
Scalable Bayesian Inference

Using Stochastic Gradient

Markov Chain Monte Carlo

Srshti Putcha, B.Sc., M.Sc., M.Res

Submitted for the degree of Doctor of Philosophy

at Lancaster University.

March 2024

Dedicated to Mallik Tatagaru.

“ In science, progress is possible. In fact, if one believes in Bayes’ theorem, scientific

progress is inevitable as predictions are made and as beliefs are tested and refined.”

– Nate Silver

Abstract

Bayesian inference offers a flexible framework to account for uncertainty across all

unobserved quantities in a model. Markov chain Monte Carlo (MCMC) is a class of

sampling algorithms which simulate from the Bayesian posterior distribution. These

methods are generally regarded as the go-to computational technique for practical

Bayesian modelling.

MCMC is well-understood, offers (asymptotically) exact inference, and can be

implemented intuitively. Samplers built upon the Metropolis-Hastings algorithm can

benefit from strong theoretical guarantees under reasonable conditions. Derived from

discrete-time approximations of Itô diffusions, gradient-based samplers (Roberts and

Rosenthal, 1998; Neal, 2011) leverage local gradient information in their proposal,

allowing for efficient exploration of the posterior. The most championed of the diffusion

processes are the overdamped Langevin diffusion and Hamiltonian dynamics.

In large data settings, standard MCMC can falter. The per-iteration cost of

calculating the loglikelihood in the Metropolis-Hastings acceptance step scales with

dataset size. Gradient-based samplers are doubly afflicted in this scenario, given that a

full-data gradient is computed each iteration. These issues have prompted considerable

interest in developing approaches for scalable Bayesian inference.

This thesis proposes novel contributions for stochastic gradient MCMC (Welling

and Teh, 2011; Ma et al., 2015; Nemeth and Fearnhead, 2021). Stochastic gradient

MCMC utilises data subsampling to construct a noisy, unbiased estimate of the gradient

of the log-posterior.

The first two chapters review key background from the literature. Chapter 3

presents our first paper contribution. In this work, we extend stochastic gradient

I

II

MCMC to time series, via non-linear, non-Gaussian state space models. Chapter 4

presents the second paper contribution of this thesis. Here, we examine the use of a

preferential subsampling distribution to reweight the stochastic gradient and improve

variance control. Chapter 5 evaluates the feasibility of using determinantal point

processes (Kulesza et al., 2012) for data subsampling in SGLD. We conclude and

propose directions for future work in Chapter 6.

Acknowledgements

I can wholeheartedly say that I wouldn’t have gotten to this point without the army

of people that surrounds me.

Thank you to my supervisors, Chris and Paul. You have been unfailingly patient with

me for the past five-and-a-half years. And I know that I haven’t been the easiest (or

communicative) student to supervise. You’ve taught me how to question things from

every conceivable angle. I’ll never look at a technical problem in quite the same way.

Thank you to the STOR-i leadership team, Jon and Idris. This programme has given

me the opportunity to succeed and fail in a safe environment. I hope that I am a

better statistician (or rather, data scientist) for it. I’d be remiss if I didn’t also thank

Jen, Kim, Wendy and Nicky for facilitating everything at STOR-i. The place probably

would have fallen apart without you.

To the 2017 STOR-i cohort (the Tigersharks), I’m grateful to have started this process

with you. I’ll always recall our MRes antics with happiness. I wish you the best with

your future endeavours. I hope we keep in touch for many years to come.

To the COVID-19 pandemic, you may have suspended all sense of normalcy and

structure for over two years, but you taught me the true meaning of perseverance and

the importance of prioritising my own mental health. I’m glad to have finally made it

to the finish line at the eleventh hour.

III

IV

To Hankui, I’m glad to have found a friend in you. Thank you for many delightful

evenings in your company, the many pandemic walks, and video calls. To Zak, thank

you for commiserating and celebrating in equal measure. Your friendship has been

invaluable over the past nine years.

To Anja and Holly, thank you for sitting beside me (physically and spiritually) for the

past six years. I could never retreat too far into my shell with the two of you checking

up on me. I look forward to going on many more adventures with you.

Lastly, and most importantly, thank you to my wonderful family. Amma, Nanna and

Aditya - I don’t have enough words to express my gratitude or appreciation. However, I

do know that this degree would have been impossible without your unyielding support

and love. You make me feel brave.

Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

A version of Chapter 3 is now available as an advanced publication in the journal

Bayesian Analysis as,

Aicher, C., Putcha, S., Nemeth, C., Fearnhead, P., and Fox, E. B. (2023). Stochastic

Gradient MCMC for Nonlinear State Space Models. In Bayesian Analysis, Advance

Publication 1-23. DOI: 10.1214/23-BA1395.

The preprint of this work is listed on arXiv under arXiv preprint arXiv:1901.10568.

A version of Chapter 4 appears in the conference proceedings of AISTATS 2023 as,

Putcha, S., Nemeth, C., and Fearnhead, P (2023). Preferential Subsampling for

Stochastic Gradient Langevin Dynamics. In Proceedings of the 26th International Con-

ference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine

Learning Research.

The word count stands at 46,590 words.

Srshti Putcha

V

Contents

Abstract I

Acknowledgements III

Declaration V

Contents IX

List of Figures XII

List of Tables XIII

1 Introduction 1

1.1 Background . 1

1.2 Problem Motivation . 3

1.3 Thesis Outline . 4

2 Monte Carlo methods 7

2.1 Monte Carlo . 8

2.2 Markov chain Monte Carlo . 10

2.2.1 Markov chain preliminaries . 11

2.2.2 Metropolis-Hastings algorithm 14

2.2.3 Scaling up MCMC to tall data 17

2.3 Stochastic gradient MCMC . 19

2.3.1 Itô processes and MCMC . 20

VI

CONTENTS VII

2.3.2 Stochastic gradient Langevin dynamics 25

2.3.3 Extensions of SGLD . 28

2.4 Bayesian parameter estimation for nonlinear state space models . . . 29

3 Stochastic Gradient MCMC for Nonlinear State Space Models 32

3.1 Introduction . 32

3.2 Background . 34

3.2.1 Nonlinear State Space Models for Time Series 34

3.2.2 Stochastic Gradient MCMC 37

3.3 Method . 39

3.3.1 Buffered Stochastic Gradient Estimates for Nonlinear SSMs . 40

3.3.2 SGMCMC Algorithm . 40

3.4 Error Analysis . 41

3.4.1 Error of Biased SGLD’s Finite Sample Averages 41

3.4.2 Gradient Bias and MSE Bounds 43

3.4.3 Buffering Error Bound for Nonlinear SSMs 46

3.5 Experiments . 47

3.5.1 Models . 47

3.5.2 Stochastic Gradient Bias . 48

3.5.3 SGLD Experiments . 51

3.6 Discussion . 55

3.7 Error Analysis Proofs . 56

3.7.1 Proof of Theorem 3.4.1 . 56

3.7.2 Proof of Theorem 3.4.2 . 58

3.7.3 Proof of Theorem 3.4.3 . 61

3.7.4 Bounds for Specific Models . 64

4 Preferential Subsampling for Stochastic Gradient Langevin

Dynamics 67

4.1 Introduction . 67

4.2 Stochastic gradient MCMC . 68

CONTENTS VIII

4.2.1 The Langevin diffusion . 69

4.2.2 Stochastic gradient Langevin dynamics 69

4.2.3 Control variates for SGLD . 71

4.3 Preferential data subsampling . 71

4.3.1 SGLD with preferential subsampling 73

4.3.2 SGLD-CV with preferential subsampling 74

4.3.3 Adaptive subsampling . 76

4.4 Related work . 77

4.5 Numerical experiments . 79

4.5.1 Models . 80

4.5.2 Metrics . 81

4.5.3 Numerical results . 82

4.6 Conclusions . 87

4.7 Results from Section 4.3 . 88

4.7.1 Full derivation of the pseudo-variance 88

4.7.2 Proof of Lemma 4.3.1 . 88

4.7.3 Proof of Lemma 4.3.2 . 90

4.7.4 Deriving approximate weights for the control variates gradient 91

4.7.5 Proof of Lemma 4.3.3 . 92

5 A Feasibility Study: Utilising Determinantal Point Processes for

Subsampling 93

5.1 Overview . 93

5.2 Determinantal point processes . 94

5.3 Proposed approach . 97

5.3.1 Preprocessing . 99

5.3.2 DPP-SGLD . 99

5.3.3 Worked example . 99

5.3.4 Discussion . 100

CONTENTS IX

6 Conclusions 103

6.1 Discussion . 103

6.2 Future work . 104

A Appendix to Chapter 3 106

A.1 Model details . 106

A.1.1 LGSSM . 106

A.1.2 SVM . 108

A.1.3 GARCH Model . 109

A.2 Additional experiments . 111

A.2.1 Gradient Bias with PaRIS . 111

A.2.2 Gradient Bias Varying Parameters 111

A.2.3 SGLD on Synthetic Data . 113

A.2.4 SGLD on Exchange Rate . 115

B Appendix to Chapter 4 119

B.1 Pseudocode for algorithms . 119

B.2 Model details . 120

B.2.1 Bivariate Gaussian . 120

B.2.2 Logistic regression . 122

B.2.3 Linear regression . 124

B.3 Computational cost for the SGLD-CV-PS approximate subsampling

weights . 126

B.4 Numerical experiment set-up . 127

B.4.1 Step-size selection . 127

B.4.2 Initialisation . 127

B.5 Additional experiments . 128

B.5.1 Performance comparison of SGLD and SGLD-PS 128

B.5.2 Performance of adaptive subsampling 128

Bibliography 130

List of Figures

3.2.1 Graphical model of S∗ with S = 3 and B = 1. 39

3.5.1 Stochastic gradient bias varying buffer size B for S = 16 for different

values of N . (left) LGSSM φ, (middle) SVM φ, (right) GARCH β.

Error bars are 95% confidence interval over 1000 replications. 49

3.5.2 Stochastic gradient bias varying subsequence size S for No Buffer (B = 0)

and Buffer (B > 0) for different values of N . (left) LGSSM φ, (middle)

SVM φ, (right) GARCH β. The buffer size B = 8 for LGSSM and

GARCH and B = 16 for the SVM. Error bars are 95% confidence

interval over 1000 replications. 49

3.5.3 Stochastic gradient bias varying N for different S,B. (left) LGSSM φ,

(middle) SVM φ, (right) GARCH β. (top) x-axis is N , (bottom) x-axis

is runtime in seconds. No Buffer is gPF(16, 0, N), Buffer B = B is

gPF(16, B,N), Buffer B = T is gPF(16, T,N), and Full is gPF(T, T,N).

The moderate buffer size B = 8 for LGSSM and GARCH and B = 16 for

the SVM. Error bars are 95% confidence interval over 1000 replications. 50

3.5.4 Comparison of SGLD with different gradient estimates on synthetic

LGSSM data: T = 103 (left), T = 106 (right). MSE of estimated

posterior mean to true φ = 0.9. 53

4.5.1 Empirical pseudo-variance against proportion of data in a subsample, n
N

.

(a) bivariate Gaussian, (b) balanced logistic regression, (c) imbalanced

logistic regression. 83

X

LIST OF FIGURES XI

4.5.2 Sampler performance of SGLD, SGLD-CV, SGLD-PS and SGLD-CV-

PS for 0.1% subsample size over 10 passes through the data. (a) linear

regression model on the CASP data (y-axis: KSD); (b) logistic regression

on the covertype data (y-axis: (i) KSD, (ii) log-loss). 84

4.5.3 A logistic regression model fitted on balanced synthetic data of size

N = 104. (a) KSD comparison of SGLD-CV, SGLD-CV-PS, ASGLD-

CV and ASGLD-CV-PS over 104 iterations; (b) adaptive subsample

sizes selected along one ASGLD-CV-PS chain; (c) the number of passes

through the data considered by fixed versus adaptive subsampling. . . 86

5.2.1 Sampling comparison - (left) bivariate Normal, (centre) uniform sample,

(right) k-DPP sample. 96

5.3.1 Empirical pseudo-variance against proportion of data in subsample

n
N

; (b) histograms of the marginal probabilities for used in computing

Eq. (5.3.1) for w = 0.1, 0.4, 0.7 and 1. 101

A.2.1 Stochastic gradient bias varying B, S,N for the naive PF and PaRIS on

the LGSSM data. (Top-left) bias vs S, (top-right) bias vs B, (bottom-

left) bias vs N , (bottom-right) bias vs runtime in seconds. 112

A.2.2 Stochastic gradient bias varying φ with S = 16, B = 8 for (left) naive

PF N = 1000, (right) Kalman filter N =∞. 112

A.2.3 Additional metrics for SGLD on LGSSM: (left) MSE of σ, (right) MSE

of τ , (top) T = 103, (bottom) T = 106. 113

A.2.4 SGLD Results for LGSSM. MSE of φ (left) for X ∈ R 5, (right) X ∈ R 10.116

A.2.5 SGLD results for synthetic SVM data: (left) MSE of φ, (center) MSE

of σ, (right) MSE of τ . 116

A.2.6 SGLD results for synthetic GARCH data: (left) MSE of log(µ), (center)

MSE of logitφ, (right) MSE of logitλ. 116

A.2.7 EUR-US Exchange Rate Data (top) raw data (bottom) demeaned

log-returns. 117

LIST OF FIGURES XII

B.5.1 Sampler performance of SGLD and SGLD-PS for 1%, 5% and 10%

subsample sizes over 500 passes through the data. (a) bivariate Gaussian

model on synthetic data of size N = 104 (y-axis: KL divergence); (b)

logistic regression on the covertype data (y-axis: KSD). 128

B.5.2 The linear regression model fitted on the CASP data. (a) KSD compar-

ison of SGLD-CV, SGLD-CV-PS, ASGLD-CV and ASGLD-CV-PS over

104 iterations; (b) the number of passes through the data achieved by

fixed subsampling versus ASGLD-CV; (c) the number of passes through

the data achieved by fixed subsampling versus ASGLD-CV-PS. 129

List of Tables

3.4.1 Asymptotic bias and compute cost for four different gradient estimators. 45

3.5.1 KSD for Synthetic LGSSM. Mean and SD. Results are shown after

running each method for a fixed computational time. 54

3.5.2 KSD for SGLD on exchange rate data. Mean and SD over 5 chains each.

Results are shown after running each method for a fixed computational

time. 55

A.2.1 KSD results for Synthetic LGSSM with T = 103. 114

A.2.2 KSD results for Synthetic LGSSM with T = 106. 115

A.2.3 KSD results for Synthetic LGSSM in higher dimensions 115

A.2.4 KSD results for Synthetic SVM. 118

A.2.5 KSD results for Synthetic GARCH. 118

A.2.6 KSD results for SVM on exchange rate data. 118

A.2.7 KSD results for GARCH on exchange rate data. 118

B.4.1 Step-size selection. 127

XIII

Chapter 1

Introduction

Markov chain Monte Carlo (MCMC) algorithms are a popular class of methods used to

conduct inference for Bayesian models. A key drawback of MCMC is that it tends to

scale poorly with dataset size. Over time, this has become a practical issue: helped in

no part by the growing need in both statistics and machine learning to process larger

datasets and to construct increasingly more complex models. This thesis provides

methodological contributions for stochastic gradient Markov chain Monte Carlo, a

family of approximate samplers that utilises data subsampling techniques to reduce

the per-iteration computational cost of MCMC.

In this chapter, we provide a high-level overview of Bayesian inference, its associated

computational methods, and the challenges it presents for scalability. This will be

built upon further in the literature review presented in Chapter 2. We then proceed

to outline the main contributions of this thesis and the contents of the subsequent

chapters.

1.1 Background

Bayesian inference lays out a framework for fitting a probability model to a dataset and

summarises the result in the form of a probability distribution on the model parameters

and on other unobserved quantities (e.g., predictions on future observations) (Gelman

et al., 2013). Let us consider the unknown model parameters, θ, as random and the

1

CHAPTER 1. INTRODUCTION 2

data, x, as fixed. We assume that θ ∈ Θ ⊆ Rd for the sake of simplicity1.

In order to formally conduct inference, we need to specify a full probability model

over all observable and unobservable quantities. The joint distribution of interest

comprises of the prior, p(θ), and the likelihood, p(x|θ). Thus, the full probability

model is given by the density function

p(θ,x) = p(θ)p(x|θ).

Our aim is to have a model that encapsulates everything we know about the underlying

problem and the data collection process (Gilks et al., 1996; Gelman et al., 2013).

Suppose that the data that we then collect is of sizeN , such that x = {x1, x2, . . . , xN}.
The density function of the i-th datapoint is given by p(xi|θ). If we further assume

that the data are independent, the likelihood can be written as p(x|θ) =
∏N

i=1 p(xi|θ).
We can leverage Bayes’ theroem to condition on the observed data and obtain the

posterior distribution. The posterior density on θ is defined as

π(θ) := p(θ|x) =
p(θ)p(x|θ)∫

Θ
p(θ)p(x|θ) dθ .

Here, the denominator m(x) =
∫

Θ
p(θ)p(x|θ)dθ is known as the marginal likelihood

or the evidence. The posterior distribution represents our updated beliefs about the

model parameters and is the central focus of any Bayesian data analysis (Robert and

Casella, 2004; Gelman et al., 2013).

If the marginal likelihood can be calculated, then the posterior density can be

evaluated analytically. However, a fundamental issue within Bayesian inference is

that the integration required to compute m(x) is rarely analytically tractable. This

means that we usually only know the posterior up to the unnormalised density

h(θ) = p(θ)p(x|θ). We can use computational methods like MCMC to simulate from

the posterior exactly using the unnormalised density h, thereby bypassing the need to

calculate m(x) exactly.

Many of the features of the posterior distribution that we are interested in (e.g.,

moments, quantiles) can be expressed as an expectation of functions of θ with respect

1We loosen this assumption in Chapter 2 to consider a general parameter space, Θ.

CHAPTER 1. INTRODUCTION 3

to π. The posterior expectation of a measurable real-valued function, ψ : Θ→ Rd, is

given by,

Eπ[ψ(θ)] =

∫
Θ

ψ(θ)π(dθ).

As before, it can often be the case that we cannot obtain a closed-form value for

expectations of this form. This quantity can be instead estimated using the Monte

Carlo estimate

Eπ[ψ(θ)] ≈ 1

M

M∑
m=1

ψ
(
θ(m)

)
with a set of M MCMC samples {θ(1), . . . , θ(M)}.

1.2 Problem Motivation

As the availability of larger datasets increases, using MCMC to evaluate posterior

summaries becomes impractical. MCMC requires the calculation of the unnormalised

density h at each iteration and this is an O(N) calculation. This issue has led to the

development of new methodology that seeks to improve the computational efficiency

of MCMC.

Typically, scalable Monte Carlo techniques efficiently process large volume of data

by either subsampling the data (Doucet et al., 2015; Maclaurin and Adams, 2015;

Bierkens et al., 2019; Quiroz et al., 2019) or by running samplers in parallel across

multiple cores (à la Scott et al., 2016; Nemeth and Sherlock, 2018; Vyner et al., 2022).

We refer the reader to the Bardenet et al. (2017) review paper on MCMC approaches

for tall datasets.

One popular class of algorithms are the stochastic gradient MCMC methods

(Nemeth and Fearnhead, 2021). These samplers are developed using discrete-time

Euler approximations of Itô diffusion processes that admit the posterior as their

invariant distribution. One such well-studied process is the overdamped Langevin

diffusion (Roberts and Tweedie, 1996).

The unadjusted Langevin algorithm (ULA) is obtained by simply simulating from

the Euler discretisation of the Langevin diffusion. Due to its discretisation error,

CHAPTER 1. INTRODUCTION 4

ULA merely approximates the posterior at stationarity (adding a Metropolis-Hastings

correction gives us the Metropolis-adjusted Langevin algorithm, see e.g., Roberts and

Rosenthal, 1998). Furthermore, ULA struggles to scale well to tall datasets as it

requires an O(N) log-posterior gradient calculation at each iteration.

Inspired by stochastic optimisation (Robbins and Monro, 1951; Bottou et al., 2018),

Welling and Teh (2011) proposed stochastic gradient Langevin dynamics (SGLD). The

idea behind SGLD being that the full-data gradient calculation in the ULA sampler

could be replaced with an unbiased, noisy estimate that was constructed using a

random data subsample. Following this, other samplers using Itô diffusions were also

proposed (Ma et al., 2015), including Hamiltonian dynamics (Chen et al., 2014)

Stochastic gradient MCMC can be applied to a broad class of models and, in the

simplest case, only require a first-order gradient computation. The main drawback of

these samplers is that the inference is no longer exact with respect to π.

This class of methods have been adapted for various disciplines in machine learning,

such as deep generative models (Du et al., 2018), differential privacy (Li et al.,

2019) and meta-learning (Gong et al., 2019). Some exciting application areas have

been considered, including quantum optimisation (Patti et al., 2022) and additive

manufacturing (Chung et al., 2022). The core samplers have also been included in

open-source packages for both R and Python (Baker et al., 2019b; Coullon and Nemeth,

2022), with the goal of making the implementation of these methods more accessible

to general practitioners.

1.3 Thesis Outline

This thesis focuses on two open areas of stochastic gradient MCMC research: improving

variance control and extending the class of algorithms to dependent datasets. The

main content of this thesis has been divided into four chapters. Chapter 2 contains a

literature review of the technical background relevant to stochastic gradient MCMC.

We present new research that has been submitted for publication in Chapters 3 and

4. Finally, Chapter 5 assesses the viability of using determinantal point processes in

CHAPTER 1. INTRODUCTION 5

SGLD to construct informed data subsamples for variance control. Chapter 6 reviews

the main contributions of the thesis and then discusses areas for future work. An

outline of each thesis chapter is given below.

Chapter 2: Monte Carlo methods

This chapter provides an overview of stochastic gradient MCMC. The chapter first

covers standard MCMC and summarises the approaches available for scalable Monte

Carlo. The next section reviews the fundamentals of stochastic gradient Langevin

dynamics, its associated extensions and the broader family of stochastic gradient

MCMC samplers. In order to lay the groundwork for Chapter 3, a final section is

dedicated to reviewing existing inference approaches for state space models.

Chapter 3: Stochatic Gradient MCMC for Nonlinear State Space Models

A version of this chapter has been released as an Advance Publication in the journal

Bayesian Analysis with co-authors Christopher Aicher, Christopher Nemeth, Paul

Fearnhead and Emily Fox. The abstract of the article is given below.

State space models (SSMs) provide a flexible framework for modeling complex time

series via a latent stochastic process. Inference for nonlinear, non-Gaussian SSMs is

often tackled with particle methods that do not scale well to long time series. The

challenge is two-fold: not only do computations scale linearly with time, as in the

linear case, but particle filters additionally suffer from increasing particle degeneracy

with longer series. Stochastic gradient MCMC methods have been developed to

scale Bayesian inference for finite-state hidden Markov models and linear SSMs using

buffered stochastic gradient estimates to account for temporal dependencies. We

extend these stochastic gradient estimators to nonlinear SSMs using particle methods.

We present error bounds that account for both buffering error and particle error in

the case of nonlinear SSMs that are log-concave in the latent process. We evaluate

our proposed particle buffered stochastic gradient using stochastic gradient MCMC

for inference on both long sequential synthetic and minute-resolution financial returns

data, demonstrating the importance of this class of methods.

CHAPTER 1. INTRODUCTION 6

Chapter 4: Preferential Subsampling for Stochastic Gradient Langevin

Dynamics

A version of this chapter has been published as part of the conference proceedings of

AISTATS 2023. It has been written with co-authors Christopher Nemeth and Paul

Fearnhead. The abstract of the paper is given below.

Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to traditional

MCMC, by constructing an unbiased estimate of the gradient of the log-posterior

with a small, uniformly-weighted subsample of the data. While efficient to compute,

the resulting gradient estimator may exhibit a high variance and impact sampler

performance. The problem of variance control has been traditionally addressed

by constructing a better stochastic gradient estimator, often using control variates.

We propose to use a discrete, non-uniform probability distribution to preferentially

subsample data points that have a greater impact on the stochastic gradient. In

addition, we present a method of adaptively adjusting the subsample size at each

iteration of the algorithm, so that we increase the subsample size in areas of the

sample space where the gradient is harder to estimate. We demonstrate that such an

approach can maintain the same level of accuracy while substantially reducing the

average subsample size that is used.

Chapter 5: A Feasibility Study - Utilising Determinantal Point Processes

for Subsampling

Inspired by the work of Zhang et al. (2017a), this chapter seeks to evaluate the

feasibility of using determinantal point processes (DPPs) to construct low-variance,

diverse data subsamples for SGLD. We introduce discuss key DPP concepts and then

provide a worked example on synthetic data. We conclude by discussing the practical

considerations associated with the proposed approach.

Chapter 2

Monte Carlo methods

Many problems in statistics and machine learning rely upon the computation of the

expectation of some random quantity with respect to a probability distribution. If

these expectations cannot be calculated directly, we must seek out some kind of

numerical approximation. Monte Carlo methods construct an unbiased approximation

of expectations by simulating draws from the probability distribution of interest.

In Section 2.1, we outline Monte Carlo integration. While perfect Monte Carlo goes

some way to helping us to calculate expectations, we need something more powerful

when we cannot simulate directly from the underlying probability distribution. Section

2.2 introduces Markov chain Monte Carlo (MCMC). Often considered the gold standard

of Bayesian computational methods, MCMC is used to conduct inference on complex

and hierarchical models in a variety of domains. Section 2.3 discusses stochastic

gradient MCMC and its associated extensions. Finally, we spend some time reviewing

existing Bayesian inference approaches for state space models.

We note that Monte Carlo integration is a vast area in computational statistics and

so, only the topics necessary for this thesis are reviewed in this chapter. For a more

rigorous treatment of traditional MCMC, please refer to either Meyn and Tweedie

(1993c) or Robert and Casella (2004). A more practical take on MCMC can be found

in Gelman et al. (2013). The more technical underpinnings of Itô diffusions and

their numerical approximations can be studied further in Kloeden and Platen (1995);

Øksendal (2003) and Khasminskii (2011). We also recommend seeking out Nemeth

7

CHAPTER 2. MONTE CARLO METHODS 8

and Fearnhead (2021) for a comprehensive review of stochastic gradient MCMC.

2.1 Monte Carlo

A central focus of Bayesian computation is the accurate and efficient calculation of

integrals. More specifically, we are often concerned with obtaining the expectation

of a function. Let θ be a random variable with distribution π over some measurable

space, Θ (such that P(θ ∈ A) = π(A)). The Borel σ-field for Θ is denoted as B(Θ).1

Suppose that we are interested in integrating a measurable function ψ : Θ→ Rd

with respect to π. The expectation of the test function ψ is defined as,

Eπ[ψ(θ)] =

∫
Θ

ψ(θ)π(dθ). (2.1.1)

The key issue that needs to be overcome is that expectations of the form of (2.1.1)

can rarely be calculated analytically. In this case, we typically turn to numerical

integration methods to approximate (2.1.1).

Deterministic numerical integration methods (such as Simpson’s Rule) evaluate the

integrand at M selected points on a grid and compute a weighted version of (2.1.1),

with the weights corresponding to the volume of space represented by each of the grid

points (Gelman et al., 2013). These techniques can be implemented easily in univariate

or bivariate settings, but they scale poorly in dimension d with O(Md) evaluations

required over the grid points. Simulation-based (stochastic) methods, such as Monte

Carlo integration, offer us an alternative path forward.

Perfect Monte Carlo

In classical Monte Carlo, we assume that it is possible to simulate a set of independent

and identically distributed (i.i.d) draws {θ(1), θ(2), . . . , θ(M)} from π. We can use these

samples to construct the empirical average,

ψ̂M =
1

M

M∑
m=1

ψ
(
θ(m)

)
. (2.1.2)

1We use some light measure-theoretic concepts in Chapter 2 to communicate key ideas, but this

thesis will not have a heavy focus on measure theory.

CHAPTER 2. MONTE CARLO METHODS 9

The Monte Carlo estimate, ψ̂M , possesses a number of advantageous statistical

properties. By the Strong Law of Large Numbers, we know that as the number of

samples M →∞, ψ̂M converges almost surely to Eπ[ψ(θ)], i.e.,

ψ̂M
a.s→ Eπ[ψ(θ)], as M →∞.

Furthermore, when Var[ψ(θ)] = σ2 <∞, an application of the Central Limit theorem

tells us that
√
M(ψ̂M − Eπ[ψ(θ)])

D→ N (0, σ2), as M →∞.

We know that the approximation error of the Monte Carlo estimate given in (2.1.2) is

O(M− 1
2), independent of the dimension of the integrand, d. Any other deterministic

numerical integration method would have an approximation error that increases as

the dimension d grows (Doucet et al., 2001; Robert and Casella, 2004).

It may seem that the method proposed above is sufficient to approximate (2.1.1)

in a controlled, yet straightforward manner. However, it will not always be possible

to directly simulate from π, particularly in complex, high-dimensional cases. If the

density π(θ) can be evaluated pointwise (at least up to a constant of proportionality),

we can instead construct our Monte Carlo estimate by sampling from an alternative

proposal distribution, q. Importance sampling and rejection sampling are two such

methods where this is done.

Rejection sampling

The premise of rejection sampling is simple. We require a density function q(θ) (defined

such that q(θ) > 0 whenever π(θ) > 0) that possesses the following properties (Gelman

et al., 2013):

� (RS1) We can draw from the probability density proportional to q(θ). It is not

mandatory for q(θ) to integrate to 1, but it must have a finite integral.

� (RS2) There must exist a known constant C for which π(θ)
q(θ)
≤ C for all θ.

At each iteration, we simulate a sample θ′ ∼ q and a corresponding uniform random

number, u ∼ U(0, 1). The new draw, θ′, is only accepted if u ≤ π(θ′)
Cq(θ′) , where C satisfies

CHAPTER 2. MONTE CARLO METHODS 10

(RS2). In this way, those samples that are more likely to have come from the target

density are kept and the others are discarded (von Neumann, 1951; Robert and Casella,

2004). This approach can be quite wasteful, given that only a subset of the proposed

draws are kept to construct ψ̂M .

Importance sampling, in contrast, makes use of all generated samples when forming

the Monte Carlo estimate. This method also adapts well to recursive estimation

problems, as discussed further in Chapter 3.

Importance sampling

Importance sampling constructs an estimate of (2.1.1) based on generating a set of

draws {θ(1), θ(2), . . . , θ(M)} from a given distribution q and approximating,

Eπ[π(θ)] ≈ 1

M

M∑
m=1

π
(
θ(m)

)
q
(
θ(m)

)ψ(θ(m)
)
. (2.1.3)

This method is based on the rewriting (2.1.1) as

Eπ[ψ(θ)] =

∫
Θ

ψ(θ)
π(θ)

q(θ)
q(dθ). (2.1.4)

As long as q is chosen with appropriate support (i.e., q(θ) > 0 must imply that

π(θ) > 0), the estimate (2.1.3) will converge almost surely to (2.1.1) (Robert and

Casella, 2004). However, the variance of (2.1.3) is finite only when the expectation

Eq
[
ψ2(θ)

π2(θ)

q2(θ)

]
= Eπ

[
ψ2(θ)

π(θ)

q(θ)

]
=

∫
Θ

ψ2(θ)
π(θ)

q(θ)
π(dθ) <∞.

Proposals with tails that are lighter than those of π are not well-suited to importance

sampling, as then the ratio π/q can explode as we move into the tails of π. In this

scenario, the importance weights π
(
θ(m)

)
/q
(
θ(m)

)
would vary considerably, giving too

much significance to a handful of values θ(m).

2.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods offer an alternative approach to the

Monte Carlo methods discussed above. By constructing a stochastic process that

CHAPTER 2. MONTE CARLO METHODS 11

converges to π, we can generate samples from the desired distribution by observing

the chain after an initial burn-in period. A key drawback of MCMC is that the draws

obtained from the stochastic process are no longer independent. However, alternative

asymptotic convergence results exist for these methods (Meyn and Tweedie, 1993c;

Robert and Casella, 2004). In this section, we provide a brief survey of Markov chains

and stochastic stability, outline the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970) and discuss the scalability issues for MCMC on tall data.

2.2.1 Markov chain preliminaries

A Markov chain is a discrete-time stochastic process,
(
θ(m)

)
m≥0

, taking values on an

arbitrary state space Θ (Robert and Casella, 2004; Geyer, 2005). Formally, the Markov

chain can be described in terms of its conditional distribution,

P
(
θ(m) ∈ A | θ(m−1), . . . , θ(0)

)
= P

(
θ(m) ∈ A | θ(m−1)

)
,

where A ∈ B(Θ). Here, the Markov property specifies that the conditional distribution

of θ(m) given θ(0), θ(1), . . . , θ(m−1) is the same as the conditional distribution of θ(m)

given θ(m−1). We assume that all Markov chains are time-homogeneous and do not

depend on the current value of m.

For notational simplicity, it is cleaner to define a Markov chain in terms of its

transition kernel, a function that regulates how the chain evolves over time. The

transition kernel is a function K(·, ·) on Θ×B(Θ) such that: (i) K(θ, ·) is a probability

measure ∀θ ∈ Θ, (ii) K(·, A) is measurable ∀A ∈ B(Θ). If the state space Θ is discrete,

the transition kernel reduces to a (transition) matrix K containing

Pθ,θ′ = P
(
θ(m) = θ | θ(m−1) = θ′

)
, θ, θ′ ∈ Θ.

For a general state space, the conditional probability of θ(m) given θ(m−1) is given by,

P
(
θ(m) ∈ A | θ(m−1)

)
=

∫
A

K
(
θ(m−1), dθ

)
.

The transition kernel for m transitions (m > 1) of the chain is denoted as,

Km(θ, A) = P
(
θ(m) ∈ A | θ(0) = θ

)
=

∫
Θ

Km−1(θ′, A)K(θ, dθ′),

with K1(θ, A) = K(θ, A).

CHAPTER 2. MONTE CARLO METHODS 12

Stochastic stability and convergence

We wish to ultimately construct Markov chains that converge to our chosen target π

over time. For this to be possible, we first need the target distribution to be invariant,

such that the marginal distribution of (θm)m≥0 does not depend on m (Robert and

Casella, 2004). We know that an invariant measure π exists for the kernel K(·, ·) and

its associated chain if

π(B) =

∫
Θ

K(θ, B)π(dθ), ∀B ∈ B(Θ).

The invariant distribution is also referred to as stationary if π is a probability measure,

since θ(0) ∼ π implies that θ(m) ∼ π for any value of m. Furthermore, if the following

condition of detailed balance or reversiblity holds,∫
A

π(dθ)K(θ, B) =

∫
B

π(dθ)K(θ, A), (2.2.1)

for every A,B ∈ B(Θ) then a Markov chain with kernel K has invariant distribution π

(Meyn and Tweedie, 1993c; Geyer, 2005). Another common shorthand for (2.2.1) is,

π(dθ)K(θ, dθ′) = π(dθ′)K(θ′, dθ). (2.2.2)

Even if a Markov chain has a stationary distribution, it may still fail to converge

to stationarity as m → ∞. To address this, there are two key things that we need

to ensure: (i) the chain is able to converge to stationarity, and (ii) the stationary

distribution of the chain is uniquely the target of interest, π.

Given a nonzero measure φ, a Markov chain is φ-irreducible if for any point θ

and any measurable set A where φ(A) > 0, there exists an integer m such that

Km(θ, A) > 0 (Robert and Casella, 2004; Geyer, 2005). In other words, φ-irreducibility

ensures that there is a positive probability that for any starting state the chain will

reach any set A having positive measure in finite time.

A Markov chain is Harris recurrent if there exists a nonzero measure φ such that

for any set A with positive measure and any starting point θ(0) ∈ Θ, we have that∑∞
m=1 K

m(θ(0), A) > 0 (Robert and Casella, 2004; Geyer, 2005). Namely, the chain is

guaranteed to occupy A and the probability θ(m) started from θ(0) occupies A infinitely

often is 1.

CHAPTER 2. MONTE CARLO METHODS 13

The state space of any Harris recurrent Markov chain can be partitioned into sets

{Bi}bi=1 and N such that φ(N) = 0 and K(θ, Bi) = 1 when θ ∈ Bj for j = i− 1 mod b.

The chain is then said to aperiodic if b = 1 and periodic if b > 1 (Meyn and Tweedie,

1993c; Geyer, 2005). Aperiodicity removes the possibility of indefinite oscillatory

behaviour occurring within the chain over time (Roberts and Rosenthal, 2004).

If all three of these properties - irreducibility, aperiodicity and Harris recurrence

- hold, we can prove the existence (and subsequent uniqueness) of the stationary

distribution. We can also establish several desirable results (such as a Law of Large

Numbers) similar to those presented for Monte Carlo methods in Section 2.1.

At this stage, it is natural to consider a framework for quantifying how quickly a

Markov chain converges - namely, its rate of convergence. We first need to outline the

total variation norm, which is typically used to calculate the distance between two

probability measures. Given two measures µ1 and µ2, the total variation norm is given

by,

‖µ1 − µ2‖TV = sup
A
|µ1(A)− µ2(A)|,

for all measurable sets A (Robert and Casella, 2004).

An aperiodic, Harris recurrent Markov chain (θm)m≥0 is said to be ergodic if it

converges in total variation to π given any initial distribution λ (Meyn and Tweedie,

1993c; Geyer, 2005), i.e.,

‖λKm − π‖TV =

∥∥∥∥∫ λ(dθ)Km(θ, ·)− π
∥∥∥∥
TV

m→∞−−−→ 0.

In the case where λ is a measure concentrated at the point θ, this reduces to,

‖Km(θ, ·)− π‖TV m→∞−−−→ 0. (2.2.3)

Geometric ergodicity can be established when the convergence in (2.2.3) occurs at

a geometric rate (Geyer, 2005). This occurs when there exists a constant ρ > 1 and a

bounded function β : Θ→ R+ such that,

‖Km(θ, ·)− π‖TV ≤ β(θ)ρm.

CHAPTER 2. MONTE CARLO METHODS 14

A stronger version of geometric ergodicity can be used for a Markov chain that is

Harris recurrent with invariant distribution π, that is when there is a constant r > 1,

∞∑
m=1

rm‖Km(θ, ·)− π‖TV <∞, (2.2.4)

for all θ ∈ Θ (Meyn and Tweedie, 1993c). When the bound in (2.2.4) is uniform, that

is if there is a finite constant R such that,

∞∑
m=1

rm‖Km(θ, ·)− π‖TV < R,

for all θ, we say that the Markov chain is uniformly ergodic. Therefore, uniform

ergodicity implies geometric ergodicity. Furthermore, uniform ergodicity implies that,

as m→∞,

sup
θ∈Θ
‖Km(θ, ·)− π‖TV → 0.

This kind of quantitative analysis is used widely to understand the properties of

MCMC algorithms. A large emphasis is placed in the MCMC literature on deriving

speed of convergence results with respect to the total variation norm. Often, this is

not the most user-friendly or practical distance measure to use. In Section 2.3.2, we

shall see convergence results proposed in terms of the Wasserstein distance metric.

2.2.2 Metropolis-Hastings algorithm

In many cases, the only thing we know about the target π is an unnormalised density.

A function h : Θ→ R is an unnormalised density with respect to a Lebesgue measure

µ, if it is nonnegative, and 0 <
∫

Θ
h(θ)dµ <∞ (Geyer, 2005). In a Bayesian paradigm,

the marginal likelihood, m(x), is rarely tractable. This means that we only know the

posterior up to an unnormalised density h(θ) = p(θ)p(x | θ).
The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970)

navigates this issue by constructing a Markov chain that simulates from the target

distribution, π, and only requires the ability to evaluate the unnormalised density,

h. It is not necessary to be able to calculate any integrals or know the value of the

normalising constant.

CHAPTER 2. MONTE CARLO METHODS 15

The MH update instead leverages an auxiliary proposal density, q(·, ·) to propose

new moves. For each point θ ∈ Θ, q(θ, ·) must be a normalised probability density

with respect to the dominating measure µ with the following two properties: (i) for

each θ we can simulate θ′ ∼ q(θ, ·); and (ii) for each θ, θ′ we can evaluate q pointwise.

Typically, the proposal density is either explicitly defined or symmetric, such that

q(θ, θ′) = q(θ′, θ) (e.g., a multivariate Normal). Given the current state, a new sample

θ′ is drawn from q(θ, ·) and is either accepted with probability

α(θ, θ′) = min

{
1,
h(θ′)q(θ′, θ)

h(θ)q(θ, θ′)

}
,

or rejected. The full method is provided below in Algorithm 1.

Algorithm 1: Metropolis-Hastings

1: Input: initialise θ(0).

2: for m = 1, 2, . . . ,M do

3: Given θ(m), generate θ′ ∼ q
(
θ(m), ·

)
.

4: Calculate the acceptance probability, α
(
θ(m), θ′

)
.

5: Accept θ′ with probability α and set θ(m+1) = θ′ otherwise.

6: end for

Common implementations of the MH algorithm include:

� the independence sampler - where in which proposals are drawn from a fixed

proposal, independent of the current state; and,

� the random walk Metropolis - where proposals account for the value previously

simulated to generate the following value, i.e.,

θ′ = θ(m) + ε(m),

where ε(m) is a random perturbation independent of θ(m).

Furthermore, the Gibbs sampler proposed by Geman and Geman (1984) can be

considered to be a special case of the MH algorithm. For the j-th component of

CHAPTER 2. MONTE CARLO METHODS 16

the partition of Θ, the Gibbs proposal is set to be proportional to π(θj|θ−j) (the

conditional density of the j-th component, given all other components sampled so

far). It can be shown that the corresponding MH update has acceptance probability

1 (Robert and Casella, 2004). See Chapters 7-11 of Robert and Casella (2004) for

discussions of other popular MCMC samplers.

In order to prove that the MH algorithm will have π as its invariant distribution, it

is sufficient to show that its Markov kernel satisfies detailed balance. The MH kernel

is given by,

K(θ, A) =

∫
A

q(θ, θ′)α(θ, θ′)µ(dθ′) + r(x)I(x,A), (2.2.5)

where I(x,A) is the identity kernel (Geyer, 2005). We accept proposals θ′ with

probability density,

p(θ, θ′) = q(θ, θ′)α(θ, θ′).

For any measurable set A the first term of (2.2.5),
∫
A
q(θ, θ′)α(θ, θ′)µ(dθ′), corresponds

to the accepted moves in the chain. If this integral were to be evaluated over the whole

state space, we would obtain the total probability that the proposed move would be

accepted. In that case, the probability that the proposed move is rejected is given by,

r(x) =

∫
q(θ, θ′)(1− α(θ, θ′))µ(dθ′).

We remain at the original position θ if the proposal is rejected. It can be verified that

detailed balance (2.2.1) holds if and only if,

π(dθ)q(θ, dθ′)α(θ, θ′) = π(dθ)q(θ′, dθ)α(θ′, θ).

A simple manipulation of the acceptance probability leads us to the desired result.

Theorem 7.2 of Robert and Casella (2004) provides a more formal discussion.

Under further properties on the state space Θ and the proposal density, it is

possible to ensure the Markov chain that results from MH is aperiodic and Harris

recurrent (Meyn and Tweedie, 1993c; Robert and Casella, 2004; Geyer, 2005). This

then allows for the MH samples to satisfy the Strong Law of Large Numbers. Efficient

implementation of the MH algorithm, however, also requires tuning within the chosen

CHAPTER 2. MONTE CARLO METHODS 17

family of proposal densities. Optimal scaling results - such as those for the random

walk Metropolis (Roberts et al., 1997) - can be obtained under structured assumptions

on the proposal and the target distribution.

In practice, we only simulate from our Markov chain for a finite number of iterations.

A good proposal distribution is therefore required to ensure good properties of the

chain. Samplers should ideally take into account the local structure of the target

distribution. In Section 2.3.1, we discuss how to construct efficient proposals for

the MH algorithm that leverage gradient information via continuous-time Markov

processes.

2.2.3 Scaling up MCMC to tall data

Recall the Bayesian framework introduced in Chapter 1. Let x = {x1, ..., xN} ⊂ Rd

denote a tall dataset with N � 1. Let θ ∈ Θ denote the model parameters with

prior p(θ). If we assume that we have observed independent data points, the model

likelihood would be given by
∏N

i=1 p(xi|θ) and the average loglikelihood can be written

as

`(θ) =
1

N

N∑
i=1

log p(xi|θ).

Using this notation, we can write the posterior density as

π(θ) = p(θ|x) ∝ p(θ) exp(N`(θ)). (2.2.6)

The Metropolis-Hastings algorithm outlined in Section 2.2.2 can be used to sample

from the posterior. In this case, Step 2 of Algorithm 1 is equivalent to setting

logα(θ, θ′) = log

[
p(θ′)q(θ′, θ)

p(θ)q(θ, θ′)

]
+N [`(θ′)− `(θ)]. (2.2.7)

We see that the MH update requires a full scan of the dataset to calculate the

acceptance ratio. When handling tall data, evaluating the loglikelihood ratio in (2.2.7)

can be very expensive and this can make it difficult to implement standard MH directly

(Bardenet et al., 2017).

CHAPTER 2. MONTE CARLO METHODS 18

There has been a strong push towards developing scalable Monte Carlo methods

in the computational statistics literature. These efforts can be broadly classified into

five themes.

Batch (embarrassingly parallel) methods

A natural mechanism to solve tall data problems is to split the data into tractable

batches. Assuming an appropriate independence structure, the posterior can be

expressed as,

p(θ|x) ∝
S∏
s=1

p(xs|θ)p(θ)
1
S ,

where the prior distribution p(θ) =
∏

s p(θ)
1
S is decomposed into S components. The

data points in each batch, xs, are assumed to be conditionally independent of all other

batches. The idea is to divide and conquer - we can run MH on each batch posterior

in parallel and then aggregate the results. While it can be relatively simple to sample

from each batch posterior, the key problem to address is how exactly the samples

should be reconciled at the end. Huang and Gelman (2005), Neiswanger et al. (2014),

Liu (2016), Scott et al. (2016), Nemeth and Sherlock (2018) and Vyner et al. (2022)

all propose various means of doing this.

Exact (pseudo-marginal) subsampling approaches

Pseudo-marginal MH is a variant of traditional MH which relies on constructing an

unbiased, almost surely non-negative estimator of the unnormalised target posterior

for any θ ∈ Θ (Andrieu and Roberts, 2009; Bardenet et al., 2017). This estimator can

then be substituted into Step 2 of Algorithm 1 and the subsequent Markov chain will

attempt to sample exactly from π. By drawing a random subsample of the data (with

or without replacement), it is possible to construct a scalable, unbiased estimator

of the unnormalised target, at only a fraction of the computational cost. Although

the idea of an exact approximation is appealing, it can be difficult to find suitable

general estimators that satisfy our requirements (Jacob and Thiery, 2015). For further

discussion, we refer to the comprehensive survey conducted in Quiroz et al. (2018) of

pseudo-marginal subsampling approaches for large datasets.

CHAPTER 2. MONTE CARLO METHODS 19

Approximate subsampling approaches

This class of methods again considers subsampling approaches where, at each iteration,

a random subset of data points are used to approximate the MH acceptance ratio.

However, unlike above, the aim here is to sample from an approximation to the target π.

Subsamples are typically selected in an austere manner according to some pre-specified

computational budget, with some user-defined tolerance level (Korattikara et al., 2014;

Bardenet et al., 2014, 2017).

Stochastic gradient methods

In recent years, several scalable MCMC algorithms based on stochastic gradient descent

(SGD) have been developed. Here, the idea is to explore the parameter space using

SGD updates, replacing the costly gradient calculation over the full dataset with a

noisy, unbiased estimate. The class of stochastic gradient MCMC methods (Welling

and Teh, 2011; Ma et al., 2015; Nemeth and Fearnhead, 2021) are discussed in further

detail in Section 2.3.2. The novel methodology presented in Chapters 3, 4 and 5 of

this thesis falls under this family of samplers.

Continuous time MCMC approaches

Following the publication of Bardenet et al. (2017) review paper, there has been

interesting work that has been conducted on non-reversible MCMC for subsampling

applications using continuous time piecewise deterministic Markov processes. See

for instance Bouchard-Côté et al. (2018), Fearnhead et al. (2018) and Bierkens et al.

(2019).

2.3 Stochastic gradient MCMC

Continuous time Markov processes are often used as the basis for Metropolis-Hastings

proposals. Two such samplers are the Metropolis-adjusted Langevin algorithm (MALA)

(Roberts and Tweedie, 1996; Roberts and Rosenthal, 1998) and Hamiltonian Monte

Carlo (HMC) (Neal, 2011). Both methods take into account local gradient information

of the target, in order to improve efficiency.

CHAPTER 2. MONTE CARLO METHODS 20

Unfortunately, these approaches do not scale favourably to tall datasets. Gradient-

based methods necessitate two passes through the data per-iteration. Specifically,

one pass to calculate the gradient of the log-posterior and another whilst computing

the MH acceptance ratio. Stochastic gradient MCMC offers a scalable, approximate

alternative. They reduce the computational cost by constructing an unbiased, noisy

estimate of the gradient, using only a small data subsample. In this section, we first

outline the building blocks of gradient-based samplers, before then introducing various

stochastic gradient MCMC approaches.

2.3.1 Itô processes and MCMC

Most gradient-based samplers - with perhaps the exception of the Barker family of

proposals (Livingstone and Zanella, 2022) - are derived from Itô processes, which are

Markov processes defined as a solution to a stochastic differential equation (SDE).

The overdamped Langevin diffusion and Hamiltonian dynamics are perhaps the most

well-known examples of Itô processes in the MCMC literature.

Primer on Itô processes

Let {θ(t), t ∈ R+} be a continuous time stochastic process taking values in Rd. The

sample path of a stochastic process is the trajectory that corresponds to particular

outcome. For convenience, we shorten the random variable θ(t) to θt for the remainder

of this section (Kloeden and Platen, 1995).

If we further define Ft to be the σ-field generated by the family of sets {θs, 0 ≤
s ≤ t}, θt is Markov process if for all A ∈ B(Rd),

P(θt ∈ A|Fs) = P(θt ∈ A|θs),

for 0 ≤ s ≤ t (Khasminskii, 2011). As in Section 2.2.1, we can establish an analogous

framework for defining Harris recurrence and ergodicity in the continuous time case.

We refer the reader to Khasminskii (2011) and Meyn and Tweedie (1993a,b) for a

formal treatment of these concepts.

CHAPTER 2. MONTE CARLO METHODS 21

We expect the sample paths of a continuous time stochastic process to be well-

behaved in most situations. While it may not be reasonable for the paths to be

differentiable, we can ensure continuity almost surely. If a continuous time process, θt,

satisfies Kolmogorov’s Continuity Theorem, then sample-path continuity is implied.

Moreover, we are interested in the existence of positive constants α, β, C and h such

that,

E[||θt − θs||α] ≤ C|t− s|1+β,

for 0 ≤ s ≤ t and |t− s| ≤ h (Kloeden and Platen, 1995; Øksendal, 2003).

Itô processes are based upon one particular continuous time Markov process known

as a Wiener process (also known as Brownian motion). If we consider {Wt : t ∈ R+}
to be a Wiener process, we know that the following conditions satisfied:

1. W (0) = 0 with probability 1,

2. E[W (t)] = 0 for all t,

3. Var[W (t)−W (s)] = t− s, for all 0 ≤ s ≤ t, and,

4. Wt+s −Wt is independent of Wu for 0 < u < t, s ≥ 0 (independent increments),

5. Wt has continuous sample paths (a.s.).

To set up the differential form of an Itô process, we need to be able to integrate with

respect to the derivative of a Wiener process. The main difficulty in using traditional

integration procedures, such as the Riemann-Stieltjes integral, on the Wiener process

is that it is almost surely nowhere differentiable (Kloeden and Platen, 1995).

The Itô integral circumvents this issue by constructing a new integral with respect

to the Wiener process (Kloeden and Platen, 1995; Øksendal, 2003). We note that

alternatives to the Itô integral - such as the Stratonovich integral - have been developed.

However, we focus on the Itô integral at this stage, as it is used more frequently in the

literature.

Let {θt : t ∈ R+} be a continuous time stochastic process. The Itô integral of θt

CHAPTER 2. MONTE CARLO METHODS 22

with respect to Wt is defined as,∫ t

0

θsdWs = lim
|P |→0

m−1∑
k=0

θtk [Wtk+1
−Wtk],

where P = {0 = t0 < t1 < . . . < tm = t} is a partition of [0, t] and |P | = supk |tk+1−tk|,
such that the gap between any two consecutive time instants tends to zero (Kloeden

and Platen, 1995; Øksendal, 2003). If Wt is a d-dimensional Wiener process, then the

Itô integral is computed in a coordinate wise manner.

We are now in a position to formally define an Itô process. We denote the functions

b : Rd → Rd, σ : Rd → Rd×d as the drift and diffusion terms of the SDE respectively.

An Itô process is the solution to an SDE of the form,

dθt = b(θt)dt+ σ(θt)dWt, (2.3.1)

where Wt is a d-dimensional Wiener process. The equivalent interpretation of (2.3.1)

is the stochastic integral equation,

θt = θ0 +

∫ t

0

b(θs)ds+

∫ t

0

σ(θs)dWs.

An Itô process is fully specified by its starting point θ0, the deterministic drift term

governed by b and the stochastic diffusion term controlled by σ. As with deterministic

differential equations, a solution to (2.3.1) does not necessarily exist. Conditions are

typically placed upon b and σ to ensure that a solution exists and that it is unique.

Chapter 5 of Øksendal (2003) provides a full discussion of these issues. The following

conditions are sufficient for an Itô process to have a unique solution:

� Lipschitz continuity: ||b(θ) − b(θ′)|| + ||σ(θ) − σ(θ′)|| ≤ C||θ − θ′||, for some

C ∈ R+

� Linear growth: ||b(θ)||+ ||σ(θ)|| ≤ C(1 + ||θ||), for C ∈ R+.

An Itô diffusion is an Itô process that satisfies the conditions listed above (Øksendal,

2003). It can also be shown that Itô processes satisfy the Markov property and are

time homogeneous (Øksendal, 2003; Khasminskii, 2011).

CHAPTER 2. MONTE CARLO METHODS 23

When the drift vector, b ∈ Rd, and diffusion matrix, D = σσT ∈ Rd×d, are

moderately regular functions, the transition probabilities of an Itô process will follow

the transition density p = p(s, θ; t, ϑ), which solves the Fokker-Planck equation (also

referred to as the Kolmogorov forward equation),

∂p

∂t
= −

d∑
i=1

∂

∂ϑi
{bi(ϑ)p}+

1

2

d∑
i,j=1

∂2

∂ϑi∂ϑj
{Di,j(ϑ)p}, (2.3.2)

for 0 < s ≤ t and θ, ϑ ∈ Θ ⊆ Rd. Here, Di,j is the (i, j)-th element of the diffusion

matrix. If (s, θ) in p is fixed, the initial condition of (2.3.2) is given by,

lim
t↓s

p(s, θ; t, ϑ) = δ(ϑ− θ),

where δ(·) is the Dirac delta function on Rd. (2.3.2) can be used to describe the

evolution of the diffusion over time (Kloeden and Platen, 1995).

The stationary distribution of an Itô process can be found by the letting the right

hand side of (2.3.2) be set to zero. This allows us to find solutions of the Fokker-Planck

equation that are functionally independent of time. It is sufficient to find a stationary

density p(ϑ) such that,

d∑
i=1

∂

∂ϑi
{bi(ϑ)p} =

1

2

d∑
i,j=1

∂2

∂ϑi∂ϑj
{di,j(ϑ)p}. (2.3.3)

If such a distribution exists, then it will also be invariant and p(s, θ; t, ϑ) →
p(s, θ;ϑ) = p(ϑ) as t→∞.

(2.3.3) is difficult to solve, except for in a handful of cases. The main examples that

we will continue to refer back to in this thesis is the overdamped Langevin diffusion

and the family of Itô diffusions introduced in Ma et al. (2015).

Langevin-based samplers

The overdamped Langevin diffusion is an Itô diffusion that is constructed in continuous

time so that it converges to a target distribution, π, under certain regularity conditions

(Roberts and Tweedie, 1996). Conventionally, it is assumed that π is everywhere

non-zero and differentiable, so that the gradient ∇ log π(θ) is well-defined.

CHAPTER 2. MONTE CARLO METHODS 24

The Langevin diffusion, θ(t), is defined by the stochastic differential equation,

dθ(t) =
1

2
∇ log π(θ(t))dt+ dWt, (2.3.4)

where 1
2
∇ log π(θ(t))dt is a drift term and Wt denotes a d-dimensional Wiener process.

Under certain regularity conditions, the target distribution of this diffusion is the

posterior π (Roberts and Tweedie, 1996).

In practice, we need to discretise (2.3.4) in order to simulate from it and this can

introduce some approximation error (Kloeden and Platen, 1995). For a small step-size

ε > 0, the Euler-Maruyama discretisation of (2.3.4) at iteration m is given by

θ(m+1) = θ(m) +
ε

2
∇ log π

(
θ(m)

)
+
√
ε η(m), (2.3.5)

where the noise η(m) ∼ Nd(0, Id×d) is drawn independently at each update .

The dynamics implied by (2.3.5) provide a simple way to approximately sample

from the Langevin diffusion. The level of discretisation error in the approximation is

controlled by the size of ε and we can achieve any required degree of accuracy if we

choose ε small enough.

The unadjusted Langevin algorithm (ULA) (Parisi, 1981; Roberts and Tweedie,

1996) is a simple sampler that simulates from (2.3.5).Roberts and Tweedie (1996) show

that the choice of step-size is crucial to maintaining geometric ergodicity in certain

cases. If ε is too large, the resulting chain ends up becoming transient and does not

admit a stationary distribution.

Given that there is no MH correction, samples obtained from ULA produce a

biased approximation of π. Work conducted in Dalalyan and Karagulyan (2019) and

Durmus and Moulines (2019) establishes that with a carefully specified step-size, ε,

and finite iteration count, M , updating the Markov chain (2.3.5) exactly M times can

result in an iterate, θM , whose distribution is close to that of π.

Theorem 4 of Dalalyan and Karagulyan (2019) provides non-asymptotic bounds

in terms of the Wasserstein distance metric for the rate of convergence of the ULA

chain, under the assumption that the target distribution has a smooth and log-concave

density π. The Wasserstein distance of order α (where α is real-valued and greater

CHAPTER 2. MONTE CARLO METHODS 25

than equal to 1), Wα, between two measures µ and ν on (Rd,B(Rd)) is given by,

Wα(µ, ν) =

[
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

‖θ − θ′‖αdγ(θ, θ′)

] 1
α

,

where the infimum is taken over the space Γ(µ, ν) which consists of all joint distributions

γ admitting µ and ν as marginal distributions.

In their paper, Dalalyan and Karagulyan (2019) argue that the Wasserstein dis-

tance measure is generally more suitable for quantifying the convergence error of an

approximate sampler over other traditional measures, such as the total-variation norm.

For instance, if µ and ν are Dirac measures at x and x′, the total-variation distance

||δx − δx′||TV = 1 whenever x 6= x′. In contrast, the Wasserstein distance between the

measures is given by W2(δx, δx′) = ||x− x′||2, which is a smoothly increasing function

over [0,∞). 2

By introducing a correction step, the Metropolis-adjusted Langevin algorithm

(MALA) chain satisfies the detailed balance conditions required to guarantee the

existence of a unique stationary distribution, π. Compared to a simple random walk

or independence sampler, MALA uses local gradient information to propose moves

in regions of higher density, which are then more likely to be accepted. Roberts and

Rosenthal (1998) show us that (in large dimensions) the optimal acceptance rate for

MALA is 0.574. In comparison, the optimal acceptance rate of the random walk

Metropolis is 0.234 (Roberts et al., 1997).

The per-iteration computational cost of ULA is smaller than that of the Metropolis-

adjusted Langevin algorithm. However if the target π is the Bayesian posterior, each

update of the sampler would be subject to an O(N) full-data gradient calculation.

This calculation can be prohibitively expensive if N is too large.

2.3.2 Stochastic gradient Langevin dynamics

Welling and Teh (2011) propose a scalable method for Bayesian inference which builds

2One issue to take note of with the Wasserstein distance function is that it is not invariant to

transformations. For example, if we were to scale a random variable X by a constant c ∈ R, the

Wasserstein distance would increase by a factor of cq.

CHAPTER 2. MONTE CARLO METHODS 26

upon the properties of the ULA sampler. Recall the Bayesian framework outlined

in Chapter 1. For convenience, we define fi(θ) = − log p(xi|θ) for i = 1, . . . , N , with

f0(θ) = − log p(θ) and f(θ) = f0(θ) +
∑N

i=1 fi(θ). In this setting, the posterior density

can be rewritten as, π(θ) ∝ exp(−f(θ)).

The stochastic gradient Langevin dynamics (SGLD) algorithm attempts to improve

the per-iteration computational burden of ULA by replacing the full-data gradient

with an unbiased estimate (Welling and Teh, 2011). Let the full-data gradient of f(θ)

be given by

g(m) = ∇f
(
θ(m)

)
= ∇f0

(
θ(m)

)
+

N∑
i=1

∇fi
(
θ(m)

)
.

The unbiased estimate of g(m) proposed by Welling and Teh (2011) takes the form

ĝ(m) = ∇f0

(
θ(m)

)
+
N

n

∑
i∈Sm
∇fi

(
θ(m)

)
, (2.3.6)

where Sm is a random subset of {1, . . . , N} and |Sm| = n (n� N) is the subsample

size. A single update of SGLD is thus given by,

θ(m+1) ← θ(m) − ε(m)

2
· ĝ(m) + η(m), (2.3.7)

where η(m) ∼ Nd(0, ε(m)Id×d) and {ε(m)} corresponds to a schedule of step-sizes which

may be fixed (Vollmer et al., 2016) or decreasing (Teh et al., 2016).

Welling and Teh (2011) note that if the step-size ε(m) → 0 as m → ∞, then the

Gaussian noise (generated by η(m)) dominates the noise in the stochastic gradient

term. For large m, the algorithm approximately samples from the posterior using an

increasingly accurate discretisation of the Langevin diffusion. In practice, SGLD does

not mix well when the step-size is decreased to zero and so a small fixed step-size ε is

typically used instead.

Another issue with the algorithm is that it often explores the state space inefficiently.

This is due to the fact that the Langevin diffusion lacks the additional momentum

term found in Hamiltonian dynamics possesses (Neal, 2011). Welling and Teh (2011)

suggest that this could be remedied by including a preconditioning step to assist with

exploration, the thought being that preconditioning would allow the sampler to better

take the local features of the posterior in different dimensions into account.

CHAPTER 2. MONTE CARLO METHODS 27

There have been several papers to date that have tried to understand the theoretical

underpinnings of the SGLD algorithm. Teh et al. (2016) showed that, under verifiable

assumptions, step-size weighted samples are consistent and satisfy a modified Central

Limit Theorem. The consistency of the algorithm largely depends on the the use of

decreasing step-size schedule, as this asymptotically removes the bias introduced from

the Euler discretisation.

There are two competing schools of thought for measuring the accuracy of SGLD

convergence. The first considers estimating the expectation of a suitable test function,

φ(θ), using a set of M SGLD samples, 1
M

∑M
m=1 φ

(
θ(m)

)
. Teh et al. (2016) show that

for a polynomial step-size schedule of the form εm = a(b+m)−α, setting α = 1
3

achieves

the fastest convergence rate for SGLD. An optimally tuned SGLD chain converges

at a rate of O(M− 1
3), where M is the total number of iterations run. Note that this

convergence rate is slower than the traditional Monte Carlo rate of O(M− 1
2) and is

due to the decreasing step-size schedule. Vollmer et al. (2016) give similar results for

fixed step-size SGLD. The authors derive the asymptotic bias of the constant step-size

SGLD explicitly, characterising its dependence on the step-size and the variance of the

noisy gradient. Using these results, a modified version of SGLD is proposed, which

reduces the impact of the asymptotic bias introduced by the noisy gradient in the

original algorithm.

The second class of convergence results compares the distribution that SGLD

samples from at some finite iteration M to the target posterior using the Wasserstein

distance. See for instance Dalalyan (2017); Durmus and Moulines (2017); Chatterji

et al. (2018) and Dalalyan and Karagulyan (2019). Most of these results tend to

assume that the log-density of the target posterior is strongly convex.

The results presented in Dalalyan and Karagulyan (2019) also show that the

non-asymptotic convergence rates of SGLD depend on the variance of the stochastic

gradient estimator. A full analysis of variance reduction in SGLD has been conducted by

Chatterji et al. (2018). In that work, the authors compare the theoretical performance

of the variance control approaches for SGLD proposed by Dubey et al. (2016), Baker

et al. (2019a) and others.

CHAPTER 2. MONTE CARLO METHODS 28

2.3.3 Extensions of SGLD

There have been many notable methodological extensions to SGLD in the literature.

See Nemeth and Fearnhead (2021) for a full discussion.

Ma et al. (2015) define a general approach to constructing a stochastic gradient

MCMC sampler and this lead to a much wider class of stochastic gradient MCMC

algorithms. Ma et al. do this by identifying all possible Itô diffusions (including

Hamiltonian dynamics, see also Chen et al., 2014) that could be used for posterior

sampling, eliminating the need for sampler-specific proofs. Furthermore, the authors

show that if the diffusion matrix is positive definite or that the underlying process

is ergodic, then the stationary distribution would be unique. Ma et al. (2019) goes

further by showing that under the application of one extra assumption, the family of

diffusions specified in Ma et al. (2015) is complete.

Patterson and Teh (2013) propose a version of SGLD that is suitable for con-

strained state spaces, e.g., on the probability simplex (meaning that all components

of θ are strictly positive and sum to 1). Stochastic gradient Riemannian Langevin

dynamics (SGRLD) allows for several transformation of the parameters θ from the

probability simplex to Rd. As part of their work to develop a distributed implentation

of SGLD, Ahn et al. (2014) adapted SGRLD to a parallelised setting and evaluated its

performance on a large-scale Latent Dirichlet Allocation problem. Baker et al. (2018)

propose using a discretised version of the Cox-Ingersoll-Ross process instead of the

Langevin diffusion to sample on the probability simplex.

There has also been work done to extend to dependent data sources. Li et al.

(2016b) propose an SGMCMC algorithm for scalable inference in assortative mixed-

membership stochastic block models on a static network. The SGMCMC algorithm

proposed by Li et al. builds upon the work of Patterson and Teh (2013). The main

idea behind the algorithm is to iteratively update the local parameters and the global

parameters of the model on the probability simplex. Given that the global parameters

do not change as quickly as the local parameters, a random subset of the global

parameters is updated at each iteration.

For a time series setting, Ma et al. (2017) and Aicher et al. (2019) seek to extend

CHAPTER 2. MONTE CARLO METHODS 29

stochastic gradient MCMC to hidden Markov models and linear state space models

respectively. These methods scale to large time series data by drawing contiguous

subsequences with additional buffers applied on either side. To mitigate the bias,

nonoverlapping buffered subsequences are chosen, but the gradient contributions

of data points exclusively from the original subsequences are used. Thus far, only

analytically tractable state space models have been considered. Our work in Chapter

3 serves as the third paper in this series.

Ahead of Chapter 3, the next section briefly reviews the inference approaches

available for parameter estimation in nonlinear, non-Gaussian state space models. For

brevity, we restrict our attention to offline Bayesian methods. We note that none of

these approaches have been designed with scalability to tall data in mind.

2.4 Bayesian parameter estimation for nonlinear

state space models

A time series is an ordered sequence of T data points recorded at equally-spaced time

intervals. Time series modelling seeks to explain the behaviour of a stochastic process,

X = {Xt ∈ Rdx}Tt=1, which can be described by parameters θ.

In certain applications, it may be not be possible to directly capture information

about the true state process, X. We may then need to learn about the state process

via a secondary observed process, Y = {Yt ∈ Rdy}Tt=1. A state space model (SSM)

allows us to specify the joint distribution of the state process using the observed

process. The state process, X, is assumed to be a time-homogeneous Markov process

such that Yt depends only on Xt at time t and is conditionally independent of all other

observations (Fearnhead and Künsch, 2018).

The posterior distribution over θ for a general SSM is given by, π(θ) ∝ p(y1:T |θ)p(θ).
We must know this posterior distribution in closed form to be able to conduct inference

on θ. However, the marginal likelihood,

p(y1:T |θ) :=
T∏
t=1

p(yt|y1:t−1, θ),

CHAPTER 2. MONTE CARLO METHODS 30

can only be computed exactly in very specific cases (such as for the linear Gaussian

model). For nonlinear, non-Gaussian models, the marginal likelihood is intractable.

There are two dominant approaches to tackling this intractable likelihood problem.

The first approach uses particle filter methods (Doucet and Johansen, 2009; Kantas

et al., 2009) to construct an unbiased approximation of the marginal likelihood. The

second approach is known as data augmentation, where the parameters of the SSM are

augmented with the state vector and both are inferred within an MCMC algorithm.

Particle filter approaches

Particle MCMC algorithms target the joint posterior of the parameters and the

latent states. The particle marginal Metropolis Hastings (PMMH) algorithm initially

proposed by Andrieu et al. (2010) simulates a Markov chain with states, (θ, p̂(y1:T |θ)).
Upon proposing a new parameter vector, θ′, a particle filter is run conditional on the

proposal to get p̂(y1:T |θ′). The proposed state is then evaluated with the standard

accept-reject step, using the estimated likelihood instead of the true likelihood (Andrieu

et al., 2010; Fearnhead and Künsch, 2018).

Andrieu et al. (2010) also propose a particle Gibbs sampler based around using a

particle filter to approximate a Gibbs sampler update. Individual particles representing

possible states are iteratively updated as one block. Then, a conditional resampling

step occurs, where the particle weights are adjusted to reflect the target distribution.

A more detailed discussion of the various extensions of PMMH and particle Gibbs can

be found in Section 7.2 of Fearnhead and Künsch (2018).

Data augmentation approaches

Data augmentation treats the unknown latent states as auxiliary variables to be

estimated alongside the model parameters θ. This allows for a closed-form complete

data likelihood to be specified, which can then be used to construct a joint posterior

over the parameters and the states (Tanner and Wong, 1987; van Dyk and Meng,

2001). An MCMC algorithm can then be used to obtain a sample from the complete

data likelihood, which we can use to estimate the marginal posterior of θ. Given that

CHAPTER 2. MONTE CARLO METHODS 31

SSMs impose a strong dependence structure on the latent states and parameters, the

posterior draws can be highly correlated with poor mixing. Single-update MCMC

algorithms tend to perform worse, but the utilisation of block updates can lead to

improved results (Borowska and King, 2023).

Applicability to tall data

Although particle MCMC has been widely celebrated for extending the applicability of

MCMC to general SSMs, it comes with some challenges. The performance of PMMH

depends heavily on the variability of the acceptance ratio, implying that overestimation

of the marginal likelihood can lead to poor performance. It is recommended that the

number of particles, N , should scale linearly with the length of the time series, T ,

so as to maintain reasonable performance (Kantas et al., 2009; Yıldırım et al., 2018).

Moreover, each particle MCMC iteration requires a separate particle filter update and

practioners typically may find that they need to run several thousands of iterations to

obtain reasonable results. In general, applying particle MCMC to conduct inference

on longer time series data can be computationally prohibitive. Mingas et al. (2017),

Yıldırım et al. (2018), and Hirt and Dellaportas (2019) all propose novel approaches

to tackle this issue.

On the other hand, data augmentation MCMC approaches suffer from the many

of the same scaling issues as standard MCMC. If a Metropolis-Hastings step is

required, the per-iteration cost would scale linearly with the length of the time series,

T . Practitioners may fare slightly better if they opt for a Gibbs approach with

well-specified block updates, provided that conditional posteriors could be obtained.

With the incorporation of random subsampling, we are able to tackle these scal-

ability issues head on. Chapter 3 does exactly this by taking drawing contiguous,

buffered subsequences of the observed time series at each iteration. Furthermore, we

outline (both empirically and theoretically) the tradeoffs that must be made between

the subsequence size, the additional buffer size and the number of particles used when

implementing the proposed approach.

Chapter 3

Stochastic Gradient MCMC for

Nonlinear State Space Models

3.1 Introduction

Nonlinear state space models (SSMs) are widely used in many scientific domains for

modeling time series. For example, nonlinear SSMs can be applied in engineering (e.g.,

target tracking, Gordon et al. 1993), in epidemiology (e.g., compartmental disease

models, Dukic et al. 2012), and to financial time series (e.g., stochastic volatility

models, Shephard 2005). To capture complex dynamical structure, nonlinear SSMs

augment the observed time series with a latent state sequence, inducing a Markov

chain dependence structure. Parameter inference for nonlinear SSMs requires us to

handle this latent state sequence. This is typically achieved using particle filtering

methods.

Particle filtering algorithms are a set of flexible Monte Carlo simulation-based

methods, which use a set of samples, also known as particles, to approximate the

posterior distribution over the latent states. Unfortunately, inference in nonlinear

SSMs does not scale well to long sequences: (i) the cost of each update requires full

passes through the data that scales linearly with the length of the sequence, and (ii)

the number of particles (and hence the computation per data point) required to control

the bias of the particle filter scales linearly with the length of the sequence Kantas

32

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 33

et al. (2015).

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) is a popular method

for scaling Bayesian inference to large data sets, replacing full data gradients with

stochastic gradient estimates based on subsets of data (Welling and Teh, 2011; Ma

et al., 2015). In the context of SSMs, naive stochastic gradients are biased because

subsampling breaks temporal dependencies in the data (Ma et al., 2017; Aicher et al.,

2019). To correct for this, Ma et al. (2017) and Aicher et al. (2019) have developed

buffered stochastic gradient estimators that control the bias. The latent state sequence

is marginalized in a buffer around each subsequence, which reduces the effect that

breaking dependencies has on the estimate of the gradient. However, the work so far

has been limited to SSMs where analytic marginalization is possible (e.g., finite-state

HMMs and linear dynamical systems).

In this work, we propose particle buffered gradient estimators that generalize the

buffered gradient estimators to nonlinear SSMs. Although straightforward in concept,

a number of unique challenges arise in this setting. First, we show how buffering

in nonlinear SSMs can be approximated with a modified particle filter. Second, we

provide an error analysis of our proposed estimators by decomposing the error into

subsequence error, buffering error, and particle filter error and analyze how this error

propagates to estimating posterior means with SGMCMC. Third, we extend the

buffering error bounds of Aicher et al. (2019) to nonlinear SSMs with log-concave

likelihoods and show that buffer error decays geometrically in buffer size, ensuring

that a small buffer size can be used in practice.

The theory we present highlights the importance of controlling bias in the estimate

of the gradient – as whilst the impact of a high variance estimator on the accuracy

of the SG-MCMC algorithm can be controlled by increasing the number of steps

and reducing the step size, it is not possible to change the implementation of the

SG-MCMC algorithm to reduce the impact of the bias. We then show theoretically

that introducing buffering enables us to control the bias of the estimates of the gradient

– with the bias decaying geometrically in the size of the buffer. We investigate the

accuracy of our new approach on a range of models with both synthetic and real data

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 34

– and show that for fixed computational cost we have obtained substantial gains in

accuracy over alternatives. This is due to the reduced bias relative to unbuffered

versions of SG-MCMC and through the fact that using stochastic gradient methods

allows for more iterations of the MCMC algorithm when compared to approaches that

estimate gradients using all observations.

Python code for our Algorithm and for replicating our numerical studies is available

at https://github.com/aicherc/sgmcmc_ssm_code.

3.2 Background

3.2.1 Nonlinear State Space Models for Time Series

State space models are a class of discrete-time bivariate stochastic processes consisting

of a latent state process X = {Xt ∈ Rdx}Tt=1 and a second observed process, Y =

{Yt ∈ Rdy}Tt=1. The evolution of the state variables is typically assumed to be a time-

homogeneous Markov process, such that the latent state at time t, Xt, is determined

only by the latent state at time t − 1, Xt−1. The observed states are conditionally

independent given the latent states. Given the prior X0 ∼ ν(x0|θ) and parameters

θ ∈ Θ, the generative model for X, Y is thus

Xt|(Xt−1 = xt−1, θ) ∼ p(xt |xt−1, θ), (3.2.1)

Yt|(Xt = xt, θ) ∼ p(yt |xt, θ),

where we call p(xt |xt−1, θ) the transition density and p(yt |xt, θ) the emission density.

For an arbitrary sequence {zi}, we use zi:j to denote the sequence (zi, zi+1, . . . , zj).

To infer the model parameters θ, a quantity of interest is the score function, the

gradient of the marginal loglikelihood, ∇θ log p(y1:T |θ). Using the score function, the

loglikelihood can be maximized iteratively via a (batch) gradient ascent algorithm

(Robbins and Monro, 1951), given the observations, y1:T .

If the latent state posterior p(x1:T |y1:T , θ) can be expressed analytically, we can

https://github.com/aicherc/sgmcmc_ssm_code

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 35

calculate the score using Fisher’s identity (Cappé et al., 2005),

∇θ log p(y1:T | θ) = EX|Y,θ[∇θ log p(X1:T , y1:T | θ)]

=
T∑
t=1

EX|Y,θ[∇θ log p(Xt, yt |xt−1, θ)]. (3.2.2)

If the latent state posterior, p(x1:T |y1:T , θ), is not available in closed-form, we can

approximate the expectations of the latent state posterior. One popular approach is

via particle filtering methods.

Particle Filtering and Smoothing

Particle filtering algorithms (see e.g., Doucet and Johansen, 2009; Fearnhead and

Künsch, 2018) can be used to create an empirical approximation of the expectation of

a function H(X1:T) with respect to the posterior density, p(x1:T |y1:T , θ). This is done

by generating a collection of N random samples or particles, {x(i)
t }Ni=1 and calculating

their associated importance weights, {w(i)
t }Ni=1, recursively over time. We update the

particles and weights with sequential importance resampling (Doucet and Johansen,

2009) in the following manner.

(i) Resample auxiliary ancestor indices {a1, . . . , aN} with probabilities proportional

to the importance weights, i.e., ai ∼ Categorical(w
(i)
t−1).

(ii) Propagate particles x
(i)
t ∼ q(·|x(ai)

t−1, yt, θ), using a proposal distribution q(·|·).

(iii) Update and normalize the weight of each particle,

w
(i)
t ∝

p(yt|x(i)
t , θ)p(x

(i)
t |x(ai)

t−1, θ)

q(x
(i)
t |x(ai)

t−1, yt, θ)
,
∑
i

w
(i)
t = 1 . (3.2.3)

The auxiliary variables, {ai}Ni=1, represent the indices of the ancestors of the

particles, {x(i)
t }Ni=1, sampled at time t. The introduction of ancestor indices allows

us to keep track of the lineage of particles over time (Andrieu et al., 2010). The

multinomial resampling scheme given in (i) describes the procedure by which offspring

particles are produced.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 36

Resampling at each iteration is used to mitigate against the problem of weight

degeneracy. This phenomenon occurs when the variance of the importance weights

grows, causing more and more particles to have negligible weight. Aside from the multi-

nomial resampling scheme described above, there are various other resampling schemes

outlined in the particle filtering literature, such as stratified sampling (Kitagawa, 1996)

and residual sampling (Liu and Chen, 1998).

If the proposal density q(xt|xt−1, yt, θ) is the transition density p(xt|xt−1, θ) we

obtain the bootstrap particle filter (Gordon et al., 1993). By using the transition density

for proposals, the importance weight recursion in (3.2.3) simplifies to w
(i)
t ∝ p(yt|x(i)

t , θ).

When our target function decomposes into a pairwise sumH(x1:T) =
∑T

t=1 ht(xt, xt−1)

– such as for Fisher’s identity ht(xt, xt−1) = ∇θ log p(yt, xt |xt−1, θ) – then we only need

to keep track of the partial sum Ht =
∑t

s=1 hs(xs, xs−1) in the filter Doucet and

Johansen (2009): see Algorithm 2.

Algorithm 2: Particle Filter

1: Input: number of particles, N , pairwise statistics, h1:T , observations y1:T ,

proposal density q,

2: Draw x
(i)
0 ∼ ν(x0|θ), set w

(i)
0 = 1

N
, and H

(i)
0 = 0 ∀i.

3: for t = 1, . . . , T do

4: Resample ancestor indices {a1, . . . , aN}.
5: Propagate particles x

(i)
t ∼ q(·|x(ai)

t−1, yt, θ).

6: Update each w
(i)
t according to (3.2.3).

7: Update statistics H
(i)
t = H

(ai)
t−1 + ht(x

(i)
t , x

(ai)
t−1).

8: end for

9: Return H =
∑N

i=1w
(i)
T H

(i)
T .

A key challenge for particle filters is handling large T . Not only do long sequences

require O(T) computation, but particle filters require a large number of particles,

N , to avoid particle degeneracy : the use of resampling in the particle filter causes

path-dependence over time, depleting the number of distinct particles available over-

all. For Algorithm 2, the variance in H scales as O(T 2/N) (Poyiadjis et al., 2011).

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 37

Therefore to maintain a constant variance, the number of particles would need to

increase quadratically with T , which is computationally infeasible for long sequences.

Poyiadjis et al. (2011); Nemeth et al. (2016) and Olsson and Westerborn (2017) propose

alternatives to Step 7 of Algorithm 2 that trade additional computation or bias to

decrease the variance in H to O(T/N). Fixed-lag particle smoothers provide another

approach to avoid particle degeneracy, where sample paths are not updated after a

fixed lag (Kitagawa and Sato, 2001; Dahlin et al., 2015). All of these methods perform

a full pass over the data y1:T , which requires O(T) computation.

3.2.2 Stochastic Gradient MCMC

One popular method to conduct scalable Bayesian inference for large data sets is

stochastic gradient Markov chain Monte Carlo (SGMCMC). Given a prior p(θ), to

draw a sample θ from the posterior p(θ|y) ∝ p(y|θ)p(θ), gradient-based MCMC

methods simulate a stochastic differential equation (SDE) based on the gradient of the

loglikelihood gθ = ∇θ log p(y|θ), such that the posterior is the stationary distribution of

the SDE. SGMCMC methods replace the full-data gradients with stochastic gradients,

ĝθ, using subsamples of the data to avoid costly computation.

The most common method of the SGMCMC family is the stochastic gradient

Langevin dynamics (SGLD) algorithm (Welling and Teh, 2011; Nemeth and Fearnhead,

2021):

θ(k+1) ← θ(k) + ε(k) · (ĝθ +∇ log p(θ)) +N (0, 2ε(k)), (3.2.4)

where ε(k) is the stepsize and θ1 is an initialization of the chain. When ĝθ is unbiased

and with an appropriate decreasing stepsize, the distribution of θ(k) asymptotically

converges to the posterior distribution (Teh et al., 2016). Dalalyan and Karagulyan

(2019) provide non-asymptotic bounds on the Wasserstein distance between the pos-

terior and the output of SGLD after K steps for fixed ε(k) = ε and possibly biased

ĝθ.

Many extensions of SGLD exist in the literature, including using control variates

to reduce the variance of ĝθ (Baker et al., 2019a; Nagapetyan et al., 2017; Chatterji

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 38

et al., 2018) and augmented dynamics to improve mixing (Ma et al., 2015) such as

stochastic gradient Hamiltonian Monte Carlo (Chen et al., 2014), stochastic gradient

Nosé-Hoover thermostat (Ding et al., 2014), and stochastic gradient Riemannian

Langevin dynamics (Girolami and Calderhead, 2011; Patterson and Teh, 2013).

Stochastic Gradients for SSMs

An additional challenge when applying SGMCMC to SSMs is handling the temporal

dependence between observations. Based on a subset S of size S, an unbiased stochastic

gradient estimate of (3.2.2) is∑
t∈S

Pr(t ∈ S)−1 · EX|y1:T ,θ[∇θ log p(Xt, yt |Xt−1, θ)]. (3.2.5)

Although (3.2.5) is a sum over S terms, it requires taking expectations with respect to

p(x|y1:T , θ), which requires processing the full sequence y1:T . One approach to reduce

computation is to randomly sample S as a contiguous subsequence S = {s+1, . . . , s+S}
and approximate (3.2.5) using only yS∑

t∈S

Pr(t ∈ S)−1 · EX|yS ,θ[∇θ log p(Xt, yt |Xt−1, θ)]. (3.2.6)

However, (3.2.6) is biased because the expectation over the latent states xS is condi-

tioned only on yS rather than y1:T .

To control the bias in stochastic gradients while also avoiding accessing the full

sequence, previous work on SGMCMC for SSMs proposed buffered stochastic gradi-

ents (Ma et al., 2017; Aicher et al., 2019).

ĝθ(S,B) =
∑
t∈S

EX|yS∗ ,θ[∇θ log p(Xt, yt |Xt−1, θ)]

Pr(t ∈ S)
, (3.2.7)

where S∗ = {s + 1 − B, . . . , s + S + B} is the buffered subsequence such that S ⊆
S∗ ⊆ {1, . . . , T} (see Figure 3.2.1). When the ”buffer” extends outside of the original

subsequence (e.g., s+ 1−B < 1 or s+ S +B > T), then we can extend the model to

{1−B, . . . , T +B} and assume the observations yt outside of {1, . . . , T} are missing.

In practice, we will truncate S∗ by intersecting it with {1, . . . , T}.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 39

The unbiased gradient estimate, which conditions on all data (3.2.5), is ĝ(S, T)

and the estimator with no buffering (3.2.6) is ĝ(S, 0). As B increases from 0 to T ,

the estimator ĝθ(S,B) trades computation for reduced bias. In particular, when the

xs−1 xs xs+1 xs+2 xs+3 xs+4 xs+5

ys−1 ys ys+1 ys+2 ys+3 ys+4 ys+5

S S∗

Figure 3.2.1: Graphical model of S∗ with S = 3 and B = 1.

model and gradient both satisfy a Lipschitz property, the error decays geometrically

in buffer size B, see Theorem 4.1 of Aicher et al. (2019). Specifically, for all S

‖ĝθ(S,B)− ĝθ(S, T)‖2 = O(LBθ · T/S), (3.2.8)

where Lθ is a bound for the Lipschitz constants of the forward and backward smoothing

kernels1

~Ψt(xt+1, xt) = p(xt+1 |xt, y1:T , θ),

~Ψt(xt−1, xt) = p(xt−1 |xt, y1:T , θ). (3.2.9)

The bound provided in (3.2.8) ensures that only a modest buffer size B is required

(e.g., O(log δ−1) for an accuracy of δ). Unfortunately, neither the buffered stochastic

gradient ĝθ(S,B) nor the smoothing kernels {~Ψt, ~Ψt} have a closed form for nonlinear

SSMs.

3.3 Method

In this section, we propose a particle buffered stochastic gradient for nonlinear SSMs,

by applying the particle approximations of Section 3.2.1 to (3.2.7).

1We follow Aicher et al. (2019) and consider Lipschitz constants for a kernel Ψ measured in terms

of the p-Wasserstein distance between distributions of x, x′ and Ψ(x),Ψ(x′).

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 40

3.3.1 Buffered Stochastic Gradient Estimates for Nonlinear

SSMs

Let gPF
θ (S,B,N) denote the particle approximation of ĝθ(S,B) with N particles. We

approximate the expectation over p(x|yS∗ , θ) in (3.2.7) using Algorithm 2 run over S∗.
In the following we will use ν0 as the prior distribution for Xs+1−B, which is a natural

choice if the state process is stationary and ν0 is its stationary distribution; for other

cases better choices for the prior distribution of Xs+1−B may be possible.

The complete data loglikelihood, log p(yS , xS , θ), in (3.2.7) decomposes into a sum

of pairwise statistics

H =
∑
t∈S∗

ht(xt, xt−1) , (3.3.1)

where

ht(xt, xt−1) =


∇θ log p(xt, yt |xt−1, θ)

Pr(t ∈ S)
if t ∈ S,

0 otherwise.

(3.3.2)

We highlight that the statistic is zero for t in the left and right buffers S∗\S. Although

Ht is not updated by ht for t in S∗\S, running the particle filter over the buffers is

crucial to reduce the bias of gPF
θ (S,B,N).

Note that gPF
θ (S,B,N) allows us to approximate the non-analytic expectation in

(3.2.7) with a modest number of particles N , by avoiding the particle degeneracy and

full sequence runtime bottlenecks, as the particle filter is only run over S∗, which has

length S + 2B � T .

3.3.2 SGMCMC Algorithm

Using gPF
θ (S,B,N) as our stochastic gradient estimate in SGLD, (3.2.4), gives us

Algorithm 3.

Algorithm 3 can be extended by (i) averaging over multiple sequences or varying

the subsequence sampling method (Schmidt et al., 2015; Ou et al., 2018), (ii) using

different particle filters such as those listed in Section 3.2.1, and (iii) using more

advanced SGMCMC schemes such as those listed in Section 3.2.2.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 41

Algorithm 3: Buffered PF-SGLD

1: Input: data y1:T , initial θ(0), stepsize ε, subsequence size S, buffer size B, particle

size N

2: for k = 1, 2, . . . , K do

3: Sample S = {s+ 1, . . . , s+ S}
4: Set S∗ = {s+ 1−B, . . . , s+ S +B}.
5: Calculate gPF

θ over S∗ using Alg. 2 on (3.3.2).

6: Set θ(k+1) ← θ(k) + ε · (gPF
θ +∇ log p(θ)) +N (0, 2ε)

7: end for

8: Return θ(K+1)

3.4 Error Analysis

In this section, we analyze the error of our particle buffered stochastic gradient gPF
θ

and its effect on approximating posterior means with finite sample averages using

Algorithm 3. We first present error bounds for approximating posterior means using

SGLD with biased gradients (Theorem 3.4.1). We then present bounds on the gradient

bias and MSE of gPF
θ , extending the error bounds of Aicher et al. (2019) (Theorem 3.4.2).

In particular, we provide bounds for the Lipschitz constant Lθ of the smoothing kernels

(3.2.9) without requiring an explicit form for the smoothing kernels (Theorem 3.4.3),

allowing (3.2.8) to apply to nonlinear SSMs.

3.4.1 Error of Biased SGLD’s Finite Sample Averages

We consider the estimation error of the posterior expected value of some test function

of the parameters φ : Θ→ R using samples θ(k) drawn using SGLD with a fixed step

size ε and stochastic gradients gθ.

Let φ̄ be the posterior expected value

φ̄ = E p(θ|y)[φ(θ)] , (3.4.1)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 42

and let φ̂K,ε be the K-sample estimator for φ̄

φ̂K,ε =
1

K

K∑
k=1

φ(θ(k)) . (3.4.2)

The error of the finite sample average |φ̂K,ε − φ̄| has been previously studied

for SGLD with unbiased gradients by Vollmer et al. (2016) and Chen et al. (2015).

Following Chen et al. (2015), we make the following assumption on φ.

Assumption 1. Let L be the generator of the Langevin diffusion

L[ψ(θt)] = −∇ log p(θt) · ∇ψ(θt) +
ε2

2
tr(∇2ψ(θt)) .

Then, we define ψ to solve the Poisson equation

1

K

K∑
k=1

L[ψ(θ(k))] = φ̂K,ε − φ̄ . (3.4.3)

We assume that ψ(θ) and its derivatives (up to third order) are bounded.

We now present Theorem 3.4.1, which bounds the error of a finite sample Monte

Carlo estimator based on SGLD when the stochastic gradients ĝθ are potentially biased.

Theorem 3.4.1 (Error of Finite Sample Average). If the gradient gθ is smooth in

θ, the test function φ satisfies a moment condition (Assumption 1) and the bias and

MSE of the gradient estimates ĝθ are uniformly bounded, that is,

‖E ĝθ − gθ‖ ≤ δ and E ‖ĝθ − gθ‖2 ≤ σ2 for all θ , (3.4.4)

then there exists some constant C > 0, such that the bias and MSE of φ̂K,ε satisfy

|E φ̂K,ε − φ̄ | ≤ C ·
(

1

Kε
+ δ

)
+O(ε) , (3.4.5)

E |φ̂K,ε − φ̄ |2 ≤ C

(
1

K2ε2
+
σ2

K
+ δ2 +

δ

ε

)
+O

(
1

Kε
+ δε+ ε2

)
. (3.4.6)

The bias bound, (3.4.5), is a direct application of Theorem 2 in Chen et al. (2015).

The MSE bound, (3.4.6), is an extension of Theorem 3 in Chen et al. (2015) when

the stochastic gradient estimates ĝθ are biased (i.e., δ 6= 0). The additional bias

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 43

terms δ arise from keeping track of additional cross terms in (φ̂K,ε − φ̄)2. The proof of

Theorem 3.4.1 is presented in Section 3.7.1.

From Theorem 3.4.1, we see that the error bounds on φ̂K,ε are more sensitive to

the bias δ of ĝ than the variance σ2: the term involving σ2 decays with increasing K,

while terms involving δ do not decay regardless of stepsize ε or number of samples

K. A similar conclusion comes from the bound on error of SGLD in Theorem 4 of

Dalalyan and Karagulyan (2019): the impact of bias on the error bound is not affected

by step size, whereas the impact of the variance can be reduced by taking more steps

of smaller size; however, we do not require the posterior distribution be log-concave.

Therefore for the samples from Algorithm 3 to be useful, it is important for the

bias of gPF
θ to be controlled.

3.4.2 Gradient Bias and MSE Bounds

To apply Theorem 3.4.1 to the samples from Algorithm 3, we develop bounds on the

bias δ and MSE σ2 of our particle buffered stochastic gradients gPF
θ .

Theorem 3.4.2 (Bias and MSE Bounds for gPF
θ). For fixed θ, if the model and gradient

satisfy a Lipschitz condition and the autocorrelation between EX|y1:T∇ log p(yt, Xt|Xt−1, θ)

for different t is bounded and decays geometrically, then the bias δ and MSE σ2 of gPF
θ

is bounded by

δ ≤ γ ·
[
C1 · LBθ +O

(
S + 2B

N

)]
, (3.4.7)

σ2 ≤ 3γ2 ·
[
C2

1 · L2B
θ + C2S +O

(
(S + 2B)2

N

)]
, (3.4.8)

where γ = maxt Pr(t ∈ S)−1 and C1, C2 are constants with respect to S,B,N .

From Theorem 3.4.2, we see that the bias δ (3.4.7) can be controlled by selecting

large enough N and B when Lθ < 1.

We now sketch the proof of Theorem 3.4.2 and discuss its assumptions. The

complete proof can be found in Section 3.7.2.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 44

We decompose the error between gPF
θ and the full gradient gθ through ĝθ(S,B) and

ĝθ(S, T) into three error sources:

‖gPF
θ (S,B,N)− gθ‖ ≤ ‖gPF

θ (S,B,N)− ĝθ(S,B)‖︸ ︷︷ ︸
particle error (I)

+

‖ĝθ(S,B)− ĝθ(S, T)‖︸ ︷︷ ︸
buffering error (II)

+ ‖ĝθ(S, T)− gθ‖︸ ︷︷ ︸
subsequence error (III)

. (3.4.9)

(I) Particle error : the Monte Carlo error of the particle filter. From Kantas et al.

(2015), the asymptotic bias and MSE of a particle approximation to the sum

of R test functions (using Algorithm 2) is O(R/N) and O(R2/N) respectively.

Since gPF(S,B,N) is a particle approximation to the sum of R = S + 2B test

functions (i.e., ht(xt, xt−1)), we have

‖E gPF
θ (S,B,N)− ĝθ(S,B)‖ = O

(
γ · S + 2B

N

)
E ‖gPF

θ (S,B,N)− ĝθ(S,B)‖2 = O
(
γ2 · (S + 2B)2

N

)
, (3.4.10)

where γ is a upper bound on the sampling scale factor γ = maxt Pr(t ∈ S)−1.

Using a more advanced particle filter, such as the “PaRIS” or “Poyiadjis N2”

algorithm, Corollary 6 of Olsson and Westerborn (2017) gives a tighter bound

for the MSE

E ‖gPF
θ (S,B,N)− ĝθ(S,B)‖2 = O

(
γ2 · S + 2B

N

)
.

However in our experiments, we found that the improved MSE of these other

particle filters was not worth the additional computational overhead for the

small subsequences we considered, where S + 2B . 100. See the experiments in

Appendix A.

(II) Buffering error,: error in approximating the latent state posterior p(x1:T |y1:T)

with p(x1:T |yS∗). The error stems from conditioning on only a buffered sub-

sequence yS∗ instead of y1:T and the initial distribution approximation ν0 for

Xs+1−B. If the smoothing kernels {~Ψt, ~Ψt} are contractions for all t (i.e., Lθ < 1),

then according to (3.2.8), the error in this term is proportional to γLBθ . In

Section 3.4.3, we show sufficient conditions for Lθ < 1.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 45

(III) Subsequence error : the error in approximating Fisher’s identity using a randomly

chosen subsequence of data points. The error in this term depends on the

subsequence size S and how subsequences are sampled. Because we sample

random contiguous subsequences of size S, the MSE scales O(γ2S 1+ρ
1−ρ), where

ρ is a bound on the autocorrelation between EX|y1:T∇ log p(yt, Xt|Xt−1, θ) for

different t. See Section 3.7.2 for more details.

Combining these error bounds gives us Theorem 3.4.2.

We present examples of the asymptotic bias and MSE bounds given by Theo-

rem 3.4.2 for four different gradient estimators in Table 3.4.1. The four gradient

estimators are: (i) naive stochastic subsequence (without buffering) gPF(S, 0, N) (ii)

buffered stochastic subsequence gPF(S,B,N), (iii) fully buffered stochastic subse-

quence gPF(S, T,N), and (iv) full sequence gPF(T, T,N). For simplicity, we assume

the subsequences S are sampled from a strict partition of 1 : T such that γ = T/S

and assume B is on the same order as S (i.e., B is O(S)).

Table 3.4.1: Asymptotic bias and compute cost for four different gradient estimators.

Gradient (S,B,N) Bias δ Compute

Naive Subsequence (S, 0, N) C1 · T/S +O(T/N) O(SN)

Buffered Subsequence (S,B,N) C1 · LBθ · T/S +O(T/N) O(SN)

Fully Buffered Subsequence (S, T,N) O(T/N) O(TN)

Full Sequence (T, T,N) O(T/N) O(TN)

From Table 3.4.1, we see that without buffering, the naive stochastic gradient has

a C1 · T/S term in the bias bound δ. The fully buffered subsequence and full sequence

gradients remove the buffering error entirely, but require O(TN) computation. Instead,

our proposed buffered stochastic gradient controls the bias, with the geometrically

decaying factor LBθ , using only O(SN) computation.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 46

3.4.3 Buffering Error Bound for Nonlinear SSMs

To obtain a bound for the buffering error term (II), we require the Lipschitz constant Lθ

of smoothing kernels {~Ψt, ~Ψt} to be less than 1. Typically the smoothing kernels ~Ψt, ~Ψt

are not available in closed-form for nonlinear SSMs and therefore directly bounding the

Lipschitz constant is difficult. However, we now show that when the model’s transition

and emission densities are log-concave in xt, xt−1, we can bound the Lipschitz constant

of ~Ψt, ~Ψt in terms of the Lipschitz constant of either the prior kernels ~Ψ
(0)
t , ~Ψ

(0)

t , or

the filtered kernels ~Ψ
(1)
t , ~Ψ

(1)

t

~Ψ
(0)
t := p(xt |xt−1, θ), ~Ψ

(1)
t := p(xt |xt−1, yt, θ),

~Ψ
(0)

t := p(xt |xt+1, θ), ~Ψ
(1)

t := p(xt |xt+1, yt, θ), (3.4.11)

Unlike the smoothing kernels, the prior kernels are defined by the model and are

therefore usually available. If the filtered kernels are available, then they can be used

to obtain even tighter bounds.

Theorem 3.4.3 (Lipschitz Kernel Bound). Assume the prior for x0 is log-concave in

x. If the transition density p(xt |xt−1, θ) is log-concave in (xt, xt−1) and the emission

density p(yt |xt) is log-concave in xt, then

‖~Ψt‖Lip ≤ ‖~Ψ(1)
t ‖Lip ≤ ‖~Ψ(0)

t ‖Lip (3.4.12)

‖ ~Ψt‖Lip ≤ ‖ ~Ψ
(1)

t ‖Lip ≤ ‖ ~Ψ
(0)

t ‖Lip. (3.4.13)

Therefore

Lθ = max
t
{‖~Ψt‖Lip, ‖ ~Ψt‖Lip}

≤ max
t
{‖~Ψ(1)

t ‖Lip, ‖ ~Ψ
(1)

t ‖Lip}

≤ max
t
{‖~Ψ(0)

t ‖Lip, ‖ ~Ψ
(0)

t ‖Lip} (3.4.14)

This theorem lets us bound Lθ with the Lipschitz constant of either the prior

kernels or filtered kernels. The proof of Theorem 3.4.3 is provided in Section 3.7.3

and uses Caffarelli’s log-concave perturbation theorem (Villani, 2008; Colombo et al.,

2017). Examples of SSMs for which Theorem 3.4.3 applies include the linear Gaussian

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 47

SSM, the stochastic volatility model, or any linear SSM with log-concave transition

and emission distributions.

Theorem 3.4.3 lets us calculate analytic bounds on Lθ for the buffering error of

Theorem 3.4.2. We provide explicit bounds for Lθ for the linear Gaussian SSM and

stochastic volatility model in Section 3.5.1 with proofs in the Section 3.7.4.

3.5 Experiments

We first empirically test the bias of our particle buffered gradient estimator gPF
θ on

synthetic data for fixed θ. We then evaluate the performance of our proposed SGLD

algorithm (Algorithm 3) on both real and synthetic data.

3.5.1 Models

For our experiments, we consider three models: (i) the linear Gaussian SSM (LGSSM),

a case where analytic buffering is possible, to assess the impact of the particle filter;

(ii) the stochastic volatility model (SVM) (Shephard, 2005), where the emissions are

non-Gaussian; and (iii) the generalized autoregressive conditional heteroskedasticity

(GARCH) model (Bollerslev, 1986), where the latent transitions are nonlinear.

Linear Gaussian SSM

The linear Gaussian SSM (LGSSM) is

Xt | (Xt−1 = xt−1, θ) ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt, θ) ∼ N (yt |xt , τ 2), (3.5.1)

with ν0(x0) = N (x0 | 0, φ2

1−σ2) and parameters θ = (φ, σ, τ).

The transition and emission distributions are both Gaussian and log-concave in x,

so Theorem 3.4.3 applies. In Section 3.7.4, we show that the filtered kernels of the

LGSSM are bounded with the Lipschitz constant Lθ = |φ| · σ2/(σ2 + τ 2). Thus, the

buffering error decays geometrically with increasing buffer size B when |φ| < (1 + τ2

σ2).

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 48

This linear model serves as a useful baseline since the various terms in (3.4.9) can be

calculated analytically.

Stochastic Volatility Model

The stochastic volatility model (SVM) is

Xt | (Xt−1 = xt−1, θ) ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt, θ) ∼ N (yt | 0 , exp(xt)τ
2), (3.5.2)

with ν0(x0) = N (x0 | 0, φ2

1−σ2) and parameters θ = (φ, σ, τ).

For the SVM, the transition and emission distributions are log-concave in x, allowing

Theorem 3.4.3 to apply. In Section 3.7.4, we show that the prior kernels {~Ψ(0)
t , ~Ψ

(0)

t }
of the SVM are bounded with the Lipschitz constant Lθ = |φ|. Thus, the buffering

error decays geometrically with increasing buffer size B when |φ| < 1.

GARCH Model

We finally consider a GARCH(1,1) model (with noise)

Xt | (Xt−1 = xt−1, σ
2
t , θ) ∼ N (xt | 0, σ2

t),

σ2
t (xt−1, σ

2
t−1, θ) = α + βx2

t−1 + γσ2
t−1,

Yt | (Xt = xt, θ) ∼ N (yt |xt , τ 2), (3.5.3)

with ν0(x0) = N (0, α
1−β−γ) and parameters θ = (α, β, γ, τ). Unlike the LGSSM and

SVM, the noise between Xt and Xt−1 is multiplicative in Xt−1 rather than additive.

This model’s transition distribution is not log-concave in (xt, xt−1) and therefore our

theory (Theorem 3.4.3) does not hold. However, we see empirically that buffering

can help reduce the gradient error for the GARCH in the experiments below and in

Appendix A.

3.5.2 Stochastic Gradient Bias

We compare the error of stochastic gradient estimates using a buffered subsequence

with S = 16, while varying B and N on synthetic data from each model. We generated

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 49

0 2 4 6 8
B

10 4

10 3

10 2

bi
as

method_name
N = 100
N = 1000
N = 10000
N =

0 5 10 15 20
B

10 3

10 2

10 1

bi
as

method_name
N = 100
N = 1000
N = 10000

0 2 4 6 8
B

10 5

10 4

bi
as

method_name
N = 100
N = 1000
N = 10000

Figure 3.5.1: Stochastic gradient bias varying buffer size B for S = 16 for different

values of N . (left) LGSSM φ, (middle) SVM φ, (right) GARCH β. Error bars are 95%

confidence interval over 1000 replications.

22 24 26

S

10 4

10 3

10 2

bi
as

method_name
N = 100
N = 1000
N = 10000
N =
buffer
No Buffer
Buffer

21 22 23 24 25 26

S

10 3

10 2

10 1

bi
as

method_name
N = 100
N = 1000
N = 10000
buffer
No Buffer
Buffer

21 22 23 24 25 26

S

10 5

10 4

10 3

bi
as

method_name
N = 100
N = 1000
N = 10000
buffer
No Buffer
Buffer

Figure 3.5.2: Stochastic gradient bias varying subsequence size S for No Buffer (B = 0)

and Buffer (B > 0) for different values of N . (left) LGSSM φ, (middle) SVM φ, (right)

GARCH β. The buffer size B = 8 for LGSSM and GARCH and B = 16 for the SVM.

Error bars are 95% confidence interval over 1000 replications.

synthetic data of length T = 256 using (φ = 0.9, σ = 0.7, τ = 1.0) for the LGSSM,

(φ = 0.9, σ = 0.5, τ = 0.5) for the SVM, and (α = 0.1, β = 0.8, γ = 0.05, τ = 0.3) for

the GARCH model.

Figures 3.5.1-3.5.3 display the bias of our particle buffered stochastic gradient

estimator, gPF
θ (S,B,N), and the ground truth, gθ, averaged over 1000 replications.

The stochastic gradient bias is calculated as ‖gPF
θ − gθ‖. We evaluate the gradients at

θ equal to the data generating parameters. We vary the buffer size B ∈ [0, 16], the

subsequence size S ∈ [1, T] and the number of samples N ∈ {100, 1000, 10000}. For

the LGSSM, we also consider N =∞, by calculating gPF
θ (S,B,∞) using the Kalman

filter (Kalman, 1960), which is tractable in the linear setting. In order to calculate our

ground truth gθ, we use the Kalman filter for the LGSSM, and use gθ ≈ gPF
θ (T, 0, 107)

as a substitute for the SVM and the GARCH model. We have assumed here that used

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 50

102 103 104 105

N

10 3

10 2

bi
as

method_name
No Buffer
Buffer = B
Buffer = T
Full

102 103 104 105

N

10 3

10 2

10 1

bi
as

method_name
No Buffer
Buffer = 16
Buffer = T
Full

102 103 104 105

N

10 5

10 4

10 3

bi
as

method_name
No Buffer
Buffer = 8
Buffer = T
Full

10 3 10 2 10 1 100 101

runtime

10 3

10 2

bi
as

method_name
No Buffer
Buffer = B
Buffer = T
Full

10 2 10 1 100 101

runtime

10 3

10 2

10 1

bi
as

method_name
No Buffer
Buffer = 16
Buffer = T
Full

10 2 10 1 100 101

runtime

10 5

10 4

10 3

bi
as

method_name
No Buffer
Buffer = 8
Buffer = T
Full

Figure 3.5.3: Stochastic gradient bias varying N for different S,B. (left) LGSSM φ,

(middle) SVM φ, (right) GARCH β. (top) x-axis is N , (bottom) x-axis is runtime in

seconds. No Buffer is gPF(16, 0, N), Buffer B = B is gPF(16, B,N), Buffer B = T

is gPF(16, T,N), and Full is gPF(T, T,N). The moderate buffer size B = 8 for LGSSM

and GARCH and B = 16 for the SVM. Error bars are 95% confidence interval over

1000 replications.

N = 107 particles is sufficient for an accurate approximation of the ground truth in

these 1-dimensional settings.

Figure 3.5.1 shows the bias as we vary the buffer size B for different N and S = 16.

From Figure 3.5.1, we see the trade-off between the buffering error (II) and the particle

error (III) in the bias bound, (3.4.7) of Theorem 3.4.2. For all N , when B is small,

the buffering error (II) dominates, and therefore the MSE decays exponentially as B

increases. However for N <∞, the particle error (III) dominates for larger values of

B. In fact, the bias slightly increases due to particle degeneracy, as |S∗| = S + 2B

increases with B. For N =∞ in the LGSSM case, we see that the bias continues to

decreases exponentially with large B as there is no particle filter error when using the

Kalman filter.

Figure 3.5.2 shows the bias as we vary the subsequence size S for different N and

with and without buffering. We see that buffering helps regardless of subsequence

size (as the bias for all buffered methods are lower than the no buffer methods for all

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 51

S ∈ [2, 64]). We also see that increasing S can increase the bias for fixed N (when

buffering) as the particle error (III) dominates.

Figure 3.5.3 shows the bias as we vary the number of particles N for the four

different methods correspond to Table 3.4.1. In the top row, we compare the bias

against N and in the bottom row, we compare the bias against the runtime required

to calculate gPF
θ . We see that the method without buffering (orange) is significantly

biased regardless of N , where as buffering with moderate B (blue), buffering with

large B = T (red), and using the full sequence (green) have similar (lower) bias as we

increase N . However the runtime plots show that buffering with moderate B takes

significantly less time.

In summary, Figures 3.5.1-3.5.3 show that buffering cannot be ignored in these three

example models: there is high bias for B = 0. In general, buffering has diminishing

returns when B is excessively large relative to N .

In Appendix A, we present plots of the bias varying B, S,N using different particle

filters (PaRIS and Poyiadjis N2) instead of the naive PF. We find that they perform

similarly to the naive PF for the small subsequence lengths |S∗| considered, while

taking ≈ 10 times longer to run. We also present plots of the bias as we vary the

parameters of the data generating model. We find that as the parameters become

more challenging (e.g., Lθ → 1), we need to increase both B and N to control bias;

otherwise, the buffer stochastic subsequence methods are more biased than using full

sequence gradient.

3.5.3 SGLD Experiments

Having examined the stochastic gradient bias, we now examine using our buffered

stochastic gradient estimators in SGLD (Algorithm 3).

SGLD Evaluation Method

We measure the sample quality of our MCMC chains {θ(k)}Kk=1 using the kernel Stein

discrepancy (KSD) for equal compute time (Gorham and Mackey, 2017; Liu et al.,

2016). We choose to use KSD rather than classic MCMC diagnostics such as effective

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 52

sample size (ESS) (Gelman et al., 2013), because KSD penalizes the bias present in our

MCMC chains. Whilst it can be hard to interpret the absolute value of KSD for any

problem, it is informative for comparing between different algorithms. Given a sample

chain (after burnin and thinning) {θ(k)}K̃k=1, let p̂(θ|y) be the empirical distribution of

the samples. Then the KSD between p̂(θ|y) and the posterior distribution p(θ|y) is

KSD(p̂, p) =

dim(θ)∑
d=1

√√√√ K̃∑
k,k′=1

Kd0(θ(k), θ(k′))

K̃2
, (3.5.4)

where

Kd0(θ, θ′) = 1
p(θ|y)p(θ′|y)

∇θd∇θ′d
(p(θ|y)K(θ, θ′)p(θ′|y)) (3.5.5)

and K(·, ·) is a valid kernel function. Following Gorham and Mackey (2017), we use

the inverse multiquadratic kernel K(θ, θ′) = (1 + ‖θ − θ′‖2
2)
−0.5 in our experiments.

Since (3.5.5) requires full gradient evaluations of log p(θ|y) that are computationally

intractable, we replace these terms with corresponding stochastic estimates using the

full particle filter estimate, gPF
θ Gorham et al. (2020).

SGLD on Synthetic LGSSM Data

To assess the effect of using particle filters with buffered stochastic gradients, we first

focus on SGLD on synthetic LGSSM data, where calculating ĝθ(S,B) is possible. We

generate training sequences of length T = 103 or 106 using the same parametrization

as Section 3.5.2.

We consider three pairs of different gradient estimators: Full (S = T), Buffered

(S = 40, B = 10) and No Buffer (S = 40, B = 0) each with N = 1000 particles using

the particle filter and with N =∞ using the Kalman filter. To select the stepsize, we

performed a grid search over ε ∈ {1, 0.1, 0.01, 0.001} and selected the method with

smallest KSD to the posterior on the training set. We present the KSD results (for

the best ε) in Table 3.5.1 and trace plots of the metrics in Figure 3.5.4.

From Figure 3.5.4, we see that the methods without buffering (B = 0) have higher

MSE as they are biased. We also see that the full sequence methods (S = T) perform

poorly for large T = 106.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 53

(a) T = 103

0 1000 2000 3000 4000 5000
time

10 2

10 1

100
M
S
E

(b) T = 106

102 103 104

time

10 6

10 5

10 4

10 3

10 2

10 1

100

M
SE

Figure 3.5.4: Comparison of SGLD with different gradient estimates on synthetic

LGSSM data: T = 103 (left), T = 106 (right). MSE of estimated posterior mean to

true φ = 0.9.

The KSD results further support this story. Table 3.5.1 presents the mean and

standard deviation on our estimated log10 KSD for θ. Tables of the marginal KSD

for individual components of θ can be found in Appendix A. The methods without

buffering have larger KSD, as the inherent bias of ĝθ(S,B = 0) led to an incorrect

stationary distribution. The full sequence methods perform poorly for T = 106 because

of a lack of samples that can be computed in a fixed runtime.

In Appendix A, we present similar results on synthetic SVM and GARCH data.

Also in Appendix A, we present results on LGSSM in higher dimensions. As is typical

in the particle filtering literature, the performance degrades with increasing dimensions

for N fixed.

SGLD on Exchange Rate Log-Returns

We now consider fitting the SVM and the GARCH model to EUR-USD exchange

rate data at the minute resolution from November 2017 to October 2018. The data

consists of 350,000 observations of demeaned log-returns. As the market is closed

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 54

Table 3.5.1: KSD for Synthetic LGSSM. Mean and SD. Results are shown after running

each method for a fixed computational time.

log10KSD

S B N T = 103 T = 106

T – 1000 0.85 (0.08) 4.92 (0.40)

∞ 0.64 (0.17) 4.85 (0.36)

40 0 1000 1.58 (0.03) 4.68 (0.10)

∞ 1.55 (0.03) 4.68 (0.11)

40 10 1000 0.68 (0.25) 3.43 (0.19)

∞ 0.61 (0.21) 3.25 (0.29)

during non-business hours, we further break the data into 53 weekly segments of

roughly 7,000 observations each. In our model, we assume independence between

weekly segments and divide the data into a training set of the first 45 weeks and a test

set of the last 8 weeks. Full processing details and example plots are in Appendix A.

Our method (Algorithm 3) easily scales to the unsegmented series; however the abrupt

changes between starts of weeks are not adequately modeled by (3.5.2)

We fit both the SVM and the GARCH model using SGLD with four different

gradient methods: (i) Full, the full gradient over all segments in the training set;

(ii) Weekly, a stochastic gradient over a randomly selected segment in the training

set; (iii) No Buffer, a stochastic gradient over a randomly selected subsequence of

length S = 40; and (iv) Buffer, our buffered stochastic gradient for a subsequence of

length S = 40 with buffer length B = 10. To estimate the stochastic gradients, we use

Algorithm 2 with N = 1000. To select the stepsize parameter, we performed a grid

search over ε ∈ {1, 0.1, 0.01, 0.001} and selected the method with smallest KSD. We

present the KSD results in Table 3.5.2.

For the SVM, we see that buffering leads to more accurate MCMC samples,

Table 3.5.2 (left). In particular, the samples from SGLD without buffering have

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 55

Table 3.5.2: KSD for SGLD on exchange rate data. Mean and SD over 5 chains each.

Results are shown after running each method for a fixed computational time.

log10KSD

Method SVM GARCH

Full 4.03 (0.14) 2.84 (0.30)

Weekly 3.87 (0.08) 2.81 (0.21)

No Buffer 4.48 (0.01) 2.09 (0.09)

Buffer 3.56 (0.08) 2.19 (0.05)

smaller φ, τ 2 and a larger σ2, indicating that its posterior is (inaccurately) centered

around a SVM with larger latent state noise. We also again see that the full sequence

and weekly segment methods perform poorly due to the limited number of samples

that can be computed in a fixed runtime.

For the GARCH model, Table 3.5.2 (right), we see that the subsequence methods

out perform the full sequence methods, but unlike in the SVM, buffering does not

help with inference on the GARCH data. This is because the GARCH model that we

recover on the exchange rate data (for all gradient methods) is close to white noise

β ≈ 0. Therefore the model believes the observations are close to independent, hence

no buffer is necessary.

3.6 Discussion

In this work, we developed a particle buffered stochastic gradient estimators for

nonlinear SSMs. Our key contributions are (i) extending buffered stochastic gradient

MCMC with particle filtering for nonlinear SSMs, (ii) analyzing the error of our

proposed particle buffered stochastic gradient gPF
θ (Theorem 3.4.2) and its affect on

our SGLD Algorithm 3 (Theorem 3.4.1), and (iii) generalizing the geometric decay

bound for buffering to nonlinear SSMs with log-concave likelihoods (Theorem 3.4.3).

We evaluated our proposed gradient estimator with SGLD on both synthetic data and

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 56

EUR-USD exchange rate data. We find that buffering is necessary to control bias and

that our stochastic gradient methods (Algorithm 3) are able to out perform batch

methods on long sequences.

Possible future extensions of this work include relaxing the log-concave restriction

of Theorem 3.4.3, extensions to Algorithm 3 as discussed at the end of Section 3.3.2,

and applying our particle buffered stochastic gradient estimates to other applications

than SGMCMC, such as maximising loglikelihoods or optimization in variational

autoencoders for sequential data (Maddison et al., 2017; Naesseth et al., 2018).

3.7 Error Analysis Proofs

In this section, we provide additional details and proofs for the error analysis of

Section 3.4. In particular, we provide the proof of Theorem 3.4.1 in Section 3.7.1, the

proof of Theorem 3.4.2 in Section 3.7.2, the proof of Theorem 3.4.3 in Section 3.7.3

and applications of Theorem 3.4.3 for LGSSM and SVM in Section 3.7.4.

3.7.1 Proof of Theorem 3.4.1

We now prove the error bounds for biased SGLD’s finite sample average found in

Section 3.4.1. The proof is a modification of the proof of Theorem 3 found in

Supplement E of Chen et al. (2015).

Recall our assumption on φ is that ψ(θ) and its derivatives are bounded by some

finite constant M (Assumption 1). This is the implicit moment condition for φ, which

is also assumed by Vollmer et al. (2016) and Chen et al. (2015).

The proof of Theorem 3.4.1 then proceeds as in Theorem 3 of Chen et al. (2015),

except that we allow for a δ > 0 such that E ‖ĝ(θ)− g(θ)‖ ≤ δ for all θ rather than

restrict δ = 0.

For compactness of notation, we will use gk to denote g(θ(k)), ĝk to denote ĝ(θ(k)),

and ψk to denote ψ(θ(k)).

Proof of Theorem 3.4.1. Following Chen et al. (2015), from the definition of the func-

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 57

tional ψ and generator L, we have

φ̂K,ε − φ̄ =
EψK − ψ1

Kε
−
∑K

k=1 (Eψk − ψk)
Kε

+

∑K
k=1(ĝk − gk) · ∇ψk

K
+O(ε) , (3.7.1)

and E (Eψk−ψk)2 isO(ε). Because ψ is bounded by M , we also have EψK−Eψ1 < 2M

and E (EψK − ψ1)2 < 4M2.

Let ξk = (ĝk − gk) · ∇ψk. From our assumptions on the bias and MSE of ĝ and

as ∇ψ is bounded, we have |E ξk| ≤Mδ and E [ξ2
k] ≤M2σ2 for all k. In addition, we

have for all k 6= k′

|E [ξkξk′]| ≤M2 · ‖E [ĝk − gk]‖ · ‖E [ĝk′ − gk′]‖ ≤M2δ2 , (3.7.2)

where the expectations are over independent stochastic subsequences S chosen at steps

k and k′.

To prove the bias bound, we take the expectation of (3.7.1), let C = 2M and

bound each term

|E φ̂K,ε − φ̄| ≤
2M

Kε
+Mδ +O (ε) ≤ C ·

(
1

Kε
+ δ

)
+O(ε) . (3.7.3)

To prove the MSE bound, we take the square and expectation of both sides of

(3.7.1),

E (φ̂K,ε − φ̄)2 ≤

E

[
(EψK − ψ0))2

K2ε2
+

∑K
k=1 (Eψk − ψk)2

K2ε2
+

∑K
k=1 ξ

2
k +

∑K
k 6=k′=1 ξkξk′

K2

+

∑K
k=1 ξk
K

·
(
EψK − ψ1

Kε
−
∑K

k=1 (Eψk − ψk)
Kε

+O (ε)

)
+O(ε2)

]
.

(3.7.4)

The first line contains the squared terms and the second line contains the cross terms

that do not go to zero. In particular, we do not assume ĝ(θ) is unbiased for g(θ),

therefore we keep the cross-terms involving ξk. Bounding each term of (3.7.4) gives

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 58

the MSE bound

E (φ̂K,ε − φ̄)2 ≤ 4M2

K2ε2
+
K · O(ε)

K2ε2
+
KM2σ2 +K2M2δ2

K2

+Mδ ·
(

2M

Kε
+
K · 2M
Kε

+O (ε)

)
+O(ε2)

≤ C ·
(

1

K2ε2
+
σ2

K
+ δ2 +

δ

ε

)
+O

(
1

Kε
+ δε+ ε2

)
. (3.7.5)

3.7.2 Proof of Theorem 3.4.2

We now prove Theorem 3.4.2, which bounds the bias and MSE of our buffered stochastic

gradient gPF
θ (S,B,N). In our proof, we use Lemma 3.7.1 to bound the subsequence

error which is proved in Section 3.7.2.

Proof of Theorem 3.4.2. For the bias bound, (3.4.7), we apply the triangle inequality

to decompose the error into three terms

‖E gPF
θ (S,B,N)− gθ‖ ≤ (3.7.6)

‖E (gPF
θ (S,B,N)− ĝθ(S,B))‖︸ ︷︷ ︸

particle bias (I)

+ ‖E (ĝθ(S,B)− ĝθ(S, T))‖︸ ︷︷ ︸
buffering bias (II)

+ ‖E ĝθ(S, T)− gθ‖︸ ︷︷ ︸
subsequence bias (III)

,

where expectations are over the random subsequence S and particles. Each term is

bounded separately (recalling that γ = maxt Pr(t ∈ S)−1)

(I) Particle bias : the particle filter bias is O(γ S+2B
N

) (see Eq. 3.15 of Kantas et al.

(2015)).

(II) Buffering bias : from Aicher et al. (2019), we know there exists a finite constant

C1 <∞ that is independent of T, S,B,N , such that

E ‖ĝ(S,B)− ĝ(S, T)‖ ≤ γ · C1 · (Lθ)B . (3.7.7)

Thus, the buffering bias can be upper bounded using Jensen’s inequality

‖E (ĝ(S,B)− ĝ(S, T))‖ ≤ E ‖ĝ(S,B)− ĝ(S, T)‖

≤ γ · C1 · (Lθ)B . (3.7.8)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 59

(III) Subsequence bias: For this term the randomness is only with respect to the

choice of subsampler. By our our decomposition, the subsequence bias is zero,

E ĝθ(S, T) = gθ, as the bias due to using a finite buffer is accounted for in (II).

Applying these bounds gives us the bias bound

‖E gPF
θ (S,B,N)− gθ‖ ≤ γ ·

[
C1(Lθ)

B +O
(
S + 2B

N

)]
. (3.7.9)

For the MSE bound, (3.4.8), we again apply the triangle inequality and recall that

2XY ≤ X2 + Y 2 implies (X + Y + Z)2 ≤ 3(X2 + Y 2 + Z2) to decompose the error

into three terms

E ‖gPF
θ (S,B,N)− gθ‖2 ≤

3E ‖gPF
θ (S,B,N)− ĝθ(S,B)‖2︸ ︷︷ ︸

particle MSE (I)

+ 3E ‖ĝθ(S,B)− ĝθ(S, T)‖2︸ ︷︷ ︸
buffering MSE (II)

+ 3E ‖ĝθ(S, T)− gθ‖2︸ ︷︷ ︸
subsequence MSE (III)

, (3.7.10)

where expectations are over the random subsequence S and particles. Again, each

term is bounded separately,

(I) Particle MSE : the particle filter MSE bound is O(γ2 (S+2B)2

N
) (see Eq. 3.15

of Kantas et al. (2015)).

(II) Buffering MSE : from Aicher et al. (2019), the buffering MSE is bounded

E ‖ĝθ(S,B)− ĝθ(S, T)‖2 ≤ γ2 · C2
1 · (Lθ)2B . (3.7.11)

(III) Subsequence MSE : from Lemma 3.7.1, there exists a constant C2 <∞ indepen-

dent of T, S,B,N such that

E ‖ĝθ(S, T)− gθ‖2 ≤ γ2 · C2 · S . (3.7.12)

Combining these bounds gives us the MSE bound

E ‖gPF
θ (S,B,N)− gθ‖2 ≤ 3γ2 ·

[
C2

1(Lθ)
2B + C2S +O

(
(S + 2B)2

N

)]
. (3.7.13)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 60

Stochastic Subsequence MSE

For the proof of Theorem 3.4.2, we bound the MSE between the full gradient gθ and

the unbiased stochastic gradient estimate ĝθ(S, T), specifically for the case of randomly

sampling a contiguous subsequence S. Because ĝθ(S, T) is unbiased for gθ, this reduces

to calculating the variance of ĝθ(S, T) with respect to the sampling distribution of the

subsequence S.

Let ft denote the t-th gradient term in Fisher’s identity

ft = EX1:T |y1:T ,θ[∇ log p(yt, Xt |Xt−1, θ)] . (3.7.14)

Therefore

gθ =
T∑
t=1

ft and ĝθ(S, T) =
∑
t∈S

Pr(t ∈ S)−1 · ft .

We now present the lemma that bounds the variance of ĝθ(S, T), under the as-

sumption that the autocorrelation of ft decays geometrically |Corr(ft, ft+s)| ≤ ρs.

Lemma 3.7.1. If for all t, the variance of ft is bounded and the autocorrelation of

ft is geometrically bounded, then there exists a constant C2 <∞ (not dependent on

T, S,B) such that

Var(ĝθ(S, T)) ≤ γ2 · C2 · S . (3.7.15)

The assumption that the autocorrelation of ft decays geometrically is reasonable

when both the observations Y1:T and the posterior latent states X1:T |Y1:T are ergodic

(i.e., exhibit an exponential forgetting property common for most finite dimensional

SSMs Chan and Palma (1998); Cappé et al. (2005)).

We now present the proof.

Proof of Lemma 3.7.1. Let V < ∞ be a bound on the variance of ft for all t (i.e.,

Var(ft) ≤ V). Let ρ ∈ [0, 1) be a bound on the geometric decay of the autocorrelation

of ft. Then we have |Corr(ft, ft+s)| ≤ ρs for all t and s ∈ N, Together these bounds

imply a bound on the covariance between any ft and ft+s

CoV(ft, ft+s) ≤ |Corr(ft, ft+s)| ·
√

Var(ft) · Var(ft+s) ≤ V ρs . (3.7.16)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 61

Then we have

Var(ĝθ(S, T)) ≤ γ2 · Var

[∑
t∈S

ft

]

= γ2 ·
[∑
t∈S

Var(ft) +
∑
t6=t′∈S

CoV(ft, ft′)

]

≤ γ2 ·
[
S · V +

S−1∑
s=1

2(S − s) · V ρs
]

= γ2 · S ·
[
V + 2V

S−1∑
s=1

(1− s/S) · ρs
]

≤ γ2 · S ·
[

2V
S−1∑
s=0

ρs

]
≤ γ2 · S · 2V/(1− ρ) . (3.7.17)

As S ≥ 1, if C2 = 2V/(1− ρ), we have

E ‖ĝθ(S, T)− gθ‖2 = Var(ĝθ(S, T)) ≤ γ2 · S · C2 . (3.7.18)

3.7.3 Proof of Theorem 3.4.3

Theorem 3.4.3 states that if the prior distribution for x0, the transition distribution

p(xt |xt−1, θ) and the emission distribution p(yt |xt) are log-concave, then we can

bound the Lipschitz constant of ~Ψt in terms of ~Ψ
(0)
t and ~Ψ

(1)
t .

We first briefly review Wasserstein distance, random mappings, and Lipschitz

constants of kernels Villani (2008); Aicher et al. (2019). Then we review Caffarelli’s

log-concave perturbation theorem, the main tool we use in our proof. Finally, we present

the proof in Section 3.7.3.

Wasserstein Distance and Random Maps

The p-Wasserstein distance with respect to Euclidean distance is

Wp(γ, γ̃) :=

[
inf
ξ

∫
‖x− x̃‖p2 dξ(x, x̃)

]1/p

, (3.7.19)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 62

where ξ is a joint measure or coupling over (x, x̃) with marginals
∫
x̃
dξ(x, x̃) = dγ(x)

and
∫
x
dξ(x, x̃) = dγ̃(x).

To bound the Wasserstein distance, we first must introduce the concept of a random

mapping associated with a transition kernel.

Let Ψ : U → V be a transition kernel for random variables u and v, then for any

measure µ(u) over U , we define the induced measure (µΨ)(v) over V as (µΨ)(v) =∫
Ψ(u, v)µ(du).

A random mapping ψ is a random function that maps U to V such that if u ∼ µ

then ψ(u) ∼ µΨ. For example, if Ψ(u, v) = N (v |u, 1), then a random mapping for

Ψ is the identity function plus Gaussian noise ψ(u) = u + ε, where ε ∼ N (0, 1). If

ψ is deterministic (µΨ)(v) is the push-forward measure of µ through the mapping

ψ; otherwise it is the average (or marginal) over ψ of push-forward measures Villani

(2008).

We say the kernel has Lipschitz constant L with respect to Euclidean distance if

‖Ψ‖Lip = L ⇔ sup
u,u′

{
E ψ[‖ψ(u)− ψ(u′)‖2]

‖u− u′‖2

}
≤ L . (3.7.20)

Note that L is an upper-bound on the expected value of Lipschitz constants for random

instances of ψ.

These definitions are useful for proving bounds in Wasserstein distance. For

example, we can show the kernel Ψ induces a contraction in p-Wasserstein distance if

‖Ψ‖Lip < 1. That is Wp(µΨ, µ̃Ψ) ≤ ‖Ψ‖Lip · Wp(µ, µ̃)

Wp(µΨ, µ̃Ψ)p = inf
ξ(µΨ,µ̃Ψ)

∫
‖v − ṽ‖p2 dξ(v, ṽ)

≤ inf
ξ(µ,µ̃)

∫
‖ψ(u)− ψ(ũ)‖p2 dξ(u, ũ)dµ(ψ)

≤ inf
ξ(µ,µ̃)

∫
‖Ψ‖pLip · ‖u− ũ‖p2 dξ(u, ũ)

= ‖Ψ‖pLip · Wp(µ, µ̃)p , (3.7.21)

where in the second line we replace v, ṽ with a random mapping ψ that has measure

dµ(ψ) and in the third line we bound ψ by its Lipschitz constant L and integrate∫
dµ(ψ) = 1.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 63

Caffarelli’s Perturbation Theorem

Caffarelli’s log-concave perturbation theorem allows us to connect Lipschitz constants

between kernels that are log-concave perturbations of one another.

Theorem 3.7.2 (Caffarelli’s). Suppose γ(x) is a log-concave measure for x and `(x)

is a log-concave function such that γ′(x) = `(x)γ(x) is a probability measure over

x. Then there exists a 1-Lipschitz mapping T : X → X such that if x ∼ γ(x) then

T (x) ∼ γ′(x).

We can think of γ(x) as a prior distribution p(x), `(x) as a normalized conditional

likelihood p(y|x)/p(y) and γ′(x) as the posterior p(x|y). As `(x) is log-concave, we

call γ′(x) a log-concave perturbation of γ.

The original version of Caffarelli’s log-concave perturbation theorem Colombo et al.

(2017); Saumard and Wellner (2014) requires the prior γ(x) to be strongly log-concave

(e.g., a Gaussian) to show that the mapping T is a strict contraction ‖T‖Lip < 1;

however this weaker version, Theorem 3.7.2 of Villani (2008), is sufficient for our

purposes.

Proof of Theorem 3.4.3

Using Theorem 3.7.2, we can now prove Theorem 3.4.3.

Proof of Theorem 3.4.3. Let ~ψt, ~ψ
(0)
t , ~ψ

(1)
t be random mappings associated respectively

with forward kernels ~Ψt, ~Ψ
(0)
t , ~Ψ

(1)
t . Because the transition and emission distribu-

tions are log-concave and log-concavity is preserved under product and marginaliza-

tion Saumard and Wellner (2014), ~Ψt, ~Ψ
(0)
t , ~Ψ(1) are log-concave and p(yt≥ |xt) and

p(y>t |xt) are also log-concave (where yt≥ = {yt, . . . , yT} and y>t = {yt+1, . . . , yT}).
Since p(y≥t |xt) is log-concave, we can write ~Ψt as a log-concave perturbation of

~Ψ
(0)
t ,

~Ψt = p(xt |xt−1, yt:T , θ) ∝ p(y≥t |xt)p(xt |xt−1, θ)

= p(y≥t |xt) · ~Ψ(0)
t . (3.7.22)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 64

Therefore, there exists T
(0)
t with ‖T (0)

t ‖Lip ≤ 1 such that ~ψt = (T
(0)
t ◦ ~ψ(0)

t). Thus,

‖~Ψt‖Lip = ‖T (0)
t ‖Lip · ‖~Ψ(0)

t ‖Lip ≤ ‖~Ψ(0)
t ‖Lip . (3.7.23)

Similarly, we can write ~Ψt as a log-concave perturbation of ~Ψ
(1)
t using p(y>t |xt),

thus ‖~Ψt‖Lip ≤ ‖~Ψ(1)
t ‖Lip.

~Ψt = p(xt |xt−1, yt:T , θ) ∝ p(y>t |xt)p(xt | yt, xt−1, θ)

= p(y>t |xt) · ~Ψ(1)
t . (3.7.24)

Note the assumptions for equivalent results in the backward smoothers ~Ψt are

identical. Log-concavity in p(xt |xt+1, θ) is implied from both p(xt |xt−1, θ) and the

prior p(xt) being log-concave.

3.7.4 Bounds for Specific Models

We now provide specific bounds for the buffering error for models we consider in

Section 3.5 (LGSSM and SVM) using Theorem 3.4.3.

For both the LGSSM and SVM, we assume the prior ν(x0|θ) = N (0, σ2/(1− φ2)).

Then the latent state transitions are

p(xt |xt−1, θ) = N (xt |φxt−1, σ
2)

p(xt |xt+1, θ) = N (xt |φxt+1, σ
2) ,

which are both Gaussian and therefore log-concave in x.

Similarly, the emissions for the LGSSM and SVM are also log-concave in x:

For the LGSSM,

p(yt |xt, θ) ∝ exp
(
− (yt−xt)2

2σ2

)
,

which is log-concave.

For the SVM,

p(yt |xt, θ) ∝ exp
(
− y2t

2σ2 · e−xt − xt
2

)
,

which is log-concave as e−x is convex.

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 65

Contraction Bound for LGSSM

We assume the prior ν(x0|θ) = N (0, σ2/(1− φ2)). For the LGSSM, the filtered kernels

are

~Ψ
(1)
t (xt |xt−1) = p(xt |xt−1, yt, θ)

∝ N (xt|φxt−1, σ
2) · N (yt|xt, τ 2),

~Ψ
(1)

t (xt |xt+1) = p(xt |xt+1, yt, θ)

∝ N (xt|φxt+1, σ
2) · N (yt|xt, τ 2). (3.7.25)

Therefore,

~Ψ
(1)
t (xt |xt−1) = N

(
xt

∣∣∣ σ2yt + φτ 2xt−1

σ2 + τ 2
,

σ2τ 2

σ2 + τ 2

)
,

~Ψ
(1)

t (xt |xt+1) = N
(
xt

∣∣∣ σ2yt + φτ 2xt+1

σ2 + τ 2
,

σ2τ 2

σ2 + τ 2

)
. (3.7.26)

The associated random mapping are,

~ψ
(1)
t (xt |xt−1) =

σ2yt
σ2 + τ 2

+
φτ 2

σ2 + τ 2
· xt−1 + ~zt ,

~ψ
(1)

t (xt |xt+1) =
σ2yt

σ2 + τ 2
+

φτ 2

σ2 + τ 2
· xt+1 + ~zt , (3.7.27)

where ~zt and ~zt are N
(

0 , σ2τ2

σ2+τ2

)
random variables.

Since these maps are linear, we have ‖~Ψ(1)
t ‖Lip = ‖ ~Ψ

(1)

t ‖Lip = |φ| · τ2

σ2+τ2
. Applying

Theorem 3.4.3, we obtain

Lθ ≤ max
t
{‖~Ψ(1)

t ‖, ‖ ~Ψ
(1)

t ‖} = |φ| · (1 + σ2/τ 2)−1. (3.7.28)

Therefore Lθ < 1 whenever |φ| < 1 + σ2/τ 2.

Contraction Bound for SVM

We assume the prior ν(x0θ) = N (0, σ2/(1− φ2)). For the SVM, the prior kernels are,

~Ψ
(0)
t (xt |xt−1) = p(xt |xt−1, θ) ∝ N (xt|φxt−1, σ

2),

~Ψ
(0)

t (xt |xt+1) = p(xt |xt+1, θ) ∝ N (xt|φxt+1, σ
2). (3.7.29)

CHAPTER 3. STOCHASTIC GRADIENT MCMC FOR NONLINEAR SSMS 66

The associated random mapping are

~ψ
(0)
t (xt |xt−1) = φ · xt−1 +N

(
0 , σ2

)
,

~ψ
(0)

t (xt |xt+1) = φ · xt+1 +N
(
0 , σ2

)
. (3.7.30)

Applying Theorem 3.4.3, we obtain Lθ ≤ |φ|.

Chapter 4

Preferential Subsampling for

Stochastic Gradient Langevin

Dynamics

4.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are a popular family of methods

to conduct Bayesian inference. Unfortunately, running MCMC on large datasets

is generally computationally expensive, which often limits the use of MCMC by

practitioners. The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970), in particular, requires a scan of the full dataset at each iteration to calculate

the acceptance probability.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) algorithms are a family

of scalable methods, which aim to address this issue (Welling and Teh, 2011; Nemeth

and Fearnhead, 2021). These algorithms aim to leverage the efficiency of gradient-

based MCMC proposals (Roberts and Tweedie, 1996; Neal, 2011). They reduce the

per-iteration computational cost by constructing an unbiased, noisy estimate of the

gradient of the log-posterior, using only a small data subsample. In this chapter,

we focus on samplers that rely on the overdamped Langevin diffusion (Roberts and

Tweedie, 1996), however, our proposed methodology can be applied more generally

67

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 68

to other SGMCMC algorithms, such as those based on Hamiltonian dynamics (Chen

et al., 2014).

Thereom 4 of Dalalyan and Karagulyan (2019) demonstrates that the non-asymptotic

convergence rates of SGLD-type algorithms depend upon: (i) bounded stochastic gra-

dient bias, (ii) bounded stochastic gradient variance, and (iii) and independent random

updates. Although in Chapter 3 we saw that bias control is important, it is also

important to reduce the variance for unbiased stochastic gradient methods. The higher

variance inherently present from utilising smaller subsamples can degrade sampler

performance and lead to poor convergence. As such, variance control has become an

important area of research within the SGMCMC literature, and is often required to

make these algorithms practical (Dubey et al., 2016; Chatterji et al., 2018; Baker et al.,

2019a; Chen et al., 2019).

In this chapter, we propose a new method designed to reduce the variance in

the stochastic gradient. We use a discrete, non-uniform probability distribution to

preferentially subsample data points and to re-weight the stochastic gradient. In

addition, we present a method for adaptively adjusting the size of the subsample

chosen at each iteration.

4.2 Stochastic gradient MCMC

Let θ ∈ Rd be a parameter vector and denote independent observations x = {xi}Ni=1

(N � 1). The probability density of the i-th observation, given parameter θ, is p(xi|θ)
and the prior density for the parameters is p(θ). In a Bayesian context, the target of

interest is the posterior density, π(θ) := p(θ|x) ∝ p(θ)
∏N

i=1 p(xi|θ).
For convenience, we define fi(θ) = − log p(xi|θ) for i = 1, . . . , N , with f0(θ) =

− log p(θ) and f(θ) = f0(θ) +
∑N

i=1 fi(θ). In this setting, the posterior density can be

rewritten as, π(θ) ∝ exp(−f(θ)).

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 69

4.2.1 The Langevin diffusion

The Langevin diffusion, θ(t), is defined by the stochastic differential equation,

dθ(t) = −1

2
∇f(θ(t))dt+ dBt, (4.2.1)

where ∇f(θ(t))dt is a drift term and Bt denotes a d-dimensional Wiener process.

Under certain regularity conditions, the stationary distribution of this diffusion is the

posterior π (Roberts and Tweedie, 1996). In practice, we need to discretise (4.2.1) in

order to simulate from it and this introduces error. For a small step-size ε > 0, the

Langevin diffusion can be approximated by

θ(t+1) = θ(t) − ε

2
∇f
(
θ(t)
)

+
√
ε η(t), (4.2.2)

where the noise η(t) ∼ Nd(0, Id×d) is drawn independently at each update. The

dynamics implied by (4.2.2) provide a simple way to sample from the Langevin

diffusion. The level of discretisation error in the approximation is controlled by the size

of ε and we can achieve any required degree of accuracy if we choose ε small enough.

The unadjusted Langevin algorithm (ULA) (Parisi, 1981) is a simple sampler that

simulates from (4.2.2) but does not use a Metropolis-Hastings correction (Metropolis

et al., 1953; Hastings, 1970). Thus, the samples obtained from ULA produce a biased

approximation of π. The per-iteration computational cost of ULA is smaller than

that of the Metropolis-adjusted Langevin algorithm (Roberts and Rosenthal, 1998)

due to the removal of the Metropolis-Hastings step. However, the computational

bottleneck for ULA lies in the O(N) calculation of the full data gradient ∇f
(
θ(t)
)

=

∇f0

(
θ(t)
)

+
∑N

i=1∇fi
(
θ(t)
)

at every iteration. This calculation can be problematic if

N is large.

4.2.2 Stochastic gradient Langevin dynamics

The stochastic gradient Langevin dynamics (SGLD) algorithm attempts to improve

the per-iteration computational burden of ULA by replacing the full-data gradient

with an unbiased estimate (Welling and Teh, 2011). Let the full-data gradient of f(θ)

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 70

be given by

g(t) = ∇f
(
θ(t)
)

= ∇f0

(
θ(t)
)

+
N∑
i=1

∇fi
(
θ(t)
)
.

The unbiased estimate of g(t) proposed by Welling and Teh (2011) takes the form

ĝ(t) = ∇f0

(
θ(t)
)

+
N

n

∑
i∈St
∇fi

(
θ(t)
)
, (4.2.3)

where St is a subset of {1, . . . , N} and |St| = n (n � N) is the subsample size. A

single update of SGLD is thus given by,

θ(t+1) ← θ(t) − ε(t)

2
· ĝ(t) + ξ(t), (4.2.4)

where ξ(t) ∼ Nd(0, ε(t)Id×d) and {ε(t)} corresponds to a schedule of step-sizes which

may be fixed (Vollmer et al., 2016) or decreasing (Teh et al., 2016). The full SGLD

pseudocode is provided in Algorithm 4.

Algorithm 4: SGLD

1: Input: initialise θ(1), batch size n, step-sizes {ε(t)}.
2: for t = 1, 2, . . . , T do

3: Sample indices St ⊂ {1, . . . , N} with or without replacement.

4: Calculate ĝ(t) using (4.2.3).

5: Update parameters according to (4.2.4).

6: end for

7: return θ(T+1)

Welling and Teh (2011) note that if the step-size ε(t) → 0 as t → ∞, then the

Gaussian noise (generated by ξ(t)) dominates the noise in the stochastic gradient

term. For large t, the algorithm approximately samples from the posterior using an

increasingly accurate discretisation of the Langevin diffusion. In practice, SGLD does

not mix well when the step-size is decreased to zero and so a small fixed step-size ε is

typically used instead.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 71

4.2.3 Control variates for SGLD

The naive stochastic gradient proposed by Welling and Teh (2011) may exhibit a

relatively high variance for small subsamples of data. The more faithful a stochastic

gradient estimator is to the full-data gradient, the better we can expect SGLD to

perform. Therefore, it is natural to consider alternatives to the estimator given in

(4.2.3) which minimise the variance.

Let θ̂ be a fixed value of the parameter, typically chosen to be close to the mode of

the target posterior density. The control variate gradient estimator proposed by Baker

et al. (2019a) takes the form,

ĝ(t)
cv =

[
∇f(θ̂) +∇f0

(
θ(t)
)
−∇f0(θ̂)

]
+ (4.2.5)

N

n

∑
i∈St

[
∇fi

(
θ(t)
)
−∇fi(θ̂)

]
.

When θ(t) is close to θ̂, the variance of the gradient estimator will be small. This is

shown formally in Lemma 1 of Baker et al. (2019a).

The SGLD-CV algorithm is the same as SGLD given in Algorithm 4, except with

ĝ
(t)
cv substituted in place of ĝ(t). Implementing the SGLD-CV estimator involves a

one-off pre-processing step to find θ̂, which is typically done using stochastic gradient

descent (SGD) (Bottou et al., 2018; Baker et al., 2019a). The gradient terms ∇fi
(
θ̂)

are calculated and stored. While these steps are both O(N) in computational cost,

the optimisation step to find the mode can replace the typical burn-in phase of the

SGLD chain. The MCMC chain can then be initialised at the posterior mode itself.

The full pseudocode for SGLD-CV is provided in Algorithm 3 within Appendix B.1.

4.3 Preferential data subsampling

Let S be a subsample of size n generated with replacement, such that the probability

that the i-th data point, xi, appears in S is pi. The expected number of times xi is

drawn from the dataset is npi. A standard implementation of SGLD would assume

uniform subsampling, i.e., that pi = 1
N

for all i. However, if the observations vary in

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 72

their information about the parameters, then assigning a larger probability to the more

informative observations would be advantageous. Preferential subsampling assigns a

strictly-positive, user-chosen weight to each data point, such that we minimise the

variance of the estimator of the gradient.

We need to construct a discrete probability distribution p(t) = (pt1, . . . , p
t
N)T (where

p
(t)
i > 0 for all i and

∑
i p

t
i = 1) that can be used to draw subsamples of size n at each

iteration t and to reweight the stochastic gradient accordingly. If p(t) is time-invariant

(i.e., p
(t)
i = pi for all i), the preferential subsampling scheme is static. Otherwise, the

subsampling weights will be dynamic or state-dependent.

For a given stochastic gradient g̃, the noise term associated with g̃ is given by

ξ(t) = g̃(t)−g(t). Taking expectations over p(t), a simple scalar summary of the variance

of the noise ξ(t) can be found by evaluating:

E
(∥∥ξ(t)

∥∥2
)

= tr

(
Cov

(
g̃(t)
))
. (4.3.1)

We will refer to (4.3.1) as the pseudo-variance1 of g̃(t), V
(
g̃(t)
)
, from now on. We intend

to use the pseudo-variance as a proxy for the variance of the stochastic gradient.2 In

all further analysis, ‖ · ‖ refers to the Euclidean norm.

In order to minimise the pseudo-variance, we need to find a preferential subsampling

distribution p∗ which minimises the following problem:

min
p(t), pti∈[0,1],

∑
i p
t
i=1

V
(
g̃(t)
)
. (4.3.2)

Existing non-asymptotic convergence results for SGLD-type methods3 demonstrate

the importance in controlling the variance of the stochastic gradient. These results give

the error of SGLD in terms of bounds on the (bias and) variance of the estimator of

the gradient of the log posterior. Therefore, constructing a better stochastic gradient

1See Section 4.7.1 for a full derivation of the pseudo-variance.
2Note that g̃ is a d-dimensional random vector (where typically d > 1). (4.3.1) is the sum of the

variances of the elements of g̃. The term “pseudo-variance” allows us to easily distinguish between

(4.3.1) and the variance-covariance matrix of g̃.
3Theorem 4 of Dalalyan and Karagulyan (2019) and Theorem 1 of Baker et al. (2019a) are two

such examples.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 73

estimator - for instance via preferential subsampling - will lead to a reduction in the

error bound of the underlying SGLD method.

4.3.1 SGLD with preferential subsampling

An alternative gradient estimator for SGLD can be given by reweighting the simple

estimator defined in (4.2.3) (Welling and Teh, 2011),

g̃(t) = ∇f0

(
θ(t)
)

+
1

n

∑
i∈St

1

pti
∇fi

(
θ(t)
)
, (4.3.3)

where St ⊂ {1, . . . , N} is selected according to p(t) and |St| = n (n � N). The

pseudocode for the SGLD with preferential subsampling (SGLD-PS) algorithm is

outlined in Algorithm 8 within Appendix B.1.

As we correct for the non-uniform subsampling of data points by reweighting each

gradient term, it follows that the stochastic gradient estimator given in (4.3.3) is

unbiased. This is synonymous with the standard properties of importance sampling

estimators (Robert and Casella, 2004). We note that there is an extra O(n) computa-

tional cost associated with reweighting the stochastic gradient in this manner at each

iteration.

The following result obtains the optimal solution to Problem (4.3.2).

Lemma 4.3.1. For the unbiased SGLD-PS gradient estimator in (4.3.3), minimising

Problem (4.3.2) is equivalent to minimising the following

min
p(t)

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)∥∥2

. (4.3.4)

The optimal weights which minimise the pseudo-variance are thus given by

pti =
‖∇fi

(
θ(t)
)
‖∑N

k=1 ‖∇fk
(
θ(t)
)
‖

for i = 1, . . . , N. (4.3.5)

Although a solution to (4.3.4) can be found, the resulting sampling algorithm would

not be practical, as the optimal weights depend on the current state θ(t). Therefore the

subsampling distribution given in (4.3.5) requires N gradient calculations per iteration.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 74

For large datasets, these weights would be very expensive to store and calculate at

each iteration, making the algorithm impractical.

We can instead approximate the optimal weights given in (4.3.5), such that they

are not state-dependent and therefore do not need to be updated at each iteration.

These approximate weights can be calculated as an initial pre-processing step before

the main sampling algorithm is run.

A fairly simple approximation of the optimal weights given in (4.3.5) for SGLD-PS

would require substituting the current state θ(t) with some alternative fixed point. The

posterior mode, θ̂, is a sensible choice as it represents the most probable estimate of

the parameters in a Bayesian paradigm. In this case, the approximate subsampling

scheme would be given by,

pi =
‖∇fi

(
θ̂
)
‖∑N

k=1 ‖∇fk
(
θ̂
)
‖

for i = 1, . . . , N. (4.3.6)

As with SGLD-CV, the posterior mode could be estimated using SGD and the MCMC

chain could then be initialised at the posterior mode.

In practice, the subsampling weights in (4.3.6) are calculated only once with an

O(N) preprocessing step and then used statically (i.e., without update). The resulting

SGLD-PS algorithm would calculate the stochastic gradient given in (4.3.3) using

these fixed weights.

4.3.2 SGLD-CV with preferential subsampling

The control-variates gradient estimator can be modified to accommodate a preferential

subsampling scheme in a similar manner. In this case, we would obtain

g̃(t) =
[
∇f(θ̂) +∇f0

(
θ(t)
)
−∇f0(θ̂)

]
+ (4.3.7)

1

n

∑
i∈St

1

pti

[
∇fi

(
θ(t)
)
−∇fi(θ̂)

]
.

The pseudocode for the modified SGLD-CV algorithm (SGLD-CV-PS) is given in

Algorithm 5 within Appendix B.1. The following result provides the optimal solution

to Problem (4.3.2).

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 75

Lemma 4.3.2. For the unbiased SGLD-CV-PS gradient estimator in (4.3.7), min-

imising Problem (4.3.2) is equivalent to minimising the following

min
p(t)

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)
−∇fi(θ̂)

∥∥2
. (4.3.8)

The optimal weights which minimise the pseudo-variance are thus given by

pti =
‖∇fi

(
θ(t)
)
−∇fi(θ̂))‖∑N

k=1 ‖∇fk
(
θ(t)
)
−∇fk(θ̂)‖

(4.3.9)

for i = 1, . . . , N .

As in Section 4.3.1, we can derive a solution to (4.3.8). However, the resulting

sampling algorithm would once again depend on the current state of the chain θ(t).

The process of finding a suitable approximation to the optimal weights given in (4.3.9)

for the control-variate gradient estimator is non-trivial. Our approach will be to choose

a set of subsampling weights that could be used for all iterations of the MCMC chain.

We consider an alternative minimisation problem

min
p(t), pti∈[0,1],

∑
i p
t
i=1

Eθ
[
V
(
g̃(t)
)]
, (4.3.10)

where the outer expectation is taken with respect to the posterior distribution. Due

to the linearity of expectation, (4.3.10) is equivalent to solving the following problem:

min
p(t)

Eθ
[

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)
−∇fi(θ̂)

∥∥2
]
.

This can easily be shown by using a modified version of the argument given for Lem-

mas 4.3.1 and 4.3.2. The optimal subsampling weights in (4.3.9) can be approximated

by

pi ∝
√

tr

(
∇2fi(θ̂) Σ̂∇2fi(θ̂)T

)
for i = 1, . . . , N, (4.3.11)

where ∇2fi(·) is the Hessian matrix of fi(·) and Σ̂ is the covariance matrix of the

Gaussian approximation to the target posterior centred at the mode.

See Section 4.7.4 for a full discussion of how these weights can be obtained analyti-

cally and Appendix B.3 for an assessment of the computational cost associated with

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 76

calculating them as a preprocessing step. The computational cost required to calculate

the Hessian matrix means that this approach can be computationally expensive for

high-dimensional parameters.

4.3.3 Adaptive subsampling

In this section, we present a method for adaptively adjusting the size of the subsample

chosen at each iteration. We do this by first finding an upper bound for the pseudo-

variance of the stochastic gradient estimator given in (4.3.7) and then by rearranging

the result to find a lower bound on the subsample size.

Let us begin by placing a Lipschitz condition on each of the likelihood terms.

Assumption 2. (Lipschitz continuity of gradients)

There exists constants L0, . . . , LN such that

‖∇fi(θ)−∇fi(θ′)‖ ≤ Li‖θ − θ′‖ (4.3.12)

for i = 0, . . . , N .

We can then obtain the following result using Assumption 2.

Lemma 4.3.3. Under Assumption 2, the pseudo-variance of the stochastic gradient

estimator defined in (4.3.7) can be bounded above by

V(g̃) ≤ 1

n
‖θ(t) − θ̂‖2

(N∑
i=1

L2
i

pti

)
. (4.3.13)

where p(t) = (pt1, . . . , p
t
N)T is a set of user-defined discrete weights.

We can minimise the upper bound provided in (4.3.13) if we plug in the optimal

weights given in (4.3.9). In practice, however, it is advantageous to choose the

preferential subsampling scheme based on its ease of computation.

The bound provided in Lemma 4.3.3 can still be used more generally to control

the size of the pseudo-variance of the stochastic gradient estimator given in (4.3.7).

If we want to set the upper threshold of the pseudo-variance to be some fixed value

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 77

V0 > 0, we need to ensure that

1

n
‖θ(t) − θ̂‖2

(N∑
i=1

L2
i

pti

)
< V0,

for all iterations t = 1, . . . , T . We can rearrange the inequality above to obtain the

following lower bound on the subsample size,

n >
1

V0

‖θ(t) − θ̂‖2

(N∑
i=1

L2
i

pti

)
. (4.3.14)

For a given preferential subsampling scheme p(t), we can control the noise of the

stochastic gradient estimator given in (4.3.7) by choosing the subsample size n ∝
‖θ(t) − θ̂‖2. Our proposed algorithm is provided in Algorithm 5. The subsample size

at iteration t, n(t), will be updated using the lower bound obtained in (4.3.14).

For a fixed noise threshold V0, it will be possible to decrease or increase the size of

n(t) depending on how far or close θ(t) is to the posterior mode, θ̂. This means that

the subsample size can be set adaptively according to the current state of the chain.

The subsample size can be increased automatically in areas of the sample space where

the gradient is harder to estimate. We note here that fixing the pseudo-variance of the

gradient estimator to be constant may not always be the best thing to do, especially

in areas of the sample space where the gradient is large. Further investigation on this

point is left to future work.

This method is suitable for use on models that satisfy Assumption 2. Appendix

B.2 provides a selection of examples where the Lipschitz constants can be calculated

exactly.

4.4 Related work

The idea of using a non-uniform discrete distribution to draw subsamples and reweight a

gradient estimator has been well-explored within the stochastic optimisation literature.

Typically, the aim of these methods is to control the variance of the gradient estimator,

in order to improve the speed of convergence of the algorithm.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 78

Algorithm 5: Adaptive SGLD-CV with preferential subsampling (ASGLD-

CV-PS)

1: Input: initialise θ(1) close to θ̂, gradients ∇fi
(
θ̂), weights p(1), step-size ε, noise

threshold V0, Lipschitz constants {Li}Ni=1.

2: for t = 1, 2, . . . , T do

3: Update p(t).

4: Find smallest possible n(t) using (4.3.14).

5: Sample n(t) indices St according to p(t) with replacement.

6: Calculate g̃(t) using (4.3.7)

7: Update parameters according to (4.2.4).

8: end for

9: return θ(T+1)

Various papers explore the use of a static or time-invariant subsampling schemes.

Zhao and Zhang (2014b, 2015) and Kern and Gyorgy (2016) propose the use of

an importance sampling approach for SGD-type algorithms, where the subsampling

weights are chosen according to the Lipschitz smoothness constants of N individual

cost functions, i.e., pi = Li∑N
j=1 Lj

. Zhao and Zhang (2014a) consider a stratified sampling

approach, where data points are assigned the the same weight if they belong to the

same strata or cluster. Zhang et al. (2017a) propose the use of determinantal point

processes to diversify the subsamples selected for SGD, constructing a soft similarity

measure to reweight data points.

Inspired by active learning methods, Salehi et al. (2017) create a multi-armed

bandit (MAB) framework to dynamically update the subsampling weights over several

iterations of the SGD algorithm. Feedback is collected via the most recent stochastic

gradients and passed into the MAB at each iteration. Liu et al. (2020) adapts the

work of Salehi et al. and extends it to the minibatch setting for the ADAM algorithm

(Kingma and Ba, 2016).

There have only been a handful of papers considering similar ideas within the

stochastic gradient MCMC literature. Fu and Zhang (2017) extend the stratified

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 79

sampling methodology of Zhao and Zhang (2014a) to the general class of SGMCMC

algorithms. Li et al. (2021) meanwhile propose an exponentially weighted stochastic

gradient method, which can be combined with other variance reduction techniques.

4.5 Numerical experiments

In the experiments to follow, we compare our proposed preferential subsampling

approaches in a number of different scenarios. Our aim here is to demonstrate the

value of preferential subsampling as a variance control measure. To communicate the

idea succinctly, we only include the benchmark methods SGLD and SGLD-CV in our

results.

We evaluate the performance of our proposed methods on both real and synthetic

data. Please refer to Appendix B.2 for detailed information about the datasets

considered.

A fixed step-size scheme for ε is used throughout, as suggested by Vollmer et al.

(2016). To ensure a fair comparison, all samplers were run with the same step-size

(with ε ≈ 1
N

). This allowed us to control for discretisation error and to independently

assess the performance benefits offered by preferential subsampling. See Appendix B.4

for further details.

For samplers where the burn-in phase is replaced by an optimiser, we have opted

to use an off-the-shelf implementation of ADAM (Kingma and Ba, 2016) to find the

posterior mode. Unless stated otherwise, all samplers are implemented using sampling

with replacement.

Computing environment We used the jax autograd module to implement the

SGMCMC methods. Our results were obtained on a four-core 3.00GHz Intel Xeon(R)

Gold virtual desktop. The code for this chapter is hosted on GitHub4.

4Repository: https://github.com/srshtiputcha/sgmcmc_preferential_subsampling

https://github.com/srshtiputcha/sgmcmc_preferential_subsampling

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 80

4.5.1 Models

We compare sampler performance on the following three models: (i) bivariate Gaussian,

(ii) binary logistic regression and (iii) linear regression. Full model details (including

the derivation gradients and Lipschitz constants) are provided in Appendix B.2.

The examples have been deliberately chosen to be simple and our reasons for doing

so are threefold. Firstly, our proposed methods rely upon being able to estimate the

posterior mode well and as such, we are prioritising models where the mode is easy to

find. Secondly, the Lipschitz constants for these models are known and this allows us

to test our adaptive subsampling approach. And lastly, the SGLD-CV-PS subsampling

scheme outlined in (4.3.11) requires the Hessian matrix, ∇2fi(·), to be computed for

all data points and this is a costly preprocessing step for large parameter spaces5.

Bivariate Gaussian

We simulate independent data from Xi|θ ∼ N2(θ,Σx) for i = 1, . . . , N. It is assumed

that θ is unknown and Σx is known. The conjugate prior for θ is set to be θ ∼
N2(µ0,Λ0). The prior hyperparameters of the prior are µ0 = (0, 0)Tand Λ0 = diag(1×
103, 2). The target posterior is a non-isotropic Gaussian with negatively correlated

parameters.

Binary logistic regression

Suppose we have data x1, . . . , xN of dimension d taking values in Rd, where each

xi = (1, xi1, . . . , xip)
T (where d = p + 1). Let us suppose that we also have the

corresponding response variables y1, . . . , yN taking values in {0, 1}. Then a logistic

regression model with parameters θ = (β0, β1, . . . , βp) will have the following density

function

p(yi|xi, θ) =

(
1

1 + e−θT xi

)yi(
1− 1

1 + e−θT xi

)1−yi
.

5We have provided an extended discussion of the preprocessing costs associated with SGLD-CV-PS

in Appendix B.3.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 81

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are

µ0 = (0, . . . , 0)T and Λ0 = diag(10, d).

Linear regression

Suppose we have data x1, . . . , xN of dimension d taking values in Rd, where each

xi = (1, xi1, . . . , xip)
T (d = p+ 1). Let us suppose that we also have the corresponding

response variables y1, . . . , yN taking values on the real line.

We define the following linear regression model,

yi = xTi θ + ηi, ηi ∼ N (0, 1),

with parameters θ = (β0, β1, . . . , βp). The prior for θ is the same as above.

4.5.2 Metrics

We assess the performance of our samplers using the following metrics.

Kullbeck-Leibler (KL) divergence

The KL divergence is a measure of difference between two probability distributions

with densities p(·) and q(·) and is given by,

DKL(p||q) =

∫
p(θ) log

p(θ)

q(θ)
dθ.

In the case of our bivariate Gaussian model, we know that the target posterior is

conjugate and the KL divergence between two Gaussians can be written analytically.

We use the KL divergence to measure the difference between the target posterior and

our generated samples in Figure B.5.1(a).

Log-loss

The log-loss is a popular metric for assessing the predictive accuracy of the logistic

regression model on a test dataset, T ∗. For binary classification, the log-loss is given

by

l(θ, T ∗) = − 1

|T ∗|
∑
i∈|T ∗|

log p(y∗i |x∗i , θ).

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 82

We compute the log-loss for our logistic regression example in Figure 4.5.2(b)(ii).

Kernel Stein discrepancy

We measure the sample quality of our MCMC chains using the kernel Stein discrepancy

(KSD). The KSD assesses the discrepancy between the target posterior π and the

empirical distribution π̃K formed by SGMCMC samples {θ}Kk=1 (Liu et al., 2016;

Gorham and Mackey, 2017). A key benefit of the KSD is that it penalises the bias

present in our MCMC chains. We can define the KSD as,

KSD(π̃K , π) =
d∑
j=1

√√√√ K∑
k,k′=1

k0
j (θk, θk′)

K2
, (4.5.1)

where the Stein kernel for j ∈ {1, . . . , d} is given by,

k0
j (θ, θ

′) =
1

π(θ)π(θ′)
∇θj∇θ′j

(
π(θ)K(θ, θ′)π(θ′)

)
(4.5.2)

and K(·, ·) is a valid kernel function. Gorham and Mackey (2017) recommend using

the inverse multi-quadratic kernel, K(θ, θ′) =
(
c2 + ‖θ − θ′‖2

2

)β
, which detects non-

convergence for c > 0 and β ∈ (−1, 0). In practice, the full-data gradients in (4.5.2)

can be replaced by noisy, unbiased estimates. We compute the KSD for our linear and

logistic regression examples in Figures 4.5.2(a) - (b)(i), 4.5.3(a), B.5.1(b) and B.5.2(a).

4.5.3 Numerical results

Evaluating the quality of the stochastic gradients

In this experiment, our objective was to compare the pseudo-variance of our proposed

gradient estimators against the proportion of data used in a subsample, n
N

. We consider

three scenarios: (a) bivariate Gaussian, (b) balanced binary logistic regression, and (c)

imbalanced binary logistic regression. For ease of computation, a synthetic dataset of

size N = 103 was used for all models.

In each scenario, we generated ten candidate draws of θ and calculated an empirical

estimate of the pseudo-variance at each. The candidate draws were sampled either

from the posterior (for scenario (a)) or from a normal approximation to the posterior

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 83

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of data in subsample

107

108

109

1010

P
s
e
u
d
o
-v

a
ri

a
n
c
e

(a)

0. .0

10 1

100

101

102

103

104

105

P
s
e
u
d
o
-v
a
ri
a
n
c
e

(b)

0. .0

10 1

100

101

102

103

104

P
s
e
u
d
o
-v
a
ri
a
n
c
e

(c)

Figure 4.5.1: Empirical pseudo-variance against proportion of data in a subsample,

n
N

. (a) bivariate Gaussian, (b) balanced logistic regression, (c) imbalanced logistic

regression.

(for scenarios (b) and (c)). We plot the mean empirical estimate of the pseudo-variance

for various subsample sizes.

Figure 4.5.1(a) compares the stochastic gradients for SGLD with and without

replacement (WR and WOR respectively) and for SGLD-PS with exact and approxi-

mate subsampling schemes. Figures 4.5.1(b) and (c) additionally compare the gradient

estimators of SGLD-CV and those of SGLD-CV-PS with exact and approximate

subsampling schemes.6

SGLD and SGLD-CV without replacement offer the best variance reduction for

larger subsamples, as n
N

tends towards 1. For more reasonable subsample sizes of

n ≤ 0.2N , however, there is no major benefit in generating subsamples without

replacement. Figure 4.5.1 illustrates that there is a marked reduction in the pseudo-

variance when a preferential subsampling scheme is used.

SGLD-PS and SGLD-CV-PS consistently outperform their vanilla counterparts

6In the case of a Gaussian posterior, the SGLD-CV stochastic gradient offers optimal variance

reduction, with optimal weights pi = 1
N . For this reason, there is no extra improvement gain to be

obtained here by implementing SGLD-CV-PS

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 84

and there seems to be very little difference between the exact and approximate schemes

for SGLD-PS. Whereas, there is a difference in performance between the exact and

approximate subsampling schemes for SGLD-CV-PS. This difference is noticeable in

Figure 4.5.1(c) for the synthetic imbalanced logistic regression data. Practically, it

is not feasible to use the exact subsampling weights, but as illustrated here, using

approximate preferential weights is always better than using uniform weights.

Performance of fixed subsample size methods

0 2 4 6 8 10
Number of passes

2

3

4

5

6

lo
g(

KS
D)

SGLD 0.1%
SGLD-PS 0.1%
SGLD-CV 0.1%
SGLD-CV-PS 0.1%

(a)

0 2 4 6 8 10
Number of passes

2.0

2.2

2.4

2.6

2.8

3.0
lo

g(
KS

D)

(b)(i)

0 2 4 6 8 10
Number of passes

0.51425

0.51430

0.51435

0.51440

0.51445

0.51450

Lo
g-

lo
ss

SGLD-PS 0.1%
SGLD-CV 0.1%
SGLD-CV-PS 0.1%

(b)(ii)

Figure 4.5.2: Sampler performance of SGLD, SGLD-CV, SGLD-PS and SGLD-CV-PS

for 0.1% subsample size over 10 passes through the data. (a) linear regression model

on the CASP data (y-axis: KSD); (b) logistic regression on the covertype data (y-axis:

(i) KSD, (ii) log-loss).

In Figure 4.5.2, we compare the sampler performance of SGLD, SGLD-CV, SGLD-

PS and SGLD-CV-PS for a subsample size of 0.1% of the dataset size over 10 passes of

the data. We have run ten MCMC chains allowing for an equal number of iterations

for both burn-in and sampling.

Figure 4.5.2(a) plots the KSD results for the linear regression model fitted on the

CASP dataset. The CASP dataset has been obtained from the UCI Machine Learning

repository and contains 45,730 instances and 9 features.

Furthermore, Figure 4.5.2(b) plots the results of fitting the logistic regression model

to the covertype dataset (Blackard and Dean, 1998). The covertype dataset contains

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 85

581,012 instances and 54 features. The KSD results are shown in Figure 4.5.2(b)(i)

and the log-loss (evaluated every 10 iterations) is computed on the test set in Fig-

ure 4.5.2(b)(ii).

In addition, we separately compare the sampler performance of SGLD and SGLD-

PS in Figure B.5.1 (see Appendix B.5) for subsample sizes of 1%, 5% and 10% of the

dataset size, over 500 passes of the data. As before, ten MCMC chains were run for

each subsample size tested, allowing for an equal number of iterations for both burn-in

and sampling

Figure B.5.1(a) plots the KL divergence for the bivariate Gaussian model fitted

on synthetic data of size N = 104. Figure B.5.1(b) plots the KSD for the logistic

regression model fitted on the covertype dataset (Blackard and Dean, 1998).

We can see that SGLD-CV-PS exhibits the best performance overall. More generally,

we find that there is a benefit in implementing preferential subsampling for vanilla

SGLD as well. In practice, we find that the largest performance gains are found for

preferential subsampling when the subsampling size is reasonably small.

Performance of adaptive subsampling

We are interested in assessing the sampler performance of ASGLD-CV and ASGLD-

CV-PS over 104 iterations. In this experiment, we considered two scenarios: (i) the

logistic regression model on balanced synthetic data of size N = 104; and (ii) the

linear regression model on the CASP data. The results for scenario (i) are plotted in

Figure 4.5.3. Please refer to Figure B.5.2 in Appendix B.5 for the results of scenario

(ii). Both models satisfy Assumption 2.

In order to implement the adaptive subsampling methods, we had to first pick a

suitable pseudo-variance threshold, V0. We generated ten chains of SGLD-CV and

SGLD-CV-PS for a fixed subsample of size 0.1% of the dataset size. For each chain,

we then:

1. calculated the squared Euclidean distances between the mode and the samples,

‖θ − θ̂‖2,

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 86

0 2000 4000 6000 8000 10000
Iterations

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

lo
g(

KS
D)

SGLD-CV 0.1%
SGLD-CV-PS 0.1%
ASGLD-CV
ASGLD-CV-PS

(a)

0 2000 4000 6000 8000 10000
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Su
bs

am
pl

e
siz

e

Average adaptive subsample size
0.1%*N

(b)

0 2000 4000 6000 8000 10000
Iterations

0

2

4

6

8

10

Nu
m

be
r o

f p
as

se
s

Fixed subsampling, 0.1%*N
ASGLD-CV-PS subsampling

(c)

Figure 4.5.3: A logistic regression model fitted on balanced synthetic data of size

N = 104. (a) KSD comparison of SGLD-CV, SGLD-CV-PS, ASGLD-CV and ASGLD-

CV-PS over 104 iterations; (b) adaptive subsample sizes selected along one ASGLD-

CV-PS chain; (c) the number of passes through the data considered by fixed versus

adaptive subsampling.

2. found the 95-th percentile of the array of squared distances, and

3. calculated a proposal for V0 using the bound in (4.3.13).

We set V0 to be the largest proposal amongst the ten chains.

Figure 4.5.3(a) plots the KSD for all four methods and Figure 4.5.3(b) displays the

adaptive subsample sizes selected along one chain of ASGLD-CV-PS. Figure 4.5.3(c)

compares the number of passes through the data considered by fixed subsampling

versus ASGLD-CV-PS over 104 iterations.

Overall, we see that the performance of ASGLD-CV-PS is somewhat better than

that of ASGLD-CV. We cannot always presume that the adaptive subsampling methods

will outperform their fixed subsampling counterparts (see Figure B.5.2(a) for instance)

in terms of sample quality. However, it is clear that the adaptive subsampling methods

successfully process far less of the data over 104 iterations with no significant reduction

in statistical accuracy.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 87

4.6 Conclusions

We have used preferential subsampling to reduce the variance of the stochastic gradient

estimator for both SGLD and SGLD-CV. In addition, we have extended SGLD-CV to

allow for adaptive subsampling.

We have empirically studied the impact of preferential subsampling on a range of

synthetic and real-world datasets. Our numerical experiments successfully demonstrate

the performance improvement from both preferential subsampling and adaptively

selecting the subsample size.

Future work in this area could explore the potential for using multi-armed bandits

to preferentially select data subsamples for SGMCMC. These concepts have only been

previously considered within the context of stochastic optimisation (Salehi et al., 2017;

Liu et al., 2020).

The methods outlined in this chapter are not limited to Langevin dynamics and can

be applied to other SGMCMC samplers. Furthermore, it would be worth considering

how preferential subsampling could be extended for other variance control methods,

such as SAGA-LD or SVRG-LD (Dubey et al., 2016). This could potentially be done

by adapting the ideas presented in Schmidt et al. (2015), Kern and Gyorgy (2016)

and Schmidt et al. (2017). Arguments that mirror those presented in Lemmas 4.3.1

and 4.3.2 could be used to obtain the optimal preferential subsampling scheme in each

new case.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 88

4.7 Results from Section 4.3

4.7.1 Full derivation of the pseudo-variance

The pseudo-variance g̃(t) is given by:

V
(
g̃(t)
)

= E
(∥∥g̃(t) − g(t)

∥∥2
)

(4.7.1)

= E
((
g̃(t) − g(t)

)T (
g̃(t) − g(t)

))
(4.7.2)

=
d∑
j=1

E
((
g̃

(t)
j − g(t)

j

)2
)

(decompose expectation over d parameters)

(4.7.3)

=
d∑
j=1

E
((
g̃

(t)
j − E

[
g̃

(t)
j

])2
)

(4.7.4)

=
d∑
j=1

Var
(
g̃

(t)
j

)
(4.7.5)

= tr

(
Cov

(
g̃(t)
))
. (4.7.6)

4.7.2 Proof of Lemma 4.3.1

Proof. From Section 4.7.1, we know that

V
(
g̃(t)
)

= E

[∥∥g̃(t) − g(t)
∥∥2

]
=

d∑
j=1

Var
(
g̃

(t)
j

)
. (4.7.7)

Taking expectations with respect to p(t), we know that the j-th component of the sum

in (4.7.7) is given by:

Var
(
g̃

(t)
j

)
= Var

(
∇jf0

(
θ(t)
)

+
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))

= Var

(
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))
.

Given that all stochastic gradient estimators are unbiased with the same mean, we

know that minimising V
(
g̃(t)
)

with respect to p(t) is equivalent to minimising the

component-wise sum of second moments,
∑d

j=1 E

((
1
n

∑
i∈St

1
pti
∇jfi

(
θ(t)
))2

)
.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 89

So, for j = 1, . . . , d, we consider

E

((
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))2

)
=

1

n2
E

(∑
i∈St

(
1

pti
∇jfi

(
θ(t)
))2

+
∑
i∈St

∑
k∈St, i 6=k

1

pti
· 1

ptk
· ∇jfi

(
θ(t)
)
· ∇jfk

(
θ(t)
))

=
1

n
E

((
1

pti
∇jfi

(
θ(t)
))2

)
+
n(n− 1)

n2
E

(
1

pti
∇jfi

(
θ(t)
))2

=
1

n

N∑
i=1

1

pti

[
∇jfi

(
θ(t)
)]2

+
n− 1

n

(
N∑
i=1

∇jfi
(
θ(t)
))2

=
1

n

N∑
i=1

1

pti

[
∇jfi

(
θ(t)
)]2

+ Cj,

where Cj is a constant that does not depend on p(t). Adding up over all components,

we see that,

d∑
j=1

E

((
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))2

)
=

d∑
j=1

[
1

n

N∑
i=1

1

pti

[
∇jfi

(
θ(t)
)]2

+ Cj

]

=
1

n

N∑
i=1

1

pti
‖∇fi

(
θ(t)
)
‖2 + C ′.

Therefore,

min
p(t), pti∈[0,1],

∑
i p
t
i=1

V
(
g̃(t)
)
⇐⇒ min

p(t), pti∈[0,1],
∑
i p
t
i=1

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)∥∥2

.

The minimisation problem of interest is

min
p(t), pti∈[0,1],

∑
i p
t
i=1

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)∥∥2

.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 90

We know that via the Cauchy-Schwarz inequality7,

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)∥∥2

=
1

n

(
N∑
i=1

1

pti

∥∥∇fi(θ(t)
)∥∥2

)(N∑
i=1

pti

)

≥ 1

n

(
N∑
i=1

√
1

pti

∥∥∇fi(θ(t)
)∥∥2

pti

)2

=
1

n

(N∑
i=1

∥∥∇fi(θ(t)
)∥∥)2

.

The equality is only obtained when there exists a constant c ∈ R such that
(pt1)−1

∥∥∇f1

(
θ(t)
)∥∥2

(pt2)−1
∥∥∇f2

(
θ(t)
)∥∥2

...

(ptN)−1
∥∥∇fN(θ(t)

)∥∥2

 = c


pt1

pt2
...

ptN

 ,

which is equivalent to writing

(pt1)−2
∥∥∇f1

(
θ(t)
)∥∥2

= (pt2)−2
∥∥∇f2

(
θ(t)
)∥∥2

= . . . = (ptN)−2
∥∥∇fN(θ(t)

)∥∥2
.

Under this constraint, Problem (4.3.8) is minimised. We can therefore conclude that

the optimal weights which minimise the pseudo-variance are,

pti =
‖∇fi

(
θ(t)
)
‖∑N

k=1 ‖∇fk
(
θ(t)
)
‖

for i = 1, . . . , N.

4.7.3 Proof of Lemma 4.3.2

Proof. By the similar argument to that used for Lemma 4.3.1, we can show that

min
p(t), pti∈[0,1],

∑
i p
t
i=1

V
(
g̃(t)
)
⇐⇒ min

p(t), pti∈[0,1],
∑
i p
t
i=1

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)
−∇fi(θ̂)

∥∥2
.

7The Cauchy-Schwarz inequality states that for d-dimensional real vectors u,v ∈ Rd, of all inner

product space it is true that

|〈u,v〉| ≤ 〈u,u〉 · 〈v,v〉

Furthermore, the equality holds only when either u or v is a multiple of the other.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 91

Once again, using the Cauchy-Schwarz inequality allows us to see that the optimal

weights which minimise the pseudo-variance are,

pti =
‖∇fi

(
θ(t)
)
−∇fi(θ̂))‖∑N

k=1 ‖∇fk
(
θ(t)
)
−∇fk(θ̂)‖

for i = 1, . . . , N.

4.7.4 Deriving approximate weights for the control variates

gradient

The minimisation problem of interest is

min
p(t), pti∈[0,1],

∑
i p
t
i=1

Eθ
[

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)
−∇fi(θ̂)

∥∥2
]
.

So,

Eθ
[

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t)
)
−∇fi(θ̂)

∥∥2
]

=
1

n

N∑
i=1

1

pti
Eθ
[∥∥∇fi(θ(t)

)
−∇fi(θ̂)

∥∥2
]

(linearity of Eθ)

=

(
1

n

)(N∑
i=1

1

pti
Eθ
[∥∥∇fi(θ(t)

)
−∇fi(θ̂)

∥∥2
])(N∑

i=1

pti

)

(Cauchy-Schwarz) ≥ 1

n

(N∑
i=1

√
1

pti
Eθ
[∥∥∇fi(θ(t)

)
−∇fi(θ̂)

∥∥2
]
pti

)

=
1

n

(N∑
i=1

√
Eθ
[∥∥∇fi(θ(t)

)
−∇fi(θ̂)

∥∥2
])2

.

The problem is minimised when

pti ∝
√

Eθ
[∥∥∇fi(θ(t)

)
−∇fi(θ̂)

∥∥2
]

for i = 1, . . . , N.

Let’s assume that θ ∼̇ N (θ̂, Σ̂) at stationarity, where Σ̂ = −H(θ̂)−1. Using a first-order

Taylor expansion about θ̂,∥∥∇fi(θ(t)
)
−∇fi(θ̂)

∥∥2 ≈ ‖∇fi(θ̂) +∇2fi(θ̂)(θ
(t) − θ̂)−∇fi(θ̂)

∥∥2
=
∥∥∇2fi(θ̂)(θ

(t) − θ̂)
∥∥2
.

We know that (θ − θ̂) ∼̇ N (0, Σ̂). So,

∇2fi(θ̂)(θ
(t) − θ̂) ∼̇ N

(
0,∇2fi(θ̂)Σ̂∇2fi(θ̂)

T
)
.

CHAPTER 4. PREFERENTIAL SUBSAMPLING FOR SGLD 92

Then,

Eθ
[∥∥∇fi(θ(t)

)
−∇fi(θ̂)

∥∥2
]
≈ Eθ

[∥∥∇2fi(θ̂)(θ
(t) − θ̂)

∥∥2
]

= tr

(
Cov

(
∇2fi(θ̂)

(
θ(t) − θ̂

)))
≈ tr

(
∇2fi(θ̂) Σ̂∇2fi(θ̂)

T

)
.

So, we can set

pi ∝
√

tr

(
∇2fi(θ̂) Σ̂∇2fi(θ̂)T

)
for i = 1, . . . , N.

4.7.5 Proof of Lemma 4.3.3

Proof. We know that the pseudo-variance can be decomposed into

V(g̃) = E [‖g̃ − g‖2]

=
1

n

N∑
i=1

1

pti
‖∇fi

(
θ(t)
)
−∇fi(θ̂)‖2 − 1

n

∥∥∥∥ N∑
i=1

[
∇jfi

(
θ(t)
)
−∇jfi(θ̂)

]∥∥∥∥2

︸ ︷︷ ︸
≥0

≤ 1

n

N∑
i=1

1

pti
‖∇fi

(
θ(t)
)
−∇fi(θ̂)‖2.

Under Assumption 2, we know that

V(g̃) ≤ 1

n
‖θ(t) − θ̂‖2

(N∑
i=1

L2
i

pti

)
.

Chapter 5

A Feasibility Study: Utilising

Determinantal Point Processes for

Subsampling

5.1 Overview

The goal of this chapter is evaluate the feasibility of using determinantal point processes

(DPPs) to construct informed, low-variance data subsamples for SGLD. The DPP

defines a similarity measure between datapoints and assigns a larger probability to

subsets of datapoints that are more diverse. By modelling the repulsive correlations

between items, a random draw from a DPP should provide a balanced representation of

the underlying data. DPPs can be used to automate many real-world tasks, including

text summarisation and generating high-quality search results (Kulesza et al., 2012).

The ideas presented in this chapter are motivated by the mini-batch diversification

approach proposed in Zhang et al. (2017a) and Zhang et al. (2017b) for stochastic

gradient descent. These works provide some empirical evidence that minibatches

drawn from DPPs (and other repulsive point processes) can yield gradient estimators

for SGD with a lower variance. Given that these ideas have been applied successfully

in the optimisation setting, our aim is to assess how they could be applied in the

sampling setting.

93

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 94

5.2 Determinantal point processes

A DPP is a distribution over subsets of a fixed ground set of N items. The defining

characteristic of a DPP is the notion of negative correlation. That is, the inclusion of

one item in a subset makes the inclusion of other similar items less likely. A measure

of similarity between any pair of items in the ground set can be obtained via a suitable

kernel matrix. By construction, the DPP will assign a higher probability value to

subsets that are more diverse.

A point process P over a discrete set Y = {1, . . . , N} is a probability measure on

2Y . Specifically, P is a determinantal point process if, when Y is a random subset

drawn according to P , we have that for every A ⊆ Y ,

P(A ⊆ Y) = det(KA). (5.2.1)

Here, K is a real, symmetric N ×N indexed by the items in Y and KA ≡ [Kij]i,j∈A.1

Kulesza et al. (2012) state that normalisation is unnecessary at this stage, given that

we are inherently defining marginal probabilities that need not sum to 1. We refer

to K as the marginal kernel, as it allows us to define the marginal probability of any

subset A. Since P is a probability measure, all principal minors of the matrix K must

be nonnegative, and therefore K must be positive semi-definite (psd).

If A = {i}, then by Eq. (5.2.1) we have,

P(i ∈ Y) = Kii. (5.2.2)

In other words, the diagonal elements of the marginal kernel gives us the marginal

probabilities of selecting an individual item from Y . Similarly if A = {i, j}, we know

that,

P(i, j ∈ Y) =

∣∣∣∣∣∣Kii Kij

Kji Kjj

∣∣∣∣∣∣
= KiiKjj −KijKji

= P(i ∈ Y)P(j ∈ Y)−K2
ij. (5.2.3)

1We note that det(K∅) = 1.

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 95

Eq. (5.2.3) demonstrates that the off-diagonal elements of K describe the negative

correlation between pairs of elements in Y. For a given pair i, j ∈ Y, a larger value

of Kij would imply that i and j are very similar and should therefore not be chosen

together.

L-ensembles

To fully characterise a DPP of the form of Eq. (5.2.1), the eigenvalues of the marginal

kernel K must be bounded above by 1. In practice, it is therefore more convenient

(especially when modelling real data) to construct DPPs using an alternative framework.

An L-ensemble specifies a DPP in terms of the atomic probabilities for every possible

instantiation of Y (Borodin and Rains, 2005; Kulesza et al., 2012). This is done via a

real, symmetric matrix L, indexed by the items in Y , such that,

PL(Y = Y) ∝ det(LY). (5.2.4)

As above, we once again require L to be real, symmetric and psd. The normalisation

constant of Eq. (5.2.4) can be given in closed form, since
∑

Y⊆Y det(LY) = det(L+ I).

It is also possible to recover the marginal kernel of an L-ensemble using the relation:

K = (L+ I)−1L (Macchi, 1975).

Let λ1, λ2, . . . , λN be the eigenvalues of L. It can be shown that the cardinality

of a random subset Y ⊆ Y, |Y|, is distributed as the number of successes observed

amongst N Bernoulli trials, where trial i succeeds with probability λi
λi+1

. One immediate

consequence of this is that |Y| cannot be larger than rank(L).

k-DPPs

A k-DPP on a discrete set Y = {1, . . . , N} is a distribution over all subsets Y ⊆ Y
with cardinality k (Kulesza and Taskar, 2011; Kulesza et al., 2012). Specifically, we

can obtain a k-DPP by conditioning a standard DPP on the event that a random

subset Y has size k. The k-DPP PkL gives probabilities,

PkL(Y) =
det(LY)∑
|Y ′|=k det(L′Y)

, (5.2.5)

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 96

where |Y | = k and L is a psd kernel. Apart from conditioning on the cardinality of the

subset, the k-DPP incorporates the same diversification effect as the standard DPP.

Figure 5.2.1 provides a visual comparison of the difference between a uniform

random sample and DPP sample. The left panel shows N = 1, 000 datapoints drawn

from a bivariate normal distribution with mild correlation. The middle panel plots a

uniform random sample of size k = 60 from the original data. For comparison, the

right panel plots a k-DPP subsample of size k = 60 from the original data. The k-DPP

was constructed using a Gaussian kernel of Euclidean distances. In this example,

the k-DPP scheme best restores the shape of the original data set, introducing more

repulsion between the subsampled points.

Figure 5.2.1: Sampling comparison - (left) bivariate Normal, (centre) uniform sample,

(right) k-DPP sample.

Sampling from a k-DPP

Kulesza et al. (2012) propose an exact spectral algorithm to sample from k-DPPs

(and more generally finite DPPs). Broadly speaking, there are three stages involved in

sampling from a k-DPP:

(i) Compute the elementary symmetric polynomials of L;

(ii) Sample k eigvenvectors V by using the elementary symmetric polynomials; and,

(iii) Generate a sample Y using the selected eigenvectors V .

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 97

Drawing a subset Y of size k from the ground set has computational complexity of

O(Nk3). Algorithm 6 outlines the full sampling procedure. The input to the algorithm

is an eigendecomposition of the kernel matrix L, the subset size k, and number of

samples to be drawn T . We note that ei is the i-th standard basis N -vector, which is

all zeros except for a one in the i-th position.

The eigendecomposition of the matrix L can be very costly to compute for large

datasets. To circumvent this issue, various k-DPP sampling approaches (both exact

and approximate) have been outlined in the DPP literature. Launay et al. (2020)

propose an exact sampling algorithm which relies on a Cholesky decomposition of

the kernel matrix and a sequential thinning procedure. For certain applications, this

procedure can be faster than the original spectral algorithm. Calandriello et al. (2020)

propose an efficient method based on the concept of a distortion-free intermediate

sample, where a larger sample of points is drawn in such a way that we can then

downsample to the correct DPP distribution. Affandi et al. (2013) propose the use of

a Nystrom approximation to project the kernel matrix into a low-dimensional space

and the dual representation of the approximated kernel is applied to reduce sampling

complexity. MCMC-based k-DPP samplers (Li et al., 2016a; Anari et al., 2016) offer a

promising alternative to the spectral algorithm (with convergence guarantees) provided

the MCMC chain mixes fast enough. We refer the reader to the DPPy Python package

documentation (Gautier et al., 2019) for a more comprehensive list of the available

options.

5.3 Proposed approach

In this section, we propose and subsequently evaluate a potential approach for variance

control in SGLD, where k-DPPs are used to draw subsamples and reweight the

stochastic gradient. The ideas presented below have been adapted from the work

conducted by Zhang et al. (2017a) and Zhang et al. (2017b) for minibatch stochastic

gradient descent. Modifying vanilla SGLD to allow for a DPP-based subsampling

process necessitates a separate preprocessing phase.

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 98

Algorithm 6: k-DPP sampling

1: Input: subset size k; eigendecomposition of L,{λm,vm}Nm=1, number of draws T

2: Stage 1: Compute the elementary symmetric polynomials of L.

3: em0 ← 1 for all m ∈ {0, 1, 2, . . . , N}
4: e0

l ← 1 for all l ∈ {0, 1, 2, . . . , k}
5: for l = 1, 2, . . . , k do

6: for m = 1, 2, . . . , N do

7: eml ← em−1
l + λje

m−1
l−1

8: end for

9: end for

10: for t = 1, . . . , T do

11: Stage 2: Sample k eigenvectors V with indices J .

12: J ← ∅
13: l← k

14: for m = N, . . . , 2, 1 do

15: if l = 0 then

16: break

17: end if

18: if u ∼ U [0, 1] < λm
em−1
l−1

eml
then

19: J ← J ∪ {m}
20: l← l − 1

21: end if

22: end for

23: Stage 3: Sample k points indexed by Y using V .

24: V ← {vm}m∈J
25: Y ← ∅
26: while |V | > 0 do

27: Select i with probability Pr(i) =
∑

v∈V (vTei)
2

28: Y ← Y ∪ {i}
29: V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei

30: end while

31: end for

32: return samples Y1, Y2, . . . , YT

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 99

5.3.1 Preprocessing

There are three preprocessing steps that would need to be implemented ahead of

running SGLD.

(i) Constructing a suitable k-DPP kernel, L. This is application specific and the

kernel matrix should be an N ×N symmetric, psd matrix with large rank.

(ii) Pre-selecting data subsamples using Algorithm 6. This process is independent of

the model parameters and could even be parallelised. Depending on the method

used, this can be a fairly lengthy involved computational task.

(iii) Computing a vector of marginal probabilities p = (p1, p2, . . . , pN)T for each

subsample, where pi = Lii
trace(L)

for all i. This can be seen from leveraging

Eq. (5.2.5) for k = 1.

5.3.2 DPP-SGLD

The unbiased gradient estimator is given by reweighting the simple estimator defined

in (4.2.3) (Welling and Teh, 2011),

g̃(t) = ∇f0

(
θ(t)
)

+
1

k

∑
i∈St

1

pi
∇fi

(
θ(t)
)
, (5.3.1)

where St ∼ k-DPP(L) and |St| = k (k � N). The pseudocode for DPP-SGLD

would largely remain the same as that of Algorithm 8 (SGLD-PS), allowing for the

aforementioned changes in preprocessing.

5.3.3 Worked example

Inspired by the experiments in Section 4.5.3 of Chapter 4, we now present a comparison

of the pseudo-variance of our proposed gradient estimator against vanilla SGLD. For

this worked example, we considered an imbalanced binary logistic regression on a

synthetic dataset of size N = 103 2. This setup was chosen for its heavy class imbalance

2The model specification and data generating mechanism remained unchanged from Chapter 4.

See Appendix B.2 for full details.

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 100

- with 95% of datapoints falling under one class (yi = 1) and only 5% of datapoints

categorised as the other (yi = 0). All stochastic gradient evaluations were calculated

at the mode (estimated using the ADAM optimiser) and the empirical pseudo-variance

was computed for subsamples of up to size k = 0.5N .

The k-DPP kernel used for this example was taken from Experiment 5.2 of Zhang

et al. (2017a), where the authors implemented a multi-class logistic regression. In this

case, we used a linear kernel L = FF T , where F is a weighted concatenation of the

features of the dataset X and the class labels y, with

F = [(1− w)X wy], 0 ≤ w ≤ 1.

By changing the value of the weight w, the kernel can place greater emphasis on the

class labels in the target. Random subsets were drawn from the k-DPP using the DPPy

Python implementation of Algorithm 6 (Gautier et al., 2019).

Figure 5.3.1(a) compares the empirical pseudo-variance of the stochastic gradients

for SGLD with and without replacement (WR and WOR respectively) and for DPP-

SGLD with kernel weighting w = 0.1, 0.4, 0.7 and 1. Figure 5.3.1(b) plots histograms

of the marginal probabilities used in reweighting the DPP-SGLD estimator Eq. (5.3.1).

SGLD with and without replacement seems to offer the best variance reduction. As

the value of w increases, the performance of the DPP-SGLD gradient estimator is seen

to degrade.

5.3.4 Discussion

In this section, we outline two practical issues that we have identified in trying to

implement our approach. The performance of the proposed method is inherently

tethered to the choice of kernel and the choice of dataset. At this stage, we are not

concerned about the computational burden associated with drawing subsets from the

k-DPP in preprocessing. There are various fast and scalable alternatives to Algorithm

6 available that do not rely upon an O(N3) eigendecomposition of the kernel matrix

(Anari et al., 2016; Calandriello et al., 2020).

The worked example in Section 5.3.3 demonstrates that using k-DPPs to conduct

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 101

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of data in subsample

102

103

104

105

106

Ps
eu

do
-v

ar
ia

nc
e

DPP (w=0.1)
DPP (w=0.4)
DPP (w=0.7)
DPP (w=0.1)
SGLD-WR
SGLD-WOR

(a)

0.001 0.002 0.003 0.004 0.005
Marginal Probability

0

20

40

60

80

100

120

Co
un

t

w=0.1

0.001 0.002 0.003 0.004 0.005
Marginal Probability

0

20

40

60

80

100

120

Co
un

t
w=0.4

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
Marginal Probability

0

20

40

60

80

100

120

140

Co
un

t

w=0.7

0.0002 0.0004 0.0006 0.0008 0.0010
Marginal Probability

0

200

400

600

800

1000

Co
un

t

w=1

(b)

Figure 5.3.1: Empirical pseudo-variance against proportion of data in subsample n
N

;

(b) histograms of the marginal probabilities for used in computing Eq. (5.3.1) for

w = 0.1, 0.4, 0.7 and 1.

CHAPTER 5. FEASIBILITY OF UTILISING DPPs FOR SUBSAMPLING 102

subsampling for SGLD does not always guarantee a reduction in the variance of the

estimator. Theorem 1 of Zhang et al. (2017a) sets out conditions in which we would

expect to see variance reduction for SGD - implying that there are scenarios where we

can reasonably expect to perform worse than uniform subsampling. In other words,

the kernel matrix cannot be chosen in an agnostic manner. There unfortunately seems

to be very little guidance in the existing literature on how to pick a similarity measure

for unstructured problems that do not have a clear geometric interpretation.

One would also reasonably expect to be able to draw subsamples for SGLD of

any size k < N . The rank of the kernel matrix L serves as an upper bound on the

value of k that we can pick (Kulesza et al., 2012). We can temporarily introduce some

numerical stability by defining the k-DPP model with L+ εIN×N for some small value

of ε > 0. However, the underlying dataset must also contain a substantial number of

independent features so as to preserve the rank of the kernel as much as possible (i.e.,

wider datasets with limited multicollinearity are more preferable).

Chapter 6

Conclusions

6.1 Discussion

This thesis has focused on providing methodological contributions to two open areas

of stochastic gradient MCMC research: extending the class of algorithms to dependent

datasets and improving variance control.

We first considered the problem of extending SGLD to time series data. Stochastic

gradient MCMC approaches typically require the parsed data sources to be independent.

In considering dependent data sources, we were no longer able to rely on the convenient

product structure of the likelihood to construct unbiased gradient estimators. In

Chapter 3, we demonstrated how SGLD could be used to conduct scalable inference on

nonlinear, non-Gaussian state space models, borrowing upon ideas from the particle

filtering literature. This work served as the third and final paper in a series (Ma et al.,

2017; Aicher et al., 2019). We proposed the use of particle buffered gradient estimators

to account for the temporal dependencies in the data. We also presented an analysis

of the sources of error (buffering error and particle error) introduced in our approach.

We then investigated how novel subsampling techniques can be used to improve

variance control. Stochastic gradient MCMC constructs an unbiased estimate of the

gradient of the log-posterior using a small, uniformly-weighted subsample of the data.

While efficient to compute, the resulting estimator may have a relatively high variance

and this can impact the performance of the sampler. There has been considerable

103

CHAPTER 6. CONCLUSIONS 104

interest in developing tools for variance control in the literature (Dubey et al., 2016;

Chatterji et al., 2018; Baker et al., 2019a). We note that much of this work builds

upon existing variance reduction techniques for stochastic optimisation methods.

In Chapter 4, we proposed the use of a discrete, non-uniform probability distribution

to preferentially subsample data points that have a greater impact on the stochastic

gradient. We also presented a method for adaptively adjusting the subsample size

at each SGLD iteration, so that we could increase the subsample size in areas of the

sample space where the gradient was harder to estimate.

Chapter 5 sought to assess the viability of using determinantal point processes

to construct informed data subsamples for SGLD, with a view to improve variance

control. This idea was inspired by the work of Zhang et al. (2017a). We ran a worked

example for an imbalanced logistic regression model on a small, synthetic dataset. In

doing so, we understood that there were multiple practical issues associated with the

approach.

6.2 Future work

The challenge of scalable inference for complex time series models has been explored

in detail in Ma et al. (2017), Aicher et al. (2019) and Chapter 3. A natural extension

of this work lies in adapting the proposed methods for streaming time series data.

This could perhaps be done by borrowing ideas from Arulampalam et al. (2002) and

Crisan and Mı́guez (2018). Given the similarities that dynamic latent space models

share with state space models in the network literature (Sewell and Chen, 2015), it

would be interesting to see if a buffered subsequence approach could be transferred

across. To the best of our knowledge, the problem of subsampling spatial data, such

that long-range and short-range dependency structure is preserved, has also not been

solved.

The ideas presented in Chapter 4 open up quite a few extensions. Some further

work should be done to improve the adaptive subsampling approach proposed in

Chapter 4. At this stage, we are reliant upon running a full SGLD-CV chain ahead of

CHAPTER 6. CONCLUSIONS 105

its adaptive counterpart, in order to obtain an upper bound on the variance of the

stochastic gradient. A cheaper approximation could be to store the gradients obtained

from the second half of optimiser burn-in and use those to propose a bound.

We could extend the preferential subsampling methodology of Chapter 4 further by

employing multi-armed bandits (MAB) to achieve dynamic subsampling. Inspired by

active learning methods, Salehi et al. (2017) propose a MAB framework for stochastic

gradient descent to find the best possible approximation of the optimal subsampling

distribution over time. Feedback is collected via the l most recent stochastic gradients

and passed into the MAB at each iteration. In this context, the MAB has N arms,

each of which corresponds to one of the N data points. Selecting arm (or data point) i

at time t gives a negative reward (losses) rti and the losses vary between the arms. At

time t, a MAB algorithm is used to update the arm sampling distribution p(t) based

on the loss associated with arm it, r
t
it . This is done without giving the algorithm

access to any of the losses rjt for j 6= it. Liu et al. (2020) went further and proposed a

minibatching approach with an ADAM optimiser based on MABs, allowing for multiple

datapoints (arms) to be considered per iteration. A similar adaptive subsampling

strategy could be explored for SGLD, incorporating ideas proposed in both works.

In recent years, there has been considerable interest in the use of coresets for

scalable applications. A coreset is a small, weighted subset of a large-scale dataset

that approximates the full dataset and can be used in inference. Huggins et al. (2016)

propose a method of efficient coreset construction for Bayesian logistic regression

models. A similar approach could be considered for gradient-based MCMC samplers.

Instead of iteratively using data subsampling, we could build up a coreset of the

training data as a preprocessing step and use it to construct an unbiased estimate of

the gradient of the log-posterior.

Appendix A

Appendix to Chapter 3

This Appendix is organised as follows. In Section A.1, we provide additional particle

filter and gradient details for the models in Section 3.5.1. In Section A.2, we provide

additional details and figures of experiments.

A.1 Model details

A.1.1 LGSSM

The LGSSM in this paper is given by

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt), θ ∼ N (yt |xt , τ 2), (A.1.1)

with parameters θ = (φ, σ, τ).

When applying the particle filter, Algorithm 2, to the LGSSM, we consider two

proposal densities q(·|·):

� The prior (transition) kernel

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1, σ
2), (A.1.2)

106

APPENDIX A. APPENDIX TO CHAPTER 3 107

where the weight update, (3.2.3), is

w
(i)
t ∝

1√
2πτ 2

exp

(
−(yt − x(i)

t)2

2τ 2

)
. (A.1.3)

� The ‘optimal instrumental kernel’

Xt | (Xt−1 = xt−1, Yt = yt), θ

∼ N
(
xt

∣∣∣ τ 2φxt−1 + σ2yt
σ2 + τ 2

,
σ2τ 2

σ2 + τ 2

)
, (A.1.4)

where the weight update, (3.2.3), is

w
(i)
t ∝

1√
2π(σ2 + τ 2)

exp

(
−(yt − φx(ai)

t−1)2

2(σ2 + τ 2)

)
. (A.1.5)

In our experiments with the LGSSM, we use the optimal instrumental kernel.

For this model, the (elementwise) complete data loglikelihood is

log p(yt, xt |xt−1, θ) = − log(2π)− log(σ)

− (xt − φxt−1)2

2σ2
− log(τ)− (yt − xt)2

2τ 2
. (A.1.6)

The gradient of the complete data loglikelihood is then,

∇φ log p(yt, xt |xt−1, θ) =
(xt − φxt−1) · xt−1

σ2
,

∇σ log p(yt, xt |xt−1, θ) =
(xt − φxt−1)2 − σ2

σ3
,

∇τ log p(yt, xt |xt−1, θ) =
(yt − xt)2 − τ 2

τ 3
. (A.1.7)

We reparametrize the gradients with σ−1 and τ−1 to obtain,

∇σ−1 log p(yt, xt |xt−1, θ) =
σ2 − (xt − φxt−1)2

σ
,

∇τ−1 log p(yt, xt |xt−1, θ) =
τ 2 − (yt − xt)2

τ
. (A.1.8)

To complete the SGMCMC scheme, the prior distributions of the parameters θ are

APPENDIX A. APPENDIX TO CHAPTER 3 108

given as follows:

φ ∼ N (0, 100 · σ2)

σ−1 ∼ Gamma(1 + 100, (1 + 100)−1)

τ−1 ∼ Gamma(1 + 100, (1 + 100)−1). (A.1.9)

The initial parameter values for synthetic experiments were drawn from:

φ ∼ N (0, 1 · σ2)

σ−1 ∼ Gamma(2, 0.5)

τ−1 ∼ Gamma(2, 0.5). (A.1.10)

A.1.2 SVM

The SVM in this paper is given by,

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1 , σ
2),

Yt | (Xt = xt), θ ∼ N (yt | 0 , exp(xt)τ
2), (A.1.11)

with parameters θ = (φ, σ, τ). In this model, the observations, y1:T , represent the

logarithm of the daily difference in the exchange rate and X is the unobserved volatility.

We assume that the volatility process is stationary (such that 0 < φ < 1), where φ is

the persistence in volatility and τ is the instantaneous volatility.

For the particle filter, we use the prior kernel as the proposal density q

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1, σ
2), (A.1.12)

with weight update

w
(i)
t ∝

1√
2πτ 2

exp

(
−y2

t

2 exp(x
(i)
t)τ 2

)
. (A.1.13)

The elementwise complete data loglikelihood is

log p(yt, xt |xt−1, θ) = − log(2π)− log(σ)− log(τ)

− (xt − φxt−1)2

2σ2
− 0.5xt −

(yt)
2

2 exp(xt)τ 2
. (A.1.14)

APPENDIX A. APPENDIX TO CHAPTER 3 109

The gradient of the complete data loglikelihood is then,

∇φ log p(yt, xt |xt−1, θ) =
(xt − φxt−1) · xt−1

σ2
,

∇σ log p(yt, xt |xt−1, θ) =
(xt − φxt−1)2 − σ2

σ3
,

∇τ log p(yt, xt |xt−1, θ) =
y2
t / exp(xt)− τ 2

τ 3
. (A.1.15)

We parametrize with σ−1 and τ−1 to obtain,

∇σ−1 log p(yt, xt |xt−1, θ) =
σ2 − (xt − φxt−1)2

σ
,

∇τ−1 log p(yt, xt |xt−1, θ) =
τ 2 − y2

t / exp(xt)

τ
. (A.1.16)

The prior distributions and initializations of the parameters θ are taken to be the

same as in the LGSSM case.

A.1.3 GARCH Model

The GARCH(1,1) model in this paper is given by,

Xt | (Xt−1 = xt−1), σ2
t , θ ∼ N (xt | 0, σ2

t),

σ2
t (xt−1, σ

2
t−1, θ) = α + βx2

t−1 + γσ2
t−1,

Yt | (Xt = xt), θ ∼ N (yt |xt , τ 2), (A.1.17)

where parameters are θ = (log µ, logitφ, logitλ, τ) for α = µ(1 − φ), β = φλ, γ =

φ(1− λ). Note that σ2
t = µ(1− φ) + φ(λx2

t−1 + (1− λ)σ2
t−1).

We consider two proposal densities q(·|·) for the GARCH model:

� The prior kernel Xt

σ2
t

 ∣∣∣
Xt−1 = xt−1

σ2
t−1

 , θ
∼

N (xt | 0, α + βx2
t−1 + γσ2

t−1)

δ(σ2
t |α + βx2

t−1 + γσ2
t−1)

 . (A.1.18)

where the weight update, (3.2.3), is

w
(i)
t ∝

1√
2πτ 2

exp

(
−(yt − x(i)

t)2

2τ 2

)
. (A.1.19)

APPENDIX A. APPENDIX TO CHAPTER 3 110

� The optimal instrumental kernelXt

σ2
t

 ∣∣∣
Xt−1 = xt−1

σ2
t−1

 , (Yt = yt), θ

∼

N (xt |σ2
t yt/(σ

2
t + τ 2), σ2

t τ
2/(σ2

t + τ 2))

δ(σ2
t |α + βx2

t−1 + γσ2
t−1)

 . (A.1.20)

where the weight update, (3.2.3), is

w
(i)
t ∝

1√
2π((σ

(i)
t)2 + τ 2)

exp

(
−y2

t

2((σ
(i)
t)2 + τ 2)

)
. (A.1.21)

In our experiments with the GARCH model, we use the optimal instrumental kernel.

The elementwise complete data loglikelihood is

log p(yt, xt, σ
2
t |xt−1, σ

2
t−1, θ) =

− log(2π) + log(α + βx2
t−1 + γσ2

t−1)

2

− x2
t

2(α + βx2
t−1 + γσ2

t−1)

− 0.5 log(2π)− log(τ)− (yt − xt)2

2τ 2
. (A.1.22)

Let Lt = log p(yt, xt, σ
2
t |xt−1, σ

2
t−1, θ) and set Ct =

x2t−σ2
t

2σ4
t

. Then the gradient of the

complete data loglikelihood ∇Lt is

∇τLt =
(yt − xt)2 − τ 2

τ 3
,

∇log µLt = Ct · (1− φ) · µ,

∇logitφLt = Ct · (λx2
t−1 + (1− λ)σ2

t−1 − µ) · φ(1− φ),

∇logitλLt = Ct · (φx2
t−1 − φσ2

t−1) · λ(1− λ). (A.1.23)

The SGMCMC scheme is completed by setting the prior distributions for the

parameters as follows: (φ + 1)/2 ∼ Beta(10, 1.5), µ ∼ Uniform(0, 2), (λ + 1)/2 ∼
Beta(20, 1.5) and τ 2 ∼ IG(2, 0.5).

APPENDIX A. APPENDIX TO CHAPTER 3 111

A.2 Additional experiments

We first present the stochastic gradient bias when using other particle filtering methods

and when varying the parameters with the LGSSM data. We then present additional

SGLD results on synthetic data for the LGSSM in higher dimensions, the SVM and the

GARCH models. We finally present some additional details for the SGLD experiment

on the EUR-US exchange rate data.

A.2.1 Gradient Bias with PaRIS

Figure A.2.1 compares the stochastic gradient bias of the naive PF with PaRIS on the

LGSSM data in Section 3.5.2.

From Figure A.2.1 (top) and (bottom-left), we see that the naive PF (blue or

solid line) performs similarly to PaRIS (red or dashed line) as N varies. However,

Figure A.2.1 (bottom-right) shows that the naive PF is about 10 times faster per

iteration than PaRIS.

From Figure A.2.1 (top) and (bottom-left), we see that the naive PF (blue or solid

line) performs similarly to PaRIS (red or dashed line) and Poyiadjis N2 (green or

dot-dashed line) as N varies. However, Figure A.2.1 (bottom-right) shows that the

naive PF is about 10 times faster per iteration than PaRIS and Poyiadjis N2.

A.2.2 Gradient Bias Varying Parameters

Figure A.2.2 compares the stochastic gradient bias for different values of φ ∈ (−0.97, 1.02)

for the LGSSM experiment in Section 5.2 and shows the trade-off between the buffering

error (II) and particle error (III) as φ (and therefore Lθ) varies.

From Figure A.2.2 (left) the buffer methods are worse than using the full buffer

(red) for φ > 1.00 with B = 8 (blue), and φ > 1.01 for B = 16 (purple). This is

because the buffering error (II) decays less rapidly with B as φ increases.

Comparing the naive PF (N = 1000) to the Kalman filter, Figure A.2.2 (left vs

right), we see there is a large gap due to particle error (III) as well. Therefore, as

APPENDIX A. APPENDIX TO CHAPTER 3 112

22 24 26

S

10 3

10 2

bi
as

method_name
N = 100
N = 1000
N = 10000
N = 100 (PaRIS)
N = 1000 (PaRIS)
N = 100 (N^2)
N = 400 (N^2)
buffer
No Buffer
Buffer

0 2 4 6 8
B

10 3

10 2

bi
as

N = 100
N = 1000
N = 10000
N = 100 (PaRIS)
N = 1000 (PaRIS)
N = 100 (N^2)
N = 400 (N^2)

102 103 104 105

N

10 3

10 2

bi
as

method_name
No Buffer
Buffer = B
Buffer = T
Full
particle filter
Naive PF
PaRIS
poyiadjis N^2

10 2 10 1 100 101

runtime

10 3

10 2

bi
as

method_name
No Buffer
Buffer = B
Buffer = T
Full
particle filter
Naive PF
PaRIS
poyiadjis N^2

Figure A.2.1: Stochastic gradient bias varying B, S,N for the naive PF and PaRIS

on the LGSSM data. (Top-left) bias vs S, (top-right) bias vs B, (bottom-left) bias vs

N , (bottom-right) bias vs runtime in seconds.

0.97 0.98 0.99 1.00 1.01 1.02
phi

10 6

10 4

10 2

100

102

bi
as

No Buffer
Buffer = B
Buffer = 2B
Buffer = T
Full

0.97 0.98 0.99 1.00 1.01 1.02
phi

10 6

10 4

10 2

100

102

bi
as

No Buffer
Buffer = B
Buffer = 2B
Buffer = T
Full

Figure A.2.2: Stochastic gradient bias varying φ with S = 16, B = 8 for (left) naive

PF N = 1000, (right) Kalman filter N =∞.

φ increases, both B and N need to increase to control bias; otherwise the buffered

methods have larger bias than full sequence gradients (green)

APPENDIX A. APPENDIX TO CHAPTER 3 113

And again, in all cases, not using a buffer (orange) has the largest bias.

A.2.3 SGLD on Synthetic Data

Additional MSE Figures for LGSSM

Figure A.2.3 presents extra MSE plots for the parameters not presented in the main

paper. Tables A.2.1 and A.2.2 present the full KSD results for each variable.

0 1000 2000 3000 4000 5000
time

10 2

10 1

100

M
SE

0 1000 2000 3000 4000 5000
time

10 2

10 1

M
SE

102 103 104

time

10 5

10 4

10 3

10 2

10 1

M
SE

102 103 104

time

10 7

10 6

10 5

10 4

10 3

10 2

10 1
M

SE

Figure A.2.3: Additional metrics for SGLD on LGSSM: (left) MSE of σ, (right) MSE

of τ , (top) T = 103, (bottom) T = 106.

Higher Dimensional LGSSM

We generate synthetic LGSSM data for Xt, Yt ∈ R d using φ = 0.9 · Id, σ = 0.7 · Id,
and τ = Id for dimensions d ∈ {5, 10} with T = 1000. Figure A.2.4 presents the MSE

trace plots for d = 5 and for d = 10. Table A.2.3 presents the KSD tables for both

d = 5 and d = 10.

We find that the Kalman filter N =∞ is able to much more rapidly mix compared

to the particle filter with N = 1000. This is both due to the increased particle

filter variance in higher dimensions and the longer computation required for sampling

particles in higher dimensions. However in both cases, we again see that buffering is

necessary to avoid bias.

APPENDIX A. APPENDIX TO CHAPTER 3 114

Table A.2.1: KSD results for Synthetic LGSSM with T = 103.

log10KSD

S B method φ σ τ total

103 – Gibbs 0.09 (0.25) -0.02 (0.01) -0.16 (0.48) 0.51 (0.13)

KF 0.01 (0.57) 0.07 (0.09) 0.20 (0.28) 0.64 (0.17)

PF 0.38 (0.26) 0.10 (0.16) 0.44 (0.19) 0.85 (0.08)

40 0 KF 1.53 (0.03) -0.08 (0.07) -0.04 (0.16) 1.55 (0.03)

PF 1.55 (0.03) -0.04 (0.13) 0.10 (0.26) 1.58 (0.03)

40 10 KF 0.18 (0.27) 0.02 (0.07) 0.04 (0.44) 0.61 (0.21)

PF 0.27 (0.46) 0.09 (0.13) -0.11 (0.53) 0.68 (0.25)

SVM

Figure A.2.5 presents the MSE plots for SGLD on the synthetic SVM data T = 1000

and Table A.2.4 presents the KSD for each sampled chain.

We find that buffering performs best (as measured by KSD). From Figure A.2.5

we see that not buffering leads to bias, while the full sequence method is nosier (fewer

larger steps) compared to the buffer method.

GARCH

Figure A.2.6 presents the trace plot metrics for SGLD on the synthetic GARCH data

T = 1000 and Table A.2.5 presents the KSD for each sampled chain.

We again find that buffering performs best (as measured by KSD). From Fig-

ure A.2.6 we see that not buffering leads to bias in sampling µ and λ. The full

sequence method encounters high particle error and therefore requires a much longer

runtime with a much smaller stepsize to reduce bias.

APPENDIX A. APPENDIX TO CHAPTER 3 115

Table A.2.2: KSD results for Synthetic LGSSM with T = 106.

log10KSD

S B method φ σ τ total

106 – Gibbs 3.91 (0.80) 3.43 (1.07) 3.52 (0.73) 4.23 (0.74)

KF 4.51 (0.48) 4.21 (0.50) 3.65 (0.55) 4.85 (0.36)

PF 4.77 (0.39) 4.11 (0.57) 3.55 (0.95) 4.92 (0.40)

40 0 KF 4.64 (0.14) 3.25 (0.21) 2.83 (0.61) 4.68 (0.11)

PF 4.64 (0.13) 3.19 (0.35) 3.12 (0.45) 4.68 (0.10)

40 10 KF 3.04 (0.39) 1.57 (0.50) 2.68 (0.20) 3.25 (0.29)

PF 3.26 (0.17) 1.70 (0.38) 2.87 (0.33) 3.43 (0.19)

Table A.2.3: KSD results for Synthetic LGSSM in higher dimensions

log10KSD

Dim Grad Est. N φ σ τ Total

5 No Buffer 1000 1.78 (0.04) 1.97 (0.26) 1.44 (0.45) 2.28 (0.20)

∞ 1.74 (0.01) 2.09 (0.02) 1.64 (0.02) 2.35 (0.01)

Buffer 1000 1.18 (0.17) 1.74 (0.25) 1.44 (0.03) 2.01 (0.13)

∞ 0.84 (0.03) 1.97 (0.03) 1.40 (0.05) 2.10 (0.03)

10 No Buffer 1000 1.84 (0.01) 2.40 (0.06) 2.26 (0.13) 2.71 (0.06)

∞ 1.79 (0.01) 2.13 (0.04) 2.12 (0.01) 2.52 (0.02)

Buffer 1000 1.60 (0.13) 2.37 (0.04) 2.20 (0.04) 2.64 (0.04)

∞ 1.04 (0.06) 2.08 (0.04) 2.07 (0.01) 2.39 (0.02)

A.2.4 SGLD on Exchange Rate

The EUR-US exchange rate data was pulled from the https://www.finam.ru website

for the time period of November 2017 to October 2018 at the minute resolution. The

https://www.finam.ru

APPENDIX A. APPENDIX TO CHAPTER 3 116

102 103

time

10 2

10 1
M
S
E

101 102 103

time

10 2

10 1

M
SE

Figure A.2.4: SGLD Results for LGSSM. MSE of φ (left) for X ∈ R 5, (right) X ∈ R 10.

0 2000 4000 6000 8000 10000
time

10 3

M
S
E

0 2000 4000 6000 8000 10000
time

10 4

10 3

10 2

10 1

M
SE

0 2000 4000 6000 8000 10000
time

10 1

100

M
SE

Figure A.2.5: SGLD results for synthetic SVM data: (left) MSE of φ, (center) MSE

of σ, (right) MSE of τ .

0 2000 4000 6000 8000 10000
time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

0 2000 4000 6000 8000 10000
time

0

1

2

3

4

5

6

7

M
SE

0 2000 4000 6000 8000 10000
time

0

1

2

3

4

M
SE

Figure A.2.6: SGLD results for synthetic GARCH data: (left) MSE of log(µ), (center)

MSE of logitφ, (right) MSE of logitλ.

APPENDIX A. APPENDIX TO CHAPTER 3 117

data is plotted in Figure A.2.7.

Figure A.2.7: EUR-US Exchange Rate Data (top) raw data (bottom) demeaned

log-returns.

The demeaned log-returns are calculated by taking the difference of the log-closing

price (at each minute) and removing the mean, as done in the stochvol package in

R Kastner (2016)

ỹt = log(yt/yt−1)− 1

T

∑
t′

log(yt′/yt′−1). (A.2.1)

SVM

For the SVM, we initialized each chain at φ = 0.9, σ = 1.73 and τ = 0.1 for all SGLD

methods. The full KSD results are presented in Table A.2.6.

GARCH

For the GARCH model, we initialized each chain at log µ = −0.4, logitφ = 1.7,

logitλ = 2.7 and τ = 0.1 for all SGLD methods. The full KSD results are presented

in Table A.2.7.

APPENDIX A. APPENDIX TO CHAPTER 3 118

Table A.2.4: KSD results for Synthetic SVM.

log10KSD

Grad Est. φ σ τ Total

Full 0.68 (0.28) 0.38 (0.40) 0.44 (0.54) 1.12 (0.22)

No Buffer 1.49 (0.05) -0.01 (0.23) 0.09 (0.35) 1.53 (0.05)

Buffer 0.35 (0.33) 0.23 (0.29) 0.21 (0.40) 0.81 (0.22)

Table A.2.5: KSD results for Synthetic GARCH.

log10KSD

Grad Est. logµ logitλ logitφ τ Total

Full 0.29 (0.59) 0.04 (0.03) 0.18 (0.34) 0.55 (0.11) 0.97 (0.05)

No Buffer 0.07 (0.08) -0.38 (0.09) -0.15 (0.10) 0.56 (0.10) 0.77 (0.08)

Buffer -0.27 (0.24) -0.72 (0.19) -0.69 (0.17) 0.12 (0.19) 0.39 (0.09)

Table A.2.6: KSD results for SVM on exchange rate data.

log10KSD

Grad Est. φ σ τ Total

Full 3.63 (0.30) 3.76 (0.07) 1.46 (0.38) 4.03 (0.14)

Weekly 3.86 (0.08) 2.18 (0.28) 0.67 (0.39) 3.87 (0.08)

No Buffer 4.48 (0.01) 1.84 (0.15) 1.21 (0.14) 4.48 (0.01)

Buffer 3.53 (0.11) 2.32 (0.13) 1.23 (0.05) 3.56 (0.10)

Table A.2.7: KSD results for GARCH on exchange rate data.

log10KSD

Grad Est. logµ logitλ logitφ τ Total

Full 2.18 (0.67) 2.18 (0.07) 2.19 (0.61) 2.07 (0.06) 2.84 (0.30)

Weekly 2.17 (0.51) 2.21 (0.03) 2.31 (0.29) 1.85 (0.19) 2.81 (0.21)

No Buffer 1.76 (0.06) 1.43 (0.46) 1.31 (0.09) 1.58 (0.08) 2.09 (0.09)

Buffer 1.76 (0.03) 2.01 (0.08) 1.11 (0.07) 1.87 (0.07) 2.19 (0.05)

Appendix B

Appendix to Chapter 4

This Appendix is organised as follows. In Section B.1, we provide the pseudocode for

the SGLD-CV, SGLD-PS and SGLD-CV-PS algorithms. In Section B.2, we provide

the model specifications, gradients and Lipschitz constants for the models used in

Section 3.5.1. We also describe the synthetic and real datasets used in the experiments.

In Section B.3, we outline the preprocessing costs associated with implementing SGLD-

CV-PS. Finally, we describe the numerical experiment set-up and provide additional

figures in Sections B.4 and B.5 respectively.

B.1 Pseudocode for algorithms

Algorithm 7: SGLD-CV

1: Input: initialise θ(1) = θ̂, gradients ∇fi
(
θ̂), batch size n, step-size ε.

2: for t = 1, 2, . . . , T do

3: Sample indices St ⊂ {1, . . . , N} with or without replacement.

4: Calculate ĝ
(t)
cv in (4.2.5).

5: Update parameters according to (4.2.4).

6: end for

7: return θ(T+1)

119

APPENDIX B. APPENDIX TO CHAPTER 4 120

Algorithm 8: SGLD with preferential subsampling (SGLD-PS)

1: Input: initialise θ(1), weights p(1), batch size n, step-size ε.

2: for t = 1, 2, . . . , T do

3: Update p(t).

4: Sample indices St according to p(t) with replacement.

5: Calculate g̃(t) using (4.3.3).

6: Update parameters θ(t+1) ← θ(t) − ε
2
· g̃(t) +Nd(0, εtId×d)

7: end for

8: return θ(T+1)

Algorithm 9: SGLD-CV with preferential subsampling (SGLD-CV-PS)

1: Input: initialise θ(1) close to the mode θ̂, gradients ∇fi
(
θ̂), weights p(1), batch

size n, step-size ε.

2: for t = 1, 2, . . . , T do

3: Update p(t).

4: Sample indices St according to p(t) with replacement.

5: Calculate g̃(t) using (4.3.7).

6: Update parameters θ(t+1) ← θ(t) − ε
2
· g̃(t) +Nd(0, εtId×d)

7: end for

8: return θ(T+1)

B.2 Model details

B.2.1 Bivariate Gaussian

Model specification

We want to simulate independent data from:

Xi|θ ∼ N2(θ,Σx) for i = 1, . . . , N.

It is assumed that that θ is unknown and Σx is known. The likelihood for a single

APPENDIX B. APPENDIX TO CHAPTER 4 121

observation is given by:

p(xi|θ) =
1√

(2π)2|Σx|
exp

(
− 1

2
(xi − θ)TΣ−1

x (xi − θ)
)
.

The likelihood function for N observations is

p(x|θ) =
N∏
i=1

1√
(2π)2|Σx|

exp

(
− 1

2
(xi − θ)TΣ−1

x (xi − θ)
)

∝ |Σx|−
N
2 exp

(
− 1

2

N∑
i=1

(xi − θ)TΣ−1
x (xi − θ)

)
.

The loglikelihood is a quadratic form in θ, and therefore the conjugate prior

distribution for θ is the multivariate normal distribution. The conjugate prior for θ is

set to be

θ ∼ N2(µ0,Λ0).

The conjugate posterior that we are ultimately trying to simulate from using SGLD

is known to be:

π(θ|x) ∝ exp

(
− 1

2
(θ − µ1)TΛ−1

1 (θ − µ1)

)
D
= N2(µ1,Λ1),

where

µ1 = (Λ−1
0 +NΣ−1

x)−1(Λ−1
0 µ0 +NΣ−1

x x̄),

and

Λ−1
1 = Λ−1

0 +NΣ−1
x .

Model gradient

For the prior,

log p(θ) = −1

2
(θ − µ0)TΛ−1

0 (θ − µ0)

Therefore,

∇f0(θ) = −∇ log p(θ) = Λ−1
0 (θ − µ0).

APPENDIX B. APPENDIX TO CHAPTER 4 122

We know that for i ∈ {1, . . . , N},

fi(θ) = − log p(xi|θ) =
1

2
(xi − θ)TΣ−1

x (xi − θ) + constant

Therefore,

∇fi(θ) = Σ−1
x (θ − xi) and ∇2fi(θ) = Σ−1

x .

Synthetic data

To generate the synthetic data, N data points are drawn from the model with θ =

0

1


and Σx =

1× 105 6× 104

6× 104 2× 105

. The hyperparameters of the prior are µ0 =

0

0

 and

Λ0 =

1× 103 0

0 1× 103

. Synthetic datasets of sizes N = 103 and N = 104 were

generated for use in Figures 4.5.1(a) and B.5.1(a) respectively.

B.2.2 Logistic regression

Model specification

Suppose we have data x1, . . . , xN of dimension d taking values in Rd, where each

xi = (1, xi1, . . . , xip)
T (d = p+ 1). Let us suppose that we also have the corresponding

response variables y1, . . . , yN taking values in {0, 1}. Then, a logistic regression model

with parameters θ = (β0, β1, . . . , βp) representing the coefficients βj for j = 1, . . . , p

and bias β0 will have likelihood

p(X, y|θ) =
N∏
i=1

[
1

1 + e−θT xi

]yi [
1− 1

1 + e−θT xi

]1−yi
.

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are

µ0 = (0, . . . , 0)T and Λ0 = diag(10, d).

Model gradient and Hessian

For the prior,

log p(θ) = −1

2
(θ − µ0)TΛ−1

0 (θ − µ0) = −1

2
θTΛ−1

0 θ.

APPENDIX B. APPENDIX TO CHAPTER 4 123

Therefore,

∇f0(θ) = − log p(θ) = Λ−1
0 θ.

We know that i ∈ {1, . . . , N}, the log-density

log p(yi|xi, θ) = yi log

(
1

1 + exp(−θTxi)

)
+ (1− yi) log

(
1− 1

1 + exp(−θTxi)

)
= yi log

(
1

1 + exp(−θTxi)

)
+ (1− yi) log

(
exp(−θTxi)

1 + exp(−θTxi)

)
= yi log

(
1

1 + exp(−θTxi)
· 1 + exp(−θTxi)

exp(−θTxi)

)
+ log

(
exp(−θTxi)

1 + exp(−θTxi)

)
= yi log(exp(θTxi)) + log

(
1

1 + exp(θTxi)

)
= yiθ

Txi − log(1 + exp(θTxi))

Therefore,

fi(θ) = − log p(yi|xi, θ) = log(1 + exp(θTxi))− yiθTxi,

and the corresponding gradient vector is

∇fi(θ) =
exp(θTxi)

1 + exp(θTxi)
· xi − yi · xi =

1

1 + exp(−θTxi)
· xi − yi · xi

The corresponding Hessian is

∇2fi(θ) =
exp(−θTxi)

(1 + exp(−θTxi))2
· xixTi .

We know that for the function h(a) = log(1 + exp(−a)), h′′(a) = exp(−a)
(1+exp(−a))2

≤ 1
4
.

Therefore,

∇2fi(θ) =
exp(−θTxi)

(1 + exp(−θTxi))2
· xixTi �

1

4
xix

T
i .

Using results from Durmus and Moulines (2019) and Dwivedi et al. (2018), we

know that fi(θ) is Li-continuous with Li = 1
4
λmax(xix

T
i).

APPENDIX B. APPENDIX TO CHAPTER 4 124

Synthetic data

We used the Python module sklearn to produce our synthetic classification data with

four features (d = 5). We have generated N training data points and Ntest = 0.5N

test data points.

Two types of synthetic data were generated:

1. Balanced classification data, where 50% of instances have yi = 1. Synthetic

datasets of sizes N = 103 and N = 104 were used for Figures 4.5.1(b) and 4.5.3

respectively.

2. Highly imbalanced classification data, where 95% of the instances have yi = 1.

Synthetic data of size N = 103 was used for Figure 4.5.1(c).

Real data

We used the covertype dataset (Blackard and Dean, 1998) for Figures 4.5.2(b)-(c)

and B.5.1(b). The covertype dataset contains 581,012 instances and 54 features. In

particular, we have used a transformed version of this dataset that is available via the

LIBSVM repository1. We split the covertype dataset into training and test sets with

75% and 25% of the instances respectively.

B.2.3 Linear regression

Model specification

Suppose we have data x1, . . . , xN of dimension d taking values in Rd, where each

xi = (1, xi1, . . . , xip)
T (d = p+ 1). Let us suppose that we also have the corresponding

response variables y1, . . . , yN taking values on the real line.

We define the following linear regression model,

yi = xTi θ + ηi, ηi ∼ N (0, 1)

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

APPENDIX B. APPENDIX TO CHAPTER 4 125

with parameters θ = (β0, β1, . . . , βp) representing the coefficients βj for j = 1, . . . , p

and bias β0. The regression model will thus have likelihood

p(X, y|θ) =
N∏
i=1

[
1√
2π

exp

(
− 1

2
(yi − xTi θ)2

)]
.

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are

µ0 = (0, . . . , 0)T and Λ0 = diag(10, d).

Model gradient and Hessian

log p(θ) = −1

2
(θ − µ0)TΛ−1

0 (θ − µ0) = −1

2
θTΛ−1

0 θ.

Therefore,

∇f0(θ) = −∇ log p(θ) = Λ−1
0 θ.

We know that i ∈ {1, . . . , N}, the log-density

log p(yi|xi, θ) = −1

2
(yi − xTi θ)2 − 1

2
log(2π).

Therefore,

fi(θ) = − log p(yi|xi, θ) =
1

2
(yi − xTi θ)2 +

1

2
log(2π)

and the corresponding gradient vector is

∇fi(θ) = −(yi − xTi θ) · xi.

The corresponding Hessian is

∇2fi(θ) = xix
T
i .

Using results from Dwivedi et al. (2018), we know that fi(θ) is Li-continuous with

Li = λmax(xix
T
i).

APPENDIX B. APPENDIX TO CHAPTER 4 126

Real data

We used the CASP2 dataset from the UCI Machine Learning repository for Fig-

ures 4.5.2(a) and B.5.2. The CASP dataset contains 45,730 instances and 9 fea-

tures.

B.3 Computational cost for the SGLD-CV-PS ap-

proximate subsampling weights

Recall that the optimal subsampling weights in (4.3.9) can be approximated by the

following scheme,

pi ∝
√

tr

(
∇2fi(θ̂) Σ̂∇2fi(θ̂)T

)
for i = 1, . . . , N.

Here, ∇2fi(·) is the Hessian matrix of fi(·) and Σ̂ is the covariance matrix of the

Gaussian approximation to the target posterior centred at the mode.

In practice, these weights should be evaluated as a one-off preprocessing step before

the SGLD-CV-PS chain is run. We now assess the total computational cost associated

with this preprocessing step.

� The Hessian of each fi(·) need to evaluated at the mode. For each log-density

function, this step costs O(d2).

� The covariance matrix of the Gaussian approximation of the posterior needs to

calculated once. This involves inverting the observed information matrix at a

cost of O(d3).

� The cost of multiplying three d× d square matrices is O(d3)

� The cost of calculating the trace of a d× d matrix is O(d).

� The cost of calculating the square root of a scalar is O(1).

2https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+

Tertiary+Structure

https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure

APPENDIX B. APPENDIX TO CHAPTER 4 127

Therefore, the cost of calculating these weights for all N data points is O(Nd3). As

such, we recognise that there will be limits to where the SGLD-CV-PS algorithm can

be used. The SGLD-CV-PS has been implemented with success on the covertype

dataset Blackard and Dean (1998) (with 54 features and 581,012 instances and 54

features) in Section 4.5.3. We recommend that this method is not implemented for

models with more than d > 60 parameters in practice.

B.4 Numerical experiment set-up

B.4.1 Step-size selection

SGLD-type algorithms do not mix well when the step-size is decreased to zero. It is

therefore common (and in practice easier) to implement SGLD with a fixed step-size,

as suggested by Vollmer et al. (2016). For Figures 4.5.2 - B.5.2, all samplers were run

with the same step-size (with ε ≈ 1
N

). This allowed us to control for discretisation

error and to independently assess the performance benefits offered by preferential

subsampling. We list the step-sizes used for each experiment in Table B.4.1 below.

Table B.4.1: Step-size selection.

FIGURE DATA SIZE OF DATA STEP-SIZE

B.5.1(a) synthetic bivariate Gaussian 10, 000 1× 10−4

B.5.1(b) synthetic balanced logistic regression 10, 000 1× 10−4

4.5.2(b)-(c), 4.5.3 covertype 581, 012 1× 10−6

4.5.2(a), B.5.2 CASP 45, 730 1× 10−5

B.4.2 Initialisation

Throughout our experiments, we were consistent in how we picked our initial start

values, θ(0), for SGLD and the ADAM optimiser. We sampled θ(0) from the prior for

APPENDIX B. APPENDIX TO CHAPTER 4 128

the bivariate Gaussian model. Whereas, we set θ(0) = 0 for the linear and logistic

regression models.

B.5 Additional experiments

B.5.1 Performance comparison of SGLD and SGLD-PS

0 100 200 300 400 500
Number of passes

0.5

1.0

1.5

2.0

2.5

KL
 d

iv
er

ge
nc

e SGLD 1%
SGLD-PS 1%
SGLD 5%
SGLD-PS 5%
SGLD 10%
SGLD-PS 10%

(a)

0 100 200 300 400 500
Number of passes

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

lo
g(

KS
D)

(b)

Figure B.5.1: Sampler performance of SGLD and SGLD-PS for 1%, 5% and 10%

subsample sizes over 500 passes through the data. (a) bivariate Gaussian model on

synthetic data of size N = 104 (y-axis: KL divergence); (b) logistic regression on the

covertype data (y-axis: KSD).

B.5.2 Performance of adaptive subsampling

APPENDIX B. APPENDIX TO CHAPTER 4 129

0 2000 4000 6000 8000 10000
Iterations

2

3

4

5

lo
g(

KS
D)

SGLD-CV 0.1%
SGLD-CV-PS 0.1%
ASGLD-CV
ASGLD-CV-PS

(a)

0 2000 4000 6000 8000 10000
Iterations

0

2

4

6

8

10

Nu
m

be
r o

f p
as

se
s

Fixed subsampling, 0.1%*N
ASGLD-CV subsampling

(b)

0 2000 4000 6000 8000 10000
Iterations

0

2

4

6

8

10

Nu
m

be
r o

f p
as

se
s

Fixed subsampling, 0.1%*N
ASGLD-CV-PS subsampling

(c)

Figure B.5.2: The linear regression model fitted on the CASP data. (a) KSD

comparison of SGLD-CV, SGLD-CV-PS, ASGLD-CV and ASGLD-CV-PS over 104

iterations; (b) the number of passes through the data achieved by fixed subsampling

versus ASGLD-CV; (c) the number of passes through the data achieved by fixed

subsampling versus ASGLD-CV-PS.

Bibliography

Raja Hafiz Affandi, Alex Kulesza, Emily B. Fox, and Ben Taskar. Nystrom Approx-

imation for Large-Scale Determinantal Processes. In Proceedings of the Sixteenth

International Conference on Artificial Intelligence and Statistics, volume 31 of

Proceedings of Machine Learning Research, pages 85–98. PMLR, 2013.

Sungjin Ahn, Babak Shahbaba, and Max Welling. Distributed Stochastic Gradient

MCMC. In Proceedings of the 31st International Conference on Machine Learning,

volume 32 of Proceedings of Machine Learning Research, pages 1044–1052. PMLR,

2014.

Christopher Aicher, Yi-An Ma, Nicholas J. Foti, and Emily B. Fox. Stochastic Gradient

MCMC for State Space Models. SIAM Journal on Mathematics of Data Science, 1

(3):555–587, 2019.

Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte Carlo Markov Chain

Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point

Processes. In 29th Annual Conference on Learning Theory, volume 49 of Proceedings

of Machine Learning Research, pages 103–115. PMLR, 2016.

Christophe Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient

Monte Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain

Monte Carlo methods. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 72(3):269–342, 05 2010.

130

BIBLIOGRAPHY 131

M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters

for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal

Processing, 50(2):174–188, 2002.

Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. Large-scale

Stochastic Sampling from the Probability Simplex. In Advances in Neural Informa-

tion Processing Systems, volume 31, 2018.

Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. Control variates

for stochastic gradient MCMC. Statistics and Computing, 29(3):599–615, 2019a.

Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. sgmcmc: An R

Package for Stochastic Gradient Markov Chain Monte Carlo. Journal of Statistical

Software, 91(3):1–27, 2019b.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo

methods for tall data. The Journal of Machine Learning Research, 18(1):1515–1557,

2017.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. Towards scaling up Markov

chain Monte carlo: an adaptive subsampling approach. In Proceedings of the 31st

International Conference on Machine Learning, volume 32 of Proceedings of Machine

Learning Research, pages 405–413. PMLR, 2014.

Joris Bierkens, Paul Fearnhead, and G. O. Roberts. The Zig-Zag process and super-

efficient sampling for Bayesian analysis of big data. The Annals of Statistics, 47(3):

1288 – 1320, 2019.

Jock A Blackard and Denis J Dean. Comparative Accuracies of Neural Networks

and Discriminant Analysis in Predicting Forest Cover Types from Cartographic

Variables. In Second Southern Forestry GIS Conference, pages 189–199, 1998.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31(3):307–327, 1986.

BIBLIOGRAPHY 132

Alexei Borodin and Eric M Rains. Eynard–Mehta theorem, Schur process, and their

Pfaffian analogs. Journal of Statistical Physics, 121:291–317, 2005.

Agnieszka Borowska and Ruth King. Semi-Complete Data Augmentation for Efficient

State Space Model Fitting. Journal of Computational and Graphical Statistics, 32

(1):19–35, 2023.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization Methods for Large-

Scale Machine Learning. SIAM Review, 60(2):223–311, 2018.

Alexandre Bouchard-Côté, Sebastian J Vollmer, and Arnaud Doucet. The Bouncy

Particle Sampler: A Nonreversible Rejection-Free Markov chain Monte Carlo Method.

Journal of the American Statistical Association, 113(522):855–867, 2018.

Daniele Calandriello, Michal Derezinski, and Michal Valko. Sampling from a k-DPP

without looking at all items. In Advances in Neural Information Processing Systems,

volume 33, pages 6889–6899, 2020.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models.

Springer Series in Statistics. Springer, 2005.

Ngai Hang Chan and Wilfredo Palma. State space modeling of long-memory processes.

The Annals of Statistics, 26(2):719–740, 1998.

Niladri S Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L Bartlett, and Michael I

Jordan. On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo.

In Proceedings of the 35th International Conference on Machine Learning, volume 80

of Proceedings of Machine Learning Research, pages 764–773. PMLR, 2018.

Changyou Chen, Nan Ding, and Lawrence Carin. On the Convergence of Stochastic

Gradient MCMC Algorithms with High-Order Integrators. In Advances in Neural

Information Processing Systems, volume 28, pages 2278–2286, 2015.

Changyou Chen, Wenlin Wang, Yizhe Zhang, Qinliang Su, and Lawrence Carin.

A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic

Gradient MCMC. Science China Information Sciences, 62(12101), 2019.

BIBLIOGRAPHY 133

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian

Monte Carlo. In Proceedings of the 31st International Conference on Machine

Learning, volume 32 of Proceedings of Machine Learning Research, pages 1683–1691.

PMLR, 2014.

Seokhyun Chung, Cheng-Hao Chou, Xiaozhu Fang, Raed Al Kontar, and Chinedum

Okwudire. A Multi-Stage Approach for Knowledge-Guided Predictions With Appli-

cation to Additive Manufacturing. IEEE Transactions on Automation Science and

Engineering, 19(3):1675–1687, 2022.

Maria Colombo, Alessio Figalli, and Yash Jhaveri. Lipschitz changes of variables

between perturbations of log-concave measures. Annali Scuola Normale Superiore -

Classe Di Scienze, 17(4):1491–1519, 2017.

Jeremie Coullon and Christopher Nemeth. SGMCMCJax: a lightweight JAX library

for stochastic gradient Markov chain Monte Carlo algorithms. Journal of Open

Source Software, 7(72):4113, 2022.

Dan Crisan and Joaqúın Mı́guez. Nested particle filters for online parameter estimation

in discrete-time state-space Markov models. Bernoulli, 24(4A):3039–3086, 2018.

Johan Dahlin, Fredrik Lindsten, and Thomas B Schön. Particle Metropolis–Hastings

using gradient and Hessian information. Statistics and Computing, 25(1):81–92,

2015.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and

log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 79(3):651–676, 2017.

Arnak S Dalalyan and Avetik G Karagulyan. User-friendly guarantees for the Langevin

Monte Carlo with inaccurate gradient. Stochastic Processes and their Applications,

129(12):5278–5311, 2019.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and

Hartmut Neven. Bayesian Sampling Using Stochastic Gradient Thermostats. In

BIBLIOGRAPHY 134

Advances in Neural Information Processing Systems, volume 27, pages 3203–3211,

2014.

A. Doucet, M. K. Pitt, G. Deligiannidis, and R. Kohn. Efficient implementation of

Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika,

102(2):295–313, 03 2015.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing:

Fifteen years later. Handbook of Nonlinear Filtering, 12(3):656–704, 2009.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An Introduction to Sequential

Monte Carlo methods. In Sequential Monte Carlo Methods in Practice, pages 3–14.

Springer, 2001.

Chao Du, Jun Zhu, and Bo Zhang. Learning Deep Generative Models with Doubly

Stochastic Gradient MCMC. IEEE Transactions on Neural Networks and Learning

Systems, 29(7):3084–3096, 2018.

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos,

Alexander J Smola, and Eric P Xing. Variance Reduction in Stochastic Gradi-

ent Langevin Dynamics. In Advances in Neural Information Processing Systems,

volume 29, 2016.

Vanja Dukic, Hedibert F Lopes, and Nicholas G Polson. Tracking Epidemics With

Google Flu Trends Data and a State-Space SEIR Model. Journal of the American

Statistical Association, 107(500):1410–1426, 2012.

Alain Durmus and Éric Moulines. Nonasymptotic convergence analysis for the un-

adjusted Langevin algorithm. The Annals of Applied Probability, 27(3):1551–1587,

2017.

Alain Durmus and Eric Moulines. High-dimensional Bayesian inference via the unad-

justed Langevin algorithm. Bernoulli, 25(4A):2854–2882, 2019.

BIBLIOGRAPHY 135

Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling:

Metropolis-Hastings algorithms are fast! In Proceedings of the 31st Conference On

Learning Theory, volume 75 of Proceedings of Machine Learning Research, pages

793–797. PMLR, 2018.

Paul Fearnhead and Hans R. Künsch. Particle Filters and Data Assimilation. Annual

Review of Statistics and Its Application, 5:421–449, 2018.

Paul Fearnhead, Joris Bierkens, Murray Pollock, and G. O. Roberts. Piecewise

Deterministic Markov Processes for Continuous-Time Monte Carlo. Statistical

Science, 33(3):386–412, 2018.

Tianfan Fu and Zhihua Zhang. CPSG-MCMC: Clustering-Based Preprocessing method

for Stochastic Gradient MCMC. In Proceedings of the 20th International Conference

on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning

Research, pages 841–850. PMLR, 2017.

Guillaume Gautier, Guillermo Polito, Rémi Bardenet, and Michal Valko. Dppy: DPP

Sampling with Python. Journal of Machine Learning Research, 20(180):1–7, 2019.

Andrew Gelman, John B Carlin, Donald B Rubin, Aki Vehtari, David B Dunson, and

Hal S Stern. Bayesian Data Analysis. CRC Press, third edition, 2013.

Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distributions, and

the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 6(6):721–741, 1984.

Charles J Geyer. Markov Chain Monte Carlo Lecture Notes. 2005. URL http:

//www.stat.umn.edu/geyer/f05/8931/n1998.pdf.

Walter R Gilks, Sylvia Richardson, and David J Spiegelhalter. Introducing Markov

chain Monte Carlo. In Markov chain Monte Carlo in Practice, pages 1–19. Chapman

& Hall, 1996.

http://www.stat.umn.edu/geyer/f05/8931/n1998.pdf
http://www.stat.umn.edu/geyer/f05/8931/n1998.pdf

BIBLIOGRAPHY 136

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 73(2):123–214, 2011.

Wenbo Gong, Yingzhen Li, and José Miguel Hernández-Lobato. Meta-Learning for

Stochastic Gradient MCMC. In International Conference on Learning Representa-

tions, 2019.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEE Proceedings F - Radar and Signal Process-

ing, 140(2):107–113, 1993.

Jackson Gorham and Lester Mackey. Measuring Sample Quality with Kernels. In

Proceedings of the 34th International Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages 1292–1301. PMLR, 2017.

Jackson Gorham, Anant Raj, and Lester Mackey. Stochastic Stein Discrepancies. In

Advances in Neural Information Processing Systems, volume 33, pages 17931–17942,

2020.

W.K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

Marcel Hirt and Petros Dellaportas. Scalable Bayesian Learning for State Space

Models using Variational Inference with SMC Samplers. In Proceedings of the

Twenty-Second International Conference on Artificial Intelligence and Statistics,

volume 89 of Proceedings of Machine Learning Research, pages 76–86. PMLR, 2019.

Zaijing Huang and Andrew Gelman. Sampling for Bayesian Computation with Large

Datasets. Technical report, Department of Statistics, Columbia University, 2005.

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for Scalable

Bayesian Logistic Regression. In Advances in Neural Information Processing Systems,

volume 29, 2016.

BIBLIOGRAPHY 137

Pierre E Jacob and Alexandre H Thiery. On non-negative unbiased estimators. The

Annals of Statistics, 43(2):769–784, 2015.

Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction Problems.

ASME Journal of Basic Engineering, 82:35–45, 1960.

N. Kantas, A. Doucet, S.S. Singh, and J.M. Maciejowski. An Overview of Sequential

Monte Carlo Methods for Parameter Estimation in General State-Space Models.

IFAC Proceedings Volumes, 42(10):774–785, 2009. 15th IFAC Symposium on System

Identification.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, Nicolas Chopin,

et al. On Particle Methods for Parameter Estimation in State-Space Models.

Statistical Science, 30(3):328–351, 2015.

Gregor Kastner. Dealing with Stochastic Volatility in Time Series Using the R Package

stochvol. Journal of Statistical Software, 69(5):1–30, 2016.

Tamás Kern and A Gyorgy. SVRG++ with Non-uniform Sampling. In Proceedings of

the 9th NIPS Workshop on Optimization for Machine Learning, 2016.

Rafail Khasminskii. Stochastic Stability of Differential Equations, volume 66 of

Stochastic Modelling and Applied Probability. Springer-Verlag Berlin, 2 edition, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

In Proceedings of the 3rd International Conference on Learning Representations

(ICLR), 2016.

Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear

State Space Models. Journal of Computational and Graphical Statistics, 5(1):1–25,

1996.

Genshiro Kitagawa and Seisho Sato. Monte Carlo Smoothing and Self-Organising

State-Space Model. In Sequential Monte Carlo Methods in Practice, pages 177–195.

Springer New York, 2001.

BIBLIOGRAPHY 138

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential

Equations. Springer, 2nd corr. print. edition, 1995.

Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in MCMC Land:

Cutting the Metropolis-Hastings budget. In Proceedings of the 31st International

Conference on Machine Learning, volume 32 of Proceedings of Machine Learning

Research, pages 181–189. PMLR, 2014.

Alex Kulesza and Ben Taskar. k-DPPs: Fixed-size determinantal point processes. In

Proceedings of the 28th International Conference on Machine Learning (ICML-11),

pages 1193–1200, 2011.

Alex Kulesza, Ben Taskar, et al. Determinantal Point Processes for Machine Learning.

Foundations and Trends in Machine Learning, 5(2–3):123–286, 2012.

Claire Launay, Bruno Galerne, and Agnès Desolneux. Exact Sampling of Determinantal

Point Processes without Eigendecomposition. Journal of Applied Probability, 57(4):

1198–1221, 2020.

Bai Li, Changyou Chen, Hao Liu, and Lawrence Carin. On Connecting Stochastic

Gradient MCMC and Differential Privacy. In Proceedings of the Twenty-Second

International Conference on Artificial Intelligence and Statistics, volume 89 of

Proceedings of Machine Learning Research, pages 557–566. PMLR, 2019.

Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast DPP sampling for Nystrom with

Application to Kernel Methods. In Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages

2061–2070. PMLR, 2016a.

Ruilin Li, Xin Wang, Hongyuan Zha, and Molei Tao. Improving Sampling Accuracy

of Stochastic Gradient MCMC Methods via Non-uniform Subsampling of Gradients.

Discrete and Continuous Dynamical Systems - S, 16(2):329–360, 2021.

Wenzhe Li, Sungjin Ahn, and Max Welling. Scalable MCMC for Mixed Membership

Stochastic Blockmodels. In Proceedings of the 19th International Conference on

BIBLIOGRAPHY 139

Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning

Research, pages 723–731. PMLR, 2016b.

Jun S. Liu and Rong Chen. Sequential Monte Carlo Methods for Dynamic Systems.

Journal of the American Statistical Association, 93(443):1032–1044, 1998.

Qiang Liu. Importance weighted consensus Monte Carlo for distributed Bayesian

inference. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial

Intelligence, pages 497–506. AUAI Press, 2016.

Qiang Liu, Jason Lee, and Michael Jordan. A Kernelized Stein Discrepancy for

Goodness-of-fit Tests. In Proceedings of the 33rd International Conference on

Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages

276–284. PMLR, 2016.

Rui Liu, Tianyi Wu, and Barzan Mozafari. Adam with Bandit Sampling for Deep

Learning. In Advances in Neural Information Processing Systems, volume 33, pages

5393–5404, 2020.

Samuel Livingstone and Giacomo Zanella. The Barker proposal: Combining robustness

and efficiency in gradient-based MCMC. Journal of the Royal Statistical Society.

Series B, Statistical Methodology, 84(2):496, 2022.

Yi-An Ma, Tianqi Chen, and Emily B. Fox. A Complete Recipe for Stochastic Gradient

MCMC. In Advances in Neural Information Processing Systems, volume 28, pages

2917–2925, 2015.

Yi-An Ma, Nicholas J Foti, and Emily B. Fox. Stochastic Gradient MCMC Methods

for Hidden Markov Models. In Proceedings of the 34th International Conference on

Machine Learning, pages 2265–2274. PMLR, 2017.

Yi-An Ma, Emily B. Fox, Tianqi Chen, and Lei Wu. Irreversible samplers from jump

and continuous Markov processes. Statistics and Computing, 29:177–202, 2019.

Odile Macchi. The coincidence approach to stochastic point processes. Advances in

Applied Probability, 7(1):83–122, 1975.

BIBLIOGRAPHY 140

Dougal Maclaurin and Ryan P Adams. Firefly Monte Carlo: exact MCMC with

subsets of data. In Proceedings of the Twenty-Fourth International Joint Conference

on Artificial Intelligence (IJCAI 2015), pages 4289–4295, 2015.

Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,

Andriy Mnih, Arnaud Doucet, and Yee Teh. Filtering Variational Objectives. In

Advances in Neural Information Processing Systems, volume 30, pages 6573–6583,

2017.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H

Teller, and Edward Teller. Equation of State Calculations by Fast Computing

Machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

Sean P Meyn and Richard L Tweedie. Stability of Markovian processes II: Continuous-

time processes and sampled chains. Advances in Applied Probability, 25(3):487–517,

1993a.

Sean P Meyn and Richard L Tweedie. Stability of Markovian processes iii: Foster–

Lyapunov criteria for continuous-time processes. Advances in Applied Probability,

25(3):518–548, 1993b.

S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag,

1993c.

Grigorios Mingas, Leonardo Bottolo, and Christos-Savvas Bouganis. Particle MCMC

algorithms and architectures for accelerating inference in state-space models. Inter-

national Journal of Approximate Reasoning, 83:413–433, 2017.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational

Sequential Monte Carlo. In Proceedings of the Twenty-First International Conference

on Artificial Intelligence and Statistics, pages 968–977. PMLR, 2018.

Tigran Nagapetyan, Andrew B Duncan, Leonard Hasenclever, Sebastian J Vollmer,

Lukasz Szpruch, and Konstantinos Zygalakis. The true cost of stochastic gradient

langevin dynamics. arXiv preprint arXiv:1706.02692, 2017.

BIBLIOGRAPHY 141

Radford M Neal. MCMC using Hamiltonian Dynamics. In Handbook of Markov Chain

Monte Carlo, chapter 5. Chapman and Hall/CRC, 2011.

Willie Neiswanger, Chong Wang, and Eric P Xing. Asymptotically exact, embarrass-

ingly parallel MCMC. In Proceedings of the Thirtieth Conference on Uncertainty in

Artificial Intelligence, pages 623–632. AUAI Press, 2014.

Christopher Nemeth and Paul Fearnhead. Stochastic gradient Markov chain Monte

Carlo. Journal of the American Statistical Association, 116(533):433–450, 2021.

Christopher Nemeth and Chris Sherlock. Merging MCMC Subposteriors through

Gaussian-Process Approximations. Bayesian Analysis, 13(2):507 – 530, 2018.

Christopher Nemeth, Paul Fearnhead, and Lyudmila Mihaylova. Particle Approxima-

tions of the Score and Observed Information Matrix for Parameter Estimation in

State–Space Models With Linear Computational Cost. Journal of Computational

and Graphical Statistics, 25(4):1138–1157, 2016.

Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications.

Springer, 5th edition, 2003.

Jimmy Olsson and Johan Westerborn. Efficient particle-based online smoothing in

general hidden Markov models: The PaRIS algorithm. Bernoulli, 23(3):1951–1996,

2017.

Rihui Ou, Alexander L Young, and David B Dunson. Clustering-Enhanced Stochastic

Gradient MCMC for Hidden Markov Models with Rare States. arXiv preprint

arXiv:1810.13431, 2018.

Giorgio Parisi. Correlation functions and computer simulations. Nuclear Physics B,

180(3):378–384, 1981.

Sam Patterson and Yee Whye Teh. Stochastic Gradient Riemannian Langevin dynamics

on the Probability Simplex. In Advances in Neural Information Processing Systems,

volume 26, pages 3102–3110, 2013.

BIBLIOGRAPHY 142

Taylor L Patti, Omar Shehab, Khadijeh Najafi, and Susanne F Yelin. Markov chain

Monte Carlo enhanced variational quantum algorithms. Quantum Science and

Technology, 8(1):015019, 2022.

George Poyiadjis, Arnaud Doucet, and Sumeetpal S Singh. Particle approximations of

the score and observed information matrix in state space models with application

to parameter estimation. Biometrika, 98(1):65–80, 2011.

Matias Quiroz, Mattias Villani, Robert Kohn, Minh-Ngoc Tran, and Khue-Dung Dang.

Subsampling MCMC: An introduction for the survey statistician. Sankhya A, 80:

33–69, 2018.

Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding Up

MCMC by Efficient Data Subsampling. Journal of the American Statistical Associ-

ation, 114(526):831–843, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals

of Mathematical Statistics, pages 400–407, 1951.

Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer

Science & Business Media, 2nd edition, 2004.

G. O. Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations to

Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 60(1):255–268, 1998.

G. O. Roberts and Jeffrey S Rosenthal. General state space Markov chains and MCMC

algorithms. Probability Surveys, 1:20–71, 2004.

G. O. Roberts and Richard L Tweedie. Exponential convergence of Langevin distribu-

tions and their discrete approximations. Bernoulli, pages 341–363, 1996.

G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling

of random walk Metropolis algorithms. The Annals of Applied Probability, 7(1):

110–120, 02 1997.

BIBLIOGRAPHY 143

Farnood Salehi, L Elisa Celis, and Patrick Thiran. Stochastic Optimization with

Bandit Sampling. arXiv preprint arXiv:1708.02544, 2017.

Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: A review.

Statistics Surveys, 8:45–114, 2014.

Mark Schmidt, Reza Babanezhad, Mohamed Ahmed, Aaron Defazio, Ann Clifton,

and Anoop Sarkar. Non-Uniform Stochastic Average Gradient Method for Training

Conditional Random Fields. In Proceedings of the Eighteenth International Confer-

ence on Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine

Learning Research, pages 819–828. PMLR, 2015.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing Finite Sums with the

Stochastic Average Gradient. Mathematical Programming, 162:83–112, 2017.

Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I

George, and Robert E McCulloch. Bayes and Big Data: The Consensus Monte

Carlo algorithm. International Journal of Management Science and Engineering

Management, 11(2):78–88, 2016.

Daniel K. Sewell and Yuguo Chen. Latent Space Models for Dynamic Networks.

Journal of the American Statistical Association, 110(512):1646–1657, 2015.

Neil Shephard. Stochastic Volatility: Selected Readings. Oxford University Press, 2005.

Martin A. Tanner and Wing Hung Wong. The Calculation of Posterior Distributions

by Data Augmentation. Journal of the American Statistical Association, 82(398):

528–540, 1987.

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and

Fluctuations For Stochastic Gradient Langevin Dynamics. Journal of Machine

Learning Research, 17(7):1–33, 2016.

David A van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of

Computational and Graphical Statistics, 10(1):1–50, 2001.

BIBLIOGRAPHY 144

Cédric Villani. Optimal Transport: Old and New, volume 338 of A Series of Compre-

hensive Studies in Mathematics. Springer Science & Business Media, first edition,

2008.

Sebastian J. Vollmer, Konstantinos C. Zygalakis, and Yee Whye Teh. Exploration of

the (Non-)Asymptotic Bias and Variance of Stochastic Gradient Langevin Dynamics.

Journal of Machine Learning Research, 17(159):1–48, 2016.

John von Neumann. Various Techniques Used in Connection With Random Digits.

Applied Math Series, 12(36-38):3, 1951.

Callum Vyner, Christopher Nemeth, and Chris Sherlock. SwISS: A scalable Markov

chain Monte Carlo divide-and-conquer strategy. Stat, 12(1):e523, 2022.

Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin

Dynamics. In Proceedings of the 28th International Conference on Machine Learning,

pages 681–688, 2011.

Sinan Yıldırım, Christophe Andrieu, and Arnaud Doucet. Scalable Monte Carlo

inference for state-space models. arXiv preprint arXiv:1809.02527, 2018.

Cheng Zhang, Hedvig Kjellstrom, and Stephan Mandt. Determinantal point processes

for mini-batch diversification. In Conference on Uncertainty in Artificial Intelligence

(UAI), 2017a.

Cheng Zhang, Cengiz Öztireli, and Stephan Mandt. Diversified Mini-Batch Sampling

using Repulsive Point Processes. In Symposium on Advances in Approximate

Bayesian Inference, 2017b.

Peilin Zhao and Tong Zhang. Accelerating Minibatch Stochastic Gradient Descent

using Stratified Sampling. arXiv preprint arXiv:1405.3080, 2014a.

Peilin Zhao and Tong Zhang. Stochastic Optimization with Importance Sampling.

arXiv preprint arXiv:1401.2753, 2014b.

BIBLIOGRAPHY 145

Peilin Zhao and Tong Zhang. Stochastic Optimization with Importance Sampling for

Regularized Loss Minimization. In Proceedings of the 32nd International Conference

on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages

1–9. PMLR, 2015.

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Motivation
	Thesis Outline

	Monte Carlo methods
	Monte Carlo
	Markov chain Monte Carlo
	Markov chain preliminaries
	Metropolis-Hastings algorithm
	Scaling up MCMC to tall data

	Stochastic gradient MCMC
	Itô processes and MCMC
	Stochastic gradient Langevin dynamics
	Extensions of SGLD

	Bayesian parameter estimation for nonlinear state space models

	Stochastic Gradient MCMC for Nonlinear State Space Models
	Introduction
	Background
	Nonlinear State Space Models for Time Series
	Stochastic Gradient MCMC

	Method
	Buffered Stochastic Gradient Estimates for Nonlinear SSMs
	SGMCMC Algorithm

	Error Analysis
	Error of Biased SGLD's Finite Sample Averages
	Gradient Bias and MSE Bounds
	Buffering Error Bound for Nonlinear SSMs

	Experiments
	Models
	Stochastic Gradient Bias
	SGLD Experiments

	Discussion
	Error Analysis Proofs
	Proof of Theorem 3.4.1
	Proof of Theorem 3.4.2
	Proof of Theorem 3.4.3
	Bounds for Specific Models

	Preferential Subsampling for Stochastic Gradient Langevin Dynamics
	Introduction
	Stochastic gradient MCMC
	The Langevin diffusion
	Stochastic gradient Langevin dynamics
	Control variates for SGLD

	Preferential data subsampling
	SGLD with preferential subsampling
	SGLD-CV with preferential subsampling
	Adaptive subsampling

	Related work
	Numerical experiments
	Models
	Metrics
	Numerical results

	Conclusions
	Results from Section 4.3
	Full derivation of the pseudo-variance
	Proof of Lemma 4.3.1
	Proof of Lemma 4.3.2
	Deriving approximate weights for the control variates gradient
	Proof of Lemma 4.3.3

	A Feasibility Study: Utilising Determinantal Point Processes for Subsampling
	Overview
	Determinantal point processes
	Proposed approach
	Preprocessing
	DPP-SGLD
	Worked example
	Discussion

	Conclusions
	Discussion
	Future work

	Appendix to Chapter 3
	Model details
	LGSSM
	SVM
	GARCH Model

	Additional experiments
	Gradient Bias with PaRIS
	Gradient Bias Varying Parameters
	SGLD on Synthetic Data
	SGLD on Exchange Rate

	Appendix to Chapter 4
	Pseudocode for algorithms
	Model details
	Bivariate Gaussian
	Logistic regression
	Linear regression

	Computational cost for the SGLD-CV-PS approximate subsampling weights
	Numerical experiment set-up
	Step-size selection
	Initialisation

	Additional experiments
	Performance comparison of SGLD and SGLD-PS
	Performance of adaptive subsampling

	Bibliography

