Coral restoration can drive rapid reef carbonate budget recovery

Lange, Ines D and Razak, Tries B and Perry, Chris T and Maulana, Permas B and Prasetya, Mochyudho E and Irwan and Lamont, Timothy Ac (2024) Coral restoration can drive rapid reef carbonate budget recovery. Current biology : CB, 34 (6). pp. 1341-1348. ISSN 0960-9822

Full text not available from this repository.

Abstract

Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and marine ecosystems. Considering the unprecedented loss of coral cover and associated reef ecosystem services, active coral restoration is gaining traction in local management strategies and has recently seen major increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly understood. Carbonate budgets, defined as the balance between calcium carbonate production and erosion, influence a reef's ability to provide important geo-ecological functions including structural complexity, reef framework production, and vertical accretion. Here we present the first assessment of reef carbonate budget trajectories at restoration sites. The study was conducted at one of the world's largest coral restoration programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate degraded rubble fields. Within 4 years, fast coral growth supports a rapid recovery of coral cover (from 17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from 7.2 ± 1.6 to 20.7 ± 2.2 kg m yr ). Four years after coral transplantation, net carbonate budgets have tripled and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kg m yr , respectively). However, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the preferential use of branching corals for transplantation. While longer observation times are necessary to observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we demonstrate the potential of large-scale, well-managed coral restoration projects to recover important ecosystem functions within only 4 years.

Item Type:
Journal Article
Journal or Publication Title:
Current biology : CB
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1100/1100
Subjects:
?? coral restorationrecoverycoral reefecosystem functionreefbudgetindonesiacarbonate budgetscoastal protectiongeneral agricultural and biological sciencesgeneral biochemistry,genetics and molecular biologyagricultural and biological sciences(all)biochemistry ??
ID Code:
216973
Deposited By:
Deposited On:
25 Mar 2024 15:40
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 12:15