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Abstract

A geometric representation for multivariate extremes, based on the shapes of scaled sample
clouds in light-tailed margins and their so-called limit sets, has recently been shown to connect
several existing extremal dependence concepts. However, these results are purely probabilistic,
and the geometric approach itself has not been fully exploited for statistical inference. We outline
a method for parametric estimation of the limit set shape, which includes a useful non/semi-
parametric estimate as a pre-processing step. More fundamentally, our approach provides a new
class of asymptotically-motivated statistical models for the tails of multivariate distributions, and
such models can accommodate any combination of simultaneous or non-simultaneous extremes
through appropriate parametric forms for the limit set shape. Extrapolation further into the
tail of the distribution is possible via simulation from the fitted model. A simulation study
confirms that our methodology is very competitive with existing approaches, and can successfully
allow estimation of small probabilities in regions where other methods struggle. We apply the
methodology to two environmental datasets, with diagnostics demonstrating a good fit.
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1 Introduction

1.1 Multivariate extreme value theory

Multivariate extreme value theory provides the basis for estimation of rare event probabilities

that involve the effect of more than one variable. Applications are diverse and include estimating

flood risk (Keef et al., 2013; Engelke and Hitz, 2020), extreme air pollution levels (Heffernan and

Tawn, 2004; Vettori et al., 2019), structural design (Coles and Tawn, 1994), dietary risk assessment

(Chautru, 2015) and financial risk assessment (Zhang and Huang, 2006; Hilal et al., 2014).

The study of multivariate extremes primarily began in the 1970s and 80s, with the theoreti-

cal study of multivariate regular variation (de Haan, 1970; de Haan and Resnick, 1977; Resnick,

1987). Multivariate regular variation is intrinsically tied up with the componentwise block max-

imum method for multivariate extremes. Suppose we have n independent replicates of a random

vector Yi ∈ Rd, i = 1, . . . , n; the componentwise maximum vector is

Mn = (Mn,1, . . . ,Mn,d) =

(
max

1≤i≤n
Y1,i, . . . , max

1≤i≤n
Yd,i

)
.

Univariate extreme value theory tells us that if, for each j = 1, . . . , d, there exists an,j > 0, bn,j

such that (Mn,j − bn,j)/an,j converges to a non-degenerate random variable, then the distribution

of this limiting variable is generalized extreme value (Fisher and Tippett, 1928; Gnedenko, 1943),

which is the only univariate max-stable distribution. A distribution is max-stable if it is invariant to

the operation of taking (componentwise) block maxima, up to marginal location and scale changes.

The additional condition for joint convergence of the entire vector (Mn − bn)/an to a multivariate

max-stable distribution is multivariate regular variation. Since this represents an assumption on

the dependence structure it can be expressed in standardized margins: a common choice is to set

XP,j = 1/[1−Fj(Yj)], where XP,j follows a standard Pareto distribution if Yj ∼ Fj has a continuous

distribution, else it is asymptotically Pareto. A common way to express the multivariate regular

variation assumption is

lim
t→∞

Pr(XP /‖XP ‖ ∈ B, ‖XP ‖ > ts | ‖XP ‖ > t) = s−1H(B), s > 1, (1)

where B ⊂ Sd−1 = {v ∈ [0, 1]d : ‖v‖ = 1} is a measurable set with H(∂B) = 0. Assumption (1)

shows that large values of the “radial” component ‖XP ‖ become independent of the “angular”

component XP /‖XP ‖, which follows some probability distribution H on Sd−1, commonly referred

to as the spectral measure. The choice of norm ‖·‖ is arbitrary, see, e.g., Beirlant et al. (2004, Chap.

8), but the most common choice is the L1 norm ‖ · ‖1, so that Sd−1 = {v ∈ [0, 1]d :
∑d

j=1 vj = 1}.

Statistical methodology for multivariate extremes followed shortly after this theoretical study,

and focused initially on inference for data arising as componentwise block maxima through parametrized

2



forms of multivariate max-stable distributions (Tawn, 1990). This was soon followed by more direct

exploitation of the multivariate regular variation assumption (1), whereby parametric models were

proposed for the spectral measure H, and inference performed on these (Coles and Tawn, 1991).

The study of componentwise maxima is a natural multivariate extension of the univariate block

maximum approach, and the associated multivariate regular variation dependence condition (1)

widely applicable. However, it has been known for a long time that while examples not satisfying (1)

are rare, the number of examples for which this assumption forms a useful basis for statistical

inference is very much smaller. This is because, for many dependence structures, mass of the

spectral measure H accumulates on one or more regions of the form

BC = {v ∈ Sd−1 : vj > 0, j ∈ C; vk = 0, k 6∈ C}, C ⊂ {1, . . . , d}. (2)

When this is the case, joint extremes of the random vector Y (or equivalently XP ) may not always

occur simultaneously; see, e.g., Goix et al. (2017) or Simpson et al. (2020) for a more detailed

explanation. In practice, however, we never observe mass on such sets BC at finite levels. This is

illustrated in Figure 1, which displays the distribution of XP /‖XP ‖1 when the associated radial

variable ‖XP ‖1 exceeds its 0.98 quantile for two examples. In the left panel, the true limiting

spectral measure H places mass only on the points B{1} = {(1, 0)} and B{2} = {(0, 1)}, yet at

observable levels, the distribution of angles is relatively evenly spread over B{1,2}, represented by

the interval (0, 1). In the right panel, the limiting spectral measure places mass only on B{3} and

B{1,2}, but once again, at observable levels we see all values in B{1,2,3}. A consequence of this

mismatch between finite-sample and limiting distribution is a common modelling assumption that

H places all mass on B{1,...,d} = {v ∈ Sd−1 : vj > 0, j ∈ {1, . . . , d}}, leading to overestimation of the

probability of joint extremes. Moreover, even if one successfully detects the location of mass of the

limiting object H, this does not lead to a practical strategy for performing extrapolation beyond

the observed values; to achieve this, more detailed information on the behaviour of XP before the

limiting regime is required.

1.2 Geometric approach to multivariate extremes

The early study of multivariate regular variation was followed by a smaller body of work that exam-

ined the convergence of light-tailed multivariate sample clouds onto so-called limit sets (Davis et al.,

1988; Kinoshita and Resnick, 1991). These ideas did not have a clear link with multivariate max-

stable models and did not lead to the same proliferation of statistical methodology. More recently,

several papers have revisited this geometric approach from a theoretical perspective (Balkema et al.,

2010; Balkema and Nolde, 2010, 2012; Nolde, 2014; Nolde and Wadsworth, 2022) and in some cases

shown how the shape of the limit set links to whether joint extremes of certain variables can occur.
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Figure 1: Illustration of the distribution ofXP /‖XP ‖1, given that ‖XP ‖1 is large, for two examples.

Left panel: XP has a bivariate Gaussian dependence structure with correlation parameter ρ =

0.8. The ticks correspond to observed angles XP,1/‖XP ‖1 associated to large radii, along with a

histogram of their density. The position of mass of the theoretical limiting H is illustrated by large

filled circles (red). Right panel: (XP,1, XP,2) have an inverted Clayton dependence structure while

XP,3 is simulated conditional upon the value of XP,2 so that these variables have an inverted logistic

dependence structure. Points correspond to the observed distribution of (XP,1, XP,2)/‖XP ‖ with

large radii. The position of mass of the theoretical limiting H is illustrated by the large filled circle

and thick solid line (red).

To make ideas more concrete consider n independent copies of a random vector Xi, i = 1, . . . , n,

with standard exponential margins; in practice, this will typically involve marginal transformation

of the original vectors Yi. The scaled n-point sample cloud is defined as

Nn = {X1/ log n, . . . ,Xn/ log n},

and we assume that this converges onto a limit set G = {x ∈ Rd+ : g(x) ≤ 1}, where g is the

1-homogeneous gauge function of the limit set. This convergence is illustrated in Figure 2 for data

with a logistic dependence structure, where the shape of the limit set can be seen to emerge in

the scaled sample cloud as n becomes large. The precise sense of convergence of Nn onto G, and

necessary and sufficient conditions for it, can be found in Balkema et al. (2010). Loosely, these

conditions say that the expected number of points from Nn lying in sets that intersect with the

limit set tends to infinity, whereas the expected number of points lying in sets that are disjoint from

the limit set converges to zero. However, these specific conditions are rather unintuitive and make

it difficult to determine the form of G for a given distribution, which led Nolde (2014) and Nolde
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Figure 2: Illustration of the convergence of the scaled sample cloud Nn onto a limit set. From left

to right, sample sizes are n = 100, 1000, 10000. The limit set G is depicted by the grey polygon.

and Wadsworth (2022) to consider alternative conditions in terms of the joint Lebesgue density of

X, when it exists. Denoting this joint density by fX , a sufficient condition for convergence of Nn

onto G is

lim
t→∞
− log fX(tx)/t = g(x), x ∈ [0,∞)d, (3)

for a continuous gauge function g. Given that many statistical models have tractable joint densities

and continuous gauge functions, equation (3) provides a simple way to determine the form of g,

and hence G, in several examples (Nolde and Wadsworth, 2022). Further illustrations of limit sets

G are given for d = 2, 3 in Section A of the supplement.

The shape of G is important as a description of the extremal dependence of the underlying

random vector. Limit sets exist for a much more general class of light-tailed marginal distributions

than exponential, but we specialize to this case so that there is a clear correspondence between the

shape of G and the dependence structure. In this case, the coordinatewise supremum of the limit

set G is the point (1, . . . , 1), since for independent copies of an exponential variable Xi, the random

variable max1≤i≤nXi/ log n converges in probability to 1. Gauge functions, and therefore limit

sets, of lower dimensional margins indexed by J ⊂ {1, . . . , d} can be found through the following

minimization operation (Nolde and Wadsworth, 2022):

gJ(xJ) = min
xk≥0,k 6∈J

g(x),

where xJ = (xj)j∈J . Exponential margins implies that for singleton sets J = {j}, g{j}(xj) = xj .

Nolde and Wadsworth (2022) showed how G can be used to determine an array of extremal

dependence measures which generally relate to representations of multivariate extremes that are

more useful than multivariate regular variation when the spectral measure H places mass on one

or more sets BC as in equation (2). These include expressions for determining the residual tail
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dependence coefficient (Ledford and Tawn, 1997), key elements of the conditional extremes model

(Heffernan and Tawn, 2004), the angular dependence function (Wadsworth and Tawn, 2013), and

the dependence coefficients of Simpson et al. (2020), which can be used to help determine the sets

BC on which H places mass.

Given the importance of the shape of G, a natural question that arises is how to estimate this

from a sample of data. To date this question has been studied very little indeed; Jacob and Massé

(1996) study estimation from a theoretical perspective but with no implementation. Very recently,

Simpson and Tawn (2022) outlined an estimation approach in the bivariate case.

In this paper, we consider estimation of G as part of a wider new approach to the statistical

analysis of extreme values. While G is an object of interest in itself, we direct our methodology

more broadly at the question of statistical modelling and extrapolation for multivariate extreme

values rather than focusing only on the descriptive aspects of extremal dependence that come from

estimation of G. Our modelling approach allows in principle for any combination of joint extremes

of sub-vectors of Y (equivalently, H may place mass on any valid combination of sets BC), and

permits extrapolation in all directions, i.e., into the joint tail where all variables are large, or into

other regions of the multivariate tail where only some variables are large. Existing alternatives to

methodology based on multivariate regular variation do not capture these possibilities in a coherent

manner.

To illustrate the potential importance of being able to capture complex structure in extremes,

consider the dataset of river flow measurements from Simpson et al. (2020) that will also be analyzed

in Section 6.2. Their analysis showed that there are some events where all four rivers were extreme

simultaneously, but that there were also extreme episodes involving single rivers, or groups of two or

three rivers without the others. This might be explained physically by the weather patterns causing

the extremes, and the relationships between catchments. While Simpson et al. (2020) introduced

and estimated coefficients to help determine this structure, they did not provide any modelling

approach that could account for it, as we do here.

Section 2 outlines our statistical model and assumptions. Section 3 details theoretical exam-

ples that demonstrate applicability of the method. We focus on details of statistical inference in

Section 4, and use simulation to show that our approach is very competitive for estimation of ex-

treme set probabilities in a wide range of scenarios in Section 5. Section 6 contains applications to

oceanographic and fluvial datasets, and we conclude in Section 7.
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2 Model and assumptions

Here and throughout the rest of the paper, we assume that we have a random vectorX with standard

exponential margins and joint Lebesgue density denoted by fX . Marginal transformation can be

applied as a standard step via estimation of each marginal distribution function. The assumption

of a joint density is very common for statistical analysis, as it is required for most likelihood-based

inference, for example. We further assume that the scaled sample cloud Nn converges onto a limit

set G whose shape can either be described by a continuous gauge function g, or that we are only

interested in the continuous part.

Assumption (3), which yields a sufficient condition for convergence of Nn onto G, can equiv-

alently be expressed fX(tx) = exp{−tg(x)[1 + o(1)]} for g(x) > 0 as t → ∞. The homogeneity

of g suggests making the radial-angular transformation R =
∑d

j=1Xj ,W = X/R; such transfor-

mations are common in multivariate extremes, but normally on Pareto, rather than exponential,

margins. The Jacobian of this transformation is rd−1, which leads to joint density of (R,W ):

fR,W (r,w) = rd−1fX(rw) = rd−1 exp{−rg(w)[1 + o(1)]}, as r → ∞. This in turn means that the

conditional density of R |W = w satisfies

fR|W (r | w) ∝ rd−1 exp{−rg(w)[1 + o(1)]}, r →∞. (4)

If we were to ignore the o(1) term, we recognize the form of the gamma kernel in equation (4),

suggesting that when R |W = w is large, its distribution could potentially be well approximated

by a gamma distribution. Indeed, if the o(1) term in the exponent is negligible, this suggests

a truncated gamma approximation above a high threshold r0(w) of the conditional distribution

R |W = w.

A valid concern is whether the o(1) term in the exponent of (4) is really negligible. In Section 3

we detail several examples which in fact have the more helpful asymptotic form fR|W (r | w) ∝

rd−1 exp[−rg(w)][1 + o(1)], i.e., with the o(1) outside of the exponent, and give explicit rates for

this term. Based on this latter asymptotic representation, we focus in this paper on the model

R | [W = w, R > r0(w)]
.∼ truncGamma(α, g(w)), (5)

where α > 0 is the gamma shape, and g(w) is the gamma rate parameter. In most examples, the

theoretical shape parameter is α = d, but for modelling purposes the flexibility of an estimated

shape is desirable. By parametrizing flexible forms for the gauge function g(w) = g(w;θ), we

can use approximation (5) to estimate these parameters. Full details of our approach are given in

Section 4, including diagnostic plots for assessing approximation (5).
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3 Examples

In this section we consider a variety of examples. The convergence onto a limit set G holds very

broadly, and in many examples the gauge function for this limit set in exponential margins can be

recovered fully or partly from convergence (3). The form of the gauge function and limit set for

several examples, including multivariate tν , light-tailed elliptical, skew-normal, generalized hyper-

bolic, certain mixture distributions and multivariate generalized Pareto forms has been derived in

Balkema et al. (2010), Nolde (2014), Nolde and Wadsworth (2022), and Zhang et al. (2022), for

example, although not always in exponential margins.

The validity and quality of the truncated gamma approximation in (5) to the conditional density

in (4) depends on the o(1) term. Since this lies in the exponent, it is not always guaranteed to be

negligible. In this section, we explicitly calculate the density of R |W = w for various theoretical

examples, showing that most in fact have the form fR|W (r | w) ∝ rd−1 exp[−rg(w)][1 + o(1)], as

r → ∞. The exception to this is the Gaussian dependence structure, for which we find fR|W (r |

w) ∝ rα(w)−1 exp[−rg(w)][1 + o(1)], as r →∞, i.e., the conditional gamma form is still applicable,

but the shape parameter depends on the value of w. Nonetheless, further investigations, described

briefly below and in more detail in Section C of the supplement, show the assumption of a common

shape in model (5) does not appear problematic in practice. This is also supported by our simulation

study in Section 5. More generally, we will incorporate model checking of assumption (5) into our

statistical analysis.

For each distribution, we provide the overall form of fR|W (r | w), with further calculations

given in Section B of the supplement. We denote the ordered values of the vector w (and similarly

x) by w(1) ≥ w(2) ≥ · · · ≥ w(d) > 0, assuming the minimum to be positive. In the convergence

rates given below, we assume a strict ordering w(1) > w(2) > · · · > w(d) > 0; where this is not

the case, following the derivations in the supplement, one usually observes improved rates, e.g.,

O(e−r(w(d−2)−w(d))) replacing O(e−r(w(d−1)−w(d))) if w(d−2) > w(d−1) = w(d).

Multivariate max-stable and generalized Pareto distributions Multivariate max-stable

distributions are most readily expressed by their distribution functions. In exponential margins,

Pr(X ≤ x) = exp
(
−V

{
[− log(1− e−x)]−1

})
,

where V : Rd+ → R+ is the homogeneous of order −1 exponent function, and operations are ap-

plied componentwise. The general asymptotic form of the density for a max-stable distribution in

exponential margins is therefore

fX(tx) = exp{−V [etx + 1/2 +O(e−tx)]}
∑
π∈Π

∏
s∈π

Vs[e
tx + 1/2 +O(e−tx)]× et

∑d
j=1 xj [1 +O(e−2tx(d))],
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t→∞, where Π is the set of all partitions of {1, . . . , d}, and Vs(z) = ∂|s|V (z)/
∏
j∈s ∂zj .

We focus on the d-dimensional logistic distribution, for which V (z) =
(∑d

j=1 z
−1/γ
j

)γ
with

parameter γ ∈ (0, 1]. This distribution has gauge function g(x) =
∑d

j=1 xj/γ + (1− d/γ)x(d), and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−r(w(d−1)−w(d))/γ) +O(e−rw(d))], r →∞.

The simpler form of the densities make calculations more straightforward for corresponding mul-

tivariate generalized Pareto distributions (MGPDs), which are related to max-stable distributions

(Rootzén and Tajvidi, 2006; Rootzén et al., 2018). The support of MGPDs whose margins have

unit scale and zero shape is contained in {x ∈ Rd : x(1) > 0}. Densities for several models for which

the spectral measure H places mass only on B{1,...,d} are given in Kiriliouk et al. (2019); in such

cases the dependence structure can be determined by focusing on large values of x > 0. Further

details are in the supplement, Section B.

For the MGPD associated to the negative logistic max-stable distribution (Galambos, 1975;

Dombry et al., 2016), g(x) = (1 + dγ)x(1) −
∑d

j=1 xjγ, γ > 1 and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O

(
er(w(2)−w(1))γ

)]
, r →∞.

For the MGPD associated to the Dirichlet max-stable distribution (Coles and Tawn, 1991),

g(x) = (1 +
∑d

j=1 θj)x(1) −
∑d

j=1 θjxj , for all θj > 0, and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O

(
er(w(2)−w(1))

)]
, r →∞.

Inverted max-stable distributions Inverted max-stable distributions are derived by translating

the joint lower tail of max-stable distributions to be the joint upper tail. This is achieved by applying

a monotonically decreasing marginal transformation to a max-stable random vector. In exponential

margins inverted max-stable distributions have density

fX(x) = exp[−l(x)]
∑
π∈Π

∏
s∈π

ls(x),

where l is the stable tail dependence function of the corresponding max-stable distribution, obtained

via l(x) = V (1/x), and ls(x) = ∂|s|l(x)/
∏
j∈s ∂xj . The gauge function is always g(x) = l(x).

Owing to the fact that ls(x) is homogeneous of order 1− |s|, we obtain

fR|W (r | w) ∝ rd−1 exp[−rg(w)][1 +O(r−1)], r →∞.

Multivariate Gaussian distribution We consider the multivariate Gaussian dependence struc-

ture with correlation matrix Σ. When one or more correlation parameters is negative then the
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continuous convergence − log fX(tx)/t → g(x) fails when components of x are zero, because the

gauge function of the limit set is not continuous away from the strictly positive orthant (Nolde and

Wadsworth, 2022). Since we are considering w(d) > 0 this is not an issue here, but we note that

to fully capture negative association it is ideal to reformulate ideas in terms of Laplace rather than

exponential margins; see Nolde and Wadsworth (2022) and Section 7. For Σ with non-negative

entries, g(x) = (x1/2)>Σ−1x1/2, where x1/2 = (x
1/2
1 , . . . , x

1/2
d )>, and

fR|W (r | w) ∝ rα(w)−1 exp[−rg(w)]

[
1 +O

(
(log r)2

r

)]
, α(w) =

d

2
+

(w1/2)>Σ−1w−1/2

2
,

r →∞. In this case, the gamma shape parameter therefore depends on w, and the region on which

α(w) > 0 depends on the entries of Σ. We investigate this further in Section C of the supplement,

showing that local estimates of α do not vary strongly with w and may reasonably be assumed

constant. We also show that results from our model are useful even in the (typically small) regions

where α(w) ≤ 0.

Multivariate tν distribution We consider the multivariate t distribution with ν degrees of

freedom, focusing only on positive dependence; see the supplement for further comment. The gauge

function is g(x) = (1 + d/ν)x(1) −
∑d

j=1 xj/ν, and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O(er(w(2)−w(1))/ν) +O(e−2rw(d)/ν)

]
, r →∞.

Clayton and inverted Clayton copulas We consider the Clayton and inverted Clayton copulas

with parameter γ > 0. The Clayton copula has g(x) =
∑d

j=1 xj , and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−rw(d))], r →∞.

The inverted Clayton copula has g(x) = (1 + dγ)x(1) −
∑d

j=1 xjγ, and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−r(w(2)−w(1)))], r →∞.

In the supplement, we also calculate fR|W (r | w) for a trivariate vine copula example.

4 Statistical inference

4.1 Calculating the threshold r0(w)

To implement model (5), we firstly need to calculate r0(w), which represents a high threshold

of the conditional distribution R | W = w. A natural approach to calculating this threshold is

quantile regression, treating W as the covariate. A similar approach has been taken in the context
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of establishing covariate-dependent thresholds in univariate extreme value analysis (Northrop and

Jonathan, 2011). When data are bivariate, so thatW ∈ S1 is equivalent to W ∈ [0, 1], this approach

is straightforward. However, standard parametric quantile regression requires a high degree of

manual tuning to ensure that the model form captures the relation between R and W well. We

therefore suggest using additive quantile regression (Fasiolo et al., 2021) via the corresponding R

package qgam.

When W ∈ Sd−1, d > 2, then both parametric and additive quantile regression become more

difficult due to the specific support of W on the simplex. A simple alternative is to calculate

quantiles of R | W = w from overlapping blocks of W values, which is feasible for relatively low

dimensions, but becomes more laborious as d grows. The top row of Figure 3 illustrates the concepts

for d = 2, 3. In each case, r0(w) is calculated as the 0.95 quantile of R |W = w.

In the second row of Figure 3 we demonstrate that the threshold r0(w), suitably rescaled, can

be viewed as a non-/semi-parametric estimate of g. The reason for this can roughly be explained

by considering the case where the gamma approximation is exact. Let F̄ (r | w) be the (gamma)

survival function of R |W = w, then for quantile regression at level τ ∈ (0, 1), F̄ [r0(w) | w] = 1−τ .

We have

F̄ [r0(w) | w] = 1−
∫ r0(w)

0

g(w)α

Γ(α)
vα−1e−vg(w) dv

= 1−
∫ r0(w)g(w)

0

sα−1

Γ(α)
e−s ds = 1− τ, (6)

using the change of variables s = g(w)v. Equation (6) is solved by taking r0(w) = Cτ/g(w),

with Cτ the solution to the equation
∫ Cτ

0
sα−1

Γ(α) e
−s ds = τ . Since the gamma approximation is only

asymptotically valid, we have in practice that r0(w) ≈ Cτ/g(w) for τ close to 1. To depict unit level

sets of the gauge function g, we plot points x = v/g(v), where v is a sequence of points covering

the simplex Sd−1. Consequently, we can compare r0(w) to g by plotting points x = vr0(v)/Cτ .

However, since the gamma approximation is not exact, we instead scale each margin so that the

coordinatewise supremum exactly equals one, by plotting

x = {v1r0(v)/max[v1r0(v)], . . . , vdr0(v)/max[vdr0(v)]} . (7)

We will use the observation that links r0(w) and g(w) later to assist with model checking,

but note that, combined with extension of additive quantile regression to higher dimensions, this

presents a very interesting avenue for future work.
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Figure 3: Top row: R against W , with the estimated 0.95 quantile of R | W = w in red. In the

left and centre (d = 2) plots, solid lines represent the output from qgam, and dashed lines from

rolling-windows quantiles. In the right (d = 3) plot, the surface is calculated through a rolling-

windows technique. Bottom row: Plots of x = vr0(v), rescaled to lie in [0, 1]d as per equation (7).

In the left and centre plots, dotted black lines represent the output from qgam, and dashed black

lines from rolling-windows quantiles. The solid lines (blue) are the unit level sets of g(x), with g

the true gauge function. In the right plot, the jagged surface (red) comes from the rolling-windows

technique, and the smooth surface (blue) is the unit level set of the true gauge function.
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4.2 Likelihood

In order to fit model (5), we use likelihood-based inference. For n0 independent observations of

Ri | [Wi = wi, Ri > r0(wi)], i = 1, . . . , n0, we maximize the likelihood

L(ψ) =

n0∏
i=1

g(wi;θ)α

Γ(α)

rα−1
i e−rig(wi;θ)

F̄ [r0(wi);α, g(wi;θ)]
, (8)

where ψ = (α,θ)> and F̄ [·;α, g(w;θ)] represents the gamma survival function with shape parameter

α, and rate parameter g(w;θ). Estimates of uncertainty in the maximum likelihood estimators may

be obtained through the inverse Hessian matrix, subject to model validity and independence checks,

or via the bootstrap. In practice, many datasets exhibit weak-to-moderate temporal dependence,

so that while likelihood (8) may be used for parameter estimation (e.g., Chandler and Bate, 2007),

block-bootstrap techniques will be preferable for estimation of uncertainty.

4.3 Gauge functions and model selection

4.3.1 Gauge functions from specific distributions

Key to a successful fit of model (5) via likelihood (8) are flexible parametrized forms of g that

are able to capture a wide variety of limit set shapes. In Section 3, we detail various forms of

gauge function that come from different underlying distributions, some of which are illustrated in

Section A of the supplement. Further forms can also be found in Nolde and Wadsworth (2022).

Any of these parametric forms could be fitted as a candidate model, and standard model-selection

techniques, such as information criteria, used to establish a best choice; we will demonstrate this in

our simulation study of Section 5.

A key attraction of our new approach to inference for multivariate extremes is the ability to

capture the complex dependence structures that arise when different sub-groups of variables can

potentially be co-extreme while the others are small. Under multivariate regular variation, this

corresponds to the spectral measure H placing mass on sets BC as described in Section 1. In order

to capture these scenarios, we consider the gauge function corresponding to the asymmetric logistic

distribution (Tawn, 1990), which can place mass on any valid combination of sets BC . The full

expression for this involves minimization over several components, and is given in Section D of the

supplement. Figure 4 depicts some of the potential limit sets arising from this structure when d = 3.

4.3.2 Additively mixing gauge functions

The gauge functions described in Section 3 provide a starting point for inference on model (5), but

may not always be flexible enough to capture the structures of observed data. We now consider how
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Figure 4: Example limit sets G (area between surface and planes xj = 0) from the asymmetric

logistic distribution. Left: mass of H on B{1,2}, B{1,3}, B{2,3} with parameters γ{1,2} = 0.5, γ{1,3} =

0.2, γ{2,3} = 0.7. Centre: mass on B{3}, B{1,2}, B{1,3}, B{1,2,3} with γ{1,2} = 0.5, γ{1,3} = 0.5,

γ{1,2,3} = 0.7. Right: mass on B{1}, B{2}, B{3}, B{1,2,3} with γ{1,2,3} = 0.5.

to mix gauge functions to generate more flexible models. As mentioned in Section 1, the limit sets G

for data with exponential margins have coordinatewise supremum equal to (1, . . . , 1); equivalently,

the one-dimensional marginal gauge functions are g{j}(xj) = xj . Each form of g given in Section 3

satisfies this constraint, and we require any scheme for mixing gauge functions to also satisfy this,

since they will be applied to data in exponential margins.

A simple way to mix that retains the marginal condition g{j}(xj) = xj is via minimization:

g(x) = min[g[1](x), . . . , g[m](x)], for g[1], . . . , g[m] each satisfying this marginal condition. The result-

ing gauge function is the one that would correspond to a mixture density fX(x) =
∑m

k=1 πkf
[k]
X (x)

with
∑m

k=1 πk = 1 and πk ∈ (0, 1) for each k; the mixture weights do not appear in g because as

n → ∞ there would be infinitely many points in the sample cloud from each mixture component.

However, such an approach has the effect of retaining the most protruding part of each limit set and

may not yield the most realistic shapes; some examples are given in Section E of the supplement.

Instead we focus on additive mixing, defining

g̃(x) = a1g
[1](x) + · · ·+ am−1g

[m−1](x) + g[m](x), a1, . . . , am−1 > 0. (9)

The resulting function is denoted by g̃ as in general it will not satisfy the marginal condition,

and will need to be rescaled to do so. Suppose that the coordinatewise supremum of the set

G̃ = {x : g̃(x) ≤ 1} is c̃ = (c̃1, . . . , c̃m). Then the rescaled gauge function g(x) = g̃(c̃1x1, . . . , c̃dxd)

satisfies g{j}(xj) = xj . Some examples of limit sets from additively mixed functions are depicted in

Figure 5. Interestingly, we observe for d = 2 that this process is able to interpolate between limit

sets for which g(1, 1) = 1 and have a “pointy” shape, to those with g(1, 1) < 1 and are described

by Balkema and Nolde (2012) as “blunt”. The former arise for dependence structures representing

14
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Figure 5: Examples of limit sets (grey shaded region) from additively mixed gauge functions ac-

cording to equation (9), with subsequent rescaling. In each case the component gauge functions

are g[1](x1, x2) = [x1 + x2 − 2ρ(x1x2)1/2]/(1 − ρ2) with ρ = 0.5 and g[2](x1, x2) = (x1 + x2)/γ +

(1−2/γ) min(x1, x2) with γ = 0.5; these gauges correspond to the Gaussian and logistic max-stable

distributions, respectively. From left to right, the weights are a1 = 1, 2, 3.

joint extremes (H places mass only on B{1,2}), while the latter arise for those representing separate

extremes (H places mass only on B{1} and B{2}). Figures in Section E of the the supplement also

show that for d = 3 we retain the ability to move between “pointy” limit set shapes representing joint

occurrence of extremes in some components and “blunt” shapes representing separate extremes. We

focus in the figures only on the case m = 2, and leave theoretical study of this phenomenon for any

m to future work.

Note that when using additive mixing, the component gauge functions g[k](x) need not satisfy

the marginal condition g{j}(xj) = xj due to the rescaling. This allows, for example, one to include

the Gaussian gauge function g(x) = (x1/2)>Σ−1x1/2 when Σ has negative entries, and increases the

flexibility of this approach. In practice, we use numerical methods to find the vector c̃ for rescaling,

by finding the coordinatewise supremum of G̃ on a grid.

4.4 Model checking

We propose checking the fitted model from likelihood (8) via probability-probability (PP) plots.

The fitted distribution function (df) of the truncated gamma model is

F̂tg[r | w, r0(w)] := Pr[R ≤ r |W = w, R > r0(w)] = 1− F̄ [r; α̂, g(w; θ̂)]

F̄ [r0(w); α̂, g(w; θ̂)]
,

with F̄ as in likelihood (8), and α̂, θ̂ representing the maximum likelihood estimates of the param-

eters. The PP plot for n0 observations with Ri > r0(wi) is the set of points: [i/(n0 + 1), u(n0−i+1)],

where ui = F̂tg[ri;wi, r0(wi)], and u(1) ≥ u(2) ≥ · · · ≥ u(n0) represent the ordered sample of ui.
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This diagnostic will be demonstrated in Section 6.

Comparison of the “empirical” estimate of the gauge function ĝ(w) ≈ Ĉ/r0(w), as outlined in

Section 4.1, provides another check on the form of the fitted model. As was seen in Section 4.1,

while we do not expect perfect correspondence between ĝ(w) and g(w; θ̂), we can expect to see

broad similarities in shape. Again we use this in Section 6.

4.5 Prediction

A key aspect of our proposed geometric framework for statistical inference is that we can use

simulation from the fitted model to estimate probabilities of lying in extreme regions, enabling

extrapolation outside the range of the observed data. Up to this point, we have focused on the

conditional distribution of R | [W = w, R > r0(w)]. In order to perform extrapolation and estimate

multivariate tail probabilities, we need realizations of the distribution ofX in some suitably extreme

region. Notationally it is helpful to introduce an alternative radial variable, R′ = R/r0(W ), so that

X = RW = R′r0(W )W . Given a particular value of W = w, our extreme region to date has been

{R > r0(w)}. Now considering our extreme region across all (R,W ) values, this corresponds to

{R′ > 1}. In Figure 3, all points above the red line / surface in the top row are those with {R′ > 1}.

We focus initially on simulating an arbitrary number of points satisfying the conditioning event

{R′ > 1}, and discuss below adaptations for simulating above higher thresholds. To get draws from

the distribution of X | R′ > 1, we multiply simulations from two components:

(i) Draw w? from the distribution of W | R′ > 1;

(ii) Conditional upon w?, draw r? from the distribution of R | [W = w?, R > r0(w?)].

The sampled value is then x? = r?w?. The second of these steps is a simple case of simulating from

the fitted truncated gamma distribution, which can be done via the inverse probability integral

transform. For the first of these, we may either resample from the empirical distribution of W |

R′ > 1, or we could fit a parametric model to such samples and simulate from this. We opt for the

former in this work, and note the latter as a potential line of future investigation. Figure 6 shows

5000 draws simulated from X | R′ > 1, based on a model fitted to 2500 data points.

To estimate the probability of lying in extreme sets, we exploit the simple equation

Pr(X ∈ B) = Pr(X ∈ B | R′ > 1) Pr(R′ > 1), (10)

for any set B lying entirely within the region {x ∈ Rd+ :
∑d

j=1 xj > r0(x/
∑d

j=1 xj)}; some exam-

ples are given in Figure 6. The first probability on the right-hand side of (10) can be estimated

empirically from the simulated draws. The second probability may be estimated from the dataset
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Figure 6: Example of 5000 points simulated from X | R′ > 1, depicted by crosses (blue), for the

inverted logistic (left) and logistic (right) distributions. Models with the true gauge were fitted

to threshold exceedances of 2500 data points, with all data depicted by dots (green). Light grey

squares represent potential sets B in equation (10).

as the proportion of points R′ exceeding 1. When quantile regression at level τ has been used to

estimate r0(w), we expect the proportion of points above the threshold to be near 1− τ .

The fact we can simulate an arbitrary number of points from our model with the condition

{R′ > 1} means that in principle we can extrapolate quite a way beyond the observed data.

Nonetheless, such an approach may be computationally demanding for very extreme sets that require

a large number of simulations. We consider now how to simulate given the condition {R′ > k},

with k > 1; results will be illustrated in Section 5.

Simulation from the truncated gamma distribution of R | [W = w, R > kr0(w)] is again

straightforward, but simulation from the distribution of angles W | R′ > k is more challenging if

k is sufficiently high that there are few or no empirical samples available. However, we have the

relation

fW (w | R′ > k) =

∫∞
k fR′,W (r′,w | R′ > 1) dr′∫

Sd−1

∫∞
k fR′,W (r′,v | R′ > 1) dr′ dv

=
fW (w | R′ > 1)

∫∞
k fR′|W (r′ | w, R′ > 1) dr′∫

Sd−1

∫∞
k fR′|W (r′ | v, R′ > 1)fW (v | R′ > 1) dr′ dv

, (11)

where fU (· | V > v) denotes the density of a random vector U | V > v. Note that∫ ∞
k

fR′|W (r′ | w, R′ > 1) dr′ =

∫ ∞
kr0(w)

fR|W (r | w, R > r0(w)) dr,

so that under the truncated gamma approximation (5) for R | [W = w, R > r0(w)], we have the
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proportionality statement

fW (w | R′ > k) ∝ fW (w | R′ > 1)
F̄ [kr0(w);α, g(w)]

F̄ [r0(w);α, g(w)]
. (12)

The ratio of gamma survival functions in (12) can therefore be used as importance weights to derive

an approximate sample from the distribution of W | R′ > k, using a sample from the distribution

of W | R′ > 1.

Finally, to estimate Pr(R′ > k), so that we can calculate extreme probabilities as in equa-

tion (10), note that the constant of proportionality in (12) is Pr(R′ > k | R′ > 1), from the

denominator of equation (11). An estimate of this is therefore

P̂r(R′ > k | R′ > 1) =
1

n0

n0∑
i=1

F̄ [kr0(wi);α, g(wi)]

F̄ [r0(wi);α, g(wi)]
,

where wi, i = 1, . . . , n0 are the angles corresponding to the values for which R′ > 1. Lastly,

P̂r(R′ > k) = P̂r(R′ > k | R′ > 1)P̂r(R′ > 1), where P̂r(R′ > 1) is estimated empirically, as

previously. We note that another alternative to this procedure is to fit the generalized Pareto

distribution to R′ | R′ > 1 and use this fitted model to estimate Pr(R′ > k | R′ > 1). Our

investigation into this found that both options perform similarly for relatively small k, but the

generalized Pareto model introduces extra uncertainty for larger k, and so we stick to the first

approach in Section 5.

In our experience we have found that estimates of Pr(X ∈ B) are relatively insensitive to the

precise choice of k, provided both that k is large enough to ensure that several sample points lie

in B, and that B ⊂ {x ∈ Rd+ :
∑d

j=1 xj > kr0(x/
∑d

j=1 xj)}, as is required for the analogue of

equation (10) to hold. The simplicity of checking this latter condition depends on the shape of B

and of r0(w), but it is easy to check visually for d = 2, and it may crudely be checked by ensuring

that k <
∑d

j=1 x̃l,j/r0(x̃l/
∑d

j=1 x̃l,j) for a sample of points x̃l, l = 1, . . . ,m, along the boundary

of B. See the Supplement Section F for further discussion and summary of our investigation. We

recommend taking an intermediate k that is slightly smaller than the maximum for which this series

of m inequalities holds, to safeguard against the crudeness of this check.

4.6 Summary of inference and prediction procedures

For convenience, we briefly summarize the procedures for inference and prediction via the geometric

framework:

1. Determine a high threshold r0(w) of the distribution of R | W = w for all w ∈ Sd−1 using

either additive quantile regression or a rolling-windows approach.
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2. Select a set of candidate parametric gauge functions g(·;θ) and for each one fit the truncated

gamma likelihood (8) to the n0 values of R | [W = w, R > r0(w)].

3. Compare model fits using selection criteria such as the Akaike or Bayesian information crite-

rion.

4. Use diagnostics such as the PP plot and comparison with the empirically-estimated gauge

function to confirm acceptable fit of the best model(s).

5. Letting R′ = R/r0(W ), simulate new realizations from the distribution of X | R′ > 1 by

drawing from the empirical distribution of W | R′ > 1 and multiplying by draws of R | [W =

w, R > r0(w)] from the fitted truncated gamma distribution. If required, adapt these steps

to simulate from the distribution of X | R′ > k with k > 1.

6. Estimate Pr(X ∈ B) using equation (10), or suitable adaptation if R′ > k.

5 Simulation study

We now demonstrate the performance of our methods against existing approaches for analyzing

multivariate extremes. Our focus lies on estimation of probabilities Pr(X ∈ B) for three sets B

that lie in different parts of the region where X may be considered extreme.

We begin with the bivariate case, which is well-established and understood, demonstrating that

our methodology gives estimates with low bias in each situation, performing competitively with

other methods across a range of scenarios. Specifically, we compare with estimation methodology

based on multivariate regular variation (MRV), hidden regular variation (Ledford and Tawn, 1997)

(HRV) and the conditional extreme value model (CE) of Heffernan and Tawn (2004). The simplest

approach to implementing MRV methodology is to use the approximation Pr(X ∈ v + B′) ≈

e−v Pr(X ∈ B′), where we take as the set of interest B = v + B′, and B′ is extreme, but in the

range of the data so can be estimated empirically. This is a nonparametric implementation, but

parametric assumptions are possible as well. Specifically we can also assume that equation (1) holds

at finite levels and choose a parametric form for the angular measure H. We adopt both techniques

below. HRV is a refinement of MRV that allows for situations where the spectral measure H

places no mass on B{1,...,d}. Implementation of this methodology relies on exploiting the relation

Pr(X ∈ v + B′) ≈ e−v/η Pr(X ∈ B′), where η ∈ (0, 1] is the residual tail dependence coefficient;

this is estimated using the Hill estimator (Ledford and Tawn, 1997). Parametric models based on

HRV exist (Ramos and Ledford, 2009), but are generally poorly-justified since the so-called “hidden

angular measure” is often not a finite measure over the unit simplex; we therefore do not consider
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these here. Like MRV however, the asymptotics of HRV are suited only to extrapolating into regions

where all variables are large simultaneously. Implementation of the CE methodology to model the

distribution of X | Xj > u, for large u, follows the original approach suggested in Heffernan and

Tawn (2004), adapted to exponential margins. Probability estimation in this case is performed by

simulating from the distribution of X | Xj > u′, u′ ≥ u. Following the bivariate case, we move on

to the more difficult case of d = 3, and show that we can substantially outperform the CE model in

this setting, which is the only other viable approach for providing an estimate of the probabilities

of interest.

5.1 Dimension d = 2

For the bivariate case, we perform estimation based on 5000 datapoints simulated from four different

dependence structures: (I) logistic distribution with parameter γ = 0.4; (II) Gaussian distribution

with ρ = 0.8; (III) inverted logistic distribution with γ = 0.7; (IV) logistic distribution with γ = 0.8.

Distributions (I) and (IV) represent moderately strong and weak logistic dependence structures,

respectively. In Section G of the supplement we show examples of the four datasets, and three sets

of interest B1 = (10, 12)× (10, 12), B2 = (10, 12)× (6, 8), and B3 = (10, 12)× (2, 4).

In each case we fit model (5) to the data using four different gauge functions: those corresponding

to the unique distributions (I)–(III), where the parameter is to be estimated from the data, and

the function g(x; θ) = max[(x1 − x2)/θ, (x2 − x1)/θ, (x1 + x2)/(2 − θ)]. We select the model that

yields the lowest value of the Akaike information criterion (AIC) for the prediction step, thereby

avoiding using knowledge of the true data-generating process. Recall that before fitting model (5),

we need to calculate a high threshold r0(w). In Section 4.1, we described using either additive

quantile regression or a rolling-windows quantile calculation for this. We used both techniques in

the simulation study, setting τ = 0.95, finding relatively little difference in the performance of the

resulting inference, particularly in comparison to differences across extreme-value methodologies.

Therefore, to keep presentation focused, we detail only the results where r0(w) was found using the

simpler rolling-windows quantile method. Although our focus is on extreme probability estimation,

we also display (non-)parametric estimates of G, obtained via ĝ(w) and g(w; θ̂), in Section G.

For the parametric MRV approach, we employ a similar strategy to our geometric approach.

After transforming to radial-angular coordinates ‖XP ‖ and XP /‖XP ‖1 from Pareto margins, we

take all angles for which the corresponding radius exceeds the 0.95 quantile of radii, and fit a

parametric form for the density of H via maximum likelihood. We choose between five parametric

models for H using AIC, where the true logistic density for distributions (I) and (IV) is among the

choices. Probabilities are estimated using numerical integration over B using the fitted model for
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angles, combined with Pareto density for radii.

Figure 7 displays boxplots of the estimated probabilities for 200 repetitions across different

methodologies:

• the geometric approach with different k (G1, G2);

• the conditional extremes model with different simulation thresholds (CE1, CE2);

• the nonparametric hidden regular variation approach (HRV), and

• nonparametric and parametric multivariate regular variation approaches (MRV, MRV2);

see the caption for further details. For distribution (I), all methods estimate Pr(X ∈ B1) with little

bias; the smallest variance is attributed to the MRV approaches, which is as expected since we are

looking at a distribution where H places mass on B{1,2} and estimating a probability in the joint tail.

The geometric approach and CE estimate Pr(X ∈ B2) relatively well, with the smallest variance

attributable to the geometric approach based onX | R′ > k for suitable k > 1. HRV and MRV start

to exhibit some bias becauseB2 lies outside the joint tail region. For Pr(X ∈ B3), all estimates based

on the nonparametric HRV and MRV approaches are equal to zero. For the geometric approach, we

are able to estimate this probability well when selecting a suitable k. Specifically, in each repetition,

we select one of the largest values of k such that B3 ⊂ {x : (x1+x2) > kr0[x/(x1+x2)]}. This results

in all probabilities having a non-zero estimate, compared to 0% for nonparametric HRV/MRV, and

4.5% for CE (at each of two thresholds). This probability can be estimated as non-zero by parametric

MRV, but with a little bias. A boxplot of this case is included in the left panel of Figure 8.

Distribution (IV) also represents the case where H places mass on B{1,2}, yet interestingly, MRV

gives biased estimates in for all probabilities. This is likely due to the practical rate of convergence to

the limiting angular measure H being slower under this weaker dependence scenario. Indeed we see

differing estimates from the two MRV approaches, which are based on different effective “thresholds”

for defining extremes. MRV changes from appreciably over-estimating the probabilities Pr(X ∈ B1)

and Pr(X ∈ B2) to hugely under-estimating Pr(X ∈ B3). The geometric approach suggests a small

under-estimation of Pr(X ∈ B1) and Pr(X ∈ B2) and good performance for Pr(X ∈ B3). CE

shifts from large under-estimation to over-estimation moving from Pr(X ∈ B1) to Pr(X ∈ B3).

For distributions (II) and (III), the geometric approach and CE exhibit quite similar perfor-

mance, although CE has a smaller variance for estimates of Pr(X ∈ B2) under distribution (II),

and of Pr(X ∈ B3) under distribution (III). MRV is not an appropriate method for these distri-

butions and always performs badly; HRV is appropriate in the joint tail, where it exhibits similar

performance to other methods for (II) and better performance for (III), while it leads to poor es-

timates in other regions. Additional boxplots in the right panel of Figure 8 display more detailed

21



information for the estimates of Pr(X ∈ B1) under distribution (III). As described for distribution

(I), we also used a suitable k > 1 for estimating this probability. The geometric approach outper-

forms CE in this case. This is because, using an appropriate k, we are able to simulate points to

generate non-zero estimates of the probabilities (93% and 100% of estimates are positive for the

two thresholds shown). In contrast, only 45.5% and 46% of estimates are positive for CE.

5.2 Dimension d = 3

We again perform estimation based on 5000 data points from three different data structures: (I)

asymmetric logistic distribution, for which the spectral measureH places mass on B{1,2},B{1,3},B{2,3},

with parameters γ{1,2} = γ{1,3} = γ{2,3} = 0.4; (II) asymmetric logistic distribution where H places

mass on B{1},B{1,2},B{2,3} and with parameters γ{1,2} = γ{2,3} = 0.4; (III) distribution constructed

by taking an inverted Clayton copula with parameter 2 for (X1, X2), with X3 | X2 = x2 drawn from

an inverted logistic dependence structure with parameter 0.5. Such a distribution is in the domain

of attraction of a spectral measure H placing mass on B{1,2},B{3}. In Section G of the supplement

we display examples of the three datasets along with sets of interest B1 = (8, 10)×(8, 10)×(0.01, 3),

B2 = (8, 10)× (5, 7)× (0.01, 3) and (8, 10)× (2, 4)× (0.01, 3).

For the d = 3 case we consider only two methodologies: the geometric approach and CE, as

HRV/MRV only perform well when considering sets B where all variables are of a similar magnitude,

and the sets that we are considering are all small in x3. Moreover for MRV we require mass on

B{1,2,3} for good performance of this method.

For the geometric approach we fit model (5) to the data after identifying potential suitable forms

for the gauge function g. For this initial step, we calculate the coefficients τC(δ), and associated

estimates of the probability of mass on BC as in Simpson et al. (2020), for δ = 0.4, 0.5, 0.6 and

C ⊆ {1, 2, 3}. These estimates help to identify potential faces of the simplex on which the limiting

spectral measure H places mass, and hence a suitable structure for the form of the gauge function.

Specifically, where they exist, the coefficients τC(δ) ∈ (0, 1] should be equal to 1 if H places mass

on BC , for all values of the tuning parameter δ ∈ [δ?, 1] and some δ? ∈ [0, 1]. However, because of

difficulties in estimating these coefficients precisely in the presence of nuisance parameters, Simpson

et al. (2020) use them as part of a broader strategy to estimate of the probability of mass on BC .

If all estimates for the three values of δ suggest the same extremal dependence structure in terms

of where H places mass, then a single model is fitted, where the gauge function corresponds to that

of the asymmetric logistic distribution for the identified structure. Otherwise, up to three different

models are fitted, and the model with the lowest AIC is selected. We note that, for distributions (I)

and (II), this means that we have the potential to fit the correct model form to the data, subject
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Figure 7: Boxplots of the 200 estimated probabilities for d = 2. From left to right columns represent Pr(X ∈

B1),Pr(X ∈ B2),Pr(X ∈ B3), respectively. From top to bottom, datasets are (I), (II), (III), (IV) respectively.

Green boxplots, labelled G1, G2, give results from our geometric approach: G1 is calculated from X | R′ > 1; G2

is calculated from X | R′ > k, where k is determined as the maximum value such that all sets B1, B2, B3 lie in the

region {x : x1 + x2 > kr0(x/(x1 + x2))}. Dark blue boxplots, labelled CE1, CE2 give results from the conditional

extremes model: CE1 is calculated from X | X1 > 6.9; CE2 is calculated from X | X1 > 10. Turquoise boxplots,

labelled HRV, give results from hidden regular variation methodology; purple boxplots, labelled MRV and MRV2,

represent nonparametric and parametric multivariate regular variation, respectively. True values of the probabilities

are indicated by horizontal red lines.
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Figure 8: Left: boxplot of log estimates of Pr(X ∈ B3) for distribution (I), d = 2, using the

geometric approach at a high threshold as described in the text (G3), and parametric MRV (MRV2).

Right: estimates of Pr(X ∈ B1) for distribution (III), d = 2, using two different thresholds for the

geometric approach, labelled G2, G3 (green). Estimates for two different thresholds from the

conditional approach are labelled CE1, CE2 (dark blue), and from hidden regular variation, HRV

(turquoise).

to its identification via the Simpson et al. (2020) methodology, although for distribution (III), we

always have a misspecified model.

Figure 9 displays boxplots of the estimated probabilities across 200 repetitions using the two

methods. In most cases, the geometric approach exhibits relatively low bias, particularly in compar-

ison to CE, which is typically biased down for Pr(X ∈ B1) and up for Pr(X ∈ B2),Pr(X ∈ B3). In

conditional extreme value modelling, dependence structures are defined pairwise, so while any pair

of variables (Xi, Xj) can theoretically have mass on B{i,j} or B{i} and B{j}, the methodology cannot

usually capture more complex higher-order structures well. The structure of distribution (III) is the

simplest, with only variables X1, X2 exhibiting simultaneous extremes, and CE is correspondingly

more successful in this case. For Pr(X ∈ B3) and distributions (I) and (III), additional boxplots are

provided in Section G of the supplement. These demonstrate that the geometric approach labelled

G3 provides the best estimate in both cases, but underestimates the probability. In contrast we can

see from Figure 9 that estimates of this probability for distribution (I) are biased strongly upwards

for CE, while for distribution (III) only 5.5% of estimates for CE are positive at either threshold.

6 Data analyses

We use our new modelling approach to analyze two multivariate environmental datasets. The first

is wave data from Newlyn, UK, included because of its extensive previous analysis in the literature.
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Figure 9: Boxplots of the 200 estimated probabilities for d = 3. From left to right columns

represent Pr(X ∈ B1),Pr(X ∈ B2),Pr(X ∈ B3), respectively. From top to bottom, datasets

are (I), (II), (III), respectively. Green boxplots, labelled G1, G2, G3 give results from the geometric

approach: G1 is calculated from X | R′ > 1; G2 and G3 are calculated from X | R′ > kj ,

j = 1, 2, where kj is determined as a large value such that the sets B2 or B3 lie in the region

{x : x1 + x2 + x3 > kjr0[x/(x1 + x2 + x3)]}. Dark blue boxplots, labelled CE1, CE2 give results

from the conditional extremes model: CE1 is calculated from X | X1 > 6.9; CE2 is calculated from

X | X1 > 8. True values of the probabilities are indicated by horizontal red lines.
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The second is a set of river flow data from Simpson et al. (2020).

6.1 Newlyn wave data

This dataset of 2894 measurements of wave height (metres), surge (metres) and period (seconds),

denoted here as (XH , XS , XP ), was originally analyzed in Coles and Tawn (1994) using a model that

assumed multivariate regular variation with all mass of the spectral measure on B{H,S,P}. The full

trivariate dataset has subsequently been analyzed in Bortot et al. (2000), who assumed a censored

multivariate Gaussian model, and Coles and Pauli (2002), whose model was able to accommodate

the situation where the spectral measure places mass on some faces of the simplex, but was otherwise

quite restrictive.

The first step is to transform each marginal to exponential, which is done using a semi-parametric

estimate of the distribution function for each variable Xj :

F̂j(x) =

F̃j(x), x ≤ uj ,

1− φu,j [1 + ξj(x− uj)/σj ]
−1/ξj
+ , x > u,

(13)

where F̃j is the empirical df, uj is a high threshold, φu,j = Pr(Xj > uj), and the form above uj is

the generalized Pareto distribution with scale σj > 0 and shape ξj . We take the thresholds uH , uS

and uP to be the 95% quantiles of the respective distributions.

To get an initial idea of the extremal dependence structure, we use the Simpson et al. (2020)

methodology and calculate τC(δ) for a range of values of δ. These estimates suggest that the spectral

measure places mass on the faces B{H},B{S},B{P},B{H,S}, which fits with the assessment in Bortot

et al. (2000) and Coles and Pauli (2002).

To calculate the threshold r0(w), we use the rolling-windows procedure described in Section 4.1,

with τ = 0.95. We then fit model (5) with three forms for g: (i) the asymmetric logistic gauge

function with the structure given by τC(δ), (ii) gauge corresponding to the Gaussian distribution,

and (iii) an additive mixture of the Gaussian and asymmetric logistic gauges, as described in Sec-

tion 4.3.2. The respective AIC values are 374.9, 365.5 and 369.5.

In spite of the structure suggested by the estimated τC(δ) values, the AIC indicates a preference

for the Gaussian gauge function. The maximum likelihood estimates are (α̂, θ̂HP , θ̂HS , θ̂PS) =

(0.79, 0.70, 0.65, 0.30), where θjk are the Gaussian correlation parameters in the gauge function. The

data have been filtered to give approximate temporal independence, so we estimate Hessian-based

standard errors as (0.74, 0.12, 0.12, 0.18). Figure 10 displays the PP plot for this fit as described in

Section 4.4, as well as the same plot transformed onto the exponential scale to emphasize the upper

tail, indicating no lack of fit. We also compare the empirical gauge ĝ(w) and the fitted Gaussian

26



gauge function g(w; θ̂) in the right panel of Figure 10. The empirical gauge is relatively “jagged”

and variable due to the manner of its calculation, but there is broad correspondence between its

overall shape and that of the fitted gauge. Interestingly, the fit of the asymmetric logistic gauge

returns a parameter estimate of γ̂HS = 1, which is on the boundary of the parameter space. This

could be indicative of wave height and surge not displaying exceptionally strong dependence, but

also because there are restrictions on the shape of the limit set arising from the asymmetric logistic

distribution, and this parameter estimate provides the best overall fit to all data simultaneously.
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Figure 10: Left and centre: PP and exponential QQ plots for the fitted truncated gamma model

with the Gaussian gauge function. Right: unit level set of the empirical gauge function (jagged,

red) and fitted Gaussian gauge function (smooth, blue) for the Newlyn wave data.

As a further diagnostic, we compare empirical and model-based estimates of the sub-asymptotic

joint tail dependence coefficient. For Xj ∼ Fj , this is defined by

χC(u) =
1

1− u
Pr [Fj(Xj) > u,∀j ∈ C] , u ∈ (0, 1), C ⊆ {H,S, P}. (14)

The empirical estimator of χC(u) is obtained by replacing each distribution function and joint prob-

ability with its empirical counterpart, while the model-based estimate is calculated using simulation

from the fitted model as described in Section 4.5, and suitable sets B. In Figure 11 we consider

χHSP (u) and χHS(u), meaning B = (− log(1 − u),∞)3 and B = (− log(1 − u),∞)2 × (0,∞), re-

spectively. The range over which the model-based tail dependence coefficients can be calculated

depends on the values of X constituting the extreme region {R′ > 1}. There is good agreement

with the empirical estimates, with the model-based estimates allowing extrapolation beyond the

range of the data.

Finally we consider analysis of the structure variable outlined in Coles and Tawn (1994). They
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Figure 11: Left: Estimates of χHS(u), u ∈ (0.99, 1); centre: estimates of χHSP (u), u ∈ (0.965, 1).

Black solid lines represent empirical estimates, grey shaded regions 95% pointwise confidence in-

tervals, and dashed lines the model-based estimate for the Newlyn wave dataset. Right: plot of

quantiles vp of the structure variable V , representing sea wall height.

introduce the overtopping discharge rate Q(v;XHSP ) for a sea wall of height v as

Q(v;XHSP ) = a1XSXP exp

[
−a2 (v −XS − l)

XPX∗H
1/2

]
, X∗H = XH

{
1− exp

[
−(l +XS)2

2X2
H

]}1/2

.

The value X∗H is introduced to approximate the actual off-shore wave height, since measurements are

taken on-shore. The goal is to estimate the sea wall height vp (in metres) for which the overtopping

discharge rate is expected to exceed 0.002m3s−1 per metre of sea wall with probability p. That is,

setting V = Q−1(0.002;XHSP ), we solve Pr(V > vp) = p for vp using realizations of V generated

through simulation and reverse marginal transformation. Specifically, we generate new realizations

of XHSP , and hence V , in the tail region of our model by simulating on exponential margins and

inverting equation (13). Outside of the tail region, we use the empirical distribution of V . As in

Bortot et al. (2000), we fix a1 = 0.25, a2 = 26, and l = 4.3. The right panel of Figure 11 displays the

obtained values vp, with empirical quantiles and those calculated from fitting the generalized Pareto

distribution directly to the tail of V (the so-called “structure variable approach”) for comparison.

For very small p, the return levels obtained from the geometric model are larger than those from

the generalized Pareto fit. They are comparable to those obtained in Bortot et al. (2000), but much

lower than those in Coles and Tawn (1994), whose model incorrectly assumes that the spectral

measure places mass on B{H,S,P}.

6.2 River flow data

We now apply our modelling approach on 12,327 measurements of daily mean river flow (m3/s)

from four gauging stations in the north west of England. The data were previously explored in
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Simpson et al. (2020), where focus lay on determining the support of the spectral measure, but

not subsequent modelling of the variables, due to lack of suitable models that could account for

complex structures. We opt to consider four out of the five locations initially used in order to

keep the number of parameters reasonable; further discussion on dimensionality can be found in

Section 7. The four stations, labelled 1, 2, 3, 4, correspond to those labelled A, B, C, D in Simpson

et al. (2020).

Margins are standardized using equation (13). We then use the Simpson et al. (2020) methodol-

ogy, which suggests that the spectral measure may place mass on the faces B{2},B{4},B{1,4},B{1,3,4},

and B{1,2,3,4} of the simplex S3. We fit the model with the corresponding asymmetric logistic gauge

function, a Gaussian gauge function, and an additive mixture of the two. The AIC values are

2666, 2601 and 2609, respectively. Once again, the model with the Gaussian gauge is preferred, in

apparent conflict with the estimated structure of the spectral measure, though we note this is also

subject to uncertainty. Parameter estimates and approximate standard errors are given in Table 1.

To account for temporal dependence of river flows, standard errors are found via use of a block

bootstrap on the original data series, with block length 20. The asymmetric logistic gauge, while

able to capture the structure of different groups of variables being co-extreme, appears too inflexible

to capture other aspects of the dependence. The additively mixed model is an attempt to alleviate

this problem, but leads to a large number of parameters without a sufficient improvement in fit to

compensate for them.

Table 1: Parameter estimates and approximate block bootstrap-based standard errors for the river

flow data. Parameter θjk represents the Gaussian gauge correlation parameter between sites j, k.

Parameter α θ12 θ13 θ14 θ23 θ24 θ34

Estimate 2.46 0.83 0.90 0.80 0.90 0.57 0.62

Standard error 0.62 0.11 0.14 0.14 0.14 0.16 0.14

Figure 12 displays coefficients χ123(u), χ134(u) and χ1234(u), defined analogously to (14). If

H places mass on B{1,2,3,4}, then each of these coefficients has a positive limit as u → 1, but at

observable levels, the model-based estimates from the Gaussian gauge all represent a good fit to the

data. Plots of χC(u) for the remaining groups of variables are given in Section H of the supplement,

along with the PP plot, showing no lack of fit. In the limit as u→ 1, estimates of χC(u) from the

geometric model with Gaussian gauge will all be zero. However, the inference that H places mass

on B{1,2,3,4}, and other faces, is subject to uncertainty. From the plots in Figure 12, it is difficult to

determine whether the limits of χ123(u), χ134(u) and χ1234(u) as u→ 1 are indeed positive or zero,

and as a consequence whether a gauge function that reflects H(B{1,2,3,4}) > 0 is truly preferable.
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Nonetheless, this framework offers the chance to test these models and assumptions in a way that

was not previously possible.
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Figure 12: Empirical (solid black) estimates of χC(u) with 95% pointwise confidence interval (grey

shaded region), and model-based estimate (dashed black) for C = {1, 2, 3}, {1, 3, 4} and {1, 2, 3, 4}

(left to right).

7 Discussion

We have presented a new approach to multivariate extreme value modelling, based on estimation of

the shape of the limit set of a sample cloud of data points in light-tailed margins. The methodology

allows for modelling datasets with complicated extremal dependence structures, whereby different

groups of variables may be co-extreme, as well as extrapolation into parts of the multivariate tail

where only some variables are large.

By offering models for complex dependence structures with non-simultaneous extremes, this

approach paves the way for more useful higher dimensional extreme value modelling. Recent litera-

ture on multivariate extremes that is targeted at higher dimensions typically involves making strong

simplifying assumptions on the dependence structure. For example, the extremal graphical models

outlined in Engelke and Hitz (2020) require an assumption that the spectral measure H places all

mass on B{1,...,d}.

In this work, we demonstrated the methods up to dimension d = 4. The main challenges for

routine application of the methods for d larger than 3 or 4 lie in calculation of the threshold function

r0(w), and specification of flexible gauge functions. The former could potentially be addressed by

adapting the additive quantile regression approach of Fasiolo et al. (2021) to incorporate basis

functions whose support is the simplex Sd−1. Addressing the latter challenge requires ways to build

flexible and parsimonious gauge functions, which is a topic of current work. In particular, we note
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that models fitted in Section 6 had the ability to capture the complex structures suggested by the

Simpson et al. (2020) methodology, but the best fits were obtained through models that were more

flexible in other aspects. This led to the conclusion that the model with the Gaussian gauge function

was preferred for both datasets, which is likely a consequence of being able to capture a range of

strengths of dependences across different groups of variables; in contrast, the asymmetric logistic

gauge function treats groups of variables that do not exhibit simultaneous extremes as effectively

independent. We note also that estimates of the faces BC on which H places mass are themselves

subject to uncertainty, which is not easily quantifiable thanks to the requirement to select tuning

parameters. Conflicts between the estimated structure and the selected gauge function may therefore

not be too concerning, provided the diagnostics for the model are adequate.

A further challenge with our methodology for dimensions d ≥ 5 is the use of the empirical

distribution for the angles W . We anticipate that considering (semi-)parametric forms for this

distribution will be needed as part of adapting the methods to higher dimensions.

We have focused here primarily on positive dependence as it is common in many datasets and

simplifies the presentation. For datasets exhibiting any form of negative dependence, the limit

set shapes are more descriptive in Laplace, rather than exponential, margins. For example, we

mentioned for the multivariate Gaussian case that the continuous convergence to g(x) fails when

some component of x is zero; this is not an issue in Laplace margins, where the limit set lies in the

region [−1, 1]d rather than [0, 1]d, and similarly for the tν distribution. Moving from the positive

quadrant to Rd requires defining the angles W differently, but otherwise a similar approach could

be applied, and represents a natural next step in developing this methodology.
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