing when the number of items grows from 40 to 80. Furthermore, when the anchor test
length increases from 20 to 40 items, the MSE decreases for all sample sizes and both data
collection designs. For a sample size of 1000, the MSE is more than halved when the anchor test
length is doubled. Notably, when the number of test takers equals 5000, the test length equals 80,
and the number of anchor items equal 40, theMSE is down to the same size as for the scenario with
1000 test takers, 40 items, and 20 anchor items. For the other distributional scenarios, the results
are in line with those of the symmetric distributional scenario. However, the MSE is generally
smaller regardless of distribution under the NEAT design compared to the EG design. The MSE is
smallest when the data are bimodal, with the overall smallest MSE under the NEAT design with

Table 1. The MSEs for all symmetric distributional scenarios considered under the NEAT design. The
asterisk (*) indicates that the number of anchor items equals 40, otherwise they equal 20.

Distribution Design Penalty SRT DS LiCV LCV PLCV

Symmetric n = 100, J � 1 = 40 0.329 0.326 0.328 0.326 0.329 0.327
n = 100, J � 1 = 80 1.638 1.624 1.638 1.627 1.638 1.637
n = 1000, J � 1 = 40 0.032 0.032 0.032 0.032 0.029 0.032
n = 1000, J � 1 = 80 0.111 0.111 0.111 0.111 0.111 0.111
n = 100, J � 1 = 80* 1.015 1.024 1.023 1.025 1.021 1.029
n = 1000, J � 1 = 80* 0.046 0.046 0.046 0.046 0.046 0.046
n = 5000, J � 1 = 80* 0.031 0.031 0.031 0.031 0.030 0.031

Wallin et al. 527

https://journals.sagepub.com/doi/suppl/10.1177/01466216211040486
https://journals.sagepub.com/doi/suppl/10.1177/01466216211040486


bimodal data, a sample of 1000 test takers and 40 items. The full table can be viewed in the
supplemental material.

Figure 2 shows the performance of each KE estimator in terms of PRE. The results are
displayed for the NEAT design using a sample size of 1000 test takers, a test length of 80, and an
anchor test length of 20. The PRE for all other sample sizes, test lengths and data collection
designs are available and can be found in the supplemental material. For the symmetric distri-
bution, the PREs are very similar and by far the largest in magnitude. For the negatively skewed
distributions, the LiCVmethod is clearly outperformed by the other methods with the SRTmethod
being second worst. In contrast, with positively skewed distributions the LiCV and SRT instead
achieve the best results. For the bimodal setting, the differences between the methods are small but
with the SRT method performing slightly worse in the mid-range of the scores. The difference in
PRE for the other scenarios are generally small. However, the KE estimator using the SRTmethod
is among the worst under the EG design regardless of sample size, test length, and distributional
scenario. It is also among the worst for all test lengths and distributional scenarios under the NEAT
design when the sample size is small (n = 100). It is possible that the relative weak performance of
the SRT method is due to its underlying normality assumption which is unrealistic for most test
data, including those generated in this simulation study.

In Figure 3, the PRE for the symmetric scenario under the NEAT design is presented when the
number of test takers is 5000 per test group, the tests consist of 80 items, and the anchor test length
equals 40. As in Figure 2, the differences between the KE estimators are small. In the four last
moments, there is a visible, although small, difference between the LiCV-based estimator and the
other estimators. It is also notable that the absolute magnitudes of the PREs are considerably
smaller compared to when the number of test takers is 1000 and the anchor length is 20. It suggests
that increasing the sample size and the length of the anchor test yields an equating estimator that
better approximates the Y score distribution.

Figure 4 displays the simulation SEs for the same scenarios as those presented in Figure 2. The
estimators are similar in performance but the LiCVmethod is the worst for the lowest scores in the
symmetric setting and the PLCV method the worst in the tails in the bimodal setting. For
the negatively skewed data, there are only small differences between each method; however, for

Figure 2. The PRE for every KE estimator under the NEAT design with a sample size of 1000, a test length
of 80 and an anchor test length of 20.
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positively skewed data the LCV method is superior in the top scores. The distributional scenarios
are also reflected in the SE; for the negative skew the SE is substantially higher at the lowest
scores, and vice versa for the positive skew.

Figure 5 illustrates the SE for all KE estimators in a similar way as in Figure 4, but with 5000
test takers per group and an anchor test length of 40. As in Figure 4, there are mostly small
differences between the KE estimators. The exception is the LiCV-based KE estimator which

Figure 3. The PRE for every KE estimator for symmetric test score distributions under the NEAT design
with a sample size of 5000, a test length of 80, and an anchor length of 40.

Figure 4. The SE for every KE estimator under the NEAT design with a sample size of 1000, a test length of
80, and an anchor test length of 20.
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demonstrates larger SEs in the tails of the score scale, especially for the lowest scores. However, in
a practical sense this is often not critical since most sensitive decisions are made at the other end of
the score scale. It is interesting to note that there is no apparent difference in the SEs compared to
when the sample size is 1000 and the anchor test length is 20, as was evident when comparing the
PRE.

For the estimation of the SE, Figure 6 displays the analytical and bootstrap SE for every KE
estimator. There are only slight differences between the analytical and bootstrap SEs for most
scores, and differences are seen only at the tails. As expected, the SRT-based KE estimator
best manages the tails since it accounts for bandwidth variability in the estimation. However, the

Figure 5. The SE for every KE estimator under the NEAT design with a sample size of 5000, a test length of
80, and an anchor test length of 40.

Figure 6. The analytical and bootstrap SEs for every KE estimator under the EG design. The results are
based on the symmetric distributional scenario, 10,000 test takers per group and 40 items.
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DS-based KE estimator also shows a similar pattern even though the analytical SE assumes that
the bandwidth is a known constant.

Under the NEAT design with 1000 test takers, 80 items and 20 anchor items, the running times
for calculating the bandwidth were 0.17 seconds (Penalty), 0.02 seconds (SRT), 0.03 seconds
(DS), 5.13 minutes (LiCV), 0.20 seconds (LCV), and 0.28 seconds (PLCV). The relative per-
formance were similar with 100 and 5000 test takers, and for the EG design. The LiCV clearly
deviates because of its vast amount of calculations.

Empirical Illustration

The Swedish Scholastic Aptitude Test (SweSAT) is a large-scale standardized test used in the
admission process to Swedish universities. It is a paper and pencil test that is given twice per year
and consists of a quantitative and verbal section, each containing 80 items. The sections are
equated separately. To illustrate the KE estimator for different bandwidth selection methods, we
equated the quantitative section of the SweSAT using two consecutive administrations. The total
sample consisted of 5609 test takers of which 2826 took the spring administration (test form X)
and 2783 took the fall administration the year before (test form Y). The mean X score was 41.68
with standard deviation 32.46, and the mean Y score was 39.89 with standard deviation 29.16. The
score distributions are both positively skewed, as can be seen in Figure 7. In practice, SweSAT
employs the NEAT design since the assumptions underlying the EG design have been shown to be
unfulfilled (Lyrén &Hambleton, 2011). This empirical illustration therefore uses the NEAT design
as well. We applied post-stratification with a population weight reflecting the relative group sizes,
and presmoothed the samples with log-linear models using the BIC measure to evaluate the
goodness-of-fit. This resulted in models that preserved the first 4 moments of the marginal
distributions of X/Yand A, respectively, and the first cross-moment of X/Yand A. The SEE and PRE
for the first five moments were used to evaluate the equating results.

Empirical Illustration Results

In the upper part of Table 2, the resulting bandwidths for each method are presented. They clearly
differ between each other, with the LCV selecting the smallest bandwidths and the SRT method

Figure 7. The score distributions for the SweSAT data, with the scores from the spring administration being
represented as X scores, and the scores from the autumn administration on the previous year as Y scores.
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the largest. The penalty method and the DS method selected very similar bandwidths, and the
PLCV method selected bandwidths about twice the size of those selected by LCV. These findings
are in line with those from the simulation study. By a graphical inspection, it was seen that the
kernel density estimate using the LCV bandwidths resulted in a density with extensive fluctu-
ations. The penalty function in the PLCV method has therefore been activated several times.

In the lower part of Table 2, the PRE of the five first moments are presented for all KE
estimators. The PRE is small regardless of bandwidth selection method, but using the penalty, DS,
and PLCVmethods result in an equating transformation that best preserves the five first moment of
the Y score distribution.

In the left panel of Figure 8, the difference between the equated scores and the raw scores are
displayed for each KE estimator. The estimators produce very similar results over large parts of the
score range, with visible differences only in the tails of the score scale.

In the right panel of Figure 8, the SEE of the KE estimators are shown. Again it is in the tails of
the score scale where the differences are most evident. The SEE for all estimators is the largest in
the tails, explained by the fact that there are fewer test takers with extreme scores. The PLCV-
based estimator has some of the smallest SEEs for the top scores, and the LCV-based estimator has
the highest peaks in the tails of the score range.

Discussion

The overall aim of this study was to compare different bandwidth selection methods in KE, since it
is well known that the choice of bandwidth is an essential part of kernel density estimation
(Sheather, 2004). Thus, it was important to investigate to what extent the bandwidth has an
influence on the equating transformation and if that differed depending on the method used.

The results indicate that the KE estimator is, at least to some extent, insensitive to the choice of
bandwidth. Although the selected bandwidths differ between the evaluated methods, the dif-
ferences in the subsequent equating are small regardless of score distributional shape, sample size,
and test length. However, the listed factors are affecting the equating error and variance for every
evaluated method. These findings are in line with previous studies (Andersson & von Davier,
2014; Häggström & Wiberg, 2014; Liang & von Davier, 2014) which all found only small
differences between their proposed methods and the penalty method. The differences seen in
our study were particularly small in terms of MSE. This might be explained by the fact that
theMSE is not able to compare the KE estimators over the whole score scale, but only on howwell
the first two moments of the equated scores correspond to the score distribution that the equated
scores attempt to estimate. The results also showed that the MSE under the NEAT design were
about half the size compared to that under the EG design, which is in line with the results of

Table 2. The selected bandwidths under the NEAT design together with the PRE of each KE estimator.

Bandwidth Penalty SRT DS LiCV LCV PLCV

hX 0.73 2.25 0.75 1.75 0.34 0.67
hY 0.71 2.42 0.74 1.32 0.34 0.65
Moment
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.001 �0.003 0.000
3 0.000 0.000 0.000 0.003 �0.009 0.000
4 0.000 0.001 0.000 0.006 �0.012 0.000
5 0.001 0.005 0.001 0.009 �0.027 0.001
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Häggström andWiberg (2014).We believe the reason for this is that the generated test groups were
quite similar, although non-equivalent, as you would expect to see in a real testing situation. With
an anchor that correlated strongly with the test scores, the variance of the equating transformation
should decrease. Since the MSE for the most part was constituted by the variance, the MSE should
thus be lower. We also compared every KE estimator with respect to the mean of the equated
scores for every score point, and for the most part only small differences were found. However, the
results showed that the bandwidth methods sometimes produced equated scores that were larger
than a DTM.

The simulation results also showed that the analytical SEE got very close to the bootstrap SE
regardless of bandwidth method but with a systematic error at the tails, the SRTmethod exempted.
This means that the variability introduced by the bandwidth choice is not taken into account. For
future research, it is thus of importance to derive accurate SEE formulas for all data-driven
bandwidth methods.

In terms of PRE, the largest differences between the estimators were seen for the higher
moments. At the same time, it should be noted that there are no clear guidelines from previous
studies on how many higher moments that are meaningful to compare, or when the magnitude of
the PRE indicates a poor equating estimate. Generally, the simulation study showed that shorter
tests with more test takers result in smaller PREs and SEs, under both the EG and NEAT design.
The promising performance of the LiCV method under the EG design seen in Liang and von
Davier (2014) could thus not be repeated under the NEAT design. Moreover, the LiCV method
took, by far, the longest time to compute which is not surprising since the procedure has to be
repeated 1000 times. It is possible that the LiCV could be calculated using fewer iterations without
losing its quality of performance, but this is left for future research.

In order to analyze the influence of bandwidth selection on KE, other factors such as log-linear
model specification and the choice of kernel function were purposely marginalized. Since KE
involves five steps that affect the equated scores, the simulation study cannot be viewed as
exhaustive. One limitation is that we only investigated the impact of the bandwidth on the KE
transformation using post-stratification equating. Although it would be of interest to examine the
bandwidth impact using chained KE, we do not expect large differences since other studies have
showed that post-stratification and chained KE usually give similar results. Future research should
also investigate bandwidth selection for item response theory KE.

To conclude, the findings of this paper show that the choice of bandwidth in KE is not crucial in
terms of equated scores, but that there still are factors that could make some of the bandwidth
methods more appealing. The penalty, DS, and PLCV methods are most robust to changes in test

Figure 8. Left panel: The difference between the equated and raw scores for each KE estimator using the
SweSAT data. Right panel: The SEE for each KE estimator using the SweSAT data.
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length, number of test takers, and score distributions. They are also quick to compute and could
thus be recommended in practice. Our findings also makes the difference between equipercentile
equating, linear equating and KE smaller, since the traditional approaches are part of KE as a
special case. Practitioners can therefore make use of the flexibility of KE without having to be too
concerned about the choice of smoothing parameter. Since previous research has reached similar
conclusions regarding the choice of kernel function, the critical part of equating instead seems to
lie at the first step, the log-linear presmoothing. The results of this study therefore gives further
strength to the view of KE as a family of equating methods that both incorporates traditional and
modern equating methods, rather than being a completely new method of equating. KE therefore
offers an easy way to both equate test forms and perform sensitivity analysis of the results, by
making it possible to compare not only a very smooth equating function or traditional equating,
but every possible equating function in between these two modes.
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