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By Peter Young and Arun Chotai

I
n the environmental and agricultural sciences, as in many ar-
eas of engineering and science, mathematical models are nor-
mally formulated as deterministic differential (or equivalent
discrete-time) equations. Most often, the structure of these
equations is defined by the scientist or engineer in a form that
is perceived to be appropriate according to the physical na-

ture of the system and the current scientific paradigms in the area of
study. Most of the “simulation” models that emerge from this ap-
proach are very large, with many unknown parameters. Conse-
quently, they are difficult, if not impossible, to identify, estimate, and
validate in rigorous statistical terms because of problems associated
with over-parametrization and the lack of experimental or monitored
data. Unlike the situation in engineering, however, natural environ-
mental systems, and many systems in agriculture, are not normally
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manmade. As a result, their internal physical, biological,
and ecological mechanisms are often poorly understood,
and planned experiments that might lead to improvements
in such understanding are either difficult or, in the case of
environmental systems, even impossible to undertake.

Increasingly in recent years, however, the poorly defined
nature of many environmental and agricultural systems has
been recognized. It is now becoming accepted that a new
modeling philosophy and associated methodology is re-
quired that acknowledges the need to quantify the uncer-
tainty associated with the model (e.g., [1]-[3]). The Centre for
Research on Environmental Systems and Statistics (CRES) at
Lancaster University has been prominent in this area of re-
search. This article outlines the major aspects of our ap-
proach to stochastic modeling, as well as briefly describing
three studies that demonstrate the practical utility of this ap-
proach. In particular, the article shows how parametrically
efficient (parsimonious), low-order stochastic models can be
produced that reflect the dominant modal characteristics of
the system and can be interpreted in physically meaningful
terms. Within the present context, the most important aspect
of these data-based mechanistic (DBM) models is that they
provide an appropriate basis for advanced nonstationary or
nonlinear signal processing, adaptive forecasting, and
multivariable control system design.

Unlike data-based “black-box” models, DBM models are
required to have a mechanistic interpretation. Indeed, they
are not deemed truly credible in scientific terms unless such
an interpretation proves possible. But, unlike the situation
with “grey-box” models, such a physically meaningful expla-
nation is not imposed as a hypothesis prior to modeling.
Rather, it emerges from an inductive modeling procedure
only after the model structure has first been identified parsi-
moniously from a generic class of models with wide applica-
tion potential. In this manner, prior scientific prejudice
about the nature and complexity of the model is avoided,
and the resulting DBM model will normally have a structure
and parametrization that is appropriate to the information
content of the data. In this article, the generic class of mod-
els used in DBM modeling comprises stochastic linear and
nonlinear differential or difference equations, or their trans-
fer function equivalents.

DBM modeling methods were developed originally for
the analysis of measured time-series data, particularly in re-
lation to the design of signal processing, forecasting, and au-
tomatic control systems. In the early stages of modeling,
when observational data are either scarce or not available,
however, the same methodological tools can also be used to
obtain reduced-order versions of the large simulation mod-
els. The importance of reduced-order models that reflect
the dominant modes of system behavior is being widely rec-
ognized in many areas of application within the environmen-
tal and agricultural sciences. For example, such models
have been used in the simplification of large simulation
models used in climate research (e.g., [4]) and in optimal

control system design (e.g., [5]). An example of the DBM ap-
proach to model reduction is the modeling and control of
the microclimate in a large horticultural greenhouse [6]
where the reduced-order control model is obtained from a
much larger nonlinear simulation model. A similar DBM ap-
proach has been used to obtain linear, reduced-order ver-
sions of the topically important “global carbon cycle”
models [6], [7] used in the studies of the International Panel
on Climate Change (IPCC).

This article outlines the main aspects of DBM modeling,
as well as the associated methods of signal processing,
adaptive forecasting, and multivariable control that exploit
such models. This overall generic approach appears to have
wide application potential, and its practical utility is illus-
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AMV Active mixing volume

AR Autoregressive (model)

ARC Adaptive radar calibration (system)

RT
2 Coefficient of determination based on

simulation response error

CRES Centre for Research on Environmental
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CV Control volume

DBM Data-based mechanistic

DMA Dominant mode analysis

FIS Fixed-interval smoothing

GPC Generalized predictive control

GSA Generalized sensitivity analysis

HMC Hybrid-metric-conceptual (model)

IPCC International Panel on Climate Change

KF Kalman filter

LQ Linear quadratic

LQG Linear quadratic Gaussian

MFD Matrix fraction description

MCS Monte Carlo simulation

NMSS Nonminimal state space

PDF Probability distribution function

PIP Proportional-integral-plus (controller)

RLS Recursive least-squares (method)

RIV Refined instrumental variable (method)

SRI Silsoe Research Institute

SDP State-dependent parameter (model)

SVF State variable feedback (control)
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TVP Time-variable parameter (model)
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trated by three practical examples. These range from the
model reduction and control application mentioned above
through the modeling and control of forced ventilation sys-
tems in agricultural buildings to the design of adaptive flood
forecasting and warning systems.

Methodological Background
The methods used in this article have been developed over
the past 20 years, and they cover four main areas: DBM
methods for modeling linear and nonlinear stochastic sys-
tems; dominant mode analysis (DMA) leading to the com-
bined linearization and simplification of large simulation
models; unobserved component (UC) models and their use
in the recursive estimation, forecasting, and smoothing of
nonstationary time series; and nonminimal state space
(NMSS) methods of control system design. All of these meth-
ods have been described in detail elsewhere, so they are
outlined only briefly in the following subsections.

Data-Based Mechanistic Modeling
Previous publications (e.g., [6]-[10]) illustrate the evolution
of the DBM philosophy and its methodological underpin-
ning. This methodological basis is heavily dependent on the
exploitation of recursive estimation in all its forms. These
include the traditional application to online and offline pa-
rameter estimation using recursive least-squares (RLS) and
optimal refined instrumental variable (RIV) algorithms; the
design of adaptive forecasting systems using the Kalman fil-
ter (KF) algorithm; the use of recursive fixed-interval
smoothing (FIS) for more statistically efficient, offline
time-variable parameter (TVP) estimation for use in signal
extraction; and the exploitation of FIS combined with other
procedures for state-dependent parameter (SDP) estima-
tion  and  the nonparametric/parametric  identification  of
nonlinear stochastic systems.

The three major phases in the DBM modeling strategy
are as follows:

• Stochastic Simulation Modeling and Sensitivity Analysis
(e.g., [2], [3], [6], [8], and the references therein). In
the initial phases of modeling, observational data may
well be scarce, so any major modeling effort will have
to be centered on simulation modeling, usually based
initially on largely deterministic concepts such as dy-
namic mass and energy conservation. Recognizing
the inherent uncertainty in many environmental and
agricultural systems, however, these deterministic
simulation equations can be converted into an alter-
native stochastic form. Here, it is assumed that the as-
sociated parameters and inputs can be represented in
some suitable stochastic form such as a probability
distribution function (PDF) for the parameters and
time-series models for the inputs. The subsequent
stochastic analysis then exploits Monte Carlo simula-
tion (MCS) in three ways: first, to explore the propaga-
tion of uncertainty in the resulting stochastic model;

second, as a mechanism for generalized sensitivity
analysis (GSA) to identify the most important parame-
ters leading to a specified model behavior; and third,
the use of MCS in stochastic optimization.

• Dominant Mode Analysis and Simulation Model Simpli-
fication (e.g., [6], [7], and the references therein). The
initial exploration of the simulation model in stochas-
tic terms can reveal the relative importance of differ-
ent parts of the model in explaining the dominant
behavioral mechanisms. This understanding of the
model is further enhanced by employing a novel
method of combined statistical linearization and
model order reduction. This is applied to time-series
data obtained from planned experimentation, not on
the system itself, but on the simulation model that be-
comes a surrogate for the real system. Such DMA is ex-
ploited to develop low-order, dominant mode
approximations of the simulation model; approxima-
tions that are often able to explain its dynamic re-
sponse characteristics to a remarkably accurate
degree (e.g., coefficients of determination > 0.999; i.e.,
greater than 99.9% of the high-order model output is
explained by the low-order model). Conveniently, the
statistical methods used for such linearization and or-
der reduction exercises are the same as those used for
the next phase in the modeling process.

• DBM Modeling from Real Data (see previous refer-
ences). Time-series data form the basis for stochastic
DBM modeling. The DBM models characterize those
dominant  modes of  the  system  behavior  that  are
clearly identifiable from the time-series data, and un-
like simulation models, the efficacy of the DBM mod-
els is heavily dependent on the quality of these data.
The models derived in this form normally constitute
the main vehicles for the subsequent design of fore-
casting and automatic control systems. In the case of
constant-parameter models, the methodological
tools used in this final stage of DBM analysis are linear,
constant parameter, transfer function (TF) identifica-
tion and estimation tools, such as optimal instrumen-
tal variable methods (SRIV/RIV; e.g., [11] and the
references therein). These can be compared with the
alternative and better known methods, such as those
in the MATLAB Identification Toolbox, which are de-
signed specifically for backward shift operator mod-
els and, in most cases, require concurrent estimation
of noise model parameters (note that the RIV/SRIV al-
gorithms are different from the IV/IV4 options in the
Identification Toolbox). In contrast, RIV/SRIV algo-
rithms are available for the estimation of TF models
in all the major operators (backward shift, time de-
rivative, and delta) and do not require concurrent es-
timation of a noise model. If the system under
investigation is nonstationary, however, then the con-
stant-parameter estimation is replaced by TVP esti-

16 IEEE Control Systems Magazine October  2001

Authorized licensed use limited to: Lancaster University Library. Downloaded on January 22, 2009 at 06:48 from IEEE Xplore.  Restrictions apply.



mation [12]-[14], whereas if the system is heavily
nonlinear, the SDP estimation allows for identification
of the nonlinear model structure prior to final nonlin-
ear parametric estimation (see [7], [9], [14]). This lat-
ter approach provides an alternative to, or a
reinforcement of, other approaches to nonlinear mod-
eling, such as neural network and neuro-fuzzy model-
ing (e.g., [15]). It has the advantage that the resulting
models are normally much less complex, of consider-
ably lower order, and more easily interpretable in
mechanistic terms.

DBM modeling is obviously very different from physi-
cally based simulation modeling, but it is often confused
with grey-box modeling. Grey-box modeling follows the tra-
ditional hypothetico-deductive approach. Here the hypoth-
esis is normally in the form of a much-simplified model of
the physical system under study, and deduction is based on
estimating the parameters that characterize this assumed
model structure from measured data. In contrast, DBM mod-
eling is inductive and commences with few prior percep-
tions of the model form, except that it is a member of a
suitable, generic class of models (normally linear/nonlinear
differential equations or their discrete-time equivalents).
Methods of statistical model structure identification and pa-
rameter estimation are then utilized to produce a low-di-
mensional, black-box model, within this generic class of
models, that explains the data unambiguously in a statisti-
cally efficient manner. Only then is the question of the un-
derlying, mechanistic interpretation of the model
addressed, as illustrated by the examples discussed later. In
this manner, a minimally parametrized and statistically
well-defined model is obtained, and the dangers of imposing
too much confidence in prior assumptions about the physi-
cal nature of the system are avoided.

Signal Processing, Forecasting,
and Automatic Control
The DBM methods were developed primarily for modeling
systems from normal observational time-series data ob-
tained from monitoring exercises (or planned experimen-
tation, if possible) carried out on the real system. Often,
such time series require some form of preprocessing, and
this is accomplished using methods of nonstationary
time-series analysis based on recursive fixed-interval
smoothing (e.g., [11], [12], and the references therein).
These powerful statistical tools allow for interpolation
over gaps in the time series; the detection of outliers; “sig-
nal extraction,” including the estimation and removal of
periodic components (e.g., seasonal adjustment); and
time-frequency analysis.

The DBM models are also in a form appropriate for
model-based forecasting and control system design. Of
course, any available methods can be used for these appli-
cations. At Lancaster, however, the stochastic UC model-
ing approach based on TVP estimation provides the main

vehicle for adaptive forecasting ([12], [13], and the
references therein). Model-based automatic control sys-
tem design is formulated within the NMSS setting, normally
resulting in the multivariable proportional-integral-plus
(PIP) control algorithm (see [16] and the references
therein). The NMSS is the most natural state-space defini-
tion for discrete-time transfer function models, and the PIP
controller provides a natural multivariable extension of
the conventional PI and PID controllers. In addition to pro-
portional and integral action, it includes additional for-
ward path and feedback filters that allow for NMSS state
feedback, without the need for state reconstruction, thus
enhancing robustness and closed-loop performance. Of
course, the PIP controller is just one specific outcome of
the NMSS design concept. This concept is not only attrac-
tive in its own right, but control algorithms that derive
from it are very general in form and thus able to mimic
other well-known design procedures, such as minimal
state linear quadratic Gaussian (LQG), generalized predic-
tive control (GPC), and Smith predictor control for time-de-
lay systems (see [17] and the references therein).

It should be noted that many of the time-series analysis
and modeling procedures mentioned above and used in
the examples described below are contained in the
MATLAB CAPTAIN time-series analysis and forecasting
toolbox, currently in the final stages of beta testing (see
http://www.es.lancs.ac.uk/cres/captain/).

Modeling and Control of a
Greenhouse Microclimate
The literature on modeling of the microclimate in green-
houses is very large, with models ranging from high-order,
nonlinear simulation models (e.g., [18]) through much sim-
pler but still physically meaningful data-based models (e.g.,
[19]) to purely black-box models (e.g., [5]). One important
aspect of this research has been the development and use of
models for the control of greenhouse microclimates (e.g.,
[20] and the references therein). This example falls into the
latter category and is concerned with the modeling and au-
tomatic control of the microclimate in the large Venlo horti-
cultural greenhouse at the Silsoe Research Institute (SRI) in
Bedford, U.K.

Prior to planned experimentation on the actual green-
house at SRI, the control model was obtained by combined
linearization and order reduction analysis [6], [7], [21]. This
was applied to the high-order, nonlinear simulation model
shown in Fig. 1, originally derived by scientists at SRI [18] and
converted to Simulink form at Lancaster. When planned ex-
perimentation became possible, these earlier control models
were replaced by the equivalent TF models obtained by iden-
tification and estimation applied to the experimental in-
put-output data. In the final stages of the study, the control
models were used to design automatic climate control sys-
tems that were first evaluated on the full, nonlinear simula-
tion model, prior to implementation in the greenhouse.
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To simplify the model shown in Fig. 1, it was perturbed
about a number of different operating points by suitably de-
signed input functions. These were applied to each control
input in turn (i.e., the fractional valve aperture of the heat-
ing boileru t1, , the input to the mist spraying systemu t2, , and
the CO2 enrichment input u t3, ), and they produced climate
perturbations defined by the internal air temperature y t1, in
°C, the percentage relative humidity y t2, , and the CO2 con-
centration y t3, in ppm. The input-output perturbational data
set obtained in this manner was then used as the basis for
the identification and estimation of reduced-order, dis-
crete-time linear models that were directly suitable for
model-based PIP system design [21].

At the most important operating condition, the esti-
mated reduced-order model for y t t t t

Ty y y= [ ], , ,1 2 3 , in re-
sponse to u t t t t

Tu u u= [ ], , ,1 2 3 , takes the form of the
following discrete-time, transfer function matrix model:
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Figure 1. Simulink simulation model of the microclimate in the SRI Venlo greenhouse.
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This model is well identified, and the parameter estimates
are statistically well defined. As might be expected, the ma-
jor coupling is between the temperature and relative humid-
ity, with CO2 being almost independent of these variables.
Despite its simplicity, the model explains the high-order
nonlinear model response very well, with coefficients of de-
termination RT

2 0 99> . (i.e., over 99% of the high-order model
response explained by the low-order model). Clearly, the
dominant modal behavior of the simulation model at this
operating condition, which is so important for subsequent
control system design, has been captured very well. More-
over, this model is much simpler than might be expected on
the basis of the full nonlinear model equations.

From the DBM standpoint, it is important that the re-
duced-order model should make good physical sense, and,
as expected from mass and energy transfer considerations,
the temperature and humidity dynamics are highly coupled.
Indeed, it is possible to associate the model (1) with the dif-
ferential equations of mass and energy transfer for this sys-
tem (much simplified versions of the equations used to
derive the high-order model in Fig. 1). Since the model is es-
timated in discrete time, however, this relationship is not
too transparent. Consequently, it is better to delay our illus-
tration of such a mechanistic interpretation to the next sec-
tion, where a related model is estimated directly in
continuous-time terms and the physical interpretation is
much more obvious.

The high-order simulation model provided a very use-
ful vehicle for initial PIP control system design and evalu-
ation exercises [21], where it functioned as a valuable
surrogate for the real system before experimentation
was possible. Furthermore, the fact that the reduced-or-
der models were structurally identical to those identified
later from the real data meant that the initial PIP control-
ler designs were also structurally similar. Note that the
inherent stochastic nature of the DBM models is most im-
portant in the PIP control system design process, since it
allows for evaluation of the controller’s robustness to
uncertainty using stochastic simulations. These can be
either single simulations with stochastic inputs or MCS
used to assess the robustness of the control system to
uncertainty in the model parameters (e.g., [17] and the
references therein).

NMSS control system design is straightforward and flexi-
ble in this example [21]. Once the reduced-order TF matrix
model (1) has been obtained, it is converted straightfor-
wardly to the left matrix fraction description (MFD), and
thence to the following NMSS form:

x Fx Gu Dy y Hxt t t d t t t+ += + + =1 1, (2)

where F and u t are defined as at the bottom of the next page
and
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z z zt t t
T

1 2 3, , , ] is the NMSS vector; u u u ut t t t
T= [ ], , ,1 2 3 is the

control input vector; and y d t d t d t d t
Ty y y, , , ,[ ]= 1 2 3 is the com-

mand input vector (the user-defined levels of the three cli-
mate variables). The variables z ii t, , , ,=1 2 3 are
integral-of-error states, introduced to ensure type 1 servo-
mechanism performance (unity gain to the command inputs
and steady-state decoupling: i.e., in the steady state, the
controlled variables all reach their demand levels without
any effect on the steady-state levels of the other output vari-
ables).

PIP control system designs based on this NMSS model (2)
provide the basis for any SVF design procedures, such as op-
timal linear-quadratic (LQ), pole assignment, or risk-sensi-
tive/robust design. In the simplest LQ case, for example,
quadratic cost function weighting matrices
Q = diag[ ]111111111 100 5 25 and R = diag [ . . ]1 01 01
produce the SVF control law below (equation u t at the bottom
of the next page), where the off-diagonals of the last 3 × 3
block in the matrix have been constrained to zero consis-
tent with the steady-state decoupling requirement. Note
that the pair [ , ]F G is stabilizable by the nonminimal state
feedback, and, in addition, we can always find a matrix E
such that the Cholesky decomposition EE QT = , ensuring
that the pair [ , ]F E is observable [22]. Consequently, this
PIP-controlled system will be stable and achieve the desired
LQ optimality.

The results obtained when this controller is applied to
the model are shown by the fine lines in Fig. 2. The re-
sponses show some coupling between the controlled vari-
ables, with a 10% change in humidity resulting in a
transient error of 1°C in the internal air temperature. Note
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that the relative values of the cost function weighting ma-
trix elements associated with the three integral-of-error
states have been adjusted here to ensure that the rise

times of each channel have the required control character-
istics, while minimizing harsh actuator movements that
could cause wear.

The controller designed in the above manner was vali-
dated in practical terms over a three-month implementation
period during the 1993-1994 growing season with a tomato
crop in the greenhouse. Fig. 3 shows the control perfor-
mance of each climate variable over the entire validation pe-
riod. Each graph shows the percentage of the validation
period that a control variable was inside a certain control
limit. For example, air temperature was less than 1°C away
from the set point for 98% of the validation period. This per-
formance easily meets the requirements of the growers.

Finally, it should be noted that the results shown in Figs. 2
and 3 were obtained with the simple, constant-gain,
multivariable controller defined above, and some improve-
ments in performance would be possible if more complex

control systems were used. For exam-
ple, further decoupling of the tempera-
ture and humidity control can be
accomplished by exploiting a special
form of multiobjective optimization de-
veloped at Lancaster (e.g., [16]). Here,
the Cholesky factors of the LQ cost
function weighting function matrices
are optimized so that off-diagonal
weightings are introduced into the cost
function to ensure satisfactory de-
coupling (or other multiobjective re-
quirements).

The responses obtained with such
an optimized PIP controller are shown

as the thick lines in Fig. 2; clearly, almost perfect decoupling
has been achieved. Other possible improvements include a
stability-guaranteed, neuro-fuzzy gain scheduling system
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Figure 3. Long-term controller performance for the SRI Venlo greenhouse; presented as
percentage of total evaluation period (% time) against absolute control error in relation to
the set point (control limit).
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(e.g., [23]) or a fully adaptive PIP control system (e.g., [24]).
The latter would be straightforward to implement, since the
recursive estimation algorithms used in the modeling stage
of the design can be easily implemented online in real time.
However, the performance shown in Fig. 3 is perfectly ac-
ceptable for most practical purposes, and such added com-
plexity is not warranted in this case.

Modeling and Control
of Forced Ventilation Systems
This example is related to the previous one and concerns the
analysis of data from planned experiments in a large instru-
mented chamber in the Laboratory for Agricultural Buildings
Research at the Katholieke Universiteit Leuven (for details,
see [25]). This chamber, shown in Fig. 4, has a volume of 9 m3

and has been designed to represent a scale model of a live-
stock building or greenhouse for use in experimental re-
search on forced ventilation and heating in agricultural
buildings. The two variable inputs, ventilation rate (120-300
m3/h) and heating element input (0-400 W), determine the
dominant airflow pattern within the chamber. An envelope
chamber or “buffer zone” is constructed around the test
room to minimize disturbance of the airflow by heat conduc-
tion from the laboratory. A series of aluminum conductor
heat sinks and steam generation from a water reservoir pro-
vide the internal heat and moisture production to simulate
animal occupants. To gain information about the distribution
of mass and energy in a quantitative manner, 36 temperature
sensors and 24 humidity sensors are positioned in a three-di-
mensional (3-D) array within the chamber.

The agricultural engineering literature reports a great deal
of research on the modeling of ventilated air spaces, much of
it based on deterministic simulation models. More recent
data-based modeling has been stimulated by the control vol-
ume (CV) concept of Barber and Ogilvie [26]. For example,
Berckmans et al. [25] use least-squares methods to estimate
the parameters in a simple conceptual CV model of an imper-
fectly mixed 3-D airspace from variations in ventilation rate
and heat supply, whereas Daskalov [27] develops a model for
measured temperature and humidity variations in a naturally
ventilated pig building using discrete-time TF models. To ob-
tain the DBM model, which can be considered a natural ex-
tension of these earlier models, the continuous-time SRIV
estimation algorithm is used first to identify the linear TF (or-
dinary differential equation) model between the measured
temperatures at the inlet, Ti, and the outlet, T. In the case of
the response to a step increase of the ventilation rate from 80
to 300 m3/h, the estimated model for the change in tempera-
ture ∆T from the initial steady levels takes the form

∆ ∆T t
s

s s
T ti t( )

. .
. .

( )= +
+ +

+1959 0 089
2962 01112

ξ
(3)

where s is the differential operator and ξ t is the residual
noise. Fig. 5 compares the output of this model with the mea-

sured change in the outlet temperature, and the associated
residual ξ t is plotted in the lower graph. This unexplained
residual has a zero mean value and low variance (0.021 com-
pared with a measured variance of 2.619 for the output ∆T
series; RT

2 0 992= . ).
The TF model can be decomposed into a parallel or feed-

back connection of first-order processes, but the latter has
more physical significance, as required in DBM modeling.
This becomes clear if we invoke the classical theory of heat
transfer and formulate the differential equations of dynamic
heat transfer, bearing in mind the need to arrive at a sec-
ond-order, lumped, differential equation with a TF similar to
(3). Such analysis [28] yields the following equations for the
main chamber and the buffer zone:

Main Chamber:
d T

dt
T K T Ti

( )∆ ∆ ∆ ∆= + −β α1 1 1buff

Buffer Zone:
d T

dt
K T K T T

( )
( )

∆ ∆ ∆ ∆buff
buff buff= − + −2 3 .

In these equations,

β 1
1

= V
vol

; α
γ1

1

1 1

1 1 1

= +








V k
vol

sf
vol cp

; K
k

1
1 1

1 1 1

= sf
vol cpγ

;

K
k

2
2 2

2 1 1

= sf
vol cpγ

and

K
k

3
1 1

2 1 1

= sf
vol cpγ

where T is the temperature (°C) measured at the outlet
port but assumed to be representative of the temperature
in the active mixing volume (AMV) [10];Ti is the temperature
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Figure 4. Large instrumented chamber in the laboratory at
Katholieke Universiteit Leuven.
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(°C) measured at the chamber inlet;V is the ventilation rate
(m s3 1− ); γ1 is the air density of the incoming air and the air in
the main chamber (kgm 3− );cp1 is the specific heat capacity of
the incoming air (Jkg C- -1 1° ) and the air in the main cham-
ber; k1 is the thermal conduction coefficient through the in-
ner chamber walls (Wm C2 1− −° ); sf1 is the surface area of the
AMV for imperfect mixing (m 2); Tbuff is the temperature in
the outer buffer zone (°C); vol2 is the volume of the AMV as-
sociated with the buffer zone (m 3); k2 is the thermal con-
duction coefficient through the buffer zone (outer
chamber) wall (Wm C2 1− −° ); andsf2 is the surface area of the
buffer zone AMV for imperfect mixing (m 2).

The differential equations above may be combined and
expressed in TF form to yield the following second-order TF
model for the complete chamber-buffer zone system:

∆ ∆T
b s b

s a s a
Ti= +

+ +
0 1

2
1 2 (4)

where

b0 1= β ; b K K1 1 2 3= +β ( ); ( )a K K1 2 3 1= + + α ;
a K K K K2 2 3 1 1 3= + −( ) α .

Clearly, the TF model (4) has exactly the same structural
form as the estimated TF model (3), so in DBM modeling
terms, it can be considered as one particular physical inter-
pretation of the data-based model that has scientific credi-
bility. The first-order TF numerator (B jj , ,= 0 1) and
denominator (A jj , ,= 0 1) parameters in the feedback decom-
position can now be calculated as follows:

B0 1= β ; A
V k

0 1
1

1 1

1 1 1

= = +






α

γvol
sf

vol cp
;

B
K K k

V1
1 3

1

1
2

1
2

2 1
2

1
2

= =
β γ

sf
vol cp

;

A K K
k k

1 2 3
2 2

2 1 1

1 1

2 1 1

= + = +( )
sf

vol cp
sf

vol cpγ γ
.

These two first-order TF’s have very different time
constants: Tc1, associated with the A0 parameter, re-
flects the fast response within the main chamber:

T
A

V
k

c1
0

1

1 1

1 1

1 1

1
= =

+








vol

sf
cpγ

and Tc2, associated with the A1 parameter and the
much slower temperature effect due to feedback
conduction from the buffer zone, i.e., T Ac2 11= / .

The above analysis is useful because it shows
how the inductive approach of DBM modeling objec-
tively defines the lowest order structure (dynamic
order and feedback nature) of the model prior to de-
fining a mechanistic interpretation compatible with

this structure. Note also that the conventionally defined
heat transfer parameters used in the above mechanistic for-
mulation of the equations are not identifiable from the
above relationships. In contrast, the parameters of the
model (4) have direct physical significance, and they can be
identified fully from the measurements obtained in the
chamber experiments. Consequently, this model is not only
useful in subsequent control system design terms, but it
also provides an alternative, mechanistic characterization
of the heat transfer dynamics that is useful in its own right.

The above model is currently being used in the design of a
multivariable PIP controller for a chamber similar to that de-
scribed in the previous section. However, other associated
research has been concerned with the modeling and control
of the fans used in the forced ventilation systems. Fig. 6, for
example, is a diagram of the fan test installation at Leuven.
The model for this system is identified by the SRIV algorithm
as a first-order discrete time TF, and this model has been used
as the basis for PIP and GPC system design. This study con-
firms that the model-based control algorithms offer better
performance than the conventional PID controller in terms of
both the regulation of ventilation rate and the reduction of
energy consumption. In particular, for a 450-mm axial fan, the
normalized mean square errors are as follows: PIP = 1, GPC =
1.64, PID = 5.59. These results were obtained for an airflow
rate of 3000 m3/h with realistic wind disturbances, but, in or-
der to evaluate their practical robustness, all three control-
lers were optimized for an airflow rate set point in the
neighborhood of 1500 m3/h, without wind.

Environmental Forecasting
Previous publications from Lancaster illustrate how the
modeling and forecasting procedures outlined above have
been applied to environmental and other time series (e.g.,
[13] and the references therein). Here, we will consider the
results obtained in the case of two practically important en-
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vironmental examples: first, the famous
series of monthly atmospheric CO2 mea-
surements at Mauna Loa in Hawaii, as
shown in Fig. 7, which did much to pro-
mote the current debate on global warm-
ing; and second, the hourly rainfall and
river flow series from the River Ribble
Catchment in northwest England, as
shown in Fig. 8.

Adaptive Forecasting,
Backcasting,
and Interpolation of the
Mauna Loa CO2 Series
It is clear from Fig. 7 that the variations in
atmospheric CO2 at Mauna Loa are domi-
nated by a long-term, upward trend and an-
nual periodicity. As a result, the identified
UC model takes the form

y T C et t t t= + + (5)

where

T a a t a t d C a t bt t t j t
j

j j t= + + + = +
=
∑0 1 2

2

1

2

and , ,cos( ) (sinω ω j t )

(6)

and yt denotes theCO2. As shown, the trendTt is identified as
a polynomial in time t, with unknown but constant parame-
ters, combined with a residual signal dt that models the me-
dium-term, stochastic deviations about this polynomial
trend. The annual seasonality is modeled by the periodic
component Ct : this is of a standard trigonometric (Fourier)
form but with stochastically time-varying parameters (TVPs)
a b jj t j t, ,, , ,=1 2. This type of relationship will model any peri-
odic behavior defined by the frequencies ω j j, ,=1 2, and the
TVPs allow for the estimation of changes in the amplitude
and phase of these seasonal variations. In the present CO2

example, the frequency ω π1 2 12= / is the fundamental fre-
quency associated with the 12-month seasonal cycle, and
ω π2 2 6= / is its first harmonic. The spectrum of the data sug-
gests that the other harmonics are insignificant and can be
omitted. The TVPs dt , a b jj t j t, ,, , ,=1 2 in this UC model are
identified and modeled as simple random walk processes in
an associated set of stochastic state equations (see [13]).
The hyper-parameters (e.g., noise variance ratios) in this
state-space model are estimated by a special form of optimi-
zation in the frequency domain (see [12] and [13]) and the
recursive KF and FIS algorithms are then used for forecast-
ing, backcasting, and interpolation of the series.

Typical results are shown in Figs. 9 and 10. For this analy-
sis, the estimation data set consisted of the first 313 samples
(1958(1)-1985(5)) of the 504 data set, but with two years of
these data between 1971(8) and 1973(8) omitted to show
how the algorithms interpolate over such a gap. For valida-
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tion purposes, true multistep-ahead forecasting is carried
out in the short term (three years ahead) and long term
(14.4 years ahead to 1999(12)), respectively, based only on
the estimation data set, with the model optimized on the ba-
sis of these same limited data (306 samples). The top panel
in Fig. 9 shows the two-year interpolation results, whereas
the lower panel shows the three-year-ahead forecasts. In
both cases, the results are excellent, with very small errors
between the interpolates/forecasts (full lines) and the data
(dashed lines, not used in the analysis). The estimated stan-
dard error bounds (95% confidence intervals) are shown as
dotted lines. Fig. 10 shows the last 5.5 years of the
14.4-year-ahead forecast. Here, the data (again not used in
the estimation or forecasting) are plotted as circular points
and the forecast as a solid line, with the standard error

bounds shown dotted. Given the very long
forecasting interval, these results are quite
remarkable and show how predictable this
important series can be if sufficiently pow-
erful forecasting algorithms are used. As far
as the authors are aware, these are the best
forecasting results produced so far for this
series.

Adaptive Flow Forecasting
in the Ribble Catchment
Once again, the scientific literature
abounds with different models of rain-
fall-flow processes in river catchments.
These vary considerably in complexity
from those based on continuum mechanics
(solved approximately via finite difference
or finite element spatiotemporal discre-
tization methods) [29] through conceptual
models such as TOPMODEL [30] to hy-
brid-metric-conceptual (HMC) grey-box
models such as IHACRES (e.g., [31]), which
are similar in structure and complexity to
the DBM model equivalent [32]. The main
aim of the River Ribble study [33] was
threefold: first, to obtain DBM models relat-
ing rainfall to the river flows measured in
the Ribble catchment; second, to evaluate
the performance of a state-adaptive,
KF-based approach to forecasting, with
the state dynamics defined by these DBM
models; and finally, to compare this
state-adaptive approach with its predeces-
sor at Lancaster, the parameter-adaptive
forecasting system developed for the Sol-
way River Purification Board as a flood
warning system for the town of Dumfries in
Scotland (e.g., [34]). Another, secondary
objective following from the development

of the Lancaster adaptive radar calibration (ARC) system
for the National Rivers Authority/Environment Agency
[35] was to consider how well forecasting performance
using weather radar measured rainfall compared with the
performance using more conventional ground-based
methods.

In the case of a uniform sampling interval of one hour,
SRIV identification and estimation yields the following dis-
crete-time TF model between the gauged rainfall rt and the
measured flow yt for the River Hodder at Hodder Place in the
Ribble catchment during December 1993:

y
b b z
a z a z

g rt t t= +
+ +

+
−

− − −
0 1

1

1
1

2
2 41

{ } ξ .
(7)
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Here, g rt{ }− 4 is a nonlinear function of the rainfall delayed by
four sampling intervals to introduce the pure (advective)
time delay between the occurrence of the rainfall and its
first measured effect on the river flow. The noise level on
flow data is normally quite large, and the noise term ξ t is in-
troduced here to reflect the combined effects of measure-
ment noise, unmeasured disturbances, and imperfections
in the model.

In this case, SDP estimation shows that a rainfall
nonlinearity is present and takes the form

u g r c f y rt t t t− − −= = ⋅ ⋅4 4 4{ } { } (8)

where ut is termed the “effective rainfall” (or “rainfall ex-
cess”) and c is a scale factor chosen conventionally so that
the volume of the effective rainfall is equal to the total
stream flow volume over the estimation period. Equation
(8) shows that the rainfall affects the flow via a multiplica-
tive nonlinearity between rt − 4 and a nonlinear function of
flow f yt{ }, where yt is acting as a surrogate for the soil mois-
ture, which is difficult to measure [9]. The estimated nonlin-
ear function shows that the SDP is small for low flows (low
soil moisture) and increases, but with diminishing slope, for
high flows. Consequently, the effective rainfall is lower than
the actual rainfall for low soil moisture, since it tends to be
absorbed by the dry soil under these conditions. At high
flow (high soil moisture), however, the rainfall is much more
effective in inducing flow variations.

Based on this SDP identification analysis and subsequent
parametric estimation, the rainfall-flow nonlinearity is
parametrized using a power law f y yt t{ } = θ to approximate
f yt{ }. The SRIV estimates of the associated parameters, as
well as the TF parameters, are shown in Table 1. This also in-
cludes some parameters that are derived from decomposi-
tion of the TF model into the following parallel connection of
two first-order processes (e.g., [9]):

b b z
a z a z z z

0 1
1

1
1

2
2

1

1
1

2

2
11 1 1

+
+ +

=
+

+
+

−

− − − −

β
α

β
α (9)

where α βi i iand , ,=1 2 are, respectively, the eigenvalues of
the TF denominator and the associated residues in the par-
tial fraction expansion of the TF. The latter define the
weighting or “partitioning” associated with this decomposi-
tion. It is clear from (8) and (9) that the effective rainfallut − 4

can be partitioned into two parallel pathways resulting in
two component flows that, when added together, yield the
total measured river flow. In effect, therefore, the decompo-
sition provides estimates of two “unobserved” (“latent” or
“hidden”) flow states and their associated rainfall-flow dy-
namics.

The estimates in Table 1(b) reveal that the two pathways
have very different dynamics. The “quick-flow” pathway has
a total travel time (Ti + δ) of 7.5 hr, whereas the “slow-flow”
pathway has a total travel time of 77 hr. The associated par-

tition percentages of 60% and 40%, respectively, suggest
that more of the effective rainfall affects the quick-flow path-
way than the slow-flow pathway. Note, however, that if the
uncertainty in the parameter estimates is taken into ac-
count using MCS analysis (see previous discussion and [8]),
then some of the derived parameters in Table 1 have wide
confidence intervals and non-Gaussian distributions. In par-
ticular, and not surprisingly, the slow-flow dynamics are
much more poorly defined than the quick-flow dynamics.

As we have stressed, an important aspect of DBM model-
ing is the physical interpretation of the model. Given the de-
rived parameters in Table 1, the most obvious physical
interpretation of the model (9) is that the effective rainfall af-
fects the river flow nonlinearly via two main pathways. First,
the initial rapid rise in the hydrograph, following an instanta-
neous rise in effective rainfall, derives from the quick-flow
pathway, probably as the aggregate result of the many sur-
face processes active in the catchment. The subsequent long
tail in the recession of the hydrograph is associated mainly
with the slow-flow component, probably as the result of wa-
ter displacement within the groundwater system.

For flow forecasting purposes, the complete catchment
model for the River Ribble is formulated in terms of rain-
fall-flow models such as (7), together with flow-flow TF mod-
els that route the flow down the river system. All of these TF
models are then combined into a set of stochastic state
equations with a state vector x t . In the case of the rain-
fall-flow models, such as (7), the associated state variables
are defined as the latent states defined by decompositions
such as (9), and the rainfall inputs are the effective rainfall
series, such asut . The estimate $x t of the state vector x t and,
from this, the recursive estimate $yt of the river flow yt can
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Table 1. (a) Model parameter estimates
(to three decimal places).

Parameter Estimates

$ . ( . ); $ . ( . )a a1 21 739 0 015 0 743 0 014= − =
$ . ( . ); $ . ( . )b b0 10153 0 006 0149 0 005= = −

$ . ; $ . ; $ . ; $ .α α β β1 2 1 20 986 0 753 0 006 0147= = = =

$ . ; $ . ( . )c = =0 847 0160 0 0001ϑ

(b) Derived physically meaningful parameters for (9).

Physically
Meaningful Derived

Parameters

Slow Flow Quick Flow

SSG, Gi 0.40 0.60

Residence time, Ti 73 hr 3.5 hr

Advective delay, δ 4 hr 4 hr

Partition %, pi 40% 60%
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then be obtained from the associated KF algorithm (see
[11], [33], and [36]), whose stochastic hyper-parameters
(variance ratios) are estimated by maximum likelihood opti-
mization based on prediction error decomposition [37]. The
resulting four-step-ahead forecasting results are obtained
from the prediction step in the KF update equations and are
shown graphically in Fig. 11.

The forecasting performance shown in Fig. 11 can be im-
proved a little if the noise ξ t in (7) is modeled as an AR pro-
cess and introduced into the state-space description (thus
increasing its dimension to include the additional stochas-
tic states). Even without this improvement, however, the
performance is good, and this is reflected in the statistical
properties of the forecast errors, which have a mean value
near zero (0.0032 mm⋅hr-1) and a standard deviation
σe 4 0132= . mm⋅hr-1. The coefficient of determination based

on the variance of the four-step-ahead prediction errors is
R4

2 0 871= . , compared with R4
2 0 484= . for the naïve (persis-

tence) forecast, where the predicted four-hour-ahead flow is
equal to current flow.

Conclusions
This article has briefly reviewed the main aspects of the ge-
neric DBM approach to modeling stochastic dynamic sys-
tems and shown how it is being applied to the analysis,
forecasting, and control of environmental and agricultural
systems. The advantages of this inductive approach to mod-
eling lie in its wide range of applicability. It can be used to
model linear, nonstationary, and nonlinear stochastic sys-
tems, and its exploitation of recursive estimation means
that the modeling results are useful for both online and
offline applications. To demonstrate the practical utility of
the various methodological tools that underpin the DBM ap-

proach, the article also outlined several typical,
practical examples in the area of environmental and
agricultural systems analysis, where DBM models
have formed the basis for simulation model reduc-
tion, control system design, and forecasting. How-
ever, the same methods have been used in many
other applications in diverse areas of science and
social science. Recent applications include:

• Engineering: the delta operator modeling and
autostabilization of the Harrier VSTOL aircraft
in its most difficult transitional mode between
hovering and normal flight [7], [16], the model-
ing and control of interurban traffic systems
[38], and both model reduction and control of
an industrial gasifier system [39].

• Ecology: the modeling of limit cycling behav-
ior in blowfly population dynamics [7], [14].

• Biology: DBM modeling has revealed new as-
pects of the dynamics associated with
stomatal behavior in plants [40]; the chaotic
electrical activity in the axon of a squid has
also been modeled [41], [42].

• Business Data Analysis and Forecasting: UC modeling
and forecasting of microeconomic and business data
for the credit card company Barclaycard, U.K. [43]

• Macroeconomics: where DBM modeling yields some
thought-provoking, and rather topical, insights into
the relationship between government spending, pri-
vate capital expenditure, and unemployment in the
United States between 1948 and 1998 [44].
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measured flow series (dashed).
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