Integrating wastewater and randomised prevalence survey data for national COVID surveillance

Li, Guangquan and Diggle, Peter and Blangiardo, Marta (2024) Integrating wastewater and randomised prevalence survey data for national COVID surveillance. Scientific Reports, 14 (1): 5124. ISSN 2045-2322

Full text not available from this repository.

Abstract

During the COVID-19 pandemic, studies in a number of countries have shown how wastewater can be used as an efficient surveillance tool to detect outbreaks at much lower cost than traditional prevalence surveys. In this study, we consider the utilisation of wastewater data in the post-pandemic setting, in which collection of health data via national randomised prevalence surveys will likely be run at a reduced scale; hence an affordable ongoing surveillance system will need to combine sparse prevalence data with non-traditional disease metrics such as wastewater measurements in order to estimate disease progression in a cost-effective manner. Here, we use data collected during the pandemic to model the dynamic relationship between spatially granular wastewater viral load and disease prevalence. We then use this relationship to nowcast local disease prevalence under the scenario that (i) spatially granular wastewater data continue to be collected; (ii) direct measurements of prevalence are only available at a coarser spatial resolution, for example at national or regional scale. The results from our cross-validation study demonstrate the added value of wastewater data in improving nowcast accuracy and reducing nowcast uncertainty. Our results also highlight the importance of incorporating prevalence data at a coarser spatial scale when nowcasting prevalence at fine spatial resolution, calling for the need to maintain some form of reduced-scale national prevalence surveys in non-epidemic periods. The model framework is disease-agnostic and could therefore be adapted to different diseases and incorporated into a multiplex surveillance system for early detection of emerging local outbreaks.

Item Type:
Journal Article
Journal or Publication Title:
Scientific Reports
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1000
Subjects:
?? general ??
ID Code:
215796
Deposited By:
Deposited On:
04 Mar 2024 10:05
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 00:59