
More is Less in Kieker?

The Paradox of No Logging Being Slower Than Logging

David Georg Reichelt
Lancaster University Leipzig /

Universität Leipzig

Reiner Jung
Christian-Albrechts-
Universität zu Kiel

André van Hoorn
Universität Hamburg

Abstract

Understanding the sources of monitoring overhead
is crucial for understanding the performance of
a monitored application. The MooBench bench-
mark measures the monitoring overhead and its
sources. MooBench asumes that benchmarking over-
head emerges from the instrumentation, the data col-
lection, and the writing of data. These three parts are
measured through individual factorial experiments.

We made the counter-intuitive observation that
MooBench consistently and reproducibly reported
higher overhead for Kieker and other monitoring
frameworks when not writing data. Intuitively, writ-
ing should consume resources and therefore slow down
(or, since is parallelized, at least not speed up) the
monitoring. In this paper, we present an investiga-
tion of this problem in Kieker. We find that lock con-
tention at Kieker’s writing queue causes the problem.
Therefore, we propose to add a new queue that dumps
all elements. Thereby, a realistic measurement of data
collection without writing can be provided.

1 Introduction

Monitoring overhead increases the execution time of
a program and decreases the accuracy of monitoring
data. MooBench measures the monitoring overhead
of the application monitoring frameworks Kieker [4],
inspectIT1, and OpenTelemetry2 [5].

The basic assumption of MooBench is that the
overhead emerges from the instrumentation itself,
the data collection, and the writing of data [2].
For Kieker, MooBench contains five configurations:
(1) activated instrumentation, but no monitoring,
(2) activated monitoring, but no logging , (3) activated
data writing to a text file, (4) activated data writ-
ing to a binary file, and (5) activated data writing to
a TCP receiver. Since MooBench assumes that the
three monitoring sources are creating additive over-
head, it is assumed that the individual parts of the
overhead can be calculated by these factorial experi-
ments—and additionally the overhead of writing to a
text file.

1https://www.inspectit.rocks/
2https://opentelemetry.io/

The MooBench community maintains a website
with regular executions of the MooBench benchmark
on the same server.3 The practical results of these
measurements question MooBenchs basic assumption:
the measurement with deactivated writing is—and
has been for the last years— slower than the measure-
ment with activated writing using the binary writer.
Hence, configuration (2) is slower than configura-
tion (4). This effect is present on different execution
platforms, for different configurations and even for dif-
ferent frameworks (Kieker and inspectIT).

We examine this effect by factorial experiments.
We find that (i) it is reproducible for every prac-
tical reasonable configuration, (ii) it is caused by
MonitoringWriterThread.run, which reads the data
from the queue and passes them to the writer, (iii) the
overhead of monitoring for no logging can be decreased
by introducing artificial overhead into the writer. We
conclude that writing overhead on current hardware
is mainly caused by the queue, and not the writing it-
self, which is run in parallel. Therefore, we introduce
a queue that directly discards all records, instead of
redirecting them to a writer. This allows realistic mea-
surement of the individual overhead of data collection.

The remainder of this paper is organized as follows.
First, we introduce the MooBench benchmark. After-
wards, we describe our experiments. Then, we discuss
the implications from our experiments. Subsequently,
we discuss related work. Finally, we give a summary
and an outlook.

2 MooBench

MooBench measures the performance overhead of
monitoring frameworks. It is currently able to mea-
sure the overhead of Kieker, OpenTelemetry, and in-
spectIT in Java [5] as well as the overhead of Kieker
for Python [8].

The basic process of MooBench is visualized in
Figure 1: MooBench executes each configuration
for a given $NUM_OF_LOOPS times, where each loop
executes each monitoring configuration once. To
execute a monitoring configuration, a monitored

3https://kieker-monitoring.net/

performance-benchmarks/

https://www.inspectit.rocks/
https://opentelemetry.io/
https://kieker-monitoring.net/performance-benchmarks/
https://kieker-monitoring.net/performance-benchmarks/

Start

monitoredMethod

Busy Wait
$METHOD TIME

$RECURSION
DEPTH

Iteration

$TOTAL NUM OF CALLSJVM-Starts

$NUM OF LOOPS

Figure 1: MooBench process

JVM is started and inside the JVM, for a given
$TOTAL_NUM_OF_CALLS, iterations are executed. In
each iteration, the start time is recorded and the
monitoredMethod is called. This method calls itself
for $RECURSION_DEPTH. Finally, inside of the method,
a busy wait is executed with a given $METHOD_TIME.

3 Factorial Experiments

To examine the no logging and binary file behavior, we
first checked the reproducibility with different config-
urations. Afterwards, we analyzed the benchmark be-
havior with perf.4 Finally, we examined how the be-
havior of the activated monitoring with no data writ-
ing changes if we introduce artificial overhead. These
steps are described in the following subsections.

All experiments have been repeated on OpenJDK
11 and 17 with an i7-4770, i7-6700 und Raspberry
Pi 4.5 The example graphs show the behavior on i7-
6700 and JDK 17, but all relations are equal on all
examined configurations.

3.1 Reproducibility

To analyze the stability of the effect, we measured
the overhead that occured with increase of the calls,
the call tree depth, and the method duration. As an
example, Figure 2 shows the growth of the execution
time depending on the call count. It shows that for
small call counts, i.e., 1,000 and smaller, the execution
time of no logging is lower than the execution time
using binary file. For higher call counts, binary file
becomes faster than no logging, i.e., the results of the
continuous benchmarking is reproducible.

Similar behavior can be observed when looking at
the call tree depth and the method time. Overall, we
conclude from these experiments that the effect of no
logging being slower than binary file takes place for
different configuration options. Hence, it is not only
caused by JVM optimizations or special effects.

4https://perf.wiki.kernel.org/
5https://doi.org/10.5281/zenodo.8197462

 1000

 10000

 100000

 1×106

 100 1000 10000 100000 1×106 1×107 1×108

D
ur

at
io

n
/ n

s

Call Count

No Logging
Binary File

Figure 2: Overhead depending on call count

3.2 Analysis With perf

To further analyze the effect, we analyzed the ex-
ecution using the Linux perf tool and the Flame-
Graph6 tool. The perf tool samples stack traces with
a given frequency. By analyis of the stack traces,
FlameGraph estimates the durations of method exe-
cutions. The differential FlameGraph is visualized in
Figure 3. By generating a differential FlameGraph,
we identified the root cause of the performance differ-
ences between no logging and binary file: The method
MonitoringWriterThread.run is faster for binary
file. The other methods, including the monitored
methods, are not displayed in the differential flame
graph, i.e., they did not contain significant perfor-
mance changes.

The method MonitoringWriterThread.run is de-
picted in Listing 1. It reads the monitoring records
from Kieker’s central queue (in parallel to the appli-
cations threads) and starts their writing.

Listing 1: Main loop of MonitoringWriterThread.run

while (record != END_RECORD) {

writer.writeMonitoringRecord(record);

record = this.writerQueue.take ();

}

The call to writeMonitoringRecord takes more
time than the empty call in the no logging vari-
ant. We assume that this slows down the inser-
tion into the queue in the monitored thread, i.e.,
in MonitoredClassSimple.monitoredMethod. To
check this theory, we introduced artificial overhead in
the DumpWriter, i.e., the class consuming monitoring
data and dumping them without writing.

6https://github.com/brendangregg/FlameGraph

Figure 3: Differential FlameGraph of the execution
with call tree depth 100

https://perf.wiki.kernel.org/
https://doi.org/10.5281/zenodo.8197462
https://github.com/brendangregg/FlameGraph

 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000

 0 2 4 6 8 10 12 14 16 18 20

D
ur

at
io

n
/ n

s

Dummy Loops

No Logging
Binary File

Figure 4: Overhead depending on dummy loops

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90 100

Call Tree Depth

No Instrumentation
Deactivated Probe

No Logging
Binary File
Binary TCP

Figure 5: Overhead with DumpQueue

3.3 Artificial Overhead in DumpWriter

To check how an increase of the writing time in
the DumpWriter influences the overhead, we added a
loop to the DumpWriter, that adds random numbers.
The loop is configured by the environment parame-
ter DUMMY_LOOPS. Figure 4 shows the growth of the
execution duration depending on the count of dummy
loops. It shows that binary writer has nearly constant
response time, since it is not affected by the dummy
loops. The no logging configuration has shrinking exe-
cution durations, even if the overhead is increased due
to the additions of random numbers. This implies that
the lock contention in MonitoringWriterThread.run

is really causing the additional overhead of the no log-
ging configuration.

In particular, this is caused by the writer thread
being parked and activated after a monitoring record
arrives. Writing the data will always take more or
at least equally much time as not doing anything;
therefore, this behavior cannot be changed on mod-
ern execution environments.7 Instead, we change the
monitoring configuration and add a DumpQueue, which
discards the measured records directly. Thereby, we
can realistically measure the monitoring overhead of
data collection without logging (see Figure 5).

7Slowing down the writing by particularly bad hard disks,
e.g., very old hard disks, would change this behavior. Since
this would not reflect the typical behavior on modern execution
environments, it is not considered further.

4 Related Work

Related work covers the parameterization of bench-
marks and the examination of MooBenchs behavior.

Benchmark Calibration Georges et al. [1] define
the widely accepted process of performance bench-
marking. MooBench, and therefore also our experi-
ments, follow this process. Abdullah et al. [6] examine
how to reduce the cost of performance change detec-
tion by reducing the number of experiments. Reichelt
et al. [7] examine how to spot performance changes
of certain size. These works focus on calibration
of benchmarks in terms of VMs, iterations, warmup
etc. We focus on calibration and implementation of
MooBench, which has additional parameters.

MooBench behavior Knoche and Eichelberger
also examined the reproducibility of MooBench ex-
periments using the Raspberry Pi [3]. They find that
experiments on the Raspberry Pi are replicable on
different instances of the Raspberry Pi, and that it
therefore can be used for benchmarking.

5 Summary and Outlook

In this paper, we examined why monitoring overhead
is lower with deactivated logging than with logging to
a binary file in Kieker. We found that the reason is
lock contention when using the queue. In future work,
we plan to evaluate how multi-threaded workload and
different queue implementations affect the overhead.
Furthermore, we plan to generalize our analysis to dif-
ferent monitoring frameworks.

Acknowledgement This work is supported by the
German Research Foundation (DFG): Project “Sus-
tainKieker” (HO 5721/4-1 and HA 2038/11-1).

References
[1] A. Georges, D. Buytaert, and L. Eeckhout. “Statistically

Rigorous Java Performance Evaluation”. In: ACM SIG-
PLAN Notices 42.10 (2007).

[2] J. Waller and W. Hasselbring. “A Comparison of the In-
fluence of Different Multi-Core Processors on the Runtime
Overhead for Application-Level Monitoring”. In: ICM-
SEPT. Springer. 2012.

[3] H. Knoche and H. Eichelberger. “Using the Raspberry Pi
and Docker for Replicable Performance Experiments: Ex-
perience Paper”. In: ICPE. 2018.

[4] W. Hasselbring and A. van Hoorn. “Kieker: A monitoring
framework for software engineering research”. In: Software
Impacts 5 (2020).

[5] D. G. Reichelt, S. Kühne, and W. Hasselbring. “Overhead
Comparison of OpenTelemetry, inspectIT and Kieker”. In:
SSP. 2021.

[6] M. Abdullah et al. “Reducing Experiment Costs in Au-
tomated Software Performance Regression Detection”. In:
2022 SEAA. IEEE. 2022.

[7] D. G. Reichelt, S. Kühne, and W. Hasselbring. “Auto-
mated Identification of Performance Changes at Code
Level”. In: 2022 IEEE 22nd QRS. IEEE. 2022.

[8] S. Simonov et al. “Instrumenting Python with Kieker”. In:
SSP. 2022.

	Introduction
	MooBench
	Factorial Experiments
	Reproducibility
	Analysis With 'perf'
	Artificial Overhead in 'DumpWriter'

	Related Work
	Summary and Outlook

